Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive publisher-authenticated version is available on the publisher Web site

Analytica Chimica Acta November 2012, Volume 753, Pages 42–47 <u>http://dx.doi.org/10.1016/j.aca.2012.09.044</u> © 2012 Elsevier B.V. All rights reserved.

Sulfide determination in hydrothermal seawater samples using a vibrating gold micro-wire electrode in conjunction with stripping chronopotentiometry

Virginie Aumond^a, Matthieu Waeles^{a, *}, Pascal Salaün^b, Kristoff Gibbon-Walsh^{a, b, c}, Constant M.G. van den Berg^b, Pierre-Marie Sarradin^d, Ricardo D. Riso^a

^a Université de Bretagne Occidentale, IUEM, Lemar UMR CNRS 6539, Place Copernic, F-29280 Plouzané, France

^b Ocean Sciences, School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP, UK

^c RCMO-PROTEE Laboratory, University of Toulon and Var, BP 132, 83957 La Garde, France

^d Ifremer, Institut Carnot EDROME, REM/EEP BP 70, F-29280 Plouzané, France

*: Corresponding author : Matthieu Waeles, Tel.: +33 298498696 ; email address : waeles@univ-brest.fr

Abstract:

A rapid electrochemical stripping chronopotentiometric procedure to determined sulfide in unaltered hydrothermal seawater samples is presented. Sulfide is deposited at -0.25 V (vs Ag/AgCl, KCl 3 M) at a vibrating gold microwire and then stripped through the application of a reductive constant current (typically -2μ A). The hydrodynamic conditions are modulated by vibration allowing a short deposition step, which is shown here to be necessary to minimize H₂S volatilization. The limit of detection (LOD) is 30 nM after a deposition step of 7 s. This LOD is in the same range as the most sensitive cathodic voltammetric technique using a mercury drop electrode and is well below those reported previously for other electrodes capable of being implemented in situ.

Graphical abstract :

Keywords: Sulfide ; Stripping chronopotentiometry ; Vibrating electrode ; Gold ; Seawater ; Hydrothermal

1 1. Introduction

Free sulfide (H₂S, HS⁻, S²⁻) is an exceedingly important substance in the aquatic environment. It is both a potent poison for many aquatic organisms, even at concentrations in the micromolar range [1] and an energy source for sulfur bacterial symbionts found in chemosynthetic communities [2,3]. Due to its strong affinity for most metal ions, sulfide can be stabilized through the formation of complexes and precipitates, thus acting as an important chelate in the regulation of metal availability to organisms [4–7].

8 Various methods have been developed for measuring sulfide in seawater. 9 Spectrophotometric detection of methylene blue is the usual technique and allows sulfide 10 measurements in the 1-1000 µM range. It is based on the specific reaction between free 11 sulfide and N,N-dimethyl-p-phenylenediamine [8] and in conjunction with flow injection 12 analysis (FIA) this technique can be implemented in-situ [9–11]. Gas chromatography (GC) is 13 currently the most sensitive technique; using a liquid nitrogen-cooled trapping and a flame 14 photometric detection, Radford-Knoery and Cutter [12] developed a GC method allowing 15 total dissolved sulfide determination (i.e. free sulfide + complexed sulfide) with a detection 16 limit of 0.5 pM.

However, because of their low-cost and compactness, electrochemical techniques represent a prudent alternative, with the capability to be implemented *in-situ*. Direct monitoring at levels in the micromolar range has been conducted by (i) potentiometry with the combined use of a pH electrode and a Ag/Ag₂S ion-selective electrode [13]; (ii) amperometry with a glass-coated platinum electrode [14] or (iii) voltammetry with a solid-state gold-amalgam (Au/Hg) wire [5,15] or a bismuth film wire electrode [16]. For sulfide determination below 1 μM, a preconcentration step (i.e. stripping technique) is required. Cathodic stripping

1 voltammetry (CSV) is the most widely used technique and has been mostly associated with a 2 mercury drop electrode [e.g. 17,18]. Al Farawati and Van den Berg [19] showed however, 3 that waste metallic mercury, which is produced by the mercury drop system, rapidly 4 precipitates with free sulfide thus leading to uncertainties in its determination. By using a 5 flow-analysis system, they solved this problem reporting a 0.5 nM detection limit for a 60 s 6 deposition time. Notably, when using CSV with a mercury drop, purging with an inert gas is 7 necessary to remove dissolved oxygen. Such addition of a gas can lead to perturbations of 8 the medium with potential loss of H_2S , pH change and corresponding variations of chemical 9 equilibrium, and a decrease of sample throughput due to a minimum of 5 min purging per 10 sample. CSV at a bismuth film electrode wire has also been investigated [16] but the 11 reported detection limit (1 µM after 30 s of preconcentration) does not offer any 12 improvement when compared to direct determination by linear scan voltammetry or square-13 wave voltammetry [15].

