Estuarine, Coastal and Shelf Science March 2013, Volume 119, Pages 31–43 http://dx.doi.org/10.1016/j.ecss.2012.12.008 © 2013 Elsevier Ltd. All rights reserved.

Spatio-temporal variability in benthic silica cycling in two macrotidal estuaries: Causes and consequences for local to global studies

Mélanie Raimonet^{a, 1, *}, Olivier Ragueneau^a, Françoise Andrieux-Loyer^b, Xavier Philippon^b, Roger Kerouel^b, Manon Le Goff^a, Laurent Mémery^a

^a Laboratoire des Sciences de l'Environnement Marin LEMAR, UMR 6539 CNRS-UBO-IRD-Ifremer, Institut Universitaire Européen de la Mer, Plouzané, France ^b DYNECO Pelagos, Ifremer, Plouzané, France

¹ Current address: UMR 7619 Sisyphe, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris, France.

*: Corresponding author : Mélanie Raimonet, email addresses : <u>melanie.raimonet@univ-brest.fr</u> ; <u>melanie.raimonet@gmail.com</u>

Abstract:

The high heterogeneity of silica cycling in coastal margins and the lack of silica data (compared to nitrogen and phosphorus) prevent the estimation of global silica retention in estuaries. In this study, the spatial and temporal variability of porewater silicic acid (Si(OH)₄) profiles - that integrate benthic transport and reaction processes - was investigated at different spatial (metre, longitudinal and crosssection, intra-estuary) and temporal (tidal, seasonal) scales in two macrotidal estuaries, very close geographically but essentially differing in their shape. Studying the spatial and temporal variability of Si(OH)₄ concentrations in porewaters provided evidence for the importance of transport processes, e.g. bio-irrigation, tidal pumping, resuspension and any combination of these processes, in affecting Si(OH)₄ concentrations and fluxes and therefore temporary or permanent retention along the landocean continuum. We confirm that aSiO₂ (amorphous silicate) transported by rivers and estuaries clearly needs to be better characterized as it provides an important source of reactive aSiO₂ to sediments. This study allows us to: (1) interrogate spatial and temporal scales, although both are most often in complete interaction; (2) design the most appropriate sampling schemes to be representative of any given system and to extrapolate at the scale of the whole estuary; (3) quantify uncertainty associated to the estimations of Si(OH)₄ stocks and fluxes in this type of ecosystem, essential for budget calculations. We showed that two adjacent small macrotidal estuaries, may exhibit different behaviours regarding Si retention. Temporary retention has been observed in the meanders of the Aulne Estuary and not along the more linear Elorn Estuary, demonstrating the importance of the morphology and hydrodynamic components of the estuarine filter. Research is needed in other systems and climatic zones, but our study suggests that the typology should not only account for the different types of land-ocean continuum (fjord, delta, mangrove...), but also incorporate the physical or biological attributes of the estuarine filter.

Keywords: heterogeneity ; Season ; Silicate ; Sediment ; land-sea interface ; upscaling

38 1. Introduction

39

40 Studying the silica (Si) cycle - and especially estimating the transient and permanent 41 retention of Si - has important ecological and biogeochemical implications at small to global 42 scales. At the local scale, higher Si retention leads to Si limitations and decreasing Si:N and Si:P 43 ratios. These environmental modifications are responsible for shifts in phytoplanktonic communities dominated by diatoms to other species e.g. cyanobacteria or toxic dinoflagellates, 44 45 which have repercussions on higher trophic levels (Officer and Ryther, 1980; Conley et al., 1993; Howarth et al., 2011). Such Si limitations and eutrophic events have however been prevented by 46 47 benthic recycling and fluxes associated to transient retention in several estuarine and coastal 48 shallow ecosystems (Yamada and D'Elia, 1984; Ragueneau et al., 2002a; Struyf et al., 2006; 49 Laruelle et al., 2009). At the global scale, permanent retention decreases the export of Si to the 50 ocean, while bioavailable Si has an essential role in enhancing the biological carbon pump by 51 increasing particle sedimentation rate, aggregate formation, and protection from organic matter 52 degradation (Smetacek, 1985; Moriceau et al., 2007; Moriceau et al., 2009). Studying Si cycling 53 along land-sea continuum is particularly essential as coastal margins - including estuaries - must 54 strongly contribute to Si sinking (Bernard et al., 2010).

Nevertheless, the heterogeneity of Si cycling is still few quantified from local to global scales (Jansen et al., 2010; Ragueneau et al., 2010; Dürr et al., 2011a; Moosdorf et al., 2011), especially in estuaries (Dürr et al., 2011a). The difficulty in estimating estuarine heterogeneity is related to the high spatial and temporal environmental variability. Estuaries are generally characterized by the most heterogeneous and changing environmental conditions because of

60	numerous external forces and human activities (Nichols et al., 1986; Dalrymple and Choi, 2007).
61	In order to decrease uncertainties in estuaries, heterogeneity must thus be explored. Investigating
62	estuarine heterogeneity is moreover essential to handle research objectives and to design
63	associated sampling schemes (Dutilleul, 1993), to validate interpretations of ecosystem
64	functioning (Livingston, 1987; Hunt et al., 1997) and to ensure the quality of long-term records
65	(Wolfe et al., 1987). In addition to that, these quantifications are necessary to estimate incertitude
66	during downscaling and upscaling, and prevent significant errors incurred by failing to resolve
67	spatial and temporal variation (Swaney and Giordani, 2007; Swaney et al., 2012).
68	The variability of Si cycling, including retention, is strongly controlled by transport and
69	reaction processes. Transport processes are either physical, e.g. deposition and erosion of
70	amorphous silica (aSiO ₂) (Arndt and Regnier, 2007), or biological, <i>e.g.</i> bioturbation, bioirrigation
71	(Aller, 1980; Berner, 1980), while reaction processes are either chemical, e.g. dissolution and/or
72	reprecipitation of aSiO ₂ (Berner, 1980; Michalopoulos and Aller, 2004), or biological, <i>e.g.</i>
73	filtration of aSiO ₂ by benthic filter feeders (Ragueneau et al., 2002a), uptake of dissolved silica
74	(Si(OH) ₄) by benthic diatoms or sponges (Ni Longphuirt et al., 2009), all these processes
75	depending on environmental factors. Even if the riverine flux of aSiO ₂ to the ocean has generally
76	been neglected compared to the Si(OH) ₄ flux (Tréguer et al., 1995), it may constitute some 16-40
77	% of the total Si inputs to estuaries (Conley, 1997; Smis et al., 2010) which may, at least partly,
78	settle in sediments. Depending on watersheds and seasons, estuarine aSiO ₂ can derive from
79	terrestrial ecosystems, e.g. forest, grassland, wetland, soil (Conley, 2002; Blecker et al., 2006;
80	Gérard et al., 2008; Struyf and Conley, 2009), and/or from diatoms growing in rivers (Conley,
81	1997).

82	The numerous and heterogeneous environmental parameters and processes occurring in
83	estuaries moreover lead to variations of Si stocks and fluxes at different spatial and temporal
84	scales. At small scales, processes such as tidal resuspension or biological activity, lead to hourly,
85	daily, seasonal and spatial variations of benthic Si(OH) ₄ fluxes (Sakamaki et al., 2006; Ni
86	Longphuirt et al., 2009; Leynaert et al., 2011). At larger scales, annual and regional variations of
87	Si fluxes and retention are generated by different intrinsic properties, <i>e.g.</i> lithology, land cover,
88	climate, runoff (Jansen et al., 2010; Dürr et al., 2011a; Moosdorf et al., 2011), and human
89	activities, e.g. eutrophication, dam building, population density, invasive species (Conley et al.,
90	1993; Humborg et al., 1997; Roy et al., 1999; Ragueneau et al., 2002a).
91	The rapid response of estuarine ecosystems to environmental parameter variations makes
92	the characterization of material fluxes (<i>i.e.</i> $aSiO_2$ and $Si(OH)_4$) within the sediment and at the
93	sediment-water interface very difficult (Matisoff et al., 1975; Arndt and Regnier, 2007).
94	Investigating spatial and temporal variations of pore water Si(OH) ₄ concentrations allows
95	however to integrate benthic process variations related to changing environmental factors. Pore
96	water profiles of $Si(OH)_4$ - or other dissolved metabolites - are then used to estimate
97	biogeochemical rates and fluxes (Khalil et al., 2007; Lettmann et al., 2012). Measurements of
98	pore water Si(OH) ₄ profiles and their variability is thus useful to evaluate the variability of
99	benthic processes, but also the representativeness and uncertainty of pore water $Si(OH)_4$
100	concentrations in estuarine samplings.
101	The Bay of Brest is an example of a macrotidal system under oceanic climate,
102	downstream of a silicified watershed impacted by strong anthropogenic nitrogen enrichment (Del
103	Amo et al., 1997a). This shallow coastal embayment is characterized by a coastal - biological -

104 silicate pump associated to benthic fluxes (Del Amo et al., 1997b), increased by the presence of 105 benthic filter-feeders which prevent dinoflagellate blooms (Ragueneau et al., 2000; Laruelle et 106 al., 2009). While numerous studies have been performed in the bay, no studies were undertaken 107 on benthic Si cycling in the brackish estuaries. Describing benthic spatio-temporal variability and 108 the main transport and reaction processes involved is then crucial to evaluate the uncertainty 109 associated to benthic processes and fluxes. The two main estuaries flowing into the Bay (e.g. 110 Elorn and Aulne) are very close but characterized by different shapes. They are thus a good 111 example to determine the impact of linear and S-shape morphology on benthic Si cycle. 112 In this study, we investigated spatial and temporal variability of benthic $Si(OH)_4$ 113 concentrations in two estuaries at various scales (tide, cross-section, intra-estuary, season). We 114 described and compared the variability of pore water Si(OH)₄ concentrations in the two estuaries, 115 and emphasized the main environmental factors, transport and reaction processes explaining this 116 variability. We discussed then the implications of these results for local, regional and global 117 investigations: Does the small scale variability allow studying seasonal and intra-estuary 118 variations? Is the heterogeneity similar between two macrotidal and temperate estuaries? What is 119 the impact on estimations of model uncertainty?

120 2. Material and methods

121

122 2.1. Study site

123

124 The Elorn and Aulne estuaries are located at the interface between their drainage basins 125 and the semi-enclosed Bay of Brest in Northwestern France (Fig. 1). These two estuaries supply up to 85% of fresh water inputs to the Bay of Brest. They are characterized by similar watershed 126 lithology, climate and tidal regime, but have a different size, morphology and land use. The 127 128 lithology of the two watersheds is similarly dominated by silica-enriched rocks, mainly granite 129 and schist (Lague et al., 2000). The two watersheds are both characterized by intensive 130 agriculture activities. Urbanization is stronger in the Elorn watershed. The oceanic climate of the 131 region generates precipitations of 1145 mm yr⁻¹ (average for the 30-year period 1971-2000; 132 World Weather Organization, http://www.wmo.int). Monthly temperatures for this period ranged 133 from range 6.7 °C in January to 16.8 °C in August. The Aulne watershed is 8 times larger than 134 the Elorn watershed (1822 versus 280 km²). The Aulne River discharge is thus than four times 135 larger than the Elorn River one. The Aulne and Elorn river discharges decrease from winter (42 and 189 m³ s⁻¹ in 2009) to summer (1.0 and 1.7 m³ s⁻¹ in 2009; Banque Hydro, 136 137 http://www.hydro.eaufrance.fr). As for the watershed area, the length of the Elorn Estuary is 138 smaller (~15 km) compared to the Aulne Estuary (~35 km). The morphology of the Elorn 139 Estuary is straight and more directly exposed to marine hydrodynamic influence, while the Aulne estuary is meandering and more protected by the Bay of Brest. The semi-diurnal tidal amplitude 140

of 4 m (7.5 m during spring tides) in the Bay of Brest results in intense variations of water depth in these shallow estuaries. All these properties, and principally the watershed lithology and the river flow regime, lead to high $Si(OH)_4$ fluxes to the Bay of Brest. Due to a larger drainage basin area and river flow, the Aulne River $Si(OH)_4$ fluxes are generally higher than the Elorn River ones. The relative $Si(OH)_4$ fluxes to the Bay of Brest range from 40% (in summer) to 80% (in winter)¹.

