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Abstract:  
 
Long-term time series of sardine and anchovy landings often suggest negative dependence between 
these species, and an array of mechanisms have been proposed as explanations. We reduce these 
propositions to four basic hypotheses of (1) independence, (2) correlated process noise, (3) 
interspecific interactions, and (4) correlated observational error. We use a Bayesian approach to 
develop priors for parsimonious state space models with both process noise and observation error that 
represent each of these hypotheses, and apply this approach to five long-term time series of landings 
collected from the Pacific and Atlantic Oceans. Model comparison criteria suggest that the hypothesis 
of correlated process noise has the broadest support, where the temporal dependence of anchovy and 
sardines may be caused in part by either direct environmental influence on their physiology, or indirect 
bottom-up effects on their prey. However, all hypotheses find some degree of support within the five 
time series, and in general, the sardine and anchovy landings suggest weak intraspecific density 
dependence and susceptibility to both environmental and anthropogenic perturbation. Results 
additionally suggest that the best fitting hypothesis depends on the choice of geographic scale, 
temporal scale, and stock definition of the recorded landings. 
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► Test four hypotheses of temporal dependence in sardine and anchovy landings. ► Using state 
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definition. 
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1. Introduction1

Forage fish such as sardine and anchovy play a key trophodynamic role in2

many upwelling systems even as the last sixty years show an increasing trend3

in their global landings (Smith et al., 2011). The large, seemingly antagonis-4

tic, low-frequency fluctuations of anchovy and sardine landings observed in5

marine upwelling systems around the world have attracted much attention6

in the literature (e.g., Lluch-Belda et al., 1989; Schwartzlose et al., 1999).7

Several explanations for this phenomena have been put forward, with vari-8

ous studies attempting to identify the ecological mechanisms that explain the9

putative negative dependence in anchovy and sardine (e.g., MacCall, 2009).10

In this vein, environmental forcing through direct physiological impacts (e.g.,11

Bertrand et al., 2004; Takasuka et al., 2008; Takahashi et al., 2009) or indi-12

rect impacts through phytoplankton or zooplankton (e.g., Cury and Shannon,13

2004; Yatsu et al., 2005; van der Lingen et al., 2006) has been proposed to14

explain the negative dependence of anchovy and sardine landings in these15

upwelling systems. However, interspecific interactions between sardine and16

anchovy may also drive this negative dependence (Bakun and Cury, 1999;17

Irigoien and de Roos, 2011). Alternatively, non-biological explanations, such18

as data quality issues for landings data, have been proposed (Barange et al.,19

2009a; Finney et al., 2010), as have combinations of the above; for exam-20

ple, Beverton (1990) concluded that some of the spectacular stock crashes21

of small pelagics might have been accelerated by both increasing catchabil-22

ity as stock size decreased in addition to concomitant recruitment failures.23

The overall emerging picture is one of various biological and non-biological24

mechanisms that operate individually or together in different areas and over25

various time periods.26

The diversity of postulated environmental, biological, and anthropogenic27

mechanisms reflects a long-term interest in the apparently antagonistic fluc-28

tuations of sardine and anchovy landings. In this paper, we seek to con-29

ceptually simplify the proposed mechanisms into competing hypotheses that30

can be compared using available long term records of landings collected from31

around the world. The published evidence leads to four main hypotheses for32

joint anchovy and sardine dynamics that we consider here:33

Hind: Independence hypothesis–Under this hypothesis, apparent nega-34

tive dependence between the two species is spurious. Indeed, both species35
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have been simultaneously abundant in the 1980s in the Humboldt Current36

