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Abstract:  
 
As a result of aquaculture activities, Pacific oysters Crassostrea gigas (Thunberg, 1793) have invaded 
European coasts. Using seven microsatellites, we found virtually no genetic differentiation between 
natural populations throughout the European range (from the south of the Wadden Sea (the 
Netherlands) to the south of France) and French cultivated oysters. The genetic homogeneity of 
Pacific oyster samples appears to be the result of repeated transfers from same seed stocks made for 
aquaculture and, to a lesser extent, widespread dispersal due to specific biological traits of this 
species. The only genetic differentiation of Sylt population in the north of the Wadden Sea (Germany) 
suggests a stronger, persistent impact of ongoing supply of new genetic material from hatchery 
production, corresponding to seeds selection made by breeders. All of our genetic data highlighted the 
importance of aquaculture practices on the genetic structure of the keystone invader C. gigas in 
Europe.  
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Introduction 43 

 44 

Marine ecosystems have always been subject to changes in species composition due to natural migration and can 45 

be favored by climatic variations. For several decades, the impact of human activities on climate and 46 

transportation of marine organisms has modified the geographic distribution of species (Carlton 1996a). Besides 47 

species introductions resulting from ballast waters of boats, escapes or accidental introduction due to aquaculture 48 

production is an important source of alien species into coastal ecosystems (Carlton 1989). Fortunately, only 10% 49 

of introduced species are expected to become established and to spread in their new environments, and only a 50 

small fraction may furthermore induce changes to the recipient environment (Williamson and Fitter 1996). These 51 

species are described as invasive species (Lodge 1993) with rapid spreading and strong impact on their new 52 

habitats (Carlton 1996b; Williamson 1996; Davis and Thompson 2000; Reise et al. 2006).  53 

The Pacific cupped oyster Crassostrea gigas, native from Japan and Korea and introduced massively for 54 

aquaculture interests into many parts of the world (Wolff and Reise 2002), is one of the 104 invasive marine 55 

species described in European waters (Goulletquer et al. 2002). Large numbers of individuals were introduced in 56 

many countries of the European coastal waters in order to offset decreasing production of the Portuguese oyster 57 

C. angulata and the European flat oyster Ostrea edulis, due to viral or parasitic diseases (Grizel and Heral 1991; 58 

Nehring 1999; Wolff and Reise 2002). C gigas was first introduced into France (Marennes-Oléron Bay) in 1966 59 

(Grizel and Heral 1991), into the Netherlands (Oosterschelde estuary) in 1964 (Drinkwaard 1999), and into 60 

Germany (Wadden Sea, near the island of Sylt) in 1971 (Reise 1998; Diederich et al. 2005). Different 61 

geographical origins have been used for these transfers. In the Netherlands and in France, several hundred tons 62 

of adults were transferred from British Colombia (originated from Japan), followed by millions of juveniles from 63 

Japan (from 1964 to 1971, respectively) (Wolff and Reise 2002; Miossec and Goulletquer 2007; Smaal et al. 64 

2009). In Germany, spat and larvae were first repeatedly imported from Scottish hatcheries with no apparent 65 

success (between 1971 and 1987) (Seamen 1985; Wehrmann et al. 2000). In a second phase, oysters were 66 

imported from British and Irish hatcheries since 1986 in the northern area of the German Wadden Sea (Reise 67 

1998; Nehring 1999). Oysters in British Isles were imported from USA (West), Colombia Islands (West), Hong 68 

Kong, Israël, themselves initially supplied by Japan. In the following years, variable spatfalls were recorded 69 

leading to significant dispersal and increasing abundances (Nehring 2003; Diederich 2005; Wehrmann and 70 

Schmidt 2005; Schmidt et al. 2008). 71 



4 
 

Even though the reproductive success of imported oysters was expected to be limited in Northern Europe due to 72 

low water temperatures, this species gradually colonized new habitats, around oyster production areas. With the 73 

development of oyster farming, this species gradually invaded European coasts (Goulletquer et al. 2002). The 74 

