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Abstract:  
 
Catch curves are widely used to estimate total mortality for exploited marine populations. The usual 
population dynamics model assumes constant recruitment across years and constant total mortality. 
We extend this to include annual recruitment and annual total mortality. Recruitment is treated as an 
uncorrelated random effect, while total mortality is modelled by a random walk. Data requirements are 
minimal as only proportions-at-age and total catches are needed. We obtain the effective sample size 
for aggregated proportion-at-age data based on fitting Dirichlet-multinomial distributions to the raw 
sampling data. Parameter estimation is carried out by approximate likelihood. We use simulations to 
study parameter estimability and estimation bias of four model versions, including models treating 
mortality as fixed effects and misspecified models. All model versions were, in general, estimable, 
though for certain parameter values or replicate runs they were not. Relative estimation bias of final 
year total mortalities and depletion rates were lower for the proposed random effects model compared 
with the fixed effects version for total mortality. The model is demonstrated for the case of blue ling 
(Molva dypterygia) to the west of the British Isles for the period 1988 to 2011. 
 
 
Résumé:  
 
Les courbes des captures sont largement utilisées pour estimer la mortalité totale des populations 
marines exploitées. Le modèle de dynamique de population habituel suppose un recrutement et une 
mortalité totale constants au cours des années. Nous développons ce modèle pour y inclure un 
recrutement et une mortalité totale variables entre années. Le recrutement est traité comme un effet 
aléatoire non corrélé tandis que la mortalité totale est traitée comme une marche aléatoire. Les 
besoins en données sont minimaux car seules les proprotions aux âges et les captures totales sont 
nécessaires. La taille effective de l’échantillon des données agrégées de proportion aux âges est 
obtenue en ajustant une distribution Dirichlet-multinomiale aux données brutes d’échantillonnage. 
L’estimation des paramètres est réalisées par vraisemblance. Des simulations ont été utilisées pour 
étudier l’estimabilité des paramètres et les biais d’estimation de quatre versions du modèle, dont des 
modèles traitant la mortalité comme des effets fixes et des modèles avec hypothèses fausses. Toutes 
les versions du modèle étaient en général estimables sauf pour certaines valeurs de paramètres ou 
certaines réalisations. Les biais relatif de l’estimation de la mortalité totale de la dernière année et du 
taux de réduction de la population étaient plus faibles pour le modèle à effet aléatoire proposé que 
pour les versions à effets fixes pour la mortalité totale. Une application du modèle à la lingue bleue 
(Molva dypterygia) de l’Ouest des Îles Britanniques pour la période de 1988 à 2011 est présentée. 
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Introduction47

Fisheries stock assessments make use of a range of methods to obtain estimates of the48

status of exploited stocks which match the diversity of information available. Catch curves49

and year class curves have been part of the tool box from an early stage (Beverton and50

Holt 1957; Chapman and Roson 1960; Hilborn and Walters 1992). While catch curves51

use data from a single year, year class curves follow cohorts in time. Conditional on a52

few assumptions they allow to estimate total mortality Z of exploited populations based53

on only numbers or frequencies-at-age, commonly derived from commercial catch data,54

and the standard population dynamics model describing changes in numbers-at-age a,55

Na = Na�1 exp(�Z). The limited data requirements are probably responsible for their56

continuous use for data-poor stocks, but come at the price of strong assumptions. In the57

original catch curve formulation equilibrium conditions are assumed, i.e. recruitment and58

total mortality are assumed �xed during the range of ages and years considered and gear59

selectivity is constant across all considered age classes and years (Chapman and Robson60

1960). Consequently numbers at age from a single year are su¢ cient for estimation.61

Early on a range of estimators for Z were developed based on di¤erent statistical dis-62

tributional assumptions (Chapman and Robson 1960). These estimators have been shown63

to have di¤erent degrees of robustness in case of stochastic variability in recruitment, total64

mortality or age estimation (Dunn et al. 2002). Instead of investigating what happens65

when assumptions break down, several authors have extended the model to directly allow66

variations in recruitment, unequal selectivity across age or age varying mortality. For67

example, Cotter et al. (2007) introduced an age-dependent selectivity term and allowed68

recruitment to vary between years by using year class curves which are �tted by cohort69

to numbers- or proportions-at-age. They introduced a polynomial function for Z to allow70
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variation with time and/or age. The data used are catch per unit e¤ort per age (cpue);71

cpue per age and year are treated as independent. Schnute and Haigh (2007) also allowed72

varying recruitment. They did this by introducing additional parameters for ages (year73

classes) for which recruitment was much higher than some average value. In their model74

the user speci�es these age classes, e.g. age 3 and 5. The main parameter of interest re-75

mains total mortality Z, which is estimated for each annual catch curve (data set). This76

is somewhat inconsistent as it is assumed that total mortality is constant during the A77

preceding years corresponding to the A age classes considered. Schnute and Haigh (2007)78

also included age-speci�c selectivity. Using only group (aggregated age classes) compo-79

sition data they noted that not all parameters were estimable. Similarly, Wayte and80

Klaer (2010) accounted for selectivity changes with age and �tted the catch curve simul-81

taneously to several years of data assuming again constant mortality during that period.82

Finally, Thorson and Prager (2011) let natural mortality decrease with age in addition83

to increasing selectivity with age; they found the selectivity aspect was more important84

in their simulation study compared to natural mortality changes with age. Overall these85

recent catch curve developments have in common that total mortality is still assumed86

constant over some time period though other assumptions have been relaxed.87

In this manuscript we introduce a new class of models, called multi-year catch curves88

