Journal of Applied Microbiology February 2013, Volume 114, Issue 2, pages 516–525, http://dx.doi.org/10.1111/jam.12040 © 2012 The Society for Applied Microbiology

The definitive version is available at http://onlinelibrary.wiley.com/

Impact of weather conditions on *Escherichia coli* accumulation in oysters of the Thau lagoon (the Mediterranean, France)

V. Derolez^{1,*}, D. Soudant², A. Fiandrino¹, L. Cesmat¹, O. Serais¹

¹ Ifremer, Laboratoire Environnement Ressources Languedoc-Roussillon, Sète Cedex, France ² Ifremer, Laboratoire DYNECO-VIGIES, Nantes Cedex 03, France

*: Corresponding author : Valérie Derolez, email address : vderolez@ifremer.fr

Abstract :

Aims : The Thau lagoon shellfish are regularly impacted by microbial pollution of faecal origin, which cause European health standards to be exceeded and closure of the shellfish harvest. The aims of this study were to investigate the impact of weather and hydrological conditions on *Escherichia coli (E. coli)* accumulation factor (AF) between water and oysters and to evaluate the relevance of the use of this ratio for the purpose of sanitary risk assessment.

Methods and results : Water and oysters (Crassostrea gigas) were sampled simultaneously *in situ* during 18 months in periods of dry weather and after rainfall events. Shellfish sanitary thresholds were exceeded in both periods. The *E. coli* AFs measured after rainfall (median = 6) were lower than in dry weather (median = 32), suggesting different shellfish faecal contaminations were operating in this system process.

Conclusion : The AFs we measured appeared to be relevant markers for generating sanitary risk assessments for Thau lagoon shellfish.

Significance and impact of the study : The results of the study address the need to assess the relationship between water quality measures and shellfish flesh quality. This study will contribute to the elaboration of a management tool to guide local authorities in prioritizing the sources of pollution and in optimizing public investment in the watershed.

Keywords : E. coli ; environmental health ; food safety ; shellfish ; water quality

1. Introduction

With up to 13 000 tons of oysters (Crassostrea gigas) and 2500 tons of mussels (*Mytilus galloprovincialis*) marketed every year, the Thau lagoon is the main shellfish harvesting area in the Mediterranean. Filter-feeding bivalves, such as oysters, filter large volumes of water from their environment and are able to concentrate large numbers of particles, which include micro-organisms pathogenic to human consumers (Bernard 1989; Plusquellec et al. 1990). According to European sanitary rules, the *Escherichia coli* concentrations found in Thau shellfish correspond to a Class B area. As a result, shellfish must be depurated before they can be marketed. Because Thau lagoon shellfish regularly exceed current health standards, authorities periodically restrict the shellfish harvesting area and, in some cases, suspend production. Moreover, several enteric virus outbreaks due to Thau lagoon oysters occurred during winter gastroenteritis epidemics in the local population (Le Saux et al. 2009).

Many studies have shown the impact of rainfall on microbial water quality in coastal and estuarine areas. Contamination due to rainfall most often results from urban wastewater discharges or from nonpoint pollution sources in the watershed (Lipp et al. 2001; Chigbu et al. 2005; Jeng et al. 2005; Coulliette and Noble 2008; Papastergiou et al. 2009; Chu et al. 2011; Conn et al. 2012). Microbial contamination can also occur in dry weather conditions, in which faecal material from seabirds resting on shellfish farming structures is the likely main

50	source (Levesque et al., 2000; Wither et al., 2005; Ogburn and White, 2009; Derolez et al.,
51	2010).
52	European regulations recommend monitoring coliform bacteria (e.g., Escherichia coli) in
53	shellfish flesh to assess the extent to which shellfish growing areas are exposed to fecal
54	pollution (Anonymous, 2004; Anonymous, 2006). USA or Australian regulations rely on the
55	enumeration of indicator bacteria in water (Ogburn and White, 2009). The need to assess
56	more thoroughly the relationship between water quality measures and shellfish flesh quality
57	has been recently raised by international experts (Rees et al., 2010). To address this issue,
58	several attempts have been made to model the ecophysiological accumulation of E. coli in
59	shellfish growing areas (Fiandrino et al., 2003; Martins et al., 2006). However, most of the
60	authors have assumed constant accumulation factors to evaluate shellfish microbial
61	concentrations based on the microbial concentrations of the surrounding water (Pommepuy et
62	al. 2004; Riou et al. 2007; Bougeard et al., 2011) and on ratios between the concentrations of
62 63	al. 2004; Riou et al. 2007; Bougeard et al., 2011) and on ratios between the concentrations of microorganisms in shellfish and in water, obtained from experiments performed under
62 63 64	<i>al.</i> 2004; Riou <i>et al.</i> 2007; Bougeard <i>et al.</i> , 2011) and on ratios between the concentrations of microorganisms in shellfish and in water, obtained from experiments performed under controlled conditions in laboratories (Cabelli and Heffernan, 1970; Lees <i>et al.</i> , 1995;
62 63 64 65	<i>al.</i> 2004; Riou <i>et al.</i> 2007; Bougeard <i>et al.</i> , 2011) and on ratios between the concentrations of microorganisms in shellfish and in water, obtained from experiments performed under controlled conditions in laboratories (Cabelli and Heffernan, 1970; Lees <i>et al.</i> , 1995; Burkhardt and Calci, 2000).
62 63 64 65 66	 al. 2004; Riou et al. 2007; Bougeard et al., 2011) and on ratios between the concentrations of microorganisms in shellfish and in water, obtained from experiments performed under controlled conditions in laboratories (Cabelli and Heffernan, 1970; Lees et al., 1995; Burkhardt and Calci, 2000). We sampled water and oysters (<i>C. gigas</i>) simultaneously for 18 months during periods of
62 63 64 65 66 67	 al. 2004; Riou et al. 2007; Bougeard et al., 2011) and on ratios between the concentrations of microorganisms in shellfish and in water, obtained from experiments performed under controlled conditions in laboratories (Cabelli and Heffernan, 1970; Lees et al., 1995; Burkhardt and Calci, 2000). We sampled water and oysters (<i>C. gigas</i>) simultaneously for 18 months during periods of dry weather and after rainfall events to evaluate accumulation factors between water and the
62 63 64 65 66 67 68	al. 2004; Riou et al. 2007; Bougeard et al., 2011) and on ratios between the concentrations of microorganisms in shellfish and in water, obtained from experiments performed under controlled conditions in laboratories (Cabelli and Heffernan, 1970; Lees et al., 1995; Burkhardt and Calci, 2000). We sampled water and oysters (<i>C. gigas</i>) simultaneously for 18 months during periods of dry weather and after rainfall events to evaluate accumulation factors between water and the oysters in the Thau lagoon, to investigate the impact of weather and hydrological conditions
62 63 64 65 66 67 68 69	 al. 2004; Riou et al. 2007; Bougeard et al., 2011) and on ratios between the concentrations of microorganisms in shellfish and in water, obtained from experiments performed under controlled conditions in laboratories (Cabelli and Heffernan, 1970; Lees et al., 1995; Burkhardt and Calci, 2000). We sampled water and oysters (<i>C. gigas</i>) simultaneously for 18 months during periods of dry weather and after rainfall events to evaluate accumulation factors between water and the oysters in the Thau lagoon, to investigate the impact of weather and hydrological conditions on this ratio and to evaluate whether the use of this ratio could be a relevant approach for
62 63 64 65 66 67 68 69 70	al. 2004; Riou et al. 2007; Bougeard et al., 2011) and on ratios between the concentrations of microorganisms in shellfish and in water, obtained from experiments performed under controlled conditions in laboratories (Cabelli and Heffernan, 1970; Lees et al., 1995; Burkhardt and Calci, 2000). We sampled water and oysters (<i>C. gigas</i>) simultaneously for 18 months during periods of dry weather and after rainfall events to evaluate accumulation factors between water and the oysters in the Thau lagoon, to investigate the impact of weather and hydrological conditions on this ratio and to evaluate whether the use of this ratio could be a relevant approach for assessing sanitary risk associated with shellfish consumption.
62 63 64 65 66 67 68 69 70 71	 al. 2004; Riou et al. 2007; Bougeard et al., 2011) and on ratios between the concentrations of microorganisms in shellfish and in water, obtained from experiments performed under controlled conditions in laboratories (Cabelli and Heffernan, 1970; Lees et al., 1995; Burkhardt and Calci, 2000). We sampled water and oysters (<i>C. gigas</i>) simultaneously for 18 months during periods of dry weather and after rainfall events to evaluate accumulation factors between water and the oysters in the Thau lagoon, to investigate the impact of weather and hydrological conditions on this ratio and to evaluate whether the use of this ratio could be a relevant approach for assessing sanitary risk associated with shellfish consumption.

