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Abstract:  

Sea surface height (SSH) measurements provided by pulse-limited radar altimeters are one-
dimensional profiles along the satellite's nadir track, with no information whatsoever in the cross-track 
direction. The anisotropy of resulting SSH profiles is the most limiting factor of mesoscale SSH maps 
that merge the 1D profiles. 

This paper explores the potential of the cross-track slope derived from the Cryosphere Satellite-2 
(CryoSat-2)'s synthetic aperture radar interferometry (SARin) mode to increase the resolution of 
mesoscale fields in the cross-track direction. Through idealized 1D simulations, this study shows that it 
is possible to exploit the dual SARin measurement (cross-track slope and SSH profile) in order to 
constrain mesoscale mapping in the cross-track direction. 

An error-free SSH slope allows a single SARin instrument to recover almost as much SSH variance as 
two coordinated altimeters. Noise-corrupted slopes can also be exploited to improve the mapping, and 
a breakthrough is observed for SARin errors ranging from 1 to 5 μrad for 150-km-radius features in 
strong currents, and 0.1–0.5 μrad for global mesoscale. 

Although only limited experiments might be possible with the error level of current CryoSat-2 data, this 
paper shows the potential of the SAR interferometry technology to reduce the anisotropy of altimeter 
measurements if the SARin error is significantly reduced in the future, and in particular in the context 
of a prospective SARin demonstrator optimized for oceanography. 

 
Keywords: Altimetry, Remote sensing, Sampling, Satellite observations, Interpolation schemes, 
Inverse methods 
 
 
 
1. Introduction and context 

In contrast with wide-swath imagers (e.g., sea surface temperature or ocean color), the data record of 
radar altimeters is exceedingly anisotropic. Sea surface height (SSH) measurements from pulse-
limited radar altimeters are one-dimensional profiles along the satellite's nadir 
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track, with no SSH information whatsoever in the cross-track direction. Figure 1 shows that, 41 

for a single altimeter flying on the TOPEX/Jason orbit, the along-track (white segment) 42 

resolution can be as small as 7 km (level 2 product, 1 Hz rate), whereas in the cross-track 43 

resolution (black segment) it can be as large as 300 km.  44 

To reconstruct 2D gridded fields of SSH or sea level anomalies (SLA), it is therefore 45 

necessary to interpolate 1D profiles (e.g. AVISO 2010; Dibarboure et al, 2011a, Leben et al 46 

2002, 2011). Optimal interpolation (OI) exploits an a priori statistical knowledge of the SLA 47 

field characteristics (e.g. Jacobs et al 2001; Le Traon et al, 2003) and measurement error (e.g. 48 

Philipps et al, 2012) as an additional constraint to merge 1D profiles from multiple sensors in 49 

an optimal way (e.g. Ducet, et al 2000).  50 

The anisotropy of SSH profiles is by far the most limiting factor of gridded SSH mesoscale 51 

fields (Le Traon & Dibarboure, 2002, 2004; Pascual et al 2006), and especially in near real 52 

time where measurements “from the map’s future” are not yet available (Pascual et al, 2008). 53 

There are two practical consequences to this limitation.  54 

Firstly, even if the spatial and temporal scales used to constrain the OI are derived from SSH 55 

measurement of 2 to 4 satellite constellations, the mapping is limited in the cross-track 56 

direction. Because 1D profiles from multiple sensors are blended into one map, 2D mesoscale 57 

mapping uses a compromise between actual mesoscale correlations and the sampling 58 

limitations from such constellations (Ducet, et al, 2000). 59 

The resolution of mesoscale fields is dominated by the number of altimeters in operation. 60 

Chelton & Schlax (2003), Le Traon & Dibarboure (2002), and Chelton et al (2011) have 61 

shown that mesoscale maps have a limited global resolution capability. Higher resolution can 62 

still be achieved, but only locally, at certain times, when enough 1D profiles are available 63 

(Dussurget et al, 2011). 64 
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In this context, a new technology used on CryoSat-2 has the unprecedented potential to add 65 

actual measurements to constrain mesoscale mapping in the cross-track direction. Indeed, in 66 

addition to a classical pulse-limited radar altimeter measurement (also known as low 67 

resolution mode or LRM), CryoSat-2’s altimeter SIRAL features a synthetic aperture radar 68 

interferometry (SARin) mode able to measure the SSH slope in the cross-track direction 69 

(Francis et al, 2007) as illustrated by Figure 2. In this paper, the cross-track slope (CTS) is 70 

given in micro-radians: a 1 µrad slope is approximately equal to a SSH gradient of 1 cm for 71 

10 km, or a geostrophic current of 10 cm/s at mid-latitudes. 72 

In this paper we use idealized OI simulations to explore the potential of the CTS derived from 73 

CryoSat-2’s SARin mode to increase the resolution of mesoscale fields in the cross-track 74 

direction (methodology introduced in section 3). Our approach is to look at SARin technology 75 

in optimal conditions in section 4 and then to discuss what can be done in practice with 76 

current and future datasets in section 5. 77 

3 Methodology  78 

3.1 Overview 79 

Le Traon and Dibarboure (2002, 2004), Chelton et al (2003) and Dibarboure et al (2011a) 80 

have shown that 2D SSH mapping is affected by many parameters (e.g. geometry, phasing or 81 

coordination of the constellation’s orbits, high frequency ocean dynamics). To measure the 82 

potential of using a SARin slope to constrain mesoscale mapping we therefore use a simpler 83 

idealized 1D configuration.  84 

We specifically focus on the cross-track direction (black segment from Figure 1) where the 85 

resolution is limited by the number of satellites in the constellation. In other words, this is a 86 

configuration where SARin slopes are ideal to complement lacking SSH measurements. 87 
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While performed for a given cross-track resolution (i.e. latitude), general conclusions can be 88 

derived from our analysis because correlation scales where shown to decrease with latitude as 89 

well (e.g. Jacobs et al 2001; Le Traon et al, 2003). 90 

We measure the performance of mesoscale mapping using the following protocol:  91 

 we simulate a mesoscale SSH “reality” profile, and we consider that the reality 92 

profile is in a frozen state, i.e. stationary over the 10-day period of a T/P or Jason 93 

repeat cycle (this strong assumption is discussed in section 5.3) 94 

 the reality SSH field is sampled on measurement points to create error-free 95 

observations,  96 

 errors are optionally added to the observations,  97 

 observations are injected into a 1D optimal interpolator to create a “reconstructed” 98 

mesoscale field at the original resolution.  99 

In this process, the statistical variance and correlation scales of the reality field are known 100 

analytically. Consequently the reconstruction is perfect if performed from enough error-free 101 

observations. In other words, differences between the reality and the reconstructed fields are 102 

the result of the omission or sampling error (not enough data to observe the signal) and 103 

commission or measurement error.  104 

Note that, there is an additional error source in the mapping of real data: the imperfect 105 

modeling of signal and error covariances.  This point is discussed in section 5.3.   106 