Pacific oyster is now considered to be established in most European coasts: e.g. France, British Isles, the 75 

Netherlands (Drinkwaard 1998; Reise 1998) and in the Wadden Sea area of Denmark and Germany (Reise et al. 76 

2005), and since 2007 in Sweden and in Norway (Wrange et al. 2009). In general the Pacific oyster has yet to 77 

establish permanent populations in northern areas, even if the coastal waters of Northern Europe were believed 78 

to be too cold and/or too limnic for the Pacific oysters to survive (Nehring 2006). Shortly after Pacific oyster 79 

farming started, natural spatfalls occurred, whereas the first oysters were recorded outside the culture plot only 80 

twenty years after (Reise 1998). Furthermore, the invasion and expansion of this species has been recorded in 81 

areas where no deliberate introductions were made, suggesting that this species has not yet reached its 82 

ecophysiological limits (Cardoso et al. 2007), so Pacific oysters may well continue to expand and modify 83 

invaded ecosystems (Troost 2010). The accelerated spread (worldwide and local) of the Pacific oyster might be 84 

facilitated by climate change (Diederich et al. 2005; Dutertre et al. 2010) as well as by the high phenotypic 85 

plasticity (Grizel and Heral 1991; Nehring 1999; Wolff and Reise 2002) and broad genetic diversity (Huvet et al. 86 

2000) of this species. Genetic diversity of such invasive populations is an important factor that can help to trace 87 

their origin, affect their invasive potential through inbreeding or local adaptation. Throughout the invasive 88 

process, non indigenous species have to be well adapted to the new habitat (Lee 2002). However, high level of 89 

genetic diversity permits to the species a better potential to adapt to the new environment.  90 

Few are known about the genetic population structure and distinctness of the different invasions in European 91 

open waters. Recently, two origins of invasions in Wadden Sea were identified by mitochondrial analyses on 92 

naturalized populations from Denmark to the Netherlands (Moehler et al. 2011). In the northern part of this area, 93 

introductions for aquaculture in Sylt (Germany) conducted to a persistent impact on invasive populations. In the 94 

southern part, naturalized population was genetically closed to cultivated population form Oosterschelde estuary 95 

(the Netherlands) and also to naturalized populations from British Columbia (putative source in the Netherlands) 96 

(Moehler et al. 2011). However, nothing is known about the genetic population structure of invasive population 97 

in the other part of Europe and particularly along the Atlantic coasts. Such data is needed to clarify the origin of 98 

the invasive population and whether an invasion only happened once or on repeated occasions ((Roman and 99 

Darling 2007; Geller et al. 2010; Reusch et al. 2010)). Such multiple introductions are usually cryptic and 100 
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multiple invasions could only be revealed by genetic markers (e.g. invasion of green crab into West-Atlantic 101 

(Roman 2006)).  102 

To test whether all Pacific oysters in Europe originated from one or more genetic stocks of the global oyster 103 

trade, we conducted an analysis of 7 microsatellite loci on European oyster’s populations from north to south 104 

within the overall invaded area, from Wadden Sea in Germany to Arcachon Bay in France. To further evaluate 105 

the connectivity between aquaculture and invading populations (Voisin et al. 2005; Petersen et al. 2010), we also 106 

included specimens from one of two putative aquaculture sources in France (i.e. Arcachon Bay). Using this 107 

sampling scheme we can connect putative and known invasion routes with French aquaculture source and 108 

provide population genetic signatures of the most important invasion processes observed in the European coasts. 109 

The results offer implications for further research and management practice. 110 

 111 

Materials and Methods 112 

 113 

Study sites and sampling  114 

 115 

Wild Pacific oysters were collected in open water during winter 2005-2006 from 10 sites in Europe close to 116 

oyster farms (<20km; Figure 1 and Table 1): one German (Sylt), three Dutch (Texel, Grevelingen and 117 

Oosterchelde) and six French populations (Arcouest, Squiffiec, Plougonvelin and Saint-Pierre Quiberon (St. P. 118 

