Quantification of *Vibrio parahaemolyticus*, *Vibrio vulnificus* and *Vibrio cholerae* in French Mediterranean coastal lagoons

Franck Canteta, 1, Dominique Hervio-Heathb, 1, Audrey Caroa, Cécile Le Mennecb, Caroline Monteila, Catherine Quéméréc, Anne Jolivet-Gougeonc, Rita R. Colwelld, Patrick Monforta, *

a "Ecologie des Systèmes Marins Côtières", UMR 5119 CNRS, IRD, Ifremer, Université Montpellier 2 & 1, Case 093, 34095 Montpellier Cedex 05, France
b Ifremer, RBE, EMP, Laboratoire de Microbiologie-LNR, BP 70, 29280 Plouzané, France
c UPRES-EA 1254 Microbiologie, Université Rennes 1, 35000 Rennes, France
d 3103 Biomolecular Sciences Building, Center for Bioinformatics and Computational Biology, Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, USA

1 F. Cantet and D. Hervio-Heath contributed equally to this work.

*: Corresponding author : Patrick Monfort, tel.: +33 4 67 14 48 22 ; fax: +33 4 67 14 37 19 ; email address : pmonfort@univ-montp2.fr

Abstract:

Vibrio parahaemolyticus, *Vibrio vulnificus* and *Vibrio cholerae* are human pathogens. Little is known about these *Vibrio* spp. in the coastal lagoons of France. The purpose of this study was to investigate their incidence in water, shellfish and sediment of three French Mediterranean coastal lagoons using the most probable number-polymerase chain reaction (MPN-PCR). In summer, the total number of *V. parahaemolyticus* in water, sediment, mussels and clams collected from the three lagoons varied from 1 to >1.1 × 103 MPN/l, 0.09 to 1.1 × 103 MPN/ml, 9 to 210 MPN/g and 1.5 to 2.1 MPN/g, respectively. In winter, all samples except mussels contained *V. parahaemolyticus*, but at very low concentrations. Pathogenic (tdh- or trh2-positive) *V. parahaemolyticus* were present in water, sediment and shellfish samples collected from these lagoons. The number of *V. vulnificus* in water, sediment and shellfish samples ranged from 1 to 1.1 × 103 MPN/l, 0.07 to 110 MPN/ml and 0.04 to 15 MPN/g, respectively, during summer. *V. vulnificus* was not detected during winter. *V. cholerae* was rarely detected in water and sediment during summer. In summary, results of this study highlight the finding that the three human pathogenic *Vibrio* spp. are present in the lagoons and constitute a potential public health hazard.

Keywords : *Vibrio* ; Lagoons ; Shellfish ; Water ; Sediment ; Human pathogen
1. Introduction

Vibrio spp. are autochthonous to marine and estuarine environments, and are components of those ecosystems (Colwell *et al*., 1977). However, some *Vibrio* species are also human pathogens. *Vibrio parahaemolyticus* is recognized throughout the world as the leading causal agent of human gastroenteritis resulting from consumption of raw seafood. Enteropathogenic strains of *V. parahaemolyticus* generally produce a thermostable direct hemolysin (TDH) and/or a TDH-related hemolysin (TRH). The genes *tdh* and *trh* code for TDH and TRH, respectively (Iida *et al*., 2006). In the United States, *V. vulnificus* is responsible for 95 percent of all seafood-related deaths related to the ingestion of raw or undercooked seafood. Moreover, *V. vulnificus* has often been associated with serious infections caused by exposure of skin wounds to seawater. Different factors have been implicated in virulence of *V. vulnificus* including the *vvhA* gene that encodes hemolytic cytolyisin (Oliver, 2006). *Vibrio cholerae*, the causative agent of cholera, has been detected in natural fresh and brackish waters worldwide. This species has also been isolated from areas where no clinical cases of cholera have been reported (Colwell *et al*., 1977). However, most environmental isolates are *V. cholerae* non-O1/non-O139 capable of causing diarrheal outbreaks locally (Rippey, 1994).

Vibrios are responsible for many human cases of seafood-borne illness in many Asian countries and the United States (Rippey, 1994; Daniels *et al*., 2000; Su and Liu, 2007). The occurrence of potentially pathogenic *Vibrio* spp. in coastal waters and shellfish of European countries has already been documented, *i.e.*, in Italy, Spain, and France (Barbieri *et al*., 1999; Martinez-Urtaza *et al*., 2008; Hervio-Heath *et al*., 2002). Some non-cholera *Vibrio* outbreaks have also been described in these countries. However, vibrios are rarely responsible for severe outbreaks in Europe but instead for incidence of vibriosis (Geneste *et al*., 2000). In France, one hundred cases of *V. parahaemolyticus* infection were reported in 2001, all of which involved consumption of mussels imported from Ireland (Hervio-Heath *et al*., 2005). Since then, however, only sporadic cases of *V. parahaemolyticus* infections have been reported (Quilici *et al*., 2005).

