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Abstract. The statistics of the elevation and kinematics of waves in rea
seas are very rarely accessible from in-situ measurements which induced
very high costs. An aternative to the actual waves observation is to derive
from the spectra climatology of waves, completed with other environmen-
tal data like the wind and the current, the statistics of the individua waves.
But this requires accurate models of irregular gravity waves which take into
account dl the main nonlinearities and interactions with the local wind, cur-
rent and bathymetry. In afirst step, methodol ogies have been based on sec-
ond order irregular wave 3D models and have supplied the engineers with
new better accurate models of statistics of wave crests. These models do not
include yet the complex interactions with wind and current but participate to
theimprovement of the tools for the design of offshore structures.

1 In-situ Measurements

The statistics of the elevation and kinematics of waves in real seas have been
greatly based for specific site studies on in-situ measurements (North-Sea and
Gulf of Mexico oil fields). The incomparable great quality of a measurement is
that it includes all the physical phenomena, but unfortunately al so those which cor-
rupt the actual observation of waves (mooring behavior and transfer function for
buoys, fouling effect for plunged or underwater probes, seafoam or spray effect).
To this list will be added the problems of spatial integration, calibration and data
transformation and transmission. So it becomes difficult to clean the measure-
ments without degrading the extreme or unexpected events. Moreover the wave
instruments furnish point measurements and so the instrumentation might be very
expensive and long to build accurate statistics, making cost and duration time not
always compatible with the constraints of the project on the site. Apart for some
very rich data base, measurements will be used to analyze typical situations and to
vaidate or invalidate models.

So the question is: s it reasonably possible to build accurate statistics of wave
kinematics from wave measurements? The answer is obviously No! Apart for
some very extensive data base (e.g. North-Sea and Gulf of Mexico ail fields).

The alternative issue is then: | s it reasonably possible to build accurate statistics
of wave kinematics from wave models? This is what attempt to answer a lot of
works thislast ten years mainly in using nonlinear irregular wave 3D models.



2 Power Spectra versus Wave by Wave

More and more information on waves are restricted to information on energy. The
hindcast models use better wind fields and assimilate larger amount of data (e.g.
satellite). They use better models of generation, interaction and dissipation and
profit by the always increasing power of the computers. The satellites, too, furnish
spectral information with the SAR (directional spectrum) or the altimeters (Hs).
The so-called “Wave forecast” of the Meteorological Offices consists in the fore-
cast of sea states (Hs, main direction or directional spectrum) and the step to fore-
cast the corresponding stochastic information on the wave kinematics, is a giant
step if we know that we have to collect information and to input in the stochastic
models local currents, winds and bathymetry and to take into account complex
phenomena, nonlinearities and breaking effects. To take such a giant step, the addi-
tion of small steps will be necessary, some of them have been already taken that
we describe hereafter.

The advantages of working with the spectral information is that this information i)
is available al over the world (limited to the grid of the models or to the time-
space sampling of the satellite tracks), ii) has been collected or computed for sev-
eral years (up to 40 years for the hindcast models and 15 years for the satellites),
iii) isavailable in forecast problems thanks to forecast wind fields as input of wave
hindcast models.

The difficult passage from spectral to wave by wave information is illustrated in
figure 1.
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3 Methodologiesfor Statistics

The methodologies to furnish statistics of waves inside a sea state starting from
spectral information are of different kinds. They can be based on Monte Carlo
techniques and development of simulators (Forristall [3,10], Prevosto [8,10]), or
derived from theoretical considerations. Transformed Gaussian process method
(Rychlik [11]), First Order Reliability Method (FORM) (Tromans [13]).

Starting from measurements or from simulation or theoretical methodologies, sim-
plified parameterized models based on a fitting procedure have been proposed as
better practical tools for the engineers.



In any case, independently of the methodology, the answers will differentiate from
the model of irregular gravity waves taken as starting point.

3.1 Linear Model

The simplest linear model of superposition of Airy waves used the directional
spectral density S(6, f) as statistical information on the variance of the amplitudes
of the components.
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3.2 Non Linear Models

Wave height considered as the crest-trough amplitude (and this definition could be
extended to other parameters, e.g. crest-trough pressure, crest-trough velocity as
soon as kinematics is studied under the mean water level) are influenced by the
steepness nonlinearity at one higher order of magnitude than the crest or trough
amplitudes. This explain the good fitting and quality of models of wave heights
based on the linear assumption.