Quiberon) in Brittany; Pornic and Arcachon Bay on the Atlantic coast). Oyster densities ranged between 100 to 119 

1000 oysters per m2 in all the populations (Reise et al. 2005; Lejart 2009; Nehring et al. 2009), except for the 120 

population Plougonvelin, where it ranged between 10 to 100 oysters per m2 (Lejart 2009). Colonization by 121 

oysters started more than fifteen years ago in all of the studied locations except Plougonvelin, where it occurred 122 

in 2004 (one year before the sampling). Arcachon Bay is one of the two main sites for natural spatfall collection 123 

in France and seeds from this site are transferred annually throughout French oyster farming areas, including the 124 

French sites sampled in this study. Samples from this last site represented one-year-old seeds caught in the Bay 125 

of Arcachon. All the other samples corresponded to wild adults (10-17 cm) and therefore, contained a mixture of 126 

generations / age classes (Lartaud et al. 2010). About 48 oysters were collected at each site in 2005 or 2006, 127 

taking animals from the low tidal height zone (corresponding to 50 % emersion time), giving a total of 479 128 

individuals. For each individual, gills or muscle were dissected and preserved in 90 % ethanol.  129 

 130 
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DNA extraction, PCR procedures and electrophoresis 131 

 132 

Genomic DNA was extracted from 100 mg of tissue placed in extraction buffer (0.3 M Tris, pH 8, 0.02 M 133 

ethylene diamine tetra-acetic acid (EDTA), 0.1 M NaCl) with sodium dodecyl sulphate (SDS) and proteinase K 134 

at final concentrations of 0.6 % and 0.1 mg.mL-1, respectively. After incubation at 55°C, the tissue was 135 

completely dissolved. NaCl was then added to give a final concentration of 1.3 M. After mixing, the samples 136 

were centrifuged at 3000 g at 20°C for 10 min. The supernatant was subjected to two successive 137 

phenol/chloroform/isoamyl alcohol (25: 24: 1) extractions. DNA was precipitated with absolute ethanol, 138 

recovered by 30 min centrifugation at 12 000 g and 4 °C, rinsed with 70 % ethanol, dried and resuspended in 139 

1 mL of TE buffer (10 mM Tris, pH 8, 1 mM EDTA).  140 

First, 12 C. gigas microsatellites published previously were tested (Magoulas et al. 1998; Li et al. 2003). Finally, 141 

seven polymorphic loci without null allele were retained for this study: ucdCg-117, ucdCg-138, ucdCg-148, 142 

ucdCg-173, ucdCg-177, ucdCg-198 and ucdCg-200 (Magoulas et al. 1998; Li et al. 2003). 143 

Multiplexed amplifications were performed using three sets of markers. Reactions were performed with 2 µL of 144 

Qiagen multiplex PCR master mix (Qiagen, Courtaboeuf, France), 0.2 µM each primer, 2 µL RNase-free water, 145 

1 µL Q-solution and 50 ng DNA in a final volume of 10 µL, following the manufacturer’s instructions. For 146 

genotyping, fluorescently-labelled PCR products were diluted 1/10 in deionized formamide, electrophoretically 147 

separated on an ABI3100 sequencer using the POP7 polymer and sized using the internal standard Rox500 148 

(Applied Biosystems). GENEMAPPER v4.0 software (Applied Biosystems) was used to define size classes of 149 

alleles and to semi-automatically genotype all specimens in the complete dataset; these were finally verified 150 

visually one by one.  151 

 152 

Data analysis 153 

 154 

Allele frequencies and the observed, and expected heterozygosity values were calculated in GENETIX v 4.05.2 155 

(Belkhir et al. 2004). FST and Single- and multilocus Fis (indicating heterozygote deficiency/excess) were 156 

estimated (Weir and Cockerham 1984) using GENETIX v 4.05.2. Deviation from the Hardy–Weinberg 157 

equilibrium (Fisher’s exact test) and gametic disequilibrium (Fisher’s exact test) among loci were tested using 158 