147

	148	2.2.	Sampling	design
--	-----	------	----------	--------

149

Sampling was performed along the Elorn and Aulne estuaries (Fig. 1) in February, May, 150 151 July, and October 2009. In order to interpret intra-estuary, inter-estuary and seasonal variations, 152 small spatial and temporal variability were investigated first. All the different scales are 153 summarized in Table 1. 154 155 2.2.1. Small scale sampling 156 *Centimeter scale:* Vertical pore water profiles were analysed at a resolution of 0.5 cm in 157 surface to 4 cm at 20 cm-depth in each sediment core. 158 *Meter scale:* Variability at the meter scale was investigated through the sampling of three 159 cores at each station (E1, E2, E3, A1, A2, A3 and A4) and season (n=3).

¹ Data not shown. Si(OH)₄ flux was calculated by multiplying Si(OH)₄ concentration with the river flow at the exutory of Elorn and Aulne rivers. Relative Si(OH)₄ fluxes to the Aulne Estuary was calculated as the proportion of the Aulne Si(OH)₄ flux divided by the sum of Elorn and Aulne Si(OH)₄ fluxes.

Longitudinal transect: In both Elorn and Aulne estuaries, longitudinal variations were
quantified by sampling sediment cores at three stations located at a same tidal level on the left
subtidal shores (stations up, E2/A2, dw) in February 2009 (Fig. 1). Distance between the three
stations was 100-1000 m depending on stations.

164 *Cross-section:* In both estuaries, sediment cores were sampled in the channel (stations c) 165 in February 2009, and at five stations from the left to the right borders (stations E2/A2, b, c, d and 166 e) in May 2009. Cross-section widths were ~75 and ~200 m in intermediate Elorn and Aulne 167 estuaries, respectively.

Tide: High-frequency sampling was performed on board the *Hésione* every 2 h over 12 h
in July 2009 in the outer Aulne Estuary (station A4; Fig. 1).

170

171 2.2.2. Intra-estuary, inter-estuary and seasonal sampling

172 Intra- and inter-estuary sampling: Intra- and inter-estuarine variations were investigated

173 by sampling at three stations located in upper (stations E1 and A1), intermediate (stations E2 and

A2) and outer (stations E3 and A3) estuaries (Fig. 1). Sampling was always performed at mid-

175 tide on subtidal sediments located between the channel and the border.

176 *Seasonal sampling:* Sampling at the three stations located along each estuary was

177 performed in February, May, July, and October 2009.

178

179 2.3. Sediment and water processings

180

Core sampling was achieved using a gravity corer (UWITEC[®]) with Plexiglas[®] cores (9.5 181 182 cm diameter x 60 cm long). Corer weight was adjusted to allow a penetration of 30 cm into the 183 sediment. This gravity corer facilitated acquisition of an undisturbed sediment-water interface. 184 Overlying water temperature and salinity were immediately measured with a salinometer after 185 sampling. Sediment cores were immediately sliced every 0.5 cm in the first 2 cm, every 1 cm 186 down to 4 cm, every 2 cm down to 12 cm, and every 4 cm down to 20 cm. Sediment sections 187 were placed in sealed 50-ml centrifugation tubes containing Vectaspin 20 filters (0.45 um pore size, Whatman[®]) as described in Andrieux-Lover et al. (2008). Interstitial waters were extracted 188 by centrifugation at 3500 rpm for 10 min (2 times) at 4°C. Overlying and pore waters were 189 acidified to pH = 2 with HCl. An aliquot was preserved at 4 °C for analyses of Si(OH)₄ 190 191 concentrations.

An aliquot of non-centrifuged bulk sediment was stored at 4 °C for less than 15 d for granulometry measurements. Centrifuged sediments were freeze-dried for 48 h, placed at 60 °C to ensure complete sediment dryness, and slightly powdered for further analyses of amorphous silica (aSiO₂) concentrations in the solid fraction and dissolution experiments.

Surface waters were also collected at 1 m depth along the salinity gradient of the two estuaries. An aliquot of 100-200 ml of surface water was filtered on a polycarbonate filter (0.6 μ m pore size) and stored at 4 °C until Si(OH)₄ measurements. The membrane was dried for 48h at 60°C and stored at room temperature until aSiO₂ analyses.

202

Sediment grain size analyses were performed with a laser-based particle size analyser (LS
Beckman Coulter).

205 Pelagic aSiO₂ concentrations were determined by using the sequential alkaline digestion 206 method of Ragueneau et al. (2005) and benthic aSiO₂ contents were quantified by using the 207 method of DeMaster (1981). Both methods allowed correcting amorphous silica concentrations 208 from lithogenic silica interference which is essential in environments rich in aluminosilicates -209 *e.g.* estuaries. Even if results can be relatively different depending on the extraction method, 210 comparisons of different methods have been performed by Rebreanu (2009) which showed that 211 the method of DeMaster (1981) was particularly suitable in estuarine sediments in the Scheldt 212 continuum.

For pelagic aSiO₂ concentrations, polycarbonate filters were used for two sequential extractions at pH 13.3 for 40 min. aSiO₂ concentrations were calculated with the equation defined by Ragueneau et al. (2005):

216 $[aSiO_2]_{corr} = [Si]_1 - [Al]_1 \times ([Si]_2/[Al]_2)$

217 $[Si]_1$: Si(OH)₄ concentrations in supernatant after the first digestion

- 218 [Al]₁ : Al concentrations in supernatant after the first digestion
- 219 [Si]₂ : Si(OH)₄ concentrations in supernatant after the second digestion
- 220 [Al]₂ : Al concentrations in supernatant after the second digestion

Triplicate measurements of Al concentrations were performed using the manual fluorescent method, by adding lumogallion which forms a fluorescent complex with Al. Excitation and emission wave lengths are 492 nm and 565 nm, respectively.

224 For the quantification of benthic $aSiO_2$ concentrations, 30 mg of surficial sediments (0-0.5 225 cm) was added to 50 ml of Na₂CO₃ 5% and incubated at 85°C for 6h. At 0.5, 1, 2, 3, 4, 5, 6h, the vials were centrifugated for 15 min at 4000 rpm. 0.5 ml of supernatant was put in 9.2 ml of 226 227 ultrapure water to prevent problems with the regeant, and neutralized at pH 7 with HCl 10%. The 228 mass pourcentage of aSiO₂ was graphically represented as a function of time. According to the 229 DeMaster (1981) method, the content in aSiO₂ was given by the y-intercept of the linear part of the plot (after 2h). Note that benthic aSiO₂ concentrations are expressed as % in this study to 230 refer to $\mu g g D W^{-1}$. 231

Si(OH)₄ concentrations were determined with an AutoAnalyzer III (Bran+Luebbe[®]) using the method of Tréguer and Le Corre (1975). The precision of the analysis was 0.5%. Note that the overall dataset of Si(OH)₄ concentrations is available in Annexe.

235

236 2.5. Statistical methods

237

All statistical analyses described below were performed with R software (<u>http://cran.r-</u> <u>project.org</u>). Before each test, the normality and homoscedasticity of data sets were assessed with the Shapiro-Wilk and Bartlett tests, respectively. Parametric ANOVA and non-parametric Kruskal-Wallis tests were performed to examine station and seasonal differences in 10-cm

242	integrated Si(OH) ₄ concentrations ($\int Si(OH)_4$) occurring for longitudinal, cross-section, tidal,
243	and seasonal samplings in the Elorn and Aulne estuaries. Tukey post-hoc tests and multiple
244	comparison tests were performed after ANOVA and Kruskal-Wallis tests, respectively, to
245	identify the significant different groups. The Wilcoxon test was used to find the significant
246	differences in intra- and inter-tidal measurements of $\int Si(OH)_4$ performed in February and July.
247	For all tests, a probability of 0.05 was used to determine statistical significance.
248	The minimum (min), maximum (max) and average (avg) of pore water $Si(OH)_4$
249	concentrations, as well as standard deviation (SD) and coefficient of variation (CV, the standard
250	deviation as a percentage of the mean) were summarized for the different scales investigated in
251	Table 2. Clustering (the Ward method) was used to investigate differences between the sum of
252	squared distances integrated over 10 cm at stations E2 and A2 to compare variations in Si(OH) ₄
253	profiles at the meter, pluri-meter (longitudinal and cross-section), and seasonal scales.

3. Results

256 3.1. Benthic variability at small spatial and temporal scales

258	3.1.1. Longitudinal tra	ansect

260	In the intermediate Elorn Estuary, pore water Si(OH) ₄ profiles were similar at all stations
261	sampled at a same tidal level on the left shore (Fig. 3A). Pore water Si(OH) ₄ concentrations
262	increased from 80-130 μ mol l ⁻¹ at the surface to 300-330 μ mol l ⁻¹ at 20 cm depth. In the
263	intermediate Aulne Estuary, a very different profile was monitored at station A2 with subsurface
264	Si(OH) ₄ concentrations reaching 580 μ mol l ⁻¹ (Fig. 3B). With the exception of this distinct
265	profile, pore water Si(OH) ₄ profiles were similar at all stations sampled on the left shore in the
266	Aulne Estuary. In general, pore water Si(OH) ₄ concentrations were higher in the Aulne Estuary
267	than in the Elorn Estuary (Table 2, avg) and increased from 110-230 μ mol l ⁻¹ at the surface to
268	380-560 µmol l ⁻¹ at 20 cm depth. The 10-cm integrated Si(OH) ₄ concentrations ($\int Si(OH)_4$) was
269	not significantly different along longitudinal transects than between triplicates in both
270	intermediate estuaries (Table 3). The coefficient of variation (CV) was however very low in the
271	Elorn Estuary (2-3%), but high in the Aulne Estuary (20-49%), regardless of triplicate or
272	longitudinal sampling in intermediate estuaries (Table 2).