But more complicated models have to be considered to take into account the strong
effect of the nonlinearities on the crest amplitudes (or other amplitude of the kine-
matics), e.g. the hybrid model (Zhang[15]), the Creamer-transformation
(Creamer [1]) or the Stokes 5th order correction (Dawson [2]). But as an interme-
diate way, which take into account the wave spreading, irregular 2nd order 3D
models have been extensively used and validated for the last years.

3.3 Stokes2nd Order Based Models

2nd Order Directional - 3D Wave M odel. The 2nd order Stokes expansion based
on thelinear part (Eq. 1) is
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where ¢, isaconstant to ensure that IE(n,(t)) = 0.



The two 2nd order transfer functions T and T° of course depend of the water
depth. Their expressions are given in appendix 1.

2nd Order Uni-Directional - 2D. If now we consider a uni-directional wave train
in which al the components propagate in the same direction, we obtain, of course,
the same linear part of the elevation
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but a different second order part in applying Eq. 5 with a(®,f) = ayf),
@6 f) = g and 8, = 6, = 0, and calculating Ty(F;, ), To(f;, ).

3.4 Crest Height Probability Distribution

Mainly focussed on the aim to produce simple parametric models corresponding to
uni-directional or directional sea states and to infinite to intermediate water depths,
some authors proposed and fitted crest height probability distribution models
based on perturbations of the laws of the linear case. Some used measurements,
others the Stokes 2nd order irregular waves models.

Jahns & Wheeler. This model is based on a nonlinear transformation of a Ray-
leigh law, where the transformation is dependent of the crest height normalized by
water depth (Jahns & Wheeler [5]). This model has been fitted |ater from measure-
ments (Haring & Heideman [4]). It appears clearly wrong in infinite depth where it
tends to the Rayleigh law. The fitting used wave staff measurements in the Gulf of
Mexico and Waverider measurements in the North Sea.
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Derived Narrowband M odels. Some other models were derived from a narrow-
band model of the 2D second order irregular waves model. This model obtained
from Eqs 1 & 5, in the 2D case, isvalid if the spectral density is sufficiently nar-
row to consider the 2nd order transfer functions as constant. In this case,

TE(fj, f) (resp. Tf(fj, f)) ) are considered constant and egual to TEb(fm) , (resp.
To(f.) ), with
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with f,, a mean frequency to be defined. This gives for the second order part
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if n,(t) is considered as a product of an amplitude and a phase time function,
n4(t) = A(t)cos(Q(t)) , where the amplitude and instantaneous frequency are
slowly varying, the unidirectional narrowband second order part becomes
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The formulas for Tgb and be are given in appendix 2.

If we consider that the envelope varies sufficiently slowly, the crest occurs at
instant t. when. Q(t.) = 0. Then the crest height given by the linear part is A(t,),
and the crest height at second order is
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which links linear to nonlinear crest heights by a quadratic transformation:

2
H
C = Ciin* (Tugth) * Tof) Cin = Tl - (12)

Tayfun [12], Tung and Huang [14], Kriebel and Dawson (1991) [6], Kriebel and
Dawson (1993) [12] and Prevosto et al. [9] proposed models based on such a non-
linear quadratic relation:
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and on the Rayleigh law for the distribution of the linear crests:
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So, in a classical way, the distribution of the nonlinear crests is obtained by apply-
ing the inverse nonlinear transformation.
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The differences between the parametric models proposed by a number of authors
come from different choices of a(f,,; h)yand (3, and different approximations of
Q_l(C). All the previous authors apart Prevosto et al. [9] take 3 equal to zero and
coefficient of the transformation from second order regular Stokes wave. But
unfortunately in finite water depth the irregular narrowband models do not tend to
the regular model (due to the difference terms), making the Kriebel and Dawson
finite depth model not an exact one (Compare Eq. 20 to the sum of Eq. 36 and
Eq. 37). Tung and Huang [14] made an error by taking into account in infinite
water depth alow frequency part which in fact does not exist (Eq. 36).

Kriebel and Dawson. The Kriebel and Dawson model is based on the second
order regular Stokes wave model in infinite or finite depth, giving
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Kriebel and Dawson approximated the inverse transformation Q_l(C) ,first [6] at
second order and later [7] with a corrected third order expansion. This induces a
problem in the crest distribution when the steepness is strong. These simplifica-
tions are not necessary as we know an analytic form of the inverse transformation
(Eq. 16).

