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Most of the methods used for evaluating toxicity from bioassays do not take direct 
account of time as one of the major factors of mortality. Semi-parametric Cox's 
regression models integrating time are very flexible and powerful tools for appreciating 
the toxicity of pollutants on marine organisms. 
Investigation of the evolution of the mortality rate during experiments provides very 
useful information on toxicity. Besides providing estimations of lethal concentrations, 
this permits the study of simultaneous effects and of the interactions of severa! factors 
on mortality. The principal advantages of such a model are highlighted on the basis. 
of data concerning the influence of detergents on survival of Polychaetes. 

Oceanologica Acta, 1990. 13, 2, 237-243. 

Analyse statistique de la toxicité de polluants sur des invertébrés marins : 
une nouvelle approche par les modèles de régression de Cox 

La plupart des méthodes utilisées dans des essais biologiques indirects pour évaluer l::t 
toxicité d'un produit chimique ne prennent pas en compte l'influence du temps écoulé 
comme l'un des facteurs essentiels agissant sur la mortalité. Les modèles de regression 
de Cox qui permettent d'intégrer le facteur temps peuvent s'adapter aisément à de 
nombreux modèles expérimentaux et constituent un outil puissant pour apprécier la 
toxicité de polluants sur des invertébrés marins. 
L'analyse de l'évolution des taux de mortalité sous différentes conditions expérimen­
tales fournit des informations essentielles sur la toxicité. Outre des estimations des 
concentrations létales, ils permettent d'analyser les effets simultanés et les interactions 
de différents facteurs sur la mortalité. Les principaux avantages de tels modèles sont 
mis en évidence à partir d'un exemple concernant l'influence d'un détergent non 
ionique sur la mortalité de Polychètes. 

Oceanologica Acta, 1990. 13, 2, 237-243. 

Effective control measures for taxie pollutants require 
that aquatic organism experiments be carried out at 
various concentrations and under different physical 
conditions (temperature, salinity, etc.). Despite the 
necessity of extrapolating the results to low concentra­
tions (Hubert, 1984), these experiments are useful to 
assess risks to animais and humans. In such bioassays, 
the modifications occurring in the organisms tested are 
recorded once or severa! times during the experiment. 
These modifications can be biological, physiological or 
nutritional and may or may not be reversible. This 

paper deals with statistical analysis of the toxicity of 
a chemical by indirect bioassays when modifications 
occurring in an organism are irreversible, a case which 
corresponds to the most current bioassay type in which 
numbers of deaths and survival times are recorded. In 
most experiments, observations are performed only at 
one time, which is more or less arbitrarily fixed, and 
the response of each organism to the chemical is as­
sumed to depend only on the concentration under 
extemal experimental conditions; it is considered that 
no tolerance towards the chemical occurs during the 
experiment. One may suppose that each organism has 
its own toxicity threshold; statistically that threshold 
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can be modelized by a random variable whose pdf 
(probability distribution function) describes sufficiently 
well the results of the action of the pollutant on the 
species studied. The empirical distribution of the toxic­
ity threshold should be obtained from random observa­
tions. However, in common practice, only sorne fixed 
values of that distribution are estimated. To each p 
value of the probability corresponds one concentration: 
lethal concentration 100 p (LC 100 p ); institutional 
offices (APHA/A WWAfWPCF, 1985) generally admit 
LC50 (p=0.5), LCIO (p=0.1) and LC90 (p=0.9) as 
standard concentrations for comparison of chemical 
toxicities. Consequently it is often only these parame­
ters that are estimated. The estimations of LC1 00 p can 
be obtained in several ways: either the family of the 
probability distribution of thresholds is known and one 
particular distribution is selected from observations; or 
the family of distribution is not explicited and non­
parametric estimations of the LClOO p are performed. 
The former case includes the well-known Probit and 
Logit methods corresponding to a normal and to a 
logistic distribution of the tolerance threshold, respec­
tively (Finney 1964, Ashton 1972, Hubert 1984). The 
latter case includes Spearman-Karber and derivative 
methods, undoubtedly the most effective non-parame­
tric method for estimating LC50 (Hamilton 1979). 
Although aU these methods have been generalized in 
several directions to take into account particularities 
of the threshold distributions (skewness, kurtosis, etc.) 
(Miller and Halpern 1980), they are not convenient 
for analysing time to responses, the duration of the 
experiment being given. However, it is clear that expo­
sure time has an effect on the response as weil as 
concentration. Moreover the evolution of dose­
response curves permits a better appreciation of the 
toxicity of the chemical tested. It should be noted 
that estimating of lethal concentrations at the times of 
observation by means of the previous methods would 
be inefficient. Indeed the dependence between the 
observations at successive times would thereby be 
neglected. Moreover, interaction between time and con­
centration on probability of response would be ignored. 
Undoubtedly, the time component has to be included 
in the planning and statistical analysis of indirect bio as­
sa ys if the toxicities of pollutants are to be appreciated 
with reliability (Kalbfleisch et al. 1983). The develop­
ment of statistical modelling techniques associated with 
the broad extension of computing facilities allows 
implementation of better suited analysis methods for 
investigation of toxicity data. 
Among all the possible methods, such as growth curve 
analysis (Carter and Hubert 1984), log-linear models 
for contingency tables (Holford 1980), Cox's regression 
models (Cox 1972) seem to be weil suited for precise 
analysis of indirect bioassays (Pierce, Stewart and 
Kopecky, 1979). 