3.1.2. Cross-section

276	In the intermediate Elorn Estuary, pore water Si(OH) ₄ profiles were similar across the
277	estuarine section (Fig. 3C). Pore water Si(OH) ₄ concentrations regularly increased from 80-100
278	μ mol l ⁻¹ at the surface to 250-400 μ mol l ⁻¹ at 20 cm depth. Slightly higher concentrations were
279	observed at 1-5 cm depth on the right shore (station e) and at 10-20 cm depth on the left shore
280	(station E2). Higher cross-section variations were observed in the intermediate Aulne Estuary
281	(Fig. 3D). As observed in February, pore water Si(OH) ₄ concentrations reached more than 800
282	μ mol l ⁻¹ at 3-5 cm depth in May. While pore water Si(OH) ₄ concentrations were similar at 0-5 cm
283	depth across the section in the intermediate Aulne Estuary, they varied between 100 and 600
284	μ mol l ⁻¹ down to 5 cm depth. Similar to station E2, the highest concentrations were measured in
285	left and right subtidal shores (400-1000 μ mol l ⁻¹ at stations A2 and e). $\int Si(OH)_4$ values were not
286	significantly different at the stations of the cross-section and at station E2 in the Elorn Estuary,
287	but were slightly lower at the stations of the cross-section in the Aulne Estuary than at station A2
288	(Table 3). As for the longitudinal transect, the CV was lower in the Elorn Estuary (6-17%) than in
289	the Aulne Estuary (42-59%; Table 2). The CV was slightly higher along the cross-section than on
290	the left subtidal shore in the Elorn Estuary. In the Aulne Estuary, the subtidal shore meter
291	variability at station A2 was even higher than the cross-section variability.
292	Comparisons between channel and subtidal shore Si(OH) ₄ concentrations in pore waters at
293	different stations and seasons are shown in Fig. 4. Pore water Si(OH) ₄ concentrations at 0-10 cm
294	depth were lower in the channel than in subtidal shores in both estuaries. In surficial sediments,

295	similar pore water Si(OH) ₄ concentrations in the channel and the subtidal shore were observed in
296	the intermediate Elorn Estuary in February (Fig. 4A) and Aulne Estuary in May (Fig. 4D). Higher
297	differences in pore water Si(OH) ₄ concentrations between the channel and the subtidal shore were
298	observed in the intermediate Aulne Estuary in February (Fig. 4B), in the intermediate Elorn
299	Estuary in May (Fig. 4C), and in the outer Aulne Estuary in July (Fig. 4E). A slight but
300	significant correlation was found between pore water Si(OH) ₄ concentrations and the proportion
301	of fine particles (% < 63 $\mu m)$ in surficial sediments of the whole dataset (Pearson, r² = 0.35, p <
302	0.0001).
303	
304	3.1.3. Tidal variability
305	
306	Tidal cycles were visible through increasing salinity and water depth and decreasing
307	bottom water temperature and Si(OH) ₄ concentrations from low tide to high tide, with the inverse
308	trend until the next low tide (Fig. 5A). In sediments, variations in pore water Si(OH) ₄
309	concentrations were also observed over tidal cycles (Fig. 5B). Pore water Si(OH) ₄ concentrations
310	at 0-8 cm depth increased from low to high tide and then decreased until low tide. The CV was
311	high (29-32%; Table 2) and $\int Si(OH)_4$ variations were significant over the tidal cycle (Table 3).
312	
313	3.2. Benthic variability at estuarine and seasonal scales
314	

3.2.1. Intra- and inter-estuary variations

317	Overall pore water Si(OH) ₄ concentrations were lower in the Elorn Estuary than in the
318	Aulne Estuary (Fig. 6). Deep Si(OH) ₄ concentrations (at 20 cm depth) slightly increased from
319	upper to outer Elorn Estuary (Fig. 6; E1, E2, E3). Regardless of the season, pore water Si(OH) ₄
320	concentrations were stable between 0 and 20 cm depth at station E1. At station E2, $Si(OH)_4$
321	profiles were characterized by a depletion at intermediate depths (5-15 cm depth), while at station
322	E3, typical asymptotic Si(OH) ₄ profiles were observed. No trend was observed however along the
323	Aulne Estuary (Fig. 6; A1, A2, A3). At stations A1, A2 (in July and October) and A3, Si(OH) ₄
324	profiles exponentially increased with depth, except the very different profiles observed in
325	February and May at station A2 (described in Section 3.1).
326	Despite of higher pore water Si(OH) ₄ concentrations in the Aulne Estuary, a similar range
327	of pore water Si(OH) ₄ concentrations was, however, observed at saline stations E3 and A3 (300-
328	600 µmol l ⁻¹). $\int Si(OH)_4$ values varied between stations and seasons and with the interaction of
329	these two factors (ANOVA; Table 4). Tukey post-hoc tests (not shown) indicated significantly
330	lower $\int Si(OH)_4$ values at stations E1, E2, and E3 than at stations A1 and A2, but no significant
331	differences with station A3. $\int Si(OH)_4$ was significantly lower at station E2 than at E3 (Kruskal-
331332	differences with station A3. $\int Si(OH)_4$ was significantly lower at station E2 than at E3 (Kruskal-Wallis and multiple comparison test), but no spatial differences were observed in the Aulne
331332333	differences with station A3. $\int Si (OH)_4$ was significantly lower at station E2 than at E3 (Kruskal-Wallis and multiple comparison test), but no spatial differences were observed in the Aulne Estuary.

334 Very high pelagic $aSiO_2$ concentrations were also found in February in upper estuaries 335 (Fig. 7). They ranged between 23-56 µmol l⁻¹ and 28-77 µmol l⁻¹ at salinity 0-5 in the upper Elorn

336 and Aulne estuaries, respectively.

337

338 3.2.2. Seasonal variations

340	The lowest seasonal variations in Si(OH) ₄ profiles were observed in the Elorn Estuary
341	(stations E1, E2, and E3) and at station A3 compared to stations A1 and A2 (Fig. 6). Seasonal
342	variations were not significant in the Elorn Estuary (ANOVA; Table 4). The shape of $Si(OH)_4$
343	profiles however varied at station E2, with an increase of $Si(OH)_4$ depletion depth from May (5
344	cm depth) to October (15 cm depth). In contrast, high and significant seasonal variations of
345	$\int Si(OH)_4$ were observed in the Aulne Estuary (Kruskal-Wallis; Table 4). At stations A1 and A2,
346	$\int Si(OH)_4$ values were significantly lower in October than in February and May (Tukey post-hoc
347	test, not shown).
348	
349	3.3. Comparison of benthic variation amplitudes at the different scales
350	
351	The Fig. 8 shows the similarity and difference between meter, longitudinal, cross-section
352	and seasonal variations of $\int Si(OH)_4$ in intermediate Elorn and Aulne estuaries. In the Elorn
353	Estuary, $\int Si(OH)_4$ measured in February was different from other seasons, but seasonal
354	variability between May, July, and October was low (Fig. 8A). The variability of $\int Si(OH)_4$ along

355 longitudinal transect in February was lower than seasonal variations. The low seasonal variations did however not allow to distinguish seasonal and cross-section variations. Even if $\int Si(OH)_4$ 356 was similar from May to October, it is important to note that the shape of the profiles were 357 358 different depending on seasons (Fig. 6). In the intermediate Aulne Estuary, seasonal variations of $\int Si(OH)_4$ were significant (Table 4) but were lower than triplicate, longitudinal and cross-359 section variability (Fig. 8B). As for the Elorn Estuary, $\int Si(OH)_4$ was different in February 360 compared to the other seasons. One season (May) was characterized by a high dispersion of 361 362 triplicates in the whole cluster. This heterogeneity was also observed in the cross-section transect, 363 indicating high meter and pluri-meter variability in the intermediate Aulne Estuary. In both estuaries, July and October were individualized with always one replicate more distant from the 2 364 365 others.

366 367	4. Discussion
368	4.1. Factors controlling the variability of pore water Si(OH)4 concentrations in macrotidal
369	estuaries
370	
371	4.1.1. Analytical precision
372	
373	The coefficient of variation (CV) of pore water Si(OH) ₄ concentrations ranges between 1
374	and 59 %, regardless of the scale studied in the Elorn and Aulne estuaries (Table 2). These values
375	are always higher compared to the precision of the analytical method (0.5 %), indicating that
376	variability caused by analytical methods is negligible compared to the field variability. This
377	confirmed the observations made in the Indian River Estuary in Florida, where laboratory
378	variability was 0.3 % while meter benthic heterogeneity reached 40 % (Montgoméry et al., 1979).
379	
380	4.1.2. Reaction and transport processes
381	
382	Benthic properties controlling asymptotic Si(OH) ₄ concentrations: Despite variation at the
383	different scales in the Elorn and Aulne estuaries, similar pore water profiles and asymptotic
384	Si(OH) ₄ concentrations (Figs. 3A and 6-station E2) suggest homogeneous benthic properties at
385	meter and longitudinal scales. The main benthic sediment and pore water properties expected to
386	be homogeneous at a small scale (1-100 m) are pH, aluminium and detrital contents, as well as

387 specific sediment surface area, which are known to strongly control deep pore water $Si(OH)_4$ 388 concentrations (Dixit et al., 2001; Dixit and Van Cappellen, 2002). At larger scale (km), the small 389 increase in asymptotic Si(OH)₄ concentrations from the upper to the lower Elorn Estuary is 390 consistent with decreasing aluminium and detrital contents in fresh to marine sediments (Hydes 391 and Liss, 1976; Odum, 1984). The low seasonal variations of asymptotic Si(OH)₄ concentrations 392 observed in the Elorn Estuary are explained by the relative stability of deep sediment properties 393 compared to surficial ones (Berner, 1980). The low intra-estuary variations and the high seasonal 394 variations in the Aulne Estuary suggest however that benthic variability in deep Si(OH)₄ 395 concentrations might be less constrained by deep sediment properties than by other processes described below. 396

397

398 *Hydrodynamic regime*: The lower pore water $Si(OH)_4$ concentrations observed in the 399 channel compared to subtidal shores, especially in the top 5 cm of the sediment (Fig. 4), was 400 explained by sediment resuspension. Wave and tidal currents indeed lead to intense mixing, 401 which strongly enhances diffusive transport and generates low pore water Si(OH)₄ concentrations 402 in upper estuarine sediments (e.g. until 3 to 5 cm depth in the Scheldt Estuary; Vanderborght et 403 al., 1977; Rebreanu, 2009). The lowest differences in pore water Si(OH)₄ concentrations between the channel and the subtidal shore sediments - and the low CV of $\int Si(OH)_4$ - in May compared 404 to February, can be explained by the lower river discharge which decreases sediment 405 406 resuspension, and thus prevents the decrease in pore water Si(OH)₄ concentrations in the channel 407 in May. Resuspension must have important consequences in increasing Si(OH)₄ export to pelagic 408 waters, either through the direct enhancement of benthic fluxes, or through the increase of aSiO₂

409 dissolution by keeping Si(OH)₄ concentrations from equilibrium with aSiO₂ dissolution. 410 Resuspension thus mainly creates spatial heterogeneity in estuarine areas characterized by high 411 tidal currents, and especially in the channel which leads to potential cross-section heterogeneity. 412 The overall positive correlation between Si(OH)₄ concentrations and the proportion of fine particles ($\% < 63 \mu m$) in surficial sediments ($r^2 = 0.35$, p < 0.0001) suggests that lower 413 414 benthic Si(OH)₄ concentrations - and thus aSiO₂ concentrations - are associated to coarser 415 sediments, which has already been suggested in the Scheldt Estuary (Rebreanu, 2009). These 416 observations reinforce that sediment redistribution and sorting is important in determining the 417 spatial variability of benthic Si contents. Even if aSiO₂ have been deposited with sediment particles - as also observed in intertidal marshes (Struyf et al., 2006) - the low correlation 418 419 however highlights that other processes than sediment grain size control benthic Si(OH)₄ 420 concentrations, e.g. aSiO₂ quantity and quality.