3.2 Methodology 107 

In this paper, we generate our reality Hreal as a spatially correlated random Gaussian process 108 

(Equation 1). The default decorrelation scale is 150 km, i.e. consistent with findings from Le 109 

Traon et al (2003). In our first simulations (section 4.1), the oceanic variability used is 20 cm 110 
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RMS, i.e. we focus on zones of intense mesoscale activity (e.g. western boundary currents). 111 

Then we expand to different signal to error ratios in section 4.2. In section 5.3, we discuss the 112 

validity of the Gaussian methodology. 113 

Our observation field Hobs is then constructed (Equation 2) by interpolating Hreal at the desired 114 

resolution (30 km for an along-track simulation, 300 km for a cross-track simulation on a 115 

Jason-like orbit, and 100 km for a cross-track simulation on the CryoSat-2 orbit) and adding a 116 

white noise of 0.5 to 2 cm to the interpolated SSH values. This is arguably a pessimistic error 117 

level at 100+ km if compared with results from Dorandeu et al 2004, or Ablain et al 2011 : the 118 

noise they observe at a 7 km resolution would be reduced by along-track filtering of the SSH 119 

(factor of 2 for 30 km super-observations).  120 

Simulations shown in this paper do not include any along-track bias or long wavelength 121 

correlated errors as our sensitivity studies show no significant difference with noise-limited 122 

simulations. Although not shown in this paper, our simulated 1D mapping is degraded by 123 

correlated errors like operational mesoscale 2D mapping (e.g. Dibarboure et al, 2011c), but 124 

the anisotropy effect presented in section 3.3 and the impact of using SARin presented in 125 

section 3.5 are the same. 126 

    The reconstruction of the estimated mesoscale field Hest is performed with a 1D optimal 127 

interpolation derived from Bretherton et al (1976).  Hest is obtained from Equation 3 where A 128 

is the matrix describing the covariance between Hest and Hobs of Equation 2, and C the matrix 129 

describing the covariance between the SSH observations (covariances are derived from 130 

Equation 1). The formal reconstruction covariance error matrix E is obtained from Equation 131 

Corr(H,H) = exp ( -x²/d² )         Equation 1 

Hobs (x)   =   Hreal (x)   +    ε(x) Equation 2 
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4, although in practice only its diagonal is used here (1-σ gray envelope around reconstructed 132 

SSH profiles). 133 

 134 

Many figures shown in this paper are limited to 3000 km segments for the sake of illustration 135 

but simulations were performed on very long profiles to ensure that the examples in this paper 136 

are representative of the statistical behavior of each configuration. 137 

3.3 Observation anisotropy 138 

Figure 3 shows one reality segment, sampled in the along-track direction (every 30 km) with 139 

2 cm white noise added. The reconstructed field after optimal interpolation is almost identical 140 

to the reality field. The reconstruction error is 1.2 cm RMS i.e. 0.4% of the reality signal 141 

variance (18 cm RMS). Similarly, the along-track slope (bottom panel) is almost perfectly 142 

observed in the along-track direction. 143 

Figure 4 shows the same reality segment, but positioned as a transect in the cross-track 144 

direction (black segment from Figure 1). In other words, each measurement (black dot) is the 145 

crossover between the transect and a different satellite track. In this figure, the SSH reality is 146 

sampled by a LRM altimeter every 300 km, i.e. the worst case configuration of a TP/Jason 147 

orbit. Because the Nyquist criterion is not met with a single satellite, many features are 148 

missed entirely in the reconstruction (e.g. at km #1000 or #1800 or #2200). The error 149 

reconstruction RMS is 46% of the signal variance. This figure illustrates the inability of a 150 

single satellite to observe large mesoscale, let alone features with radii smaller than 150 km.  151 

Adding a second LRM altimeter (perfectly coordinated with the first one, i.e. like in the 152 

TOPEX/Jason tandem) significantly improves the resolution of the mesoscale field as shown 153 

Hest  = A . C-1 .  Hobs Equation 3 

E = I – A . C-1 . AT                 Equation 4 
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by Figure 5. Although the Nyquist criterion is barely met, the reconstruction error is 154 

significantly reduced with an error of 8% of the signal variance. The error is consistent and 155 

slightly larger than the 5% obtained by Le Traon et Dibarboure (2002) because this segment 156 

represents the widest gap between roughly parallel tracks. These scenarios give the 1-LRM 157 

and 2-LRM reference configurations to which SARin experiments can be compared to infer 158 

the cross-track slope contribution in an ideal case. 159 

The formal mapping error from Equation 4 is visible in each simulation as a grey envelope of 160 

vertical bars. This theoretical error is –for these idealized simulations- a very accurate 161 

statistical estimate of the error which could be made during the reconstruction process: the 162 

differences between the real (plain) and the reconstructed (dashed) SSH are consistent with 163 

the 1- boundaries defined with the grey envelope from Figure 3 and Figure 4.  164 

The formal error represents the sum of the measurement error and the sampling error: it is as 165 

small as 2 cm near observation points (measurement noise) and as large as tens of centimeters 166 

at the center of the 300 km window between satellite tracks (sampling error). The anisotropy 167 

of the altimetry system is illustrated by the difference between the along-track and the cross-168 

track formal errors. In the along-track direction (Figure 3) the error is always very small and 169 

dictated by the measurement error level whereas in the cross-track direction (Figure 4) the 170 

sampling error largely dominates between satellite tracks.  171 

3.4 CryoSat-2’s cross-track measurement 172 

CryoSat-2 is ESA’s ice mission (Francis, 2007). Equipped with an innovative radar altimeter 173 