(Gutiérrez et al., 2007) and in the early 2000s in the southern Benguela37

(Barange et al., 2009a); both were low around Japan in the early 20th century38

(Lluch-Belda et al., 1989). Paleoecological fish scale data from the South At-39

lantic and the Pacific suggest that fluctuations of anchovy and sardine may40

sometimes exhibit independence or weak positive dependence (Soutar and41

Isaacs, 1974; Baumgartner et al., 1992; Finney et al., 2010).42

Hpro: Process noise dependence hypothesis–Environmental conditions may43

cause one species to predominate over the other either directly or indirectly44

(Barange et al., 2009b). Direct effects that can favor one species over another45

include temperatures that differentially affect recruitment (Takasuka et al.,46

2008), climatically influenced shifts in spawning habitat (Bertrand et al.,47

2004), and oceanographic processes that impact nursery areas for larvae and48

juveniles (Takahashi et al., 2009). Indirect effects that favor a species by shift-49

ing the composition of phytoplankton or zooplankton have been identified50

as initiating and maintaining factors in the northern and southern Benguela51

ecosystem (Cury and Shannon, 2004; van der Lingen et al., 2006), in Japanese52

sardine (Yatsu et al., 2005), and in the Humboldt Current system, where high53

zooplankton abundance seems to have contributed to maintain high anchovy54

abundance during the 1960s (Alheit and Niquen, 2004). Alternatively, both55

species may be impacted similarly by changes in environmental conditions56

(Nakata et al., 1994), which could produce positive process dependence.57

In addition, process noise dependence could potentially be created by58

the fisheries. Geographical distributions of stocks may shift in response to59

environmental conditions such that catchability is affected (e.g., Rodŕıguez-60

Sánchez et al., 2002; Alheit and Niquen, 2004; Bertrand et al., 2004; Barange61

et al., 2009a), thus introducing dependent process error into the landings62

data. Alternatively, from a purely economic standpoint, a shift in market63

forces, processing capacity, or management policy may lead to more landings64

of one species over the other.65

Hcom: Community interactions hypothesis–Interspecific density depen-66

dence may arise from the predation of anchovy on sardine eggs (Butler,67

1991; Valdés Szeinfeld, 1991) or vice versa (Valdés Szeinfeld, 1991; Tudela68

and Palomera, 1997). Alternatively, according to the school-trap hypothesis,69

a species at low population abundance that schools with another abundant70

species may be trapped at low abundance, if conditions are worse for the71

rarer species in the mixed school (Bakun and Cury, 1999).72

Hobs: Observation error dependence hypothesis–In the process dependence73
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hypothesis, changes in the exploitation rate that result from environmental74

conditions, effective effort, or catchability affect stock abundance. In Section75

3.1, we show that such factors can also impact how catch functions as a proxy76

index for the stocks. Such factors that covary can thus introduce dependence77

into the observation error.78

We use landings data of sardine and anchovy from several stocks in up-79

welling areas in the Pacific and Atlantic Oceans (Section 2) to test the above80

hypotheses as follows. First, for each hypothesis Hi we develop a Bayesian81

state space model Mi (Section 3.1) with priors that correspond to each hy-82

pothesis (Sections 3.2, 3.3, 3.4). We use this statistical framework to jointly83

estimate both process noise and unknown observation error that is intro-84

duced by processes such as fishery management impacts, fishing effort and85

catchability. Second, we use model selection criteria to identify models that86

best explain the observed long-term fisheries landings of anchovy and sardine87

(Section 3.5). In Section 4, we test the sensitivity of these conclusions to al-88

ternative choices of model priors for both synthetically generated data, for89

which the true model is known, and the time series of landings data, for which90

the true model is unknown, and use this modeling framework to identify the91

hypotheses that most likely explain the potential temporal dependence of92

sardine and anchovy landings.93

2. Sardine and anchovy landings data94

Barange et al. (2009b) present landings data for spatially overlapping95

sardine and anchovy stocks that exhibit asynchronous fluctuations in abun-96

dance from four areas around the world over 40–50+ years. All of the stocks97

in these four areas have fishery independent surveys in recent years (Barange98

et al., 2009b). However, for three of the four areas, substantial periods with99

missing data exist with respect to both fishery independent surveys and effort100

for one or both species (an exception is California, Barange et al., 2009a).101

Below we provide a short description of the landings data recorded for the102

stocks included in our analyses as presented by Barange et al. (2009b). Fur-103

ther descriptions of these stocks are found in Barange et al. (2009a). After104

considering these data, we then describe for comparison a 100-year time se-105

ries of sardine and anchovy landings from Japan (Figure 1, Yatsu et al., 2005;106