(MYCC) that allow both recruitment and total mortality to vary in time. MYCC com-89

bine the annual view of traditional catch curves and the cohort view of year class models90

and are formulated using the state space framework which includes both process and ob-91

servation error. As there are quite a number of parameters to be estimated, we add an92

additional data source, total catch in numbers and use random e¤ects to achieve parsi-93

monious models. Traditionally catch data has been augmented by e¤ort time series to94
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ensure parameter estimability, e.g. Paloheimo (1958), Deriso et al. (1985), Gudmunds-95

son (1986). However, �shing e¤ort is notoriously di¢ cult to estimate and its relationship96

with catches or �shing mortality is not necessarily linear, making it a di¢ cult data source.97

Therefore total catches were used here. Using random e¤ects leads however to the need98

to estimate the surplus variance in some way, which is rather di¢ cult. We propose to get99

a handle on this by binding the observation error variance via the e¤ective sample size of100

the multinomial distribution describing the aggregated observed catch numbers-at-age. A101

common characteristics of aggregated compositional data is that they are overdispersed102

with respect to a multinomial distribution. This leads to the notion of e¤ective sample size103

which corresponds to the sample size for which the variance in a multinomial distribution104

would be equal to the observed variance, e.g. Pennington et al. (2002). There are several105

reasons for the overdispersion in aggregated (catch) numbers-at-age: multi-level sampling106

such as from di¤erent hauls, seasons or vessels combined with schooling of similar sized107

�sh and seasonal di¤erences in spatial and depth distributions, and model misspeci�cation108

in the case of stock assessment models for which the multinomial distribution is assumed109

to describe the observation process, see review by Maunder (2011),; Hulson et al. (2011).110

Recently several authors have compared the performance of di¤erent methods for esti-111

mating the e¤ective sample size using simulations and real data (Candy 2008; Hulson et112

al. 2011; Maunder 2011). Maunder (2011) concluded that e¤ective samples size was only113

an issue if it was �ve times smaller or more than the actual sample. Fitting a Dirichlet114

distribution produced the least biased estimates of e¤ective sample size, though the dif-115

ference with the other three tested methods was rather small. Here we used the e¤ective116

sample size as a means to weigh numbers-at-age when aggregating them across samples,117

to calculate the e¤ective sample size for the aggregated data set and subsequently to bind118
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the observation error variance in the MYCC for the aggregated numbers-at-age data.119

The proposed MYCC is demonstrated for blue ling (Molva dypterygia) in the North-120

east Atlantic which is a deep-water species with a longevity similar to cod. Little data121

are available, in particular no systematic scienti�c survey is carried out and commercial122

�sheries derived data are therefore the main data source for stock assessment and man-123

agement (Lorance et al. 2010). The majority of catches are taken with bottom trawls124

primarily by French vessels (Lorance et al. 2010).125

The next section introduces the approach used for estimating e¤ective sample sizes of126

numbers-at-age samples for aggregating them prior to model �tting followed by an intro-127

duction to the MYCC model formulation. The salient features of MYCC are restricted128

data needs, only proportions-at-age and total catch numbers but no abundance indices129

nor e¤ort data are required, and the use of random e¤ects for total mortality and recruit-130

ment. Parameter estimability is then discussed and options for achieving it are studied131

by simulation. Finally the model is applied to the case of blue ling to obtain annual total132

mortality estimates.133

Materials and Methods134

Aggregation of correlated multinomial samples135

Numbers-at-age samples are either obtained directly by random sampling from the target136

population or by combining length-at-age samples with age-length keys. In the simplest137

case one sample per quarter is available for each data set. Considering numbers-at-138

age samples, the sample yi = (yi1; : : : yiA) is presumed to be drawn from a multinomial139

distribution with underlying probabilities pi = (pi1; : : : piA) for age class a = 1; : : : A,140
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and the vector pi to be drawn from a distribution with the same underlying means � =141

(�1; : : : �A) for all samples. As a result several numbers-at-age data sets form correlated142

multinomial samples. If the probabilities for each class come from a Dirichlet distribution,143

yi follows a Dirichlet-multinomial distribution. The Dirichlet-multinomial distribution is144

a compound multivariate distribution which has probability function145

P (Y1 = y1; : : : YA = yA) =
y+!

y1!:::yA!

AY
a=1

yaY
r=1

�a(1��)+(r�1)�

y+Y
r=1

1��+(r�1)�

(1)146

where y+ =
AX
a=1

ya is the total sample size and � the overdispersion parameter.147

To aggregate several numbers-at-age samples, the proportions-at-age of each data set148

are weighed by the inverse of their variance. This leads to the estimator of the mean149

proportions-at-age150

b�a =X
i

wi

�
yia
yi+

�
=
X
i

wi (2)151

where wi / 1=V [yia=yi+] ; i.e. the weight is proportional to the inverse of the variance152

of each sample proportion. From the Dirichlet-multinomial distribution and setting � =153