14 In this study, we investigated the suitability of a vibrating gold microwire electrode (VGME) 15 for measuring sulfide in seawater. The hydrodynamic modulation by vibration of the working 16 electrode results in a very stable convection conditions [20] and a thin diffusion layer (~2 17 μm) [21,22]. Moreover this kind of system has proved its potential for *in-situ* analysis [22]. 18 Here the VGME electrode was tested in conjunction with cathodic stripping 19 chronopotentiometry (SCP). In SCP, the preconcentration step is the same as in stripping 20 voltammetry, whereas the stripping step is performed through the application of a constant 21 oxidative or reductive current [23]. SCP has been used for the determination of metals and 22 metalloids in seawater at low concentrations [24-29]. Detection of sulfide by SCP was 23 recently reported in waste water using a macroporous mercury-film electrode [30]. Although 24 a low detection limit is reported (~20 nM), measurements take several minutes and the

procedure requires a medium exchange before the stripping step which limits its potential application for *in-situ* analysis. We report here for the first time the determination of sulfide in seawater at a VGME by SCP. The method does not require medium exchange, deaeration or reagent addition and is potentially applicable for on-board analysis immediately after sampling or even *in-situ* analysis.

6

7 2. Experimental

8 2.1 Reagents

9 Water used to prepare reagents and preliminary working solutions was ultrapure deionised 10 water (>18 MΩ) from a Milli-Q Element system (Millipore[®], St Quentin, France). The HS⁻ 11 stock solution (~70 mM) was prepared from Na₂S.9H₂O (Sigma), stored at 4 °C and 12 standardized every 2 weeks by iodometric titration [8,31]. From this stock solution, working 13 solutions (in the range 0.03-10 mM) were prepared daily, just before the beginning of a set 14 of experiment. A pH 9.6 buffer was prepared with 0.01 M NH₄OH and 0.01 M NH₄Cl (Fluka). 15 A 0.5 M H₂SO₄ solution (Fluka) was used for electrode conditioning. For interference 16 experiments, different aqueous standard stock solutions were freshly prepared: Gluthatione 17 (Sigma-Aldrich) 5 mM, thioacetic acid (Fluka) 14 µM and elemental sulfur (Pestanal, Sigma) 18 3.2 mM. Due to its low solubility in water, elemental sulfur was first dissolved into 10 mL THF 19 and 100 mL ethanol. A 0.5 M NaCl (Fluka) solution was also prepared for the dilution of some 20 samples.

21

1 **2.2 Sample collection**

2 For optimization of the technique, various tests using seawater were performed on (i) a 3 coastal seawater sample collected in the Bay of Brest and (ii) hydrothermal samples 4 collected at Lucky Strike vent field (Mid-Atlantic Ridge, 37.3°N) in the seawater-5 hydrothermal mixing zone (temperature range 4-70°C) during the MoMARSAT 2010 cruise 6 (see [32] for the description of the sampling sites and procedures). Hydrothermal seawater 7 samples were immediately stored at -20°C with minimum headspace as previously 8 recommended for thioarsenic species [33] until optimization tests at the laboratory. The 9 usual way to preserve sulfide is to create a precipitation of total sulfide by adding an excess 10 of Zn ion [34]. However, freezing was selected here in order to minimize changes in chemical 11 equilibriums and therefore analyse samples which are as close as possible to realistic, 12 natural conditions. Mg concentrations were measured in these hydrothermal samples in 13 order to know the degree of dilution of seawater with the hydrothermal fluid. They were 14 determined by ICP-OES (Ultima 2, Horiba Jobin Yvon, Pôle Spectrométrie Océan) with a 15 precision under 0.5%. Obtained concentrations were in the range of 45-53 mM indicating 16 that these samples contained between 85 and 100% seawater. Fe and Mn were also 17 measured by ICP-OES (precision <1%); concentrations were in the range 1.5-5.7 μ M and 16-18 55 μ M, respectively.

