Marine Ecology March 2014, Volume 35, Issue 1, Pages 77-95 <u>http://dx.doi.org/10.1111/maec.12056</u> © 2013 Blackwell Verlag GmbH

Distribution and temporal variation of mega-fauna at the Regab pockmark (Northern Congo Fan), based on a comparison of videomosaics and geographic information systems analyses

Yann Marcon^{1,*}, Heiko Sahling¹, Anne-Gaëlle Allais², Gerhard Bohrmann¹, Karine Olu³

¹ Faculty of Geosciences, MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany

² Département Infrastructures Marines et Numériques, Ifremer, IFREMER Centre de Méditerranée, La Seyne sur Mer, France

³ Ifremer, REM, Laboratoire Environnement Profond (EEP-LEP), IFREMER Centre de Brest, Plouzané, France

*: Corresponding author : Yann Marcon, ymarcon@marum.de

Abstract:

The Regab pockmark is a large cold seep area located 10 km north of the Congo deep sea channel at about 3160 m water depth. The associated ecosystem hosts abundant fauna, dominated by chemosynthetic species such as the mussel Bathymodiolus aff. boomerang, vestimentiferan tubeworm Escarpia southwardae, and vesicomvid clams Laubiericoncha chuni and Christineconcha regab. The pockmark was visited during the West African Cold Seeps (WACS) cruise with RV Pourquoi Pas? in February 2011, and a 14,000-m² high-resolution videomosaic was constructed to map the most populated area and to describe the distribution of the dominant megafauna (mussels, tubeworms and clams). The results are compared with previous published works, which also included a videomosaic in the same area of the pockmark, based on images of the BIOZAIRE cruise in 2001. The 10-year variation of the faunal distribution is described and reveals that the visible abundance and distribution of the dominant megafaunal populations at Regab have not changed significantly, suggesting that the overall methane and sulfide fluxes that reach the faunal communities have been stable. Nevertheless, small and localized distribution changes in the clam community indicate that it is exposed to more transient fluxes than the other communities. Observations suggest that the main megafaunal aggregations at Regab are distributed around focused zones of high flux of methane-enriched fluids likely related to distinct smaller pockmark structures that compose the larger Regab pockmark. Although most results are consistent with the existing successional models for seep communities, some observations in the distribution of the Regab mussel population do not entirely fit into these models. This is likely due to the high heterogeneity of this site formed by the coalescence of several pockmarks. We hypothesize that the mussel distribution at Regab could also be controlled by the occurrence of zones of both intense methane fluxes and reduced efficiency of the anaerobic oxidation of methane possibly limiting tubeworm colonization.

Keywords: Cold seep ; Fauna ; Mosaic ; Pockmark ; Regab ; temporal variation

1 1. Introduction

2 Cold-seep ecosystems have been identified along active and passive margins 3 worldwide, and are known to host rich and abundant chemosynthetic communities 4 (Sibuet & Olu-Le Roy 2002). Many studies have described the distribution of the 5 dominant faunal assemblages in relation to their environment in several cold seeps systems (Sibuet & Olu-Le Roy 2002, MacDonald et al. 2003, Olu-Le Roy et al. 6 7 2007a, Jerosch et al. 2007, Lessard-Pilon et al. 2010), and cold seeps are usually 8 considered to provide more stable environments than hydrothermal vents. Although 9 some decadal-scale stability of vent fauna was sometimes observed (Desbruyères 10 1998, Copley et al. 2007, Cuvelier et al. 2011), several studies about temporal 11 variation of vent communities suggested that hydrothermal vents can be highly 12 dynamic environments (Hessler et al. 1988, Shanks 1995, Shank et al. 1998, 13 Mullineaux et al. 2000), especially when considering smaller spatial and temporal 14 scales (Cuvelier et al. 2011). Existing observations of individual taxonomic groups at 15 cold seeps revealed very slow growth rates and extremely long lifetimes likely related 16 to slow and steady fluxes of reduced compounds (Nix et al. 1995, Fisher et al. 1997, 17 Smith et al. 2000, Bergquist et al. 2000). For instance, some tubeworm aggregations were estimated to be at least 250 years old (Fisher et al. 1997, Bergquist et al. 2000), 18 19 and ages of several hundreds of years have been assessed for Bathymodiolus 20 childressi (Smith et al. 2000).

Up to now, very few works focused on the temporal variation of the faunal distribution (Lessard-Pilon et al. 2010) in a cold seep environment. Such information is not only important to increase our knowledge about the community dynamics, but it also allows better understanding the dynamics of the venting activity. Indeed, chemosynthetic communities are highly dependent on their environment, primarily

because distribution patterns of the dominant symbiont-bearing, habitat-creating taxa
 are linked to methane and sulfide levels and fluxes, and substrata (Sahling et al. 2002,
 MacDonald et al. 2003, Levin et al. 2003, Bergquist et al. 2005, Mau et al. 2006, Olu Le Roy et al. 2007a). Distribution changes therefore could also reflect changes in the
 venting activity.

6 Bergquist et al. (2003b) and Cordes et al. (2005b) suggested that community changes 7 could be also time-related, and proposed a succession model for Gulf of Mexico seep 8 communities, in which mussel beds become replaced by tubeworm communities as 9 carbonate precipitates in the sediments. With time, tubeworm communities then 10 contribute to reducing methane and sulfide availability at the sediment/water 11 interface, thus leading to changes in the associated communities, by allowing non-12 endemic species to venture and compete with chemosynthetic species.

Whatever the cause of flux change, mussel population mortality and movements are considered to reflect changes in seepage flow or chemistry (Roberts et al. 1990, Lessard-Pilon et al. 2010), while tubeworms tend to increase their dominance when fluid flow declines and can persist for years (Bergquist et al. 2003a, b, Cordes et al. 2005b). Finally, Lessard-Pilon et al. (2010) attributed a 15 year succession pattern between tubeworm and mussel populations to renewed or redirected active seepage.

During the West African Cold Seeps (WACS) cruise in February 2011, the Regab pockmark was intensively surveyed and a 14,000 m²-large video-mosaic was assembled to map the main populated area of the pockmark. A subset of this same area had already been described by Olu-Le Roy et al. (2007a), who provided a detailed description of the spatial patterns of the faunal assemblages, highlighting high degree of spatial heterogeneity. This work was based on imagery data, and in particular on video-mosaics, taken in 2001 during the Biozaire cruise. Using geo-referenced mosaics and geographic information systems (GIS), we provide a description of the current distribution of the dominant megafauna (mussels, tubeworms, clams) and its ten-year development in one of the most densely populated areas of the Regab pockmark. We identify vestimentiferan tubeworms, bathymodiolid mussels and vesicomyids that create the dominant habitats of the pockmark. To our knowledge this is the first study of the temporal variation of the distribution of chemosynthetic fauna at this scale and including such diverse habitats.

8

9 2. Site description

10 The Regab pockmark is located on the passive Congo-Angola margin at 3160 m water 11 depth, about 10 km to the north of the Congo deep-sea canyon. The pockmark is a 12 circular-shaped depression on the seafloor that is less than 20 m deep and about 800 m 13 wide (Charlou et al. 2004, Ondréas et al. 2005) (Figure 1). Regab has been described 14 as a 'pockmark cluster' since it is considered to be composed of several smaller 15 pockmarks (Ondréas et al. 2005). These features are believed to result from seafloor 16 collapses following the release of over-pressured interstitial fluids. This was 17 suggested after seismic profiles showed the presence of a 300 m-deep subsurface pipe 18 rooted in a palaeo-channel that acts as a reservoir for the accumulating fluids 19 (Ondréas et al. 2005, Gay et al. 2006). Trapped fluids are mostly enriched in methane 20 and are believed to be produced in deeper layers of sediment by microbial activity 21 (Charlou et al. 2004). The presence of gas hydrates was observed both in hydrate 22 outcrops at the sediment surface and in gravity cores down to a depth of 6 m (Charlou 23 et al. 2004, Ondréas et al. 2005). Sulfide is produced from methane and sea-water 24 sulfate in the subsurface sediment by anaerobic methane oxidation, which has been 25 identified in the different habitats (Cambon-Bonavita et al. 2009).

1 The most active area in terms of fluid escape is a 600 m-long and 200 m-wide N70°-2 directed area located near the middle of the pockmark. This area corresponds to a 3 zone of extensive carbonate crusts and it seems to host most of the fauna that have 4 been identified at the pockmark (Ondréas et al. 2005). The faunal communities present at Regab are dominated by symbiont-bearing species 5 including 6 vestimentiferan tubeworms of the species Escarpia southwardae (Andersen et al. 2004), two species of Vesicomyidae bivalves, Laubiericoncha chuni and 7 8 Christineconcha regab (Cosel & Olu 2008, 2009, Krylova & Cosel 2011), and one 9 species of the mussel Bathymodiolus aff. boomerang (Olu-Le Roy et al. 2007b). 10 These foundation species create habitats that support associated heterotrophic macro-11 and meio-faunal communities which vary in biomass and diversity among habitats 12 (Gaever et al. 2009, Menot et al. 2009, Olu et al. 2009).