1=(1 + �) in the notation of Johnson et al. (1997)154

V [yia] = yi+�a(1� �a)(1 + (yi+ � 1)�) (3)155

and thus156

1=V [yia=yi+] = yi+(1 + (yi+ � 1)�)�1(�a(1� �a))�1 (4).157

Combining (2) and (4) provides the �nal estimator for the aggregated proportion-at-
158

age159

e�a =X
i

yi+ (1 + (yi+ � 1)�))�1 yia
yi+
=
X
i

yi+ (1 + (yi+ � 1)�))�1 =
X
i

emi
yia
yi+
=em (5)160

with emi = yi+ (1 + (yi+ � 1)�))�1 (6)161
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and em =
X
i

emi the overall e¤ective sample size.162

The aggregated sample for age a class is then simply eya = eme�a with V [eya] = eme�a(1�163

e�a). This means that the Dirichlet-multinomial distribution of the raw data y has the164

same mean and variance as the pure multinomial likelihood of the aggregated sample165

vector ey with sample size em.166

Applying the estimator in (5) assumes that the overdispersion parameter � is known.167

In reality it is unknown but can be estimated by maximum likelihood. For the case study168

the dirmult package in R (Twedebrink 2009) was used to �t the Dirichlet-multinomial169

distribution and estimate � by year.170

The above procedure of combining correlated multinomial data samples is generic and171

can be applied sequentially, e.g. to combine �rst several numbers-at-age samples from172

sampling di¤erent vessels in a given month and then aggregated samples from di¤erent173

months. The �nal e¤ective sample size of each stage is then used as input into the next174

stage. In the case of separate samples of numbers-at-length and age-length keys, samples175

of each type can be aggregated �rst before combining them into a single numbers-at-age176

data set which maintains the appropriate variance structure in the multinomial distri-177

bution via the �nal e¤ective sample size. This procedure is equivalent to the common178

practice of conditioning inferences on a point estimate of variance. In summary, aggregat-179

ing numbers-at-age or length-at-age samples prior to model �tting allows to externalize the180

propagation of sampling variance without confounding potential model misspeci�cation181

with the treatment of sampling uncertainty.182

Multi-year catch curves (MYCC)183

In MYCC population dynamics in numbers are modelled as184
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Na;t = Na�1;t�1e
�Zt�1 ar < a < A+ t = 1 : : : T (7)185

NA+;t = (NA+�1;t�1 +NA+;t�1)e
�Zt�1 t = 1 : : : T (8)186

where Na;t are population numbers at age a in year t, A+ is an age plus group and Zt187

are annual total mortality rates which are constant across ages. Recruitment at age ar is188

assumed to vary randomly over time following a log-normal distribution, similar to other189

authors, e.g. Deriso et al. (1985)190

Nar;t = Rt Rt � logN(log(�R); �R) t = 1 : : : T (9)191

where �
R
is the mean recruitment on the lognormal scale and �

R
the standard deviation192

on the base normal (log) scale. For ease of interpretation the coe¢ cient of variation193

(CV
R
) instead of �

R
is used making use of the fact that var(ln(x)) � ln(CV (x)2+1). As194

recruitment is a latent variable, it is treated as an uncorrelated random e¤ect.195

Annual total mortality Zt can either be modelled by T parameters, i.e. treating it as196

a �xed e¤ect or by a random e¤ect. In many circumstances a reasonable approach is to197

use a random walk as proposed by Gudmundsson (1986; 1994)198

Zt = Zt�1 + "t "t � N(0; �Z) t = 1 : : : T (10)199

The initial state vector Na;1 at the beginning of year t = 1 is de�ned assuming constant200

historic total mortality Z0 and variable recruitment for years t < 1201

Na;1 = e
(ar�a)Z0R1�a+ar ar < a < A+ (11)202

The initial number of �sh in the plus group NA+;1 is obtained by an in�nite sum over203

preceding years and assuming constant average recruitment during that period204

NA+;1 =
P1

t=A e
�(t�ar)Z0�R =

e(ar�A)Z0

1�e�Z0 �R (12)205
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The observation model has two parts, the �rst one for aggregated numbers-at-age206

eya;t (see previous section), which are assumed to follow a multinomial distribution eya;t �207

Multinom(pa;t; emt) similar to Deriso et al. (1985). The corresponding probability density208

function is209

f(eyart; : : : eyA+;t j part; : : : pA+;t) = emt!eyar;t!:::eyA+;t!(par;t)eyar;t : : : (pA+;t)eyA+;t ar � a � A+210

t = 1 : : : T (13)211

where pa;t = Na;t=
P
Na;t are population proportions-at-age and emt =

Peya;t is the212

sample size of the aggregated data in year t. An important implicit assumption is that213

selectivity is constant across ages and years.214

The second observation model is for the total catch Ct (in numbers) which is assumed215

to follow a Gamma distribution with parameters � and �216

Ct � Gamma(�; �) t = 1 : : : T (14)217

218

E [Ct] =
�
Zt�M
Zt

�
(1� e�Zt)

P
Na;t (15)219

where E[Ct] is the expected catch in numbers. M is natural mortality which is assumed220

constant over years and age classes. The coe¢ cient of variation (CVc) of the Gamma221

distribution is related to the � parameter as CV c = 1p
�
and � = �

E[Ct]
. As CVs are easier222

to handle, the model is parameterized in terms of CVc. The probability density function223

for total catch is therefore224

f(Ct j CVc; E [Ct]) =
�

1
E[Ct]CV c2

�1=CV c2
1

�(1=CV c2)
C
1=CV c2�1
t e�1=CV c

2
(16)225

where �() is the Gamma function.226
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Parameter estimation227