The Thau lagoon has an area of 75 km² and is located in the South of France. It has a
drainage area of 230 km² and it is connected to the Mediterranean Sea *via* two outlets (Fig. 1).

75 In three shellfish farming zones, oysters and mussels are fixed to ropes between three and ten

76 meters in length, which are suspended under breeding structures made of wood or metal.

77 Shellfish remain constantly immersed.

79 Sampling investigations

The lagoon and its watershed were monitored for 18 months, from September 2007 to February 2009. Five rain gauges, located in the watershed, collected rainfall data at intervals of 15 minutes. Rainfall is expressed in mm, as the depth of water that collects on a flat

83 surface.

During this period, *C. gigas* oysters and water were sampled weekly at stations 2, 3, 4 and 5 (Fig. 1). During the four main rainfall events, hereafter referred as periods R1 to R4, six to 21 sites were sampled daily or semi-daily (Table 1) to monitor the impacts of these events on the lagoon microbial content. Additional samples were also collected in dry weather conditions on four occasions in 2008 to monitor the impact of seabirds roosting at night on the shellfish structures on the lagoon microbial content (see Derolez *et al.* (2010) for the detailed sampling strategy).

91 Oyster samples and water samples were each collected simultaneously, at one meter below 92 the surface and at one meter off the bottom. Twelve oysters of a commercial size were 93 collected in plastic bags for microbial analyses and were kept at temperatures between 2°C 94 and 15°C before analyses. Water samples were collected in 500 mL sterile bottles and kept at 95 temperatures between 1°C and 4°C before analyses. Oyster and water samples were analysed 96 within 24 hours, according to NF V08-106 (Afnor, 2002), ISO 9308-3 (ISO, 1998) and ISO 97 7218 (ISO, 2007).

99 Hydrological measurements

Lagoon salinity and temperature were monitored at the surface and the bottom of the water column every 10 minutes by high-frequency sensors located at stations 2 and 5 during the entire sampling period (Fig. 1). During rainfall periods R3 and R4, sensors were located at an additional site (station 4 and station 1, respectively). Point-in-time measurements of salinity and temperature were obtained systematically from WTW LF197S sensors when water and oysters were collected (surface and bottom sampling). Before and after rainfall events, 27 water samples were analyzed for concentrations of suspended matter following a standardized method EN/872 (CEN, 2005). **Microbial analyses** E. coli concentrations in water samples were analyzed using the ISO 9308-3 standard method, *i.e.* the most probable number (MPN), scaled down for inoculation into liquid culture medium (ISO, 1998). Samples of oysters were analyzed using the NF V08-106 standard method (Afnor, 2002). This is an indirect method of estimating E. coli in live bivalves using a biosensor to measure impedance (Dupont et al., 2004). For each sample, about six oysters were washed, scrubbed under clean running water and opened with a sterile shucking knife.

116 Approximately 100 g of flesh and intravalvular liquid (FIL) were diluted 1:3 with tryptone

117 salt water (SW) and were homogenized in a Waring blender. The samples were diluted 1:3,

118 inoculated into selective media (Malthus coliform broth (Malthus Instruments) + tryptone 1 g

 L^{-1} + NaCl 8.5 g L^{-1}) and incubated at 44°C in a Bac Trac 4300 (Sy-Lab, Neupurkersdorf,

120 Austria).

121 Detection limits of the two methods were 15 *E. coli* 100 mL⁻¹ for the water samples and

122 130 E. coli 100 g⁻¹ FIL for the oyster samples. Uncertainty of the standard measurement

123 methods, calculated according to ISO 5725-2 standard (ISO, 1994) (collaborative

124 interlaboratory experiments, unpublished data), were $0.5 \log_{10} E$. *coli* 100 mL⁻¹ for the water

125 samples and 0.5 $\log_{10} E$. *coli* 100 g⁻¹ FIL for the oyster samples and were determined using

126 the following formula:

127
$$10^{\log_{10}(X) - 0.5} \le X \le 10^{\log_{10}(X) + 0.5}$$

128 where X = E. *coli* 100 mL⁻¹ or 100 g⁻¹ FIL.

130 Data analyses

According to the high spatial variability of rainfall on the watershed, rainfall data collected at the western part or at the eastern part of the watershed were combined and averaged. Dry weather periods were defined as periods having a cumulative rainfall of less than 15 mm for the previous seven days. Rainfall weather periods corresponded to a cumulative rainfall amount of 15 mm or more for the preceding seven-day period equal to or higher. This threshold was consistent with those proposed by Australian and American authorities for authorizing shellfish to be marketed in estuarine areas (Lipp et al., 2001; Chigbu et al., 2005; Kirby-Smith and White, 2006; Coulliette and Noble, 2008; Ogburn and White, 2009). When E. coli concentrations exceeded detection limits of the methods for both water and ovster samples collected simultaneously, the accumulation factor (AF) was calculated following the Cabelli and Heffernan (1970) formula:

 $AF = C_o/C_w$

143 where $C_o =$ the *E. coli* concentration in oysters in cells per 100 g FIL and $C_w =$ the *E. coli* 144 concentration in water in cells per 100 mL.