13

14 **3. Methods**

15 3.1 WACS mosaic

16 3.1.1 Acquisition

17 Imagery used for the production of mosaics was acquired with a high-definition color 18 video camera over two ROV dives during the WACS cruise with RV Pourquoi Pas?. 19 The camera is mounted vertically on the ROV Victor 6000 and is dedicated to high-20 resolution mosaicking applications. The surveys were carried out in a structured way 21 by performing parallel line surveys separated by 3-meter intervals, from an average 22 altitude of 3 meters, so as to ensure overlap between the mosaic lines. The total surveyed area covers a rectangular surface of about $65 \times 220 \text{ m}^2$ (Figure 2). The limits 23 24 of this surface correspond to the limits of the 'mosaic 2' produced by Olu-Le Roy et al.

1 (2007a) from images acquired during the BIOZAIRE cruise in 2001. The reason for 2 this is to enable later comparison of the two mosaics. To minimize drift-induced positioning errors, the survey area was split into two equal subareas of $65 \times 115 \text{ m}^2$ 3 4 each (Figure 2). The survey required a total of twenty-one lines per subarea to cover the entire surface. Each line was 115 m long in order to ensure overlap between the 5 6 two subareas. Moreover, the ROV position was regularly reset onto markers at the beginning of lines in order to eliminate any drifting error before starting a new line. 7 8 During the survey, the maximum observed drift error at the end of a line was about 3 9 meters. The markers were also used to reset the ROV position when resuming the 10 survey in the second mosaicking dive. Final navigation is therefore a hybrid 11 navigation from USBL and dead-reckoning navigation reset with markers.

12 3.1.2 Construction of the video-mosaic

13 The lines of mosaic were constructed using the Ifremer in-house MATISSE program 14 (Vincent et al. 2003, Allais et al. 2004). The MATISSE program was first designed for 15 online-videomosaicking, i.e. to build the mosaic while the survey is ongoing. 16 However, due to compatibility issues between the program and the new camera and 17 navigation systems of the ROV Victor 6000, building the mosaic involved numerous 18 intermediate data manipulation steps and could not be performed in real-time. For 19 instance, the HD-formatted video files (1920x1080 pixels) had to be converted into DVD-PAL format (720x576 pixels) before they could be read by MATISSE. This 20 21 involved adding black bands on the video files in order to preserve the 16/9-ratio of HD frames. Conversion to DVD format was done with the ConvertXtoDVD 22 23 commercial program. Navigation files also had to be rewritten according to an older 24 standard to ensure compatibility with MATISSE. The navigation was then replayed 25 with the Ifremer TRIADE Software, a program that sends navigation entries to

MATISSE at a real-time frequency in order to simulate an online mode. Mosaic lines
 were then constructed at a real-time pace.

Each line of mosaic was constructed separately instead of letting Matisse run straight
from the beginning to the end of the survey. The reason was to keep size of files
small, and to allow more flexibility in the construction of the final areal mosaic.

6 3.1.3 GIS and spatial analyses

7 The separate lines were imported and geo-referenced into ArcGIS. Geo-referencing
8 was done with the ROV navigation data, but caution was taken that corresponding
9 features between overlapping segments match on the same points.

10 For all mosaics, surficial features were manually delineated and polygons were 11 created in ArcGIS to map the spatial distribution of each feature. Mapped features are 12 similar to those used for the Biozaire mosaic (Olu-Le Roy et al. 2007a), and the main 13 categories are: dense Mytilidae, sparse Mytilidae, dead Mytilidae, Escarpia-Mytilidae 14 co-occurrence, dense E. southwardae, sparse E. southwardae, juvenile E. 15 southwardae, recumbent E. southwardae, senescent E. southwardae, living 16 Vesicomvidae, mixed (living and dead) Vesicomvidae, dead Vesicomvidae, carbonate concretions (Figure 3). Areas of coverage were computed for each non-sparse 17 18 category in ArcGIS, using the Mollweide equal-area projection.

19 The dense *Mytilidae* category refers to areas where the living mussel distribution is 20 almost continuous and where the substratum is rarely visible. Conversely, sparse 21 *Mytilidae* applies to areas where the substratum is clearly visible between the 22 individuals. Such distinction was not made for the dead *Mytilidae* category. The dense 23 *E. southwardae* category refers both to single large bushes of adult tubeworms, and to 24 fields of bushes of adult tubeworms, whereas the sparse *E. southwardae* category

1 corresponds to areas where bushes of adult tubeworms are not closely distributed and 2 contain relatively few tubes (roughly 10 or less). The juvenile E. southwardae 3 category refers to bushes where tubeworms are of strikingly small size in comparison 4 to the adult community. The recumbent E. southwardae category designates bushes where tubes are disposed horizontally, and the senescent category refers to dead 5 6 individuals and individuals in poor condition whose tubes lie on the seafloor. Patches 7 of vesicomyid clams are categorized either as living, mixed (dead and living) or dead. 8 Living clams are normally half buried and stand upright in the sediments, whereas 9 dead clam shells are generally open and lying in the sediments. The 'mixed' category 10 refers to patches that contain both living and dead clams. Carbonate crusts were 11 mapped only where concretions could clearly be seen on the images, and the mapped 12 areas often do not include the carbonated crusts that underlie the tubeworm 13 population, the dense mussel beds, or thin sediment covers.

The delineation process was supported by the use of the full HD resolution video files, particularly for differentiating clams from mussels and living bivalves from dead bivalves. Vesicomyid clams comprehend two species, *Laubiericoncha chuni* and *Christineconcha regab*, that cannot be separated based on the images. However, both in 2001 and in 2011, *Christineconcha regab* was largely dominant in samples and on close-up views (Cosel & Olu 2009, Decker et al. 2012).

20

21 3.2 BIOZAIRE mosaic

The BIOZAIRE mosaic corresponds to the 'mosaic 2' described in the literature (Olu-Le Roy et al. 2007a). Due to the absence of navigation data, the BIOZAIRE mosaic was never geo-referenced. But surfaces could be calculated anyway from the altitude

1 of survey and the camera parameters. In this work we used the new WACS mosaic to 2 geo-reference each individual segment (76 segments) of the BIOZAIRE mosaic, with 3 an average root-mean-square (RMS) error of 0.03 m (SD = 0.1 m) and a maximum 4 RMS error of 0.4 m. The geo-referencing was done in ArcGIS by registering features common to both mosaics, such as unchanged carbonate concretions, patches of dead 5 6 shells, detritus and also bushes of tubeworms. The advantage of this technique is that 7 it reduces the discrepancies between both mosaics, no matter how accurate the geo-8 referencing of the WACS mosaic is. In other words, the same polygon should have the 9 same surface on both mosaics and patch sizes should be directly comparable, with a 10 low relative error. However, differences in angles of perspective, in image quality, in 11 visibility and in precision of delineation process also occur and cause some 12 discrepancies in the computed areas. Digitized polygons for living and dead mussel 13 patches are the most affected by such discrepancies.

In order to keep consistency with the published work, BIOZAIRE polygons were not redrawn. Instead, the original polygons, drawn in Photoshop by Olu-Le Roy et al. (2007a), were reused. This implied exporting every polygon layer from Photoshop. Polygons were then imported as polygon features into ArcGIS and geo-referenced over the BIOZAIRE mosaic. The surface areas were recalculated according to the new geo-referencing data.

Additionally, qualitative direct visual comparison of the two mosaics allowed for identification of small-scale localized changes, which could not be observed from the digitized polygons.

23

24

1 **4. Results**

2 4.1 WACS mosaic (2011)

3 The surveyed zone almost fully covers a 14,000 m²-large rectangular area directed in a southwest-to-northeast direction (Figure 1). Direct mapping of the main faunal 4 assemblages and visible carbonate concretion areas is available for the entire study 5 6 area (Figure 4a). It shows that the substratum is composed either of soft sediments or of harder carbonate concretions and that the faunal distribution is spatially non-7 8 uniform but instead is divided into areas of high and low fauna presence. Areas of 9 high fauna presence can in turn be categorized based on the dominant type of fauna 10 (Figure 4b).

11 Carbonate concretions were visible over a large portion of the survey area (Figure 4b). 12 The total measured extent exceeds 4400 m². This is however a minimum estimation 13 since it does not include carbonate concretions that were not directly visible at the 14 surface, i.e. concretions covered by sediments or underlying fields of tubeworms and 15 mussels.

16

17 4.1.1 Areas of high fauna presence

18 Mussel distribution

The map of faunal distribution (Figure 4a) shows that large mussel beds were roundshaped and always adjacent to the tubeworms fields. At the limit between the two aggregations, a transition zone with co-occurrence of mussels and tubeworms was often observed. In these transition zones mussels were present on the substratum between the tubeworms but they were also attached onto the tubeworms themselves. 1 The mosaic and video material from ROV dives also indicated that areas of mussel 2 occurrence tended to coincide with areas of hard substrata, i.e. of carbonate 3 concretions, either bare or with thin sediment cover. Indeed, very few mussels were 4 observed on soft sediment areas; however, because the substratum type cannot be 5 reliably identified from the images under all mussel aggregates, the proportion of 6 mussel aggregates that were located in soft sediments could not be quantified.

7 The dense mussel category within the study area covered a total area of 414 m² (Table
8 1) and was mostly concentrated in two main (M2/M3, M1) and one minor (M4) areas
9 (Figure 4b).

The largest mussel area, known from the Biozaire mosaic as "M2/M3", stretched out over 20 m and 26 m in the SW-NE and NW-SE directions respectively; it had an approximate surface of 450 m², of which at least 300 m² were covered by dense mussels. Observations of video footages showed that a large part of the dense population in this area was located at the bottom of a depression between boulders of carbonate concretions (Figure 4a). This mussel bed stretched out towards the north boundary of the mosaic and likely extended further.