All model parameters 
 = (�R; CVR ; log(�Z); Z0;M) are estimated using maximum likeli-228

hood based on the observation vector d = (YaR;1; : : : ; YA+;T ;m1; : : : ;mT ; C1; : : : CT ) which229

has conditional density f
(d j u;v) where u = (R1; :::; RT ) is the vector of the latent ran-230

dom recruitment variable (eq. 9) with marginal density h
(u) and v = (Z1; :::; ZT�1) is
231

the total mortality random e¤ects variable (eq. 6) with marginal density g
(v).232

The marginal likelihood function is obtained by integrating out u and v from the joint233

density234

L(
) =
Z Z

f
(d j u;v) h
(u)g
(v)d(u)d(v) (17)235

The double integral in eq. 17 is evaluated using the Laplace approximation as im-236

plemented in the random e¤ects module of AD Model builder (Fournier et al. 2012)237

described in Skaug and Fournier (2006). AD Model builder automatically calculates stan-238

dard deviations of estimates based on the observed Fisher Information matrix.239

Estimability of MYCC parameters240

Depending on the data set not all MYCC parameters might be estimable which manifests241

itself by certain parameter estimates lying on the boundary imposed during the estima-242

tion process or the non-convergence of the estimation procedure. The main options for243

ensuring parameter estimability are to �x certain parameters, i.e. treat them as constants,244

reparameterize the model or a combination of both.245

Depending on the application, for certain parameters it might be easy to identify246

suitable values to treat them as constant. One set of parameters easy to �x might be the247

total catch observation error CVc and historical total mortality Z0 (eq. 12), which could248

be set equal to natural mortality M if the data starts from the beginning of the �shery249
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and some reasonable estimate of M were available. If an estimate of M is available it can250

be assumed constant in eq. 15.251

Simulation studies252

Two simulation studies were carried out to (i) explore the estimability of model parame-253

ters for model variants and (ii) evaluate the robustness to model misspeci�cation. The254

following two models were compared in both studies:255

RE-Z model: Z random e¤ect (4 parameters)256

RE-Z & M model: Z as random e¤ect plus M estimated (5 parameters)257

In addition, in simulations study 1 the performance of the random walk formulation258

for total mortality was compared with the more traditional �xed e¤ect approach in which259

each Zt is a separate independent parameter using the two models260

FE-Z model: Z �xed e¤ect (2 + # years-1 parameters)261

FE-Z & M model: Z �xed e¤ect plus M estimated (3 + # years-1 parameters)262

Design263

Simulation study 1264

To evaluate MYCC parameter estimability, the true population and the observation data265

(numbers-at-age and total catches) were simulated using the MYCC model and a full fac-266

torial design for four parameters, keeping natural mortality M and mean recruitment �
R

267

constant (see Table 1). For each model parameter combination, two values for the number268

of ages (A+�ar+1), number of years T and aggregated sample sizemt, i.e. not simulating269

the sample aggregation process, were used. This lead to 32 distinct combinations (using270
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the same for the two aggregated sample sizes). In each case 50 replicate data sets were271

created and the four model variants were �tted. Model performance was compared using272

the percentage of estimable replicates, i.e. no parameter estimates lying on the bound-273

aries (see Table 1) and overall convergence, and relative estimation error (obs-true)/true274

of total mortality in the �nal year ZT and of the population depletion rate NT=N1: To275

investigate the impact of parameter values on parameter estimability and relative errors,276

regression tree analyses were carried out. Interquartile ranges across replicates were also277

calculated for the two relative estimation errors.278

Simulation study 2279

To evaluate the e¤ects of model misspeci�cation, three scenarios were compared. In the280

"Base" scenario the simulation model is the same as estimation model. In the "Rdec"281

scenario, mean recruitment �
R
decreases linearly over time, and �nally in the "Sel" sce-282

nario selectivity for the numbers-at-age data is not constant but increasing for �rst two283

ages classes. The true populations were simulated using the parameters estimated for284

blue ling below (setting ar = 1; A+ = 11; T = 24), but without any missing data. Sample285

size for numbers-at-age was set to mt = 300 for all years. For scenario "R-dec", �R was286

linearly reduced to 20% of the starting value at the end of the time period. For scenario287

"Sel", selectivity for numbers-at-age was set to 0.5 for the �rst age and 0.8 for the second,288

i.e. ySel1;t = 0:5y1;t and y
Sel
2;t = 0:8y2;t. For each scenario 50 replicate data sets were created289

and the two MYCC model variants were �tted. Model performance was compared using290

the percentage of estimable replicates, i.e. no parameter estimates lying on the bound-291

aries (see Table 1) and overall convergence, and relative estimation errors for annual total292

mortality Zt and total abundance Nt:293
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Simulation results294

Simulation study 1295

The two values used for the sample size mt in the observation model (eq. 13) did not lead296

to di¤erent results so results are only shown for mt = 400. The proportion of simulation297

runs leading to all parameters being estimable ranged from 24 to 100% depending on298

the parameter set (Figure 1, Table 2). Estimating natural mortality reduced parameter299

estimability for both the random e¤ects (RE-Z) and �xed e¤ects (FE-Z) model versions.300

On average �xed e¤ects model had a slightly higher parameter estimability in the case of301

FE-Z model runs but lower when M was also estimated in the FE-Z & M model (Table302

2). In a few cases parameter estimates ended up on the boundary. In the RE-Z models303

the parameters to hit the lower boundary were Z0 and M . In the FE-Z models it was304

