

Étude de la bioturbation dans les sédiments superficiels de la Méditerranée occidentale par le traceur ²¹⁰Pb

Bioturbation ¹³⁷Cs Méditerrannée ²¹⁰Pb Sédiment Traceur Bioturbation ¹³⁷Cs Mediterranean ²¹⁰Pb Sediment Tracer

Y. YOKOYAMA, H.V. NGUYEN, C.E. LAMBERT, R. CHESSELET Centre des Faibles Radioactivités, Laboratoire mixte CNRS-CEA, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France.

Reçu le 18/9/84, révisé le 23/1/85, accepté le 6/2/85.

RÉSUMÉ Le taux de bioturbation dans des sédiments de la Méditerranée occidentale a été étudié en utilisant le traceur ²¹⁰Pb. Les distributions de l'activité de ²³⁸U, ²²⁶Ra, ²²²Rn, ²¹⁰Pb et ¹³⁷Cs dans 6 carottes de sédiments ont été déterminées par la spectrométrie gamma non destructive à haute résolution. L'existence de l'excès de ²¹⁰Pb a permis d'évaluer le taux de bioturbation dans ces carottes et les coefficients de mélange obtenus pour celles-ci sont comparables à ceux généralement trouvés dans l'Atlantique, à l'exception de la station SRG2 dans la mer d'Alboran (36°, 16,9' N et 00° 0,6,3' W) où un coefficient de 20×10^{-8} cm² s⁻¹ a été obtenu. Cette dernière valeur est extrêmement élevée et supérieure à celles que nous avions trouvées dans l'estuaire du St-Laurent $(5-8 \times 10^{-8} \text{ cm}^2 \text{ s}^{-1})$. A partir de la distribution d'un autre radionuclide, le ¹³⁷Cs, des coefficients de mélange similaires à ceux obtenus pour le ²¹⁰Pb ont été déterminés pour ces carottes de la Méditerranée. D'autre part il est confirmé que l'inventaire de ²¹⁰Pb en excès et de ¹³⁷Cs dans les sédiments est lié au mécanisme de transport de ces nuclides par des particules biogéniques depuis les eaux de surface jusqu'aux fonds marins.

Oceanol. Acta, 1985, 8, 3, 285-291.

ABSTRACT

Bioturbation study of surface sediments in Western Mediterranean by ²¹⁰Pb tracer

Bioturbation rates in sediments of the Western Mediterranean are studied by ²¹⁰Pb tracer. Distributions of ²³⁸U, ²²⁶Ra, ²²²Rn, ²¹⁰Pb and ¹³⁷Cs activities in 6 cores have been determined by high-resolution and non-destructive gamma-ray spectrometry. The mixing coefficients deduced from the excess ²¹⁰Pb profiles of Mediterranean cores are comparable to those found in the Atlantic, except for the SRG2 station in the Alboran Sea (36°16.9' N and 00°06.3' W), where a coefficient of 20×10^{-8} cm² s⁻¹ is obtained. This value is extremely high and exceeds the values previously observed at the St. Laurent estuary ($5-8 \times 10^{-8}$ cm² s⁻¹). From the profile of another radionuclide, the ¹³⁷Cs, similar mixing coefficients to those from ²¹⁰Pb are obtained. On the other hand, the high standing stocks of excess ²¹⁰Pb and ¹³⁷Cs in the sediments of this region seem related to the transport mechanism of these radionuclides by the biogenic particles from seawater to sediment surface.

Oceanol. Acta, 1985, 8, 3, 285-291.

INTRODUCTION

L'activité biologique et (ou) le mouvement physique à l'interface eau-sédiment peuvent causer le mélange et le déplacement de la surface de sédiment. En effet, les géologues marins connaissent depuis longtemps l'am-

pleur des modifications de la couverture sédimentaire due à l'instabilité des sédiments des talus continentaux. Ces modifications se manifestent par le courant de densité appelé courant de turbidité qui parvient le plus souvent dans son trajet jusqu'aux profondeurs des plaines abyssales en modifiant la texture des corps sédimentaires. Par ailleurs, on observe la remise en suspension de l'extrême surface du sédiment qui provoque la formation dans la masse d'eau de véritables nuages de particules appelés néphéloïdes. Ces deux mécanismes interviennent de façon épisodique.

Un autre type de perturbation affecte l'interface eausédiment : il s'agit de la modification continue, induite par l'activité biologique, de la couche de surface de la colonne sédimentaire (Goldberg, Koide, 1962; Arrhenius, 1963; Berger, Heath, 1968; Hanor, Marshall, 1971; Ruddiman, Glover, 1972; Guinasso, Schink, 1975; Paul, 1977). Ce phénomène est couramment appelé bioturbation ou bioperturbation.

L'identification de la cause exacte du mélange de la surface de sédiment serait possible dans certains cas typiques, mais très souvent la distinction entre la cause biologique et physique n'est pas aisée.