The second main mussel area ("M1") was located at about a hundred meters to the southwest of the first one. It was composed of two beds of dense living mussels, one of about 45 m² and the other of about 30 m². The population was almost entirely surrounded by dense bushes of tubeworms but image material shows that mussels were also present, although at a lower density. Patches of dead mussels seemed to be larger at M1, whereas the abundance of living mussels was visibly lower than at M2/M3.

In this area, the densest mussel bed covered an area of less than 10 m², but was likely
 to extend over the limit of the mapped area. This area is referred to as "M4".

3

4 Tubeworm distribution

5 The majority of the tubeworm population within the area of study was concentrated in 6 dense bushes. Bushes of tubeworms were in some places isolated but occurred more 7 commonly in large and dense fields. In either case, living tubeworms seemed to occur 8 only on carbonate concretions and mostly around the main mussel areas. However, the 9 substratum under dense tubeworms was not always visible on the images, and it could 10 not be ascertained whether all living tubeworms in the area of study occurred on 11 carbonate concretions.

The largest field with high tubeworms density was up to 1400 m² in area and was located near the middle of the study area, west-northwest of M2/M3. This area was more elevated than in the rest of the study area. This was due to the presence of blocks of hard concretions that gave the relief a rugged surface. A relatively high visible abundance of mussels was observed within the transition zone between mussel and tubeworm populations. In this area the transition zone was up to 7 m wide.

18 The second largest field of tubeworms covered an area of about 600 m^2 and 19 surrounded M1 almost entirely. In this field, the zone of co-occurrence between 20 tubeworms and mussels was very small and it was not observed all along the 21 mussel/tubeworm limit. The field stretched out farther towards the south-southwest 22 and beyond the limits of the study area.

23 The next largest fields of dense tubeworms were located at the eastern and 24 northeastern end of the mosaic. In this area, two fields of about 130 m^2 each were

separated by a zone of soft sediments and low fauna presence. A 55 m²-large zone of
 co-occurrence between tubeworms and mussels could be observed in the vicinity of
 M4.

4 Juvenile tubeworms were mostly observed as isolated bushes or as small fields in the 5 periphery of the large aggregations of dense tubeworms. Observed juveniles also 6 seemed to occur consistently on carbonate concretions, but generally close to or at the 7 limit between concretions and soft sediments (Figure 5). They were never observed 8 more than 3 m away from the limit of the concretions, and never on the most 9 protruding, and likely thicker, concretions. Mussels were also observed within 10 populations of juvenile tubeworms, where those bordered the mussel beds.

Senescent and/or recumbent populations were rarely observed, and never within the main tubeworms aggregations. The main occurrences were located in the periphery of larger fields of tubeworms. Additionally, senescent tubeworms were often located over soft sediments (Table 1) and in the immediate vicinity of clam aggregations.

15

16 Vesicomyid clam distribution

17 Vesicomyids were observed in aggregates of very variable dimensions, and ranged from very small clusters of about 0.01 m^2 to large fields of up to 400 m^2 , gathering 18 19 living, dead or mixed (i.e. dead and living) individuals. However, most aggregates 20 contained mixed individuals, and it was hard to quantify the relative proportion of 21 living and dead individuals from the images. In a few cases, small clusters of living 22 clams could be observed and delineated within larger patches of mixed (dead and 23 living) clams. Dimension of individual aggregates of living clams in the survey area did not exceed 3 m^2 . 24

1 Clam communities seemed limited to the areas covered by soft sediments (Table 1). 2 For instance, clusters of living vesicomvids were scattered across the mosaic but were 3 almost consistently (273 out 276 clusters) observed in the areas covered with soft 4 sediments (Table 1). Furthermore, 241 out of 276 clusters of living vesicomyids were located in patches of dark reduced sediments, which correspond to 94% of the total 5 area (88 m²) covered by clusters of living vesicomyids (Table 1). Generally, dead 6 vesicomyids were more commonly observed on carbonate concretions (13%) than 7 living (2%) and mixed (5%) vesicomyids. 8

9 The vesicomyid population was very patchy and heterogeneously distributed within 10 soft sediment areas (Figure 4a); in particular, it concentrated mostly at the periphery 11 of the main mussel/tubeworm aggregations (Figure 4b). The largest field of 12 vesicomyids occurred in the vicinity of M4; within this field, living and mixed (living 13 + dead) vesicomyids covered respectively 39 m² and 258 m².

14

15 4.1.2 Areas of low fauna presence

Areas of low fauna presence exhibited strikingly low numbers of tubeworms, clams, and mussels patches in comparison to the rest of the survey area (Figure 4a). Apart from the highly mobile fauna such as the galatheids, most of the fauna in those areas was composed mainly of sparse patches of tubeworms ($\leq 25 \text{ m}^2$) or of living and mixed (dead and living) clams ($\leq 20 \text{ m}^2$). Dead clam shells were also frequently observed.

The least-colonized zone was located to the south of the large mussels and tubeworms communities located in the middle of the survey area. It covered an area of about 1000 m^2 and was mostly composed of soft, bioturbated sediments.

2 4.2 Comparison with BIOZAIRE mosaic (2001)

The Biozaire mosaic (2001) does not provide contiguous areal coverage such as the WACS mosaic (2011), and large gaps occur between individual lines. Both mosaics overlap over a 4605 m²-large area, which correspond to a subset only of the WACS mosaic area. In order to compare the trend in faunal distribution, this overlapping area is shown for the Biozaire and WACS videomosaics (Figure 6). Overall, there were only little changes in the spatial location of the main faunal assemblages.

9 The mussel distribution has remained mostly the same as it was during the Biozaire 10 cruise. Although it is hard to compare the size of the main aggregations due to the 11 smaller coverage of the Biozaire mosaic, there is evidence that M2/M3 contained a 12 larger mussel population on the WACS mosaic than on the Biozaire map, with fewer 13 gaps between the different patches (Figure 7a). Conversely, some small mussel beds at 14 M1 seem to have disappeared and to have been replaced by dead mussel shells 15 (Figure 7b). M4 is not covered by the Biozaire mosaic and cannot be compared.

Tubeworm fields showed no change in distribution, the slight difference in polygon sizes being more due to the lower resolution of the Biozaire imagery data than on actual distribution changes. From these results, the tubeworm community is believed to be the one that changed the least across the study area. Most bushes or even single tubeworms were found unchanged and in some cases in the exact same position than in the older mosaic (Figures 7c, 8). Tubeworms were indeed the most reliable features when geo-referencing the Biozaire mosaic onto the WACS mosaic.

The vesicomyid clam population is the fauna that changed the most since the Biozairecruise. Although the main clam fields have remained at the same locations, their sizes

1 seem to have increased. In addition, at least 38 new patches of living clams were 2 observed that did not exist during the Biozaire cruise. Those new patches had a mean size of 0.5 m² (SD = 0.6 m²), and their areas sum up to 17 m². They were often 3 located in the close vicinity of older patches (Figure 8b), but were also in a few cases 4 5 new settlements farther from previously existing patches (Figure 8a). Conversely, 16 6 patches were identified on the Biozaire mosaic, which did not exist anymore in 2011 or at least, which were buried under some sediments (Figure 8c). They had a mean 7 size of 0.3 m² (SD = 0.2 m²), and cover a total area of 4.6 m². About 4 of those 16 8 9 patches contained dead clams only.

10 Areas of coverage by dense mussels, tubeworms and clams were computed for both 11 the Biozaire and the WACS faunal distribution maps (Table 2). Areas of sparse mussel 12 and sparse tubeworm occurrence are not shown due to too large errors in delineating 13 sparse aggregations. In addition, to keep consistency with previous work on the 14 Biozaire mosaic, areas with co-occurrence of living mussel and tubeworm are given (Table 2). Given a total common area of 4605 m² between the Biozaire and the WACS 15 16 mosaics, areas can be expressed in percentage of cover of the overlap area. According 17 to these calculations, coverage changes were very low and remained below 2% of the total overlap area for every category. Patches of living tubeworms, tubeworms with 18 19 mussels and mixed (dead and living) clams underwent the largest changes, with 20 coverage increases of up to 1.5, 1.3 and 1.2% of the total overlap area respectively 21 (Table 2). The total areal extent of the other assemblages showed almost no change.

Overall, the distribution of the carbonate concretions over the study area did not change between the Biozaire and the WACS cruises. The higher resolution of the new mosaic allowed better definition of the limits of the concretions, especially in areas covered with tubeworms or mussels, and no major new area of occurrence was observed. On the contrary, in many places the carbonate concretions tended to slightly
 disappear under a thin sediment cover.

3

4 5. Discussion

5 5.1 Faunal and carbonate distribution

6 The mosaic and the distribution map of the megafaunal communities give a very 7 detailed view and full coverage of the entire study area. The results show that the 8 megafauna at Regab is concentrated mainly in three distinct areas of high fauna 9 presence, separated by areas of relatively lower presence. Such distribution indicates 10 that the chemical fluxes that are required to sustain these chemosynthetic communities 11 are heterogeneous over the study area. Indeed, the distribution of the main faunal 12 assemblages showed a concentric spatial zonation pattern starting from mussel beds in 13 the middle to tubeworms and finally fields of vesicomyids towards the outside. In our 14 study this spatial zonation pattern from mussels to vesicomyid clams was observed, to 15 various extents, around the three main mussel areas (M1, M2/M3, M4).