(SIRAL – Synthetic Aperture Interferometric Radar Altimeter), and high-precision orbit 174 

determination (POD), CryoSat-2’s primary objective is to serve Cryospheric science 175 

(Wingham et al, 2006).  Cryosat’s altimeter is operated almost continuously over ocean, 176 

mainly in LRM (i.e. conventional altimetry) or in the delay doppler / synthetic aperture radar 177 
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(SAR) mode which provides higher along-track resolution and lower noise level (Raney, 178 

1998).  179 

Furthermore, SIRAL also features a third mode: the SAR-interferometry (SARin) mode, 180 

which uses CryoSat-2’s two antennas (Francis, 2007). The combination of SAR and 181 

interferometry makes it possible to determine the cross-track slope of the surface from which 182 

the echoes are arriving. This is achieved by comparing the phase of one receive channel with 183 

respect to the other as first suggested by Jensen, 1999.  184 

With the SARin mode, CryoSat-2 can provide one estimate of the local CTS every 0.05 185 

seconds, in addition to the classical topography measurement (Figure 2). Moreover, the along-186 

track resolution and the precision of the SSH is the same as for a LRM sensor (e.g. Jason-2). 187 

The resolution is 300 m in the along-track direction (synthetic footprint), and the slope is 188 

estimated from a cross-track footprint of the order of 7 km. 189 

This unprecedented measurement was initially designed to be used over the margins of the 190 

Greenland and Antarctic ice sheets, where the surface slopes are steep. To that extent, 191 

SIRAL’s SARin mode was designed to have a cross-track slope accuracy of 200 µrad 192 

(Wingham et al 2006), but Galin et al (2012) reported a noise level of 20 µrad at a 7 km 193 

resolution and a bias of 8 µrad for 1000 km segments, using both detailed modeling of the 194 

finite radar resolution in range and angle, and the thermally driven behavior of the 195 

interferometer bench.  196 

This should be compared to the typical mesoscale slope distribution in zones of intense 197 

mesoscale activity which ranges from 1 to 5 µrad at 150 km with values higher than 10 µrad 198 

on the edges of the largest eddies (observed on multi-satellite SSH maps from AVISO, 2010). 199 

Assuming that the long wavelength errors described by Galin et al (2012) are minimized with 200 

empirical cross-calibration mechanisms (discussed in section 5.2.1), and that the noise level is 201 
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reduced by along-track filtering (discussed in section 5.2.2), it would become possible to use 202 

the SARin slope as a constraint for mesoscale mapping in the cross-track direction where 203 

LRM altimeters are blind.  204 

Because the error level reported on CryoSat-2 is high with respect to the oceanic signal, our 205 

rationale is the following: we first look at the benefits of using error-free SARin CTS (section 206 

4.1), then we perform sensitivity studies with respect to the ocean variability and 207 

measurement errors (section 4.2). From this background, we discuss the practical case of 208 

CryoSat-2 in section 5. 209 

3.5 Improving the reconstruction with the cross-track slope 210 

Figure 2 gives a qualitative illustration of how mesoscale mapping can exploit the SARin 211 

cross-track slope. Subplot (a) shows a 500 km along-track LRM profile with SSH only 212 

(simulated, error-free), whereas subplot (b) shows the information given by a SARin profile 213 

with SSH and cross-track slope. Both plots correspond to the reality from subplots (c) and (d).  214 

From the SSH+CTS sample (subplot b), one can assume that the maximum value at -100 km 215 

is located on the right-hand side of the nadir track, that the minimum value at +150 km is 216 

probably near the nadir track, and that the maximum value at +400 km is located on the left-217 

hand side of the nadir track. Adding a statistical description of mesoscale variability and 218 

slopes, it is possible to enhance the mapping in the cross-track resolution up to a distance 219 

equal to the spatial correlation radius. 220 

This is achieved using a method derived from Le Traon and Hernandez (1992): we replace the 221 

SSH observation vector Hobs in Equation 3 by a vector composed of all observations (SSH and 222 

CTS), and we update matrixes A and C from Equation 3 and Equation 4 accordingly (see 223 

Appendix).  224 
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4 Results 225 

4.1 Error-free simulations 226 

In this section we infer what would be the optimal mesoscale improvement using SARin on a 227 

300-km cross-track resolution (i.e. a Jason-like orbit). It is optimal for SARin in the sense that 228 

Le Traon and Dibarboure (2002, 2004) have shown that the main weakness of this orbit is the 229 

cross-track resolution, and it is the reason why TOPEX/Jason and Jason-1/Jason-2 were put in 230 

a spatially interleaved configuration. Thus we use this “reference orbit” and “reference 231 

tandem” to SARin-based simulations. We discuss the difference between this Jason-like 232 

configuration the (suboptimal) Cryosat orbit in section 5.1.  233 

Adding the SARin slope constraint (error free) significantly improves the OI reconstruction as 234 

shown by Figure 6. This plot should be compared to Figure 4 where one LRM altimeter was 235 

barely able to recover 50% of the signal variance in the cross-track direction (Nyquist 236 

sampling not achieved). Thanks to local constraints on the SSH derivative, it is possible to 237 

recover features that were previously missed entirely (e.g. at km #1800 and #2200). 238 

Quantitatively, on this example, the reconstruction error is only 6.96 cm RMS, i.e. 15% of the 239 

signal variance (vs. 50% for the LRM scenario on Figure 4). In other words, about 35% of the 240 

signal variance was recovered with the error-free slope. The 15% residual error should also be 241 

compared to the 8% of the configuration with two LRM altimeters (Figure 5): in this idealized 242 

simulation, a single SARin altimeter performs almost like two LRM altimeters.  243 

Similarly, Figure 7 shows that a perfectly coordinated constellation of 2 SARin altimeters 244 

flying on a Jason-like orbit (150 km cross-track resolution) is able to properly reconstruct the 245 

SSH and slope reality fields even though the Nyquist criterion is barely met with SSH alone. 246 