19

20 **2.3 Instrumentation**

Electrochemical instrumentation was a μ Autolab(III) potentiostat and a IME 663 interface from Metrohm (Switzerland). Data was processed with GPES 4.9 software. A 50 mL threeelectrode cell was used containing the working electrode (WE), a counter electrode consisting of a 200 μ m iridium wire (from Goodfellow, UK), heat-sealed in a propylene

1 pipette tip, 3 mm protruding; the reference electrode was a glass Ag/AgCl/KCl (3 M). The WE 2 was a bare gold microwire electrode, prepared as described by Nyholm and Wikmark [35] 3 and Gibbon-Walsh et al. [36], briefly: a 10 µm diameter gold microwire (99.99%, hard, 4 Goodfellow) was heat-sealed in a 100 µL polypropylene pipette tip with about 0.5 mm 5 protruding. This tip was then fitted onto a 1 mL polypropylene pipette tip, which had a 6 vibrator incorporated and an insulated connecting single core electrical cable protruding ~1 cm at the bottom, which made contact with the WE. The cell was PTFE for analyses and a 7 8 separate, plastic, cell was used for electrode conditioning in 0.5 M H₂SO₄

9

10 **2.4 Electrode conditioning**

The WE was conditioned each day before a set of experiments in H_2SO_4 0.5 M using cyclic voltammetry (5 scans) from -0.2 to 1.5 V (105 mV s⁻¹). The symmetry and area of the reduction peak of the gold oxide monolayer were used to check the behavior of the electrode and monitor the gold surface, respectively [37].

15

16 **2.5 Sulfide determination by stripping chronopotentiometry**

17 Stripping chronopotentiometry (SCP) consists of 2 steps: electrolysis and stripping. During 18 electrolysis (also named deposition step), HS⁻ is deposited at the gold wire by applying an 19 oxidizing potential. In this condition, Au(0) at the electrode surface is oxidized to Au(III) with 20 which the HS⁻ reacts as follows [16]:

21
$$3 HS^- + 2 Au \stackrel{1}{\leftarrow} Au_2S_3 + 3 H^+ + 6 e^-$$

The amount of deposited sulfide (n_s) is determined by Fick's diffusion laws assuming a
 constant diffusion layer size at any time during the deposition step (eq. 1):

$$n_S = \frac{[HS^-] D A t_d}{\delta_e} \quad (eq. 1)$$

3

4 where [HS⁻] (mol cm⁻³) is the bulk concentration of sulfide, D (cm² s⁻¹) its diffusion coefficient, 5 δ_e (cm) the diffusion layer thickness under vibrated conditions, A (cm²) the electrode surface 6 area, and t_d (s) the deposition time.

7 During the stripping step, the application of a constant reductive current leads to the 8 reduction of Au(III) (direction 2 in the above reaction). The amount of sulfide is directly 9 related to the time corresponding to the reduction of Au(III) to Au(0) which is obtained by 10 monitoring the variation of the WE potential (E) as a function of time (t). From this 11 chronopotentiogram, a derivative curve (i.e. dt/dE vs E) is established where the amount of 12 stripped material is proportional to the peak area. It has been shown that the capacitive 13 charging current is effectively eliminated by this signal treatment [38]. The peak area 14 corresponds to the time used to strip the analyte from the electrode (t_s in ms) and can be 15 expressed as follows [39]:

$$t_{S} = k \frac{[HS^{-}]}{(i_{S} - i_{0})} \quad (\text{eq 2})$$

17 where k is a mass transfer coefficient that incorporates D and δ_{e} , i_s the magnitude of the 18 applied current and i₀ the amount of this current lost by side reactions due to diffusion of 19 reducible species to the electrode and/or competing reactions at the electrode substrate 20 surface. Assuming the condition i_s>>i₀ is fulfilled during stripping, small variations in the 21 diffusion layer will not noticeably affect t_s in this respect [40].

It is worth noting that both directions 1 and 2 in the above reaction should be considered as
a simplified mechanism. Recent studies [41] have shown that the deposition and stripping

mechanisms are more complexes than previously thought. Anodic processes consist mainly in underpotential deposition of sulfur and possible formation of a sulfur multilayer at the electrode surface competing with the formation of soluble polysulfides. Cathodic processes comprise dissolution of the deposited sulfur-containing layer and formation of insoluble polysulfides with incorporation of a Na⁺ ion. Multiple peaks can be observed depending on the conditions. The mechanistic aspect of the deposition and stripping of sulfur is however beyond the scope of this paper.