GENEPOP v4 (Raymond and Rousset 1995; Rousset 2008). Both tests were corrected for multiple 159 

simultaneous tests by calculating the q-value of each test which measures the minimum false discovery rate 160 
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(FDR) that is incurred when calling that test significant. The bootstrap method was chosen as recommended by 161 

Storey (2002) for a limited number of p-values. The q-values were calculated using the R package QVALUE 162 

(www.r-project.org/, Storey (2002)).  163 

Null allele frequencies were calculated based on Brookfield (1996) using the program MICRO-CHECKER 164 

2.2.3 (Van Oosterhout et al. 2004). Allele frequencies were then used to calculate pairwise genetic distances DC 165 

(Cavalli-Sforza and Edwards 1967) using GENETIX v4.05.2. The significance of the genetic distances was 166 

tested by 10 000 permutations of individuals between populations. Correlation of genetic over geographical 167 

distances (measured as the shortest distance between two locations along the coast line) for all pairs of 168 

populations were tested with the Mantel permutation procedure available in GENETIX v 4.04. To assess 169 

whether any indications for group structure could be observed, we performed a multidimensional scaling 170 

analysis (MDS) using the function Classical (metric) Multidimensional scaling (CMD Scale) in the R package 171 

stats, also known as principal coordinate analysis on the linearized pairwise genetic distances (Gower 1966). 172 

The BOTTLENECK 1.2.02 program was used to investigate the presence of recent bottlenecks in wild oyster 173 

populations, according to Cornuet and Luikart (1996). When populations have experienced a recent reduction of 174 

their effective population size, allele numbers were reduced faster than the gene diversity or, in other words, 175 

gene diversity excess occurs. This program tests for departure from mutation-drift equilibrium, based on 176 

heterozygosity excess or deficiency under the infinite allele model (IAM), the stepwise mutation model (SMM) 177 

and the two-phase model (TPM). As recommended by Cornuet and Luikart (1996), the TPM model was used for 178 

our microsatellite data, with 80 % of SMM in TPM and variance set at 20 % as most microsatellite datasets fit 179 

the TPM better than the SMM or IAM (Di Rienzo et al. 1998). Significant bottlenecks were tested using the 180 

Wilcoxon signed rank test, calculated using 10 000 iterations. An Assignment test (Cornuet et al. 1999), 181 

implemented in GeneClass v2.0 software (Piry et al. 2004), was used to estimate the likelihood of an individual 182 

multilocus genotype being assigned to one of the 10 populations, using the self-assignment Bayesian option and 183 

leaving one out sub-option. 184 

 185 

Results 186 

 187 

The microsatellite variability of C. gigas appeared to be heterogeneous with the total number of alleles per locus 188 

ranging from 48 (ucdCg-200) to 105 (ucdCg-148) but with homogeneous observed heterozygosity per locus 189 
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(Table 2). For each locus, the genetic diversities observed within samples were of the same magnitude over the 190 

whole data set.  191 

 192 

Genetic diversity within populations 193 

 194 

Three microsatellites on the seven screened, exhibited substantial departures from Hardy-Weinberg equilibrium 195 

(HWE) for one location (ucdCg-138, ucdCg-177 and ucdCg-198), one for two locations (ucdCg-173) and one for 196 

three locations (ucdCg-200) (Table 2). The mean observed heterozygosity was similar in the five estuaries (0.866 197 

< Hobs < 0.942). The multilocus statistics detected four significant deviation from HWE (Sylt, Oosterchelde, 198 

Plougonvelin and St. P. Quiberon). The software MICRO-CHECKER did not detect a significant departure from 199 

HWE linked to null alleles. 200 

 201 

Genetic structure 202 

 203 

Pairwise estimations of Fst (Weir & Cockerham’s θ) showed a significant global multi-locus genetic 204 

differentiation mainly between Sylt and the other populations from the Netherlands and France, and between St. 205 