The coastal lagoons of Southern France (Mediterranean) are ecosystems that receive inputs from watersheds and exchanges with the sea and are thus characterized by significant variation in water temperature and salinity. The coastal area and lagoons, especially Thau, the largest lagoon, are sites of significant shellfish production. *Vibrio parahaemolyticus*, *V. vulnificus*, and *V. cholerae* non-O1/non-O139 were isolated in coastal water and mussel samples collected offshore near the lagoons (Hervio-Heath *et al*., 2002). Two cases of
infection involving *Vibrio* spp. have been reported in the south of France. The death in 1994 of an immuno-compromised patient was caused by an infection by *V. cholerae* non-O1/non-O139 after exposure of skin wounds to seawater (Aubert *et al.*, 2001). In 2008, a fisherman was infected by *V. vulnificus* after a skin injury came into contact with brackish water from the Vic lagoon, in Southern France. This victim, weakened by both kidney and lung failure, died as a result of sepsis (Personal communication).

The presence of pathogenic vibrios in these lagoons represents a potential public health threat. To evaluate public health risk, data on the prevalence, distribution, and virulence of these bacteria are needed.

In this study, the occurrence and abundance of three human pathogenic *Vibrio* species (*V. parahaemolyticus*, *V. vulnificus* and *V. cholerae*) were investigated in water, shellfish, and sediment samples collected from three coastal Mediterranean lagoons during summer and winter seasons of 2006 and 2007. To our knowledge, this report represents the first detection and quantification of these three *Vibrio* species simultaneously in water, shellfish, and sediment of a lagoon ecosystem.
2. Materials and methods

2.1 Sampling sites

Figure 1 shows the location of sampling sites included in this study: Thau, Prévost, and Mauguio, three lagoons on the French Mediterranean coast (Languedoc area). These lagoons were selected on the basis of fishery and recreational activities that take place there. The Thau lagoon is of economical importance due to its large-scale bivalve mollusk farming (approximately 15,000 t of mussels and oysters produced each year), surface area of 75 km², and mean depth of 5 m. Small-scale recreational activities (bathing and sailing) also take place in this lagoon. The Prévost lagoon (29 km², 0.8 m mean depth) sustains a small shellfish (mussels) production capacity. Unlike the Thau and Prévost lagoons, each of which has salinity similar to seawater, the Mauguio lagoon, with a controlled seawater entry, displays a significantly lower salinity (31.7 km², 0.8 m mean depth).

2.2 Sample collection and processing

Surface water (5 l) and sediment (five 800 cm³ cores) samples were collected in September, 2006, and January and June, 2007, at one site in each lagoon (Thau: N 43°23'35.8'', E 003°37'20.8''; Prévost: N 43°31'16.6'', E 003°54'03.1''; and Mauguio: N 43°35'09.5'', E 004°01'15.4'') along with mussels (Mytilus galloprovincialis, 20-30 per sample) from the Thau and Prévost lagoons and clams (Ruditapes decussatus, 30-40 per sample) from the Thau lagoon. Water temperature and salinity were recorded simultaneously at the time of sampling at each site. Environmental samples were transported in coolers (12-15 °C) to the laboratory and processed within 4 hours of collection.

2.3 Quantification of V. parahaemolyticus, V. vulnificus and V. cholerae by MPN-PCR

A combined Most Probable Number-Polymerase Chain Reaction (MPN-PCR) method (Luan et al., 2008) was applied to detect and enumerate V. parahaemolyticus, V. vulnificus and V. cholerae in the environmental samples. Quantification of the vibrios was achieved by enrichment in alkaline peptone water (APW), following application of the Most Probable Number method. Growth of the Vibrio species in APW broth was confirmed by PCR and enteropathogenic V. parahaemolyticus (tdh positive and trh2 positive) by real-time PCR.
Water samples (1, 10, 100 ml and 1 l) were filtered, in triplicate, through 0.45 µm pore size membranes (nitrocellulose, Whatman, GE healthcare, Versailles, France) and the filters were incubated in APW at 41 °C for 24 h. Superficial sediment samples collected from the first three centimeters of five cores were mixed thoroughly and flesh and intra-valvular liquid of mussels and clams (shellfish tissue) were each homogenized. From the preparations of sediment or shellfish, 10 ml and 1 ml of serial 10-fold dilutions were inoculated in triplicate into APW broth and incubated at 41 °C for 24 h.