421

Biological processes: In addition to the role of sediment properties and diffusive transport 422 423 in pore water $Si(OH)_4$ distributions, biological processes (e.g. bioirrigation) play an important 424 role in the modulation of benthic $Si(OH)_4$ concentrations. The exponential increase in pore water 425 Si(OH)₄ concentrations - commonly observed in the absence of bioirrigation (McManus et al., 426 1995) - was consistent with the absence of benthic fauna in the intermediate Aulne Estuary 427 (station A2; Emma Michaud, pers. comm.). A typical example of the role of bioirrigation however occurs in the intermediate Elorn Estuary (station E2; Fig. 6). Pore water $Si(OH)_4$ 428 429 concentrations are characterized by Si(OH)₄ depletion in sediments at this station, where the 430 depletion depth increases seasonally from 5 to 15 cm depth. The shape of pore water Si(OH)₄

profiles is typical of sediments where transport processes induced by bioirrigation may overcome 431 432 the importance of dissolution (Aller, 1980). Regardless the irrigation strategies, these depletions 433 are consistent with the enhancement of diffusive transport of pore waters - which effect is similar 434 to diffusive transport mediated by sediment resuspension - and/or non-local transport of water 435 (Mermillot-Blondin et al., 2005). Modelling the benthic Si cycle at this station (Raimonet, 2011), together with direct identification and measurement of bioirrigation (Michaud et al., in prep) have 436 confirmed the role of benthic fauna in producing these profiles. Bioirrigation often increases 437 438 sediment oxygenation (Waldbusser et al., 2004), which favours the degradation of benthic 439 organic matter, and in turn, the dissolution of benthic aSiO₂. By flushing burrows, bioirrigation prevents the enhancement of pore water concentrations induced by dissolution (Boudreau and 440 441 Marinelli, 1994). Decreasing pore water $Si(OH)_4$ concentrations - and keeping them away from 442 equilibrium - increases dissolution rates. Bioirrigation thus simultaneously enhances the dissolution of aSiO₂ and decreases pore water Si(OH)₄ concentrations due to the net export of 443 444 pore waters to bottom waters.

445

Interaction of processes: The different processes described above simultaneously impact benthic Si(OH)₄ concentrations, as highlighted in our tidal cycle. Even if tidal variations in pore water Si(OH)₄ concentrations are expected to be limited in cohesive sediments - as they are generally dominated by diffusive rather than advective processes (Boudreau, 1997) - changes in Si(OH)₄ concentrations were observed over 8 cm depth (Fig. 5). Resuspension - detailed above – is often limited to the first 3-5 cm (Vanderborght et al., 1977; Rebreanu, 2009). Tidal variations observed down to 8 cm depth suggest that either stronger currents are present in subtidal shores

453 (which is not expected in subtidal sediments), or that other processes - detailed above -454 simultaneously happen.

455 Rapid and deep variations in Si(OH)₄ concentrations have already been related to tidal 456 pumping in permeable sandy and coastal sediments, which leads to the vertical transport of pore 457 waters over several centimeters (Shum and Sundby, 1996; Jahnke et al., 2003; Chatelain, 2010). 458 A recent modelling study highlighted that tidal pumping occurs in cohesive sediments, in 459 particular close to the creekbank (Wilson and Morris, 2012). This model was applied to a shallow 460 estuary (< 3 m depth) characterized by a mean tidal amplitude of 1.4 m, confirming that shallow 461 and macrotidal estuaries could be much more impacted by such tidal pumping than expected. 462 Tidal pumping has also been highlighted in macrotidal intertidal mudflats where advective fluxes were 400 times higher than diffusive fluxes when water rose (Leynaert et al., 2011). It is 463 464 therefore reasonable to attribute the deep variations of pore water Si(OH)₄ concentrations over tidal cycles to tidal pumping. 465

Considering that tidal pumping occurs in these muddy sediments, pore water Si(OH)₄ 466 467 concentrations are expected to be higher at low tide and not at high tide, as we observe in Fig. 5. 468 The presence of burrows built by benthic fauna is hypothesized to enhance the transport of pore waters and/or bottom waters out and/or into benthic sediments (Aller, 1980; Berner, 1980; 469 470 Stieglitz et al., 2000). Aller (1980) showed indeed that burrows lead to significant decreases in 471 pore water Si(OH)₄ concentrations. Between high and low tides, the flushing of burrows with 472 bottom waters might have led to lower pore water Si(OH)₄ concentrations. Localized lower Si(OH)₄ concentrations observed at 4, 6, or 8 cm depth (Fig. 5) particularly highlight burrows 473 localized at specific depths, as it has been shown in permeable sediments (Meysman et al., 474

475 2006). As the Elorn and Aulne estuaries are shallow (< 10 m depth) and characterized by a 476 macrotidal regime, changes in water column height and current speed are very important at tidal scales, strengthening the potential role of tidal pumping and resuspension in bioirrigated 477 sediments of macrotidal estuaries. We hypothesize that these processes significantly control 478 479 Si(OH)₄ concentrations and benthic fluxes (1) at the tidal scale, in particular in shallow 480 macrotidal estuaries, due to wide tidal amplitude, and (2) at the seasonal scale, due to the 481 seasonal variation of benthic macrofauna (maximal activity and biomass during summer) and 482 temperature (maximal production and dissolution in summer).

483

Benthic reaction and transport processes and their controlling factors thus play an important role in controlling pore water $Si(OH)_4$ concentrations and their variability at different scales. However, the $aSiO_2$ transported by the river and estuary, as well as the factors that control the area of $aSiO_2$ deposition and their variability, also play a role in the distribution of pore water $Si(OH)_4$ concentrations in estuarine sediments.

489

490

4.1.3. Quantity and quality of aSiO₂ inputs

491

492 Up to 80 μ mol l⁻¹ of aSiO₂ were measured in fresh waters in the upper Aulne Estuary in 493 February (Fig. 7). These concentrations are similar to those of large rivers like the Amazon River 494 (74 μ mol l⁻¹) and high compared to most of the rivers (2.9-38 μ mol l⁻¹; Conley, 1997; review in 495 Vieillard et al., 2011). This confirms that, although Si has long been thought to flow from rivers

496 mostly in its dissolved form (Tréguer et al., 1995), inputs of Si in the form of particulate 497 amorphous silica (aSiO₂) may be significant (Conley, 1997; Smis et al., 2010). The rapid and 498 concave decrease in pelagic aSiO₂ concentrations along the salinity gradient highlights a transient 499 increase in aSiO₂ concentrations in freshwaters as already demonstrated through a modelling 500 approach (Scheldt Estuary; Regnier et al., 1998), and estuarine deposition of aSiO₂ (Danube 501 Delta; Ragueneau et al., 2002b). The high concentration in pelagic aSiO₂ and its deposition may 502 explain our observations of these subsurface maxima in the pore waters in the meander of the 503 intermediate Aulne Estuary, as detailed below.

504

505 Control of the hydrodynamic regime on aSiO₂ deposition: The high aSiO₂ concentrations 506 in the upper Aulne Estuary in February are associated with high winter river discharge, which 507 leads to the downward displacement of fluid muds, associated to the maximal turbidity zone 508 (MTZ; Hermann and Heip, 1999; Meire et al., 2005), close to station A2. The transport of MTZ 509 might lead to the deposition of suspended matter - including aSiO₂ - in meanders located close to 510 the MTZ, in the intermediate estuary (this study). River discharge variability - which can be 511 essential in maintaining biodiversity and stability of the ecosystem (Poff, 2009) - is thus also 512 crucial in determining the spatial and temporal variability of sediment deposition, and thus of 513 benthic Si contents. During high river discharge, the quantity of exported particulate matter and 514 $aSiO_2$ is higher and the MTZ moves downward in the estuary, which contributes to the settlement 515 of particles from the MTZ in the meander.

The presence of this high subsurface maximum in February and May at station A2,
suggests that the deposition of aSiO₂ is localized in the point bar, the internal part of the meander

518 (Fig. 6, station A2). The contribution of groundwater (e.g. Wilson and Morris, 2012) was 519 discarded by constant salinity over sediment depth in February and May. By accumulating 520 sediments, point bars are potential recorders of the seasonality of river and estuarine loads, e.g. aSiO₂, organic matter, and other particulate loads, from the watershed, river and estuary. The 521 522 seasonal evolution of Si(OH)₄ profiles highlights deposition and erosion dynamics in point bars. 523 The deepening of the subsurface maximum indicates a deposition rate of ~ 2 cm between February and May (*i.e.* $\sim 0.5-0.6$ cm month⁻¹). This rate is particularly high for coastal 524 525 ecosystems and characteristic of preferential deposition areas (McKee et al., 1983) and consistent 526 with generally favoured deposition in point bars. In July and October, the absence of soft 527 sediments, however, highlights sediment erosion in the point bar between May and July, 528 confirming our hypothesis that transient deposition and erosion events occur at this station. 529 Erosion - which has occurred in late spring (after May), probably after a small storm event in 530 June - indicates that the potential storage of aSiO₂ in intermediate point bars can either be 531 translocated, which may have important implications for the ecological functioning of estuarine 532 ecosystems. The highest spatial heterogeneity at a 1-100 m scale, and even at seasonal scales, is 533 moreover observed in the meander, which highlights localized deposition and strong 534 heterogeneity associated to high dynamic regimes. Studying deposition-erosion dynamics in estuaries, and more especially in meanders, is thus essential to investigate transient retentions in 535 536 estuaries.

537

538 *Quality of aSiO*₂: Seasonal changes in pore water Si(OH)₄ concentrations in the point bar 539 of an intermediate estuarine meander also indicate the seasonality of the quality of $aSiO_2$

540 transported into the estuary. The high subsurface $Si(OH)_4$ concentrations observed at station A2 541 in February and May is most likely due to transient deposition of highly reactive aSiO₂ that 542 dissolved quickly in the subsurface sediment layers. Dissolution rates must be high enough to 543 sustain such subsurface maxima. In the Danube Delta (Ragueneau et al., 2002b; Becquevort et 544 al., 2002) or in the Scheldt Estuary (Roubeix et al., 2008), it has been demonstrated that aSiO₂ dissolution is closely coupled to the microbial degradation of organic matter. Bacteria are very 545 efficient at degrading the organic matrix that is associated with diatom frustules or any other form 546 547 of aSiO₂, exposing the silica surfaces to surrounding waters and thus increasing the dissolution of aSiO₂ (Bidle and Azam, 1999). Hence, the effect of bacteria, in particular in the MTZ, has been 548 549 shown to overwhelm the effect of salinity on dissolution in the MTZ of the Scheldt Estuary 550 (Roubeix et al., 2008).

551 Highly reactive aSiO₂ in estuarine sediments in February and May either results from the deposition of (1) a diatom bloom, or (2) allochtonous winter loads. Even if diatoms are often 552 553 characterized by higher dissolution rates than sedimentary and degraded aSiO₂ (Rickert et al., 554 2002), the deposition of a diatom bloom grown during the previous year is not a likely 555 explanation. A loss in reactivity and solubility of $aSiO_2$ is indeed observed over time due to 556 coatings or detritals in sediments, and leads to lower pore water Si(OH)₄ concentrations (Van Cappellen and Qiu, 1997a,b; Rickert et al., 2002). The origin of reactive aSiO₂ observed in 557 surficial sediments in the intermediate Aulne Estuary is rather consistent with high pelagic aSiO₂ 558 559 concentrations in the upper Aulne Estuary in February, providing evidence of allochtonous aSiO₂ 560 inputs to the estuary. Loads of aSiO₂ after fall may, at least partly, be associated with the export 561 of terrestrial or tidal marsh detritus, such as dead plants or phytoliths (Smis et al., 2010; Querné,

2011). As phytoliths have not already suffered dissolution loops, they are generally characterized
by higher solubility (Fraysse et al., 2009), and higher dissolution rates than benthic aSiO₂
(Querné, 2011).

565 Our results point out that riverine aSiO₂ can be very reactive and lead to high pore water Si(OH)₄ concentrations in local deposition areas. aSiO₂ is even shown to be very reactive during 566 winter, while winter dissolution is often assumed to be lower due to the absence of primary 567 568 production, less bacteria and low temperature limiting biological activities. This reinforces the 569 idea that a better quantitative and qualitative characterization of riverine and estuarine $aSiO_2$ is 570 needed to better understand its fate in estuaries. This will help us in understanding better the 571 temporal and spatial variability of pelagic and benthic properties and processes; such information is crucial when discussing, at different scales, temporary or permanent retention of Si along the 572 573 land ocean continuum.