P. Quiberon versus both Arcouest and Arcachon (Table 3), confirmed by θ-values for locus cconsidered 206 

individually. Over the 100 pairs of populations considered, eleven pairs displayed a significant multi-locus 207 

genetic differentiation, confirmed after the correction for multiple tests.  208 

The MDS analysis confirmed the isolation of the Northern population (Sylt) from other ones (Figure 2).The 209 

analysis of the distribution of the genetic variability between the Sylt and the group of nine others populations, 210 

performed with an AMOVA, explained 1.43 % of the total genetic variance in C. gigas (FCT = 0.014, p<0.01), 211 

confirming the reduced but significant genetic structure over the data set. The mean allelic richness appeared 212 

significantly lower in the northern population of Sylt (NA = 28.7) relatively to the other populations 213 

(37.6 < NA < 42.0) (Table 2). No high levels of private alleles were observed in this population (data not shown). 214 

No significant linkage disequilibrium in the Sylt population or in the other ones was revealed in our study using 215 

Genepop v4 software. As expected from the low genetic structure among most locations, 18.5 % (range 1.5–36 216 

%) of individuals were correctly assigned to their location of origin in the southern cluster and less than 20 % of 217 

each population was assigned to cultivated oysters from Arcachon Bay (Table 4). Only the Sylt specimens 218 

presented a relatively high correct assignment score (63 %). Finally, the test of Mantel revealed a lack of 219 
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correlation between geographical and genetic distances matrices (r = 0.37, p>0.05) either in all the datasets or in 220 

the southern group alone. 221 

 222 

Founder effect 223 

Under the TPM, only two of the three Dutch populations (Grevelingen and Texel) showed significant signs of 224 

having passed through a recent bottleneck (Wilcoxon signed rank test, P = 0.046). The more recent invasion 225 

observed in the Plougonvelin site did not result in a loss of genetic diversity in the samples in terms of allelic 226 

richness when compared with the putative French source population (Arcachon Bay) or the nearest site 227 

geographically (Squiffiec) (NA = 37.6, 38.1 and 41.4, for these populations, respectively, Table 2).  228 

 229 

Discussion 230 

Specific significant departures from HWE  231 

In this study, a low number of significant deficits of heterozygotes were observed for particular microsatellite 232 

loci. The problem of heterozygotes deficit for microsatellite loci was well-documented in bivalves including C. 233 

gigas (McGoldrick et al. 2000, Hedgecock et al. 2004, Yu & Li 2007), Dreissena polymorpha (Astanei et al. 234 

2005), Patinopecten yessoensis (Li  et al. 2007) and Mizuhopecten yessoensis (Sato et al. 2005). Heterozygote 235 

deficits would in such case result either from Wahlund effect due to the subdivision of local population into 236 

isolated and differentiated sub-populations (Castric et al. 2002) or to the recruitment of different cohorts of 237 

distinct origins (local genetic patchiness), or from, inbreeding through the mating of close relatives as 238 

demonstrated for fishes (Lenfant 2002). However, such biological explanations require a rather homogeneous 239 

effect across loci in the populations departing from panmixia, whereas scarce departure to HWE recorded here 240 

was heterogeneously distributed across loci. Departures to HWE are frequently linked to an artifact of the PCR 241 

amplification process that is, to the presence of null alleles. The software MICRO-CHECKER was tested on the 242 

oyster data set (in all the data set and in each sample) and did not detect a significant departure from HWE linked 243 

to null alleles. Furthermore, in this study, the oyster populations were considered to be at the Hardy-Weinberg 244 

equilibrium, thus reflecting the equilibrium between migration versus drift, classically observed for neutral 245 

markers.  246 

 247 

Genetic differentiation of Sylt population  248 
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The genetic variability (multilocus allelic richness and heterozygosity) was identical in the oyster populations of 249 

the data set (France and the Netherlands) except in the population of Sylt (North of Wadden Sea), located in the 250 

northern part of C. gigas actual European repartition area. This population highlighted lower allelic richness (NA 251 