8 Each measurement consisted in two successive SCP scans: an analytical scan with the 9 deposition-stripping steps and a background scan, which is similar to the analytical scan, but 10 with only a 1 s deposition step. The background scan is then subtracted from the analytical 11 scan to give a background corrected scan with well defined peaks, especially at low 12 concentration. Prior to each analytical scan, the electrode was conditioned (cleaned), under 13 vibration, using a potential at -1.1 V for 10 s. A typical procedure for the analytical scan was 14 as follows: vibrator on, -1.1 V (10 s), -0.25 V (7 s), vibrator off, 1 s equilibration, stripping 15 from -0.25 to -1.1 V (-2 µA). For the background scan: vibrator on, -0.25 V (1 s), vibrator off, 16 1 s equilibration, stripping from -0.25 to -1.1 V (-2 μ A). The measurements, background 17 subtraction and peak analysis were fully automated through the Project option of the GPES 18 software.

19

20 **3. Results and discussion**

21 **3.1** Instability of the sulfide species

Various oxidants in seawater, such as dissolved oxygen [42,43], hydrogen peroxide [44] or
iodate [45] are known to react with free sulfide in a matter of hours. Purging of the sample
(with N₂ or Ar), as often required with voltammetric techniques to remove dissolved oxygen,

1 cannot help to solve this problem because such a procedure removes free sulfide [12,46]. 2 Conditions created by some techniques can also enhance the rate loss of free sulfide (e.g. by 3 electromotive force [47]). For instance, when using a mercury drop electrode, the sulfide 4 peak is rapidly lost (few minutes) due to precipitation with mercury present in the 5 voltammetric cell [19]. Recently, DeLeon et al. [48] demonstrated that the loss of sulfide for 6 samples exposed to air is not due to oxidation but to H₂S volatilization. They reported half 7 lives of few minutes and tens of seconds in samples exposed to air and samples bubbled 8 with nitrogen respectively.

9 The stability of the sulfide peak at the gold microwire electrode was tested here in various 10 non deoxygenated media: (i) 0.5 M NaCl, (ii) natural coastal seawater and (iii) natural coastal 11 seawater buffered at pH 9.6 (Fig 1a). For this purpose, repetitive electrolysis-stripping cycles 12 were undertaken in solutions exposed to air and spiked with 13 μ M of sulfide. For NaCl 13 (0.5 M) and natural seawater, the sulfide peak was stable for ~10 min after which a decrease 14 was observed, with 50% of the initial signal being lost after ~40 min. As illustrated in figure 1b, the loss rate constants were estimated to 1.8% min⁻¹ for NaCl 0.5 M and 2.6% min⁻¹ for 15 16 seawater. For seawater buffered at pH 9.6, the peak stability was much greater (~1h) with 17 20% loss after 2 h. Following the hypothesis that a first order kinetic also occurs in seawater buffered at pH 9.6, the rate of sulfide loss was ~0.2% min⁻¹. The half-life of sulfide in pH 8 18 19 seawater in oxidising conditions and samples not exposed to air is ~26 h [47]. Our data, with 20 significant losses after only a few minutes (half life of ~30 min) and their pH dependence 21 suggest that the loss is due to H₂S volatilization rather than oxidation and is independent of 22 a potential loss of sensor sensitivity. Analysis of sulfide in natural seawater (including 23 standard additions) can thus be done if achieved within few minutes. Optimisation of the 24 various parameters consisted in decreasing the overall measurement time.

1

2 **3.2** Optimization of the electrochemical parameters.

3 Optimisation of the electrochemical parameters was done using an unaltered hydrothermal 4 stock sample containing approximately 0.5 µM of sulfide. From this stock sample, different 5 aliquots of ~15 mL were used and the whole optimisation procedure presented below was 6 realized within 2 days, in order to avoid strong changes with respect to the analyte. The free 7 sulfide reduction peak was located at approximately -1.0 V vs Ag/AgCl (KCl, 3M). The 8 influence of the deposition potential (E_d) was tested from -0.9 V to +0.1 V (Figure 2a). The 9 signal response strongly increased when E_d was varied between -0.75 and -0.25 V whilst 10 decreasing at more positive potentials. The reasons for such a decrease could be due to the 11 reactions of various species present in the sample either: (1) Blocking of the gold electrode 12 surface following Fe(II) and Mn(II) oxidation to their more oxidised, insoluble, precipitates in 13 Fe and Mn rich waters [36] as it is the case for the hydrothermal samples used here. 14 However, a similar decrease was observed in coastal seawater (i.e. containing low levels of 15 Fe and Mn) spiked with free sulfide. Or (2), Formation of polysulfide at the working electrode 16 occurs at more positive anodic potentials (>-0.2 V, [41]) and result in several cathodic peaks 17 [49] located in the region of the sulfide signal (as the one observed here at \sim -0.8 V, Fig. 2b). 18 The formation of these species at the electrode could reduce the amount of deposited 19 sulfide. Taking the above evolution of the sulfide signal into account, a deposition potential 20 of -0.25 V was chosen for subsequent experiments.