After enrichment, bacterial DNA was extracted from 1 ml of the APW using the Wizard Genomic DNA Purification kit (Promega, Charbonnières, France) designed for Gram-negative bacteria. Three primer pairs, based on the toxR and vvhA genes, and a portion of the Intergenic Spacer Region (ISR) 16S-23S rRNA were used to detect V. parahaemolyticus, V. vulnificus and V. cholerae, respectively (Table 1). PCR amplification included an initial denaturation at 94 °C for 2 min, 35 cycles of denaturation at 94 °C for 30 s, primer annealing at 57 °C for 30 s, and extension at 72 °C for 30 s, and final extension at 72 °C for 8 min.

This protocol was performed in an Eppendorf Mastercycler (Eppendorf, Le Pecq, France) and optimized in a 25 µl reaction containing 5 µl of 5X buffer (Promega, Charbonnières, France), 0.5 µl of dNTPs (200 µM), 0.25 µl of each primer (25 µM) (Invitrogen, Cergy pontoise, France), 13.9 µl of ultrapure water (Millipore SAS, Molsheim, France), 5 µl of target DNA (undiluted, diluted 1/10 and 1/100), 0.1 µl GoTaq DNA polymerase (5 U/µl, Promega, Charbonnières, France), 1 mg/ml of BSA (Sigma-Aldrich Chimie SARL, Saint Quentin Fallavier, France). The PCR-amplified DNA products were separated on a 1.2% agarose gel in Tris-Borate ETDA (TBE) buffer pH 8.3 (Invitrogen, Cergy pontoise, France), at 100 V for 30 min with a 1-Kb Plus DNA Ladder (Invitrogen, Cergy pontoise, France) and revealed with ethidium bromide (0.5 mg/ml).

MPN values were calculated from the statistical tables of De Man and expressed as MPN per liter, MPN per milliliter, and MPN per gram, for water, sediment, and shellfish tissue samples, respectively.

2.4 Quantification of tdh + and trh2+ V. parahaemolyticus by MPN-real-time PCR

Vibrio parahaemolyticus (toxR) positive enrichment cultures were further characterized by real-time PCR (TAQMAN probe, Eurogentec, Seraing, Belgique) for presence of virulence-associated genes, tdh and tdh-related hemolysin, trh2, found in enteropathogenic V. parahaemolyticus. Primers and probes for tdh and trh2 genes selected for
real time PCR assay were designed based on the sequences of a 269bp- and 500bp-region of
the two genes, respectively, using primers from Bej et al. (1999). Sequence data are available
on Genbank under accession numbers AF378099 and AY034609 for tdh and trh2,
respectively. The real-time PCR systems developed for these two genes exhibited positive
amplification on 8 clinical and 30 environmental *V. parahaemolyticus* strains. TaqMan PCR
using *tdh* and *trh2* primers and probes on 50 other bacterial isolates belonging to the *Vibrio*
genus (*V. vulnificus*, *V. cholerae*, *V. alginolyticus*, *V. mimicus*) and to other genera
(*Aeromonas*, *Listonella*, *Citrobacter*, *Proteus*, *Klebsiella*, *Salmonella*, *Enterobacter*,
Escherichia, *Pasteurella* and *Photobacterium*) did not exhibit any amplification, and thus,
confirmed the specificity of detection. The sensitivity was tested using real-time PCR on
serial-dilutions of genomic DNA purified from *V. parahaemolyticus* *tdh*+ and *V.
parahaemolyticus trh2*+ and exhibited amplification of *tdh* and *trh2* genes at the level of 0.33
pg and of 0.126 pg, respectively. Alternatively, unenriched 10-fold serial-dilution of pure
cultures of *V. parahaemolyticus* *tdh* and *trh2* exhibited a detection level of 1.75×10^2 CFU/ml
and of 4×10^2 CFU/ml with the above primers and probes for *tdh* and *trh2*, respectively.
Furthermore, the standards used as controls (PCR-positive control) in these assays were
plasmids that were cloned with *tdh* and *trh2* amplicons obtained with the real-time systems.
The MPN values were calculated and expressed as above.
3. Results