MA TERIAL AND METHODS 

Application of Cox's regression models to toxicity of 
Cemulsol on the Polychaetes Sco/elepis fuliginosa 

To demonstrate the advantages of Cox's regression 
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models in the study of the tox1c1ty of pollutants on 
marine invertebrates we analysed data extracted from 
Stora (1972) where the precise experimental procedure 
can be found. In this experiment the polychaete Scole­
lepis fuliginosa was submitted to a non-ionie detergent, 
Cemulsol 870. The assays were performed at five con­
centration levels: 10, 12, 14, 16 and 20 mg x 1- 1 and at 
two temperatures: 17 and 22°C. The counts of dead 
polychaetes under each experimental condition are 
recorded 24, 48, 72 and 96 hours after the start of the 
assay. The data are displayed on Table 1. The deaths 
are regrouped in 24-hour intervals. 

Table 1 
Observed counts of polychaetes at risk and dead 24, 48, 72, 96 hours 
after the start of the bioassay under each experimental condition. 
Predicted mortality estimated from the retained statistical mode/. 
Nombres de polychètes estimés et à risque 24, 48, 72, 96 heures après 
le début de l'expérience dans les conditions expérimentales. Mortalité 
estimée à partir du modèle retenu. 

Temp. C Days Exposed 
('C) (mg.J-1) 

17 10 1 20 
17 10 2 20 
17 10 3 20 
17 10 4 17 
17 12 1 20 
17 12 2 20 
17 12 3 19 
17 12 4 15 
17 14 1 20 
17 14 2 20 
17 14 3 15 
17 14 4 9 
17 16 1 20 
17 16 2 20 
17 16 3 12 
17 16 4 7 
17 20 1 20 
17 20 2 19 
17 20 3 3 
17 20 4 1 
22 10 1 20 
22 10 2 20 
22 10 3 17 
22 10 4 14 
22 12 1 20 
22 12 2 16 
22 12 3 10 
22 12 4 7 
22 14 1 20 
22 14 2 13 
22 14 3 6 
22 14 4 3 
22 16 1 20 
22 16 2 Il 
22 16 3 3 
22 16 4 1 
22 20 1 20 
22 20 3 5 

Cox's regression models 

Mortality 
Obs. 

0 
0 
3 
1 
0 
1 
4 
2 
0 
5 
6 
1 
0 
8 
5 
4 
1 

16 
2 
0 
0 
3 
3 
1 
4 
6 
3 
2 
7 
7 
3 
1 
9 
8 
2 
0 

15 
2 

Counts 
Est. 

0.15 
1.30 
1.88 
1.37 
0.31 
2.59 
3.51 
2.39 
0.58 
4.52 
4.72 
2.47 
0.98 
7.08 
5.69 
2.95 
2.30 

12.43 
2.37 
0.73 
1.55 
4.27 
1.94 
0.48 
3.07 
6.26 
2.21 
0.49 
5.30 
7.81 
2.22 
0.37 
8.16 
8.69 
1.63 
0.20 

14.41 
4.26 

Time to death of an organism from the start of exper­
iment will be modelized here by a random variable T. 
In a Cox's regression model, the probability distribu­
tion of survival times is related to one or several explic­
ative variables by the hazard function, which can be 
considered as the instantaneous probability of death, 
at time t, for an organism having survived as far 
as t. A hazard function can be written (Holford 1976, 
Kalbfleisch and Prentice 1980): 

À.(t)= lim {Probability(t<T<t+l1tjT ) t)} · 
ât-+ 0 11t 



Let z be a vector of explicative variables and z0 the 
vector value selected as reference. At z = z0 the hazard 
function is À0 (t) but its form is not explicited. Accord­
ing to these notations a Cox's regression model can be 
written: 

À(t; z)=À0 (t).exp(z.JJI). 