Nous rendons compte ici des premiers résultats quantitatifs sur l'ampleur et la distribution de la bioturbation dans les fonds de la Méditerranée occidentale. L'existence de cette perturbation de la colonne sédimentaire peut être révélée par l'étude aux rayons X des carottes de sédiments de surface. Cependant, cette technique, bien qu'elle permette de mesurer la profondeur atteinte par le remaniement, ne permet pas de connaître le taux de mélange. Il est apparu qu'il était nécessaire de mesurer ce taux de façon cohérente et systématique afin de pouvoir comparer entre elles les intensités relatives de la bioturbation, en identifier les causes et en comparer les effets dans différentes régions de l'océan. En effet, il a été montré que ce remaniement avait une profonde influence sur les équilibres des cycles biogéochimiques tels que ceux du CO₂, des nutrients et des métaux en trace (Aller, 1977; Paul, 1977; Peng et al., 1977; Schink, Guinasso, 1977; 1978).

Notre étude fait suite à celle que nous avons entreprise dans diverses régions de l'Atlantique avec le Centre Océanologique de Bretagne (Mauviel *et al.*, 1982). Elle a été effectuée sur des prélèvements provenant de la campagne PHYCEMED I (1981) : Physique et Chimie de la Méditerranée Occidentale.

MÉTHODOLOGIE

A) L'étude de la distribution en fonction de la profondeur de certains radionuclides permet de mesurer ce taux de mélange. Le radionuclide couramment utilisé pour cette mesure est le ²¹⁰Pb (Nozaki et al., 1977; Peng et al., 1979). Ce nuclide, qui a une période de 22,3 ans, est un descendant de ²³⁸U. On mesure le ²¹⁰Pb total et on calcule celui qui est en excès par rapport au ²¹⁰Pb en équilibre avec ses parents radioactifs (en particulier le ²²⁶Ra). Le ²¹⁰Pb en excès est principalement d'origine atmosphérique. La contribution du ²¹⁰Pb en excès provenant du ²²⁶Ra dissous dans l'eau de mer serait relativement faible dans la Méditerranée (voir Annexe). Ce ²¹⁰Pb en excès est apporté au sédiment par les particules qui descendent dans la colonne d'eau. Ces particules ainsi marquées deviennent des traceurs du remaniement du sédiment. Il y a donc lieu de mesurer simultanément divers

radionuclides de cette filiation afin de déterminer avec la meilleure précision possible l'activité du ²¹⁰Pb en excès. La mesure de ces radionuclides se fait généralement après une séparation chimique longue et délicate. De même que pour l'étude mentionnée ci-dessus pour l'Atlantique, nous avons utilisé une méthode instrumentale fondée sur la mesure à haute résolution de l'émission du rayonnement gamma de ces radionuclides. Nous donnons ici un bref apercu des fondements techniques de la méthode, dont on trouvera une description détaillée dans deux articles précédents (Yokoyama, Nguyen, 1979; 1980). Le spectre du rayonnement de l'échantillon est obtenu grâce à l'utilisation d'un détecteur au germanium de haute pureté. La technique de l'implantation ionique rend le cristal de germanium ainsi traité extrêmement efficace pour la détection du ravonnement gamma à basse énergie. C'est le cas du rayonnement gamma du ²¹⁰Pb (E = 46,5 KeV).

Le ¹³⁷Cs, qui provient essentiellement des essais nucléaires dans l'atmosphère des années 1959-1963, a une période de 30,2 ans. Les deux nuclides, le ²¹⁰Pb et le ¹³⁷Cs, ont donc des périodes comparables mais des origines différentes. C'est pour cette raison que nous avons comparé les profils de ces deux nuclides dans le sédiment. L'étude du ¹³⁷Cs dans des sédiments côtiers a été rapportée par plusieurs auteurs (Livingston, Bowen, 1979; Beasley et al., 1982). Le ¹³⁷Cs est aussi un émetteur gamma (E=661,6 KeV), que l'on peut détecter avec la même technique que celle utilisée pour le ²¹⁰Pb. B) La technique de préparation de l'échantillon qui doit être mesuré par spectrométrie consiste essentiellement à geler à bord du bateau l'échantillon de sédiment puis à le découper en tranches de 0,5 à 2 cm d'épaisseur. Ces tranches de sédiment sont ensuite lyophilisées afin d'en extraire l'eau. Chaque échantillon pèse de 10 à 30 g. L'échantillon est placé dans un boîtier qui est mis en contact avec le détecteur pour une durée de 24 à 48 heures seulement car l'installation de mesure a un très bas niveau de bruit de fond.

C) L'étude a porté sur 6 carottages obtenus en avril 1981 à bord du "Suroit" par un carottier-boîte de type Usnel. Sur chaque échantillon, on a procédé immédiatement, sur le pont du navire, à un recarottage au moyen d'un tube de plastique transparent qui a été immédiatement congelé. La position des carottages Usnel est donnée dans la figure 1 et le tableau 1. Ces sédiments sont essentiellement des boues marneuses.

RÉSULTATS

Le tableau 1 donne les résultats de la détermination des activités de ²³⁸U, ²²⁶Ra, ²²²Rn, ²¹⁰Pb total, ¹³⁷Cs et ²¹⁰Pb en excès. Pour mémoire, signalons que nous mesurons également celle du ⁴⁰K, ²²⁶Ra et ²²⁸Th. Les distributions du ²²²Rn et ²²⁶Ra sont données ici afin de permettre leurs comparaisons avec celle du ²¹⁰Pb. Les activités de deux radionuclides (²²²Rn et ²²⁶Ra) mesurées dans ces échantillons peuvent être considérées comme à l'équilibre, compte tenu de l'incertitude sur la mesure, à l'exception de GYW2 (2-4 cm). Comme la méthode permet une bien meilleure précision sur la

Tableau 1

Les activités des radionuclides dans les sédiments de la Méditerranée occidentale. Radionuclide activities in the sediments from Western Mediterranean Sea.