Z0; M and CVR (Table 2).305

The regression tree analysis showed that the most important parameter in terms of306

parameter estimability was the variance of the Z random walk, here log(�Z), for which307

cases with small value (-3) lead to more replicates with all parameters being estimable308

compared to those simulated with a large value (-1); the second in�uential parameter was309

the length of the time series T (Figure 2). The value of Z0 played a role when estimating310

natural mortality in the RE-Z model with smaller Z0 values leading to more replicate311

runs with all model parameters being estimable. For the FE-Z & M model it was the312

length of the time series T rather than Z0 that explained parameter estimability (higher313

proportion of estimability for longer times series).314

Final year estimates for total mortality ZT and the depletion rate were estimated315

without bias in general for all parameter sets and model variants which can be seen from316
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the fact that the interquartile range across the 50 replicates all included 0 (Figure 3).317

However, for certain parameter combinations large negative bias in ZT and positive bias318

in the depletion rate were observed in particular for the two �xed e¤ect model variants.319

Using Spearmans rank correlation test (e.g. Conover 1971) a negative correlation between320

the relative bias of the two quantities was found(p<0.0001). Inspection of the relative321

errors con�rmed that random e¤ect models lead to smaller bias in ZT ; relative bias was322

also smaller for simulation sets with smaller interannual variability in Z. No systematic323

parameter value e¤ect was found for the relative bias of the population depletion rate.324

Simulation study 2325

The percentage of estimable model runs for the two scenarios with model misspeci�cation326

did no di¤er much from the base runs where the simulation model and the estimation327

models were identical (Table 2, �nal columns). In terms of relative estimation errors,328

halving mean recruitment over time (Rdec scenario) or assuming an increasing selectivity329

with age (Sel scenario) both lead to overestimation of total mortality, with increasing330

errors over time (Figure 4, left column) while the estimation error in total abundance was331

negative (Figure 4, right column). Overall relative estimation errors were larger for the332

Rdec scenario compared to the Sel scenario while estimates for the Base scenario were333

unbiased on average for total abundance (Figure 34b) and becoming slightly positively334

biased for total mortality at the end of the time period (Figure 4a).335
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Application to blue ling336

Data337

Three data sets were available for blue ling; all three come from commercial �shing op-338

erations. The �rst data set consists of annual international landings in weight for the339

area to the north and west of the British Isles (ICES subareas VI and VII, ICES divi-340

sion Vb) for the years 1966 to 2010. The second data set are numbers per 1-cm length341

group (length-frequency data set) per quarter from harbour sampling of French landings342

(1984-2010, no data in 1986 and 87). The third data set are proportions of ages-at-size343

(so called age-length keys) per quarter for the years 1991, 1992, 1993, 1994, 2009, and344

2010, and on an annual basis for 1988 and 1995; again for samples from French landings345

only. Though blue ling exhibit sexual dimorphism with females growing larger, no sex346

information was available so both sexes had to be treated together.347

Total annual landings in numbers were calculated by dividing landings in weight by348

the mean individual weight and multiplying by the proportion in weight of individuals349

aged 9 and older, corresponding to the age range considered here. Mean individual weight350

was calculated from the length-frequency data set by �rst transforming length into weight351

(in gram) using the relationship W = 0:00191 � L3:14882 (Dorel 1986) and then averaging352

across individuals. The annual proportion of individuals older than 9 years in the landings353

was estimated from the length-frequency data set assuming a mean size for age 9 of 84354

cm, which in turn was derived by combining length-frequency data with the age-length355

keys.356

To obtain proportions-at-age, quarterly age-length keys were �rst multiplied by quar-357

terly numbers per length class from the length-frequency data set and scaled to the sample358
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size of the age length key; 5 cm length classes were used for this calculation. Then separate359

Dirichlet distributions were �tted to each annual set of quarterly numbers per age group360

and their e¤ective sample size was estimated. Quarterly data sets were aggregated to an361

annual proportions-at-age data set as weighted average of quarterly values with e¤ective362

sample size as weighing factor (see methods section). The annual aggregated sample size363

is the sum of quarterly e¤ective sample sizes.364

The RE-Z and RE-Z &Mmodels were then �tted for the period 1988 to 2011 using the365

prepared annual aggregated proportions-at-age with the estimated aggregated sample sizes366

and total landings in numbers. Catch uncertainty was set to CVC = 0:02, thus assuming367

transformed landings were reliable estimates of catch numbers. For natural mortality368

in the RE-Z model values of M = (0:16; 0:17; 0:18) were tested. The upper value of369

0.18 was obtained using Pauly�s empirical formula (Pauly 1980) with growth parameters370

K = 0:152 and L1 = 125 estimated for both sexes combined by Ehrich and Reinsch371

(1985). Residuals were examined to investigate model �t and the number of positive372

eigenvalues of the Hessian matrix at the maximum likelihood was checked to determine373

parameter identi�ability. As the FE-Z models did not provide reliable estimates, no results374

are presented.375

Results376

Initial analyses377

International blue ling landings reached their all time high in the late 1970 and decreased378

thereafter (Figure 5a). Mean individual weight in landings decreased from 1984 to the late379

1990s, and more or less stabilized thereafter (Figure 5b). Years with low mean weight,380

e.g. 1998 and 2007, probably indicate strong recruitment. The proportion of individuals381
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>9 years in the landings followed the same time trend as mean weight (Figure 5b).382

Proportions-at-age per quarter varied over time, with a higher proportion of older383

individuals earlier in the time series (Figure 6). For the analysis the model and data were384

restricted to the fully recruited age classes assumed to be from age 9 onwards based on385

visual inspection of �gure 6. Further, ages >19 years were grouped into a 19+ group.386