Takasuka et al., 2008) that exhibit antagonistic fluctuations (Takasuka et al.,107

2007). The data sets are presented below in order of increasing length.108
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California–The California data set covers the northern subpopulation109

of California sardine (Sardinops sagax caerulea) that extends from central110

Baja California to southeastern Alaska, and the central subpopulation of111

the California anchovy (Engraulis mordax ) that extends from central Baja112

California to central California. This data set covers the period from 1950113

to 2007. However there are years with nearly zero landings of anchovy in114

the years 1950-1963, and also 2005-2007 because of poor market conditions115

(Barange et al., 2009a). Landings of sardine in the years 1966-1982 are116

also near zero because this fishery had collapsed after catches peaked earlier117

in the 20th century (Barange et al., 2009a). We restrict our analysis to the118

period 1983-2004 when there are non-negligible recorded landings from active119

fisheries that target each species; this is the shortest series of landings data120

considered in this paper.121

Peru–This data set contains landings of Humboldt sardine (Sardinops122

sagax ) from the north-central Peru stock and the southern Peru and northern123

Chile stock, and the Humboldt anchovy (Engraulis ringens) stock in north-124

central Peru, for the years 1960-2003.125

South Africa–This data set has recorded landings for both anchovy (En-126

graulis encrasicolus) and sardine (Sardinops sagax ) in South Africa for the127

period 1964 to 2005; it is also referred to as the southern Benguela stock128

(Barange et al., 2009a)129

Japan (Pacific)–This data is from the Northwest Pacific stock of anchovy130

that contributes 75% of Japanese landings (Barange et al., 2009a), and the131

Pacific stock of sardine. Landings of both species are from 1951 to 2004.132

These are a subset of the stocks contained in the longer time series of Japan133

(Combined) landings data, described below.134

Japan (Combined)–This data set covers all landings of Japanese anchovy135

(Engraulis japonicus) and sardine (Sardinops melanostictus) stocks for the136

period 1905-2004 (Figure 1). It was originally compiled by the Japanese137

Statistics of Agriculture, Forestry and Fisheries, and later arranged by Yatsu138

et al. (2005); the data presented here were updated by Takasuka et al. (2008),139

and constitute the longest data series considered. Takasuka et al. (2008)140

found that the landings data are correlated with biomass estimates over the141

last few decades when such estimates are available.142
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3. State Space Models (SSMs) of sardine and anchovy landings143

3.1. Motivation and model formulation144

A parsimonious process model that includes environmental stochasticity145

and both intra- and interspecific density dependence between two species is146

given by a Gompertz model (Ives et al., 2003),147

B
(i)
t = l(i)

(
B

(i)
t−1

)G(i,i) (
B

(j)
t−1

)G(i,j)

eε
(i)
t , (1)

where B
(i)
t is the biomass of species i in year t, l(i) controls density indepen-148

dent growth and natural mortality, G(i,i) controls intraspecific density depen-149

dence, G(i,j) controls interspecific density dependence, and process noise is150

independently and identically distributed, and marginally normal with mean151

zero and standard deviation σ
(i)
ε , ε

(i)
t ∼ N

(
0,
(
σ

(i)
ε

)2
)

.152

The goal is to infer whether or not sardine and anchovy exhibit temporal153

dependence in Eq. (1) using landings data. Clearly, changes made to a154

fishery’s effective effort or regulations over time will affect landings data.155

Nevertheless, a stock’s landings probably provide some information on a156

stock’s size in regions with active fisheries, although the story is incomplete.157