The effect of the intensity of the stripping current (i_s) was studied with the aim of obtaining a sensitive and reproducible signal. As illustrated in figure 3, the signal (t_s) strongly increased from 1 ms to ~500 ms by varying the stripping current from -3 μ A to -0.2 μ A. For the sample used for optimisation, the signal was reproducible over the range of tested values. However,

for many other samples, especially those having relatively high sulfide content (>1 μ M), an irreproducible signal was often observed for stripping currents under 1 μ A (absolute value). As illustrated in figure 3b, the sulfide signal was close to the negative potential limit of the electrode due to reduction of cations from the electrolyte (mainly Na⁺) or water (H⁺/H₂O) [50]. A reduction current of -2 μ A was found to be generally satisfactory (Fig. 3c) and was therefore selected for further tests.

7

8 **3.3** Linear response of sulfide signal

9 The linear range of signal response was examined through standard additions of free sulfide 10 to an unaltered hydrothermal sample. The peak area was found to increase nearly linearly 11 over the range 0-20µM (Fig. 4a), however, the shape of the signal changed over the course 12 of the experiment. A loss of symmetry was observed and a narrow peak emerged from the 13 initial signal after addition of \sim 5 μ M. This narrow peak was also observed at increased 14 deposition time indicating that the development of this peak depends on the amount of 15 deposited sulfide. According to Gao et al. [49] and Bura-Nakic et al. [41], this is related to the 16 formation of polysulfide adlayers on the gold. Whatever the nature of the sulfide species, 17 the conditioning of the electrodes at -1.1 V for 10 s was always efficient in removing the 18 adsorbed species. This is consistent with previous observations that desorption occurs 19 through reductive dissolution at potentials below ~-0.9 V [41,51].

Using our microwire electrode (real surface area of 0.85 mm² including surface roughness; estimated from [37]), the peak-shape changed for signals over 10 ms. Figure 4b illustrates however, that good linearity is achieved when standards additions are conducted before the change of the peak-shape. For quantification of sulfide concentrations, it is necessary to

dilute samples with a 0.5 M NaCl solution prior to calibration in order to stay within the
 linear range of the method.

3

4 **3.4** Limit of detection, reproducibility and electrode stability

5 The limit of detection (LOD) was evaluated from 3x the standard deviation (SD) of 9 6 measurements in an unaltered hydrothermal sample containing 58 nM sulfide. For a 7 deposition time of 7 s, the SD was 20% giving a LOD of around 30 nM. By increasing the 8 deposition time to 60 s, the LOD was lowered to 10 nM (SD=6%, n=8). Detection of lower 9 concentrations was tested with a deposition time of 240 s. For a sample containing 6 nM, 10 the LOD for a deposition time of 240 s was 3 nM (SD=15%, n=4). This deposition time 11 represents however an upper limit since quantification by standard addition must be carried 12 out within a few minutes.

The reproducibility (n=5) was assessed on two unaltered hydrothermal samples containing different amount of sulfide. For the sample containing 0.18 μ M the reproducibility was 15% (0.18±0.3 μ M). Due to its high concentration, the sample containing 15.1 μ M of sulfide was diluted in ultrapure water containing 0.5 M NaCl. Aliquots were prepared before each analysis by diluting ten times the original sample. An example of this analysis is illustrated in fig. 5. The obtained reproducibility was 11% (15.1±1.7 μ M).

In absence of certified reference material for such chemical species, sulfide concentrations were measured after adding a known amount of sulfide in (i) a NaCl 0.5 M solution and (ii) an hydrothermal sample in which free sulfide was first let to volatilize. Obtained concentrations gave recoveries of 90±8% (n=3) and 104±9% (n=3), respectively.

It is worth noting that the same electrode was used continuously over a period of 6 month
highlighting its long stability when used with the recommended procedure.