Non-parametric statistics were used for data analyses. A Mann-Whitney U test, with
normal approximation of the p-values for datasets with less than 50 samples, or a Wilcoxon

147 signed rank test for paired samples, were performed to compare the two datasets (dry weather

148 and rainfall). Spearman's rank correlation coefficients were computed and tested to assess the

149 dependence between two parameters.

150	
151	Results
152	Effects of rainfall amount on hydrology and fecal bacterial contamination
153	During rainfall periods, the maximum value of E. coli concentrations in oysters was 8,700
154	<i>E. coli</i> 100 g ⁻¹ FIL and less than 10% of samples exceeded 4,600 <i>E. coli</i> 100 g ⁻¹ FIL ($n =$
155	464), corresponding to Class B quality according to European sanitary standards
156	(EC/854/2004) (Fig. 2). During dry weather periods, two samples were above 46,000 E. coli
157	100 g ⁻¹ FIL, with a maximum value of 56,000 <i>E. coli</i> 100 g ⁻¹ FIL ($n = 396$), which
158	corresponded to a downgrade classification. In dry weather conditions, although the E. coli
159	concentrations in water samples reached 14,000 E. coli 100 mL ⁻¹ , the geometric mean was 19
160	<i>E. coli</i> 100 mL ⁻¹ and the 90 th percentile was 45 <i>E. coli</i> 100 mL ⁻¹ . These two latter values
161	corresponded to those of restricted shellfish growing areas according to US standards
162	(geometric mean below 88 E. coli 100 mL ⁻¹ and 90 th percentile below 260 E. coli 100 mL ⁻¹)
163	(US FDA, 2009). During rainfall periods, these thresholds were exceeded and attained levels
164	that corresponded to prohibited areas (geometric mean = $47 E. coli 100 mL^{-1}, 90^{th}$ percentile =
165	270 E. coli 100 mL ⁻¹ and maximum = 3,700 E. coli 100 mL ⁻¹). European and US monitoring
166	systems (Anonymous, 2004; US FDA, 2009) would thus lead to different management
167	options for Thau lagoon shellfish growing area.
168	Forty-nine percent of the water samples and 48% of the oyster samples collected during the
169	sampling period ($n = 860$) had <i>E. coli</i> counts below the detection limits of the standard
170	methods. These percentages were higher during dry weather periods (72% and 61%,
171	respectively; $n = 396$) than during rainfall periods (28% and 38%, respectively; $n = 464$).
172	Only samples with E. coli counts above the detection limits for both water and oysters were
173	kept for the further analyses ($n = 239$ for rainfall periods and $n = 79$ for dry weather periods).

174	The E. coli concentrations found in oysters did not correlate with those found in water
175	samples for all the periods ($n = 318$, $rho = 0.089$, $P = 0.113$), but this relationship became
176	significant if the samples collected during rainfall periods ($n = 239$, $rho = 0.150$, $P = 0.019$) or
177	the dry weather periods ($n = 79$, $rho = 0.372$, $P = 0.001$) were considered separately (Fig. 3).
178	Cumulative rainfall amounts for the seven days prior to sampling correlated negatively
179	with salinity, temperature and E. coli concentrations in oysters, and correlated positively with
180	E. coli concentrations in water (Table 2). Similar results were obtained if data collected
181	during rainfall and during dry weather periods were compared using Mann-Whitney U tests
182	(Fig. 2).
183	For water samples collected after rainfall events, suspended matter concentrations were
184	between 2 mg L^{-1} and 44 mg L^{-1} in the shellfish farming areas. The amount of suspended
185	matter increased significantly with decreasing salinity ($rho = -0.44$; $P = 0.019$; $n = 27$).
186	During rainfall periods, salinity and temperature were lower at the surface than at the
187	bottom, according to the Wilcoxon signed rank test ($n = 43$ pairs, $P < 0.0001$ for both
188	parameters). Conversely, <i>E. coli</i> concentrations in water and in oysters were higher ($P = 0.008$
189	and $P = 0.009$, respectively) at the surface than at the bottom. This pattern, which was due to
190	the vertical stratification of the water column after rainfall, was not observed for samples
191	collected in dry weather conditions.
192	
193	Escherichia coli accumulation factors between water and oysters
194	Relationships between the accumulation factor and hydrological variables
195	E. coli accumulation factors (AFs) were calculated for water and oyster samples collected

- 196 simultaneously. AFs covered a wide range of values [0.1 406] (Fig. 2) for the study period,
- and had an overall mean value of 30.5 and a median of 9.1.

1	
2 3	198
4 5 6	199
7 8	200
9 10	201
11 12	202
13 14	203
15 16 17	204
18 19	205
20 21	206
22 23	207
24 25 26	208
20 27 28	209
29 30	210
31 32 33	211
34 35	212
36 37	213
38 39 40	214
41 42	215
43 44	216
45 46 47	217
48 49	218
50 51	219
52 53	220
54 55	221
วง 57 58	222
59 60	

198	AF correlated negatively with the amount of rainfall in the seven days that preceded
199	sample collection and correlated positively with salinity (Table 2). The AFs calculated for
200	samples collected during rainfall periods were also significantly lower than the AFs calculated
201	for samples collected during dry weather periods, according to the Mann-Whitney U test ($P <$
202	0.0001) (Fig. 2).
203	AF did not correlate significantly with lagoon water temperature. However, during rainfall
204	periods, the AF median was 8.9 for temperatures higher than 15° C ($n = 23$) and was 5.7 for
205	lower temperatures ($n = 208$). Conversely, during dry periods, the AF median was 22 for
206	temperatures higher than 15°C ($n = 33$) and 44.1 for lower temperatures ($n = 46$).
207	The three hydrological variables correlated with each other: rainfall amounts with salinity
208	(n = 312, rho = -0.36, P < 0.0001); rainfall with temperature $(n = 310, rho = -0.15, P = 0.009)$
209	and temperature with salinity ($n = 310$, $rho = 0.54$, $P < 0.0001$).
210	There was no effect of water depth on AF for the entire period, for dry weather periods or
211	for rainfall periods.
212	Daily variations in salinity and in the E. coli concentrations in water and oysters after
213	rainfall events at stations 1 and 2
214	Results of high-frequency salinity measurements and E. coli counts in water and oysters
215	performed at stations 1 and 2 during the four rainfall events monitored are illustrated in
216	Figure 4 (a-d). After the rainfall events, whether salinity remained stable or decreased
217	significantly (-7 units for periods R3 and R4) (Figs. 4a-d) depended on the amount of rainfall
218	(Table 1). The <i>E. coli</i> concentrations in the water (C_w) and the oysters (C_o) varied
219	significantly from day to day, and even during the day, especially during periods R3 and R4.
220	Although rainfall amount and <i>E. coli</i> concentrations in water (geomean $C_w = 120 E. coli$

- 100 mL⁻¹) were at their highest during period R3, the geometric mean of the *E. coli*
- concentrations in oysters was only 390 *E. coli* 100 g⁻¹ FIL. In contrast, despite the lowest