In that expression P = (P 1 , P2 , ... , PPY, where « 1 » 
denotes transposition, is a vector of p unknown param­
eters and À (t; z) is the hazard function at z. If z is 
constant over time, i.e., for example, if concentration 
and temperature remain at fixed values during over all 
the experiment, À (t; z) and À0 (t) are proportional. 
Exponential function permits linear expression by log­
arithmic transformation. Calculations are thus simpli­
fied. However, any positive continuous function could 
be used. Cox (1972) showed that p could be estimated 
from data without À0 (t) being explicited by maximiza­
tion of the following partial likelihood function VP: 

VP(P)= TI 
ieD 

exp (zi. pt) 
L exp(zi.pt) 

ieR; 

Assuming that the deaths are independent of each 
other, the likelihood function is obtained by the prod­
uct of the probabilities of death of each subject effec­
tively dead, conditionaly on the set at risk at this time. 
D is here the set of all the times of death and Ri that 
of the organisms under experiment just bef ore ti. 

The estimator p of p, thus obtained, has the asymptotic 
distributional properties of maximum likelihood esti­
mators. Therefore it is possible to obtain approximate 
confidence intervals for ~i and to carry out tests of 
hypothesis on the pi components of p (e. g. pi= 0). It 
should be noted that while each component pi of p 
expresses the importance of each explicative variable 
on survival however, it is dependent on the units 
choosen for measuring the variables and must be 
accordingly interpreted. Confidence regions for the vec­
tor parameter p can be constructed either by usual 
methods from the estimated asymptotic covariance 
matrix t of p, or from log-likelihood function (Cox et 
Hinkley 1974); however these regions are sometimes 
too conservative. 
In an indirect biological assay, observations are gen­
erally performed at predetermined times. Consequently, 
time at the response of each organism is not precisely 
known; only the time interval where the response 
(death) occurred is recorded. If the time-step between 
two observations is not too large, then it is possible to 
consider that the basal hazard function À0 (t) is con­
stant over each of these intervals. Then we can assume 
(Prentice and Glocker 1978, Pierce et al. 1979, Stewart 
and Pierce 1982, Friedman 1982): 

for any death response time occurring in the j-th inter­
val of time between two observations. 
Let t1, t2, ... , tk be the observation times and t0 the 
time at the start of the experiment. Without loss of 
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generality we set: t0 =O. The organisms under exper­
iment are randomly distributed in groups determined 
by the values of the explicative variables which are 
assumed discrete or discretized beforehand. All the 
individuals of the same group thus have the same 
descriptive vector zh. Let Phi be the conditional proba­
bility that a subject of that group died in the j-th 
interval [ti_ 1, tJ, given it was living before ti_ 1. Let 
qhi be the complementary probability: qhi= 1-Phi· If 
the number of deaths is Yhi and shi the number of 
organisms at risk at the beginning of this interval, 
a binomial model for the number of deaths can be 
postulated. The log-likelihood function V is: 

v (p, Àl, À2, ... ' Àk) 

= L (yhi· LogPhi+shi· Log(l-Ph)) 
h, i 

where the probability Phi is function of Ài and p: 

qhi= 1-Phi=exp {-f 1

i Ài(t). dt} 
tJ-1 

qhi=exp { -Ài.exp(JJ'.zhi)}. 

Maximization of the likelihood function leads to esti­
mates p, 'i..i. Several ways can be selected for maximiza­
tion. The method proposed by Prentice and Gloecker 
(1978) requires calculating the first and second deriva­
tives of log-likelihood function. Undoubtedly the easi­
est way (as signified to the authors by Pierce) is the 
utilization of the theory of generalized linear models 
(Thomson 1977, Thomson 1981, McCullagh and 
Nelder 1983). In this aim, the number of positive 
responses in each group is modelized by a binomial 
randôm variable. Estimates of p and À can be obtained 
using a Log-Log complementary link function (White­
head 1980, Aitkin et al. 1988). 
We can set: 

Log (-Log (1-Phi))= Log (À)+ pt. zhi 

or: 

qhi= 1-Phi= exp (-exp (Ài+ pt. zh)). 