1

2 **3.5 Interferences**

3 On the mercury electrode, elemental sulfur (S⁰) and organic thiols are known to produce 4 cathodic peaks that interfere with sulfide [21]. Additions of thioacetic acid (CH₃COSH) and of S⁰ and glutathione (GSH) which are potentially present in the proximity of hydrothermal 5 6 organisms [52, 53] were tested here in order to examine their influence on the sulfide signal 7 at the gold microwire electrode. These species were added in a non buffered seawater 8 sample containing 1.0 μ M sulfide at ratios of 1:1, 10:1 and 100:1 (Table 1). The experiment 9 was carried out quickly (within five minutes) to avoid sulfide loss by volatilization. No clear differences were observed after S⁰ addition suggesting that it does not interfere with sulfide. 10 11 On the other hand, addition of CH₃COSH and GSH caused a drop in the signal. For CH₃COSH, 12 the drop was ~70% at the 10:1 ratio. For GSH, ~90% of the signal was lost at the 1:1 ratio. 13 Considering the low pKa of these compounds (pka=3.3 and pKa₁=3.6 for CH₃COSH and GSH, 14 respectively), acido-basic reaction with hydrogenosulfide may enhance H₂S formation and 15 consequently, loss. In any case, the added species were not detected under the 16 electrochemical conditions optimized for sulfide quantification at the VGME.

17

18 **4.** Conclusions

We have presented a stripping chronopotentiometric (SCP) method using a vibrating gold microwire electrode for sulfide quantification in unaltered seawater and hydrothermal samples. The detection limit (30 nM for a 7 s deposition time) is lower than those reported for non-stripping techniques and is close to the most sensitive voltammetric method [19] based on a Hg drop electrode (LOD: 0.5 nM for a 60 s deposition time). Compared to the Hg drop, the strong advantage of the vibrating gold microwire electrode is its capability to be

- 1 implemented *in-situ* [22]. It is intended to use this method as part of the development of an
- 2 *in-situ* analyzer for deep sea hydrothermal environments.
- 3

4 Acknowledgments

5 This work was supported by grants 10/2 211 311 from Carnot Institute (Ifremer Edrome)

6 References

- 7 [1] F. Wang, P.M. Chapman, Environmental Toxicology and Chemistry, 18 (2009) 2526–2532.
- 8 [2] J.M. Brooks, M.C. Kennicutt, C.R. Fisher, S.A. Macko, K. Cole, J.J. Childress, R.R. Bidigare,
- 9 R.D. Vetter, Science, 238 (1987) 1138–1142.
- 10 [3] J.J. Childress, C.R. Fisher, Oceanography and Marine Biology, 30 (1992) 337–441.
- 11 [4] D. Dyrssen, Marine Chem., 24 (1988) 143–153.
- 12 [5] G.W. Luther, T.F. Rozan, M. Taillefert, D.B. Nuzzio, C. Di Meo, T.M. Shank, R.A. Lutz, S.C.
- 13 Cary, Nature, 410 (2001) 813–816.
- 14 [6] N. Le Bris, P.M. Sarradin, J.C. Caprais, Deep Sea Research Part I: Oceanographic Research
- 15 Papers, 50 (2003) 737–747.
- 16 [7] V.P. Edgcomb, S.J. Molyneaux, M.A. Saito, K. Lloyd, S. Böer, C.O. Wirsen, M.S. Atkins, A.
- 17 Teske, Applied and environmental microbiology, 70 (2004) 2551–2555.
- 18 [8] J.D. Cline, Limnology and Oceanography, (1969) 454–458.
- 19 [9] C.M. Sakamoto-Arnold, K.S. Johnson, C.L. Beehler, Limnology and Oceanography, (1986)20 894–900.
- 21 [10] N. Le Bris, P.M. Sarradin, D. Birot, A.M. Alayse-Danet, Marine Chem., 72 (2000) 1–15.
- 22 [11] R. Vuillemin, D. Le Roux, P. Dorval, K. Bucas, J. Sudreau, M. Hamon, C. Le Gall, P.
- 23 Sarradin, Deep Sea Research Part I: Oceanographic Research Papers, 56 (2009) 1391–1399.
- 24 [12] J. Radford-Knoery, G.A. Cutter, Analytical Chemistry, 65 (1993) 976–982.
- 25 [13] S. Peiffer, T. Frevert, Analyst, 112 (1987) 951–954.
- 26 [14] P. Jeroschewski, C. Steuckart, M. Kühl, Anal. Chem., 68 (1996) 4351–4357.
- 27 [15] P.J. Brendel, G.W.I.I.I. Luther, Environmental Science & Technology, 29 (1995) 751–761.
- [16] T.J. Waite, C. Kraiya, R.E. Trouwborst, S. Ma, G.W. Luther III, Electroanalysis, 18 (2006)
 1167–1172.
- 30 [17] I. Ciglenečki, Z. Kodba, B. Ćosović, Marine Chem., 53 (1996) 101–110.
- 31 [18] G.W. Luther, T. Ferdelman, E. Tsamakis, Estuaries and Coasts, 11 (1988) 281–285.
- 32 [19] R. Al-Farawati, C.M.G. van den Berg, Marine Chem., 57 (1997) 277–286.
- [20] Z. Bi, C.S. Chapman, P. Salaün, C.M.G. van den Berg, Electroanalysis, 22 (2010) 2897–
 2907.
- [21] K. Gibbon-Walsh, P. Salaun, C.M.G. Van Den Berg, The Journal of Physical Chemistry A,(2012).
- 37 [22] C.S. Chapman, C.M.G. van den Berg, Electroanalysis, 19 (2007) 1347–1355.
- 38 [23] R.M. Town, H.P. van Leeuwen, Journal of Electroanalytical Chemistry, 509 (2001) 58–65.
- 39 [24] H. Eskilsson, C. Haraldsson, D. Jagner, Analytica Chimica Acta, 175 (1985) 79–88.

