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Abstract:  
 
Microalgae have been studied for decades, but a new wave of research has recently begun as part of 
the search for renewable and sustainable energy sources. For economic optimization, microalgal 
biomass is being considered as a whole (main products and co-products) in an overall ‘biorefinery’ 
concept. Applications of microalgae cover a broad spectrum, including the food and (livestock) feed 
industries, bioenergy, cosmetics, healthcare and environmental restoration or protection. In the field of 
biotechnology, the access to genomic data is playing a growing role. As the cost of sequencing 
strategies has fallen, studies of gene function at the transcript, protein and biosynthesis pathway levels 
have multiplied. Notably, sequencing and mass spectrometry technologies are used to delineate the 
pathways of lipid synthesis, which will be valuable for the future application of microalgae in the 
biotechnology and biofuel industries. Another field making an applied use of genomics is the ‘cell 
factory’ approach, which uses the cell to manufacture (express) natural or recombinant proteins for 
diverse purposes. In this chapter, we present a vision of the potential future of genomics in the 
biotechnology of microalgae from several points of view. 
 
Keywords: Microalgae ; Genomics ; Post-genomics ; Biotechnology ; Molecular farming ; Cell factory ; 
Domestication ; Biofuel ; Lipid ; Natural compound ; Biodiversity 
 
 
 
 

http://dx.doi.org/10.1016/B978-0-12-391499-6.00008-6
http://archimer.ifremer.fr/
mailto:jean.paul.cadoret@ifremer.fr


 2 

 

1. Introduction 

 
Microalgae in biotechnology are presently the focus of an unprecedented surge in interest 
and investment worldwide. Over recent decades, research predicted the explosion of 
attention this field would attact following the US Aquatic Species Program (Sheehan et al., 
1998), as microalgae can provide a new source of vegetal material. They offer 
complementary products to land plants and higher manipulability, but as the consequence of 
their large phylogenetic spread (reviewed in chapter I of this volume), they have vast 
unknown metabolic potential because most species are, as yet, unexamined. 
Driven by the giants of the energy industry, the race to develop mass microalgal production 
capacity started about five years ago, fuelled by hundreds of millions of US dollars targeting 
the production of renewable biofuels. The challenges we face today are to adapt and 
improve existing methods, develop new processes, and achieve a drastic reduction in costs. 
The objective is to use this green biomass in its entirety and not only for energy production. 
The potential is huge and the fields of study numerous, offering very high added value in the 
areas of new energy (oil, hydrogen and fermentation), healthcare (pigments, enzymes and 
secondary metabolites), food (human or animal), environmental management (depuration 
and assimilation mechanisms) and industry (recovery of silica, enzymes or pigments). Here, 
we have chosen to focus our presentation on the world of microalgae, their broad fields of 
application, the advances in genomics for biotechnologies and some of the bottlenecks that 
need to be overcome.  
 

1.1. Microalgae 

We use the term microalgae to cover a heterogeneous group of single-celled photosynthetic 
organisms, including photosynthetic eukaryotes and photosynthetic prokaryotes like 
Prochlorococcus and Synechococcus, which are of major global importance and considered 
as key players among phytoplanktonic organisms in oligotrophic oceanic areas. It would be 
vastly overambitious to attempt to cover the biotechnological potential of the entire aquatic 
photosynthetic world in one book chapter, so this review will address only the genomics and 
biotechnology of eukaryotic microalgae. 
 
Depending on environmental conditions such as salinity, light, temperature, pH and nutrient 
concentrations, the size and appearance of microalgae can change profoundly, making their 
identification difficult without molecular tools. The estimated number of described species 
ranges between 40 000 and 60 000, but estimations of the number of undescribed species 
range from hundreds of thousands to millions of species spread over the globe (Norton et al., 
1996, Sastre and Posten, 2010). In comparison, only 250 000 land plant species have been 
recorded. Half of the world‘s oxygen is produced via microalgal photosynthesis. Microalgae 
contribute up to 50% of all aquatic productivity and 25% of global productivity (Raven and 
Falkowski, 1999). They are the foundation of the aquatic food chain and have colonised 
nearly all biotopes, from the polar ice to deserts and hot springs. They have adapted to 
extreme environments, living in salt marshes, acidic environments or conditions with very low 
light. Through their presence on the surface of the oceans, which cover 70% of the earth, 
they play a major role in global climate regulation, as a machine that transforms CO2 into 
organic matter (Raven and Falkowski, 1999). 
 
Ancestors of the present day cyanobacteria invented photosynthesis as far back as 3.6 
billion years ago (Gould et al., 2008) and the primary endosymbiotic event at the origin of all 
photosynthetic eukaryotes can be traced to 1.8 billion years ago, (Finazzi et al., 2010). The 
number and the diversity of algal species offer a whole new field of research when 
considering their potential commercial applications and biotechnology. Although progress still 
needs to be made on culture techniques, algal production systems on scales from a few litres 
up to cubic metre volumes, in photobioreactors or open ponds, are now a reality at the 
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industrial level. Microalgae have clear advantages over land plants. Their photosynthetic 
yields are slightly better than those of land plants (Wijffels et al., 2010), and the fact that they 
live in an aqueous medium gives them direct access to their nutrients and explains why they 
display higher growth productivity. As an example, the productivity of classic crops in Europe 
is around 1 to 2 g/m2/day (dry weight), whereas the microalgae in small and medium-sized 
enterprises on the Atlantic coast produce around 10 g/m2/day. Additionally, aqueous cultures 
in marine water offer the advantage of using land unsuitable for food crops, avoiding the 
much-publicised dilemma between ‗food and fuel‘. Other differences between land plants and 
microalgae that could give microalgae the advantage include the possibility of performing 
continuous cultures in photobioreactors with a high level of control, the potential to couple 
microalgal production with the disposal of effluents that provide nutritive components, the 
attractive idea of using industrial CO2 sources, and the saving of freshwater by cultivation of 
microalgae in seawater. The opportunity to cultivate in photobioreactors offers the additional 
possibility of adjusting and adapting culture conditions in real time, allowing growers to react 
instantaneously to the culture situation. The biological diversity of microalgae provides an 
exceptional range of adaptability and represents a vast potential as a source of food and 
feed, biomaterial, original molecules and applications in the broad field of biotechnology. 
Gene transfer of the means to produce selected molecules by genetic engineering will 
provide a complementary production method for novel compounds. 
 

1.2. Applications of microalgae 

The current and forthcoming applications of microalgae are numerous and diverse, including 
food, feed, healthcare, industry and energy. Although the use of cyanobacteria in food dates 
back many hundreds of years, advances in this area were made in the 20th century (Habib et 
al., 2008). The market for microalgae as food and food supplements is dominated by the 
Cyanobacteria Spirulina platensis (also called Arthrospira platensis), the Chlorophyta 
Chlorella sp., and in France, the diatom Odontella aurita. In addition, the green microalga 
Dunaliella salina is used for its beta-carotene, Haematococcus pluvialis for astaxanthin and 
the Cyanobacteria Aphanizomenon flos-aquae as a dietary supplement. Investigation is still 
needed on the use of other microalgae as food, requiring effort to be made for the 
acceptance of these alternative sources. For example, cookies made from the Haptophyta 
Isochrysis galbana, rich in omega-3, have already been produced (Gouveia et al., 2008). 
 
The area in which microalgae were first mass produced was aquaculture. Phytoplanktonic 
organisms are an essential food for the rearing of molluscs and fish, especially to feed the 
early life stages of bivalves, for which microalgae must be provided as live food. A large 
production capacity is devoted to this activity worldwide. Although around 40 microalgal 
species are used in this way, the number routinely grown is closer to a dozen. The 
technology and skills developed as part of this culture are important for the future of 
microalgal biotechnology. Microalgae could become an important source of land animal feed. 
The most common species used for this are Spirulina, Chlorella and Scenedesmus. In 
chicken farming, it is reported that the incorporation of 5 to 10% microalgae in the diet has an 
effect on the colour of the meat and egg yolk (Becker, 2007). The potential substitution of fish 
oil with algae oil has also been discussed (AbuGhazaleh et al., 2009).  
 
Algae also offer several benefits in the field of human healthcare. Land plants and animals 
lack the enzymes to synthesise polyunsaturated fatty acids (PUFAs) longer than 18 carbon 
atoms. Long-chain PUFAs like gamma-linolenic (GLA), arachidonic (AA), eicosapentaenoic 
(EPA) and docosahexaenoic acid (DHA), produced by microalgae, accumulate in most 
marine animals. Sufficient consumption of such fatty acids could have beneficial effects on 
human health. The oil from the stramenopile Schizochytrium sp. (permitted as a food 
ingredient) contains 35–45% DHA. In comparison, most conventional oils rich in omega-3 
(walnut oil, canola oil) contain about 10% alpha-linolenic acid, the precursor of omega-3. The 
production of these PUFAs will undoubtedly be a major challenge in the coming years.  
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Algal pigments, such as carotenoids, are already commercially exploited but are also the 
subject of intensive research. The most popular among these are beta-carotene, alpha-
carotene, lutein, lycopene and zeaxanthin. Even though the main supply of astaxanthin to 
colour salmon is 95% of synthetic origin, natural sources such as the green microalga 
Haematococcus pluvialis are authorised in Japan and Canada (Lorenz and Cysewski, 2000). 
Among other marine pigments of interest, the phycobiliproteins are a very unusual class 
identified in microalgae. First commercialised in clinical and immunological analysis, broader 
uses in industry and therapy are envisioned (Sekar and Chandramohan, 2008).  
 
The uptake of oxygen by organisms can cause the formation of dangerous derivatives, 
including singlet oxygen and free radicals. These forms of highly reactive oxygen species 
(ROS) play an important role in various chronic diseases (cancer, atherosclerosis, 
osteoarthritis, Parkinson‘s, etc.) or acute reactions (inflammation, septic shock, etc.). 
However, ROS production can also be used as a means of therapy in human health. Indeed, 
photo-dynamic therapy (PDT) is an innovative discipline calling for photosensitive molecules 
with a tumour tropism that react to light and destroy the surrounding tissues by ROS 
production. Only a few drugs are presently in use for PDT. Less than a dozen molecules 
have been identified so far and none are, as yet, considered very efficient. It is, however, a 
promising field as our laboratory was able to identify a group of molecules from microalgae 
that is 30 times more efficient than the best commercial gold standard (Unpublished work, 
Patrice, T., Cadoret, J. P., Picot, L., Kaas, R. and Berard, J. B.). 
 
The polysaccharides extracted from the red microalga Porphyridium purpureum have been 
proven to have antiviral activity on cell lines, as well as in vivo in rabbits (Huheihel et al., 
2002). Indeed, red algae have been studied for their polysaccharide contents both for health 
(Matsui et al., 2003) and industry applications (Gourdon et al., 2008). Apart from structural 
polysaccharides, some microalgae synthesise exopolysaccharides. These polymeric 
compounds form a hydrophilic and polyanionic matrix, retain water and trap cations, allowing 
the microalgae to resist desiccation. These properties suggest that the algae could be useful 
for biotechnological applications in environmental fields, through the detoxification of 
biotopes polluted by heavy metals (Pb, As, Hg, Cd) and in the recovery of some metals such 
as gold and uranium. The physicochemical characteristics of polysaccharides—particularly 
their rheological, lubricant and flocculent properties—have been suggested for various 
applications. 
 