223	rainfall amount and C_w in R1, the geometric mean of C_o reached 610 <i>E. coli</i> 100 g ⁻¹ FIL in
224	this period. Intermediate situations were observed for the respective geometric means of these
225	values for periods R2 ($C_w = 70 \ E. \ coli \ 100 \ mL^{-1}$ and $C_o = 380 \ E. \ coli \ 100 \ g^{-1}$ FIL) and R4 (C_w
226	= 100 <i>E. coli</i> 100 mL ⁻¹ and <i>geomean</i> $C_0 = 650$ <i>E. coli</i> 100 g ⁻¹ FIL). These results led to high
227	AF values for the rainfall periods R1 (AF = 11.7; $n = 16$) and to lower values for the rainfall
228	periods R4 (AF = 7; <i>n</i> = 82), R2 (AF = 5.9; <i>n</i> = 50) and R3 (AF = 3.5; <i>n</i> = 78).
229	According to the AF formula, C_o can be obtained by multiplying C_w by AF. Considering
230	rainfall and dry weather periods, median AF values (respectively 6 and 32) were used to
231	evaluate C_0 and these were compared to measurements. Due to uncertainty of the standard
232	measurement methods, the actual concentration in oyster is included in a computed interval.
233	C_o evaluations were included in these intervals for 89% of the samples collected during
234	rainfall periods and for 94% of the samples collected during dry weather periods.
235	
236	Discussion
237	Accumulation factors calculated according to Cabelli and Heffernan (1970) for the
238	<i>Crassostrea gigas</i> oysters in our study (<i>median</i> = 9.1, $n = 318$) were in agreement with the
239	values obtained from several experiments achieved under controlled conditions in
240	laboratories: from 3.8 to 28 for E. coli in oysters (Burkhardt and Calci, 2000; Prieur et al.,
241	1990; Shieh et al., 2003), from 6.5 to 12.5 for E. coli in Mercenaria mercenaria (Cabelli and

Heffernan, 1970) and 9.8 for *E. coli* in *Mytilus edulis* (Plusquellec *et al.*, 1990). During our

study, accumulation factor was shown to correlate with salinity, which is consistent with the

observations of Hopkins (1936) and Prieur et al. (1990), who suggested that filtration

efficiency is low when salinity is low, due to the closure of the bivalves. We obtained an

246 insufficient number of values to test whether the accumulation factor related to the amount of

suspended matter, but the latter increased significantly with decreasing salinity and occured as

a consequence of turbid freshwater inputs to the lagoon. Suspended matter content in water is known to affect the physiology of bivalves by reducing their filtration rates (Mane, 1975; Plusquellec et al., 1990; Prieur et al., 1990). Whereas our dataset didn't allow an effect of temperature on accumulation factor to be clearly detected, Burkhardt et al. (1992) and Campos and Cachola (2007) showed that bacterial accumulation by clams increased with temperature. Other authors have reported that the optimal temperature range for the maximal clearance and microbial accumulation rates of C. gigas (Bernard, 1989; Bougrier et al., 1995) and Ostrea edulis (Solic et al., 1999) oysters is between 12°C and 19°C. Our study suggests that the weather (rainfall or dry weather periods) was one of the main factors influencing E. coli accumulation by C. gigas in the Thau lagoon. Rainfall led to higher E. coli concentrations in lagoon water and was accompanied by decreasing salinity and increasing turbidity. Low salinity and high turbidity lead to reduced clearance rates and to consequently lower E. coli concentrations in oysters. These lower concentrations in oysters, coupled with higher E. coli concentrations in the water lead logically to lower values of accumulation factors. Temperature, season, food availability, reproduction cycles, size and amount of light are known to impact the clearance rates of bivalves, corresponding to food consumption and defined as the volume of water cleared of all 100% efficiently retained particles per unit of time (Mane, 1975; Bougrier et al., 1995; Solic et al., 1999; Campos and Cachola, 2007; Lopez-Joven et al., 2011). However, our study focused on meteorological and hydrological parameters and didn't address these factors. The differences in the results obtained for the two types of weather conditions implied that shellfish may have been impacted by different fecal sources (Ogburn and White, 2009). Seabird fecal material is suspected as the main source of E. coli in dry weather conditions

1 5

271 (Derolez *et al.*, 2010) whereas wastewaters inputs from the watershed are the main

272 contributors to microbial degradation of water quality after rainfall (Chigbu *et al.*, 2005;

273	Coulliette and Noble, 2008). Although we did not measure the ratio between E. coli attached
274	to suspended matter and E. coli remaining in the free-living state, this ratio could vary
275	depending on weather conditions (Jeng et al., 2005) and the source of fecal material. Attached
276	and free-living bacteria have different transport dynamics in the water column and have
277	different shellfish retention efficiencies and digestion processes (Bernard, 1989; Prieur et al.,
278	1990; Kach and Ward, 2008).
279	In our study, the <i>E. coli</i> concentration in oysters correlated poorly with those in water (Fig.
280	3), which is consistent with other field surveys performed on oysters (Bernard, 1989; Ogburn
281	and White, 2009) or clams (Campos and Cachola, 2007). On the contrary, some studies of
282	bacterial accumulation by Mytilus galloprovincialis and M. edulis showed good correlations
283	between fecal coliform concentrations in shellfish and in water (Solic et al., 1999; Plusquellec
284	et al., 1990). In laboratory studies, maximum E. coli concentrations in bivalve are obtained
285	after short delays: 30 minutes for <i>M. edulis</i> or <i>Tapes decussatus</i> (Plusquellec et al., 1990;
286	Martins et al., 2006) and three to four hours for C. gigas or C. virginica (Bernard, 1989;
287	McGhee et al., 2008). Microbial depuration processes are slower: C. virginica took five to ten
288	days to achieve EU regulatory standards (< 230 E. coli 100 g ⁻¹ FIL) from initial
289	concentrations of 1,000 E. coli 100 g ⁻¹ FIL (temperature: 24-25°C, salinity: 24-28 units)
290	(McGhee et al., 2008; Love et al., 2010). These delays, coupled with the high and rapid
291	variability in the hydrology of the Thau lagoon (Fig. 4), raise doubt as to whether "steady
292	state" conditions, in which E. coli intake and removal are equal, were achieved by oysters
293	monitored in situ (Bernard, 1989; Ogburn and White, 2009). Accumulation factor is a ratio
294	between bacterial concentrations (Cabelli and Heffernan, 1970) that arise from many complex
295	environmental and ecophysiological processes. Several attempts have been made to adapt
296	ecophysiological models to evaluate E. coli concentrations in shellfish (Fiandrino et al., 2003;
297	Martins <i>et al.</i> , 200_{6}^{6}). Such models are calibrated with laboratory experiments and take into

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
20	
20 27	
21	
20 20	
29 30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52 52	
ວ ວ 51	
04 55	
55	
50	
52	
59	
60	