574

4.2. Implications of this benthic variability for local ecological studies and perspectives for
regional and global biogeochemical approaches of Si retention

577

578 This study has different implications from local to global scales, either from the 579 ecological or biogeochemical point of view. At the local scale, sampling at various temporal and 580 spatial scales is not often performed in estuarine studies. It is however essential to study small 581 scale variations as spatial heterogeneities can sometimes prevent to study seasonal trends 582 (Mouret, 2009). The absence of significant differences in pore water Si(OH)₄ concentrations

583 along and across estuarine sections in the linear Elorn Estuary (Table 3) shows that triplicates in 584 subtidal shores are representative of pore water $Si(OH)_4$ concentrations in a section of 100-1000 585 meter scale in small linear estuaries. The coefficient of variation (CV) of pore water $Si(OH)_4$ 586 concentrations in the Elorn Estuary (CV of triplicates = 2-25%; Table 2) is in the range of values 587 observed in other estuaries (10-40 %; Matisoff et al., 1975; Montgoméry et al., 1979). The 588 smaller variability of pore water Si(OH)₄ concentrations in the Elorn Estuary compared to the 589 Aulne Estuary (1-59%; Table 2) suggests that linear estuaries might have more homogeneous 590 pore water properties, implying that a discrete sampling along the salinity gradient in small linear 591 estuaries is enough to investigate variations along estuarine salinity gradients.

592 The lower variability at meter and plurimeter scales in the linear Elorn Estuary compared 593 to the meandering Aulne Estuary has implications for local or regional modelling studies (e.g. on 594 eutrophication), which use available, and often sparse, data to calibrate and/or validate models. 595 When transposing small spatial variability to data uncertainty, this study highlights that data 596 obtained along salinity gradients of linear estuaries are associated to lower uncertainty (2-25 %) than those of meandering estuaries (1-59 %), providing more confidence in model calibration 597 and/or results in the linear systems. These quantifications are useful to estimate uncertainty 598 599 during upscaling, but also to prevent significant errors incurred by failing to resolve spatial and 600 temporal variation (Swaney and Giordani, 2007; Swaney et al., 2012). Webster et al. (2000) even highlighted that inappropriate temporal and spatial averaging could lead to errors of up to 30% 601 602 and 100% in estuarine budgets.

603 The high pore water $Si(OH)_4$ concentrations observed in these estuaries, especially in the 604 upper and intermediate Aulne Estuary, and the transient retention in point bars confirm that

605 continental margins, and more precisely estuaries, constitute significant areas for Si retention. 606 From an ecological point of view, this indicates a potential stock of Si available for recycling and 607 net benthic fluxes of Si(OH)₄ to pelagic waters. A rough estimate of the contribution of benthic 608 diffusive fluxes of Si(OH)₄ (calculated from diffusive gradients at the sediment-water interface 609 and integrated over the whole estuarine area) to the dissolved Si(OH)₄ inputs to pelagic waters varied from < 3 % to > 50 % of the Si(OH)₄ flux (*i.e.* river and benthic flux) in winter and 610 611 summer, respectively. This confirms that sediments of shallow estuaries are potentially important 612 for pelagic coastal ecosystems, in particular in summer under low river flow conditions. The 613 contribution of benthic recycling to sustain the growth of pelagic diatoms has already been shown in different shallow coastal areas (Yamada and D'Elia, 1984; Struyf et al., 2006), and especially 614 615 during limiting conditions during summer in the Bay of Brest (Del Amo et al., 1997b; Ragueneau 616 et al., 2002a), where it prevents the development of flagellates (Laruelle et al., 2009).

617 From a regional and global biogeochemical point of view, our study brings new data on 618 the Si cycle, including retention, in two small macrotidal estuaries that belong to the same 619 estuarine type according to most of estuarine typologies (e.g. Dürr et al., 2011b). This study is in line with the approach proposed by Ragueneau et al. (2010), *i.e.* developing a typology of land-620 621 ocean continuums and studying Si retention in one type of continuum under different climatic 622 zones, or different types of continuum under the same climatic zone, to derive the most important 623 mechanisms driving Si retention. At this stage, such an effort has been undertaken in regional 624 seas by Meybeck et al. (2007), but it needs to be pursued in other systems (e.g. fjords, deltas, 625 mangroves, etc; Dürr et al., 2011a) as not enough data exist for the Si cycle to do so (Ragueneau, 2004). Our study suggests that the concept of typology may have to be refined. Indeed, even if 626

627 the Elorn and Aulne estuaries belong to the same macrotidal estuarine type (Dürr et al., 2011), the two estuaries show different variability patterns which have implications in terms of Si retention. 628 The higher variability in the Aulne Estuary at various scales (CV; Table 2) confirms that 629 630 meanders generate heterogeneity in the benthic Si cycle, as well as transient retention, at a small 631 local scale. Such differences have also been observed at the regional scale where Si(OH)₄ yields 632 can be different for similar lithology and must be regionally calibrated (Jansen et al., 2010). Thus, estuarine sub-types need to be taken into account in typologies, on the basis of new traits. From 633 634 this study, meandering could be a useful descriptor, considering that more studies on Si cycle in 635 meanders are first needed to precise the impact of transient and/or permanent Si retention 636 occurring in meandering estuaries.

637 Acknowledgements

639	This work was supported by the French National Program for Coastal Environment
640	(PNEC-EC2CO), and the salary of M. Raimonet was funded by the Ministère de l'Enseignement
641	Supérieur et de la Recherche. We gratefully thank the R/V Côtes de la Manche crew, Agnès
642	Youenou, Christophe Rabouille, Bruno Bombled, Julien Quéré, Emma Michaud, Anniet
643	Laverman, Eric Viollier, and Chen Yan for their valuable aid with core sampling and processing,
644	Erwan Amice and Robert Marc for their helpful assistance on board the Hésione (IUEM), and
645	Tualenn Le Roch and Rudolph Corvaisier for their participation in analyses of $aSiO_2$
646	concentrations. We sincerely thank the anonymous reviewers for their very insightful,
647	constructive and detailed comments, and Anniet Laverman for her advices for the manuscript
648	structure, the illustrations and the English language.

649 **References**

650

- Aller, R.C., 1980. Quantifying solute distributions in the bioturbated zone of marine sediments by
- defining an average microenvironment. Geochimica et Cosmochimica Acta 44, 1955-1965.
- Andrieux-Loyer F., Philippon X., Bally G., Kérouel R., Youenou A., Le Grand J., 2008.
- 654 Phosphorus dynamics and bioavailability in sediments of the Penzé Estuary (NW France): in
- relation to annual P-fluxes and occurrences of Alexandrium Minutum. Biogeochemistry 88, 213-

656 231.

- Arndt, S., Regnier, P., 2007. A model for the benthic-pelagic coupling of silica in estuarine
- ecosystems: sensitivity analysis and system scale simulation. Biogeosciences 4, 331-352.
- Bassoulet, P., 1979. Etude de la dynamique des sédiments en suspension dans l'estuaire de
- 660 l'Aulne (rade de Brest). Thèse de doctorat, Université de Bretagne Occidentale, Brest, France,661 136 pp.
- 662 Becquevort, S., Bouvier, T., Lancelot, C., Cauwet, G., Deliat, G., Egorov, V.N., Popovichev,
- 663 V.N., 2002. The seasonal modulation of organic matter utilization by bacteria in the Danube-
- Black Sea mixing zone. Estuarine Coastal and Shelf Science 54, 337-354.
- 665 Bernard, C.Y., Laruelle, G.G., Slomp, C.P., Heinze, C., 2010. Impact of changes in river fluxes
- of silica on the global marine silicon cycle: a model comparison. Biogeosciences 7(2), 441-453.
- 667 Berner, R.A., 1980. Early diagenesis: a theoretical approach. Princeton University Press,
- 668 Bidle, K.D., Azam, F., 1999. Accelerated dissolution of diatom silica by marine bacterial
- 669 assemblages. Nature 397, 508-512.

- 670 Blecker, S.W., McCulley, R.L., Chadwick, O.A., Kelly, E.F., 2006. Biologic cycling of silica
- across a grassland bioclimosequence. Global Biogeochemical Cycles 20, GB3023.
- 672 Boudreau, B.P., 1997. Diagenetic models and their implementation. Modelling transport and
- 673 reactions in aquatic sediments. Springer-Verlag, Berlin, 414 pp.
- 674 Boudreau, B.P., Marinelli, R.L., 1994. A modelling study of discontinuous biological irrigation.
- 675 Journal of Marine Research 52, 947-968.
- 676 Chatelain, M., 2010. Flux dissous à l'interface eau-sédiment sous des écoulements oscillants.
- 677 Ph.D. Thesis, Université Pierre et Marie Curie, Paris, 200 pp.
- 678 Cloern, J.E., 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine
- 679 Ecology Progress Series 210, 223-253.
- 680 Conley, D.J., 1997. Riverine contribution of biogenic silica to the oceanic silica budget.
- Limnology and Oceanography 42(4), 774-776.
- 682 Conley, D.J., 2002. Terrestrial ecosystems and the global biogeochemical silica cycle. Global
- 683 Biogeochemical Cycles 16(4), 1121, doi:10.1029/2002GB001894.
- 684 Conley, D.J., Schelske, C.L., Stoermer, E.F., 1993. Modification of the biogeochemical cycle of
- silica with eutrophication. Marine Ecology Progress Series 101, 179-192.
- 686 Dalrymple, R.W., Choi, K., 2007. Morphologic and facies trends through the fluvial-marine
- 687 transition in tide-dominated depositional systems: A schematic framework for environmental and
- 688 sequence-stratigraphic interpretation. Earth-Science Reviews 81, 135-174.
- Del Amo, Y., Le Pape, O., Tréguer, P., Quéguiner, B., Ménesguen, A., Aminot, A., 1997a.
- 690 Impacts of high-nitrate freshwater inputs on macrotidal ecosystems. I. Seasonal evolution of
- 691 nutrient limitation for the diatom-dominated phytoplankton of the Bay of Brest (France). Marine

- Ecology Progress Series 161, 213-224. 692
- Del Amo, Y., Quéguiner, B., Tréguer, P., Breton, H., Lampert, L., 1997b. Marine Ecology 693
- 694 Progress Series 161, 225-237.
- 695 DeMaster, D.J., 1981. The supply and accumulation of silica in the marine environment. Geo-
- 696 chimica et Cosmochimica Acta 45(10), 1715-1732.
- 697 Dixit, S., Van Cappellen, P., van Bennekom, A.J., 2001. Processes controlling solubility of
- 698 biogenic silica and pore water build-up of silicic acid in marine sediments. Marine Chemistry 699 73(3-4), 333-352.
- 700 Dixit, S., Van Cappellen, P., 2002. Surface chemistry and reactivity of biogenic silica.
- 701 Geochimica et Cosmochimica Acta 66(14), 2559-2568.
- 702 Dürr, H.H., Meybeck, M., Hartmann, J., Laruelle, G.G., Roubeix, V., 2011a. Global spatial
- 703 distribution of natural riverine silica inputs to the coastal zone. Biogeosciences 8, 597-620.
- 704 Dürr, H.H., Laruelle, G.G., van Kempen, C., Slomp, C.P., Meybeck, M., Middelkoop, H., 2011b.
- 705 Worldwide Typology of Nearshore Coastal Systems: Defining the Estuarine Filter of River
- 706 Inputs to the Oceans. Estuaries and Coasts 34(3), 441-458.
- 707 Dutilleul, P., 1993. Spatial Heterogeneity and the Design of Ecological Field Experiments.
- 708 Ecology 74, 1646-1658.
- 709 Fraysse, F., Pokrovsky, O.S., Schott, J., Meunier, J.-D., 2009. Surface chemistry and reactivity of
- 710 plant phytoliths in aqueous solutions. Chemical Geology 258, 197–206.
- 711 Gérard, F., Mayer, K.U., Hodson, M.J., Ranger, J., 2008. Modelling the biogeochemical cycle of
- 712 silicon in soils: application to a temperate forest ecosystem. Geochimica et Cosmochimica Acta 72, 741-758.
- 713