For example, with the usual caveats, trends in landings data from sardine and158

anchovy are often compared with sardine and anchovy stock estimates (e.g.,159

Lluch-Belda et al., 1989; Schwartzlose et al., 1999; Barange et al., 2009a, and160

many others).161

The next step might be to consider that a species’ annual catch C is162

proportional to effort E multiplied by biomass B, C = qEB, and include163

effort of commercial fisheries in the analyses. Although this approach may164

be useful, it does pose three major problems for small pelagic fisheries. First,165

effort data is notoriously difficult to correct for the difference in observable166

versus effective effort (e.g., Pascoe and Robinson, 1996) and is particularly so167

for long time series without reference time series that have relatively constant168

fishing power (e.g., Marchal et al., 2001). Also, even nominal effort data does169

not extend over the full time period of recorded landings for some of the170

stocks considered here (Barange et al., 2009a). Second, catchability, which is171

defined as q = f/E where f is the exploitation rate (defined as the fraction of172

biomass B that contributes to the fishery’s catch C such that f = C/B), of173

a small pelagic fishery increases with decreasing stock size (Beverton, 1990);174

this concomitant increasing relationship between catchability and stock size175
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is referred to as hyperstability (Hilborn and Walters, 1992), and catch per176

unit effort is a poor index for stock size in this situation. Third, using a177

linear state space model, Reed and Simons (1996) show that the degree of178

hyperstability is difficult to estimate. This problem can be overcome by using179

fishery independent surveys, however, until recent years such data are limited180

for many small pelagic fisheries (Barange et al., 2009a).181

Beverton (1990), on the other hand, notes that the exploitation rate f182

of small pelagic fisheries is often sustained at a high level even while the183

estimated stock sizes vary by orders of magnitude. This occurs because of184

hyperstability: small pelagic species tend to shoal at low abundance, and this185

increases the probability of detection and capture by the fishery (Beverton,186

1990). When this is the case, then catch is roughly proportional to biomass187

since C = B× f with f sustained at a high level. However, this presupposes188

an active fishery that targets the stock.189

Variability in the exploitation rate is introduced because of changes in190

vulnerability, effective effort, and management regulations over the years.191

Noise therefore affects how catch functions as a proxy indicator of the stock192

and also how catch affects the annual change in the stock’s abundance. This193

suggests two sources of error to consider: (1) observation error, which en-194

compasses not only measurement error in catch records but also all random195

variation that affects catch as a proxy indicator of stock size, and (2) process196

noise that now includes annual variation in the exploitation rate, in addition197

to the environmental stochasticity introduced in Eq. (1).198

Incorporating catch into Eq. (1), under the assumption of a relatively199

constant exploitation rate, produces for the ith species the state space model,200

C
(i)
t = f (i)B

(i)
t e

ω
(i)
t

B
(i)
t = l(i)

(
B

(i)
t−1 − f (i)B

(i)
t−1

)G(i,i) (
B

(j)
t−1 − f (j)B

(j)
t−1

)G(i,j)

eε
(i)
t (2)

= m(i)
(
B

(i)
t−1

)G(i,i) (
B

(j)
t−1

)G(i,j)

eε
(i)
t ,

where observation error is marginally normal, ω
(i)
t

i.i.d.∼ N
(

0,
(
σ

(i)
ω

)2
)

. In201

the second line of Eq. (2), the parameter m(i) contains both the density202

independent and density dependent parameters from Eq. (1) and also the203

exploitation rates, m(i) = l(i)
(
1− f (i)

)G(i,i) (
1− f (j)

)G(i,j)