16 A model presenting a concentric pattern has been proposed previously for the Regab 17 pockmark (Gay et al. 2006), but it considered both mussels and tubeworms as 18 methane-dependant species inhabiting the same carbonate-dominated facies (Olu-Le 19 Roy 2006). Although Bathymodiolus aff. boomerang contains both methanotrophic 20 and thiotrophic symbionts (Duperron et al. 2005) and, for the populations living in the 21 Regab pockmark, is known to rely on methane as dominant energy source (Olu et al. 2.2 2009, Duperron et al. 2011), tubeworms are known to host sulphur-oxydizing 23 symbionts (Dubilier et al. 2008) and to have very high demands in terms of sulfide 24 supply (Cordes et al. 2003).

1 We postulate that the observed distribution is controlled by the strength of fluid 2 advection and related methane fluxes, and propose a model in which the megafaunal 3 distribution at Regab is structured by the presence of discrete zones of intense fluid 4 advection and methane fluxes under the mussel beds (Figure 9). The distribution of the other communities would therefore be related to decreasing advection rates with 5 6 distance from the mussel beds. The existence of such localized pathways of high fluid 7 advection rate is compatible with the current understanding that the center of the 8 pockmark is composed of several smaller pockmarks (Ondréas et al. 2005). In this 9 section we discuss the concepts of this model, and confront them to more detailed 10 observations of the faunal distribution and of the presence/absence of carbonate 11 crusts.

12 Our observations show that the main mussel beds occur in areas where carbonates 13 form blocs of indurated sediments and concretions within slight depressions, and that 14 the main tubeworm aggregations occur in areas with extensive, continuous and 15 prominent carbonate crusts. The formation of authigenic carbonates is a byproduct of 16 the anaerobic oxidation of methane (AOM) in the sediment (Boetius et al. 2000, 17 Aloisi et al. 2002) and is an indicator of methane fluxes and microbial activity within 18 the sediments. However, the formation of continuous carbonate crusts impacts the 19 porosity and permeability of the sediments and hence reduces the possible pathways 20 for methane- and sulfide-rich fluid escapes and for sulfate-rich seawater infiltration 21 (Hovland 2002, Luff et al. 2004). Therefore, areas of mussel occurrence are likely to 22 be characterized by higher fluxes between the sediments and the bottom water than 23 the encrusted areas where tubeworms occur.

We propose that the three main mussel areas present in our study area are located on focused zones where the seepage activity is the strongest, and where fluid flow is

1 intense enough for the methane fluxes to reach the sediment/water interface. Indeed, 2 the distribution of mussels mainly in dense circular beds suggests the presence of 3 localized areas of intense methane fluxes. This hypothesis was mentioned previously 4 from the results of the Biozaire mosaic (Ondréas et al. 2005, Olu-Le Roy et al. 5 2007a). It also is strongly supported by recent biogeochemical analyses in various 6 Regab habitats, according to which extensive seepage of gaseous and dissolved 7 methane was observed only under the mussel habitat (Pop Ristova et al. 2012). This is 8 also in accordance with previous studies in other areas that showed that release of 9 methane to the water column is indeed facilitated in areas of high flux (Boetius & 10 Suess 2004, de Beer et al. 2006, Niemann et al. 2006).

11 Co-occurrence of mussels and tubeworms is commonly observed at the transition 12 between the two populations. In such zones, numerous mussels are observed onto the 13 tubes of the vestimentiferan aggregations that directly border the mussel beds. This 14 could be the result of space limitations within the mussel beds, which would constrain 15 mussels to invade neighboring tubeworm aggregations. Indeed, the dual symbiosis of 16 B. aff. boomerang allows this species to use both methane and sulfide, similarly to 17 several other seep and vent mussels of the Bathymodiolus genus (Duperron et al. 2005). However, unlike in the gills of Bathymodiolus azoricus at Mid-Atlantic 18 19 hydrothermal vents, symbionts in seep mussel gills at Regab and at Gulf of Mexico 20 seeps are predominantly methanotrophic; the thiotrophic symbionts are likely limited 21 by the absence or low level of sulfide in the seawater (Duperron et al. 2011). 22 Moreover, the fact that mussel/tubeworm co-occurrence zones are mostly close to the 23 main mussel beds may also support the hypothesis that methane fluxes are higher in 24 those areas than in the tubeworms aggregations located farther from the mussel beds. 25 This is in accordance with previous studies, which indicate that mussel beds at Regab

are located in areas with the highest concentrations of methane in the water (Charlou et al. 2004, Olu-Le Roy et al. 2007a). Such behavior was also observed for methanotrophic mussel populations in the Southern Barbados prism (Olu et al. 1996b) and along the Costa Rica margin (Mau et al. 2006). In the Gulf of Mexico, mussels associated to brine seeps with high methane concentration grow faster and are in better physiological condition than those from petroleum sites with low methane but high sulfide concentrations (Bergquist et al. 2004).

8 The distribution of the tubeworms aggregations around the mussel beds could reflect 9 lower fluid advection rates than under mussel beds. Niemann et al. (2006) and de Beer 10 et al. (2006) suggested that by preventing downward fluxes of sulfate-rich water into 11 the sediments, intense fluid advection rates can hinder the efficiency of AOM. This is 12 in accordance with results from Pop Ristova et al. (2012), who calculated the 13 proportion of upward diffusing methane that is removed by AOM at Regab to be only 14 6-20% under a mussel habitat compared to 47-97% in lower flux areas such as under 15 clam habitats. Such processes could result in different environmental conditions inside 16 and outside the mussel beds, and partly control the relative distribution of tubeworms 17 and mussels. Biotic interactions are known to occur between mussels and tubeworms 18 at hydrothermal vents (Johnson et al. 1994, Desbruyères 1998, Lenihan et al. 2008). 19 For instance, mussels of the species Bathymodiolus thermophilus are able to disperse 20 fluids laterally (Johnson et al. 1994), which could make fluids unavailable for 21 tubeworms, and to inhibit recruitment of other vent species (Lenihan et al. 2008). 22 Such interactions could also apply in dense *B*. aff. *boomerang* aggregations. However, 23 unlike vent tubeworms, which take up sulfide from the seawater (Arp et al. 1985), 24 seep tubeworms such as *E. southwardae* take up sulfide directly from the sediments 25 through their roots (Julian et al. 1999, Andersen et al. 2004), and are likely unaffected

by fluid dispersion by the mussels. Furthermore, sulfide is almost absent of the
 seawater overlying mussel beds at Regab (Olu-Le Roy et al. 2007a, Duperron et al.
 2011). Therefore, the absence of tubeworms in mussel beds is more likely due to
 competition for space or to reduced AOM efficiency rather than biotic interactions.

5 Our observations show that large tubeworm aggregations around the main mussel beds correspond to areas where the carbonate crusts are most prominent, and likely 6 7 the thickest. Carbonate precipitation likely reduced methane flux, thus enhancing 8 AOM and sulfide production, and favoring tubeworm settlement and dominance over 9 mussels. Moreover, as observed at Gulf of Mexico seeps, tubeworms of the species 10 Lamellibrachia luymesi were shown to release sulfate through their roots into the 11 sediments (Cordes et al. 2005a), thus preventing a potential sulfate-depletion of the 12 sediments. This characteristic is believed to allow adult L. luymesi to fuel or even 13 enhance the AOM (Cordes et al. 2005a, Dattagupta et al. 2008) in order to maintain 14 their supply in sulfide. As a result, the vestimentiferan population contributes to the 15 formation of carbonates, which is supported by our observations that tubeworms are 16 present where concretions form continuous and prominent crusts.

17 Juvenile tubeworms consistently occur near or at the limit between carbonate crusts 18 and bare sediments. Sulfide fluxes and concentrations are likely to be higher in such 19 areas with unsealed sediment/water interface than in areas covered by thick crusts, 20 and thus to provide a suitable environment for the larvae to settle until they can self-21 maintain their supply of sulfide. According to Bergquist et al. (2002), the recruitment 22 of new tubeworms of the species Lamellibrachia luymesi and Seepiophila jonesi is 23 time-constrained and stops in older aggregations, due to the presence of thick 24 carbonate pavements and low concentrations of sulfide in the water (Bergquist et al. 25 2003a). Sulfide concentrations have indeed been reported to be higher around 1 aggregations of juvenile than within older aggregations (Bergquist et al. 2003b).

This interpretation is further supported by the occurrence of bands of black reduced sediments along the limits of the vestimentiferan-hosting carbonate concretions (Figure 5), indicating that AOM and sulfide release occur in those areas. These features also suggest that part of the methane fluxes trapped beneath the carbonates could be redirected toward the sides of the carbonate crusts.

7 The distribution of the vesicomyid population is likely related to even lower advection 8 rates than the tubeworm aggregations. Vesicomyid clams require soft substrata to 9 access sulfide through their foot and, thus, are generally excluded from encrusted 10 areas. Results show indeed that the living vesicomyid clams are mainly located in the 11 soft sediment areas surrounding the tubeworms and mussel aggregations. However, 12 according to our interpretation, those areas are also where methane and sulfide fluxes 13 are lower. In particular, Olu-Le Roy et al. (2007a) observed that vesicomyid clams at 14 Regab are located in areas with relatively low methane concentrations, in comparison 15 to tubeworm and mussel habitats. This is consistent with the current understanding 16 that methane/sulfide availability shapes the structure of the microbial and megafaunal 17 communities (Olu et al. 1996a, b, 1997, Sahling et al. 2002, Sibuet & Olu-Le Roy 18 2002, Levin et al. 2003, Levin 2005, Ritt et al. 2011, Pop Ristova et al. 2012).