- 714 Hermann, M.J., Heip, C.H.R., 1999. Biogeochemistry of the MAximum TURbidity Zone of
- 715 Estuaries (MATURE): some conclusions. Journal of Marine Systems 22(2-3), 89-104.
- Howarth, R., Chan, F., Conley, D.J., Garnier, J., Doney, S.C., Marino, R., Billen, G., 2011.
- 717 Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal
- 718 marine ecosystems. Frontiers in Ecology and the Environment 9, 18-26.
- 719 Humborg, C., Ittekkot, V., Cociasu, A., Bodungen, B.V., 1997. Effect of Danube River dam on
- 720 Black Sea biogeochemistry and ecosystem structure. Nature 386(6623), 385-388.
- 721 Hunt, R.J., Krabbenhoft, D.P., Anderson, M.P., 1997. Assessing hydrogeochemical heterogeneity
- in natural and constructed wetlands. Biogeochemistry 39, 271-293.
- 723 Hydes, D.J., Liss, P.S., 1976. Fluorimetric method for the determination of low concentrations of
- dissolved aluminium in natural waters. Analyst 101, 922-931.
- Jahnke, R.A., Alexander, C.R., Kostka, J.E., 2003. Advective pore water input of nutrients to the
- 726 Satilla River Estuary, Georgia, USA. Estuarine, Coastal and Shelf Science 56, 641-653.
- Jansen, N., Hartmann, J., Lauerwald, R., Dürr, H.H., Kempe, S., Loos, S., Middelkoop, H., 2010.
- Dissolved silica mobilization in the conterminous USA. Chemical Geology 270(1-4), 90-109.
- 729 Khalil, K., Rabouille, C., Gallinari, M., Soetaert, K., DeMaster, D.J., Ragueneau, O., 2007.
- 730 Constraining biogenic silica dissolution in marine sediments: A comparison between diagenetic
- models and experimental dissolution rates. Marine Chemistry 106(1-2), 223-238.
- T32 Lague, D., Davy, P., Crave, A., 2000. Estimating uplift rate and erodibility from the area-slope
- examples from Brittany (France) and numerical modelling. Physics and Chemistry of the Earth
- 734 25(6-7), 543-548.
- 735 Laruelle, G.G., Regnier, P., Ragueneau, O., Kemp, M., Moriceau, B., Ni Longphuirt, S.,

- 736 Leynaert, A., Thouzeau, G., Chauvaud, L., 2009. Benthic-pelagic coupling and the seasonal silica
- r37 cycle in the Bay of Brest (France): new insights from a coupled physical-biological model.
- 738 Marine Ecology Progress Series 385, 15-32.
- 739 Le Corre, P., Tréguer, P., 1975. Manuel d'analyse des sels nutritifs dans l'eau de mer: utilisation
- 740 de l'auto-analyseur Technicon II. Université de Bretagne Occidentale, Brest.
- 741 Lettmann, K.A., Riedinger, N., Ramlau, R., Knab, N., Böttcher, M.E., Khalili, A., Wolff, J.-O.,
- Jørgensen, B.B., 2012. Estimation of biogeochemical rates from concentration profiles: A novel
- inverse method. Estuarine, Coastal and Shelf Science 100, 26-37.
- Leynaert, A., Ní Longphuirt, S., An, S., Lim, J.-H., Claquin, P., Grall, J., Kwon, B.O., Koh, C.H.,
- 745 2011. Tidal variability in benthic silicic acid fluxes and microphytobenthos uptake in intertidal
- rediment. Estuarine, Coastal and Shelf Science 95(1), 59-66.
- 747 Livingston, R., 1987. Field sampling in estuaries: The relationship of scale to variability.
- Estuaries and Coasts 10, 194-207.
- 749 Matisoff, G., Bricker, O.P., Holdren, G.R., Kaerk, P., 1975. Spatial and temporal variations in the
- 750 interstitial waters chemistry of Cheasapeake Bay sediments. In: Church, T.M. (Ed.), Marine
- 751 Chemistry in the Coastal Environment, American Chemical Society Symposium Series 18.
- 752 Washington, DC. pp. 343-363.
- 753 McKee, B.A., Nittrouer, C.A., DeMaster, D.J., 1983. Concepts of sediment deposition and
- accumulation applied to the continental shelf near the mouth of the Yangtze River. Geology 11,
- 755 631-633.
- 756 McManus, J., Hammond, D.E., Berelson, W.M., Kilgore, T.E., Demaster, D.J., Ragueneau, O.G.,
- 757 Collier, R.W., 1995. Early diagenesis of biogenic opal: Dissolution rates, kinetics, and

- paleoceanographic implications. Deep Sea Research Part II: Topical Studies in Oceanography
 42(2-3), 871-903.
- 760 Meire, P., Ysebaert, T., Van Damme, S., Van den Bergh, E., Maris, T., Struyf, E., 2005. The
- 761 Scheldt Estuary: a description of a changing ecosystem. Hydrobiologia 540, 1–11.
- 762 Mermillod-Blondin, F., François-Carcaillet, F., Rosenberg, R., 2005. Biodiversity of benthic
- invertebrates and organic matter processing in shallow marine sediments: an experimental study.
- Journal of Experimental Marine Biology and Ecology 315, 187–209.
- 765 Meysman, P.J.R., Middelburg, J.J., Heip, C.H.R., 2006. Bioturbation: a fresh look at Darwin's
- 166 last idea. Trends in Ecology & Evolution 21(12), 688-695.
- 767 Michalopoulos, P., Aller, R.C., 2004. Early diagenesis of biogenic silica in the Amazon delta:
- alteration, authigenic clay formation, and storage. Geochimica et Cosmochimica Acta 68(5),
- 769 1061-1085.
- 770 Montgoméry, J.R., Zimmermann, C.F., Price, M.T., 1979. The collection, analysis and variation
- of nutrients in estuarine pore water. Estuarine and Coastal Marine Science 9(2), 203-214.
- 772 Moosdorf, N., Hartmann, J., Lauerwald, R., 2011. Changes in dissolved silica mobilization into
- river systems draining North America until the period 2081–2100. Journal of Geochemical
- 774 Exploration 110(1), 31-39.
- 775 Moriceau, B., Garvey, M., Ragueneau, O., Passow, U., 2007. Evidence for reduced biogenic
- silica dissolution rates in diatom aggregates. Marine Ecology Progress Series 333, 129-142.
- 777 Moriceau, B., Goutx, M., Guigue, C., Lee, C., Armstrong, R., Duflos, M., Tamburini, C.,
- 778 Charrière, B., Ragueneau, O., 2009. Si-C interactions during degradation of the diatom
- 779 Skeletonema marinoi. Deep Sea Research Part II: Topical Studies in Oceanography 56(18), 1381-

780 1395.

- 781 Mouret, A., 2009. Biogéochimie benthique : processus et divergences entre les sédiments
- 782 littoraux et ceux des marges continentales. In: Biogéochimie marine. Université de Bordeaux 1,
- 783 Bordeaux, 157 pp.
- Nichols, F.H., Cloern, J.E., Luoma, S.N., Peterson, D.H., 1986. The modification of an estuary.
- 785 Science 231, 567-573.
- Ni Longphuirt, S., Ragueneau, O., Chauvaud, L., Martin, S., Jean, F., Thouzeau, G., Leynaert, A.,
- 787 2009. Diurnal heterogeneity in silicic acid fluxes in shallow coastal sites: Causes and
- implications. Estuarine, Coastal and Shelf Science 82, 495-502.
- 789 Odum, W.E., 1984. Dual-gradient concept of detritus transport and processing in estuaries.
- 790 Bulletin of Marine Science 35(3), 510-521(12).
- 791 Officer, C.B., Ryther, J.H., 1980. The possible importance of silicon in marine eutrophication.
- 792 Marine Ecology Progress Series 3, 83-91.
- 793 Poff, N.L., 2009. Managing for variability to sustain freshwater ecosystems. Journal of Water
- Resources Planning and Management 135(1), 1-4.
- 795 Querné, J., 2011. Invasion de Spartina alterniflora dans les marais de la rade de Brest.
- 796 Comportement invasif et impact sur le cycle biogéochimique du silicium. Ph.D. Thesis,
- 797 Université de Bretagne Occidentale, Brest, France, 217 pp.
- 798 Ragueneau, O., Tréguer, P., Leynaert, A., Anderson, R.F., Brzezinski, M.A., DeMaster, D.J.,
- 799 Dugdale, R.C., Dymond, J., Fischer, G., François, R., Heinze, C., Maier-Reimer, E., Martin-
- 800 Jézéquel, V., Nelson, D.M., Quéguiner, B., 2000. A review of the Si cycle in the modern ocean:
- 801 recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy.

- 802 Global and Planetary Change 26(4), 317-365.
- 803 Ragueneau, O., Chauvaud, L., Leynaert, A., Thouzeau, G., Paulet, Y.-M., Bonnet, S., Lorrain, A.,
- 804 Grall, J., Corvaisier, R., Hir, M.L., Jean, F., Clavier, J., 2002a. Direct Evidence of a Biologically
- 805 Active Coastal Silicate Pump: Ecological Implications. Limnology and Oceanography 47(6),
- 806 1849-1854.
- 807 Ragueneau, O., Lancelot, C., Egorov, V., Vervlimmeren, J., Cociasu, A., Déliat, G., Krastev, A.,
- 808 Daoud, N., Rousseau, V., Popovitchev, V., Brion, N., Popa, L., Cauwet, G., 2002b.
- 809 Biogeochemical Transformations of Inorganic Nutrients in the Mixing Zone between the Danube
- 810 River and the North-western Black Sea. Estuarine, Coastal and Shelf Science 54, 321-336.
- 811 Ragueneau, O., Savoye, N., Del Amo, Y., Cotton, J., Tardiveau, B., Leynaert, A., 2005. A new
- 812 method for the measurement of biogenic silica in suspended matter of coastal waters: using Si :Al
- ratios to correct for the mineral interference. Continental Shelf Research 25(5-6), 697-710.
- 814 Ragueneau, O., Conley, D.J., DeMaster, D.J., Dürr, H.H., Dittert, N., 2010. Biogeochemical
- 815 transformations of silicon along the land-ocean continuum and implications for the global carbon
- 816 cycle. In: Liu KK et al. (ed) Carbon and Nutrient Fluxes in Continental Margins. Global Change -
- 817 The IGBP Series. Springer Berlin Heidelberg, Berlin, pp. 515-527.
- 818 Raimonet, M., 2011. Benthic silica cycle in estuaries: monitoring and modelling at different
- 819 spatio-temporal scales. Ph.D. Thesis, Université de Bretagne Occidentale, Brest, 167 pp.
- 820 Rebreanu, L., 2009. Study of the Si biogeochemical cycle in the sediments of the Scheldt
- 821 continuum (Belgium/The Netherlands). Ph.D. Thesis, Université libre de Bruxelles, Brussels, 220
- 822 pp.
- 823 Regnier, P., Mouchet, A., Wollast, R., Ronday, F., 1998. A discussion of methods for estimating

- residual fluxes in strong tidal estuaries. Continental Shelf Research 18(13), 1543-1571.
- 825 Rickert, D., Schlüter, M., Wallmann, K., 2002. Dissolution kinetics of biogenic silica from the
- 826 water column to the sediments. Geochimica et Cosmochimica Acta 66, 439–455.
- 827 Roubeix, V., Becquevort, S., Lancelot, C., 2008. Influence of bacteria and salinity on diatom
- biogenic silica dissolution in estuarine systems. Biogeochemistry 88, 47-62.
- 829 Roy, S., Gaillardet, J., Allègre, C.J., 1999. Geochemistry of dissolved and suspended loads of the
- 830 Seine River, France: anthropogenic impact, carbonate and silicate weathering. Geochimica et
- 831 Cosmochimica Acta 63, 1277–1292.
- 832 Sakamaki, T., Nishimura, O., Sudo, R., 2006. Tidal time-scale variation in nutrient flux across
- the sediment-water interface of an estuarine tidal flat. Estuarine, Coastal and Shelf Science 67,653-663.
- Shum, K.T., Sundby, B., 1996. Organic matter processing in continental shelf sediments--the
 subtidal pump revisited. Marine Chemistry 53, 81-87.
- Smetacek, V.S., 1985. Role of sinking in diatom life-history cycles: ecological, evolutionary and
 geological significance. Marine Biology 84(3), 239-251.
- 839 Smis, A., Van Damme, S., Struyf, E., Clymans, W., Van Wesemael, B., Frot, E., Vandevenne, F.,
- 840 Van Hoestenberghe, T., Govers, G., Meire, P., 2010. A trade-off between dissolved and
- amorphous silica transport during peak flow events (Scheldt river basin, Belgium): impacts of
- 842 precipitation intensity on terrestrial Si dynamics in strongly cultivated catchments.
- 843 Biogeochemistry 106, 475-487.
- 844 Stieglitz, T., Ridd, P., Müller, P., 2000. Passive irrigation and functional morphology of
- crustacean burrows in a tropical mangrove swamp. Hydrobiologia 421, 69-76.