3.1 Vibrio parahaemolyticus

Vibrio parahaemolyticus was detected in water samples collected from the three lagoons included in this study during the summer months (September 2006, and June 2007) (Fig. 2). Concentrations varied from 1 to 20 MPN/l in the Thau lagoon and 1,100 MPN/l and more in the Mauguio and Prévost lagoons. Water temperatures ranged from 20 °C to 24 °C in the three lagoons and salinity from 36 to 39.6 ‰ in the Thau and Prévost lagoons; Mauguio had lower salinity, 29.6 ‰ in September, 2006, and 20 ‰ in June, 2007. In January, 2007, culturable *V. parahaemolyticus* was detected only in the Prévost lagoon, but at a concentration 1,000 times lower than during the summer months (0.1 to 1 MPN/l). Water temperatures at the time of sampling were 8 °C, 11 °C and 3 °C for the Thau, Prévost and Mauguio lagoons, respectively, and salinity was comparable to summer salinities, *i.e.*, 37 ‰, 34 ‰ and 20 ‰, respectively. Except for June, 2007, in Thau, enteropathogenic *trh2*+ *V. parahaemolyticus* was detected in water samples collected from the three lagoons during the summer in numbers from 20 to more than 1,100 MPN/l. Enteropathogenic *tdh*+ *V. parahaemolyticus* was detected only in water samples collected from Thau lagoon (0.4 MPN/l) and from Mauguio lagoon (11 MPN/l) in September, 2006. However, no enteropathogenic *V. parahaemolyticus* was detected in water samples collected from any of the lagoons during winter sampling (January 2007).

The total number of *V. parahaemolyticus* in all sediment samples collected from the three lagoons varied from 0.04 to 0.4 MPN/ml in winter (January 2007) and during the summer months, varied from 0.09 to 5 MPN/ml, 11 to 110 MPN/ml and 11 to 1,100 MPN/ml in the Thau, Mauguio and Prévost lagoons, respectively. Enteropathogenic *trh2*+ *V. parahaemolyticus* was detected in sediment samples collected from the Mauguio and Prévost lagoons at concentrations of 0.04 to 0.23 MPN/ml in winter and 5 to 210 MPN/ml in summer, but only once in sediment collected from the Thau lagoon (0.9 MPN/ml in September, 2006). Enteropathogenic *tdh*+ *V. parahaemolyticus* was detected only in September, 2006, in sediment samples collected from the Thau and Mauguio lagoons (0.04 MPN/ml).

V. parahaemolyticus was consistently detected in shellfish tissue during the warm season (Table 2), with concentrations varying from 9 to 210 MPN/g of mussels and from 1.5 to 2.1 MPN/g of clams. While *V. parahaemolyticus* was absent in mussels during the winter, it nevertheless remained detectable in clams (1.5 MPN/g). The concentration of
enteropathogenic trh2+ *V. parahaemolyticus* in shellfish tissue was lower than the concentration of total *V. parahaemolyticus*, varying from 0.07 to 9 MPN/g in mussels collected from the Prévost lagoon and detected only once (0.03 MPN/g) in mussels collected from the Thau lagoon (June 2007). Enteropathogenic trh2+ *V. parahaemolyticus* was not detected in clams and was absent from shellfish collected in January, 2007. Enteropathogenic tdh+ *V. parahaemolyticus* was detected in clams sampled during the summer and winter (from 0.07 to 0.4 MPN/g). However, it was detected only once in mussels collected from Thau lagoon in September, 2006 (0.04 MPN/g).

3.2 Vibrio vulnificus

Vibrio vulnificus was detected during the warm season in water samples collected from Mauguio lagoon, varying from 40 to more than 1,100 MPN/l, in water samples collected from Thau lagoon in June, 2007, and from Prévost lagoon in September, 2006 (70 MPN/l and approximately 1 MPN/l, respectively) (Fig. 2).

V. vulnificus was not detected in sediment samples collected from Prévost lagoon and was detected in Thau lagoon sediment in June, 2007 (0.4 MPN/ml). The concentration of *V. vulnificus* ranged from 0.07 to more than 110 MPN/ml during the summer months in Mauguio lagoon sediment samples and was not detected in sediment samples collected from the three lagoons during the winter.

V. vulnificus was not isolated from mussel samples collected from Prévost lagoon (Table 2), but was detected in clams collected from Thau lagoon during the warm months (between 0.04 to 15 MPN/g), and in mussels from the same lagoon in June, 2007 (0.04 MPN/g).