= 28.7) compared to the other ones (37.6<NA<42.0). Recently, population genetic of Sylt and close populations 252 

were directly related to aquaculture stocks of local oyster farms (Moehler et al. 2011) imported every year from 253 

British and Irish hatcheries since 1986 (Reise 1998; Nehring 1999). The spread of C. gigas around Sylt began 5 254 

years after first introductions at the origin of a first invasion in this area (Reise 1998; Diederich 2005). Oyster 255 

seeds used for aquaculture on Sylt most likely originated from breeders on the British Isles. Reduction of genetic 256 

diversity due to the high variance of reproductive success of Pacific oysters, was well documented (Li and 257 

Hedgecock 1998; Boudry et al. 2002; Li et al. 2009). Crossing of divergent lines decreased inbreeding 258 

depression, which was common in Pacific oysters due to high genetic load (Launey and Hedgecock 2001). 259 

Breeders selected oysters for higher growth rates by outbreeding, to reduce genetic load of produced spat and 260 

increase yield (Hedgecock et al. 1995; Hedgecock and Davis 2007). Divergent lines selected are crossed 261 

together, leading to an artificial amplification of particular distantly related genotypes frequencies and a decrease 262 

of the global genetic diversity (Appleyard and Ward 2006). In this way, low level of allelic richness of 263 

naturalized population in Sylt revealed in this study by microsatellites may be the result of breeders stocks. 264 

Interestingly, this study detected highly significant genetic differentiation between Sylt and the other populations 265 

(Fst>0.015 with p<0.001). This level of genetic differentiation is converging with the first genetic differentiation 266 

detected by Moehler et al., (2011) for European populations of C. gigas sampled in 2008. The authors observed 267 

significant genetic differentiations at mitochondrial markers between oysters cultivated in Sylt associated with 268 

close wild populations and (1) invasive populations from the South of Germany to the Netherlands in one hand, 269 

and (2) naturalized oysters from British Columbia (stock origin on the British Isles (Syvret et al. 2008) on the 270 

other hand), indicating that the breeders must maintain a genetically distinct brood stock for spat production. Our 271 

study confirms the specific genetic signature of Sylt population, sampled in winter 2005-2006 and thus studied 272 

20 years after the first introduction of C. gigas in this area.  273 

 274 

Genetic homogenization of wild oyster populations in Europe 275 

Over the sample area, this study detected a genetic homogenization in Europe of Pacific oyster populations, 276 

running between the southern population from France and the northern population from the Netherlands as 277 

previously described from France to Spain using mitochondrial and nuclear markers (Huvet et al. 2004). This 278 
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relative genetic homogeneity across a rather large geographic scale could be attributed to specific C. gigas 279 

biological traits that permit a wide spread dispersal. An average market-sized female oyster can produce 50-100. 280 

106 oocytes in a single spawning (Royer et al. 2008). The resulting pelagic larvae are planktotrophic, feeding on 281 

phytoplankton and growing over a period of 2 to 3 weeks depending on water temperatures (ranged to 20-26°C; 282 

(Rico-Villa et al. 2010)). When this period corresponds to 3 weeks, marine planktotrophic larvae could disperse 283 

with currents up to 102 or 103 km (Todd et al. 1998). In a review on the clinal patterns of genetic variation across 284 

species ranges, Hardie and Hutchings (2010) showed that most studies are consistent with the general perception 285 

that peripheral populations are less genetically variable than those inhabiting central areas. This decrease being 286 

particularly associated with stochastic processes (founder effects, genetic drift, isolation and/or low gene flow) 287 

occurring in the marine and freshwater environments (e.g. isolation-by-distance profile observed for the native 288 

European flat oyster Ostrea edulis (Launey et al. 2002)). In this study, the sampled sites are separated by more 289 

than 1800 km, but genetic distance between samples does not correlate with geographic location (i.e. no 290 

evidence of isolation by distance).Thus, relative genetic homogeneity among European samples could also 291 

reflect the effect of ‘multiple introductions’ of C. gigas caused by seed transfers from Arcachon Bay throughout 292 