Station	Position	Profondeur d'eau (m)	Profondeur dans carotte (cm)	Activité (dpm g^{-1})					
				²³⁸ U	²²⁶ Ra	²²² Rn	²¹⁰ Pb	²¹⁰ РЬ en excès	¹³⁷ Cs
GYW2	40°36'6 N 07°10'7 E Plaine centrale	2 780	0,0 - 2,0	1,49 ± 0,22	2,50 ± 0,46	2,45 ± 0,09	2,21 ± 0,31	$-0,24 \pm 0,32$	0,05 ± 0,03
			2,0 - 4,0	1,66 ± 0,19	3,20 ± 0,41	2,41 ± 0,08	2,25 ± 0,26	$-0,09 \pm 0,20$	0,04 ± 0,03
ETR1	42°35'7 N 04°52'0 E	1 738	0,0 - 2,0 2.0 - 4.0	$1,17 \pm 0,19$ 1 19 ± 0 17	$1,35 \pm 0,42$ 1 79 ± 0.36	$1,67 \pm 0,08$ 1.58 ± 0.06	$4,41 \pm 0,32$ 6 36 ± 0.28	$2,75 \pm 0,33$ 4 78 + 0.29	$0,15 \pm 0,04$ 0.20 ± 0.03
	Golfe du Lion		4,0 - 6,0 6,0 - 8,0	$1,35 \pm 0,24$ $1,46 \pm 0,21$	$1,38 \pm 0,54$ $1,18 \pm 0,46$	$1,53 \pm 0,09$ $1,73 \pm 0,08$	$3,54 \pm 0,37$ $1,82 \pm 0,31$	$2,01 \pm 0,38$ $0,09 \pm 0,20$	$0,15 \pm 0,05$ $0,01 \pm 0,03$
ETR2	42°02'3 N 05°05'4 E	2 200	0,0 - 2,0	1,26 ± 0,19	1,69 ± 0,42	1,57 ± 0,08	2,77 ± 0,31	1,20 ± 0,32	0,02 ± 0,03
	Golfe du Lion		2,0 - 4,0	1,32 ± 0,14	1,56 ± 0,28	1,44 ± 0,05	2,02 ± 0,21	0,58 ± 0,22	0,07 ± 0,02
ETE	40°06'0 N 01°42'0 E	1 700	0,0 - 2,0	1,45 ± 0,22	1,26 ± 0,45	1,38 ± 0,08	7,28 ± 0,39	5,89 ± 0,40	0,25 ± 0,04
	Golfe de Valence		2,0 - 4,0 4,0 - 6,0	$1,26 \pm 0,16$ $1,54 \pm 0,22$	$1,95 \pm 0,34$ $1,49 \pm 0,46$	$1,52 \pm 0,06$ $1,56 \pm 0,08$	$4,93 \pm 0,26$ $1,91 \pm 0,32$	$3,41 \pm 0,27$ $0,35 \pm 0,33$	0.14 ± 0.03 0.00 ± 0.03
SRS	38°22'9 N	N ^E 2094 e	0,0 - 1,0	1,16 ± 0,21	1,34 ± 0,47	1,32 ± 0,08	7,29 ± 0,37	5,97 ± 0,38	0,19 ± 0,04
	Sud de la Sardaigne		1,0 - 2,0 2,0 - 4,0	$1,06 \pm 0,21$ $1,32 \pm 0,19$	$1,22 \pm 0,47$ $1,64 \pm 0,42$	$1,20 \pm 0,08$ $1,28 \pm 0,07$	$3,09 \pm 0,33$ $1,87 \pm 0,28$	$1,89 \pm 0,34$ $0,59 \pm 0,29$	$0,14 \pm 0,04$ $0,04 \pm 0,03$
SRG2	36°16'9 N 00°06'3 W Mer d'Alboran	2 600	0,0 - 2,0 2.0 - 4.0	$1,42 \pm 0,16$ 1,66 ± 0,13	$1,26 \pm 0,33$ 1 60 ± 0.28	$1,53 \pm 0,06$ 1.36 ± 0.05	$14,77 \pm 0,30$ 12.84 ± 0.24	$13,24 \pm 0,31$ 11.48 + 0.25	$1,08 \pm 0,04$ 0.87 + 0.03
			4,0 - 6,0 6,0 - 8,0	$1,74 \pm 0,11$ 1.56 ± 0.14	$1,38 \pm 0,24$ $1,42 \pm 0,30$	$1,26 \pm 0,04$ $1,27 \pm 0.05$	$11,49 \pm 0,19$ $10,12 \pm 0,25$	$10,23 \pm 0,19$ $8,85 \pm 0,25$	$0,64 \pm 0,02$ $0,34 \pm 0,03$
			8,0 - 10,0 11,0 - 13,0	$1,53 \pm 0,14$ $1,99 \pm 0,18$	$\begin{array}{r} 1,32 \ \pm \ 0,32 \\ 1,55 \ \pm \ 0,39 \end{array}$	$1,29 \pm 0,05$ $1,45 \pm 0,06$	$7,10 \pm 0,24$ $3,77 \pm 0,26$	$5,81 \pm 0,25$ $2,32 \pm 0,27$	$\begin{array}{c} 0,21 \ \pm \ 0,03 \\ 0,15 \ \pm \ 0,03 \\ \end{array}$
			23,0 - 25,0	1,38 ± 0,15	1,37 ± 0,31	1,29 ± 0,05	1,12 ± 0,19	$-0,17 \pm 0,20$	$0,03 \pm 0,02$