A few hundred microalgae are classified as dangerous due to their toxin production. Among 
the 90 recorded species, 70 belong to the dinoflagellate group. The potential applications of 
these toxins in human healthcare have been reviewed by Camacho et al. (2006). 
Characteristics such as the antifouling properties of microalgae could be exploited produce a 
range of ‗biogenic‘ products (Bhadury and Wright, 2004). 
 
Some algal extracts are considered emollients, and are incorporated into anti-aging creams 
to prevent wrinkles and stimulate collagen synthesis; their ultraviolet (UV) protection 
properties are also being researched. Although many of the marketing claims about algal 
bioproducts still need to be proven, business prospects justify the interest shown in this field. 
Arthrospira and Chlorella, are again those involved in the anti-aging and regenerative 
products (Spolaore et al., 2006). However, while many applications of microalgae are already 
in existence, genomics is opening up still more opportunities. 
 

1.3. Genomics and microalgae  

The rise of next-generation sequencing (NGS) technologies, accompanied by a sharp fall in 
their cost, has led to the acquisition of important genomic data on microalgae since the 
1990s. The pace of the availability of microbial genomes is obviously increasing with NGS 
technologies, and in addition to the 14 nuclear genomes available (see chapter II and III of 
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this volume for a review), the gene repertoire of many additional species is now available 
through transcriptomics, as discussed below. Due to its phylogenetic proximity to land plants 
and because many molecular tools are available, the Chlorophyta Chlamydomonas 
reinhardtii was chosen as a model among photosynthetic organisms and the sequencing of 
its entire nuclear genome completed in 2007 (Merchant et al., 2007). Comparative 
phylogenomic analyses have provided insight into the evolution of plants and animals, 
allowing genes to be associated with photosynthesis and flagellar functions, and links 
established between ciliopathy and the composition and function of flagellae. Over the past 
decade, many post-genomics and genetic tools have been used on this species, including 
microarrays, antibodies, RNAi and genetic transformation. These approaches have enabled 
the exploration of metabolic pathways and biological processes such as responses to stress, 
the circadian clock (Matsuo and Ishiura, 2011), photosynthetic electron transport chains 
(Hermsmeier et al., 1994), mechanisms of carbon concentration (Yamano and Fukuzawa, 
2009) and flagellar assembly (Iomini et al., 2009). In addition, proteomic studies have 
provided major research contributions in the areas of photosynthesis, molecular biology and 
evolution (Rolland et al., 2009, Muhlhaus et al., 2011). The other alga species sequenced 
were chosen due to their ecological role, phylogenetic distribution or harmful nature. 
Sequencing provided extensive information on the evolution of these species, helped to 
identify metabolic pathways and specific genes and clarified processes involved in the cycles 
of iron, calcium, silica, urea and nitrogen. In addition, sequence data provide essential 
references for matching with post-genomic investigations, including transcriptomic and 
proteomic analyses. 
 
The gene content of microalgae is only beginning to be explored. Microalgal genomes can be 
structurally complex and sizes range from 12.6 Mbp for the Chlorophyta Ostreococcus tauri 
and 168 Mbp for the Haptophyta Emiliania huxleyi to an estimated 10,000 Mbp for the 
Dinophyta Karenia brevis (see chapter XI for a discussion of genome size variations in 
algae). These large genome sizes can preclude full-genome sequencing, thus enforcing the 
use of transcriptome sequencing to build gene catalogues. Many authors have made this 
choice, although aware of the risk of neglecting non-transcribed sequences. Among the 
species studied in this way, we can mention the Ochrophyta Pseudochattonella farcimen, 
which is associated with fish mortalities (Dittami et al., 2011), green microalgae Chlorella 
vulgaris UTEX 395 (Guarnieri et al., 2011), Dunaliella salina (Zhao et al., 2011) and D. 
tertiolecta (Rismani-Yazdi et al., 2011) and the coccolithophore Emiliania huxleyi (Von 
Dassow et al., 2009). Transcriptomic data have been used for phylogenomics and opened 
the way for functional post-genomics approaches to the study of physiology, environmental 
adaptation, life cycles, metabolism and signal transduction pathways. Several major projects 
for transcriptome sequencing are currently underway (Table 1). One example is the ‗Marine 
Microbial Eukaryotic Transcriptome Project‘, which aims to sequence the transcriptomes of 
approximately 750 samples expected to represent hundreds of species and strains with key 
ecological roles and evolutionary importance in the tree of microeukaryotes 
(http://marinemicroeukaryotes.org/). To date, 39 microbial algal transcriptomes have been 
sequenced (Table 1). In order to establish a reference database from ecologically and 
phylogenetically relevant photosynthetic protists for the ‗Tara Oceans expedition‘, the 
‗Prometheus project‘ is proposing to sequence about 30 species of ecological or 
phylogenetic importance (http://oceans.taraexpeditions.org) (Karsenti et al., 2011).  
 
We can therefore hope, in a few months or years, to have a very large number of new 
transcriptomic and genomic data for algae. The development of genomics has already made 
a major contribution to fundamental research on photosynthetic eukaryotes in the fields of 
functional biology, global ecology and the evolution of organisms. These data will accelerate 
the commercialisation of alga-derived compounds by providing a framework for hypothesis-
based strain improvement programs built on an improved fundamental understanding of the 
specific pathways and regulation of networks. These studies are also the source of new 
biotechnologies that will be presented in the following sections. 

http://oceans.taraexpeditions.org/
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2. Biotechnology and microalgae 

 
For 2011, a search using the two keywords ‗microalgae‘ and ‗biotechnology‘ returned 51 
publications in Web of Science database. More than a third of these were on energy and 
biofuels. In second position, with 20% of the papers, came work on different cultivation and 
extraction techniques. Cell factories, i.e., the production of recombinant proteins, came in 
third position, with a number of technical advances in Chlamydomonas sp.  
 

2.1. Microalgal Lipids as Biofuel and Food 

2.1.1. Algal lipid synthesis: The contribution of genomic data 
 
Compared with land plants, the lipid composition of algae shows great specificity, such as 
the presence of long-chain PUFAs or the species-specific absence of phosphatidylcholine 
and phosphatidylserine in the membranes, replaced by diacylglyceryltrimethylhomoserine 
(DGTS) (Guschina and Harwood, 2006). In addition, for many algal species, high-energy 
reserves of triacylglycerol (TAG) accumulate in large amounts in lipid droplets in response to 
different types of stress or nutrient deficiency. TAG represent > 50% of the algal dry weight 
and serve for membrane synthesis or carbon storage (Hu et al., 2008), making it possible to 
obtain oil yields 10 times higher per hectare than with land plant species. Recent soaring oil 
prices, diminishing world reserves and the environmental damage associated with fossil fuel 
consumption have led to increased interest in using algae as an alternative and renewable 
feedstock for fuel production. The development of the microalgal biodiesel industry depends 
primarily on the reduction of production costs, and one strategy to achieve this is to increase 
lipid productivity. This explains the large investment being placed in such technology, and 
demonstrates why most genomics work on algae is aimed at describing and orienting their 
lipid metabolism (Norsker et al., 2011). 
 
Many studies have been conducted on land plants to understand their mechanisms of lipid 
synthesis and the development of reserves in their seeds. It was reported that environmental 
conditions (nutrients, salinity, light, etc.) affect microalgal fatty acid accumulation (for a 
review, see Hu et al., 2008). However, molecular mechanisms that trigger and control the 
accumulation of storage lipids in microalgae are poorly understood. Genomic data have 
allowed the identification of new enzymes and helped to show how lipid pathways interrelate 
with energy and carbohydrate metabolism (Wallis and Browse, 2010). Until recently, the 
molecular mechanisms involved in regulatory pathways in algae were still poorly understood. 
With genomic data and genetic tools available for the green microalga Chlamydomonas 
reinhardtii, lipid metabolism has been mainly studied in this species and overviews of these 
findings can be found in several papers (Guschina and Harwood, 2006, Khozin-Goldberg 
and Cohen, 2011, Moellering and Benning, 2010). Many genes of C. reinhardtii involved in 
fatty acids and TAG metabolism have been identified based on their orthological 
relationships to fungi and land plants. In green microalgae, starch synthesis shares common 
carbon precursors with lipid synthesis. In C. reinhardtii, it has been shown that shunting of 
carbon precursors from the starch synthesis pathway may facilitate carbon partitioning into 
the fatty acid synthesis pathway resulting in enhanced production of TAG (Li et al., 2010b). 
Identification of genes and biosynthetic pathways implicated in lipid biosynthesis is usually 
made using starchless mutants. With regard to the metabolism of TAGs, genomic data have 
shown conservation of the main biosynthetic pathways between microalgae and seed plants. 
Briefly, fatty acids are synthesised in the chloroplasts, in which acetyl-CoA carboxylase 
(ACCase) provides the malonyl-CoA substrate for the biosynthesis of fatty acids thanks to 
the fatty acid synthase, a multifunctional enzymatic complex (Guschina and Harwood, 2006). 
Free fatty acids are then either used for the synthesis of membrane lipids or exported to the 
endoplasmic reticulum for the biosynthesis of TAGs. This synthesis involves the sequential 
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transfer of acyl groups from acyl-CoA to different positions of glycerol-3-phosphate. Most 
acyltransferases and a phosphatases involved have been identified in the genome of C. 
reinhardtii (Merchant et al., 2011). Nevertheless, significant differences from land plants were 
observed in the TAG pathways of C. reinhardtii, such as the absence of the extra-plastidic 
lysophosphatidyl acyltransferase in the genome and the presence of new enzymes that are, 
as yet, poorly characterised (Hu et al. 2008). Most recently, an alternative chloroplast 
pathway of TAG synthesis was identified in C. reinhardtii (Fan et al., 2011). TAG 
accumulates in lipid droplets, in which proteomics techniques revealed the importance of a 
major lipid droplet protein (MLDP). Miller et al. (2010) used 454 and Illumina technologies for 
transcriptomic analysis, and showed how nitrogen deprivation redirects lipid metabolism. In 
brief, genomic and post-genomic data have allowed lipid metabolism pathways and 
regulation to be characterised in the Chlorophyta C. reinhardtii. However, this alga is not an 
oleaginous species. With the great diversity that exists among algae, specific studies are 
now being conducted on lipid-accumulating species in numerous laboratories around the 
world. 
 

2.1.2. Algal lipids as biofuel 
 
Very recently, several studies have used post-genomics to study the lipid metabolism of high 
oil-content algae. This illustrates a real drive in the exploration of the functional metabolism 
of oleaginous algae. In 2011, Rismani-Yazdi et al. (2011) published the NGS and 
transcriptome annotation of a non-model member of the Chlorophyta: Dunaliella tertiolecta. 
Genes encoding key enzymes were identified by homology and metabolic pathways involved 
in the biosynthesis and catabolism of fatty acids, TAG and starch were reconstructed 
(Rismani-Yazdi et al., 2011). A few months later, similar work was reported in a strain of the 
oil-producing green alga Botryococcus braunii (Baba et al., 2011). In parallel, proteomic 
approaches have identified new proteins involved in the storage of TAG in the lipid droplets 
of the Chlorophyta Haematococcus pluvialis (Peled et al., 2011). Guarnieri et al. (2011) 
reported a comprehensive proteomic and transcriptomic investigation of lipid accumulation in 
the unsequenced green alga Chlorella vulgaris UTEX 395. The authors presented the first 
utilisation of a de novo assembled transcriptome as a search model for proteomic analysis. 
The regulation of fatty acid and TAG biosynthetic pathways was analysed under nitrogen 
limitation. This oleaginous species is extensively studied due to its relatively fast growth rate, 
its value as both a food supplement and a potential biofuel feedstock and its ability to 
produce high–economic value molecules and to remediate heavy metals from wastewater. 
For these reasons, the genome of the Chlorophyta Chlorella variabilis NC64A was previously 
sequenced by Blanc et al. (2010). However, difficulties were encountered in identifying 
proteins by comparing data with strains of species from the same phylum. The researchers 
pointed out the importance of having unique sequence data to study species and strains of 
interest (Guarnieri et al., 2011). 
 