298	account filtration, retention and depuration processes depending on hydrological variables
299	(salinity, temperature, suspended matter). The application and calibration of such controlled
300	models to data collected <i>in situ</i> is questionable, due to the major and rapid changes that take
301	place in the water surrounding the shellfish, especially after rainfall events.
302	The simultaneous measurements made in the watershed and the lagoon during the
303	OMEGA-Thau Project, of which this study is a part, will enable calibration and validation of
304	hydrodynamic models, coupled with a model simulating E. coli fate in Thau lagoon water
305	(Fiandrino et al., 2003). These models will allow the simulation of fecal pollution transfer
306	from the watershed to the shellfish harvest areas. As no calibrated ecophysiological model
307	was available to simulate the accumulation of <i>E. coli</i> in oysters in the Thau lagoon, the use of
308	median values of accumulation factors could lead to a sufficiently accurate estimation of <i>E</i> .
309	coli concentrations in oysters from E. coli levels simulated in water, for the purpose of
310	sanitary risk assessment. This approach will allow maximum allowable daily loads of <i>E. coli</i>
311	to be determined, which are similar to the Total Maximum Daily Load (TMDL) program,
312	recommended by US EPA regulation (EPA, 1997), and above which shellfish microbial
313	quality falls below public health safety thresholds (Loubersac et al., 2007). These E. coli
314	loads will be used as guideline values by local authorities to determine priority interventions
315	concerning the watershed to maintain shellfish quality at or above the current Class B
316	standard, to limit closures of the shellfish harvest and to improve consumer health protection
317	(Pommepuy et al., 2005; Le Saux et al., 2006; Gourmelon et al., 2010).
318	
319	Acknowledgements
320	We would like to thank the following organizations: Ifremer LER/LR in Sète for sampling
321	and analyses and Grégory Messiaen for the map of Thau lagoon. The OMEGA-Thau Project:

322 financial support (AERM&C, Région Languedoc-Roussillon, Conseil Général de l'Hérault,

323 FEDER), technical support (SMBT, EGIS-eau, BRLi, DRE-CQEL/LR, CRCM, LDV34,

324 Thau-Agglo and CCNBT). The authors are grateful to Jean-Claude Le Saux for helpful advice

325 during OMEGA-Thau Project, and to Soizig Le Guyader for reviewing this manuscript.

326 Thanks to Cédric Duvail for layout and design of the figures.

References

329 Afnor (2002). Norme NF V08-106, 2002. Dénombrement des Escherichia coli dans les

330 coquillages marins vivants. Technique indirecte par impédancemétrie directe, 16 p.

331 Anonymous (2004). Regulation (EC) No 854/2004 of the European Parliament and of the

332 Council of 29 April 2004 laying down specific rules for the organisation of official

333 controls on products of animal origin intended for human consumption. Official Journal of

the European Union, 45 p.

Anonymous (2006). Commission Regulation (EC) No 1666/2006 of 6 November 2006

amending Regulation (EC) No 2076/2005 laying down transitional arrangements for the

implementation of Regulations (EC) No 853/2004, (EC) No 854/2004 and (EC) No

338 882/2004 of the European Parliament and of the Council.

Bernard, F.R. (1989). Uptake and elimination of coliform bacteria by four marine bivalve
mollusks. Can J Fish Agu Sci 46, 1592-1595.

341 Bougeard, M., Le Saux, J.C., Pérenne, N., Baffaut, C., Robin, M., Pommepuy, M. (2011).

342 Modeling of *Escherichia coli* fluxes on a catchment and the impact on coastal water and

343 shellfish quality. J Am Water Res Ass 47, 350-366.

344 Bougrier, S., Geairon, P., Deslous-Paoli, J.M., Bacher, C., Jonquières, G. (1995). Allometric

345 relationships and effects of temperature on clearance and oxygen consumption rates of

Crassostrea gigas (Thunberg). Aquacult 134, 143-154.

347	Burkhardt, W., Watkins, W.D., Rippey, S. (1992). Seasonal effects on accumulation of
348	microbial indicator organisms by Mercenaria mercenaria. Appl Environ Microbiol 58,
349	826-831.
350	Burkhardt, W. and Calci, K.R. (2000). Selective Accumulation May Account for Shellfish-
351	Associated Viral Illness. Appl Environ Microbiol 66, 1375–1378.
352	Campos, C.J.A. and Cachola, R.A. (2007). Fecal coliforms in bivalve harvesting areas of the
353	Alvor lagoon (Southern Portugal): Influence of seasonal variability and urban
354	development. Environ Monitor Assess 133, 31-41.
355	Cabelli, V.J. and Heffernan, W.P. (1970). Accumulation of <i>Escherichia coli</i> by the Northern
356	Quahaug. Appl Microbiol 19, 239-244.
357	CEN (2005). EN 872:2005. Water quality. Determination of suspended solids. Method by
358	filtration through glass fibre filters.
359	Conn, K. E., Habteselassie, M. Y., Denene Blackwood, A., Noble, R.T. (2012). Microbial
360	water quality before and after the repair of a failing onsite wastewater treatment system
361	adjacent to coastal waters. J Appl Microbiol 112, 214-224.
362	Coulliette, A.D. and Noble, R.T. (2008). Impacts of rainfall on the water quality of the
363	Newport River Estuary (Eastern North Carolina, USA). J Water Health 6, 473-482.
364	Chigbu, P., Gordon, S., Strange, T.R. (2005). Fecal coliform bacteria disappearance rates in a
365	north-central Gulf of Mexico estuary. Estuar Coast Shelf Sci 65, 309-318.
366	Chu, Y., Salles, C., Tournoud, M.G., Got, P., Troussellier, M., Rodiera, C., Caro, A. (2011).
367	Fecal bacterial loads during flood events in Northwestern Mediterranean coastal rivers. J
368	Hydrol 405, 501-511.
369	Derolez, V., Serais, O., Caprais, M.P., Le Saux, J.C., Messiaen, G. (2010). Investigating an
370	avian source of shellfish fecal contaminations in the Thau lagoon (Mediterranean, France).

3	
4	
5	
6	
7	
8	
ğ	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
20	
21	
31 22	
ວ∠ າາ	
აა ექ	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
- 4	
51	
51 52	
51 52 53	
51 52 53 54	
51 52 53 54 55	
51 52 53 54 55 56	
51 52 53 54 55 56 57	
51 52 53 54 55 56 57 58	
51 52 53 54 55 56 57 58 59	