- 1 [25] J. Wang, D. Larson, N. Foster, S. Armalis, J. Lu, X. Rongrong, K. Olsen, A. Zirino, Analytical
- 2 Chemistry, 67 (1995) 1481–1485.
- [26] R.D. Riso, M. Waeles, S. Garbarino, P. Le Corre, Analytical and bioanalytical chemistry,
 379 (2004) 1113–1119.
- 5 [27] R.D. Riso, M. Waeles, B. Pernet-Coudrier, P. Le Corre, Analytical and bioanalytical
- 6 chemistry, 385 (2006) 76–82.
- [28] P. Salaün, B. Planer-Friedrich, C.M.G. Van den Berg, Analytica chimica acta, 585 (2007)
 312–322.
- 9 [29] V. Tanguy, M. Waeles, J. Vandenhecke, R. Riso, Talanta, 81 (2010) 614–620.
- 10 [30] A. Manova, M. Strelec, F. Cacho, J. Lehotay, E. Beinrohr, Analytica chimica acta, 588 11 (2007) 16–19.
- 12 [31] M. Budd, H. Bewick, Analytical Chemistry, 24 (1952) 1536–1540.
- 13 [32] P.-M. Sarradin, M. Waeles, S. Bernagout, C. Le Gall, J. Sarrazin, R. Riso, Science of The
- 14 Total Environment, 407 (2009) 869–878.
- 15 [33] E. Suess, D. Wallschlager, B. Planer-Friedrich, Chemosphere, (2011).
- 16 [34] L.R. Goodwin, D. Francom, A. Urso, F.P. Dieken, Analytical Chemistry, 60 (1988) 216-
- 17 219.
- 18 [35] L. Nyholm, G. Wikmark, Analytica Chimica Acta, 257 (1992) 7–13.
- 19 [36] K. Gibbon-Walsh, P. Salaün, M.K. Uroic, J. Feldmann, J.M. McArthur, C.M.G. Van den
- 20 Berg, Talanta, (2011).
- 21 [37] P. Salaün, C.M.G. van den Berg, Analytical chemistry, 78 (2006) 5052–5060.
- 22 [38] R.M. Town, H.P. van Leeuwen, Journal of Electroanalytical Chemistry, 523 (2002) 1–15.
- 23 [39] C. Hua, D. Jagner, L. Renman, Analytica chimica acta, 197 (1987) 257–264.
- 24 [40] D. Jagner, L. Renman, S.H. Stefansdottir, Analytica Chimica Acta, 281 (1993) 305–314.
- 25 [41] E. Bura-Nakic, A. Róka, I. Ciglenecki, G. Inzelt, Journal of Solid State Electrochemistry, 13
- 26 (2009) 1935–1944.
- 27 [42] K.Y. Chen, J.C. Morris, Environmental Science & Technology, 6 (1972) 529–537.
- 28 [43] F.J. Millero, Deep Sea Research Part A. Oceanographic Research Papers, 38, Supplement
- 29 **2 (1991) S1139–S1150**.
- 30 [44] F.J. Millero, A. LeFerriere, M. Fernandez, S. Hubinger, J.P. Hershey, Environmental 31 science & technology, 23 (1989) 209–213.
- 32 [45] Z. Jia-Zhong, M. Whitfield, Marine Chem., 19 (1986) 121–137.
- 33 [46] Y. He, Y. Zheng, D.C. Locke, Analytica Chimica Acta, 459 (2002) 209–217.
- [47] F.J. Millero, S. Hubinger, M. Fernandez, S. Garnett, Environ. Sci. Technol., 21 (1987) 439–
 443.
- 36 [48] E.R. DeLeon, G.F. Stoy, K.R. Olson, Analytical Biochemistry, 421 (2012) 203–207.
- 37 [49] X. Gao, Y. Zhang, M.J. Weaver, Langmuir, 8 (1992) 668–672.
- 38 [50] J. Buffle, G. Horvai, In Situ Monitoring of Aquatic Systems: Chemical Analysis and
- 39 *Speciation*, New Ed., John Wiley & Sons Ltd, 2001.
- 40 [51] P. Lustemberg, C. Vericat, G. Benitez, M. Vela, N. Tognalli, A. Fainstein, M. Martiarena,
- 41 R. Salvarezza, The Journal of Physical Chemistry C, 112 (2008) 11394–11402.
- 42 [52] C. Gru, H. Legoff, S. Narcon, P.M. Sarradin, J.C. Caprais, F.H. Lallier, Analyst, 123 (1998)
 43 1289–1293.
- 44 [53] G.W. Luther III, B.T. Glazer, L. Hohmann, J.I. Popp, M. Taillefert, T.F. Rozan, P.J. Brendel,
- 45 S.M. Theberge, D.B. Nuzzio, J. Environ. Monit., 3 (2001) 61–66.
- 46
- 47