Although lipid biosynthesis pathways have been studied in several species, very few studies 
focus on the regulation of these pathways. Given the induction of TAG biosynthesis by 
different stresses, it is likely that the mechanisms for the regulation of TAG synthesis differ 
between algae and seed plants, as the latter produce oil during a specific phase of their life 
cycle and in specialised tissues. The means of regulation are presently of great interest, as 
these are the key to engineering algal crop production without causing weakening through 
nutrient stress. Although transcriptomics offer a wealth of information on gene expression, 
the processes of mRNA splicing, ribosome recruitment and post-translational regulations of 
proteins are not well understood in algae and transcriptomic analysis does not adequately 
define the control points for metabolic regulation.  
 
By providing insight into the mechanisms underpinning lipid metabolic processes, results can 
be of use for the genetic manipulation of organisms to enhance the production of feedstock 
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for commercial microalgal biofuels. By 1996, Dunahay and co-authors were able to 
overexpress ACCase in the diatom Cyclotella cryptica, which is a key enzyme in the 
biosynthesis of fatty acids (Dunahay et al., 1996). However, no increase in the amount of 
lipid was observed. In expressing recombinant thioesterases to enhance the expression of 
shorter chain length fatty acids, Radakovits et al. (2010) were able to improve the level of 
lauric and myristic acids in the diatom Phaeodactylum tricornutum. This creates an 
advantage for biofuel feedstock because biodiesel made from saturated short or medium 
chain length fatty acids has a relatively low cloud point and is resistant to oxidation. In 
addition, several studies have shown metabolic shifts in starchless mutants of 
Chlamydomonas reinhardtii in favour of an overexpression of TAG (Moellering et al., 2009, 
Wang et al., 2009, Li et al., 2010a). In a starchless mutant, Moellering et al. (2009) inhibited 
the expression of MLDPs by RNAi, which increased the size of the lipid globules (Moellering 
et al., 2010) but also resulted in decreased growth. In contrast, the fatty acid content of a 
starchless selected mutant of Chlorella pyrenoidosa was doubled without detriment to its 
growth characteristics (Ramazanov and Ramazanov, 2006). This suggests that it is possible 
to improve the productivity of microalgae using lipid selection strategies. To date, the 
genomic data available on the selected species is still patchy, and reverse genetic tools are 
completely absent in these species. We also lack genetic information on the molecular 
mechanisms leading to these beneficial mutations. The exponential increase of genomic and 
post-genomic technology should enable biologists to acquire data, and reverse genetic tools 
should improve our understanding of the metabolism of these lipids and demonstrate ways in 
which these processes can be improved. 
 
Recently, we put one of the first varietal selection strategies into action in our laboratory. We 
used successive rounds of UV mutation and cell sorting to improve the TAG production of 
the Haptophyta Isochrysis galbana affinis Tahiti (a strain related to the Isochrysis galbana 
strain), a species that offers numerous advantages for lipid production. This approach, which 
does not create genetically modified organisms (GMOs), allowed us to obtain a strain that 
accumulates twice the amount of neutral lipids as the original without affecting the growth 
rate (Rouxel et al., 2011).This strategy quickly improved the performance of an unsequenced 
selected species, so similar strategies will now be tried on other species and other valuable 
molecules. From now on, the acquisition of transcriptomic and proteomic data will be used to 
identify genes and molecular processes involved in the increase of lipid accumulation.  
 

2.1.3. Algal lipids as feed and food 
 
Apart from the high importance of TAG from algae, the identification of enzymes involved in 
the synthesis of PUFAs, such as the long-chain PUFAs AA, EPA and DHA, is of great 
interest due to the health benefits they offer. Production of PUFAs involves a consecutive 
series of desaturations and elongations of the fatty acyl chain. Until recently, numerous 
authors isolated and characterised lipid metabolism and enzymes using biochemical 
technologies. These studies are reported in a review by Guschina and Harwood (Guschina 
and Harwood, 2006). Over the last few years, authors have used genomic data to 
understand the biosynthetic pathways of PUFAs. Because of the putative role of PUFAs in 
the virulence of the fish pathogen Pseudochattonella farcimen, Dittami and co-authors 
analysed the expressed sequence tags (ESTs) of this species. Focusing their attention on 
PUFA metabolic pathways, they identified new specific desaturases related to this virulence 
(Dittami et al., 2011). In the same way, the ESTs of Myrmecia incisa, a green coccoid 
freshwater microalga rich in AA, were analysed and a putative new elongase was identified 
(Yu et al., 2011). Pan et al. (2011) sequenced the genome of the high PUFA-content species 
of Heterokonta Nannochloropsis oceanica using next-generation Illumina sequencing 
technologies. Sequence similarity–based investigation identified new elongase- and 
desaturase-encoding genes involved in the biosynthesis of long-chain PUFAs, which provide 
the genetic basis of its rich EPA content.  



 9 

 

 
To date, major lipid primary metabolism has been well studied in model species, but 
regulation pathways, catabolism and secondary metabolic pathways of lipids are complex 
and rarely studied. Many metabolites of lipids have high biotechnological potential. The 
control of lipid metabolism, which is highly regulated, is of great interest as a means of 
increasing the lipid yields in culture. Furthermore, strategies using random mutations and 
strain selection have succeeded in increasing the lipid content of selected strains, but without 
a clear understanding of the mechanisms involved. This demonstrates that there are still 
many gaps in the knowledge that would help us to optimise lipid production from algae. 
Genomic and post-genomic studies on a variety of microalgae will provide the basis for 
identifying metabolic and signalling pathways.  
 

2.2. Bioactive Natural Products 

Commercial applications of microalgae include their use as natural sources of valuable 
macromolecules, such as carotenoids and phycocolloids. Due to the exceptionally high 
diversity of the different groups and the low level of exploration carried out so far, algae are a 
burgeoning reservoir of high added-value compounds. During the last decade, full genome 
analysis unveiled numerous new natural products in bacteria and fungi. Indeed, it appears 
that many of their genomes contain more gene clusters coding for the biosynthesis of natural 
products than natural products isolated from these same species (Winter et al., 2011). 
Similar results have been observed in microalgae. For example, in silico analysis of the 
Heterokonta Aureococcus anophagefferens genome revealed the presence of five berberine 
bridge enzymes involved in the synthesis of toxic isoquinoline alkaloids, although this type of 
alkaloid had never been previously identified in this harmful species (Gobler et al., 2011). 
Genomic exploration of microalgae appears to be a promising way to discover new bioactive 
products. To date, the analysis of available genomes has aided the identification of pathways 
to known compounds, thereby greatly facilitating regulatory and functional investigations. The 
search for enzymes involved in the biosynthesis of polyketides, isoprenoids, non-ribosomal 
peptides, oxylipins and alkaloids was conducted in silico by looking for homologous genes of 
land plants in sequenced genomes of microalgae (for review, see Sasso et al., 2011). 
Although some pathways have been elucidated, there are still many gaps in our knowledge 
of the metabolism of the secondary metabolites. For example, isoprenoids comprise 
numerous bioactive molecules such as sterols, phytohormones, phytol, prenylated quinones 
and carotenoids, which have numerous qualities of interest for biotechnology. While the 
common first steps of the synthesis of isoprenoid compounds have been well described 
(Lohr et al., 2012), very little is known about the biosynthesis of secondary isoprenoids 
except for the carotenoids. The genetic basis of the biosynthetic pathways of sterols and 
carotenoids in algae has been examined in detail by phylogenomics across several phyla of 
algae in order to gain insight into the evolution and diversity of photosynthetic eukaryotes 
(Frommolt et al., 2008, Cui et al., 2011, Desmond and Gribaldo, 2009) (see chapter II, III and 
IV of this volume). This has led to the identification of genes in organisms where pathways 
had not been identified before and demonstrated the steps by which more new enzymes 
could be discovered. The induction and regulation of astaxanthin and carotenoid 
biosynthesis in Chlorophyta such as Sphaerella lacustris or D. salina has received 
considerable attention owing to the increasing use of secondary carotenoids as a source of 
pigmentation for fish in aquaculture, and their potential as free-radical quenching drugs in 
cancer prevention. In aiming to identify the proteins involved in the regulation and 
biosynthesis of astaxanthin, comparative proteomics and transcriptomics were applied to the 
chlorophytes Haematococcus pluvialis and H. lacustris (re-named Sphaerella lacustris) under 
nitrogen starvation and irradiance stress (Kimet al., 2006, Eom et al., 2005, Tran et al., 
2009a), and the regulated genes identified. These genes putatively play a role in signal 
transduction from stress to the cellular defence system and activate the biosynthesis of 
astaxanthin. Complementary in-depth analysis should confirm the significance of these 
results. These genes include potential targets to increase the expression of astaxanthin.  
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Overall, it is clear that our understanding of secondary metabolism and its regulation is still 
rudimentary. Secondary metabolites include a large number of natural bioactive products, 
many of which are unknown. In silico genome analyses are a key to the identification of new 
metabolic and signalling pathways. Post-genomics can be applied to identify physiological 
conditions that lead the expression of new pathways, and so identify hitherto undetected 
metabolites.  
 

2.3. Molecular Farming 

The extraction of natural substances remains the main source of supply for a large number of 
pharmaceutical molecules. However, since it is possible to identify the genes responsible for 
building a protein molecule, they can be introduced into cultured cells, which then become 
cell factories, making millions of copies of the desired product. This strategy—the expression 
of molecules with high added value in recombinant cell systems—offers extraordinary 
opportunities for the development of a very promising biotechnology market (estimated to be 
worth up to several tens of billions of dollars, depending on the information source) (Schmidt 
2004, Gasdaska et al. 2003). The production systems available are bacteria, yeasts and 
animal or plant cells, which are genetically modified to produce insulin, growth hormones, 
monoclonal antibodies and other therapeutic proteins. Each system has advantages and 
disadvantages relating to factors such as cost, production safety, ease of extraction, 
purification and complexity of producing the molecules. Some solutions, however, combine a 
number of benefits, putting them in a strong position for the future of this industry. 
 
Microalgae have several advantages over other expression systems for the production of 
recombinant proteins, such as: (1) a high growth rate (they commonly double their biomass 
within 24 h), (2) easy cultivation at a low production cost (they only require water and 
nutrients), (3) the possibility of performing post-transcriptional and post-translational 
modification as in other eukaryotic expression systems and (4) photobioreactor culture 
methodologies that prevent transgenes from escaping into the environment, which is a 
potential risk when using land plants (Janssen et al., 2003).  
 
Several interesting reviews on transgenic tools describe the use of microalgae as a platform 
for production of recombinant proteins (Walker et al., 2005, Hallmann et al., 2007, Bozarth et 
al., 2009, Potvin and Zhang, 2010). Here, we focus on recent progress and results on 
transgenic microalgae technology for the production of therapeutic recombinant proteins, and 
discuss the contribution of genomic studies for the optimisation of genetic manipulation in 
microalgae. 
 