Annual e¤ective sample size of numbers-at-age data sets obtained by �tting Dirichlet-387

multinomial distributions and aggregating data across quarters ranged from 130 to 458388

which corresponds to 21 to 60% of the raw data (Table 3).389

Model results390

All four model parameters, �
R
; CVR; Z0 and log(�Z) were estimable for the RE-Z model391

butM was not estimable in the RE-Z & M model; the value ofM was driven to the lower392

boundary (close to zero) during the estimation process. No convergence was achieved in393

the run using M = 0:16: When comparing the run with M = 0:18 to that with 0:17 a394

slightly larger likelihood was achieved for the later case. Therefore only results from the395

RE-Z �t with M = 0:17 are presented. The precision of estimated model parameters396

ranged from a coe¢ cient of variation of 0.07 to 0.2 (Table 4).397

Inspection of the posterior modes of the estimated random e¤ects for total mortality398

(Figure 7a) and recruitment (Figure 7b) revealed no major deviations from assumptions.399

There was little evidence of autocorrelation in the residuals of total landings or any other400

pattern (Figure 7c); predicted landings were linearly related to observed total landings401

(Figure 7d). Residuals for proportions-at-age showed no year e¤ect but a slight age e¤ect402

with younger ages having more positive residuals and older ones more negative (Figure403

7e). Predicted and observed proportions-at-age showed good agreement with slightly404
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increasing di¤erences as proportions increased (Figure 7f).405

The estimated total mortalities started from 0.36 in the late 1980s, reached a peak406

of 0.56 around 2002 and decreased since then to Z2010 = 0:26 in 2010 (Figure 8). Total407

stock abundance for age 9+ decreased during the �rst half of the period coinciding with408

high �shing mortalities (assuming constant M) and increased slightly since about 2004.409

Recruit estimates (age 9) were highly variable over time and signi�cantly autocorrelated410

(R(1) = 0:51). The uncertainty of estimated total mortality was highest during 1996-411

2005, which corresponds to the period with no proportion-at-age data available but only412

total landings, while estimates of Z for 2006-2008 were somewhat more precise despite413

also a lack of proportions-at-age data.414

Interpretation for blue ling415

All parameters except natural mortality were estimable for blue ling despite the large416

data gap in the available proportions-at-age data. Natural mortality was set toM = 0:17417

for the �nal estimates which is smaller than the average estimated �shing mortality of418

0:22 for the period 1988 to 2010 obtained when subtracting M from the estimated total419

mortality values. However it is much larger than the estimated �shing mortality for 2010420

(F2010 = 0:093) for ages 9 years and older.421

Aggregated sample sizes for the blue ling number-per-age data sets were less than422

half the nominal sample size in most years; the large number of age classes might have423

contributed to this. Given these values and judging from the results obtained by Maunder424

(2011), e¤ective sample size might not have been a big issue for blue ling. Also, little425

di¤erences were found in the simulation study when values of 50 and 400 were compared.426

Blue ling appear in commercial landings from about age 6, though their importance427
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increases for up to age 9 (Figure 5). The main factor for this is probably a lack of428

availability rather than trawl selectivity. Young blue ling (�6 years) have been reported429

in very small numbers only in surveys using small mesh trawls in the study area to the west430

of the British Isles (Bridger 1978; Ehrich 1983; Gordon and Hunter 1994). Further, these431

small individuals may belong to the closely related Molva macrophthalma, which was not432

considered as a separated species in the past (Whitehead et al. 1986). The only known433

nursery area for blue ling is located in Icelandic waters with probably some juveniles434

also occurring in Faroese waters, where blue ling below 30 cm have been caught in small435

numbers (Magnússon et al. 1997; Magnussen 2007). Juveniles blue ling are not known to436

occur to the west of the British Isles (F. Neat, personal communication, Marine Scotland-437

Science, Aberdeen, United Kingdom, 2011). As a consequence estimated recruitment438

also includes movement to the area the �sheries is operating in. Given that few young439

individuals are caught by the blue ling �shery, discards are minor or inexistent (ICES440

2011) and consequently landings correspond to catches. Taking these elements together441

means that assuming constant catchability and selectivity of blue ling from age 9 by the442

commercial �shery and non age-speci�c total mortality beyond age 9 was reasonable. If443

however selectivity increased with age, the results of the second simulation study suggested444

that total mortality could be overestimated and total abundance underestimated. In445

terms of management this would mean that mortality and abundance estimates should446

be conservative.447

The time series for total mortality estimates for blue ling aged 9 years to 19+ was448

found to be dome shaped with values around 0.6 in the early 2000s. Thus the management449

measures that were implemented from 2003 seemed to have been e¤ective in that estimated450

total mortality started to decline and total abundance to increase from about 2005. Using451
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haul by haul landings and e¤ort data Lorance et al. (2011) derived an abundance index for452

blue ling in the same area which was stable from 2000-2007 and then increased generally in453

agreement with the current estimates for a much longer period. Total mortality estimates454

have been used in harvest control rules for managing relatively data-poor stocks (Wayte455

and Klaer 2010). The next step would now be to test harvest control rules for blue ling456

based on Zt estimates.457

Discussion458

The proposed MYCC model is a statistical catch-at-age model similar to those that have459

been in use in stock assessments for decades, e.g.Paloheimo (1958), Doubleday (1976),460

and Deriso et al. (1985). It adopts a time series approach as pioneered by Gudmundsson461