19 The vesicomyid clam environment is sometimes proposed as being a precursor stage 20 towards a tubeworms/carbonate environment (Sahling et al. 2008). This is partly 21 supported by our observations of dead shells occurrences on some bare carbonate 22 concretions. Also, the presence of dead shells within the concretions has been reported 23 previously (Pierre & Fouquet 2007). These observations suggest that areas with 24 vesicomyids transfer to the formation of carbonated crusts, either with or without 25 vestimentiferans. However, we have also observed large patches of dead vesicomyid shells within the sediments, sometimes almost buried, that would suggest that seepage activity in these areas decreased or stopped and that living populations either died or moved away. Such areas might never turn into tubeworms/carbonate environments due to too low or too transient fluxes. Thus, vesicomyid populations might not be restricted to one particular successional stage of colonization, but be present in a range of areas representing different development stages of the seeping activity and the observed patterns of distribution reflect the spatial heterogeneity of fluid flux.

8 Bergquist et al. (2003b) and Cordes et al. (2005b) suggested that the relative 9 distribution of mussels (*Bathymodiolus childressi*) and tubeworms (*L. luymesi* and *S. jonesi*) could be related to different stages of succession, and explain that mussel beds 11 indicate an earlier stage of colonization that would later be replaced by tubeworms, 12 when the formation of carbonate concretions reduces the methane supply to the water 13 column.

14 However, we propose that the situation at Regab is more complex, as the observed 15 patterns of fauna distribution could also be partly related to spatial heterogeneity of 16 the fluid advection regime. Indeed, the particularity of this site is the coalescence of 17 several pockmarks within the Regab site that may differ by their fluid flow regime or 18 their evolution stage (Ondreas et al. 2005; Gay et al. 2006). If the relative 19 mussel/tubeworm distribution was solely related to different colonization stages, the 20 mussel population would expectedly be observed mainly together with, or in the 21 vicinity of, juvenile tubeworm aggregations. Although we do observe juveniles 22 around some small mussel clusters, the larger mussel beds present in the study area 23 are predominantly bordered by large adult tubeworm aggregations. Considering the extreme slow growth rate of tubeworms (Fisher et al. 1997, Bergquist et al. 2000), this 24 25 indicates that fluid advection in those areas has been going on for a relatively long

1 time, but that recruitment of juvenile has not occurred or has been hindered.

2

3 5.2 Temporal comparison

The comparison of the maps of faunal distribution and of the computed areas reveals 4 5 that the size of the areas of faunal occurrence has remained globally the same between the Biozaire (2001) and the WACS (2011) cruises. We consider the discrepancies in 6 7 computed values and mapped areas to be largely caused by uncertainties in the 8 method. First, images for each mosaic have been taken with different camera and 9 lighting setups, which results in different resolutions and visibilities between the 10 Biozaire and WACS mosaics. Furthermore, small perspective distortions can, in 11 places, impact the precision of the relative geo-referencing of the mosaics, or make a 12 same feature look larger on one mosaic than on the other. Finally, the delineation 13 process is a manual step that highly depends on the interpretation and precision of the 14 observer. For all these reasons, mapped features may look different and discrepancies 15 in the computed areas may arise that are difficult to evaluate. Nevertheless, 16 considering all these possible sources of uncertainty and the large size of the study 17 area, the computed areas are remarkably consistent between the two mosaics. Indeed, 18 quantitative results showed that the changes in coverage per category are lower than 19 2% of the overlap area, which suggest very little change between the two mosaics. 20 However, based on qualitative observations described below, we consider that the 21 calculated areas are impacted by errors of the method and cannot be used to analyze 22 further such small variations in the areas of faunal cover.

For instance, our observations of the mosaics confirm that no change occurred in thepopulation of tubeworms within the overlap area over the past 10 years. Indeed, an

1 increase of the area covered by tubeworms would signify that recruitment occurred. 2 However, we did not observe new juvenile aggregations, possibly because the 3 observation period was too short and that juveniles are still too small to be seen, or 4 that the recruitment in the area covered by the mosaics was somehow limited. Overall, 5 the absence of changes in the vestimentiferan population is in accordance with the 6 findings that some tubeworms (L. luymesi and S. jonesi) may be very slow-growing and long-living (Fisher et al. 1997, Bergquist et al. 2000). Nevertheless, Lessard-Pilon 7 8 et al. (2010) did observe evidences of tubeworm recruitment (*Lamellibrachia* spp. or 9 Escarpia laminata) within discrete seep communities in the Gulf of Mexico after a 15 10 year period, thus confirming that changes within tubeworms communities could be 11 observed on such time-scales. Their work was based on a comparatively small study area (23.4 m²) and observations were likely more detailed than in our study (4605 12 13 m^2); indeed, they used photo datasets, which provided higher definition images and 14 closer views of the seafloor. Hence, tubeworm recruitment may have occurred within 15 our study area, but it is not evident from our data.

16 Conversely, some changes in size of individual beds of living and dead mussels were 17 observed, which suggest that localized variations of methane fluxes or carbonate 18 precipitation may have occurred. For instance, small scale visual observations suggest 19 that the dense mussel bed in M2/M3 could contain, in the overlap area, a greater 20 abundance of mussels in 2011 than in 2001, and that some minor mussel beds at M1 21 disappeared. This could indicate that the intensity of fluxes increased in M2/M3 and 22 decreased in M1. A decrease in activity in M1 would be consistent with the findings 23 of Olu-Le Roy et al. (2007a), who also hypothesized that a decreasing methane flux 24 occurs in this area, based on the lower density of the mussel beds. Alternatively, the 25 mussel abundance might have been stable and the observed changes could reflect a rearrangement of the mussels. In either case, distribution changes are likely the result
 of local variations in environmental conditions.

3 However, the observed changes were localized and, overall, the mussel population 4 showed very little variation. Despite the scale difference between the two studies, 5 these findings are consistent with observations of Lessard-Pilon et al. (2010). Both studies agree that only little change was observed on the total area covered by 6 7 foundation fauna. However, Lessard-Pilon et al. (2010) observed significant small-8 scale changes in the distribution of mussel populations (Bathymodiolus brooksi and 9 *Bathymodiolus heckerae*), and reported that about 50% of the area originally covered 10 by living mussels at one site had been, after a period of 15 years, either replaced by 11 dead mussel shells or colonized by tubeworms (Lamellibrachia spp. or Escarpia 12 laminata). Interestingly, as we observed at Regab, the hydrothermal vent mussel 13 population of *Bathymodiolus azoricus*, was described to be stable on a decadal scale 14 in terms of overall percentage of colonization (Cuvelier et al. 2011), while small 15 fluctuations occurred on shorter time scales and on smaller spatial scales for seep 16 mussels of the Gulf of Mexico (Lessard-Pilon et al. 2010).

17 In our study, no change was observed in the tubeworm aggregations surrounding these 18 areas where mussel distribution varied. Mussel populations are expected to be more 19 dynamic and to respond faster to environmental changes than tubeworms (Lessard-20 Pilon et al. 2010), which may be insensitive to small variations of seepage activity. 21 Alternatively, the increased dead mussels occurrence in M1 could reflect a late stage 22 of the successional model developed by Bergquist et al. (2003b), characterized by a 23 decrease of mussel population due to a decrease of methane and maybe of sulfide in 24 the water column. Indeed mussels are associated to areas of vigorous seepages and 25 high methane concentrations (Nix et al. 1995, Bergquist et al. 2005). However, the model proposed by Bergquist et al. (2003b) is true for long time-scales and it is
uncertain whether such trend is detectable within a 10-year period.

3 Changes in the population of vesicomyid clams were more frequently observed than 4 for the mussel population. Although we cannot conclude if the total living population 5 globally did change, the location of the aggregates of living individuals shows relatively more differences in comparison to the other populations studied. Indeed, 6 7 several patches of living individuals observed in the 2011 mosaic did not exist in 8 2001. Conversely some patches of vesicomyid clams that existed in 2001 did not exist 9 anymore in 2011. Also, in some cases, old patches of dead clams were re-colonized by 10 living clams. However, changes in the distribution of patches of living/dead clams are 11 difficult to apprehend since the relative proportion of living and dead clams cannot be 12 estimated from the images. Overall, the distribution of living vesicomyid clams is 13 very patchy and is difficult to understand.

14 Sahling et al. (2008) proposed a model for pockmarks of the Congo fan (100 km north 15 of Regab), in which the distribution of tubeworm (E. southwardae) and clam (of 16 similar species than at Regab) assemblages is controlled by the depth of the gas 17 hydrate deposits. The model considers that gas hydrates deposits act as "capacitors" 18 (Dickens 2003) that buffer the transient influxes of methane from below and that 19 ensure a more stable diffusion of methane into the pore water above, thus sustaining 20 long-living seep communities. We think that a similar control mechanism occurs at 21 Regab. Indeed, the presence of gas hydrates at Regab is known both from direct 22 observation of outcrops on the sediment surface and from sediment cores (Charlou et 23 al. 2004, Ondréas et al. 2005).