In infinite depth the exact Kriebel and Dawson model and the Tayfun model are
the same. A difference could exist which comes from the definition of T, (Eg. 19).
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The same technique is used in (Dawson [2]) with a 5th order regular expansion.
These models, though based in their principle on narrowband assumptions, do not
use an exact narrowband Stokes expansion. This induces errors in the models,
apart in infinite depth where harmonic and narrowband expansion are the same.

3.5 New Models

Two new models have been recently proposed and take into account the 3D struc-
ture of the waves.

Forristall Model. It is based on a perturbated Weibull law with the two parame-
ters written as steepness and Ursell number polynomials (Forristall [3]). Starting
from simulations based on a synthetic directional spectrum data base and different
water depths, two different sets of coefficients of the polynomials were fitted from
2D and 3D simulations.
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Thefit on 2D simulations gave
a = 1/./8+0.2892S, + 0.1060U,

(24)
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Thefit on 3D simulations gave
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2
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The advantage of thismodel isits simplicity, but it does not take into account vari-
ationsin the directional spreading.

Prevosto Moddl. It is based on a nonlinear transformation of a Rayleigh law,
where the transformation is based on the narrowband Stokes expansion
(Prevosto [10]). The two parameters Hs and mean wavenumber are perturbed to
take into account the spectral bandwidth, the directional spreading and the water
depth in equations 12-14. It has a unique expression in 2D and 3D case.

|:is = aHsst ?m = afmfm (26)
In looking at different directional spectrum climatologies and different water
depths, the ay;_and a; formulations have been determined from simulations and
theoretical considerations to be:
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The formulation of o, has been chosen to take into account the fact that the effect
of the directiona spresadi ng on the crest heights is opposite in deep and shallow
water (see [8]). This model has the advantage of furnishing a unique expression
both the 2D and 3D cases, and so can be adapted to all intermediate situations.

3.6 Comparison of the Models

These models have been compared to the empirical distribution of crest heights
calculated from 1000 hours of simulations (3D second order irregular waves
model) of a sea-state with parameters (Hs=5m, Tp=7s, s=11). Three different
water depths have been used (1000m, 30m, 20m). It is clear that in al the cases
(Figs. 2-4), Forristall and Prevosto models give very good results. In the deep
water case the Haring (jahns & Wheeler) model is close to Rayleigh and in shal-
low water the Kriebel models are not at al accurate.
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4 Validity of the 2nd Order Modelsin Extreme Situations

The use of 2nd order models has the advantage to work with simple wave models.
If these models are used to calculate design crest heights, their validity has to be
proved before using such extreme values.
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Fig. 4. Water depth 20 meters
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The biggest crest encountered during the 1000 hours (Fig. 5, red curve), in the
1000 meters water depth case, has awave height of 12 meters, a crest height of 7.4
meters (1.5 times the Hs), a wave period of 8.5 sec and a crest duration of 4 sec.
Thiswave has a crest shape very close to the breaking limit. In this case the differ-
ence between the 2D and 3D modelsis very small compared to the modification of
the shape of the wave due to the 2nd order nonlinearity. If now we consider an har-
monic wave with a 5th order expansion giving the same crest height, wave height
and crest duration (Fig. 6) we observe that the 2nd order expansion for this very
extreme wave is not so far from the higher expansion and that the main improve-
ment in the model is from linear to second order. This, of course, does not validate
the distributions based on the 2nd order irregular waves models, but shows that
accurate distribution models like the two Forristall and Prevosto models permitsin
afirst step to greatly improve the tools for the design of offshore structures.

A 3D view of thisbiggest crest isgiven in figure 7, which shows the complexity of
the shape and of the slopes of such a wave and so the difficulties to define it as a
dangerous or not dangerous wave.

5 Conclusion

As an dternative to the actual waves observation, the use of the spectra informa-
tion combined with models of irregular gravity waves has permitted to supply the
engineers with new better accurate distributions of wave crests. These distributions
have been fitted starting from 3D second order irregular waves models. If partly
validated for the crest heights, this methodology will not be enough accurate for
other parameters of the crest kinematics which ask for higher order expansion.
Moreover, the introduction of breaking, local wind and current will introduce cer-
tainly modifications in the probability of occurrence of extreme kinematics. But at



the moment, to take into account in the irregular wave models local wind and cur-
rent is a big issue not yet solved, which will be the next step for the improvement
of the design tools and to progress in the maritime risk assessment.