2.3.1. Transgenic microalgae as a platform for biopharmaceutical proteins 
 
In this section, we provide a review of biopharmaceutical proteins expressed in microalgae 
systems according to their intracellular cell localisation (chloroplastic or nuclear). The interest 
in the N-glycosylation of pharmaceutical proteins will also be discussed. 
 
Although no recombinant protein produced by transgenic algae is yet available on the 
market, some therapeutic proteins have been successfully produced using microalgae, 
mainly the Chlorophyta Chlamydomonas reinhardtii, for which suitable transgenic tools and 
genomic data are available (for all three genomes: nuclear, chloroplastic and mitochondrial). 
Mayfield‘s group has done considerable work on the chloroplastic expression of recombinant 
protein in C. reinhardtii (Rasala and Mayfield, 2011a). Indeed, the majority of microalgal 
therapeutic proteins have been produced by chloroplasts (Table 2). Transgenic protein can 
accumulate to much higher levels in the chloroplast than when expressed by the nuclear 
genome because plastids lack disadvantages such as gene-silencing mechanisms (Bock, 
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2007). Indeed, expression of foreign proteins remains very low for reasons that are not yet 
fully understood (Potvin and Zhang, 2010). The chloroplast of C. reinhardtii has been used to 
produce a range of recombinant proteins, including reporters such as glucuronidase (GUS), 
luciferase (LUC), green fluorescent protein (GFP), industrial enzymes, vaccines and 
therapeutic enzymes (Rasala and Mayfield, 2011a). 
 
The first therapeutic protein expressed by transgenic microalgae was produced at Mayfield‘s 
laboratory using chloroplast transformation in the green microalga C. reinhardtii. In the study 
of Mayfield et al. (2003), the entire IgA (Imunnoglobulin A) heavy chain protein (HSV8-lcs) 
fused to the variable region of the light chain was expressed and accumulated as a soluble 
protein able to bind to the herpes virus protein. Nevertheless, the expression yield was too 
low (detectable only) for commercial use, even though several regulation sequences 
(promoters) were tested. Regulation sequence aspects will be examined in the next section. 
This previous study was completed by the chloroplastic expression of a single chain 
fragment variable antibody (HSV8-scFv) that accumulated to 0.25% of total soluble protein 
(TSP) (Mayfield and Franklin, 2005). In their next study, the same team successfully 
increased the accumulation of a bioactive mammalian protein, bovine mammary-associated 
serum amyloid A (M-SAA), to 5% of TSP with by chloroplasts, using different promoter 
sequences and an interesting strategy consisting of replacing an endogenous gene by the 
expression cassette (Manuell et al., 2007). Recently, a full-length human monoclonal 
antibody was expressed in the chloroplast of C. reinhardtii, proving that this eukaryotic green 
alga is capable of synthesising and assembling a full-length antibody in transgenic 
chloroplasts (Tran et al., 2009b). More recently, a study was conducted to examine the 
versatility of algal chloroplasts for the expression of seven different therapeutic proteins: 
human erythropoietin (EPO), the 10th and 14th human fibronectin type III domains (14FN3 
and 10FN3), human interferon β1, the human vascular endothelial growth factor (VEGF) 
isoform, the high mobility group protein (HMGB1) and the human proinsulin. Of the seven 
proteins tested, four were successfully expressed in transgenic chloroplasts to above 2% of 
TSP (Rasala et al., 2010). However, no detectable expression was shown for EPO or 
interferon β1. Like Mayfield‘s group, other research groups have successfully shown that the 
chloroplast of C. reinhardtii is a perfect platform to produce recombinant proteins at an 
economically viable cost (Zhang et al., 2006, Yang et al., 2006, Wang et al., 2008). In 
addition to therapeutic proteins, some vaccines have been successfully produced in algal 
chloroplasts. Indeed, a fusion protein between the foot and mouth disease virus VP1 and the 
cholera toxin B subunit (as mucosal adjuvant) was reported to accumulate to 3% of TSP in 
transgenic algal chloroplasts (Sun et al., 2003). This fusion protein retained both specific 
ganglioside-binding affinity and antigenic function. A classical swine fever virus (CSFV) E2 
recombinant protein was also successfully expressed in chloroplast to around 2% of TSP 
and observed to have immunological activity (He et al., 2007). Surzycki et al. (2009) reported 
a strong expression of the white spot syndrome VP28 protein by chloroplasts to around 
10.5% of TSP. Moreover, in this study, the authors attempted to determine factors affecting 
the level of recombinant protein expression, which will be covered in the next section. 
Recently, Dreesen et al. (2010) reported the oral immunisation of mice by transgenic algae 
expressing (to 0.7% of TSP) the Staphylococcus aureus fibronectin-binding domain D2 fused 
to the cholera toxin B subunit. 
 
It is important to reiterate that all these studies were carried out using transgenic chloroplasts 
of the green algae C. reinhardtii. To our knowledge, there are no reports of 
biopharmaceutical protein expression by transgenic chloroplasts in other microalgae.  
 
Although it is estimated that most of the therapeutic human antibodies used in therapy do not 
require glycosylation, other therapeutic proteins require the correct glycosylation pattern to 
function properly (Dove, 2002). Nevertheless, nuclear expression of therapeutic proteins 
remains limited because of some problems in reducing yield expression (Potvin and Zhang, 
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2010). Transgenic microalgal technologies are still in their infancy and the therapeutic 
proteins expressed by the nuclear genome are still rare in microalgae.  
 
Initial work has been done by Hawkins and Nakamura (1999) to produce human growth 
hormone in the extracellular medium of Chlorella sorokiniana and C. vulgaris C-27. In a 
subsequent study, growth hormone of sole was produced and expressed as a stable product 
in C. ellipsoidea (since renamed Chloroidium ellipsoideum). Soles fed with these transgenic 
microalgae increased in size by 25% (Kim et al., 2002). Another research team has shown 
the efficient expression and biological activity of rabbit neutrophile peptide-1 in C. 
ellipsoideum cells (Chen et al., 2001). 
 
Recently, Dauvillée et al. (2010) expressed a nuclear protein corresponding to the 
Plasmodium antigens that fuse to granule-bound starch synthase (GBSS), a protein involved 
in the starch matrix of plants and algae. The C-terminal domains from apical major antigen 
(AMA1) or major surface protein (MSP1) fused to GBSS were both efficiently expressed in 
nuclear cells and targeted starch particles in the chloroplasts, taking advantage of the transit 
peptide on the GBSS protein. Although expressed in the nucleus, these fusion proteins 
directly targeted starch granules, avoiding post-translation modification such as N-
glycosylation. Immunogenicity tests for both fusion proteins were successfully performed in 
mice (Dauvillee et al., 2010). 
 
More recently, diatoms have also been used as cell factories to produce recombinant 
proteins. Diatoms are an algal group of great ecological importance. Their contribution to 
global CO2 fixation represents around 40% of marine carbon production. Diatoms like 
Phaeodactylum tricornutum represent an interesting subject for a variety of biotechnological 
applications, and this species has become a model organism for the diatoms (Bowler et al., 
2008, Siaut et al., 2007, Hempel et al., 2011a and b). Indeed, its whole genome has been 
sequenced and molecular tools for functional genomics are available (Maheswari et al., 
2009, Siaut et al., 2011). To date, diatoms have not been employed for expression of any 
biopharmaceutical proteins, but a research team has recently reported the first stable 
expression of a full-length human antibody and the respective antigen in P. tricornutum 
(Hempel et al., 2011b). In this study, the antibody and respective antigen were both 
expressed and accumulated within the endoplasmic reticulum (ER) using the ER retention 
signal. Interestingly, while the same expression vector and molecular tools were used for the 
expression of both these recombinant proteins, different expression levels were observed for 
the antibody (7.8% of TSP) and antigen (0.7% of TSP). This result confirms that not all 
foreign proteins are equally expressed (Potvin and Zhang, 2010). 
 
At our laboratory, we became interested by the potential of microalgae as a means to 
produce therapeutic proteins (Cadoret et al., 2008). This interest led to the creation of a 
private company by our laboratory: Algenics. Algenics is the first privately owned European 
biotechnology company focusing on innovative uses of microalgae to produce recombinant 
biotherapeutics. Using microalgae as a platform for recombinant proteins, our laboratory filed 
a patent on the production of glycosylated proteins in microalgae (Cadoret et al., 2009). 
Recently, as proof of the concept, we successfully produced another therapeutic protein, 
murine erythropoietin (mEPO), in the diatom P. tricornutum (Unpublished work, Carlier, A., 
Bardor, M., Lerouge, P., Delavault, P., Saint-Jean, B., Gerard, A., and Cadoret, J.P.). The 
data show that recombinant mEPO accumulates to around of 0.05% of TSP (or 300 µg/L). 
This recombinant EPO is glycosylated and able to bind the human EPO receptor in vitro with 
the same affinity. These results, combined with Hempel‘s data, confirm the high potential of 
diatoms to express biopharmaceutical proteins. 
 
This last result corroborates the expression specificity of some foreign proteins according to 
cell localisation and/or algal taxon. Indeed, no detection of recombinant EPO has been 
reported in Chlorophyta C. reinhardtii transgenic chloroplasts (Rasala et al., 2010). In 
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contrast, Eichler-Stahlberg et al. (2009) observed a minor accumulation of recombinant EPO 
up to around 100 µg/L in nuclear expression by C. reinhardtii cells. Thus, EPO protein 
accumulates differently and at different expression levels according to cell localisation or 
species. 
 
To conclude, many efforts have been made to produce biopharmaceutical proteins at a level 
sufficient to be economically viable, but extensive research to optimise microalgae as cell 
factories still needs to be done. Recent success in microalgal transgenesis and input from 
genomic data will allow a response to the growing demand for biopharmaceutical molecules. 
However, microalgae can also provide compounds other than pharmaceutical proteins. 
Indeed, an interesting study has recently been reported that used microalgae to produce 
industrial products such as bioplastic: Hempel and co-workers (2011) expressed three 
prokaryotic enzyme genes in the diatom P. tricornutum to produce poly-3-hydroxybutyrate 
(PHB). These genes (i.e., a ketolase, an acetoacetyl-CoA reductase and a PHB synthase) 
are able to synthesise PHB from acetyl-CoA in diatom cells up to a level of 10.6% of algal dry 
weight. 
 
Of the post-translational modifications encountered in eukaryotic proteins, N-glycosylation is 
the most prevalent of those that appear essential for biological functions (biological activity, 
short half-life). Moreover, glycosylation is of particular interest for biopharmaceutical proteins, 
since more than 70% of biopharmaceuticals are glycoproteins. Glycosylation capability is an 
advantage for any system used to produce biopharmaceuticals. This pathway is currently 
well understood among the different production systems available today, such as cultured 
mammalian, yeast and plant cells. Plants have N-glycosylation capability similar to 
mammalian cells. However, N-glycosylation patterns processed in plant cells differ from 
those of humans and other mammals. In plants, N-linked glycans contain β(1,2)-xylose and 
α(1,3)-fucose instead of the α(1,6)-fucose found in mammals. These plant-specific glycans 
are considered to be potentially antigenic and/or allergenic epitopes (Bakker et al., 2001). 
Several strategies have been studied to remove the antigenic potential of plant-specific 
glycans. One simple approach is aglycosylation to obtain recombinant protein with no N-
glycosylation by mutating the N-glycosylation sites of expressed genes (Conley et al., 2009). 
This approach is effective if the biological activity is not affected by aglycosylation.  
 