However, although this model is supported by the presence of such large populationsof long-living seep communities and by their spatial patterns of distribution, it does

1 not fully explain the temporal changes observed within the clam populations. At 2 Regab, most aggregates of living individuals are indeed located within patches of 3 black sediments, indicating the occurrence of AOM; clams are mobile fauna, hence 4 changes in areas of distribution must somehow reflect changes of sulfide availability. 5 One possible explanation could be that gas hydrate deposits under clam communities 6 are either absent or too thin to buffer the transient methane fluxes over such a time 7 period. The observed changes in clam distribution would therefore be the response to 8 the transient release of methane and subsequent transient sulfide production. Clearly, 9 some monitoring of sulfide concentrations and some geological sampling under the 10 clam aggregates would be required to further refine this interpretation. However, this 11 is in accordance with other studies that suggest that vesicomyid clams are supported 12 by diffuse or transient fluxes (Olu et al. 1996a, b).

13

14 6. Conclusion

15 In this study, mosaic-based mapping of the faunal distribution over an area of 14,000 16 m² shows that the distribution of dominant megafaunal species (mussels, tubeworms, 17 clams) at Regab is mostly concentrated within three main megafaunal aggregations. 18 Within these three main aggregations, the faunal arrangement follows the same spatial 19 pattern with the methanotrophic mussels in the middle, then the vestimentiferans and 20 finally the vesicomyid clams on the outer zone. We interpret that each of these 21 patterns is centered on a zone of high flux of methane-enriched fluids. Such zones of 22 high fluid flow are responsible for the spatial variation of intensity of the fluxes 23 reaching the upper sediments and, hence, structure the distribution of the 24 chemosynthetic megafauna in the pockmark.

1 In addition, this study is the first to describe the 10-year variation of the megafauna distribution in a cold seep environment over a 4600 m²-large area. Through 2 quantitative comparison of the two mosaics, it reveals that the overall size of the 3 dominant megafaunal populations of Regab did not change significantly (< 2% of the 4 5 comparison area), which indicates that the intensity of the methane and sulfide fluxes 6 that reach the faunal communities has been globally stable at the scale of the comparison area. We interpret that such continuity could be related to the presence in 7 8 the sediments of gas hydrate deposits acting as "capacitors" for the methane fluxes.

9 Nevertheless, this study also shows that small-scale and discrete distribution changes 10 have occurred, as already observed at other seep and vent sites, but were too small to 11 be reliably quantified with our methodology. Those changes occurred mainly within 12 the living population of vesicomyid clams; this suggests that the clam community was 13 exposed to more transient fluxes than the mussel and tubeworm communities.

1 Acknowledgements

We would like to thank the captain and the crew of RV Pourquoi Pas?, and the ROV
Victor 6000 team. Also thanks to Olivier Soubigou, Christophe Bayle and Michael
Aaron for their technical help and advices, and to James Collins for proofreading. We
are grateful to the entire team of the LEP for receiving me in their team.

6 This work was supported by the Ifremer and by the European Commission under the
7 EU Framework 7 funded Marie Curie Initial Training Network (ITN) SENSEnet
8 (contract n°237868).

References

2	Allais AG, Borgetto M, Opderbecke J, Pessel N, Rigaud V (2004) Seabed video
3	mosaicking with MATISSE: a technical overview and cruise results. In:
4	<i>Proceedings of The Fourteenth International Offshore and Polar Engineering</i>
5	<i>Conference</i> . Toulon, France
6	Aloisi G, Bouloubassi I, Heijs SK, Pancost RD, Pierre C, Sinninghe Damsté JS,
7	Gottschal JC, Forney LJ, Rouchy JM (2002) CH4-consuming microorganisms
8	and the formation of carbonate crusts at cold seeps. <i>Earth and Planetary</i>
9	<i>Science Letters</i> , 203 , 195–203.
10	Andersen AC, Hourdez S, Marie B, Jollivet D, Lallier FH, Sibuet M (2004) <i>Escarpia</i>
11	southwardae sp. nov., a new species of vestimentiferan tubeworm (Annelida,
12	Siboglinidae) from West African cold seeps. <i>Canadian Journal of Zoology</i> , 82 ,
13	980–999.
14	Arp AJ, Childress JJ, Fisher CR (1985) Blood gas transport in Riftia pachyptila. In:
15	Jones ML (ed) <i>Hydrothermal vents of the Eastern Pacific: An overview</i> .
16	INFAX, Vienna, Va., p289–300.
17	Beer D de, Sauter E, Niemann H, Kaul N, Foucher JP, Witte U, Schlüter M, Boetius A
18	(2006) In situ fluxes and zonation of microbial activity in surface sediments of
19	the Håkon Mosby Mud Volcano. <i>Limnology and Oceanography</i> , 51 , 1315–
20	1331.
21	Bergquist DC, Andras JP, McNelis T, Howlett S, Horn MJ Van, Fisher CR (2003a)
22	Succession in Gulf of Mexico cold seep vestimentiferan aggregations: the
23	importance of spatial variability. <i>Marine Ecology</i> , 24, 31–44.
24	Bergquist DC, Fleckenstein C, Knisel J, Begley B, MacDonald IR, Fisher CR (2005)
25	Variations in seep mussel bed communities along physical and chemical
26	environmental gradients. <i>Marine Ecology Progress Series</i> , 293 , 99–108.
27 28 29	Bergquist DC, Fleckenstein C, Szalai EB, Knisel J, Fisher CR (2004) Environment drives physiological variability in the cold seep mussel <i>Bathymodiolus childressi</i> . <i>Limnology and oceanography</i> , 49 , 706–715.
30 31 32	Bergquist DC, Urcuyo IA, Fisher CR (2002) Establishment and persistence of seep vestimentiferan aggregations on the upper Louisiana slope of the Gulf of Mexico. <i>Marine Ecology Progress Series</i> , 241 , 89–98.
33	Bergquist DC, Ward T, Cordes EE, McNelis T, Howlett S, Kosoff R, Hourdez S,
34	Carney R, Fisher CR (2003b) Community structure of vestimentiferan-
35	generated habitat islands from Gulf of Mexico cold seeps. <i>Journal of</i>
36	<i>Experimental Marine Biology and Ecology</i> , 289 , 197–222.
37 38	Bergquist DC, Williams FM, Fisher CR (2000) Longevity record for deep-sea invertebrate. <i>Nature</i> , 403 , 499–500.

39 Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R,

1 2	Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. <i>Nature</i> , 407 , 623–626.
3 4 5	Boetius A, Suess E (2004) Hydrate Ridge: a natural laboratory for the study of microbial life fueled by methane from near-surface gas hydrates. <i>Chemical Geology</i> , 205 , 291–310.
6 7 8 9 10	Cambon-Bonavita MA, Nadalig T, Roussel E, Delage E, Duperron S, Caprais JC, Boetius A, Sibuet M (2009) Diversity and distribution of methane-oxidizing microbial communities associated with different faunal assemblages in a giant pockmark of the Gabon continental margin. <i>Deep Sea Research Part II:</i> <i>Topical Studies in Oceanography</i> , 56 , 2248–2258.
11 12 13 14	Charlou JL, Donval JP, Fouquet Y, Ondréas H, Knoery J, Cochonat P, Levaché D, Poirier Y, Jean-Baptiste P, Fourré E, Chazallon B (2004) Physical and chemical characterization of gas hydrates and associated methane plumes in the Congo–Angola Basin. <i>Chemical Geology</i> , 205 , 405–425.
15 16 17 18	Copley JTP, Jorgensen PB., Sohn RA (2007) Assessment of decadal-scale ecological change at a deep Mid-Atlantic hydrothermal vent and reproductive time-series in the shrimp Rimicaris exoculata. <i>Journal of the Marine Biological Association of the United Kingdom</i> , 87 , 859–867.
19 20 21	Cordes EE, Arthur MA, Shea K, Arvidson RS, Fisher CR (2005a) Modeling the mutualistic interactions between tubeworms and microbial consortia. <i>PLoS Biology</i> , 3 , 497–506.
22 23 24	Cordes EE, Bergquist DC, Shea K, Fisher CR (2003) Hydrogen sulphide demand of long-lived vestimentiferan tube worm aggregations modifies the chemical environment at deep-sea hydrocarbon seeps. <i>Ecology Letters</i> , 6 , 212–219.
25 26 27	Cordes EE, Hourdez S, Predmore BL, Redding ML, Fisher CR (2005b) Succession of hydrocarbon seep communities associated with the long-lived foundation species <i>Lamellibrachia luymesi</i> . <i>Marine Ecology Progress Series</i> , 305 , 17–29.
28 29 30	Cosel R von, Olu K (2008) A new genus and new species of Vesicomyidae (Mollusca, Bivalvia) from cold seeps on the Barbados accretionary prism, with comments on other species. <i>Zoosystema</i> , 30 , 929–944.
31 32 33	Cosel R von, Olu K (2009) Large Vesicomyidae (Mollusca: Bivalvia) from cold seeps in the Gulf of Guinea off the coasts of Gabon, Congo and northern Angola. <i>Deep Sea Research Part II: Topical Studies in Oceanography</i> , 56 , 2350–2379.
34 35 36 37	Cuvelier D, Sarrazin J, Colaço A, Copley JT, Glover AG, Tyler PA, Serrão Santos R, Desbruyères D (2011) Community dynamics over 14 years at the Eiffel Tower hydrothermal edifice on the Mid-Atlantic Ridge. <i>Limnology and</i> <i>Oceanography</i> , 56 , 1624–1640.
38 39 40 41	Dattagupta S, Arthur MA, Fisher CR (2008) Modification of sediment geochemistry by the hydrocarbon seep tubeworm <i>Lamellibrachia luymesi</i> : A combined empirical and modeling approach. <i>Geochimica et Cosmochimica Acta</i> , 72 , 2298–2315.