Implementation of a procedure performing adjustment 
to data can be easily carried out with different softwa­
res such as GLIM (Payne 1985) or SAS IML (1985). 
For testing adequation of the fitted model to the data, 
we used "Deviance" (McCullagh and Nelder, 1983) 
corresponding in the present case to the likelihood 
ratio test statistic for the model fitted compared to the 
saturated model with a parameter for each combination 
of the variables. The contribution of one or several 
terms to the goodness of fit can be appreciated by the 
difference between the deviances related to the models 
with and without these terms. If the model is adequate 
to resume the data, then deviance is asymptotically 
distributed as a chi2 variable with degrees of freedom 
equal to the number of parameters not fixed by the 
model. From the estimated asymptotic covariance 
matrix of p, t, it is possible to obtain LC100p approxi­
mate confidence intervals. 
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Indeed the Log of the LC100p is a 1inear combination 
of the P; estimates of ~; and the estimate of a 1inear 
combination is the 1inear combination of the estimates; 
moreover the variance of that 1inear combination can 
be computed from: fi'. ~ . p. 

RESULTS 

From the data on polychaetes (tab. 1) it is easy to note 
the influences of concentration, temperature and time 
on survival. However the importance of each factor 
and the form of the dependence is not clear. We have 
analysed the data by means of Cox's regression models. 
Calculations were performed by using of GLIM. Time, 
included in this model as a factor, corresponds to the 
time factor in analysis of variance terminology: at each 
time-interva1 a binary (0-1) variable is associated. Its 
value is zero everywhere except for the observations 
performed in this time-interval. 
In a first step, only the time factor was included in a 
Cox's regression model. The goodness of fit between 
the data and the model, measured by "Deviance", is 
equal to 167.27 with 34 degrees of freedom (d. f.). 
Under the hypothesis of validity of the model, this 
value has to be compared with the quantiles of a central 
chi-square random variable with 34 d. f. (p < 0.000 1). 
This comparison led to reject the tested model: time is 
not sufficient to explain the observed variations of the 
surviva1 probability. Subsequently, the logarithm of the 
concentration and the temperature were then included 
separately in a Cox's regression model. Both variables, 
specially concentration, highly improved goodness of 
fit criterion (Tab. 2); the diminution of deviance was 

Table 2 

respectively equal to 76.85 and 17.63 with one degree of 
freedom. However the log-concentration of Cemulsol 
displayed a more important effect on survival than did 
temperature (Tab. 2). After inclusion of concentration 
and temperature, the residual deviance is equal to 58.63 
with 32 d. f. (p < 0.001). The proposed model is not 
satisfactory. Therefore three interaction terms were 
considered: 

Log-concentration x Temperature; 

Time x Log-concentration; 

Time x Temperature. 

From Table 3, we can see that only the Time x Temper­
ature interaction term improves goodness of fit signifi­
cantly. The goodness of fit as measured by the deviance 
is equal to 36.33 with 31 d. f. Therefore the data do 
not carry enough information against this model (sub­
sequently A model) to reject it. The plot of the raw 
residuals against estimated numbers of deaths displays 
no particular trend (Fig. 1), and it is not necessary to 
include another interaction term. Moreover, the plot 
of standardized residuals against the percentiles of the 
standard normal distribution (Fig. 2) evidences a satis­
fying linear trend showing that the distributional 
assumptions (normality) for residuals are verified 
(McCullagh and Nelder 1983). The estimations of the 
parameters of the model are displayed in Table 4. If 
Log-concentration and temperature-effect terms are 
positive (mortality increases with both variables), the 
Time x Temperature interaction term is negative; conse­
quently temperature-effect decreased with the time 
elapsed from the start of experiment. From the theoreti­
cal model we can estimate the number of deaths under 
each experimental condition (Ta b. 1) and the survival 

Cox's regression mode/. Effect on death of concentration (C) and temperature 
(0), isolated or combined. The mode/ including on/y the time factor (D) is 
here taken as the reference. 
Deviance, Log-likelihood ratio statistic, has to be compared with the chi­
square variable quanti/es with corresponding degrees of freedom. 
Modèle de régression de Cox. Effet de la Concentration (C) et de la 
Température (0), isolés ou combinés, sur la probabilité de décès. Le modèle 
qui inclut seulement le facteur temps (D) est pris ici comm~ référence. . 
La deviance, statistique du Logarithme du rapport de vraisemblance, dOit­
être comparée aux quantiles d'une loi du chi2 avec le nombre adéquat de 
degrés de liberté. 