3.3 Vibrio cholerae

Vibrio cholerae was detected in water samples collected from Mauguio lagoon only during the warm season (concentrations ranging from 20 to 40 MPN/l) and from Prévost lagoon in September, 2006 (14 MPN/l) (Fig. 2). It was not detected in water samples collected from Thau lagoon and was detected only in sediment samples from Prévost lagoon in September, 2006 (0.07 MPN/ml). *V. cholerae* was not detected in shellfish collected from the Thau and Prévost lagoons (Table 2). Isolates from *V. cholerae*-positive APW broth streaked onto TCBS agar were confirmed as *V. cholerae* non-O1/non-O139 (data not shown).
In this study, *V. parahaemolyticus*, *V. vulnificus*, and *V. cholerae* were detected and enumerated in environmental samples (water, sediment, mussels, and clams) using the MPN-PCR method. This method was used because it permits enhanced detection of *Vibrio* spp. compared to direct plating using selective media, and notably because large samples can be employed (1-liter water samples inoculated in triplicate and 10 ml in triplicate of sediment or shellfish). Furthermore, the MPN-PCR and MPN-real-time PCR methods were selected because they allowed to provide data comparable to those obtained in studies investigating the presence and ecology of *Vibrio* spp. and pathogenic *Vibrio* species in seafood and coastal environmental samples from many other parts of the world (Wright *et al*., 2007; Luan *et al*., 2008; Blanco-Abad *et al*., 2009; Vezzulli *et al*., 2009).

The presence of the three *Vibrio* spp. pathogenic for humans was either not detected in water samples collected from the Thau, Prévost and Mauguio lagoons or detected at very low concentrations during the winter, while higher concentrations were detected during the summer, confirming results of investigators in the United States (Motes *et al*., 1998; Pfeffer *et al*., 2003; Parveen *et al*., 2008) and Japan (Fukushima and Seki, 2004). These *Vibrio* spp. have also been detected in European coastal waters, *i.e.* in France (Hervio-Heath *et al*., 2002; Robert-Pillot *et al*., 2004; Deter *et al*., 2010), Spain (Martinez-Urtaza *et al*., 2008), Italy (Barbieri *et al*., 1999), Denmark (Hoi *et al*., 1998), and Norway (Bauer *et al*., 2006).

Most of the investigations showed the presence or absence of these bacteria in water samples. However, few studies reported total culturable *V. parahaemolyticus*, *V. vulnificus*, and *V. cholerae*. The counts of culturable *V. vulnificus* ranged from 3x10^4 bacteria/l to 2x10^5 bacteria/l in surface waters of Chesapeake Bay (Wright *et al*., 1996) and from 5 to 19 MPN/l in Danish marine waters (Hoi *et al*., 1998). Counts of *V. parahaemolyticus* and *V. vulnificus* were 9.3x10^4 MPN/l in estuarine water samples collected from the Sada River in Japan (Fukushima and Seki, 2004). Concentrations of *V. cholerae* in recreational beach waters of Southern California were < 15 to 60.9 CFU/l, with higher concentrations in tributaries up to 4.25x10^5 CFU/l (Jiang, 2001). High concentrations of *V. parahaemolyticus* (up to 10^5 CFU/l), *V. vulnificus* (10^4 CFU/l), and *V. cholerae* (2x10^4 CFU/l) were reported in estuarine waters of Eastern North Carolina during the warmer season and of the Northern Gulf of Mexico (Pfeffer *et al*., 2003; Zimmerman *et al*., 2007; Blackwell and Oliver, 2008). Depending on the lagoon sampled, the concentrations were a hundred-fold higher than those reported in this study.
Temperature has been shown to be the major factor explaining the dynamics of *V. parahaemolyticus*, *V. vulnificus*, and *V. cholerae* in coastal marine ecosystems. Many studies have shown, both experimentally and in situ, that these bacteria enter a viable but non-culturable state when water temperatures average less than 15 °C (Roszak and Colwell, 1987; Colwell and Grimes, 2000). As observed in lagoon water, this phenomenon could explain the absence or presence in very low concentrations of culturable Vibrio in marine coastal waters in the winter. Temperatures above 20 °C favor growth of *Vibrio* spp. in seawater (Motes et al., 1998; DePaola et al., 2003; Blackwell and Oliver, 2008). Our results show that temperatures ranging from 20 °C to 24 °C during the summer months in the three Mediterranean lagoons studied were correlated with presence of these bacteria.