1 2 3	Decker C, Caprais JC, Khripounoff A, Olu K (2012) First respiration estimates of cold-seep vesicomyid bivalves from in situ total oxygen uptake measurements. <i>Comptes Rendus Biologies</i> , 335 , 261–270.
4 5 6	Desbruyères D (1998) Temporal variations in the vent communities on the East Pacific Rise and Galapagos Spreading Centre: a review of present knowledge. <i>Cahiers de Biologie Marine</i> , 39 , 241–244.
7 8 9	Dickens GR (2003) Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. <i>Earth and Planetary Science Letters</i> , 213 , 169–183.
10 11	Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. <i>Nature Reviews Microbiology</i> , 6 , 725–740.
12 13 14 15	Duperron S, Guezi H, Gaudron SM, Pop Ristova P, Wenzhöfer F, Boetius A (2011) Relative abundances of methane- and sulphur-oxidising symbionts in the gills of a cold seep mussel and link to their potential energy sources. <i>Geobiology</i> , 9 , 481–491.
16 17 18 19 20	Duperron S, Nadalig T, Caprais JC, Sibuet M, Fiala-Medioni A, Amann R, Dubilier N (2005) Dual symbiosis in a <i>Bathymodiolus</i> sp. mussel from a methane seep on the Gabon continental margin (Southeast Atlantic): 16S rRNA phylogeny and distribution of the symbionts in gills. <i>Applied and Environmental Microbiology</i> , 71 , 1694–1700.
21 22	Fisher CR, Urcuyo IA, Simpkins MA, Nix E (1997) Life in the slow lane: Growth and longevity of cold-seep vestimentiferans. <i>Marine Ecology</i> , 18 , 83–94.
23 24 25	Gaever S van, Galéron J, Sibuet M, Vanreusel A (2009) Deep-sea habitat heterogeneity influence on meiofaunal communities in the Gulf of Guinea. <i>Deep Sea Research Part II: Topical Studies in Oceanography</i> , 56 , 2259–2269.
26 27 28	Gay A, Lopez M, Ondréas H, Charlou JL, Sermondadaz G, Cochonat P (2006) Seafloor facies related to upward methane flux within a Giant Pockmark of the Lower Congo Basin. <i>Marine Geology</i> , 226 , 81–95.
29 30 31 32	 Hessler RR, Smithey WM, Boudrias MA, Keller CH, Lutz RA, Childress JJ (1988) Temporal change in megafauna at the Rose Garden hydrothermal vent (Galapagos Rift; eastern tropical Pacific). <i>Deep Sea Research Part A</i> <i>Oceanographic Research Papers</i>, 35, 1681–1709.
33 34	Hovland M (2002) On the self-sealing nature of marine seeps. <i>Continental Shelf Research</i> , 22 , 2387–2394.
35 36 37 38	Jerosch K, Schlüter M, Foucher JP, Allais AG, Klages M, Edy C (2007) Spatial distribution of mud flows, chemoautotrophic communities, and biogeochemical habitats at Håkon Mosby Mud Volcano. <i>Marine Geology</i> , 243 , 1–17.
39 40	Johnson KS, Childress JJ, Beehler CL, Sakamoto CM (1994) Biogeochemistry of hydrothermal vent mussel communities: the deep-sea analogue to the intertidal

1 2	zone. <i>Deep Sea Research Part I: Oceanographic Research Papers</i> , 41 , 993–1011.
3 4 5	Julian D, Gaill F, Wood E, Arp AJ, Fisher CR (1999) Roots as a site of hydrogen sulfide uptake in the hydrocarbon seep vestimentiferan Lamellibrachia sp. <i>Journal of Experimental Biology</i> , 202 , 2245–2257.
6	Krylova EM, Cosel R von (2011) A new genus of large Vesicomyidae (Mollusca,
7	Bivalvia, Vesicomyidae, Pliocardiinae) from the Congo margin, with the first
8	record of the subfamily Pliocardiinae in the Bay of Biscay (northeastern
9	Atlantic). <i>Zoosystema</i> , 33 , 83–99.
10	Lenihan HS, Mills SW, Mullineaux LS, Peterson CH, Fisher CR, Micheli F (2008)
11	Biotic interactions at hydrothermal vents: Recruitment inhibition by the
12	mussel Bathymodiolus thermophilus. <i>Deep Sea Research Part I:</i>
13	<i>Oceanographic Research Papers</i> , 55 , 1707–1717.
14	Lessard-Pilon SA, Porter MD, Cordes EE, MacDonald IR, Fisher CR (2010)
15	Community composition and temporal change at deep Gulf of Mexico cold
16	seeps. <i>Deep Sea Research Part II: Topical Studies in Oceanography</i> , 57 ,
17	1891–1903.
18 19	Levin LA (2005) Ecology of cold seep sediments : Interactions of fauna with flow, chemistry and microbes. <i>Oceanography and Marine Biology</i> , 43 , 1–46.
20 21 22 23	Levin LA, Ziebis W, Mendoza GF, Growney VA, Tryon MD, Brown KM, Mahn C, Gieskes JM, Rathburn AE (2003) Spatial heterogeneity of macrofauna at northern California methane seeps: influence of sulfide concentration and fluid flow. <i>Marine Ecology Progress Series</i> , 265 , 123–139.
24	Luff R, Wallmann K, Aloisi G (2004) Numerical modeling of carbonate crust
25	formation at cold vent sites: significance for fluid and methane budgets and
26	chemosynthetic biological communities. <i>Earth and Planetary Science Letters</i> ,
27	221 , 337–353.
28 29 30	MacDonald IR, Sager WW, Peccini MB (2003) Gas hydrate and chemosynthetic biota in mounded bathymetry at mid-slope hydrocarbon seeps: Northern Gulf of Mexico. <i>Marine Geology</i> , 198 , 133–158.
31 32 33	Mau S, Sahling H, Rehder G, Suess E, Linke P, Soeding E (2006) Estimates of methane output from mud extrusions at the erosive convergent margin off Costa Rica. <i>Marine Geology</i> , 225 , 129–144.
34	Menot L, Crassous P, Desbruyères D, Galéron J, Khripounoff A, Sibuet M (2009)
35	Colonization patterns along the equatorial West African margin: Implications
36	for functioning and diversity maintenance of bathyal and abyssal communities.
37	<i>Deep Sea Research Part II: Topical Studies in Oceanography</i> , 56 , 2313–2325.
38	Mullineaux LS, Fisher CR, Peterson CH, Schaeffer SW (2000) Tubeworm succession
39	at hydrothermal vents: use of biogenic cues to reduce habitat selection error?
40	<i>Oecologia</i> , 123 , 275–284.

1 2 3 4	Niemann H, Lösekann T, Beer D de, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schlüter M, Klages M, Foucher JP, Boetius A (2006) Novel microbial communities of the Haakon Mosby Mud Volcano and their role as a methane sink. <i>Nature</i> , 443 , 854–858.
5 6 7	Nix ER, Fisher CR, Vodenichar J, Scott KM (1995) Physiological ecology of a mussel with methanotrophic endosymbionts at three hydrocarbon seep sites in the Gulf of Mexico. <i>Marine Biology</i> , 122 , 605–617.
8	Olu K, Caprais JC, Galéron J, Causse R, Cosel R von, Budzinski H, Ménach KL,
9	Roux CL, Levaché D, Khripounoff A, Sibuet M (2009) Influence of seep
10	emission on the non-symbiont-bearing fauna and vagrant species at an active
11	giant pockmark in the Gulf of Guinea (Congo–Angola margin). <i>Deep Sea</i>
12	<i>Research Part II: Topical Studies in Oceanography</i> , 56 , 2380–2393.
13	Olu K, Duperret A, Sibuet M, Foucher JP, Fiala-Médioni A (1996a) Structure and
14	distribution of cold seep communities along the Peruvian active margin:
15	relationship to geological and fluid patterns. <i>Marine Ecology Progress Series</i> ,
16	132, 109–125.
17	Olu K, Lance S, Sibuet M, Henry P, Fiala-Médioni A, Dinet A (1997) Cold seep
18	communities as indicators of fluid expulsion patterns through mud volcanoes
19	seaward of the Barbados accretionary prism. <i>Deep Sea Research Part I:</i>
20	<i>Oceanographic Research Papers</i> , 44 , 811–841.
21 22 23 24	Olu K, Sibuet M, Harmegnies F, Foucher JP, Fiala-Médioni A (1996b) Spatial distribution of diverse cold seep communities living on various diapiric structures of the southern Barbados prism. <i>Progress In Oceanography</i> , 38 , 347–376.
25 26 27 28	Olu-Le Roy K (2006) Comments on: the paper of Gay et al. (2006) Seafloor facies related to upward methane flux within a giant pockmark of the Lower Congo Basin. Marine Geology 226:81-95 by Gay et al. Author's reply. <i>Marine Geology</i> , 232 , 101–104.
29	Olu-Le Roy K, Caprais JC, Fifis A, Fabri MC, Galéron J, Budzinsky H, Ménach K
30	Le, Khripounoff A, Ondréas H, Sibuet M (2007a) Cold-seep assemblages on a
31	giant pockmark off West Africa: spatial patterns and environmental control.
32	<i>Marine Ecology</i> , 28 , 115–130.
33	Olu-Le Roy K, Cosel R von, Hourdez S, Carney SL, Jollivet D (2007b) Amphi-
34	Atlantic cold-seep Bathymodiolus species complexes across the equatorial
35	belt. <i>Deep-Sea Research Part I: Oceanographic Research Papers</i> , 54 , 1890–
36	1911.
37	Ondréas H, Olu K, Fouquet Y, Charlou JL, Gay A, Dennielou B, Donval JP, Fifis A,
38	Nadalig T, Cochonat P, Cauquil E, Bourillet JF, Moigne M le, Sibuet M (2005)
39	ROV study of a giant pockmark on the Gabon continental margin. <i>Geo-Marine</i>
40	<i>Letters</i> , 25 , 281–292.
41	Pierre C, Fouquet Y (2007) Authigenic carbonates from methane seeps of the Congo