Because slopes and covariance models add the constraint needed, the reconstruction error is 247 
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only 1.83 cm RMS (i.e. 1% of the signal variance) and largely due to the error outlier of the 248 

first measurement and the 2 cm SSH measurement noise.  249 

4.2 Sensitivity to signal to noise ratio 250 

We performed a series of sensitivity tests on the slope error for 1 and 2 SAR-in altimeter 251 

constellations using very long simulations (2000 times the correlation radius). Figure 8 shows 252 

the RMS of the error reconstruction as a function of the standard deviation (STD) of the 253 

simulated SARin slope error (plain line). The 1-LRM and 2-LRM references are also given by 254 

the black dotted and dashed lines. Note that the observed error is consistent with the formal 255 

error given by Equation 4. 256 

As expected, the reconstruction error decreases as the CTS error does, and the sigmoid shape 257 

on the logarithmic abscissa scale indicates that the largest gains are obtained between 1 and 5 258 

µrad, i.e. near the peak of the cross-track slope probability density function.  259 

The upper asymptotic value for slope errors higher than 20 µrad is 49%, i.e. the mapping error 260 

observed for 1 LRM sensor (dotted line). In other words, if the SARin error is large, it does 261 

not improve the reconstruction with the OI. Yet as expected from a theoretical point of view, 262 

this figure shows that even if the error STD of the CTS is 25 times larger than the SSH slope 263 

STD (i.e. factor of 600 in the covariance matrix), the OI never underperforms w.r.t to the 1-264 

LRM scenario because untrustworthy observations are automatically downweighted by 265 

covariance matrix C.  266 

If the OI covariance matrixes are properly set up, adding very noisy slope estimates (e.g. 10 to 267 

20 µrad unmitigated error from Galin et al, 2012) can still improve the cross-track mapping, 268 

albeit in a very limited way.  269 



Page 13 / 43 

 

The lower asymptotic value is 13% of the signal variance, i.e. only slightly larger than the 9% 270 

error observed with 2 LRM sensors (dashed line): using an error-free SARin instrument in an 271 

ideal configuration (1D, cross-track, 150 km radius for a 300 km sampling resolution) does 272 

not allow to fully reconstruct the signal, but a single SARin instrument yields results almost 273 

as good as two LRM sensors as per the example from Figure 5 and Figure 6. The residuals 274 

arise from sampling errors: although additional error-free parameters are used, there are still 275 

not enough measurements points to correctly resolve all mesoscale structures. 276 

Results are similar for 2 x SARin simulations in Figure 9, even though the gain is more 277 

limited owing to the fact that 2 coordinated LRM altimeters already have a good sampling 278 

capability for 150 km radius features (Le Traon et Dibarboure, 2004). In this figure, the lower 279 

asymptotic value is 1.2%, i.e. very close to the 1% obtained with 4 coordinated LRM sensors: 280 

sampling errors would become marginal in a coordinated 2 x SARin configuration. 281 

Because the variability of the cross-track slope is proportional to the variability of the SSH, 282 

we performed sensitivity studies to the latter (using constant correlation scales and SSH noise 283 

levels) to see how results from section 4.1 could be extrapolated out of intense mesoscale 284 

activity zones.  285 

Figure 10 confirms that the reconstruction error is still sigmoid-shaped, and shifted along the 286 

abscissa axis as a function of the SSH variability. The breakthrough in mapping improvement 287 

is always achieved for slope error STD ranging from 0.5*σslope to 2*σslope.  288 

To be used globally in mesoscale mapping, SARin slopes would require an error level of the 289 

order of 0.1 to 0.5 µrad for mesoscale wavelengths. This is largely beyond what can be 290 

achieved with current data from Cryosat-2 (discussed in section 5.2).  291 
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5 Discussion: from theory to practice 292 

5.1 Sensitivity to the satellite track geometry 293 

The sampling pattern of the CryoSat-2 orbit (current SARin mission) and the Jason orbit 294 

(simulations from section 4) are very different. The latter has a 10-day repeat cycle (300 km 295 

cross-track resolution from Figure 1). In contrast, CryoSat-2 has a one-year repeat cycle with 296 

3-day and 30-day sub-cycles, i.e. globally homogeneous sampling patterns with 1000 and 100 297 

km cross-track resolutions respectively (Francis et al, 2007). CryoSat-2’s orbit has no sub-298 

cycle in the 10 to 20 day range associated with mesoscale temporal decorrelation (Jacobs et 299 

al, 2001).  300 

As a result, for any 10 to 20 day period, CryoSat-2’s measurements are aggregated in band-301 

shaped patterns (100 km wide per 3-day sub-cycle) which are interleaved with band-shaped 302 

“blind spots” with no recent SSH observation (Figure 11). The impact on mesoscale 303 

observation in LRM mode is discussed by Dibarboure et al (2011c). As far as SARin slopes 304 

are concerned, there are two consequences of CryoSat-2’s sampling pattern.  305 

5.1.1 Track aggregation and data gaps 306 

Firstly the SARin slopes located on the outer edges of the band-shaped aggregation of satellite 307 

tracks provide a unique capability to reduce the extent of the band-shaped blind spots by up to 308 

2 * 150 km (one slope constraint on each side of the diamond not covered by CryoSat-2 309 

tracks in Figure 11). This is useful to balance CryoSat-2’s main sampling weakness when it 310 

comes to mesoscale observation.  311 

Figure 12 illustrates this point: it shows the OI reconstruction for a 1500 km cross-track 312 

segment where CryoSat-2 measurements are aggregated in 100 km resolution bands where 313 

mesoscale features (150 km radius) are resolved, and interleaved with a 500 km wide blind 314 
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spot where no CryoSat-2 track is available in the 15 day window corresponding the frozen 315 

field approximation.  316 

The SARin-based reconstruction (subplot a) is slightly better because the outer edges are 317 

constrained by error-free slope estimates whereas the LRM-based reconstruction (subplot b) 318 

is not able to observe even a fraction of the large eddy at km #700 and the total reconstruction 319 

error is much higher (12.1 cm RMS vs. 6.7 cm RMS for SARin). Note that the overall 320 

improvement is limited to the outer edges of the large data gap (one decorrelation radius on 321 

each side) because the OI cannot “guess” the existence mesoscale structures if they are not 322 

remotely observed.  323 

5.1.2 Orbit sampling differences 324 

The second consequence of CryoSat-2’s sampling pattern is the cross-track resolution within 325 

the track aggregations. CryoSat-2’s sampling “bands” have a cross-track resolution of 100 326 

km, i.e. more favourable to the observation of 150 km radius mesoscale features, albeit in 327 

limited areas. In this context, SARin data from Cryosat might be used to recover smaller 328 

mesoscale features (only within the satellite track aggregation).  329 

Table 1 shows the mapping improvement (i.e. the reduction of cross-track reconstruction 330 

error) when the “reality” and OI correlation radiuses range from 50 to 150 km and for the 331 