Europe for aquaculture (Wolff and Reise 2002; Miossec and Goulletquer 2007). We suggest that the current 293 

maintenance of the genetic diversity for the oyster in Europe could be linked to the annually introductions of 294 

seeds throughout European aquaculture farms with same origins, with the particular exception of Sylt farms.  295 

 296 

In many countries, oyster production is mainly based on the capturing of wild seeds. Marennes-Oleron Bay and 297 

Arcachon Bay are the two main seed production areas in France, the latter being the oldest. The 1-year-old seed 298 

caught in Arcachon Bay and examined in our study represents a single generation of juveniles, as does the seed 299 

transferred throughout France every year for aquaculture. Importantly, this sample representing only one cohort 300 

did not differ genetically from the adult European wild oysters representing a mix of generations, apart from the 301 

Sylt population. This result shows the high genetic diversity susceptible to be obtained in only one spawn and 302 

also the genetic homogeneity between one spawn and multiples generations. Nonetheless, mitochondrial analysis 303 

revealed that from Oosterchelde to closed Sylt neighborhoods (including Texel), naturalized and cultivated 304 

oysters were genetically close to naturalized oysters from British Columbia (Moehler et al. 2011). This 305 

corresponds to the second invasion in this area with oysters transported from farms in British Columbia (Canada) 306 

between 1964 and 1982 (Drinkwaard 1999; Smaal et al. 2009). In this study, cultivated oysters from the Bay of 307 

Arcachon resembled the naturalized populations from Texel to the south of France, via naturalized Dutch 308 
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populations. Furthermore, the oysters transferred to Dutch and French farms during the 1960s were imported 309 

from Japan, British Columbia and the US West coast based on wild-collected Miyagi oyster seed from Japan 310 

(Clark and Langmo 1979). These European transfers from French production areas were continued to sites 311 

throughout France and the Netherlands over several decades (Statistics Netherlands, CBS www.cbs.nl; Miossec 312 

and Goulletquer (2007)). Each year, seed transfer from seed production areas to on-growing sites may be 313 

considered as a potential introduction, contributing to gene flow between production sites. The recurrence of 314 

transfers is a critical component in the dynamics of invasiveness of the species. Because the origin of seed differs 315 

every year, depending on production costs at the two main French production areas, repeated transfers have 316 

maintained the overall genetic pool of the originally introduced stocks. This process has also been observed for 317 

other marine species like the kelp Undaria pinnatifida, which has a very limited dispersal potential compared to 318 

C. gigas (Voisin et al. 2007), or for terrestrial species (e.g. the shrub Cytisus scoparius; (Kang et al. 2007)). 319 

Taking into account the genetic homogeneity between oysters from Texel, Oosterchelde and British Columbia 320 

revealed by mitochondrial analysis (Moehler et al. 2011), the genetic homogeneity among European naturalized 321 

populations, including Texel, Oosterchelde and Arcachon Bay, revealed in this study by microsatellites may 322 

illustrate aquaculture practices with repeated transfers of seeds with large inoculum sizes. All of the oyster 323 

movements created opportunities for high levels of gene flow throughout Europe except in Sylt, where seed 324 

transfers were coming from breeders in British Isles.  325 

 326 

Founder effect 327 

One hypothesis to explain a decrease in genetic diversity in this introduced species during the invasive process 328 

could be instantaneous drift associated with the settlement of a small number of individuals, generating a so- 329 

called founder effect (Nei et al. 1975). This phenomenon has been observed in introduced species such as 330 

Spartina anglica and the Argentine ant Linepithema humile, using neutral markers (Tsutsui et al. 2000; Baumel 331 

et al. 2001; Tsutsui et al. 2001). However, the loss of genetic diversity through a founder effect may be limited in 332 

cases of recurrent introduction of relatively high numbers of individuals from the source populations (Barret and 333 