Les erreurs sont 1 sigma et comprennent toutes les erreurs connues. Errors are 1 sigma errors (including all known errors).

mesure du ²²²Rn que sur celle du ²²⁶Ra, ce sont les teneurs en ²²²Rn qui servent à déduire l'excès de ²¹⁰Pb. L'examen des résultats mentionnés au tableau 1 appelle les commentaires généraux suivants : 1) L'activité de ²³⁸U varie entre 1,5 et 2 dpm g⁻¹ de

1) L'activité de 238 U varie entre 1,5 et 2 dpm g⁻¹ de sédiment total. Par conséquent, on n'observe pas une variation importante de l'activité de ce radionuclide.

2) Bien qu'il ait été démontré que la presque totalité du ¹³⁷Cs injecté dans la Méditerranée se trouve encore sous forme dissoute (Fukai *et al.*, 1981), ce radionuclide est en concentrations détectables dans les sédiments de surface à toutes les stations étudiées ici sauf pour la station GYW2 pour laquelle, par ailleurs, aucun excès de ²¹⁰Pb n'est détectable.

Figure 2

Les profils du ²¹⁰Pb en excès et du ¹³⁷Cs dans le sédiment de la station SRG2 dans la mer d'Alboran. Les profils de ces deux nuclides sont presque parallèles. Le changement de pente du profil de ¹³⁷Cs se produit à moindre profondeur que celui du ²¹⁰Pb. Ceci peut s'expliquer par l'introduction récente de ce nuclide (depuis environ 1955) dans la mer : le profil de ce nuclide n'a pas encore atteint l'état stationnaire.

Profiles of ²¹⁰Pb excess and ¹³⁷Cs in the sediment cores (station SRG2, Alboran Sea). The two profiles are quite identical. The change in slope for ¹³⁷Cs profile takes place at lower depth than for ²¹⁰Pb. This may be explained by the recent introduction of ¹³⁷Cs (in 1955) in the sea. The steady state profile has not yet been achieved for this nuclide.

La figure 2 montre les profils du ²¹⁰Pb en excès et du ¹³⁷Cs en fonction de la profondeur du sédiment à la station SRG2 dans la mer d'Alboran. Le ²¹⁰Pb en excès décroît exponentiellement jusqu'à une profondeur de 8 cm, ensuite la pente du profil change et l'excès décroît plus rapidement à partir de cette profondeur. Ce type de profil serait caractéristique de la bioturbation car il montre un taux de mélange constant jusqu'à une certaine profondeur critique et ensuite une décroissance rapide de l'activité biologique. Le profil d'un autre radionuclide, le ¹³⁷Cs, est pratiquement parallèle à celui du ²¹⁰Pb (fig. 2). Ce quasi parallélisme exclut une autre interprétation qui consisterait à expliquer d'une part la décroissance exponentielle du profil du ²¹⁰Pb par un taux élevé de sédimentation et, d'autre part, l'existence de deux régimes observés par une variation du taux de sédimentation. En effet, dans le profil du ¹³⁷Cs (fig. 2), on ne trouve pas le pic du maximum des retombées des années 1960, ni la rupture brusque due au commencement des essais nucléaires à grande échelle à partir de 1952, ce qui impliquerait une telle interprétation. En outre, le taux de sédimentation calculé à l'aide du profil de ²¹⁰Pb est voisin de 2,2 cm an⁻¹, valeur à l'évidence beaucoup trop forte pour des sédiments déposés par 2600 m de fond.

Le même type de profil a été observé à la station ETE dans le golfe de Valence (fig. 3). Par contre, les profils irréguliers aussi bien du ²¹⁰Pb que du ¹³⁷Cs à la station ETR1 dans le golfe du Lion (fig. 3) semblent dus à des événements brusques tels que le courant de turbidité produit à l'embouchure du Rhône.

Figure 3

Les profils du ²¹⁰Pb en excès et du ¹³⁷Cs dans les sédiments des stations SRS (au Sud de la Sardaigne), ETE (dans le Golfe de Valence), ETR1 et ETR2 (dans le Golfe du Lion).

Excess ^{210}Pb and ^{137}Cs profiles in the sediment cores station SRS (South of Sardinia), ETE (Valencia Gulf), ETR1 and ETR2 (Golfe du Lion).