Another approach consists of retaining the foreign protein in the ER using KDEL/HDEL 
retention signals to avoid plant-specific glycan residues such as β-(1,2)-xylose and α-(1,3)-
fucose (Ko et al., 2003, Gomord et al., 2004, Petruccelli et al., 2006). Indeed, glycosylation 
processing in the ER is conserved between the plant and animal kingdoms and restricted to 
high mannose-type N-glycans, whereas the further glycosylation process in the Golgi 
apparatus, where additional glycans are added for glycan maturation, is highly diverse. 
Another approach to eliminating plant-specific glycan residues is to knock out the gene 
expression of glycosyltransferases involving β-(1,2)-xylosylation and α-(1,3)-fucosylation 
(Gomord et al. 2004). However, in addition to eliminating plant-specific sugar, humanisation 
of N-glycosylation is also essential for the production of authentic glycosylated recombinant 
proteins in plants. The strategy to humanise plant N-glycans consists of expressing 
mammalian glycosyltransferases, which would complete N-glycan maturation, in plants 
(Bakker et al., 2001). 
 
So far, little information regarding the glycosylation of microalgae is available and it is 
interesting, both from a purely scientific point of view and for biotechnological applications, to 
determine their capacity for this process. Our laboratory published the first in silico N-
glycosylation study in microalgae. Using the genomic data available for P. tricornutum, we 
identified specific genes coding enzymes involved in the N-glycosylation pathway in diatoms 
(Baiet et al., 2011). Moreover, by structural analyses of N-linked glycans, this study also 
demonstrated that P. tricornutum proteins carry mainly high mannose-type N-glycans. 
Interestingly, other recent biochemical studies have reported the existence of special 
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glycosyltransferase and glycosylation pathways, unique to the red alga Porphyridium sp. 
(Levy-Ontman et al., 2011).  
 
The emergence of genomic data in microalgae will provide the opportunity to perform 
comparative genomic studies and to dissect biosynthetic pathways such as N-glycosylation. 
Recently, we initiated new studies to evaluate the N-glycosylation pathway of microalgae 
representing different phyla: green and red microalgae, glaucophytes, alveolates, 
stramenopile and haptophytes. This study will help us to determine how this specific process 
evolved within the eukaryotes. Moreover, demonstrating that microalgae are a suitable 
alternative system for the production of biopharmaceuticals requires the demonstration of 
their N-glycosylation capability.  
 

2.3.2. Genomic strategies for optimising recombinant protein expression 
 
In this section, we report three strategies commonly used to optimise recombinant protein 
accumulation in microalgae. 
 
2.3.2.1. Translation optimisation by codon usage bias 
 
Specific variations in codon usage are often cited as one of the major factors impacting 
protein expression level. The presence of rare codons that are correlated with low levels of 
their endogenous tRNA species in the cell can reduce the translation rate of target mRNA. 
The classical strategy to bypass this problem is to redesign genes to increase their 
expression level. For this, two approaches have been attempted, both of which require 
choosing from a vast number of possible DNA sequences. The first approach consists of 
assigning the most abundant codon of the host of a given amino acid in the target sequence. 
The second uses translation tables based on the frequency distribution of the codons in an 
entire genome or for a range of highly expressed genes. This approach was successfully 
used in Chlamydomonas reinhardtii to improve the expression level of foreign proteins such 
as GFP in the nucleus (a 5-fold increase) (Fuhrmann et al., 1999) and chloroplasts 
(increased up to 80-fold) (Franklin et al., 2002). Similar studies using a codon-optimised 
human antibody gene or luciferase reporter gene confirmed that codon bias plays an 
important role in protein accumulation in chloroplasts of C. reinhardtii (Mayfield et al., 2003, 
Mayfield and Schultz, 2004). 
 
The nuclear and chloroplastic genome of C. reinhardtii may exhibit different codon bias and 
thus, adjustment of codons in foreign gene sequences is necessary to obtain a high rate of 
protein production. To overcome this issue, the codon adaptation index (CAI) is used as a 
quantitative tool to predict the expression level of transgenes based on their codon usage. 
Several molecular software programs are available to determine and optimise codon usage. 
A list of these programs is given in Villalobos et al. (2006). 
 
This approach, which consists of optimising the codon usage of transgenes, was 
successfully used in the green alga C. reinhardtii and diatom Phaeodactylum tricornutum. 
Specific codon usage is a field that will benefit from the contribution of future microalgal 
genomic and transcriptomic sequences. 
 
2.3.2.2. Identification of promoter sequences 
 
Genome data is also necessary to identify functional sequences such as promoter, 5‘ and 3‘- 
untranslated region (UTR) sequences that regulate the gene expression rate. These 
sequences are specific for each gene and microalgal strain. Due to the presence of plastid 
and nuclear genomes in microalgae, there are different types of promoter sequences 
according to cell localisation. Plastid transgenes are expressed under the control of an 
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endogenous promoter and 5‘ and 3‘-UTR. Overall, promoter sequence control transcription 
and 5‘-UTR mediate mRNA stability, and translation initiation and 3‘-UTR regulate stability 
and act in the termination of transcription. The same sequences were found for nuclear 
promoters, but other regulated sequences such as intron sequences are also involved in the 
regulation of nuclear gene expression. Previous studies identified sequences within the 5‘-
UTR that were involved in RNA stability and used as a means to increase recombinant 
protein synthesis. For a comprehensive review of chloroplast translation regulation, see 
Marin-Navarro et al. (2007). 
 
Concerning chloroplastic transformation in microalgae, the green alga C. reinhardtii has been 
intensively studied. Among chloroplastic promoters for the expression of foreign proteins 
(Table 3), the endogenous atpA, psbD, rbcL and psbA promoters are generally used 
(Hallmann et al., 2007, Specht et al., 2010). An excellent study performed by Barnes et al. 
(2005) reported the effect of various promoters and UTRs on recombinant proteins in the 
chloroplast of C. reinhardtii. Using different combinations of chimeric proteins corresponding 
to the promoters and 5‘-UTRs of chloroplast genes, atpA, rbcL, psbA, psbD and 16S rRNA, 
fused to the GFP reporter and followed by 3‘-UTR of either gene, they observed different 
protein accumulation levels. Moreover, they showed that mRNA accumulation is, in general, 
proportional to protein accumulation. Also, according to chimeric construction, they observed 
that the 5‘-UTR sequence had a significant impact on recombinant protein production while 
3‘-UTR had little effect. The highest level of reporter protein was found using the atpA or 
psbD promoter and 5‘-UTR, while a minor protein accumulation level was observed under 
control of rbcL and psbA and no expression was seen using the 16S rRNA promoter and 5‘-
UTR (Barnes et al., 2005). 
 
Interestingly, the psbA promoter fused with its 5‘-UTR was actually the most used (Manuell et 
al., 2007, Surzycki et al., 2009). Recently, Rasala et al. (2011b) reported a high recombinant 
protein expression level with the psbA promoter in comparison to the levels reached with the 
atpA promoter. It remains unclear why certain regulatory elements induce a high expression 
level in some genes but not in others (Marin-Navarro et al., 2007). The psbA promoter and 
5‘UTR are the most studied, but essentially require a psbA-deficient genetic background for 
high foreign protein accumulation (Rasala and Mayfield, 2011a). 
 
Other exogenous promoter sequences have been used in C. reinhardtii chloroplasts. Kato et 
al. (2007) showed the functionality of the inducible system of the lac operon of Escherichia 
coli in C. reinhardtii chloroplasts. At the same time, a riboswitch was reported to act as a 
translational regulatory factor in C. reinhardtii (Croft et al., 2007). Finally, all the data suggest 
that the translation mechanism and mRNA accumulation are primarily controlled by the 
promoter and 5‘-UTR, and that the choice of these sequences is a critical factor to consider 
for each protein of interest in order to achieve high yields of recombinant proteins. On the 
other hand, to our knowledge, no chloroplast transformation has been reported for 
microalgae other than C. reinhardtii and the unicellular flagellate protist Euglena gracilis, 
leaving the way open for research to study this mechanism of expression in other 
microalgae. 
 
Concerning nuclear promoters, several studies have been performed in different taxa of 
microalgae using endogenous, exogenous and synthetic promoters (Table 3). The most 
widely used constitutive promoter in the chlorophyte group is RbcS (RuBisCO small subunit). 
Interestingly, some endogenous promoters of C. reinhardtii can be used in other Chlorophyta 
algae. Indeed, the C. reinhardtii RbcS promoter has been successfully used in the green alga 
Dunaliella salina (Sun et al., 2005), Chloroidium ellipsoideum formerly Chlorella ellipsoidea 
(Kim et al., 2002), the Heterokonta Nannochloropsis oculata (Chen et al., 2008, Li et al., 
2008a) and the Chlorarachniophyta Lotharella amoebiformis (Hirakawa et al., 2008). A 
chimeric promoter using heat shock protein A (HSP70A) fused to psaD was also successfully 
used in C. reinhardtii (Fischer and Rochaix, 2001, Schroda et al., 2000), and more recently in 
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the multicellular alga Gonium pectorale (Lerche and Hallmann, 2009). The same strategy, 
using HSP70 fused to CAb (chlorophyll-binding protein), was reported in the charophyte 
Closterium peracerosum (Abe et al., 2011). Usual plant promoters, such as the cauliflower 
mosaic virus 35S with Ubiquitin-Ω, have been also tested in some microalgae (Kumar et al., 
2004, Jarvis and Brown, 1991, Chen et al., 2001, Wang et al., 2007), and recently the 35S 
promoter demonstrated efficiency in the diatom P. tricornutum (Sakaue et al., 2008), 
Chlorophytes Haematococcus sp. (Kathiresan et al., 2009) and Dunaliella bardawil (Anila et 
al., 2011) and the Heterokonta Nannochloropsis sp. (Cha et al., 2011a). Moreover, inducible 
promoters have been chosen for some algae. Indeed, the gene expression under the control 
of the nitrate reductase promoter is switched off when cells are grown in the presence of 
ammonium, and becomes switched on when cells are transferred to a medium containing 
nitrate. This approach was reported for the diatom Cylindrotheca fusiformis (Poulsen and 
Kroger, 2005) and recently in Chlorella vulgaris (strain not reported) using the NR cassette 
(promoter and 5‘ and 3‘-UTR of nitrate reductase) of the diatom Phaeodactylum tricornutum 
(Niu et al., 2011). A similar strategy was applied in P. tricornutum using the endogenous NR 
cassette (Hempel et al., 2011a, Hempel et al., 2011b) and exogenous NR cassette from the 
diatom Cylindrotheca fusiformis (Miyagawa et al., 2009). Miyagawa-Yamaguchi et al. (2011) 
reported the same approach in another diatom, Chaetoceros sp., using the NR cassette of 
the diatom Thalassiosira pseudonana. The study performed by Niu et al. (2011) is 
particularly interesting as the diatom NR cassette was shown to be functional in green algae, 
suggesting that this type of inducible promoter could be universally employed across diverse 
species of algae. 
 