Jason and CryoSat-2 orbits. All simulations were performed with a slope measurement noise 332 

of 1 µrad. On the Jason orbit, the cross-track mapping is improved mainly for large mesoscale 333 

(18%) but not for short mesoscale (5%) because the SARin slope cannot balance the limited 334 

resolution of the Jason orbit. The opposite is observed for CryoSat-2 (in the aggregation 335 

bands) owing to its cross-track 100 km cross-track resolution: the improvement is limited for 336 

100 km or more and the highest improvement is observed for a 50 km radius.  337 
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In other words, with the CryoSat orbit, the SARin slope is an asset to improve the cross-track 338 

observation of smaller mesoscale features (in the band-shaped aggregation of satellite tracks), 339 

something that would not be possible on a Jason orbit.  340 

Yet higher wavenumber (K) mesoscale eddies also have a smaller amplitude (the SSH power 341 

spectrum decreases as a function of K-11/3
 in the SQG  theory, as per Le Traon et al., 2008). 342 

Thus changing the correlation radius also induces a reduction of the SSH STD and a reduction 343 

of the CTS STD from 2 µrad to 1.5 µrad (Table 1). In other words, higher precision SARin 344 

slopes would be needed in CryoSat-2’s sampling bands because the smaller signal of interest 345 

also has weaker slopes.  346 

To that extent, and considering the error level discussed in section 5.2, the CryoSat-2 orbit is 347 

less attractive than a Jason-like resolution would be, because the gain with SARin is 348 

geographically limited and because the orbit is more demanding in terms of CTS error budget. 349 

5.2 Slope error  350 

The simulations from section 4.2 showed that the enhancement of cross-track mesoscale 351 

mapping was possible in favorable signal to ratio conditions. The expected benefit from actual 352 

Cryosat-2 data raises the question of the error level of current datasets. Yet the error spectrum 353 

of SARin data in a mesoscale context is not known. Indeed, SARin acquisition zones on 354 

ocean are small and/or limited in time. So it is not possible to get datasets that are large 355 

enough to observe correlated errors in space or in time. The study from Galin et al (2012) is 356 

the first to provide a CTS error estimate as a bias and noise error on ocean through a 357 

comparison with a geoid model.  358 
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5.2.1 Biases and long wavelength errors 359 

Galin et al (2012) report biases of the order of 8 µrad on their 1000 km segments. It is not so 360 

much a true bias, as a long wavelength correlated error (e.g. orbital revolution) since they also 361 

observe a correlation with thermal conditions on the orbit (i.e. linear on 1000 km segments).  362 

Yet, in this paper, we are ignoring biases and long wavelength errors because we assume that 363 

they can be accounted for by multi-satellite cross-calibration.  364 

Indeed, at the intersection of satellite tracks (e.g. CryoSat-2 x CryoSat-2 or CryoSat-2 x 365 

Jason-2) crossovers points provide a double measurement where the actual SSH anomaly 366 

signal is partially cancelled if the temporal distance between both measurements is short 367 

enough. It is thus possible to use this observation to detect and to mitigate spatially and 368 

temporally correlated signals.  369 

Tai et al (1988) have used this approach to empirically reduce orbit errors on the SSH and 370 

Dibarboure et al (2011b) have demonstrated the feasibility of reducing the cross-track slope 371 

error for the wide-swath altimetry mission SWOT. So, in theory, the same method could be 372 

used to reduce CryoSat-2’s SARin slope biases. The method would exploit crossover 373 

observations using a combination of the along-track and cross-track slope for SARin / SARin 374 

crossovers, and a projection of the along-track slope into the opposite along-track plane for 375 

SARin / LRM crossovers.  376 

Alternatively, long wavelength errors (500 km or more) can be accounted for in the mapping 377 

process itself, with an approach derived from Ducet et al (2000). These techniques are used 378 

operationally to remove SSH biases and 1000 km errors before mesoscale mapping 379 

(Dibarboure et al, 2011a), including for datasets with limited coverage (e.g. ERS-2 after the 380 

loss of its on board recorders). The same method could be used in the geographically-limited 381 

SARin acquisition zones to cross-calibrate long-wavelength errors in the cross-track slope.  382 
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5.2.2 Noise and short scale errors 383 

In the recovery of the cross-track slope, Galin et al (2012) also observe on average 20 µrad of 384 

speckle-related noise at 1 Hz or 7 km resolution. The slope is computed from a distance 385 

ranging from 1 km to 8 km depending on the retrieval algorithm (phase-difference at the first 386 

point of arrival VS. model fit) and significant wave height (SWH) conditions.  387 

The spatial correlation of mesoscale slope makes along-track filtering possible (including 388 

with non linear filters to remove spurious slopes) if the error is speckle-related (i.e. no along-389 

track correlation of the CTS error). If we assume that a simple running average is used to get 390 

one super-observation for a 150 km radius (admittedly a crude filtering), the resulting 391 

mesoscale slope precision would be less than 4 µrad with current slope retrieval algorithms. 392 

Moreover, Galin et al investigate the origin of residual SARin slope outliers such as the 393 

influence of wind and so-called sigma0 blooms. Yet sigma0 blooms can be detected and 394 

edited out in pulse-limited LRM altimetry (Thibaut et al, 2010). We can therefore assume that 395 

the largest SARin slope outliers can be detected as well, thus decreasing the overall slope 396 

error RMS of a non-Gaussian slope error distribution.  397 

With Cryosat-2 we can probably observe only large eddies (2-σ) in zones of intense 398 

mesoscale variability. Elsewhere, SARin slopes from Cryosat-2 can probably barely improve 399 

cross-track mesoscale mapping because the instrument was not designed for this application 400 

(insufficient signal to error ratio). 401 

5.2.3 MSS and geoid errors 402 

In this section, we discuss MSS model errors and their influence on SARin slope anomalies in 403 

the context of mesoscale mapping. Indeed, mesoscale mapping is based on sea level 404 

anomalies (SLA), not sea surface heights (Dibarboure et al, 2012) and the SLA is created as 405 
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the difference of the measured SSH and a temporal reference or <SSH>. The orbit used by 406 