1 Tables

2

Table 1: Influence of addition of thioacetic acid (CH₃COSH), glutathione (GSH) and elemental sulfur (S⁰) on sulfide signal. Initial sulfide concentration: 1.0 μ M. Each determination was realized in duplicate and is given with the standard deviation

6

Concentration factor relative to sulfide	CH₃COSH	GSH	S ^o
0	100±2%	100±5 %	100±2%
1	91±18%	12±15%	90±35%
10	31±17 %	u	103±34%
100	u	u	93±15%

7

u : undetectable

1 Figure captions

2

Fig. 1: a) Stability of sulfide (initial concentration, 13 μ M) in 0.5 M NaCl, seawater at natural PH and seawater buffered at pH 9.6 with 0.01 M NH₄OH and 0.01 M NH₄Cl. b) ln (peak area) as a function of time for testing first order kinetic (only NaCl 0.5 M is presented). Electrochemical conditions: E_d =-0,25 V ; t_d =10 s (without vibration); i=-2 μ A. E_c =-1.1 V ; t_c =10 s.

Fig. 2: a) Influence of deposition potential on free sulfide stripping signal. b) typical stripping signals obtained with E_d =-0.45 V, E_d =-0.25 V and E_d =0.15 V. The black arrow indicates the position of the sulphide peak. Unaltered hydrothermal sample. Electrochemical conditions: t_d =7 s (with vibration); i=-2 µA; E_c =-1.1 V; t_c =10 s.

Fig. 3: a) Influence of stripping current on free sulfide stripping signal. b) typical stripping signal obtained with i_s =-0.3 μ A. c) typical stripping signal obtained with i_s =-0.2 μ A. Unaltered Hydrothermal samples. Electrochemical conditions: t_d =7 s (with vibration); E_d =-0.25 V; E_c =-15 1.1 V; t_c =10 s.

Fig. 4: Influence of sulfide concentrations on stripping signal a) sulfide concentrations in the range 0-20 μ M; b) sulfide concentrations in the range 0-2 μ M. Unaltered hydrothermal samples. Electrochemical conditions: t_d=7 s (with vibration) ; E_d=-0.25 V; E_c=-1.1 V; t_c=10 s. For experiment presented in b), mean ± SD (n = 4)

Fig. 5: Example of sulfide determination in a hydrothermal sample (Lucky Strike vent field) under optimized parameters: $t_d=7$ s (with vibration); $E_d=-0.25$ V; $E_c=-1.1$ V; $t_c=10$ s. Obtained concentration: 210 nM.

sulfide concentration (µM)