1	deep-sea fan. Geo-Marine Letters, 27, 249–257.					
2 3 4 5	Pop Ristova P, Wenzhöfer F, Ramette A, Zabel M, Fischer D, Kasten S, Boetius A (2012) Bacterial diversity and biogeochemistry of different chemosynthetic habitats of the REGAB cold seep (West African margin, 3160 m water depth). <i>Biogeosciences</i> , 9 , 5031–5048.					
6 7 8 9	Ritt B, Pierre C, Gauthier O, Wenzhöfer F, Boetius A, Sarrazin J (2011) Diversity and distribution of cold-seep fauna associated with different geological and environmental settings at mud volcanoes and pockmarks of the Nile Deep-Sea Fan. <i>Marine Biology</i> , 158 , 1187–1210.					
10 11 12	Roberts H, Aharon P, Carney R, Larkin J, Sassen R (1990) Sea floor responses to hydrocarbon seeps, Louisiana continental slope. <i>Geo-Marine Letters</i> , 10 , 232–243.					
13 14 15 16	Sahling H, Bohrmann G, Spiess V, Bialas J, Breitzke M, Ivanov M, Kasten S, Krastel S, Schneider R (2008) Pockmarks in the Northern Congo Fan area, SW Africa: Complex seafloor features shaped by fluid flow. <i>Marine Geology</i> , 249, 206– 225.					
17 18 19	Sahling H, Rickert D, Lee RW, Linke P, Suess E (2002) Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific. <i>Marine Ecology Progress Series</i> , 231 , 121–138.					
20 21 22 23	 Shank TM, Fornari DJ, Damm KL von, Lilley MD, Haymon RM, Lutz RA (1998) Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9°50'N, East Pacific Rise). <i>Deep Sea Research Part II: Topical Studies in Oceanography</i>, 45, 465–515. 					
24	Shanks WC (1995) Rebirth of a sea-floor vent. Nature, 375, 18–19.					
25 26 27	Sibuet M, Olu-Le Roy K (2002) Cold seep communities on continental margins: Structure and quantitative distribution relative to geological and fluid venting patterns. In: <i>Ocean Margin Systems</i> . Springer-Verlag, Berlin, p235–251.					
28 29 30	Smith EB, Scott KM, Nix ER, Korte C, Fisher CR (2000) Growth and condition of seep mussels (<i>Bathymodiolus childressi</i>) at a Gulf of Mexico brine pool. <i>Ecology</i> , 81, 2392–2403.					
31 32 33 34	Vincent AG, Pessel N, Borgetto M, Jouffroy J, Opderbecke J, Rigaud V (2003) Real- time geo-referenced video mosaicking with the MATISSE system. In: <i>Proceedings of the MTS/IEEE Oceans 2003 Conference</i> . San Diego, USA, p2319–2324.					

Table 1: Areas of coverage of the different assemblages calculated from the WACS
 (2011) mosaic. Information about the distribution in soft sediments is given only for
 faunal categories, in which the substratum type could always be identified on the
 mosaic.

Within soft Within soft Total Area (m²) Assemblage sediments (m²) sediments (%) 2573 Escarpia, living --Escarpia/Bathymodiolus co-560 _ _ occurrence 97 Escarpia, juveniles _ -70 Escarpia, recumbent Escarpia, senescent 57 56.4 99% Mytilidae, living 414 --Mytilidae, shells 67 -_ Vesicomyidae, living 88 98% 86.2 Vesicomyidae, mixed 534 508.3 95% 549.9 87% Vesicomyidae, shells 633

- Table 2: Areas of coverage of the different assemblages in the overlap area between
- the Biozaire (2001) and WACS (2011) mosaics. The percentages are relative to the
- total area (4605 m^2) covered by both mosaics.

Assemblage	Biozaire	Biozaire	WACS	WACS	Trend
	(m^2)	(%)	(m^2)	(%)	
<i>Escarpia</i> , living	716	15.5%	782	17.0%	+1.5%
Escarpia/Bathymodiolus co-occurrence	207	4.5%	268	5.8%	+1.3%
Escarpia, juveniles	25	0.5%	28	0.6%	+0.1%
Escarpia, recumbent	79	1.7%	60	1.3%	-0.4%
Escarpia, senescent	70	1.5%	95	2.1%	+0.6%
<i>Mytilidae</i> , living	194	4.2%	207	4.5%	+0.3%
Mytilidae, shells	2	0.04%	14	0.3%	+0.3%
Vesicomyidae, living	23	0.5%	27	0.6%	+0.1%
Vesicomyidae, mixed	141	3.1%	199	4.3%	+1.2%
Vesicomyidae, shells	112	2.4%	125	2.7%	+0.3%

Fig 1: Location of the Regab pockmark; the insert map shows the approximate outlineof the pockmark and the mosaic area.

3 Fig 2: ROV navigation of the WACS mosaicking survey showing the distribution and the overlap of the two subareas (A and B), as well as which areas were surveyed during the two mosaicking dives (423 and 426). The navigation data was regularly reset onto known markers (black dots) to constrain global drifting error.

Fig 3: Excerpts of the WACS mosaic illustrating the different faunal categories; (a) *Mytilidae*, dense; (b) *Mytilidae*, sparse; (c) *Mytilidae*, shells; (d) *E. southwardae*,
dense; (e) *E. southwardae*, sparse; (f) *E. southwardae-Mytilidae co-occurrence;* (g) *E. southwardae*, juvenile; (h) *E. southwardae*, recumbent; (i) *E. southwardae*, senescent;
(j) *Vesicomyidae*, living (in the black sediments); (k) *Vesicomyidae*, living/dead
(mixed); (l) *Vesicomyidae*, shells. Images taken by ROV Victor 6000 (© Ifremer, 2011).

3 Fig 4: (a) Distribution of the main faunal categories and carbonate concretions based 4 on the WACS mosaic; (b) Simplified areas of distribution of the main types of fauna 5 according to the WACS mosaic; the remaining 'blank' part of the survey area presence' 6 corresponds the 'areas of low fauna (see text). to

2

Fig 5: Excerpt from the WACS mosaic showing a limit between carbonate crusts (right) and soft sediments (left); juvenile vestimentiferans are visible on the right and fields of vesicomyid clams can be seen in the sediment on the left. A band of reduced sediments occurs along the border of carbonate crusts. Images taken by ROV Victor

7 6000 (© Ifremer, WACS 2011).

- 3 Fig 6: Distribution of the main faunal categories and carbonate concretions in the area
- 4 of overlap between the Biozaire (2001) and the WACS (2011) mosaics.

Fig 7: Images taken from the Biozaire (left) and WACS (right) mosaics, representing almost the same areas of the seafloor; (a) at M2, some areas previously devoid of mussels are now fully colonized by mussels; (b) at M1, small beds of living mussels on the Biozaire have been replaced by mussel shells on the WACS mosaic; (c) a recumbent tube of vestimentiferan showed no change in size and position between 2001 and 2011. Images taken by ROV Victor 6000 (© Ifremer, Biozaire 2001 and WACS 2011).

Fig 8: Images taken from the Biozaire (left) and WACS (right) mosaics, representing almost the same areas of the seafloor; (a,b) new patches of vesicomyids that did not exist at the time of the Biozaire cruise; b also shows that the patch of dead clams has been partly re-colonized; (c) a patch of mixed vesicomyids almost disappeared under sediment cover. Images taken by ROV Victor 6000 (© Ifremer, Biozaire 2001 and WACS 2011).

Fig 9: Summary schematic model (not to scale). The main aggregations are distributed 3 4 in concentric patterns with the mussels in the middle, then the tubeworms on thick 5 concretions, and finally the vesicomyid clams in the sediments around. Mussels are 6 present in an area of intense flux with significant release of methane to the water 7 column. A transition zone is observed where mussels are present at the bottom and on 8 the tubes of the vestimentiferans. Vestimentiferans are present on carbonate 9 concretions but reach the sediments with their roots. Through sulfate release, they 10 maintain the AOM and the sulfide production. Juvenile tubeworms are distributed near the limit of the crusts where the sulfide fluxes from the sediments are likely 11 12 higher. The presence of dark reduced sediments around the concretions indicate that 13 part of the methane and sulfide fluxes are redirected from under the crusts towards 14 more sulfate-rich zones where AOM occurs. Populations of vesicomyid clams occur 15 in the sediments around. Their patchy distribution suggests that it is controlled by 16 discrete and transient fluxes from below.