CryoSat-2 is geodetic (one-year repeat cycle, described in Francis et al, 2007) so gridded 407 

MSS or geoid models are used as a <SSH> reference. The same stands for CTS anomalies 408 

which are the difference of the CTS measurement and the cross-track gradient of the MSS 409 

model. Consequently any error in the models generates a CTS anomaly error (i.e. an 410 

additional CTS error in Figure 10).  411 

Pavlis et al (2008) show that in favourable conditions along the well-known TOPEX/Poseidon 412 

tracks, they observe an error of 2 µrad at 1 Hz for EGM08. In a different context, Sandwell 413 

and Smith (2009) have shown through comparisons with shipboard gravity that the accuracy 414 

of altimetry-derived gridded gradients was of the order of a few µrad in zones of rugged 415 

seafloor topography. More recently, Schaeffer et al (2012) have shown that the gradient error 416 

of their MSS model (CNES/CLS2011) ranged from 1 µrad along charted tracks of repetitive 417 

altimetry mission to 5 µrad in areas covered only by geodetic altimetry missions. Moreover, 418 

Andersen & Rio (2011) and Dibarboure et al (2012) highlighted differences between 419 

independent MSS models that range from 1 to 3 cm with wavelengths ranging from 3 to 420 

hundreds of kilometers (a few µrad after along-track smoothing).  421 

The MSS/geoid error is therefore quite significant in the error budget of a SARin CTS 422 

anomaly, since it would add up to noise estimates from section 5.2.2. That error alone would 423 

make error-free CTS measurements difficult to use except in zones of strong mesoscale 424 

activity. 425 

5.2.4 Expected and possible improvements 426 

Comparing the figures of merit from section 5.2 to the sensitivity studies from section 4.2 427 

shows that the precision needed to improve cross-track mesoscale mapping in strong currents 428 

is at the limit of CryoSat-2’s current observation capability.  429 
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However, one might expect some improvements in the future. The primary error sources were 430 

shown to be speckle-related measurement noise and the MSS reference models used to 431 

generate the slope anomaly. 432 

 Concerning the former, it might be technically possible to update onboard software to get 433 

SAR data from both receive chains on ocean, and to change acquisition rates in SARin mode, 434 

essentially yielding 4 times as many independent looks, and reducing the noise level. 435 

Moreover, the SAR and SARin retrieval algorithms are relatively young, especially in an 436 

oceanography context (CryoSat-2 is an ice mission), and Galin et al give some interesting 437 

outlook that might result in a better precision: filtering, and weighting of beams… 438 

And concerning the latter, our error estimate are derived from 2008-2001 generation MSS 439 

models, which are not yet integrating new geodetic data from CryoSat-2, Jason-1 GM 440 

(geodetic phase), let alone from new and upcoming missions flying on uncharted tracks (e.g. 441 

Sentinel-3A and 3B, HY-2). It is likely that the current and future altimeter datasets will 442 

decrease the error level of the future reference models, and especially at short wavelengths.  443 

Beyond CryoSat-2, our findings raise the question of a prospective SARin demonstrator 444 

optimized for oceanography (with synergies with other applications). In this context, the 445 

outlook is even more promising because additional changes could be considered: on the orbit, 446 

on the hardware, and reference surface models.  447 

CryoSat-2’s orbit was shown to be suboptimal for SARin usage in section 5.1 and a dedicated 448 

mission could use a different orbit such as the ones analyzed by Dibarboure et al (2012) for 449 

the geodetic phase of Jason-1.  450 

Moreover, if a new instrument derived from SIRAL were used on a dedicated SARin 451 

demonstrator, various upgrades could be considered to increase the number of statistically 452 

independent looks and to decrease the speckle-related noise: antenna design and beam width, 453 
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baseline length, pulse timing (e.g. continuous or interleaved mode VS SIRAL’s burst 454 

mode)… However it is possible that the global mesoscale requirement from section 4.2 455 

(precision of the order of 0.1 to 0.5 µrad) might remain challenging. 456 

Lastly, in the context of global SARin acquisition with a sufficient precision, such a 457 

prospective mission would acquire east/west gradients which would help resolve the shortest 458 

wavelengths in MSS, geoid or bathymetry models since they are difficult to resolve with the 459 

current anisotropy of altimeter data (Sandwell et al,, 2011). In turn, this would further 460 

mitigate the errors from the <SSH> reference discussed in section 5.2.3. 461 

5.3 Validity and limitations of this work  462 

In this section we discuss some approximations made in this paper, and the validity and 463 

limitations of these factors as an outlook for future work: the Gaussian properties of our 464 

“reality”, the perfect a priori knowledge used in the mapping process, the simple 1D mapping 465 

methodology used, and the lack of temporal variability. 466 

 In section 3.2, our reality is a random Gaussian process with a decorrelation function 467 

consistent with scales reported by Le Traon et al (2003). In practice, our reality has a 468 

flat power spectrum density for long wavelengths and a cut-off for shorter 469 

wavelengths. In other words, we do not use the covariance model from operational 470 

mesoscale mapping (e.g. Ducet et al, 2010), but our covariance model and the 471 

associated variance-preserved power spectra are representative of a diversity of 472 

wavelengths, much like along-track filtered altimeter measurements.  473 

 In the OI, we use a priori knowledge of the covariance of the signal (Hreal) and the 474 

covariance of the error (ϵ) in matrices A and C from Equation 3. In this paper, we use 475 

the true analytical covariance model used to simulate our dataset (i.e. the covariance 476 
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model of our Gaussian reality), resulting in a non-existent mapping error for error-free 477 

measurements. However, in practice, we only have an approximate knowledge of the 478 

true ocean decorrelation model (e.g. Jacobs et al, 2001 or Le Traon et al 2003) and of 479 

the altimetry error, so the OI process is not perfect. The same stands for the CTS 480 

parameter, and the a priori knowledge of the SARin data error. This can be a 481 

significant implementation problem so our findings should be revisited with real data.  482 

More importantly, this point highlights that one must acquire a better understanding of 483 

the SARin error spectrum before such data can used in an OI. 484 

 Lastly one should note that the frozen field assumption and the 1D analysis (cross-485 

track direction) represent a best case configuration for SARin. In reality, mesoscale 486 

signals temporally decorrelate over ±15 to 20 days. Thus our results are optimistic 487 

because they do not take into account the high frequency dynamics that Le Traon and 488 