. Note that the204

density dependent parameters in Eq. (1) retain this role in Eq. (2).205
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Variability in the exploitation rates evidently affects both the process206

noise and the observation error in Eq. (2), as expected. This suggests that207

the process noise and observation error are correlated. On the log scale, how-208

ever, Eq. (2) is a dynamic linear model, and such a model with correlated209

process noise and observation error can always be transformed to a model210

with independent process noise and observation error to assist interpretation211

(West and Harrison, 1997). If the sources of stochasticity are uncorrelated,212

then observation error is interpreted as randomness that affects the obser-213

vations but not the underlying dynamics. Process noise, on the other hand,214

is randomness that affects how the trajectory of the unobserved dynamics215

changes over time.216

Substituting X
(i)
t = f (i)B

(i)
t , which we refer to as the latent (unobserved)217

state, and transforming to the log scale obtains,218

logCt = logXt + ωt

logXt = G logXt−1 + h+ εt, (3)

where vectors of random variables (catch and latent states) are in bold upper219

case with year subscripts, matrices of parameters (i.e., G, which contains the220

density parameters) are in bold upper case, and vectors of parameters (h)221

and realisations of random variables (noise terms) are in bold lower case.222

The density independent parameter of species i is now,223

h(i) = log
(
f (i)l(i)

)
+G(i,i) log

(
1− f (i)

f (i)

)
+G(i,j) log

(
1− f (j)

f (j)

)
.

Again, the relationships with the density dependent parameters and the stock224

sizes are unaffected. The matrix G then corresponds to density dependent225

interactions between and within the stocks (e.g., the community interactions,226

see Ives et al., 2003). The SSM given by Eq. (3) has the desired interpretation227

of stochasticity with independence between process noise and observation228

error, such that both sources of randomness are distributed bivariate normal229

with independent covariance matrices Σω and Σε, ωt
i.i.d.∼ N (0,Σω) and230

εt
i.i.d.∼ N (0,Σε).231

3.2. Prior specification for models232

For each of the hypotheses Hi, i ∈ {ind, pro, com, obs}, we develop a233

corresponding model Mi with weakly informative priors that constrain the234
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parameters of Equation (3) to reasonable values that are consistent with its235

respective hypothesis.236

Mind: Independence–In this model, both the process and observation er-237

rors are uncorrelated and there is no interspecific density dependence; that is,238

the off-diagonal entries of Σε, Σω, andG are set to zero. Intraspecific density239

dependence, on the other hand, occurs if the diagonal entries G(i,i) < 1 for240

species i. Intraspecific negative density dependence may result from canni-241

balism (e.g., Valdés Szeinfeld, 1991), predation (e.g., Kishida and Matsuda,242

1993), and competition for food or other factors that lead to negative density-243

dependence (e.g., van der Lingen et al., 2006). Moreover, if G(i,i) < 0, then244

species i will exhibit overcompensation with potentially drastic overcorrec-245

tions due to overly strong intraspecific density dependence.246

Analyses based on linear state space models fit to population census data247

suggest that only half present clear evidence of density dependence (Knape248

and de Valpine, 2012). We choose a prior that places a 50% chance that neg-249

ative density dependence occurs, and favors undercompensatory intraspecific250

density dependence, but still allows for overcompensation, by using a normal251

distribution with mean (mode) set to one, G(i,i) ∼ N
(
1, σ2

G(i,i)

)
. This prior252

specifies that the process model is in the general region of stability by setting253

the standard deviation σG(i,i) equal to 1; in the absence of interspecific den-254

sity dependence, Equation (3) is only stable when −1 < G(i,i) < 1 (Harvey,255

1989). We use this prior for the diagonal entries of G in all model structures.256

Mpro: Process noise dependence–In this model, the off-diagonal entries of257

Σε are equal to ρεσ
(i)
ε σ

(j)
ε , where ρε is the correlation coefficient of the process258

noise. We allow for either positive or negative correlations using a uniform259

prior, ρε ∼ U(−1, 1).260

Mcom: Community interactions–Density dependent, interspecific interac-261

tions are modeled with non-zero off-diagonal entries in the matrix G. We262

allow for either positive or negative density-dependent interactions using a263

normal prior centered at zero, G(i,j) ∼ N
(
0, σ2

G(i,j)

)
for i 6= j. The Jury test264

(Jury, 1962) provides the following criteria for stability:265

(1) G(i,i)G(j,j) −G(i,j)G(j,i) < 1

(2) G(i,j)G(j,i) +G(i,i) +G(j,j) −G(i,i)G(j,j) < 1,

G(i,j)G(j,i) −G(i,i) −G(j,j) −G(i,i)G(j,j) < 1.