371 Proceedings of the 7th International Conference on Molluscan Shellfish Safety (ICMSS). 372 Nantes, 14-19 June 2009. http://www.symposcience.org/exl-doc/colloque/ART-373 00002553.pdf (accessed 3 July 2012). 374 Dupont, J., Dumont, F., Menanteau, C., Pommepuy, M. (2004). Calibration of the impedance 375 method for rapid quantitative estimation of *Escherichia coli* in live marine bivalve 376 molluses. J Appl Microbiol 96, 894-902. 377 EPA (1997). Compendium of Tools for Watershed Assessment and TMDL Development. 378 EPA-841-B-97-006. http://water.epa.gov/lawsregs/lawsguidance/cwa/tmdl/comptool.cfm 379 (accessed 3 July 2012). 380 Fiandrino, A., Martin, Y., Got, P., Bonnefont, J.L., Troussellier, M. (2003). Bacterial 381 contamination of Mediterranean coastal seawater as affected by riverine inputs: simulation 382 approach applied to a shellfish breeding area (Thau lagoon, France). Water Res 37, 1711-383 1722. 384 Gourmelon, M., Lazure, P., Hervio-Heath, D., Le Saux, J.C., Caprais, M.P., Le Guyader, F., 385 Catherine, M., Pommepuy, M. (2010). Microbial modelling in coastal environment and 386 implementation of early system, useful tools to limit shellfish microbial contamination. In 387 Safe management of shellfish and harvest waters ed. Rees, G., Pond, K., Kay, D., Bartram, 388 J., Santo Domingo, J. pp.297-318. London: WHO, IWA Publishing. 389 Hopkins, A.E. (1936). Adaptation of the feeding mechanism of the oyster (Ostrea gigas) to 390 changes in salinity. Bulletin of the United States Bureau of Fisheries 48, 345-363. 391 ISO (1994). ISO 5725-2:1994. Accuracy (trueness and precision) of measurement methods 392 and results - Part 2: Basic method for the determination of repeatability and reproducibility 393 of a standard measurement method, 42 p.

394	ISO (1998). ISO 9308-3:1998. Water quality. Detection and enumeration of <i>Escherichia coli</i>
395	and coliform bacteria. Part 3: Miniaturized method (Most Probable Number) for the
396	detection and enumeration of E. coli in surface and waste water, 20 p.
397	ISO (2007). ISO 7218:2007. Microbiology of food and animal feeding, 69 p.
398	Jeng, H.A.C., Englande, A.J., Bakeer, R.M., Bradford, H.B. (2005). Impact of urban
399	stromwater runoff on estuarine environmental quality. Estuar Coast Shelf Sci 63, 513-526.
400	Kach, D.J. and Ward, J.E. (2008). The role of marine aggregates in the ingestion of
401	picoplankton-size particles by suspension-feeding molluscs. Mar Biol 153, 797-805.
402	Kirby-Smith, W.W. and White, N.M. (2006). Bacterial contamination associated with
403	estuarine shoreline development. J Appl Microbiol 100, 648-657.
404	Le Saux, J.C., Derolez, V., Brest, G., Le Guyader, F., Pommepuy, M. (2006). Elaboration of a
405	strategy to limit shellfish viral contamination. Proceedings of the 5 th International
406	Conference on Molluscan Shellfish Safety, Galway, 2004, pp. 342–349.
407	Le Saux, J.C., Serais, O., Krol, J., Parnaudeau, S., Salvagnac, P., Delmas, G., Cicchelero, V.,
408	Claudet, J., Pothier, P., Balay, K., Fiandrino, A., Pommepuy, M., Le Guyader, S. (2009).
409	Evidence of the presence of viral contamination in shellfish after short rainfall events.
410	Proceeding of the 6 th International Conference on Molluscan Shellfish Safety (ICMSS).
411	The Royal Society of New Zealand (Eds), 2009. Miscellaneous Series 71, pp. 256-262.
412	Lees, D.N., Nicholson, N., Tree, J.A. (1995). The relationship between levels of <i>E. coli</i> in
413	shellfish and seawater with reference to legislative standards. Proceeding of the
414	International Mollusc Conference, Sydney. Nov. 1994.
415	Levesque, B., Brousseau, P., Bernier, F., Dewailly, E., Joly, F. (2000). Study of the bacterial
416	content of ring-billed gull dropping in relation to recreational water quality. Water Res 34,
417	1089-1096.

3	
4	
5	
6	
0	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
11	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
20 20	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
03	
э4 	
55	
56	
57	
58	
59	
60	

- 418 Lipp, E.K., Kurz, R., Vincent, R., Rodriguez-Palacios, C., Farrah, S.R., Rose, J.B. (2001).
- The effects of seasonal variability and weather on microbial fecal pollution and enteric
 pathogens in a subtropical estuary. Estuaries 24, 266-276.
- 421 Lopez-Joven, C., de Blas, I., Furones, M.D, Ruiz-Zarzuela, I., Roque, A. (2011).
- 422 Experimental uptake and retention of pathogenic and nonpathogenic *Vibrio*
- 423 *parahaemolyticus* in two species of clams: *Ruditapes decussatus* and *Ruditapes*
- 424 *philippinarum*. J Appl Microbiol 111, 197-208.
- 425 Loubersac, L., Do Chi, T., Fiandrino, A., Jouan, M, Derolez, V., Lemsanni, A., Rey-Valette,
- 426 H., Mathe, S., Pagès, S., Mocenni, C., Casini, M., Paoletti, S., Pranzo, M., Valette, F.,
- 427 Serais, O., Laugier, T., Mazouni, N., Vincent, C., Got, P., Troussellier, M., Aliaume, C.
- 428 (2007). Microbial contamination and management scenarios in a Mediterranean coastal
- 429 lagoon (Etang de Thau, France): Application of a Decision Support System within the
- 430 Integrated Coastal Zone Management context. Transit Waters Monogr 1, 107-127.
 - 431 Love, D.C., Lovelace, G.L., Sobsey, M.D. (2010). Removal of *Escherichia coli*, Enterococcus
 - 432 fecalis, coliphage MS2, poliovirus, and hepatitis A virus from oysters (*Crassostrea*
 - 433 *virginica*) and hard shell clams (*Mercinaria mercinaria*) by depuration. Inter J Food
- 434 Microbiol 143, 211–217.
- 435 McGhee, T.J., Morris, J.A., Noble, R.T., Fowler, P.K. (2008). Comparative microbial
- 436 dynamics in *Crassostrea virginica* (Gmelin 1791) and *Crassostrea ariakensis* (Fujita
 437 1913). J Shellf Res 27, 559–565.
- Mane, U.H. (1975). A study on the rate of water transport of the clam *Katelysia opima* in
 relation to environmental conditions. Hydrobiologia 47, 439-451.
- 440 Martins, F., Reis, M.P., Neves, R., Cravo, A.P., Brito, A., Venâncio, A. (2006). Molluscan
- shellfish bacterial contamination in Ria Formosa coastal lagoon: a modelling approach.