DISCUSSION

Taux de mélange

Le taux de mélange est généralement exprimé en termes de coefficient de diffusion D_B (Guinasso, Schink, 1975; Aller, Cochran, 1976; Aller, 1977). Dans le calcul de ce paramètre, nous utilisons ici une équation fondée sur le mélange du ²¹⁰Pb en excès sur une profondeur infinie (*voir* Annexe 1). Les valeurs de D_B pour les 6 stations étudiées sont données dans le tableau 2 où nous donnons aussi, à titre de comparaison, quelques valeurs observées lors de notre étude dans l'Atlantique Nord (Mauviel *et al.*, 1982). Les valeurs de D_B obtenues pour ces stations de la Méditerranée figurent dans la gamme des D_B généralement trouvées dans l'Atlantique, sauf à la station SRG2 pour les 8 premiers centimètres : 22×10^{-8} cm² s⁻¹. Cette valeur est extrêmement élevée et supérieure à celles que nous avions trouvées dans l'estuaire du St-Laurent : environ 5×10^{-8} cm² s⁻¹ (Silverberg *et al.*, 1984).

Deux explications coexisteraient pour un taux de mélange aussi élevé :

a) Il serait la traduction d'une forte activité biologique dans le sédiment, induite par l'intensité de la productivité dans les eaux de surface. En effet, une productivité exceptionnelle dans cette zone de la Méditerranée a été identifiée lors de la campagne MIDIPROD IV en 1981 par Coste et al. (1982). Lors de cette campagne, une forte concentration de biomasse planctonique a été découverte à l'extrémité Est du détroit de Gibraltar, au sud de la mer d'Alboran. Cette productivité exceptionnelle est attribuée à la présence d'une remontée de l'eau de fond apportant des éléments nutritifs qui permettent au plancton de se développer. Cette explication aurait le mérite de mettre en évidence le couplage étroit qui existe entre la productivité des eaux de surface et l'activité biologique des populations abyssales. La condition de ce couplage est un approvisionnement rapide des populations abyssales par l'intermédiaire des grosses particules contenant du matériel aisément assimilable.

b) On pourrait y voir les conséquences d'une remise en suspension constante du sédiment sous l'action des courants de fond importants à la sortie du détroit de Gibraltar vers la mer d'Alboran. En effet, il existe en

mer d'Alboran une circulation cyclonique qui pourrait entraîner et redéposer les particules dans la même zone. Dans ce cas, le ²¹⁰Pb produit dans la colonne d'eau serait adsorbé par les particules, et celles-ci seraient enrichies en ²¹⁰Pb. Une telle hypothèse demande à être confirmée par l'étude du ²¹⁰Pb et du ²²⁶Ra dissous dans l'eau de la Méditerranée. Cependant, dans l'Atlantique, la disponibilité en ²¹⁰Pb dissous pour un tel mécanisme est faible. Comme l'eau de la Méditerranée est alimentée par l'Atlantique, on peut s'attendre qu'elle soit faible aussi en Méditerranée. Un calcul rigoureux est ici difficile parce que nous ne connaissons pas la vitesse des courants de fond, et donc le taux de renouvellement de ²¹⁰Pb dissous disponible (voir Annexe 2). Enfin, l'extrême richesse en ¹³⁷Cs de cette carotte peut être difficilement expliquée par le même mécanisme. La première hypothèse nous semble donc la plus vraisemblable.

Nous avons exclu l'hypothèse d'un transport mécanique rapide le long de la pente abrupte du talus continental maghrébin. Ce mécanisme transporterait vers le fond le matériel récemment déposé sur la marge continentale. De récents résultats d'analyses minéralogiques effectuées sur des prises jumelles d'échantillon (Monaco, 1984) pourraient sembler en accord avec cette explication. Mais, dans ce cas, les teneurs en ²¹⁰Pb seraient faibles : il y a relativement peu de ²¹⁰Pb sur les talus continentaux, l'activité du ²¹⁰Pb étant diluée par le taux de sédimentation élevé de ce talus. En outre, comme discuté dans le chapitre précédent, on n'observerait pas dans ce cas un profil régulier

Tableau 2

Le coefficient de mélange D_B et l'inventaire du ²¹⁰Pb en excès et du ¹³⁷Cs dans les sédiments de la Méditerranée et l'Atlantique.

The coefficient of mixing D_B and the inventory of ²¹⁰Pb excess and of ¹³⁷Cs in sediments from Mediterranean Sea and Atlantic Ocean.