In contrast to plastid promoters, several studies have been performed on nuclear promoters 
in diatoms. So far, unlike in green algae, the RuBisCO small subunit gene of diatoms is 
encoded by the chloroplast genome, and its promoter is not adapted for nuclear 
transformation. Other promoters were identified from genomic and transcriptomic data from 
diatoms. Early studies reported protein expression using the acetyCoA carboxylase (Acc1) 
promoter in diatoms Cyclotella cryptica and Navicula saprophila (Dunahay et al., 1995). 
Members of the family of light-inducible fucoxanthin chlorophyll (Fcp) promoters have also 
been used to produce foreign protein in diatoms P. tricornutum (Apt et al., 1996, Falciatore et 
al., 1999, Zaslavskaia and Lippmeier, 2000) and Thalassiosira sp. (Falciatore et al., 1999, 
Poulsen et al., 2006). In contrast to the NR promoter, the Fcp promoter appears to be more 
specific to the host as, for example, the Fcp promoter of P. tricornutum is not functional in 
Cylindrotheca fusiformis (Poulsen and Kroger, 2005).  
 
Some use of virus promoters other than 35S has also been reported in algae, such as 
mammalian cytomegalovirus CMV in P. tricornutum (Sakaue et al., 2008), and recently in the 
Chlorophyta Platymonas subcordiformis (Cui et al., 2010), as well as the Rous sarcoma virus 
in the diatom P. tricornutum (Sakaue et al., 2008).  
 
Surprisingly, the use of microalgal virus sequences in algal expression constructs to enhance 
gene expression has still not been explored. To date, several algal viruses have been 
identified and their full genomes sequenced in some microalgal taxa, specifically 
chlorophytes, dinoflagellates, diatoms and haptophytes (for reports and reviews on this topic 
see, Nagasaki, 2008; Nissimov et al., 2011;  Schroeder, Oke, Malin, & Wilson, 2002;  Van 
Etten & Dunigan, 2012; Wilson, Van Etten, & Allen 2009). To date, algal viruses represent a 
largely unexplored source of genetic elements for engineering algae and land plants. This 
approach has previously been used in both monocotyledonous and dicotyledonous land 
plants, as well as in bacteria (Mitra et al., 1994). Another study reported the functionality of a 
translation enhancer element from the Chlorella virus in the plant Arabidopsis thaliana 
(Nguyen et al., 2009). 
 
Another strategy to increase the yield of recombinant proteins consists of adding intronic 
sequences to the expression vector to act as an endogenous enhancer. Indeed, while 
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regulation of gene expression occurs at the post-transcriptional level in the plastid, it appears 
that most regulation occurs both at the transcriptional and translational levels in the nucleus 
(Marin-Navarro et al., 2007). The introns are non-encoding sequences but can affect the 
expression of genes by alternative splicing or through the regulation of transcription. In C. 
reinhardtii, Lumbreras et al. (1998) reported that the insertion of endogenous introns from 
heterologous genes increases the expression level. Recently, a similar approach has been 
used to increase the expression level of the Renilla-luciferase gene reporter in C. reinhardtii 
(Eichler-Stahlberg et al., 2009). However, the way in which the introns affect the expression 
level is still unclear. 
 
2.3.2.3. The challenges of transgene silencing and proteolysis 
 
Transgene silencing is another problem for high-yield recombinant protein expression in 
plants and algae, but different strategies exist to overcome this obstacle. Indeed, gene 
silencing can function as a protective system against pathogens or viruses (Specht et al., 
2010). Plant virus–encoded suppressors of RNA silencing are useful tools for counteracting 
silencing, but their wide application in transgenic plants is limited because their expression 
often causes harmful developmental effects. To our knowledge, this approach has not yet 
been attempted in microalgae. Recently, another strategy to prevent transgene silencing was 
reported in Chlamydomonas reinhardtii using a process of UV mutation and selection by 
antibiotic resistance on a selective medium (Neupert et al., 2009).  
 
To date, most efforts to improve recombinant protein accumulation in plants or algae have 
focused on increasing protein expression. Moreover, proteolysis is also one of the factors 
that can affect the yield of recombinant protein accumulated and also lead to difficulties in 
purification due to degraded forms or non-functional protein (Doran, 2006, Surzycki et al., 
2009). However, proteolytic enzymes are essential for the degradation of misfolding or 
incorrectly processed endogenous proteins. Some strategies have been attempted to 
minimise foreign protein degradation in plants and microalgae, like producing recombinant 
proteins in other cell compartments that have an environment with less proteolytic activity. 
Indeed, for nuclear-expressed protein, the targeting of the ER using the HDEL or KDEL 
retention signal prevents the degradation of the foreign protein. A similar approach has been 
successfully used by our laboratory to express recombinant EPO in diatoms. Another 
approach used in plants consists of concomitantly producing protease inhibitor to neutralise 
endogenous protease (Doran, 2006). 
 
 
3. Future Outlook 

 
In this chapter, we tried to provide an overview of the principal applications of microalgae and 
show how genomics and post-genomics can improve their uses in biotechnology. Here, we 
mainly focused on some of the most popular applications. Without wishing to suggest that 
they are less important, we chose not to make a detailed review of other applications such as 
environmental biomarkers, silica synthesis from diatoms or hydrogen and methane 
production for energy. In any case, the future of microalgal biotechnology will depend on 
several steps, including domestication and a search for new intrinsic species characteristics, 
steps for which the contributions of ‗omics‘ technologies will be invaluable. 
 

3.1. Domestication 

A strategy comparable to that used for the domestication of crops is now making its way into 
the world of microalgae. This is a matter of selecting favourable mutations and finding 
markers that will help select the desired traits. In agriculture, the cross-breeding of species 
and selection of strains was conducted empirically for thousands of years before Mendel's 
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laws provided a scientific basis for species improvement. For sexual reproduction, 
considerable work remains to be done in microalgae. Knowledge of reproductive strategies is 
of major importance for maintaining strains, cultivating them on a long term-basis in 
continuous culture or envisaging selection strategies. Some algal groups have become the 
subject of increased attention concerning their reproduction strategies and sexual behaviour, 
including the diatoms (Chepurnov et al., 2011). In the Coccolithophore Emiliania huxleyi, 
different morphotypes associated with different forms of ploidy have been observed and 
studied by transcriptomic analysis. This work revealed mechanisms involved in functional 
differentiation without proving that sexual reproduction occurs (Von Dassow, 2009). To date, 
there is too little knowledge to envisage the improvement of strains by cross-breeding and 
selection through sexual reproduction, so future studies in this direction will be of great 
interest. 
 
Mutation followed by selection for favourable phenotypes has been used for crop plants, and 
some promising strategies are now beginning to emerge for algae. This domestication route 
calls for induced mutations and subsequent selection. Bonente et al. (2011) identified the 
major relevant points for the selection of H2-producing Chlamydomonas sp., namely a 
reduction of photosynthetic antenna size, an alteration of photosystem II to manipulate the 
oxygen concentration and a maximised electron flow towards hydrogenase. This strategy 
was thought to enhance carotenoid levels. Early studies involved Dunaliella salina and the 
selection of beta-carotene-rich strains (Shaish et al., 1991). These were followed by a search 
for hyperproductive variants sorted by flow cytometry (Mendoza et al., 2008), and recently 
there have been improvements in lutein production in the microalga Chlorella sorokiniana 
(Cordero et al., 2011). This strategy was implemented to enhance overall lipid contents or 
EPA and DHA, in particular with the Haptophytes Isochrysis galbana (Molina Grima et al., 
1995) and Pavlova lutheri (Meireles et al., 2003), the Heterokonta Nannochloropsis oculata 
(Chaturvedi and Fujita, 2006) or the chlorophyte Dunaliella salina (Mendoza et al., 2008). In 
this context, the availability of a reliable marker, such as Nile Red or BODIPY for staining 
lipid bodies, greatly helps in the selection process. In the Haptophyte Isochrysis galbana  
affinis Tahiti, this strategy allowed our laboratory to select an improved strain that could 
stably produce twice the amount of TAG compared to its wild-type counterpart (Rouxel et al., 
2011).  
 
We have reported that the improvement of microalgae for biotechnology uses will come 
through the domestication of strains, and this approach has already been initiated. Far from 
being in conflict, the different approaches (‗natural‘ versus ‗GMO‘) are complementary. 
Synthetic biology, synthetic genomics and genome engineering are disruptive technologies. 
Indeed, the development of ‗GMO‘ strategies is very promising for applications with very high 
added value such as the production of drugs or antibodies. However, taking into account the 
environmental risks arising with such transgenic species and societal pressure against their 
use, their culture will have to be performed in confined and controlled conditions. Their use 
for energy and food (large outdoor cultures) therefore seems somewhat inappropriate. The 
completely opposite point of view is that, given the immeasurable biodiversity of algae, the 
ideal alga for a given application is probably available in nature. Although this perspective is 
somewhat optimistic, the exploration of biodiversity was the source of the algae presently in 
use and will doubtless continue to be in the future. Screening this diversity will enable us to 
identify new, more efficient strains with new features, some of which may have uses that 
have not yet been imagined. This does not preclude subsequent domestication to improve 
these species for use in biotechnology. 
 

3.2. Working towards a new algal metabolism, enzymes and compounds 

As seen earlier in this chapter, the implementation of genomic and post-genomic approaches 
is now largely underway in the world of microalgae. In parallel, ecological approaches in 
metagenomics have only been seen very recently.  These will hopefully lead to the 
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identification of a large number of presently unknown microalgae and, consequently, to new 
gene networks, enzymes and metabolic pathways. Due to the wide variety of microalgae and 
difficulties in cultivating certain of them, many metabolic pathways have remained out of our 
reach until the present. Metagenomics aims to analyse all of the genomic data in a given 
ecosystem without a strain isolation and cultivation step. This allows access to unknown 
mechanisms of potential biotechnological interest. In this situation, the ‗sequencing 
campaigns‘ on research cruises (Karsenti et al., 2011) will offer new and valuable insight in 
the field of microalgal genomics. Chapter XI of this volume provides a review on the power 
and challenges of metagenomics for microbial algae. Conversely, metagenomics will be 
greatly aided by new methods like single cell genome analysis (Ebenezer et al., 2011), which 
can improve methods of isolation and cultivation of new algae. 
 
Among the wide variety of metabolic pathways conceivable across the diversity of 
microalgae, particular attention should be paid to metabolism from extremes environments. 
Like bacteria, although to a lesser extent, some microalgal species live under severe 
physico-chemical pressures such as high salinity, extreme temperatures from below zero to 
over 50°C, alkaline or acidic waters or very high irradiance. Additionally, some strains have 
been isolated downstream from industrial sites such as acid mine drainage, or in waters rich 
in contaminants such as metals (for review see Das et al., 2009). Extremophiles offer 
numerous advantages, including: (1) the absence of contaminants in open door cultures 
subjected to physicochemical pressure; (2) their potential adaptation to industrial 
environments such as presence of toxins, radioactive elements or extreme pH, and 
consequently their potential use for the biocatalysis of effluents; and (3) their ability to 
produce enzymes with biotechnological applications. Proteomics have been carried out to 
highlight the adaptation mechanisms in the halophilic species Dunaliella salina (Liska, 2004, 
Katz et al., 2007), for which the genome sequence will soon be available. Transcriptomics 
and comparative genomics have dealt with the very high biochemical versatility of thermo-
acidophilic Galdieria sulphuraria {Weber et al., 2004, Barbier et al., 2005). Psychrophilic 
species have been identified, such as Fragilariopsis cylindrus, Xanthonema sp., Koliella 
antarctica and Chlamydomonas sp. ICE-L. However, the culture of psychrophiles is far from 
being technically mastered, making post-genomic approaches difficult. In such cases, 
metagenomics would be an appropriate solution. Overall, efforts are still needed to isolate 
and cultivate extremophiles, and genomics will provide a source of new applications. 
 