- 846 Struyf, E., Dausse, A., Van Damme, S., Bal, K., Gribsholt, B., Boschker, H.T.S., Middelburg,
- 847 J.J., Meire, P., 2006. Tidal marshes and biogenic silica recycling at the land-sea interface.
- Limnology and Oceanography 51(2), 838-846.
- 849 Struyf, E., Conley, D.J., 2009. Silica: an essential nutrient in wetland biogeochemistry. Frontiers
- in Ecology and the Environment 7(2), 88-94.
- 851 Swaney, D.P., Giordani, G., 2007. Proceedings of the LOICZ Workshop on biogeochemical
- budget methodology and applications, Providence, Rhode Island, November 9-10, 2007. LOICZ
- 853 Research & Studies No. 37. Helmholtz-Zentrum Geesthacht, 195 pp.
- 854 Swaney, D.P., Humborg, C., Emeis, K., Kannen, A., Silvert, W., Tett, P., Pastres, R., Solidoro,
- 855 C., Yamamuro, M., Hénocque, Y., Nicholls, R., 2012. Five critical questions of scale for the
- 856 coastal zone. Estuarine, Coastal and Shelf Science 96, 9-21.
- 857 Tréguer, P., Le Corre, P., 1975. Manuel d'analyse des sels nutritifs dans l'eau de mer: utilisation
- 858 de l'auto-analyseur Technicon II. Université de Bretagne Occidentale, Brest, France.
- 859 Tréguer, P., Nelson, D.M., Van Bennekom, A.J., DeMaster, D.J., Leynaert, A., Quéguiner, B.,
- 860 1995. The silica balance in the world ocean: A reestimate. Science 268(5209), 375-379.
- 861 Van Cappellen, P., Qiu 1997a. Biogenic silica dissolution in sediments of the Southern Ocean. I.
- 862 Solubility. Deep Sea Research Part II: Topical Studies in Oceanography 44(5), 1109-1128.
- 863 Van Cappellen, P., Qiu 1997b. Biogenic silica dissolution in sediments of the Southern Ocean. II.
- Kinetics. Deep Sea Research Part II: Topical Studies in Oceanography 44(5), 1129-1149.
- 865 Vanderborght, J.-P., Wollast, R., Billen, G., 1977. Kinetic models of diagenesis in disturbed
- 866 sediments. Part 1. Mass transfer properties and silica diagenesis. Limnology and Oceanography
- 867 22(5), 787-793.

- 868 Vieillard, A.M., Fulweiler, R.W., Hughes, Z.J., Carey, J.C., 2011. The ebb and flood of Silica:
- 869 Quantifying dissolved and biogenic silica fluxes from a temperate salt marsh. Estuarine, Coastal
- and Shelf Science 95(4), 415-423.
- 871 Waldbusser, G.G., Marinelli, R.L., Whitlatch, R.B., Visscher, P.T., 2004. The effects of infaunal
- 872 biodiversity on biogeochemistry of coastal marine sediments. Limnology and Oceanography
- 873 49(5), 1482-1492.
- 874 Webster, I.T., Smith, S.V., Parslow, J.S., 2000. Implications of spatial and temporal variation for
- biogeochemical budgets of estuaries. Estuaries and Coasts 23(3), 341-350.
- 876 Wilson, A.M., Morris, J.T., 2012. The influence of tidal forcing on groundwater flow and nutrient
- exchange in a salt marsh-dominated estuary. Biogeochemistry 108(1-3), 27-38.
- 878 Wolfe, D., Champ, M., Flemer, D., Mearns, A., 1987. Long-term biological data sets: Their role
- in research, monitoring, and management of estuarine and coastal marine systems. Estuaries andCoasts 10, 181-193.
- 881 Yamada, S.S., D'Elia, C.F., 1984. Silicic acid regeneration from estuarine sediment cores. Marine
- Ecology Progress Series 18, 113-118.

883 Figure captions

- Figure 1: Study area and location of stations sampled along the Elorn and Aulne estuaries.
- 886 Sampling at stations E1, E2, E3, A1, A2, and A3 was performed in February, May, July, and
- 887 October 2009. In intermediate estuaries, longitudinal sections (stations dw, E2/A2, and up) and
- transversal sections (stations E2/A2, b, c, d, and e) were sampled in February and May 2009,
- 889 respectively. High-frequency sampling was performed over tidal cycles at station A4 (black star)
- 890 in July 2009.
- Figure 2: Vertical profiles of pore water Si(OH)₄ concentrations (μ mol l⁻¹) in the first 20 cm of
- sediments in February 2009 along a longitudinal transect performed at the same tidal level
- 893 (stations up, E2/A2, and dw; Fig. 1) in intermediate Elorn and Aulne estuaries.
- Figure 3: Vertical profiles of pore water Si(OH)₄ concentrations (μ mol l⁻¹) in the first 20 cm of
- sediments in May 2009 in a transversal transect (stations E2/A2, b, c, d, and e; Fig. 1) performed
- 896 in intermediate Elorn and Aulne estuaries.
- 897 Figure 4: Vertical profiles of pore water Si(OH)₄ concentrations (μ mol l⁻¹) in the first 20 cm of
- sediments in subtidal shores (black color) and in the channel (grey color). Sampling was
- 899 performed in February 2009 at station E2 (A) and station A2 (B), in May 2009 at station E2 (C)
- and station A2 (D), and in July 2009 at station A4 (E). Note that data were missing at 2-6 cm
- 901 depth in May in the Elorn Estuary (C), and that concentrations were only monitored in the first 8
- 902 cm during the tidal cycle (E). SD were not shown for triplicates in this figure but were
- summarized in Table 2.

- 904 Figure 5: Salinity S (-), temperature T (° C), and Si(OH)₄ concentrations Si(OH)_{4 bw} (μmol l⁻¹) of
- 905 bottom waters, water depth D (m) (A), and vertical profiles of pore water Si(OH)₄ concentrations
- 906 $(\mu mol l^{-1})$ in the first 20 cm of sediments (B) every 2h during 12h in July 2009.
- 907 Figure 6: Vertical profiles of pore water $Si(OH)_4$ concentrations (µmol l⁻¹) in the first 20 cm of
- 908 sediments in February, May, July, and October 2009 (n=3) in the Elorn and Aulne estuaries
- 909 (stations E1, E2, E3, A1, A2, and A3). SD were not shown in this figure but were summarized in910 Table 2.
- 911 Figure 7: Pelagic aSiO₂ concentrations (μ mol l⁻¹) and benthic surficial aSiO₂ concentrations (%)
- 912 in February 2009 in the Elorn Estuary (A), and in the Aulne Estuary (B).
- 913 Figure 8: Cluster of the sum of squared distances (SSD) between Si(OH)₄ concentrations between
- 914 0 and 10 cm depth at different spatial and temporal scales in intermediate Elorn Estuary (A), and
- 915 Aulne Estuary (B). See Fig. 1 and Table 1 for abbreviations.

916 Tables

917

918 Table 1: List of the spatial and temporal variations of pore water Si(OH)₄ concentrations

919 investigated at small and large scales in this study. The associated unit scale and figure numbers

920 are indicated in the last two columns.

		Unit scale	Name	Figs.
		cm	vertical distribution	2, 3, 4, 5, 6
	Small scale	m	triplicate	5, 6, 7
	Sinal scale	10-100 m	longitudinal transect	2
Spatial variations		10-100 m	cross-section	3
		km	salinity gradient	6
	Laige scale	km	inter-estuary	6, 7
Tomporal variations	Small scale	h-d	tide	5
	Large scale	d-yr	season	6, 7

921

923	Table 2: Statistical values of pore water Si(OH) ₄ concentrations (mmol m ⁻³) and vertically-
924	integrated pore water Si(OH) ₄ concentrations (mmol m ⁻²) at the different spatial and temporal
925	scales in the Elorn and Aulne estuaries. Abbreviations: n=number of samples; min=minimum;
926	max=maximum; avg=average; SD=standard deviation; CV=coefficient of variation (the standard

.

927 deviation as a percentage of the mean).

Estuary	Scale name	Unit	n	min	max	median	avg	SD	CV
Elorn	depth	mmol m ⁻³	144	17	429	192	206	81	40
	triplicate		3x12	14-24	16-27	14-26	15-24	0-5	2-25
	longitudinal section		3	23	24	24	23	1	3
	cross-section	mmol m ⁻²	5	11	17	16	15	2	17
	salinity gradient		3	18	23	20	20	2	11
	tide		-	-	-	-	-	-	-
	season		4	19	21	20	20	1	4
Aulne	depth	mmol m ⁻³	144	37	830	279	300	141	47
	triplicate		3x12	15-41	19-81	17-51	17-51	0-30	1-59
	longitudinal section		3	13	40	38	30	15	49
	cross-section	mmol m ⁻²	5	20	51	24	29	12	42
	salinity gradient		3	27	32	32	30	3	9
	tide		6	19	30	23	24	4	17
	season		4	22	38	31	30	8	26

928

Table 3: Results of statistical tests for the comparison between the smallest spatial and temporal scales in the Elorn and Aulne estuaries. The scales compared are indicated in two columns by n°1 and n°2. Abbreviations: df=degree of freedom; K² and V=statistical value for each statistical test; p = p value.

Estuary	Scale n°1	Scale n°2	Statistical test	df	K² or V	р
Elorn	triplicate	longitudinal section	Kruskal-Wallis	1	0.05	0.83
		cross-section	Kruskal-Wallis	1	0.20	0.6547
Aulne	triplicate	longitudinal section	Kruskal-Wallis	1	0.05	0.83
		cross-section	Kruskal-Wallis	1	3.75	0.05
		tide	Wilcoxon	-	21	0.03

936Table 4: Results of statistical tests for seasonal variations of $\int Si (OH)_4$ along Elorn and Aulne937estuaries. The station and season factors and the combination of these two factors were tested on938the $\int Si (OH)_4$ dataset. ANOVA or Kruskal-Wallis test were chosen depending on dataset criteria939described in Section 2.5. Abbreviations: df=degree of freedom; F and K² =statistical value for

940 each statistical test; p = p value.