Fig. 5. The biggest crest
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Fig. 7. 3D view of the biggest crest
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Appendix 1: Second Order Transfer Functions:
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Appendix 2: Narrow-Band Non Linear Transfer Coefficients

Intheformulasbelow, k = Kk h isthedimensionless water depth, with k., amean
wavenumber, where

(2mf ) = gk, tanhk,h (34)
The expressions for vertical displacement, Eulerian (fixed point) measurements
are, in finite or infinite water depth (see [9] for more formulas):

T = Cairr(Kms Tab(€) = Coum(K)ky (35)
M(k) + k(1 - (tanhk)?)

with cgigr(K) =
at I'I(K)2—4Ktanh|<

Cgif(©) = 0 (36)

2

and Csum(K) = 3_]-%+(1—(tan2K) )E Csum(oo) — % (37)
0O  (tanhk) O

where M(K) = tanhK+K(1—(tanhK)2) M(0) =1 (38)



	IFREMER Centre de Brest B.P. 70, F-29280 Plouzané, France
	Marc.Prevosto@ifremer.fr
	WWW home page: http://www.ifremer.fr/metocean/
	Abstract. The statistics of the elevation and kinematics of waves in real seas are very rarely ac...
	1 In-situ Measurements
	2 Power Spectra versus Wave by Wave
	Fig. 1. From directional spectra to wave kinematics

	3 Methodologies for Statistics
	3.1 Linear Model
	(1)
	and (2)
	This model furnishes a Rayleigh law as the law of the crest heights. (3)
	with (4)

	3.2 Non Linear Models
	3.3 Stokes 2nd Order Based Models
	2nd Order Directional - 3D Wave Model
	(5)
	2nd Order Uni-Directional - 2D

	(6)

	3.4 Crest Height Probability Distribution
	Jahns & Wheeler
	(7)
	Derived Narrowband Models

	and (8)
	(9)
	(10)
	(11)
	(12)
	(13)
	(14)
	(15)
	(16)
	(17)
	(18)
	with (19)
	and (20)
	(21)

	3.5 New Models
	Forristall Model
	(22)
	with , , (23)
	(24)
	(25)
	Prevosto Model

	, (26)
	(27)
	with (28)

	3.6 Comparison of the Models
	Fig. 2. Water depth 1000 meters


	4 Validity of the 2nd Order Models in Extreme Situations
	Fig. 3. Water depth 30 meters
	Fig. 4. Water depth 20 meters

	5 Conclusion
	Fig. 5. The biggest crest
	Fig. 6. The equivalent regular wave
	Fig. 7. 3D view of the biggest crest
	References
	1. Creamer, D.B., Henyey, F.S., Schult, R., Wright, J., 1989, “Improved linear representation of ...
	2. Dawson, T.H., 2000, “Rayleigh Law and Stokes Correction for High Waves in Heavy Seas”, US Nava...
	3. Forristall, G.Z., 2000, “Wave Crest Distributions: Observations and Second-Order Theory”, Jour...
	4. Haring, R.E., Heideman, J.C., 1978, “Gulf of Mexico rare wave return periods”, Proc. Offshore ...
	5. Jahns, H.O., Wheeler, J.D., 1973, “Long-term wave probabilities based on hindcasting of severe...
	6. Kriebel, D.L., Dawson, T.H., 1991, “Nonlinear effects on wave groups in random seas”, J. Offsh...
	7. Kriebel, D.L., Dawson, T.H., 1993, “Nonlinearity in wave crest statistics”, Proc. 2nd Int. Sym...
	8. Prevosto, M., 1998, “Effect of Directional Spreading and Spectral Bandwidth on the Nonlinearit...
	9. Prevosto, M., Krogstad, H.E., Robin, A., 2000, “Probability distributions for maximum wave and...
	10. Prevosto, M., Forristall, G.Z., (Results of the WACSIS project to be published)
	11. Rychlik, I., Johannesson, P., Leadbetter, M.R., 1997, “Modeling and statistical analysis of o...
	12. Tayfun, M.A., 1980, “Narrow-band nonlinear sea waves”, J. Geophys. Res., vol. 85, no. C3, pp....
	13. Tromans, P.S., Taylor, P.H., 1998, “The shapes, histories and statistics of non-linear wave c...
	14. Tung, C.-C., Huang, N.E., 1985, “Peak and trough distributions of nonlinear waves”, Ocean Eng...
	15. Zhang, J., Yang, J., Wen, J., Prislin, I., Hong, K., 1999, “Deterministic wave model for shor...


	Appendix 1: Second Order Transfer Functions:
	(29)
	(30)
	(31)
	(32)
	(33)

	Appendix 2: Narrow-Band Non Linear Transfer Coefficients
	(34)
	, (35)
	with (36)
	and (37)
	where (38)