Station		Profondeur d'eau (m)	Coefficient de mélange D_B $(10^{-8} \text{ cm}^2.\text{s}^{-1})$		Inventaire (dpm.cm ⁻²)		
			²¹⁰ Pb	¹³⁷ Cs	210Pb	¹³⁷ Cs	
Méditerrar	née (*)						
SRG2	36°17'N 00°06'W	2 600	22 (0-8 cm) 1 (>8 cm)	10 (0-6 cm) 3 (>6 cm)	80	5	
SRS	38°23'N 09°25'E	2 0 9 4	0.1 (0-4 cm)	0.2(0-4 cm)	6	0.3	
ETE	40°06'N 01°42'E	1 700	1.3 (0-4 cm)	2(0-4 cm)	14	0.5	
ETR1	42°36'N 04°52'E	1 738	n.d.	n.d.	14	0.5	
ETR2	42°02'N 05°05'E	2 200	n.d.	n.d.	3	≤ 0.2	
GYW	40°37'N 07°11'E	2 780	n.d.	n.d.	< 1	≤ 0,2	
Atlantique	(**)						
KG162	47°31'N 08°37'W	2110	0.6 (0-7 cm)	n.d.	16	n.d.	
KG167	47°32'N 09°06'W	2 8 2 5	0.6 (0-10 cm)	n.d.	30	n.d.	
KG182	47°32'N 09°05'W	2810	0.5 (0-6 cm)	n.d.	16	n.d.	
KG16	10°23'N 46°47'W	4850	≈ 0+	n.d.	4	n.d.	
KG33	24°52'N 24°59'W	5 200	$\approx 0^+$	n.d.	i	n.d.	
KG40	19°14'N 29°50'W	4970	≈ 0+	n.d.	8	n.d.	
KG01	08°09'N 49°03'W	4 460	0,9 (0-7 cm)	n.d.	30	n.d.	

(*) Ce travail.

(**) Mauviel et al. (1981).

n.d. : non déterminé.

Le D_B du ¹³⁷Cs a été calculé avec une condition non stationnaire, car l'introduction de ce nuclide à la mer est relativement récente (depuis environ 1955). Un flux constant de ce nuclide à la surface de sédiment depuis 1955 a été supposé.

The value of D_B for ¹³⁷Cs has been calculated using a variable input model since its introduction in the sea is relatively recent (around 1955). It has been considered that the flux to the sediment has been constant for 1955.

d'excès dans le sédiment, mais une distribution perturbée, telle qu'on l'observe à la station (fig. 3), sous l'influence de perturbations provenant des dépôts dans le proto-delta du Rhône.

En réalité, il n'y a pas nécessairement contradiction entre l'observation minéralogique (Monaco, 1984) et notre interprétation, car l'étude minéralogique montrerait l'origine du sédiment dans une échelle millénaire, tandis que l'étude sur le ²¹⁰Pb concerne le mélange de la surface du sédiment depuis quelques dizaines d'années.

A la station à l'Ouest de la Sardaigne, GYW2, le ²¹⁰Pb en excès est en dessous de notre limite de détection. Notons que cette station est pratiquement située au centre géométrique de la vaste plaine abyssale du bassin algéro-provençal. La faible quantité de ²¹⁰Pb en excès peut être expliquée par la faible productivité des eaux de surface de ce bassin qui, entraînées par une circulation tourbillonnaire, sont peu approvisionnées en éléments nutritifs. Cependant, il existe une autre explication : on a observé un fort régime de remise en suspension vraisemblablement lié à cette circulation tourbillonnaire. Cette remise en suspension a été observée de facon répétitive au cours de PHYCEMED I (Brun-Cottan, 1984). Elle pourrait expliquer aussi l'absence totale de ¹³⁷Cs dans ce sédiment, les particules porteuses des traceurs radioactifs considérés ici étant continuellement balayées au loin par d'intenses courants de fond qui remettent le sédiment en suspension. Dans ce cas, il faut supposer que le sédiment fraîchement déposé est entraîné au loin. L'analyse des taux de sédimentation récents dans cette zone devrait permettre de vérifier cette hypothèse.

Inventaire

L'inventaire de l'excès de ²¹⁰Pb dans la colonne sédimentaire est très variable d'un site à l'autre (tab. 2). L'inventaire en ¹³⁷Cs montre des variations similaires (tab. 2). Ces co-variations peuvent être interprétées comme reflétant des mécanismes identiques de l'approvisionnement de ces nuclides. Le taux de bioturbation le plus élevé correspond à l'inventaire le plus important. Le mécanisme de transport de ces nuclides par des particules biogéniques pourrait donc être identique. En effet, Bacon *et al.* (1978) ont montré que le vecteur du ²¹⁰Pb depuis les eaux de surface jusqu'au fond est constitué par les particules de détritus biologiques.

A partir de cette constatation, il devient intéressant de comparer les inventaires du ²¹⁰Pb dans l'Océan Atlantique et en Méditerranée. Cette comparaison (tab. 2) montre que l'inventaire en Méditerranée occidentale profonde est en général inférieur à celui observé dans l'Océan Atlantique profond, à l'exception de la station SRG2. Ceci, à nos yeux, reflèterait la productivité généralement faible de la Mer Méditerranée.

CONCLUSION

Grâce à une technique originale, une première étude de la distribution d'un traceur radioactif, le ²¹⁰Pb dans la partie supérieure de la colonne du sédiment en divers points de la Méditerranée Occidentale, a permis de montrer :

1) que la couverture sédimentaire des zones profondes de cette mer est remaniée par l'activité des animaux benthiques à un taux de perturbation voisin de ceux trouvés dans l'océan mondial;

2) que l'inventaire de ²¹⁰Pb en excès et de ¹³⁷Cs dans les sédiments est lié au mécanisme de transport de ces nuclides par des particules biogéniques depuis les eaux de surface jusqu'aux fonds marins.

Remerciements

Les auteurs remercient le capitaine et l'équipage du N.O. « Suroit » pour leur assistance et le Centre National pour l'Exploitation des Océans (CNEXO), devenu depuis IFREMER (Institut Français de Recherche pour l'Exploitation de la Mer), pour sa contribution au financement de cette recherche.