(1994). Contrary to many traditional approaches, parameter estimation is by maximum462

likelihood and both process and observation errors are implemented in a state-space ap-463

proach. A parsimonious formulation is achieved by using random e¤ects, an approach464

which is increasingly being used in �sheries stock assessment models e.g. Fryer (2002),465

Trenkel (2008), and Nielsen (2009). Random e¤ects have the advantage of being able466

to handle missing years of data and o¤er an appropriate way for dealing with latent467

variables such as recruitment and mortality. However, they come with the challenge of468

having to estimate a number of di¤erent variances. We mastered this challenge by setting469

the sample size of proportions-at-age data to appropriate values obtained externally by470

�tting Dirichlet-multinomial distributions before aggregating across samples and �xing471

(somewhat arbitrarily) the coe¢ cient of variation for total catches. Depending on the472

application it might also be possible to use knowledge and common sense to �x one of the473

random e¤ects variances, i.e. for recruitment or total mortality.474
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As shown by the �rst simulation study all MYCC model parameters were estimable475

in principle though natural mortality M was the most di¢ cult to estimate. The overall476

failure rate was increased from 11 to 35% whenM was tried to be estimated. This failure477

rate is comparable to what has been found for other age-structured models (Magnusson478

and Hilborn 2007) and indicates that M might have to be �xed in practical applications;479

indeed this was the case here for blue ling.480

The most important factor a¤ecting parameter estimability was the value of the stan-481

dard deviation of the total mortality random walk (log(�Z)) determining the interannual482

variability in total mortality if natural mortality was assumed known and historic total483

mortality Z0 when M was also estimated. Small values of Z0, implying a larger ratio of484

M=Z0 lead to higher estimability of M . Time series length was the second (third when485

M was estimated) most important factor. The model versions with �xed e¤ects for total486

mortality (but keeping a random e¤ect for recruitment) were generally equally estimable,487

though the dependence on the particular parameter value set was somewhat stronger.488

For longer time series (T=20) the interannual variability of simulated Zt values was the489

most important factor, with smaller values increasing parameter estimability. In terms of490

relative estimation errors of model outputs of interest, RE-Z models had smaller relative491

errors compared to FE-Z models. Hence there seems to be an advantage in using the ran-492

dom walk formulation for total mortality. However, the suitable model for total mortality,493

random walk or �xed e¤ect, will depend on the particular application. A �sheries closure494

might preclude the use of the random walk approach unless an explanatory variable is495

introduced which models the step change in mean �shing mortality. If ignored a step496

change in a variable that is modelled by a random walk will lead to estimates exhibiting497

a time delay. This time delay was found by Mesnil et al. (2009) for a biomass model with498
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a random e¤ect for biomass growth when survey catchability was increased step wise.499

In terms of parameters, log(�Z) impacted total mortality estimates in the �nal year ZT500

but not population depletion rate estimates. Relative bias of depletion rate estimates501

was generally higher than for ZT and both very negatively correlated. No other factor502

was found to be important, neither the length of the times series, nor the number of age503

classes or the sample size for numbers at age (here e¤ective sample size); these factors504

have been found to impact bias of �shing mortality estimates in a simulation study using505

the Stock Synthesis model (Yin and Sampson 2004). The objective of the �rst simulation506

study was to study parameter estimability. Testing the robustness of the method in the507

face of model misspeci�cation or biased observations was the objective of the second sim-508

ulation study. It showed that decreasing recruitment or increasing selectivity will indeed509

lead to positively biased total mortality and negatively biased total abundance estimates.510

The degree of bias will of course depend on the misspeci�cation scenario. The second511

simulation study only provides a �rst evaluation. Full exploration of the misspeci�cation512

issue would require setting up simulation studies where the data are simulated with an513

operating and observation model which are not identical to the estimation model. This514

robustness testing and comparison is common practice in �sheries science (e.g. Mesnil et515

al. 2009) and a logical next step for evaluating the proposed method. However, as there516

are a wide range of possibilities, case speci�c simulation tests need to be set up.517

Contrary to many routinely used assessment methods such as virtual population analy-518

sis (VPA) derived methods, total catches are not assumed to be known with certainty in519

MYCC. Further, no survey abundance index is required nor any other cpue tuning series520

which avoids the need for notoriously di¢ cult to estimate e¤ort time series and assump-521

tions about the relationship between cpue and abundance which for many species has522

24



been found to be non-linear (Harley et al. 2001). Trends in �shing e¤ort have been found523

to lead to biased stock abundance and mortality estimates (Dickey-Collas et al. 2010). Of524

course, if available survey data should always be used. The proposed MYCC �lls the gap525

of methods applicable in situations with no survey data. This is commonly the case for526

deep-water species exploited on the continental shelf in European waters. As illustrated527

with the blue ling example missing data are easily handled.528

The price to pay for limited data requirements are assumptions regarding the repre-529

sentativeness of the available proportions-at-age information, recruitment dynamics and530

total mortality being constant across the considered age classes. The appropriateness531

of these assumptions might depend on the particular stock. Selectivity and catchability532

varying strongly with age would clearly invalidate the �rst assumption as would large533

unknown discards of certain age classes. The approach adopted here for the blue ling case534

study was to only model the population from an age where individuals can be assumed535

fully recruited to the trawl �shery and hence proportions-at-age in the landings would be536

representative of the population.537

In conclusion, we expect MYCC to �ll the gap in the stock assessment toolbox for538

cases with no �sheries independent survey or �shing e¤ort data but reliable information539

on proportions-at-age and total catches. The use of random e¤ects make MYCC suitable540

for missing data situations. To take account of particular life history traits or particular541