Salinity is also an important parameter in the dynamics of vibrios in marine systems (Hsieh et al., 2008). Many studies have shown a strong correlation between the presence of these three *Vibrio* spp. and temperature and salinity (Colwell et al., 1977; Wright et al., 1996; Motes et al., 1998; Jiang, 2001; DePaola et al., 2003; Pfeffer et al., 2003; Randa et al., 2004; Blackwell and Oliver, 2008). The results indicate that a decrease in salinity favors *Vibrio* growth and proliferation, particularly in brackish waters of estuaries. In this study, the highest concentrations of *V. parahaemolyticus*, *V. vulnificus*, and *V. cholerae* occurred in the Prévost and Mauguio lagoons, both of which have lower salinities than the Thau lagoon. A higher abundance of *V. vulnificus* was observed in the Mauguio lagoon, where salinity ranges from 20 to 29 ‰, confirming that salinity is a strong determinant of *V. vulnificus* abundance and dynamics, as previously reported by Randa et al. (2004).

The ecology of *V. parahaemolyticus*, *V. vulnificus*, and *V. cholerae* in coastal waters is relatively well documented, but information is scarce for sediments. Vibrios are present in sediment during the summer and are either absent or present in low numbers in the winter (DePaola et al., 1994; Pfeffer et al., 2003; Fukushima and Seki, 2004). *V. parahaemolyticus* and *V. cholerae* were detected at concentrations up to 3x10^3 MPN/l and 2x10^2 MPN/l, respectively, in sediment samples collected from the Spezia Gulf, Italy (Vezzuli et al., 2009). The densities of *V. parahaemolyticus* were one hundred times lower than those reported in this study. *V. parahaemolyticus* and *V. vulnificus* counts in estuarine sediment samples collected from the Sada river in Japan displayed values comparable to those observed in sediment samples from the Prévost and Mauguio lagoons (Fukushima and Seki, 2004). *V. vulnificus* has also been detected in large numbers in estuarine sediment samples (DePaola et al., 1994; Wright et al., 1996; Hoi et al., 1998). Like estuarine sediments, sediment in the lagoons accumulates runoff from the watershed. This watershed discharge supports growth of
vibrios. Moreover, *V. parahaemolyticus* and *V. vulnificus* concentrations in the lagoon sediments were, on average, 100 to 1,000 times higher than in the water column. *V. cholerae* was detected less frequently, with equivalent concentrations in sediment and water. Thus, it can be concluded that sediment serves as a reservoir for these *Vibrio* spp. (DePaola *et al*., 1994; Fukushima and Seki, 2004; Randa *et al*., 2004; Vezzulli *et al*., 2009). *V. parahaemolyticus* is absent from the water column during the winter season, but it is present in sediment, suggesting that sediment allows at least one subpopulation of these bacteria to survive in the culturable state.

The number of *Vibrio* spp. in shellfish varies widely and depends on geographical area, environmental conditions, and local parameters. For example, *V. parahaemolyticus* was detected in concentrations ranging from < 10 to 12,000 CFU/g in Alabama oysters (DePaola *et al*., 2003), < 10 to 600 MPN/g in Chesapeake Bay oysters (Parveen *et al*., 2008), < 10 to 32 MPN/g in mussels collected in Spain (Martinez-Urtaza *et al*., 2008), < 10 to 10,000 CFU/g in oysters from India (Deepanjali *et al*., 2005), and < 10 to 1,500 MPN/g in New Zealand oysters (Kirs *et al*., 2011). In oysters from the lagoons of Mandinga (Veracruz), Mexico, the concentrations of *V. parahaemolyticus* ranged from < 3 to 150 MPN/g (Reyes-Velazquez *et al*., 2010), comparable to the numbers in mussels from the Thau and Prévost lagoons (9 to 210 MPN/g).

The number of *V. parahaemolyticus* in shellfish is an indication of the potential risk of gastroenteritis following consumption of shellfish. However, quantification of pathogenic (*tdh*- or *trh*-positive) *V. parahaemolyticus* provides perhaps a better estimate of public health risk (Zimmerman *et al*., 2007). Many studies have detected the two virulence genes (*tdh* or *trh*) in coastal water, oyster, and mussel samples and in environmental isolates of *V. parahaemolyticus* (DePaola *et al*., 2003; Robert-Pillot *et al*., 2004; Deepanjali *et al*., 2005; Bauer *et al*., 2006; Zimmerman *et al*., 2007; Martinez-Urtaza *et al*., 2008; Parveen *et al*., 2008; Deter *et al*., 2010; Kirs *et al*., 2011). In general, the percentage of samples that were positive for pathogenic *V. parahaemolyticus* varied according to geographic site, ranging from < 20 % to 100 %. However, the percentage of pathogenic *V. parahaemolyticus* strains was < 0.1 % to 15 % of total *V. parahaemolyticus* (Hervio-Heath *et al*., 2002; DePaola *et al*., 2003; Robert-Pillot *et al*., 2004; Ottaviani *et al*., 2010; Deter *et al*., 2010).