3.3. Algal pathogens: Looking towards the future 

Like land plants, phytoplankton are susceptible to diseases and parasitism, which impact 
their population dynamics and use in commercial industry. Interactions between bacteria and 
microalgae in the environment and in cultures are numerous, and bacteria can have 
beneficial or negative effects on the growth of microalgae. For a review, see Fukami et al. 
(1997). Numerous algicidal bacteria have been identified in the ocean, and their influence on 
algal bloom dynamics has been demonstrated (Mayali and Azam, 2004). Although they have 
not yet been associated with real economic losses in cultures, the experience in production 
of other marine species suggests that diseases will likely appear in parallel with the 
expansion of the industry. Viruses are extremely abundant in seawater and are believed to 
be significant pathogens to photosynthetic protists. They are known to affect the regulation of 
eukaryotic phytoplankton population densities. Since the discovery of the very high 
abundance of viruses in the marine environment, researchers have highlighted their possible 
ecological significance. To date, more than 40 viruses infecting marine microalgae have 
been isolated and characterised to different extents (Nagasaki, 2008). Several studies have 
focused on the relationship between eukaryotic microalgae and their viruses (for review see 
Nagasaki, 2008). Without going into great detail, it is interesting to note that most algae can 
use various strategies of resistance to their viruses, but the mechanisms involved are not yet 
clearly understood (Morin, 2008, Thomas et al., 2011). The next chapter of this volume, 
‗Genomics of Algal Host-Virus Interactions‘, reviews algal host-virus interactions. Finally, it 
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will be interesting to compare the emergence of pathogens such as plant viruses during this 
new agricultural revolution and increase in demand for algal culture by industry. Microalgal 
cultivation remains a niche market in almost all countries, but the increasing interest in 
sustainable biofuel sources has triggered a high investment in culture facilities all over the 
world. Consequently, intensive algal aquaculture using open pond systems for the mass 
culture of microalgae might favour disease outbreaks. Gachon et al. (2010) suggest that 
development towards intensive macroalgal production correlates with more damaging 
disease outbreaks. The best example is the case of edible red macroalgae Porphyra sp., 
which represent a very valuable industry in Asia. The market is estimated to be worth about 
$1.5 billion worldwide, and has reported losses of about 10% of annual production due to 
oomycete pathogens, although these outbreaks can even lead to losses of 25 to 40% in 
some cases. To overcome this problem, sea farmers can use chemical treatments, but their 
use in large doses could have a real impact on ecosystems, as well as on production costs. 
A better understanding of the relationships between pathogens and microalgae would be 
useful to identify causes and possible solutions to overcome disease epidemics. Prophylactic 
and microbial flora management of cultures will probably be a key to the durability of 
production in the coming years. Varietal selection of microalgal strains for resistance to a 
large range of pathogens is one strategy that could increase the resistance of microalgae 
cultures. In any case, in the context of intensive microalgal production, we must anticipate 
future epidemics that will affect algal culture yields.  
 
 
4. Conclusion 

 
Due to the huge amount of diversity among microalgae, their applications have a very bright 
future. As seen in this chapter, the uses of microalgae are numerous and there is work for 
many research teams in many fields of specialisation.  
 
Genomics and post-genomics have led to new areas of research and development and to 
the modernisation of our view of biology. The increase in sequencing capacities will soon 
face a data tsunami, a fantastic amount of data that will soon be generated by fast, low-cost 
sequencing methods. However, storage, calculation power, annotations and access to this 
information now pose a limit to its optimal exploration. Data mining and conversion of data 
into biological knowledge will be an important challenge in coming years. The confirmation of 
all the in silico analyses and discoveries will require a return to experimental testing, and the 
association of molecular data with biological functions will become vital work in the future 
(Lopez et al., 2011).  
 
The culture of microalgae for biomass production dates back to the 1940s, when it started in 
the USA before spreading to Europe, Japan and Israel (Grobbelaar, 2010). Since then, work 
has continued all over the world at different speeds, with irregular publication rates. Some of 
the early work still forms the basis for the today's revival of the microalgal trend (Sheehan et 
al., 1998). The dramatic increase in the world population, concerns about the ecological 
equilibrium, pollution, the world energy demand and failing supplies of oil and coal have all 
led to a more ‗bio‘-orientated attitude, meaning a general increase in the attention paid to 
‗renewable‘ resources. From a global perspective, in the context of a demographic crisis, the 
major issues in the coming years will be to provide everyone with access to water, food, 
education and healthcare. In a world of limited resources (energy, clean water, arable land) 
and increasing anthropogenic pressure on the environment, the development of 
biotechnological processes to provide renewable energy, new molecules and molecular 
farming and cleaner industrial processes is one of the key challenges. Marine microalgae 
possess assets that make them suitable for some of these applications. While land plants are 
the subject of numerous programs aiming to use vegetal organisms for the so-called ‗green 
chemistry‘, the algae, particularly microalgae, are expected to participate in this race in a 

http://en.wikipedia.org/wiki/Resource
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complementary way. Although far less studied than their terrestrial counterparts, microalgae 
offer an, as yet, untapped diversity and manipulability that explain the enthusiasm and 
investment from around the world. Phytoplankton research is being revisited and enriched by 
modern techniques like molecular biology and biocomputing, and the ‗omics‘ technologies 
offer new insights into their biology. The young generation of students will have the chance, 
at the strictly scientific level, to be present when the majority of the genomes are still to be 
sequenced, the transcriptome is unknown and even the reproductive strategies or size of the 
genomes are undefined. The earth still hides a tremendous amount of original biology, 
including much that concerns microalgae. Their discovery, study, analysis and use will serve 
applications in all imaginable fields. 
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Tables 

 
Tables 1 : Ongoing microalgae transcriptomic projects 
 

 
 

Phylum  Species  Strain  Status 
Bacillariophyta  Asterionellopsis glacialis 1712 Assembly & Annotation  
Bacillariophyta  Chaetoceros sp.  Assembly & Annotation  
Bacillariophyta  Corethron hystrix 308 Assembly & Annotation  
Bacillariophyta  Cylindrotheca closterium  Assembly & Annotation  
Bacillariophyta  Grammatophora oceanica 410 Assembly & Annotation  
Bacillariophyta  Melosira sp. CCMP 2643  Sequencing  
Bacillariophyta  Navicula transitans  80 Assembly & Annotation  
Bacillariophyta  Odontella sp.  Assembly & Annotation  
Bacillariophyta  Odontella sinensis  Grunow 1884  Sequencing  
Bacillariophyta  Skeletonema costatum  1716 Sequencing  
Bacillariophyta  Stephanopyxis turris CCMP 815  Sequencing  
Chlorarachniophyta Lotharella oceanica  CCMP622  Assembly & Annotation  
Chlorarachniophyta Lotharella globosa  LEX01  Assembly & Annotation  
Chlorarachniophyta   Lotharella amoebiformis  CCMP2058  Assembly & Annotation  
Chlorarachniophyta  Bigelowiella natans CCMP 2755  Assembly & Annotation  
Chlorophyta  Crustomastix stigmata  CCMP3273  Sequencing  
Chlorophyta  Dolichomastix tenuilepis CCMP3274  Sequencing  
Chlorophyta  Micromonas sp. CCMP2099  Assembly & Annotation  
Chlorophyta  Nephroselmis pyriformis CCMP717  Assembly & Annotation  
Chlorophyta  Pyramimonas parkeae  CCMP725  Assembly & Annotation  
Chlorophyta  Tetraselmis sp. GSL018  Sequencing  
Cryptophyta  Chroomonas mesostigmatica CCMP1168  Assembly & Annotation  
Cryptophyta  Cryptomonas paramecium CCAP977/2a  Assembly & Annotation  
Cryptophyta  Goniomonas pacifica  CCMP1869  Sequencing  
Cryptophyta  Guillardia theta  CCMP2712  Assembly & Annotation  
Cryptophyta  Hemiselmis andersenii CCMP644  Sequencing  
Dinophyta  Alexandrium minutum  CCMP113  Sequencing  
Dinophyta  Crypthecodinium cohnii Seligo  Sequencing  
Dinophyta  Karenia brevis SP3  Sequencing  
Dinophyta  Oxyrrhis marina  CCMP788  Assembly & Annotation  
Dinophyta  Oxyrrhis marina  CCMP1795  Sequencing  
Dinophyta  Symbiodinium kawagutii CCMP2468  Sequencing  
Euglenophyta  Eutreptiella gymnastica  NIES-381  Assembly & Annotation  
Haptophyta  Hyalolithus neolepis  TMR5  Sequencing  
Ochrophyta  Dinobryon sp. UTEXLB2267  Assembly & Annotation  
Ochrophyta Ochromonas sp. CCMP 1393 Assembly & Annotation 
Rhodophyta Rhodosorus marinus 769 Assembly & Annotation 
Source : from http://marinemicroeukaryotes.org/project_organisms 
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Table 2: Biopharmaceutical Proteins Expressed In Microalgae  
 
Gene 
expressed 

Function Host species and cell 
localization 

Expression level 
achieved 

Application Source 

HSV8-lsc Mammalian antibody Chlamydomonas 
reinhardtii, Chloroplast 

Detectable Pharmaceutical (Mayfield et al. 2003) 

CTB-VP1 Cholera toxin B subunit 
fused to foot and mouth 
disease VP1 

Chlamydomonas 
reinhardtii, Chloroplast 

3% TSP Vaccine (Sun et al. 2003) 

HSV8-scFv Classic single-chain 
antibody 

Chlamydomonas 
reinhardtii, Chloroplast 

0.5% TSP Pharmaceutical (Mayfield et al. 2005) 

hMT-2 Human 
metallothionine-2 

Chlamydomonas 
reinhardtii, Chloroplast 

Detectable Pharmaceutical, 
UV-protection 

(Zhang et al. 2006) 

hTRAIL Human tumor necrosis 
factor-related 
apoptosis-inducing 
ligand (TRAIL) 

Chlamydomonas 
reinhardtii, Chloroplast 

~0.67% TSP Pharmaceutical (Yang et al. 2006) 

M-SAA Bovine mammary-
associated serum 
amyloid 

Chlamydomonas 
reinhardtii, Chloroplast 

~5% TSP Therapeutics, 
oral delivery 

(Manuell et al. 2007) 

CSFV-E2 Swine fever virus E2 
viral protein 

Chlamydomonas 
reinhardtii, Chloroplast 

~2% TSP Vaccine (He et al. 2007) 

hGAD65 Diabetes-associated 
anutoantigen human 
glutamic acid 
decarboxylase 65 

Chlamydomonas 
reinhardtii, Chloroplast 

~0.3% TSP Diagnostics and 
therapeutics 

(Wang et al. 2008) 

83K7C Full-length IgG1 human 
monoclonal antibody 
against anthrax 
protective antigen 83 

Chlamydomonas 
reinhardtii, Chloroplast 

0.01% dry algal 
biomass 

Therapeutics (Tran et al. 2009b) 

IgG1 Murine and human 
antibodies (LC and HC) 

Chlamydomonas 
reinhardtii, Chloroplast 

Detectable Therapeutics (Tran et al. 2009b) 

VP28 White spot syndrome 
virus protein 28 

Chlamydomonas 
reinhardtii, Chloroplast 

~10.5% TSP Vaccine (Surzycki et al. 2009) 

CTB-D2 D2 fibronectin-binding 
domain of 
Staphylococcus aureus 
fused with the cholera 
toxin B subunit 

Chlamydomonas 
reinhardtii, Chloroplast 

0.7% TSP Oral vaccine (Dreesen et al. 2010) 