�shing histories (closures, etc.) case speci�c model variants could be developed that make542

use of auxilliary information indicating total mortality or recruitment changes.543
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Tables649

Table 1. Model parameters, value used for simulation study and boundary values for650

estimation (min; max). Parameter set numbers with given values are provided in last651

column. CV coe¢ cient of variation�652
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Parameter Description Eq. Value Bounds Parameter sets

T number of

years

7-15 10 1-4, 9-12, 17-20, 25-28

2 5-8, 13-16, 21-24, 29-32

A number of

ages

7-15 3 1,2, 5, 6, 9, 10, 13, 14, 17,

18, 21, 22,25, 26, 29, 30

10 3, 4, 7, 8, 11, 12, 15, 16, 19,

20, 23, 24, 27,28, 31, 32

�
R

mean recruit-

ment

9 150 [1,109] 1-32

CVR CV recruit-

ment

9 0.4 [0.01,3] 1-16

0.8 17-32

log(�Z ) log(std.

dev.) total

mortality

10 -3 [-4,50] 1-8, 17-24

-1 9-16, 25-32

Z0 historic total

mortality

8 0.4 [0.01,2] 1, 3, 5, 7, 9, 11, 13, 15,17,

19, 21, 23, 25, 27, 29, 31

0.8 2, 4, 6, 8, 10, 12, 14, 16, 18,

20, 22, 24,26, 28, 30, 32

CVc CV total

catch

15 0.02 �xed 1-32

M natural mor-

tality

15 0.2 [0.001,2] 1-32

653
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Table 2. Percentage of simulation runs in which the parameter hit the boundary and654

overall percentage of simulations runs in which all parameters were estimable (not on655

bounds and convergence). c not estimated.656

Model Parameter on boundary (%) Estimable runs (%)

Simulation study 1 Simulation study 2

�
R

CVR Z0 log(�Z) Zt M mt=50 mt=400 Base Rdec Sel

RE-Z 0 0 0 0 - c 89 89 48 41 44

RE-Z & M 0 0 0.1 0 - 22.1 65 65 50 26 30

FE-Z 0 2.5 0.3 - 0.2 c 97 97 - - -

FE-Z & M 0 1.8 18.3 - 0 22.2 59 59 - - -

657

34



Table 3. Raw and aggregated sample size ey+ for annual numbers-at-age data for blue658

ling. Raw sample size corresponds to sum of individuals in quarterly age-length keys.659

Year Raw y+ Aggregated ey+ Ratio

1988 295 155 0.52

1991 283 124 0.44

1992 1310 458 0.35

1993 918 352 0.38

1994 633 377 0.6

1995 643 226 0.35

2009 558 214 0.38

2010 615 130 0.21

660
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Table 4. Estimated model parameters and their precision (SD standard deviation; CV661

coe¢ cient of variation) for blue ling. M = 0:17.662

Parameter Estimate SD CV

�
R

4085400 525100 0.129

CVR 0.451 0.073 0.162

log(�Z) -2.984 0.221 0.074

F0 = Z0�M 0.094 0.019 0.202

663
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664

Figure legends665

Figure 1. Simulation study 1: proportion of replicate runs in which all parameters were666

estimable by model parameter set (see Table 1). (a) RE-Z model, (b) RE-Z & M model,667

(c) FE-Z model, and (d) FE-Z & M model.668

Figure 2. Simulation study 1: regression trees for estimable parameters as a function669

model parameter values (see Table 1) for four model variants. The dependent variable is670

1 if all parameters were estimable and 0 otherwise. The inequalities at each branching671

level indicate the parameter values for each branch. For example, for the RE-Z model,672

the top inequality logsd_Z>= -2 means that in the branches on the left hand side the673

value for log(�Z) is bigger than �2. CV_R = CVR:674

Figure 3. Simulation study 1: interquartile range of relative estimation bias across675

replicate runs (simulation study 1) for the estimates of (a) �nal year total mortality ZT676

and (b) depletion rate, NT=N1 for four model variants and 32 parameter sets (see Table677

1).678

Figure 4. Simulation study 2: boxplots of relative errors in total mortality Zt and total679

abundance Nt estimates for model misspeci�cation scenarios. Base : no model misspeci-680

�cation, Rdec: recruitment linearly decreasing with time, Sel: selectivity of observations681

increasing with age. Whiskers extend to extreme values, boxes stretch from 25 to 75682

percentiles.683

Figure 5. (a) Blue ling international landings, (b) mean individual weight (symbols)684

and proportion of individuals larger than 84 cm years (line) in French landings from the685
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west of the British Isles.686

Figure 6. Quarterly proportions-at-age for blue ling obtained from combing length-687

frequency market samples and age-length keys. The vertical line indicates age 9 above688

which �shing selectivity is assumed to be constant.689

Figure 7. Model diagnostics for blue ling RE-Z model. (a) qq-plot for Z random690

e¤ect, (b) qq-plot for R random e¤ect, (c) raw residuals for total landings, (d) observed691

vs. predicted total catches, (e) raw residuals for proportions-at-age (grey positive, white692

negative), (f), observed vs. predicted proportions-at-age. Fixed693

natural mortality M = 0:17.694

Figure 8. Blue ling estimates for RE-Z model. (a) total mortality, (b) total population695

abundance (� age 9) and (c) recruits (age 9). Grey areas are 95% con�dence bands. Fixed696

natural mortality M = 0:17.697
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