Factors	Statistical test	df	F or K ²	р
Elorn				
salinity gradient	Kruskal-Wallis	2	7.49	0.02
season	Kruskal-Wallis	3	1	0.8
salinity gradient x season	Kruskal-Wallis	-	-	-
Aulne				
salinity gradient	ANOVA	2	1.04	0.37
season	ANOVA	3	6.44	0.002
salinity gradient x season	ANOVA	6	2.68	0.04

Figures

948 Figure 2

952 Figure 4

959 Figure 7

A. Intermediate Elorn Estuary

B. Intermediate Aulne Estuary

962 Figure 8

Aulne estuaries.

Annexe: Dataset of surficial and pore water $Si(OH)_4$ concentrations (µmol 1⁻¹) measured during

lateral and cross-section sampling, tidal sampling and seasonal sampling along the Elorn and

Estuary/Station	Depth (cm)					Si(OH)4			
		-		February			м	ay	
			up	с	dw	b	С	d	е
Intermediate Elorn Estuary	0.5		119	124	69	20	17	28	41
	-0.25		109	80	88	110	102	84	107
	-0.75		158	92	114	124	141	91	157
	-1.25		142	103	119	126	137	117	175
	-1.75		195	103	127	125	n.d.	119	192
	-2.5		219	112	174	120	n.d.	125	190
	-3.5		237	115	170	113	n.d.	142	186
	-5		261	114	205	134	n.d.	117	169
	-7		219	126	203	144	183	116	185
	-9		266	198	242	141	160	113	184
	-11		283	n.d.	307	184	183	155	206
	-14		305	n.d.	352	n.d.	192	171	227
	-18		347	n.d.	335	n.d.	n.d.	298	282
Intermediate Aulne Estuary	0.5	2.5	227	74	92	34	45	52	53
	-0.25	-1	278	85	118	123	99	163	102
	-0.75	-3.5	405	79	159	174	155	218	138
	-1.25	-6	491	78	231	222	192	234	183
	-1.75	-8	517	80	266	251	211	235	226
	-2.5	-10	548	77	336	259	227	236	264
	-3.5	-12	556	74	365	264	248	236	263
	-5	-14	546	81	424	266	248	229	297
	-7		n.d.	124	485	273	254	196	341
	-9		n.d.	190	561	234	281	138	407
	-11		n.d.	243	567	271	369	125	472
	-14		n.d.	260	578	284	386	220	577
	-18		n.d.	n.d.	549	257	381	400	588

Estuary/Station	Depth (cm)	Time	Tide	Si(OH)4			
					Ju	ıly	
				#1	#2	#3	channel
Outer Aulne Estuary (A4)	0.5	09:30	LT	5	5	5	n.d.
	-0.25			105	92	93	n.d.
	-0.75			199	163	157	n.d.
	-1.25			249	166	170	n.d.
	-1.75			278	199	201	n.d.
	-2.5			292	n.d.	n.d.	n.d.
	-3.5			261	n.d.	n.d.	n.d.
	-5			262	n.d.	n.d.	n.d.
	-7			289	n.d.	n.d.	n.d.
	0.5	11:30		5	5	5	n.d.
	-0.25			100	116	126	n.d.
	-0.75			173	189	208	n.d.
	-1.25			205	249	230	n.d.
	-1.75			223	256	258	n.d.
	-2.5			231	n.d.	n.d.	n.d.
	-3.5			222	n.d.	n.d.	n.d.
	-5			202	n.d.	n.d.	n.d.
	-7			215	n.d.	n.d.	n.d.
	0.5	13:30		7	7	7	n.d.
	-0.25			98	81	85	n.d.
	-0.75			169	134	138	n.d.
	-1.25			244	164	175	n.d.
	-1.75			260	173	203	n.d.
	-2.5			270	n.d.	n.d.	n.d.
	-3.5			243	n.d.	n.d.	n.d.
	-5			226	n.d.	n.d.	n.d.
	-7			220	n.d.	n.d.	n.d.
	0.5	15:30	HT	10	10	10	n.d.
	-0.25			93	104	103	n.d.
	-0.75			180	178	177	n.d.
	-1.25			193	206	219	n.d.
	-1.75			187	220	245	n.d.
	-2.5			177	n.d.	n.d.	n.d.
	-3.5			183	n.d.	n.d.	n.d.
	-5			189	n.d.	n.d.	n.d.
	-7			211	n.d.	n.d.	n.d.
	0.5	19:30		7	7	7	n.d.
	-0.25			146	106	95	n.d.
	-0.75			241	186	178	n.d.
	-1.25			272	252	221	n.d.
	-1.75			277	272	229	n.d.
	-2.5			286	n.d.	n.d.	n.d.
	-3.5			279	n.d.	n.d.	n.d.
	-5			234	n.d.	n.d.	n.d.
	-7			242	n.d.	n.d.	n.d.
	0.5	21:30	LT	7	6	6	8
	-0.25			99	87	106	75
	-0.75			215	186	195	89
	-1.25			272	235	221	87
	-1.75			305	271	232	87
	-2.5			315	n.d.	n.d.	81
	-3.5			321	n.d.	n.d.	76
	-5			331	n.d.	n.d.	66
	-7			334	n.d.	n.d.	81

Estuary	Station	Depth (cm)						Si(OH)4								
		-		February			Мау			July			October				
			#1	#2	#3	#1	#2	#3	#1	#2	#3	#1	#2	#3			
Elorn Estuary	Upper (E1)	0.5	116	118	117	148	148	147	142	151	144	165	169	152			
		-0.25	124	119	163	167	139	119	133	53	113	104	136	219			
		-0.75	100	115	227	194	181	153	193	125	156	132	130	148			
		-1.25	117	145	n.d.	229	179	192	216	171	198	160	168	162			
		-1.75	116	121	115	152	171	185	262	206	215	182	190	172			
		-2.5	127	134	126	141	185	150	286	206	280	178	215	195			
		-3.5	129	141	119	129	233	149	307	196	310	194	228	212			
		-5	148	166	143	136	211	160	303	191	345	216	272	263			
		-7	157	162	152	136	255	187	234	187	303	237	311	305			
		-9	189	194	191	167	208	192	179	193	253	249	306	338			
		-11	211	253	187	175	n.d.	209	216	205	232	201	286	278			
		-14	256	304	222	275	n.d.	241	179	255	265	162	219	183			
		-18	350	260	n.d.	225	n.d.	264	196	243	334	195	184	178			
	Intermediate (E2)	0.5	77	78	70	55	42	56	102	105	117	34	27	29			
		-0.25	77	73	91	108	100	125	116	114	84	74	66	63			
		-0.75	113	110	117	103	108	135	140	154	123	95	95	78			
		-1.25	171	154	122	124	119	145	161	185	125	118	130	98			
		-1.75	219	225	130	141	120	136	175	185	129	131	154	136			
		-2.5	269	225	177	141	125	134	200	202	184	132	162	163			
		-3.5	288	236	173	136	120	123	203	181	170	128	192	176			
		-5	268	247	208	159	140	141	199	160	161	159	195	149			
		-7	271	277	206	152	156	207	194	135	143	142	180	120			
		-9	260	284	245	204	214	227	222	154	177	170	191	141			
		-11	265	263	310	251	271	239	212	188	188	190	204	172			
		-14	292	354	355	325	316	303	316	255	250	226	257	238			
		-18	251	401	338	391	435	377	344	335	323	323	335	298			
	Outer (E3)	0.5	24	25	27	5	5	5	7	6	6	9	10	10			
		-0.25	64	76	63	17	17	15	79	93	60	46	42	69			
		-0.75	104	133	87	60	57	108	130	186	99	69	68	112			
		-1.25	141	194	134	130	115	229	167	220	108	92	94	131			
		-1.75	144	232	162	159	168	295	188	232	125	108	92	144			
		-2.5	166	274	220	200	232	n.d.	205	269	160	135	127	158			
		-3.5	202	252	233	209	236	357	211	264	174	154	130	197			
		-5	224	222	277	254	254	335	269	240	173	154	191	273			
		-7	297	169	258	246	305	n.d.	315	269	227	230	207	381			
		-9	289	211	246	250	343	283	352	304	287	339	281	408			
		-11	286	235	252	240	335	338	378	350	311	333	330	388			
		-14	313	285	265	255	349	341	415	395	338	442	355	468			
		-18	356	342	301	368	385	364	445	437	403	466	331	486			

Estuary	Station	Depth (cm)						Si(OH)4								
		-		February			Мау			July			October				
			#1	#2	#3	#1	#2	#3	#1	#2	#3	#1	#2	#3			
Aulne Estuary	Upper (A1)	0.5	94	96	101	118	121	120	97	99	98	111	112	111			
		-0.25	214	322	218	163	188	208	146	139	139	141	140	143			
		-0.75	302	454	335	188	194	244	152	172	174	162	171	147			
		-1.25	343	455	374	212	213	302	180	187	197	169	183	152			
		-1.75	355	390	387	242	226	283	171	212	224	193	201	163			
		-2.5	351	366	463	322	263	400	207	224	253	216	220	198			
		-3.5	408	496	481	345	302	429	219	276	269	225	227	213			
		-5	449	506	489	371	309	416	265	240	320	235	240	227			
		-7	454	509	531	376	318	474	322	264	283	243	230	237			
		-9	471	522	503	426	366	470	316	353	327	241	239	260			
		-11	482	544	528	443	377	452	321	378	288	228	223	252			
		-14	492	581	565	443	399	500	297	385	278	256	229	269			
		-18	533	587	571	467	422	550	269	517	258	237	313	270			
	Intermediate (A2)	0.5	77	88	74	41	47	46	17	1750	17	28	30	2770			
		-0.25	149	249	245	60	136	69	96	126	87	35	42	43			
		-0.75	348	420	633	70	241	95	115	151	98	50	81	73			
		-1.25	474	502	780	75	467	207	171	173	128	113	n.d.	108			
		-1.75	505	449	743	124	500	418	175	170	148	95	n.d.	126			
		-2.5	428	363	679	202	801	787	193	175	156	95	151	130			
		-3.5	385	314	510	219	683	1587	213	215	195	144	138	120			
		-5	381	302	382	207	478	1548	226	235	239	142	193	114			
		-7	362	243	344	276	521	670	242	242	273	216	274	171			
		-9	269	285	375	225	454	410	n.d.	274	249	278	274	258			
		-11	329	312	360	198	429	352	n.d.	340	325	282	266	282			
		-14	373	343	389	224	414	368	n.d.	380	379	275	269	283			
		-18	368	325	440	n.d.	392	473	n.d.	412	n.d.	300	270	297			
	Outer (A3)	0.5	56	50	53	31	33	28	12	12	12	15	16	16			
		-0.25	56	52	63	25	41	44	75	158	158	78	59	49			
		-0.75	76	128	161	69	92	95	110	131	131	131	117	101			
		-1.25	144	240	228	123	151	167	172	165	165	168	150	177			
		-1.75	183	289	239	176	225	231	197	208	208	182	169	201			
		-2.5	244	330	249	224	281	282	227	221	221	196	198	265			
		-3.5	279	338	256	286	295	285	223	249	249	179	236	332			
		-5	284	331	259	291	301	221	230	298	298	180	290	375			
		-7	276	328	315	306	340	260	315	408	408	203	333	334			
		-9	314	384	283	380	426	337	384	409	409	287	424	324			
		-11	348	402	393	426	377	387	430	425	425	347	366	366			
		-14	386	444	429	471	471	465	494	478	478	431	395	406			
		-18	431	477	456	520	531	n.d.	574	545	545	457	414	424			