44	2 Proceedings International Coastal Symposium 2004. Santa Catarina, Brazil. J Coast Res,
44	3 special issue 39, 1551-1555.
44	4 Noble, R.T., Moore, D.F., Leecaster, M.K., Mc Gee, C.D., Weisberg, S.B. (2003).
44	5 Comparison of total coliform, fecal coliform, and enterococcus bacterial indicator response
44	for ocean recreational water quality testing. Water Res 37, 1637-1643.
44	7 Ogburn, D.M. and White, I. (2009). Evaluation of fecal pollution indicators in an oyster
44	8 quality assurance program: application of epidemiological methods. J Shellf Res 28, 263-
44	9 271.
45	0 Papastergiou, P., Mouchtouri, V., Karanika, M., Kostara, E., Kolokythopoulou, F., Mpitsolas,
45	1 N., Papaioannou, A., Hadjichristodoulou, C. (2009). Analysis of seawater microbiological
45	2 quality data in Greece from 1997 to 2006: association of risk factors with bacterial
45	3 indicators. J Water Health 7, 514-526.
45	Plusquellec, A., Beucher, M., Prieur, D., Le Gal, Y. (1990). Contamination of the mussel,
45 45	 Plusquellec, A., Beucher, M., Prieur, D., Le Gal, Y. (1990). Contamination of the mussel, <i>Mytilus edulis</i> Linnaeus, 1758, by enteric bacteria. J Shell Res 9, 95-101.
45 45 45	 Plusquellec, A., Beucher, M., Prieur, D., Le Gal, Y. (1990). Contamination of the mussel, <i>Mytilus edulis</i> Linnaeus, 1758, by enteric bacteria. J Shell Res 9, 95-101. Pommepuy, M., Dumas, F., Caprais, M.P., Camus, P., Le Mennec, C., Parnaudeau, S.,
45 45 45 45	 Plusquellec, A., Beucher, M., Prieur, D., Le Gal, Y. (1990). Contamination of the mussel, <i>Mytilus edulis</i> Linnaeus, 1758, by enteric bacteria. J Shell Res 9, 95-101. Pommepuy, M., Dumas, F., Caprais, M.P., Camus, P., Le Mennec, C., Parnaudeau, S., Haugarreau, L., Sarrette, B., Vilagines, P., Pothier, P., Kholi, E., Le Guyader, F. (2004).
45 45 45 45 45	 Plusquellec, A., Beucher, M., Prieur, D., Le Gal, Y. (1990). Contamination of the mussel, <i>Mytilus edulis</i> Linnaeus, 1758, by enteric bacteria. J Shell Res 9, 95-101. Pommepuy, M., Dumas, F., Caprais, M.P., Camus, P., Le Mennec, C., Parnaudeau, S., Haugarreau, L., Sarrette, B., Vilagines, P., Pothier, P., Kholi, E., Le Guyader, F. (2004). Sewage impact on shellfish microbial contamination. Water Sci Technol 50, 117-24.
45 45 45 45 45 45	 Plusquellec, A., Beucher, M., Prieur, D., Le Gal, Y. (1990). Contamination of the mussel, <i>Mytilus edulis</i> Linnaeus, 1758, by enteric bacteria. J Shell Res 9, 95-101. Pommepuy, M., Dumas, F., Caprais, M.P., Camus, P., Le Mennec, C., Parnaudeau, S., Haugarreau, L., Sarrette, B., Vilagines, P., Pothier, P., Kholi, E., Le Guyader, F. (2004). Sewage impact on shellfish microbial contamination. Water Sci Technol 50, 117-24. Pommepuy, M., Hervio-Heath, D., Caprais, M.P., Gourmelon, M., Le Saux, J.C., Le Guyader,
45 45 45 45 45 45 45	 Plusquellec, A., Beucher, M., Prieur, D., Le Gal, Y. (1990). Contamination of the mussel, <i>Mytilus edulis</i> Linnaeus, 1758, by enteric bacteria. J Shell Res 9, 95-101. Pommepuy, M., Dumas, F., Caprais, M.P., Camus, P., Le Mennec, C., Parnaudeau, S., Haugarreau, L., Sarrette, B., Vilagines, P., Pothier, P., Kholi, E., Le Guyader, F. (2004). Sewage impact on shellfish microbial contamination. Water Sci Technol 50, 117-24. Pommepuy, M., Hervio-Heath, D., Caprais, M.P., Gourmelon, M., Le Saux, J.C., Le Guyader, F. (2005). Fecal contamination in coastal areas: an engineering approach. In Ocean and
45 45 45 45 45 45 46 46	 Plusquellec, A., Beucher, M., Prieur, D., Le Gal, Y. (1990). Contamination of the mussel, <i>Mytilus edulis</i> Linnaeus, 1758, by enteric bacteria. J Shell Res 9, 95-101. Pommepuy, M., Dumas, F., Caprais, M.P., Camus, P., Le Mennec, C., Parnaudeau, S., Haugarreau, L., Sarrette, B., Vilagines, P., Pothier, P., Kholi, E., Le Guyader, F. (2004). Sewage impact on shellfish microbial contamination. Water Sci Technol 50, 117-24. Pommepuy, M., Hervio-Heath, D., Caprais, M.P., Gourmelon, M., Le Saux, J.C., Le Guyader, F. (2005). Fecal contamination in coastal areas: an engineering approach. In Ocean and Health: Pathogens in the Marine Environment ed. Belkin, S. and Colwell, R.R. pp.331-359.
45 45 45 45 45 45 46 46 46	 Plusquellec, A., Beucher, M., Prieur, D., Le Gal, Y. (1990). Contamination of the mussel, <i>Mytilus edulis</i> Linnaeus, 1758, by enteric bacteria. J Shell Res 9, 95-101. Pommepuy, M., Dumas, F., Caprais, M.P., Camus, P., Le Mennec, C., Parnaudeau, S., Haugarreau, L., Sarrette, B., Vilagines, P., Pothier, P., Kholi, E., Le Guyader, F. (2004). Sewage impact on shellfish microbial contamination. Water Sci Technol 50, 117-24. Pommepuy, M., Hervio-Heath, D., Caprais, M.P., Gourmelon, M., Le Saux, J.C., Le Guyader, F. (2005). Fecal contamination in coastal areas: an engineering approach. In Ocean and Health: Pathogens in the Marine Environment ed. Belkin, S. and Colwell, R.R. pp.331-359. Springer.
45 45 45 45 45 45 45 46 46 46 46	 Plusquellec, A., Beucher, M., Prieur, D., Le Gal, Y. (1990). Contamination of the mussel, <i>Mytilus edulis</i> Linnaeus, 1758, by enteric bacteria. J Shell Res 9, 95-101. Pommepuy, M., Dumas, F., Caprais, M.P., Camus, P., Le Mennec, C., Parnaudeau, S., Haugarreau, L., Sarrette, B., Vilagines, P., Pothier, P., Kholi, E., Le Guyader, F. (2004). Sewage impact on shellfish microbial contamination. Water Sci Technol 50, 117-24. Pommepuy, M., Hervio-Heath, D., Caprais, M.P., Gourmelon, M., Le Saux, J.C., Le Guyader, F. (2005). Fecal contamination in coastal areas: an engineering approach. In Ocean and Health: Pathogens in the Marine Environment ed. Belkin, S. and Colwell, R.R. pp.331-359. Springer. Prieur, D., Mével, G., Nicolas, JL., Plusquellec, A., Vigneulle, M. (1990). Interactions
45 45 45 45 45 45 46 46 46 46 46	 Plusquellec, A., Beucher, M., Prieur, D., Le Gal, Y. (1990). Contamination of the mussel, <i>Mytilus edulis</i> Linnaeus, 1758, by enteric bacteria. J Shell Res 9, 95-101. Pommepuy, M., Dumas, F., Caprais, M.P., Camus, P., Le Mennec, C., Parnaudeau, S., Haugarreau, L., Sarrette, B., Vilagines, P., Pothier, P., Kholi, E., Le Guyader, F. (2004). Sewage impact on shellfish microbial contamination. Water Sci Technol 50, 117-24. Pommepuy, M., Hervio-Heath, D., Caprais, M.P., Gourmelon, M., Le Saux, J.C., Le Guyader, F. (2005). Fecal contamination in coastal areas: an engineering approach. In Ocean and Health: Pathogens in the Marine Environment ed. Belkin, S. and Colwell, R.R. pp.331-359. Springer. Prieur, D., Mével, G., Nicolas, JL., Plusquellec, A., Vigneulle, M. (1990). Interactions between bivalve molluscs and bacteria in the marine environment. Oceanogr Mar Biol
45 45 45 45 45 45 45 46 46 46 46 46 46	 Plusquellec, A., Beucher, M., Prieur, D., Le Gal, Y. (1990). Contamination of the mussel, <i>Mytilus edulis</i> Linnaeus, 1758, by enteric bacteria. J Shell Res 9, 95-101. Pommepuy, M., Dumas, F., Caprais, M.P., Camus, P., Le Mennec, C., Parnaudeau, S., Haugarreau, L., Sarrette, B., Vilagines, P., Pothier, P., Kholi, E., Le Guyader, F. (2004). Sewage impact on shellfish microbial contamination. Water Sci Technol 50, 117-24. Pommepuy, M., Hervio-Heath, D., Caprais, M.P., Gourmelon, M., Le Saux, J.C., Le Guyader, F. (2005). Fecal contamination in coastal areas: an engineering approach. In Ocean and Health: Pathogens in the Marine Environment ed. Belkin, S. and Colwell, R.R. pp.331-359. Springer. Prieur, D., Mével, G., Nicolas, JL., Plusquellec, A., Vigneulle, M. (1990). Interactions between bivalve molluscs and bacteria in the marine environment. Oceanogr Mar Biol Annu Rev 28, 277-352.