ANNEXE 1

Taux de mélange et inventaire

Le mélange du sédiment par la bioturbation peut être représenté par l'équation générale de diffusion :

$$\frac{\delta A}{\delta t} = \frac{\delta}{\delta x} D_{B} \frac{\delta A}{\delta x} - \lambda A + S, \qquad (1)$$

où A est l'activité du nuclide à la profondeur x et au temps t, λ est la constante de désintégration, D_B est le coefficient de diffusion lié à la bioturbation et S est le flux du nuclide.

Pour le ²¹⁰Pb, on peut adopter le modèle de mélange à l'infini et D_B peut s'écrire :

$$D_{B} = \lambda \left(\frac{x}{\ln A_{o} - \ln A_{x}} \right)^{2}, \qquad (2)$$

où A_o et A_x sont respectivement l'activité du nuclide à la surface et celle à la profondeur x.

Par contre, l'injection du ¹³⁷Cs est récente et, par conséquent, la distribution de ce nuclide dans le sédiment n'est pas encore en équilibre séculaire. Par conséquent, on résout l'équation (1) en supposant un flux constant du ¹³⁷Cs durant un temps t. La solution peut s'écrire :

$$A_{x} = A_{o} \frac{x}{2} \left[\left(\frac{D_{B} t}{\pi} \right)^{1/2} \exp \left(\frac{-x^{2}}{4D_{B} t} \right) - \frac{x}{2} \operatorname{erfc} \left(\frac{x}{2 (D_{B} t)^{1/2}} \right) (3) \right]$$

où erfc est la fonction d'erreur.

L'inventaire I (dpm cm⁻²) du nuclide dans une colonne de la surface égale à 1 cm^2 de sédiment peut être défini et calculé par l'équation suivante :

$$I = \int_0^\infty A \, dx = \sum_{i=1}^\infty A_i \, \Delta X_i, \qquad (4)$$

où A est l'activité du nuclide (dpm g^{-1}) à la profondeur x (g cm⁻¹), et A_i est l'activité moyenne du nuclide dans la couche i d'épaisseur ΔXi . L'épaisseur (en g cm⁻²) est obtenue par multiplication de la densité (poids sec/volume *in situ*) à la profondeur (en cm). Nous avons utilisé une densité moyenne de 0,7 g cm⁻³.

ANNEXE 2

Flux du ²¹⁰Pb

L'excès de ²¹⁰Pb dans les sédiments marins a deux origines. La première est atmosphérique : le ²¹⁰Pb est formé par la décroissance du ²²²Rn dans l'atmosphère. Le flux moyen du ²¹⁰Pb de cette origine sur la surface de l'océan peut être estimé à une valeur de 1,0 dpm $cm^{-2}an^{-1}$ (Turekian *et al.*, 1977). Si ce flux atteint la surface du sédiment sans aucune perte, à l'équilibre, l'inventaire du ²¹⁰Pb d'origine atmosphérique dans le sédiment sera de 32 dpm cm⁻².

La deuxième origine du ²¹⁰Pb en excès est le dépôt de ce nuclide à partir du ²²⁶Ra dissous dans l'eau de mer.

Ce flux dépend, en modèle vertical, de la concentration de ²²⁶Ra dans l'eau et de la hauteur de la colonne d'eau. Cependant, tout le ²¹⁰Pb particulaire produit ne sédimente pas : l'activité qu'on trouve dans le sédiment dépend du temps qu'auront mis les particules à sédimenter. Dans l'Atlantique, on peut évaluer le flux de ²¹⁰Pb qui provient de la colonne d'eau à 0,2-0,4 dpm cm⁻²an⁻¹ (Craig *et al.*, 1973; Bacon *et al.*, 1976) : ce flux est donc inférieur à l'apport atmosphérique si celuici est conservé jusqu'au sédiment. En Méditerranée, pour une colonne d'eau de 2000 m, le flux de ²¹⁰Pb amené par la désintégration de ²²⁶Ra ne peut qu'être inférieur à l'évaluation faite dans l'Atlantique.

RÉFÉRENCES

Aller R.C., 1977. The influence of macrobenthos on chemical diagenesis of marine sediments, *Thesis, Yale University, New Haven*.

Aller R.C., Cochran J.K., 1976. ²³⁴U/²³⁸U disequilibrium in near shore sediment: particle reworking and diagenetic time scales, *Earth Planetary Sci. Lett.*, 29, 37-50.

Arrhenius G.O.S., 1963. Pelagic sedimentation, in: The Sea, vol. 3, edited by M.N. Hill, John Wiley, New York, 655-727.

Bacon M.P., Spencer D.W., Brewer P.G., 1976. ²¹⁰Pb/²²⁶Ra and ²¹⁰Po/²¹⁰Pb disequilibria in seawater and suspended matter, *Earth Planetary Sci. Lett.*, **32**, 277-296.

Beasley T.M., Carpenter R., Jennings C.D., 1982. Plutonium, ²⁴¹Am and ¹³⁷Cs ratios, inventories and vertical profiles in Washington and Oregon continental shelf sediments, *Geochim. Cosmochim. Acta*, 46, 1931-1946.