Very few data are available on the number of pathogenic *V. parahaemolyticus* in shellfish. The average number of *tdh*+ *V. parahaemolyticus* in oysters collected from two sites in Alabama was 2.7 CFU/g and 1.3 CFU/g, respectively (DePaola *et al*., 2003). The number of *tdh*+ *V. parahaemolyticus* in oysters in Chesapeake Bay was 10 CFU/g (Parveen *et al*.,...
2008). In the Northern Gulf of Mexico, the number of \(tdh^+ V. \text{parahaemolyticus} \) and \(trh^+ V. \text{parahaemolyticus} \) ranged from < 0.01 to 10 MPN/g oyster tissue (Zimmerman et al., 2007). The number of pathogenic \(V. \text{parahaemolyticus} \) found in shellfish in this study was slightly lower and reflects the lower concentration of total \(V. \text{parahaemolyticus} \) in shellfish from Mediterranean lagoons.

This study is the first to examine simultaneously the concentrations of \(V. \text{vulnificus} \), \(V. \text{cholerae} \) non-O1/non-O139 and both total and pathogenic (\(tdh^- \) or \(trh2^+ \)-positive) \(V. \text{parahaemolyticus} \) in water, sediment and shellfish in lagoons.

The three major pathogenic \(Vibrio \) spp. for humans were detected in the lagoons and their presence in shellfish mainly eaten raw represents a public health hazard. More information is needed to improve the quantitative risk assessment concerning presence of vibrios in shellfish (WHO, 2011). DePaola et al. (2000) requires the densities > 10 of \(tdh^- \) and/or \(trh \)-positive \(V. \text{parahaemolyticus} \) be considered unusual. It would be important to determine if any physicochemical condition, other than water temperature, favors an increase in \(Vibrio \) populations. Lagoons with lower salinity or showing a significant decrease in salinity due to heavy rainfall need to be studied to determine the effects of both salinity and temperature, combined, on \(Vibrio \) population dynamics. Organic matter entering from the watershed to the lagoon during heavy rainfall also may significantly affect the dynamics of these vibrios. In any case, environmental factors certainly play an important role in the dynamics of \(Vibrio \) spp. and may well provide preventive measures for management of shellfish safety.
Acknowledgments

This work was supported by funding provided by the French Agency for Environmental and Occupational Health Safety (AFSSET) (Programme Environnement Santé; no. ES-2005-020). Support was provided to RRC by NIH Grant No. 2R01AI039129-11A2.

Legends to figures

Fig. 1. Location of the Thau, Prévost, and Mauguio lagoons on the French Mediterranean coast (Languedoc area).

Fig. 2. Numbers of *Vibrio parahaemolyticus*, *V. parahaemolyticus trh*2+, *V. parahaemolyticus tdh*+, *V. vulnificus*, and *V. cholerae* in water and sediment samples collected from the Thau, Prévost and Mauguio lagoons. The units are Log MPN/l for water samples and Log MPN/ml for sediment samples.
Tables

Table 1: Primers used in this study to detect *V. parahaemolyticus*, *V. vulnificus*, and *V. cholerae* in enrichment culture.

<table>
<thead>
<tr>
<th>Vibrio species</th>
<th>Target genes</th>
<th>Primer sequences</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. parahaemolyticus</td>
<td>toxR</td>
<td>F-toxRvp: 5’-GTCTTCTGACGCAATCGTTG-3’
R-toxRvp: 5’-ATACGAGTGTTGGCTGTCATG-3’</td>
<td>Kim et al. (1999)</td>
</tr>
<tr>
<td>V. vulnificus</td>
<td>vvhA</td>
<td>L-CTH: 5’-TTCCAACCTTCAACCAGACTATGAC-3’
Vvh-R: 5’-TGATTCCAGTCGATGCGAATACG-3’</td>
<td>Brasher et al. (1998)
Yamamoto et al. (1990)</td>
</tr>
<tr>
<td>V. cholerae</td>
<td>ISR 16S-23S rRNA</td>
<td>prVC-F: 5’-TTAAGCSTAACCTGAGAATG-3’
prVCM-R: 5’-AGTCACCTTTAACCATAACCCG-3’</td>
<td>Chun et al. (1999)</td>
</tr>
</tbody>
</table>