Dibarboure (2002) showed to be difficult to resolve with constellations with less than 489 

4 altimeter missions. There is also a large panel of complex geometric configurations 490 

that vary with latitude. Consequently, because 1D results are encouraging, the findings 491 

of this paper should be extended to much more sophisticated 3D simulations (OI or 492 

ocean model assimilation), taking into account orbit sampling dynamics 493 

(measurements are not ubiquitous, nor regularly spaced out) and the temporal 494 

variability of the ocean (reality is not frozen). 495 

6 Conclusion 496 

CryoSat-2’s SAR interferometry (SARin) mode has the unprecedented capability to measure 497 

the sea surface height slope in the cross-track direction. It is possible to use this parameter to 498 

constrain mesoscale mapping, and to improve the resolution in the cross-track direction where 499 

the traditional (LRM) radar altimetry is limited by the number of satellites in operations. 500 
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Idealized mapping simulations show that a single error-free SARin sensor on a Jason-like 501 

orbit has the potential to perform almost like two coordinated LRM instruments. Sensitivity 502 

studies show that the breakthrough in mapping improvement is achieved for slope errors 503 

between 1 and 5 µrad for 150 km macro-observations, in zones of intense mesoscale activity. 504 

A better slope precision of the order of 0.1 µrad would be needed for global usage and/or to 505 

resolve smaller features (radius < 100 km).  506 

The precision needed to improve cross-track mesoscale mapping is probably at the limit of 507 

current SARin products from CryoSat-2 (and only after multi-satellite cross-calibration and 508 

along-track filtering) which might observe only the strongest slopes (2-σ) in very energetic 509 

areas. The proof of concept is more attractive if we extrapolate to future improvements of 510 

SARin processors and ancillary datasets (e.g. MSS) and to a prospective mission improving 511 

upon SIRAL hardware and CryoSat-2 processors. 512 

While encouraging, these results are optimistic, because all simulations were performed on a 513 

frozen SSH field (ocean dynamics and high frequencies are not taken into account), and only 514 

in the cross-track direction (i.e. optimal for the SARin slope) and they should be extended to 515 

much more complex 3D studies, or with real data from CryoSat-2. 516 
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8 Appendix: CTS methodology 521 

To use the cross-track slope in the OI process, we use the following covariance models to 522 

describe the relationship between the topography H and the slope S: 523 

To inverse the problem, we replace A and C and Hobs from Equation 3 (and Equation 4), by 524 

A’, C’ and H’obs, where H’obs is the new observation vector including topography and slope 525 

measurements as the sum of the true signal Hreal or Sreal and a random error εH and εS 526 

estimated on the across-track position vector x(i): 527 

Matrix C’ is the new covariance matrix taking into account both topography and slope 528 

estimates  529 
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where Chh, Chs, and Css are the three covariance matrixes for each couple of observation type, 530 

built as a function of the distance di,j = | x(i) - x(j) | separating measurements points #i and #j.  531 

When the inversion is optimal we also account for the uncorrelated error εH and εS in the 532 

diagonal of Chh, Chs, and Css (not shown). 533 

Matrix A’ describing the covariance between the topography we want to reconstruct Hest and 534 

the new observation vector H’obs is created with the method used for C’, but using the distance 535 

d’i,j between the position x(i) of our observation points and the position x’(i) our unknown 536 

grid points. 537 
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10 Figure captions 674 

Figure 1: 10-day sampling from an altimeter on the TOPEX/Jason orbit. The white segment 675 

highlights the along-track direction with one measurement every 7 km, and the black segment 676 

highlights the worst case configuration in the cross-track direction with one measurement 677 

every 315 km x cos(latitude). 678 

 Figure 2: Difference between LRM (a) and SARin (b) measurements in the optimal 679 

interpolation for common profiles of cross-track slope (c) and SSH (d). The SARin 680 

measurement allows to observe the cross-track slope in addition to the SSH profile given by 681 

the LRM mode. 682 

http://www.aviso.oceanobs.com/fileadmin/documents/OSTST/2011/oral/02_Thursday/Splinter%202%20GEO/06_%20Sandwell.pdf
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Figure 3: Simulated Gaussian field (plain line), observation by a LRM altimeter in the along-683 

track direction (dots, 30 km resolution), and reconstruction at each time step with an optimal 684 

interpolation (dashed line) with formal error estimates (grey bars). The upper figure shows the 685 

SSH (in cm), and the bottom panel the SSH slope (in µrad). 686 

 Figure 4: Simulated Gaussian field (plain line), observation by a LRM altimeter in the cross-687 

track direction (dots, 300 km resolution), and reconstruction at each time step with an optimal 688 

interpolation (dashed line) with formal error estimates (grey bars). The upper figure shows the 689 

SSH (in cm), and the bottom panel the SSH slope (in µrad). 690 

 Figure 5: Simulated Gaussian field (plain line), observation by two LRM altimeters in the 691 

cross-track direction (dots, 150 km resolution), and reconstruction at each time step with an 692 

optimal interpolation (dashed line) with formal error estimates (grey bars). The upper figure 693 

shows the SSH (in cm), and the bottom panel the SSH slope (in µrad). 694 

  695 

Figure 6: Simulated Gaussian field (plain line), observation by one SARin altimeter in the 696 

cross-track direction (dots couples, 300 km resolution), and reconstruction at each time step 697 

with an optimal interpolation (dashed line) with formal error estimates (grey bars). The upper 698 

figure shows the SSH (in cm), and the bottom panel the SSH slope (in µrad). 699 

Figure 7: Simulated Gaussian field (plain line), observation by two SARin altimeters in the 700 

cross-track direction (dots couples, 300 km resolution), and reconstruction at each time step 701 

with an optimal interpolation (dashed line) with formal error estimates (grey bars). The upper 702 

figure shows the SSH (in cm), and the bottom panel the SSH slope (in µrad). 703 

Figure 8: Cross-track reconstruction error (in % of signal variance) for one SARin altimeter as 704 

a function of the cross-track slope observation error (standard deviation in µrad). The black 705 
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dotted lines show the reconstruction error for one LRM altimeter and the black dashed line 706 

the reconstruction error for two LRM altimeters. The grey dashed line highlights the curve’s 707 

point of inflection. 708 

Figure 9: Cross-track reconstruction error (in % of signal variance) for two SARin altimeters 709 

as a function of the cross-track slope observation error (in µrad). The black dashed lines show 710 

the reconstruction error for two LRM altimeters and the black line the reconstruction error for 711 

four LRM altimeters. The grey dashed line highlights the curve’s point of inflection. 712 