Effects Deviance d. f. p .1. Deviance d. f. p 

D 167.27 34 10 6 

D+C 90.42 33 10-6 76.85 1 1 x 10-6 

0+0 149.64 33 10-6 17.63 1 2 x 10- 4 

D+C+0 58.63 32 3 x 10- 3 125.40 5 1 x 10- 6 

Table 3 
Cox's regression mode/. Effects on death probability of the three second-order 
interaction terms between time (D), concentration (C) and temperature (0) in 
addition to simple effects (mod 1). 

Modèle de regression de Cox. Effets sur la probabilité de décès des interac­
tions du second ordre entre le Temps (D), la Concentration (C) et la 
Température (0) en plus des effets simples (mod 1). 

Interaction Deviance d. f. p .1. Deviance d. f . p 

Mod 1 58.63 32 10 6 
Mod 1 +(0x C) 58.63 31 10-6 0.0 1 
Mod 1 +(D xC) 56.23 31 4 x 10- 3 2.4 0.12 
Mod I+(D x 0) 36.53 31 0.23 22.21 10-6 
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Figure l 
Cox's regression madel. Plot ofraw residuals against the corresponding 
estimated numbers of deaths. 
Modèle de régression de Cox. Représentation graphique des résidus 
bruts en fonction du nombre estimé de décès. 
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Figure 2 
Cox's regression mode!. Normal plot of residuals. Display of standar­
dized residuals in function of the quantites of a standard normal 
distribution. Goodness of fit can be appreciated by the proximities of 
points around the first bisectrix. 
Modèle de regression de Cox. Représentation graphique de résidus 
standardisés en fonction des quantiles de la loi normale centrée 
réduite. La qualité de l'ajustement peut être appréciée par la proxi­
mité des points et de la première bissectrice. 

Table 4 
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probabilities (Tab. 5). Moreover we can obtain estima­
tions of particular lethal concentrations such as LClO, 
LC50, LC90 (Tab. 6) by interpolation from estimated 
survival probabilities given by: 

p =Pro ba (T > ti) 
i=j-1 

= 0 exp (-exp (À.i + 3.98 Log (C) 
i= 1 

+0.68 e-0.21 o xe) 

where C is set for concentration, e for temperature 
and D for day. 

DISCUSSION 

In indirect bioassays, the duration of exposure is a 
major factor on mortality. Clearly, the observation of 
the evolution of mortality rate during the experiment 
provides more convenient information on toxicity than 
do the non-time varying methods (Probit, Logit, etc.) 
(Koïjman 1981) generally used for estimating toxicity 
by using lethal concentrations. In Cox's regression 
models applied to bioassays, ali the data participate in 
the estimation of one particular lethal concentration; 
the estimates are more reliable in this latter case. 
Indeed, knowledge of a general mortality trend is more 
relevant for evaluating toxicity than is a small number 
of observed mortalities at only one given time. More­
over another advantage of this method lies in the pos­
sible inclusion of several variables and/or factors in a 
particular model. Expressing the variation of survival 
as a function of time and other factors can be a power­
fui tool for appreciating the real impact of a pollutant 
on living marine organisms. 
For example, analysis by Cox's regression models of 
the toxicity of Cemulsol on Scolelepis fuliginosa permit­
ted investigation not only of the individual effects of 
the concentration and temperature but also of the inter­
actions: time x temperature; time x concentration; and 
temperature x concentration. 

In this way, the absence of two statistically significant 
interaction terms (time x concentration and concentra­
tion x temperature) shows that the effects of concentra­
tion on survival remain constant with time and with 
temperature. In other words, the probability of death 
during a constant time interval does not vary with the 
duration of exposure at a given concentration. The 
effect of the concentration over the time of the exper­
iment is constant, there is no sign of any sort of 

Cox's regression mode!. Estimated parameters for equation (A) according to retained statistical madel. 
Modèle de régression de Cox. Estimation des paramètres de l'équation (A) fournie par le modèle statistique retenu. 