1: S: G or C ; R: A or G

Table 2: Concentration (MPN/g of shellfish tissue) of *V. parahaemolyticus* (total, and enteropathogenic, trh2 and tdh), *V. vulnificus*, and *V. cholerae* in mussels and clams collected in September, 2006, January and June, 2007 from Thau and Prévost lagoons.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total V. parahaemolyticus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thau lagoon clams</td>
<td>0.8 < 2.1 < 6.3</td>
<td>0.6 < 1.5 < 4.1</td>
<td>0.5 < 1.5 < 5</td>
</tr>
<tr>
<td>Thau lagoon mussels</td>
<td>20 < 50 < 240</td>
<td>0</td>
<td>10 < 20 < 140</td>
</tr>
<tr>
<td>Prévost lagoon mussels</td>
<td>3 < 9 < 39</td>
<td>0</td>
<td>80 < 210 < 640</td>
</tr>
<tr>
<td>V. parahaemolyticus trh2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thau lagoon clams</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Thau lagoon mussels</td>
<td>0</td>
<td>0</td>
<td>0.01 < 0.03 < 0.17</td>
</tr>
<tr>
<td>Prévost lagoon mussels</td>
<td>3 < 9 < 39</td>
<td>0</td>
<td>0.02 < 0.07 < 0.28</td>
</tr>
<tr>
<td>V. parahaemolyticus tdh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thau lagoon clams</td>
<td>0.02 < 0.07 < 0.28</td>
<td>0.1 < 0.4 < 0.21</td>
<td>0.1 < 0.4 < 0.21</td>
</tr>
<tr>
<td>Thau lagoon mussels</td>
<td>0.01 < 0.04 < 0.21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Prévost lagoon mussels</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V. vulnificus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thau lagoon clams</td>
<td>0.01 < 0.04 < 0.21</td>
<td>0</td>
<td>6 < 15 < 41</td>
</tr>
<tr>
<td>Thau lagoon mussels</td>
<td>0</td>
<td>0</td>
<td>0.01 < 0.04 < 0.21</td>
</tr>
<tr>
<td>Prévost lagoon mussels</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V. cholerae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thau lagoon clams</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Thau lagoon mussels</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Prévost lagoon mussels</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 1
Figure 2

Water

\begin{tabular}{|c|c|c|c|}
\hline
Vibrio parahaemolyticus & Vibrio parahaemolyticus & Vibrio parahaemolyticus & Vibrio parahaemolyticus \\
\hline
\text{Log MPN (Vg) / mL} & \text{Log MPN (Vg) / mL} & \text{Log MPN (Vg) / mL} & \text{Log MPN (Vg) / mL} \\
\hline
\text{September 06} & \text{January 07} & \text{June 07} & \text{September 06} \\
\hline
\end{tabular}

Vibrio parahaemolyticus trh2+

\begin{tabular}{|c|c|c|c|}
\hline
\text{Log MPN (Vg) / mL} & \text{Log MPN (Vg) / mL} \\
\hline
\text{September 06} & \text{January 07} & \text{June 07} \\
\hline
\end{tabular}

Vibrio parahaemolyticus tdh+

\begin{tabular}{|c|c|c|c|}
\hline
\text{Log MPN (Vg) / mL} & \text{Log MPN (Vg) / mL} \\
\hline
\text{September 06} & \text{January 07} & \text{June 07} \\
\hline
\end{tabular}

Vibrio vulnificus

\begin{tabular}{|c|c|c|c|}
\hline
\text{Log MPN (Vg) / mL} & \text{Log MPN (Vg) / mL} \\
\hline
\text{September 06} & \text{January 07} & \text{June 07} \\
\hline
\end{tabular}

Vibrio cholerae

\begin{tabular}{|c|c|c|c|}
\hline
\text{Log MPN (Vg) / mL} & \text{Log MPN (Vg) / mL} \\
\hline
\text{September 06} & \text{January 07} & \text{June 07} \\
\hline
\end{tabular}

Sediment

\begin{tabular}{|c|c|c|c|}
\hline
\text{Thau} & \text{Prévost} & \text{Mauguio} \\
\hline
\end{tabular}