Figure 10: Cross-track reconstruction error (in % of signal variance) for one SARin altimeter 713 

as a function of the cross-track slope observation error (in µrad) and for 3 levels of SSH 714 

variability.  715 

Figure 11: CryoSat-2’s sampling for 15 consecutive days. Satellite tracks (white lines) are 716 

aggregated in 500 km wide bands thanks to the 3 and 30 day sub-cycles, and interleaved with 717 

500 km bands with few/no satellite tracks. 718 

Figure 12: Simulated Gaussian field (plain line), observation in the cross-track direction 719 

(dots) by one SARin altimeter on the CryoSat-2 orbit (100 km resolution, packet-aggregated 720 

tracks), and reconstruction at each time step with an optimal interpolation (dashed line). 721 

Difference between SARin observation (top) and LRM observation (bottom) to constrain 1D 722 

OI reconstruction in the 500 km wide blind spot (grey rectangles). 723 

Table 1: Reduction of the mapping error from LRM to SARin as a function of the simulation 724 

correlation radius. Unit: % of the signal variance. Right-hand side columns show the 725 

decreasing amplitude and slope of the eddy as a function of its radius (approximation of SQG 726 

theory). 727 
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11 Figures  728 

 729 

Figure 1 : 10-day sampling from an altimeter on the TOPEX/Jason orbit. The white segment 730 
highlights the along-track direction with one measurement every 7 km, and the black 731 
segment highlights the worst case configuration in the cross-track direction with one 732 
measurement every 315 km x cos(latitude). 733 
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 734 

Figure 2 : Difference between LRM (a) and SARin (b) measurements in the optimal 735 
interpolation for common profiles of cross-track slope (c) and SSH (d). The SARin 736 
measurement allows to observe the cross-track slope in addition to the SSH profile given 737 
by the LRM mode. 738 

 739 
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 740 

Figure 3 : Simulated Gaussian field (plain line), observation by a LRM altimeter in the 741 
along-track direction (dots, 30 km resolution), and reconstruction at each time step with 742 
an optimal interpolation (dashed line) with formal error estimates (grey bars). The upper 743 
figure shows the SSH (in cm), and the bottom panel the SSH slope (in µrad). 744 
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 745 

Figure 4 : Simulated Gaussian field (plain line), observation by a LRM altimeter in the cross-746 
track direction (dots, 300 km resolution), and reconstruction at each time step with an 747 
optimal interpolation (dashed line) with formal error estimates (grey bars). The upper 748 
figure shows the SSH (in cm), and the bottom panel the SSH slope (in µrad). 749 
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 750 

Figure 5 : Simulated Gaussian field (plain line), observation by two LRM altimeters in the 751 
cross-track direction (dots, 150 km resolution), and reconstruction at each time step with 752 
an optimal interpolation (dashed line) with formal error estimates (grey bars). The upper 753 
figure shows the SSH (in cm), and the bottom panel the SSH slope (in µrad). 754 
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 755 

Figure 6 : Simulated Gaussian field (plain line), observation by one SARin altimeter in the 756 
cross-track direction (dots couples, 300 km resolution), and reconstruction at each time 757 
step with an optimal interpolation (dashed line) with formal error estimates (grey bars). 758 
The upper figure shows the SSH (in cm), and the bottom panel the SSH slope (in µrad). 759 
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 760 

Figure 7 : Simulated Gaussian field (plain line), observation by two SARin altimeters in the 761 
cross-track direction (dots couples, 300 km resolution), and reconstruction at each time 762 
step with an optimal interpolation (dashed line) with formal error estimates (grey bars). 763 
The upper figure shows the SSH (in cm), and the bottom panel the SSH slope (in µrad). 764 
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 765 

Figure 8 : Cross-track reconstruction error (in % of signal variance) for one SARin altimeter 766 
as a function of the cross-track slope observation error (standard deviation in µrad). The 767 
black dotted lines show the reconstruction error for one LRM altimeter and the black 768 
dashed line the reconstruction error for two LRM altimeters. The grey dashed line 769 
highlights the curve’s point of inflection. 770 
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 771 

Figure 9 : Cross-track reconstruction error (in % of signal variance) for two SARin altimeters 772 
as a function of the cross-track slope observation error (in µrad). The black dashed lines 773 
show the reconstruction error for two LRM altimeters and the black line the 774 
reconstruction error for four LRM altimeters. The grey dashed line highlights the curve’s 775 
point of inflection. 776 
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 777 

Figure 10 : Cross-track reconstruction error (in % of signal variance) for one SARin 778 
altimeter as a function of the cross-track slope observation error (in µrad) and for 3 levels 779 
of SSH variability.  780 
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 781 

Figure 11 : CryoSat-2’s sampling for 15 consecutive days. Satellite tracks (white lines) are 782 
aggregated in 500 km wide bands thanks to the 3 and 30 day sub-cycles, and interleaved 783 
with 500 km bands with few/no satellite tracks. 784 
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 785 

Figure 12 : Simulated Gaussian field (plain line), observation in the cross-track direction 786 
(dots) by one SARin altimeter on the CryoSat-2 orbit (100 km resolution, packet-787 
aggregated tracks), and reconstruction at each time step with an optimal interpolation 788 
(dashed line). Difference between SARin observation (top) and LRM observation (bottom) 789 
to constrain 1D OI reconstruction in the 500 km wide blind spot (grey rectangles). 790 
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 791 

Table 1: Reduction of the mapping error from LRM to SARin as a function of the simulation 792 
correlation radius. Unit: % of the signal variance. Right-hand side columns show the 793 
decreasing amplitude and slope of the eddy as a function of its radius (approximation of 794 
SQG theory). 795 

 796 

Radius
Cryosat-2 

Orbit

TP/Jason 

Orbit

SSH STD

(cm)

SSH Slope 

STD (µrad)

150 0% 18% 20.0 1.9

125 1% 9% 15.8 1.8

100 2% 7% 11.8 1.7

75 8% 5% 8.1 1.5

50 14% 5% 4.8 1.4

Mapping Improvement Reality signal properties