Parameter Estima te Estimated parameter covariance 

Day (1) À! -22.00 5.04 
Day (2) À2 -16.20 3.15 2.63 
Day (3) À3 -12.18 1.62 2.23 2.89 
Day (4) À4 - 8.70 0.22 1.85 3.35 4.71 
Log c ~1 3.98 -0.68 -0.61 -0.57 -0.52 0.19 
Temp. ~2 0.68 -0.22 -0.08 0.03 0.14 0.01 0.01 
DayxTemp. ~3 - 0.21 0.08 0.02 -0.03 -0.08 0.00 -0.01 0.00 
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Table 5 
Estimations of median lethal concentratiqns (LC50) by interpolation of the predicted survival probabilities. 
Estimations des concentrations létales 50 (LC50) par interpolation des probabilités de survie. 

Concentrations (mg .1 1) 

10 12 

·c 17 22 17 22 17 

Hours 
24 0.99 0.92 0.98 0.85 0.97 
48 0.93 0.73 0.86 0.51 0.75 
72 0.84 0.64 0.70 0.40 0.51 
96 0.77 0.62 0.59 0.37 0.37 

Table 6 
Estimated survival probabilities under each experimental condition. 
Probabilités de décés estimées sous chacune des conditions expé­
rimentales. 

Estimates 95 percent 
Lethal confidence interval 
Concentra- Lower Upper tion 50 

li mit limit 

24 h 29.56 24.09 36.22 

17' c 48 h 17.44 14.22 21.43 
72h 14.25 10.93 18.69 
96 h 12.78 8.53 19.15 
24 h 17.06 13.90 20.89 

22' c 48h 12.22 9.27 16.02 
72h 11.20 7.90 15.84 
96 h 10.94 4.98 23.92 

tolerance to the pollutant at the given scale of observa­
tion. Whatever the temperature level, the concentration 
effect is the same. On the other band, the presence of 
a negative interaction term "time x temperature" shows 
that the survival curve decreases more at 22 than at 
17• but the rates tend towards èquality with time. It 
seems that the effect of temperature disappears when 
the duration of experiment progresses. 
More generally, other variables can be taken into 
account in indirect bioassays, eg., simultaneous pres­
ence of pollutants at different concentrations or modifi­
cations of salinity and temperature. The present 
method can be easily adaptated to cases where the 
values of variables change during the assay (Kalbfleisch 
and Prentice 1980, Reish and Oshida 1986). 
This flexibility is particularly convenient in static or 
semi-static experiments where the concentrations vary 
with time. 
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14 16 20 

22 17 22 17 22 

0.73 0.95 0.59 0.88 0.28 
0.29 0.61 0.12 0.31 0.04 
0.18 0.32 0.06 0.06 0.00 
0.16 0.19 0.05 0.02 0.00 

This mode! takes into account censored observations 
at any time not only at the end of the experiment where 
they generally come from the organisms remaining at 
risk (surviving fraction). In this way it would be pos­
sible, under not too restrictive conditions, to select 
sorne samples for further biological analysis. The cha­
sen observations have to be randomly selected to pre­
vent any relationship between lethal mechanisms and 
censoring (Kalbfleisch and Prentice 1980). 
Cox's regression models are a very flexible distribution­
free method for investigating the toxicity of pollutants 
or the sensitivity of species to pollutants under various 
experimental conditions. The constancy on time of the 
ratio of hazard functions, depending only on explicative 
variables (the logarithm of this ratio is an difference 
between two linear combinations of variables), is 
undoubtedly the most restraining hypothesis (McCul­
lagh and Nelder 1983). However, as seen in our exam­
ple, it is possible to overcome in part this difficulty by 
inclusion in the model of time-variable interaction 
terms. The basal hazard function (otherwise arbitrary) 
must not, to any great extent with, vary on each obser­
vation interval; in all cases it is necessary to select the 
interval widths in function of the occurrence rate of 
responses. 
In this approach, the dynamic aspect of an experiment 
is taken into account, a clear advantage over classical 
methods used in marine environmental toxicology such 
as Logit or Probit methods; moreover the time vari­
ations of survival under different conditions are modeli­
zed without expliciting its form (the form of hazard 
function is not required). Ali things considered, this 
method appears weil suited for a variety of bioassays 
and particularly for bioassays on marine invertebrates. 
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