10NF3, 
14FN3 

Domains 10 and 14 of 
human fibronectin 

Chlamydomonas 
reinhardtii, Chloroplast 

14FN3: 3% TSP 
10FN3: detectable 

Therapeutics (Rasala et al. 2010) 

M-SAA-
Interferon 
β1 

Multiple sclerosis 
treatment fused to M-
SAA 

Chlamydomonas 
reinhardtii, Chloroplast 

Detectable Therapeutics (Rasala et al. 2010) 

Proinsulin Blood sugar level-
regulating hormone, 
type I diabetes 
treatment 

Chlamydomonas 
reinhardtii, Chloroplast 

Detectable Therapeutics (Rasala et al. 2010) 

VEGF Human vascular 
endothelial growth 
factor isoform 121 

Chlamydomonas 
reinhardtii, Chloroplast 

2% TSP Therapeutics (Rasala et al. 2010) 

HMGB1 High mobility group 
protein B1 

Chlamydomonas 
reinhardtii, Chloroplast 

2.5% TSP Therapeutics (Rasala et al. 2010) 

NP-1 Rabbit neutrophil 
peptide-1 

Chlorella ellipsoidea, 
nuclear 

Detectable Antimicrobial (Chen et al. 2001) 

ARS2-
crEpo-his6 

Human erythropoietin 
fused to ARS2 export 
sequence w/6xhis tag 

Chlamydomonas 
reinhardtii, Nuclear 

100 μg/L culture Pharmaceutical, 
protein export 

(Eichler-Stahlberg et 
al. 2009) 

CL4mAb 
and HBsAg 

Human antibody 
CL4mAB and the 
Hepatitis B surface 
antigen (HBsAg) 

Phaeodactylun 
tricornutum, Nuclear 

CL4mAb: 8.7% TSP 
HBsAg: 0.7% TSP 

Vaccine (Hempel et al. 2011b) 

mEPO 
 

Murine Erythropoietin Phaeodactylun 
tricornutum, Nuclear 

300 µg/L culture Therapeutics (Carlier A, 
unpublished work) 

Source: modified from Spetch et al. (2011). Recent successes in therapeutic protein 
production in algae. 
TSP: Total Soluble Proteins 
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Table 3: Promoter Used For Microalgae Genetic Transformation  
 

Host species of Microalgae Promoter of gene and its product 
Cell 
expression 
localization 

Source of promoter Source 

Chlamydomonas 
reinhardtii 

arg7, arginosuccinate lyase Nuclear Chlamydomonas reinhardtii (Debuchy, 1989) 

 35S, cauliflower mosaic virus 35S Nuclear Cauliflower mosaic virus {Brown, 1991) 
(Tang et al., 1995) 
(Kumar et al., 2004) 

 RbcS2, rubisco small subunit 2 Nuclear Chlamydomonas reinhardtii (Auchincloss et al., 1999) 
(Fuhrmann et al., 1999) 
(Sizova et al., 2001) 
(Stevens et al., 1996) 
(Nelson and Lefebvre, 
1995) 
(Kovar et al., 2002) 
(Cerutti et al., 1997) 
(Cordero, 2011) 

 HSP70, heat shock protein 70 (fused 
to other promoter) 

Nuclear Chlamydomonas reinhardtii (Schroda et al., 2000) 
(Eichler-Stahlberg et al., 
2009) 

 Nos, nopaline synthase Nuclear Agrobacterium tumefaciens (Hall et al., 1993) 

 Nit1, nitrate assimilation 1 Nuclear Chlamydomonas reinhardtii (Ohresser et al., 1997) 
(Llamas et al., 2002) 

 Cop, chlamyopsin Nuclear Chlamydomonas reinhardtii (Fuhrmann et al., 1999) 

 TubA1, alpha-tubulin Nuclear Chlamydomonas reinhardtii (Kozminski et al., 1993) 

 β2-tubulin Nuclear Chlamydomonas reinhardtii (Blankenship and Kindle, 
1992) 
(Berthold et al., 2002) 

 CabII-1, chlorophyl-ab binding Nuclear Chlamydomonas reinhardtii (Blankenship and Kindle, 
1992) 

 pcy1, plastocyanin Nuclear Chlamydomonas reinhardtii (Quinn and Merchant, 
1995) 

 atpC, gamma-subunit of chloroplast 
ATPase 

Nuclear Chlamydomonas reinhardtii (Quinn and Merchant, 
1995) 

 psaD, photosystem I complex 
protein 

Nuclear Chlamydomonas reinhardtii (Fischer and Rochaix, 
2001) 

 atpA, alpha subunit of adenosine 
triphosphate 

Chloroplast Chlamydomonas reinhardtii (Sun et al., 2003) 

 psbD, photosystem II D1 Chloroplast Chlamydomonas reinhardtii (Manuell et al., 2007) 

 RbcL, ribulose bisphosphate 
carboxylase large subunit 

Chloroplast Chlamydomonas reinhardtii (Dreesen et al., 2010) 

 psbA, photosystem II psbA Chloroplast Chlamydomonas reinhardtii (Rasala et al., 2011b) 

Dunaliella salina Ubi1- Ω, ubiquitin-Ω Nuclear Zea mais (Geng et al., 2003) 

 35S, cauliflower mosaic virus 35S Nuclear Cauliflower mosaic virus (Tan et al., 2005) 
(Sun et al., 2005) 
(Feng et al., 2009) 
(Wang et al., 2007b) 

 NR, Nitrate reductase  Nuclear Dunaliella salina (Li et al., 2007) 
(Li et al., 2008a)  

 RbcS2, rubisco small subunit  Nuclear Dunaliella salina (Sun et al., 2005) 

Dunaliella bardawil 35S, cauliflower mosaic virus 35S Nuclear Cauliflower mosaic virus (Anila et al., 2011)  

Chlorella ellipsoida 35S, cauliflower mosaic virus 35S Nuclear Cauliflower mosaic virus (Jarvis and Brown, 1991)  

 Ubi1- Ω, ubiquitin-Ω Nuclear Zea mais (Chen et al., 2001) 
 RbcS2, rubisco small subunit 2 Nuclear Chlamydomonas reinhardtii (Kim et al., 2002) 

Chlorella sorokiniana NR, nitrate reductase Nuclear Chlorella sp. (Dawson, 1997) 
Chlorella vulgaris 35S, cauliflower mosaic virus 35S Nuclear Cauliflower mosaic virus (Cha et al., 2011b) 

(Chow and Tung, 1997) 
(Chow and Tung, 1999) 
(Wang et al., 2007a) 

 NR, nitrate reductase Nuclear Phaeodactylum tricornutum (Niu et al., 2011) 

Platymonas subcodiformis 
(Tetraselmis) 

CMV, cytomegalovirus Nuclear Cytomegalovirus (Cui et al., 2010) 
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Nannochloropsis sp HSP70, heat shock protein 70 / 
RbcS2, rubisco small subunit 2 
 

Nuclear Chlamydomonas reinhardtii (Chen et al., 2008) 
(Li and Tsai, 2008b) 

 
 

35S, cauliflower mosaic virus 35S Nuclear Cauliflower mosaic virus (Cha et al., 2011a) 

 VCP, violaxanthin/chlorophyl 
binding protein 

Nuclear Nannochloropsis sp (Kilian et al., 2011) 

Haematococcus pluvialis SV40, simian virus Nuclear simian virus (Teng et al., 2002) 

 pds, phytoene desaturase   Haematococcus pluvialis (Steinbrenner and 
Sandmann, 2006) 

 35S, cauliflower mosaic virus 35S Nuclear Cauliflower mosaic virus (Kathiresan et al., 2009)  

Volvox carteri NR, nitrate reductase Nuclear Volvox carteri (Schiedlmeier et al., 1994)  

Gonium pectorale psD, photosystem I complex protein 
/ HSP70, heat shock protein 70 

 Chlamydomonas reinhardtii (Lerche and hallmann, 
2009)  

Closterium peracerosum-
strigosum litorrale 

HSP70 heat shock protein 70 / Cab, 
chlorophyl-ab binding Ch a/b-
binding protein  

 Closterium peracerosum-
strigosum litorrale 

(Abe et al., 2008) 
(Abe et al., 2011)  

Lotharella amoebiformis RbcS2, rubisco small subunit 2 Nuclear Lotharella amoebiformis (Hirakawa et al., 2008)  

Cyclotella criptyca Acc1, acetylCoA carboxylase  Nuclear Cyclotella criptyca (Dunahay et al., 1995)  
Navicula saprophila Acc1, acetylCoA carboxylase Nuclear Cyclotella criptyca (Dunahay et al., 1995)  
Phaeodactylum 
tricornutum 

fcpA/B/C/E, fucoxanthin chlorophyll Nuclear Phaeodactylum tricornutum (Apt et al., 1996) 

 fcpF, fucoxanthin chlorophyll Nuclear Phaeodactylum tricornutum (Falciatore et al., 1999)  
 fcpA, fucoxanthin chlorophyll Nuclear Phaeodactylum tricornutum (Zaslavskaia et al., 2000) 

 cah, carbonic anyhdrase  Nuclear Phaeodactylum tricornutum (Harada and Matsuda, 
2005) 

 CMV, cytomegalovirus; PRSV-LTR, 
rous sarcoma virus; 35S, cauliflower 
mosaic virus 35S 

Nuclear Cytomegalovirus; Rous 
sarcoma virus; Cauliflower 
mosaic virus 

(Sakaue et al., 2008) 

 fcpA, fucoxanthin chlorophyll Nuclear Phaeodactylum tricornutum (Coesel et al., 2009) 

 fcp, fucoxanthin chlorophyll and NR, 
nitrate reductase 

Nuclear Cylindrotheca fusiformis (Miyagawa et al., 2009) 

Cylindrotheca fusiformis Pδ, frustulin α3  Nuclear Cylindrotheca fusiformis (Fischer et al., 1999)  
 NR, nitrate reductase  Nuclear Cylindrotheca fusiformis (Poulsen and Kroger, 2005)  
Thalassiosira pseudonana fcp, fucoxanthin chlorophyll Nuclear Thalassiosira pseudonana (Poulsen et al., 2006)  

Thalassiosira weissflogii fcpB, fucoxanthin chlorophyll Nuclear Thalassiosira pseudonana (Falciatore et al., 1999)  

Chaetoceros sp. pTpNR (nitrate reductase de 
Thallassiosira psudomana) 

Nuclear Thalassiosira pseudonana (Miyagawa-Yamaguchi et 
al., 2011) 

Amphidinium spp. 
Symbiodinium 
microadriaticum 

35S, cauliflower mosaic virus 35S Nuclear Cauliflower mosaic virus (ten Lohuis and Miller, 
1998) 

Cyanidioschyzon merolae UMP synthase Nuclear Cyanidioschyzon merolae (Minoda et al., 2004)  
 β-tubulin Nuclear Cyanidioschyzon merolae (Ohnuma et al., 2008) 
 cat, catalase Nuclear Cyanidioschyzon merolae (Ohnuma et al., 2009)  
 apcC, phycocyanin-associated 

protein 
Nuclear Cyanidioschyzon merolae (Watanabe et al., 2011) 

Porphyidium sp. AHAS, acetohydroxyacid synthase Nuclear Porphyidium sp. (Lapidot et al., 2002) 

Euglena gracilis psbA, photosystem II complex 
protein 

Chloroplast Euglena gracilis (Doetsch et al., 2001) 

 
 
 
 
 
 
 
 