Husband 1990), as in the present case, and in highly fecund marine species in general (Voisin et al. 2005). 334 

Interestingly, a slight but significant bottleneck effect was observed in our study of wild populations in the 335 

Netherlands, showing lower NA. Unlike in France, oyster translocations have been limited in the Netherlands 336 

since 2001 (Nehring 2006), which could reflect the beginning of genetic isolation of these populations at the 337 
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European scale. We can hypothesize that a founder effect could be measured in future decades in the 338 

Netherlands.  339 

 340 

In addition, no genetic differentiation was revealed in this study between the most recently established 341 

population (first settlement observed in 2004 in Plougonvelin), the oldest in this area (estimated before 1990 in 342 

Squiffiec) and aquaculture oyster from Arcachon Bay. Although allelic richness of oysters from Arcachon Bay 343 

(one single generation), and from Plougonvelin, presents lower levels of genetic diversity compared with the 344 

Squiffiec population, no bottleneck effect was measured in any of these two populations. This result indicates an 345 

establishment of a new population in only 2 years without a founder effect. Recent warm summers, which 346 

support the recruitment of the Pacific oyster, may have facilitated this process (Diederich et al. 2005) as 347 

observed in this area (average + 1°C of water temperature in winter, + 0.7 °C in summer; (Esnault 2005)). 348 

 349 

In conclusion, our genetic data highlighted the importance of aquaculture practices on the genetics of the 350 

keystone invader C. gigas in Europe. The genetic homogeneity of Pacific oyster samples in Europe appears to be 351 

the result of repeated transfers from same stocks made for aquaculture and, to a lesser extent, widespread 352 

dispersal due to specific biological traits of this species. The only genetic differentiation of Sylt population may 353 

be due to seeds selection made by breeders and farmers, in agreement with previous mitochondrial analysis 354 

(Moehler et al. 2011). This demonstrates two aspects in which aquaculture practice can influence the 355 

characteristics of biological invasions by determining the starting material as well as providing continuous input 356 

into naturalized populations, thus resembling repeated invasions and admixture from genetically diverse sources 357 

(Kelly et al. 2006; Simon-Bouhet et al. 2006). Repeated genetic impact of aquaculture has been demonstrated for 358 

natural populations (McGinnity et al. 1997), but is actually scarce for invasive populations derived from 359 

aquaculture sources as demonstrated here for the case of Pacific oysters. Its genetic diversity and large dispersal 360 

potential predispose the Pacific oyster to be a successful invader by creating the possibility for selection of 361 

adapted individuals in each particular habitat. Such large-scale dispersal and homogenization would not prevent 362 

local selection of the juveniles every year but is likely negated by gene flow. In order to test this hypothesis and 363 

to ascertain the adaptive potential of this invasive species, future work needs to focus on the genetic structure of 364 

the Pacific oyster using genetic markers, which are presumably subjected to natural selection on spatial or 365 

temporal scales. 366 
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Tables 

Table 1 : Population details of C. gigas sampling. 
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Table 2 : Number of alleles (NA), observed (Hobs) and unbiased (Hexp) heterozygosities 
and FIS for each location and each locus, FIS was estimated according to Weir-Cockerham 
and was tested using the Markov chain method with 5000 iteration (*p < 0.05, **p < 0.01, ***p 
< 0.001). Bold print indicates FIS values that remained significant after Q-values correction. 
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Table 3 : Matrix of pairwise Fst values over all loci and statistical tests for microsatellite data 
(above main diagonal) and estimated geographic distances between locations (below 
diagonal). (*p < 0.05, **p < 0.01, ***p < 0.001). Bold print indicates Fst values that remained 
significant after Q-values correction. 

 

 

 

Table 4 : Matrix of self-assignment test percentages among the 10 European oyster 
samples, based on the Bayesian method. 
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Figures  

 

Figure 1 : Geographical locations of the 10 European C. gigas populations. 
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Figure 2 : Multidimensional scaling (MDS) representation microsatellites on linearized 
pairwise genetic distances Dc. 
 

 