3
4
5
6
7
8
å
3
10
11
12
13
14
15
16
17
18
10
20
∠∪ 24
∠ I 00
22
23
24
25
26
27
28
29
20
24
31
32
33
34
35
36
37
38
39
10
40
41
42
43
44
45
46
47
48
49
50
51
52
52 50
23
54
55
56
57
58
59
60

466	Rees, G., Bartram, J., Kay, D. (2010). Expert consensus. In Safe management of shellfish and
467	harvest waters ed. Rees, G., Pond, K., Kay, D., Bartram, J., Santo Domingo, J. pp.1-10.
468	London: WHO, IWA Publishing.

469 Riou, P., Le Saux, J.C., Dumas, F., Caprais, M.P., Le Guyader, S.F., Pommepuy, M. (2007).

470 Microbial impact of small tributaries on water and shellfish quality in shallow coastal471 areas. Water Res 41, 2774-2786.

- 472 Shieh, Y.C., Baric, R.S., Woods, J.W., Calci, K.R. (2003). Molecular Surveillance of
- 473 Enterovirus and Norwalk-Like Virus in Oysters Relocated to a Municipal-Sewage-
- 474 Impacted Gulf Estuary. Appl Environ Microbiol 69, 7130–7136.
- 475 Solic, M., Krstulovic, N., Jozic, S., Curac, D. (1999). The rate of concentration of faecal
- 476 coliforms in shellfish under different environmental conditions. Environ Int 25, 991-1000.
- 477 US FDA (2009). National Shellfish Sanitation Program Guide for the Control of Molluscan
- 478 Shellfish. United States Food and Drug Administration.
- 479 http://www.fda.gov/Food/FoodSafety/Product-
- 480 SpecificInformation/Seafood/FederalStatePrograms/NationalShellfishSanitationProgram/
- 481 Wither, A., Rehfisch, M., Austin, G. (2005). The impact of bird populations on the
- 482 microbiological quality of bathing waters. Water Sci Technol 51, 199–207.

483

484 **Table 1** Periods of sampling and sampling strategy for the four rainfall periods monitored.

Rainfall sampling periods	Periods of sampling	Rainfall amount (mm)	Number of rainy days	Number of sampling sites	Sampling frequency
R1	3-7 October 2007	16	3	21	Daily
R2	2-7 January 2008	62	6	21	Daily and semi-daily (01/05)
R3	31 st of October to 8 th of November 2008	178	7	19	Daily and semi-daily (11/03 to 11/05)
R4	1-7 February 2009	78	8	6	Daily and semi-daily (02/02 to 02/04)

Table 2 Correlations between cumulative rainfall in the previous seven days and salinity, temperature,

487 Escherichia coli concentrations in water (C_w) and oysters (C_o) and between the Escherichia coli accumulation

488 factor (AF) and cumulative rainfall in the previous seven days, salinity and temperature. Number of samples (*n*),

489 Spearman's rank coefficient (*rho*) and p-values (*P*) are given.

	п	rho	Р
Cumulative rainfall vs:			
salinity	312	-0.355	< 0.0001
temperature	310	-0.147	0.01
C_w	318	0.323	< 0.0001
Co	318	-0.278	< 0.0001
AF vs:			
cumulative rainfall	318	-0.452	< 0.0001
salinity	312	0.239	< 0.0001
temperature	310	0.030	0.593

491 Figure 1 Location of Thau lagoon, its watershed and its shellfish farming areas. Location of high-frequency

492 sensors (stations 1, 2, 4 and 5) and oyster and water weekly sampling stations (stations 2, 3, 4 and 5).

493 Figure 2 Distribution of water temperature, salinity, *Escherichia coli* concentrations in water (C_w) and oysters

494 (C_o) and accumulation factor ($\log_{10} AF$) for all the sampling period (n = 318), the dry weather periods (n = 79)

495 and the rainfall periods (n = 239). P-values (P) of Mann-Whitney tests performed between samples collected

496 during rainfall and dry weather periods are given. European sanitary thresholds for oysters (Regulation

497 EC/854/2004) are indicated with dotted lines.

498 Figure 3 Distribution of *Escherichia coli* concentrations in water (C_w) and oysters (C_o) during the dry weather

499 periods (\bullet) and the rainfall periods (\bullet) .

500 Figure 4 Salinity and *Escherichia coli* counts in water ($\triangle C_w$) and oysters ($\bullet C_o$) monitored at the surface

501 during: rainfall periods R1 to R3 on station 2 (a-c), and during period R4 on station 1 (d). Arrows (1) represent

502 the peak of rainfall intensity and rainfall daily amounts.

Figure 1 Location of Thau lagoon, its watershed and its shellfish farming areas. Location of high-frequency sensors (stations 1, 2, 4 and 5) and oyster and water weekly sampling stations (stations 2, 3, 4 and 5). 99x99mm (300 x 300 DPI)