Berger W.H., Heath G.R., 1968. Vertical mixing in pelagic sediments, J. Mar. Res. 26, 2, 134-143.

Brun-Cottan J.C., 1984. Remise en suspension des particules à l'interface eau-sédiment en Méditerranée occidentale, Campagne PHYCE-MED 1981, VII^{er} Journées d'Études sur les pollutions marines en Méditerranée, XXI^e Congrès A.P. de la CIESM, Lucerne, 11-13 octobre 1984.

Coste B., Copin-Montegut G., Gascard J.-C., Gostan J., Le Corre P., Minas H.J., Packard T.T., Poisson A., 1982. Nutrient regeneration and circulation patterns in the strait of Gibraltar and in the western Mediterranean Sea, *EOS*, 63, 3, 000-000.

Craig H., Krishnaswami S., Somayajulu B.L.K., 1973. ²¹⁰Pb/²²⁶Ra radioactive disequilibrium in the deep sea, *Earth Planetary Sci. Lett.*, 17, 295-305.

Fukai R., Ballestra S., Thein M., 1981. Vertical distribution of transuranic nuclides in the Mediterranean Sea, in: *Techniques for identifying transuranic speciation in aquatic environments*, International Atomic Energy Agency, Vienna, 79-87.

Goldberg E.D., Koide M., 1962. Geochronological studies of deepsea sediments by the thorium-ionium method, *Geochim. Cosmochim. Acta*, 26, 417-450.

Guinasso N.L., Schink D.R., 1975. Quantitative estimates of biological mixing rates in abyssal sediments, J. Geophys. Res., 80, 3032-3043.

Hanor J.S., Marshall N.E., 1971. Mixing of sediment by organisms, in: *Trace fossils*, edited by B.F. Perkins, School of Geoscience, Louisiana State University, Baton Rouge, 127-135.

Livingston H.D., Bowen V.T., 1979. Pu and ¹³⁷Cs in coastal sediments, Earth Planetary Sci. Lett., 43, 29-45.

Mauviel A., Nguyen H.V., Chesselet R., Sibuet M., Yokoyama Y., Auffret G., 1982. Étude des variations des taux de bioturbations par la spectrométrie gamma non destructive (GeHP), dans trois zones sédimentaires de l'Atlantique Nord, à 2000 m et à plus de 4000 m de profondeur, in: Actes Colloque international CNRS, Bordeaux, septembre 1981, Bull. Inst. Géol. Bassin Aquitaine, Bordeaux, 31, 257-274.

Nozaki Y., Cochran J.K., Turekian K.K., Keller G., 1977. Radiocarbon and ²¹⁰Pb distribution in submersible-taken deep-sea cores from Project Famous, *Earth Planetary Sci. Lett.*, 34, 163-173.

Paul A.Z., 1977. The effect of benthic biological processes on the CO_2 carbonate system, in: *The fate of fossil fuel CO*₂, edited by N.R. Andersen and A. Malahoff, Plenum, New York.

Peng T.H., Broecker W.S., Kipphut G., Shackleton N., 1977. Benthic mixing in deep-sea cores as determined by ¹⁴C dating and its implications regarding climate stratigraphy and the fate of fossil fuel CO₂, in: *The fate of fossil fuel CO*₂, edited by N.R. Andersen and A. Malahoff, Plenum, New York, 355-373.

Peng T.H., Broecker W.S., Berger W.H., 1979. Rates of benthic mixing in deep-sea sediment as determined by radioactive tracers, *Quat. Res.*, 11, 141-149.

Ruddiman W.F., Glover L.K., 1972. Vertical mixing of ice-drafted volcanic ash in North Atlantic sediments, Geol. Soc. Am. Bull., 83, 2817-2836.

Schink D.R., Guinasso N.L. Jr., 1977. Effects of bioturbation on sediment-seawater interaction, Mar. Geol., 23, 133-154.

Schink D.R., Guinasso N.L. Jr., 1978. Redistribution of dissolved and absorbed materials in abyssal marine sediments undergoing biological stirring, Am. J. Sci., 278, 682-702.

Silverberg N., Sundby B., Nguyen H.V., Delibrias G., Koide M., Yokoyama Y., Chesselet R., 1984. Radionuclide profiles, sedimentation rates, bioturbation in modern sediments of the Laurentian Trough, Gulf of St. Lawrence (à paraître).

Turekian K.K., Nozaki Y., Benninger L.K., 1977. Geochemistry of atmospheric radon and radon products, Ann. Rev. Earth Planet. Sci., 5, 227-255.

Yokoyama Y., Nguyen H.V., 1979. Détermination des vitesses de sédimentation marine et de celles de la croissance des nodules de manganèse par la spectrométrie gamma, non destructive à haute résolution, CR Acad. Sci. Paris, sér. D., 289, 229-232.

Yokoyama Y., Nguyen H.V., 1980. Direct and non destructive dating of marine sediments, manganese nodules and corals by high resolution gamma-ray spectrometry, in: *Isotope marine chemistry*, edited by E.D. Goldberg, Y. Horibe and K. Saruhashi, Uchida Rokakuho, Tokyo, 259-289.