These criteria show, for example, that increasing either interspecific com-266

petition or predation too much will lead to instability. We expect that the267
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sardine and anchovy populations are either stable or in the vicinity of stability268

and set σG(i,j) = 1, which allows for competition, mutualism, ammensalism,269

commensalism, or predation among sardine and anchovy.270

Mobs: Observation error dependence–Rather than specify dependence271

through the process model, here we allow correlated observation error and272

set the off-diagonal entries of the observation error covariance matrix Σω to273

ρωσ
(i)
ω σ

(j)
ω . Similar to the correlated process noise model, we assume a uniform274

prior that permits either positive or negative dependence, ρω ∼ U(−1, 1).275

3.3. Prior specification for noise processes276

The problem of identifying the relative ratio between the process vari-277

ance and the observation variance is a well-known issue for fisheries state278

space models (Kimura et al., 1996; Schnute and Kronlund, 2002). Even in a279

univariate state space model with a Gompertz process model, a multimodal280

likelihood surface often occurs with potentially global maximums on one or281

more of the boundaries σε, σω = 0 (Dennis et al., 2006). We choose priors that282

allow a wide range of observation and process error magnitudes while placing283

constraints on the values of σε and σω that ensure non-negligible observation284

and process error consistent with the state space model framework.285

We assume that the observations have at least a 95% chance of being286

within an order of magnitude above or below a realized value of the latent287

state for species i, denoted x
(i)
t , such that,288

P
(
x

(i)
t /10 < C

(i)
t < 10x

(i)
t

)
> 0.95

P (− log 10 < logC
(i)
t − log x

(i)
t < log 10) > 0.95,

and, because P (−1.96× σ(i)
ω < logC

(i)
t − log x

(i)
t < 1.96× σ(i)

ω ) = 0.95 for the289

Gaussian observation model, this sets the upper bound σ
(i)
ω < log 10/1.96. On290

the other hand, we also include the assumption of nonnegligible observation291

error such that the chance that y
(i)
t is roughly within 10% of x

(i)
t is never292

more than 95% (recall that observation error is not just measurement error293

in the recorded catch data but all sources of random variation that affect294

catch as a proxy index of stock size, see Section 3.1). This means that,295

P
(
x

(i)
t /1.1 < C

(i)
t < 1.1x

(i)
t

)
< 0.95

P (− log 1.1 < logC
(i)
t − log x

(i)
t < log 1.1) < 0.95,
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and, again because P (−1.96× σ(i)
ω < logC

(i)
t − log x

(i)
t < 1.96× σ(i)

ω ) = 0.95,296

this sets the lower bound σ
(i)
ω > log 1.1/1.96. These assumptions thus imply297

that log 1.1 ≤ 1.96× σ(i)
ω ≤ log 10.298

A similar argument is made for the process error, where we consider the299

year to year variation in the latent states. For the development of this prior,300

we consider the simplified case where the annual variation in the true pop-301

ulation state is dominated by the process error and then proceed as above302

to specify identical constraints on σε. These constrain the year-to-year vari-303

ation in the latent states to have less than a 5% chance of fluctuating by304

more than an order of magnitude, and less than a 95% chance of varying by305

∼ 10% or less (conversely, this latter restriction says that there is more than306

a 5% chance that the population fluctuates by at least ∼ 10%).307

Given the above constraints on the standard deviation of the noise pro-308

cesses and based on arguments presented by Gelman (2006), we place uniform309

priors on the standard deviation of the process and observation noise with310

limits determined by the bounds above. These weakly informative priors thus311

capture a wide range of magnitudes for the process and observation errors.312

We also consider alternative prior specifications in Section 3.5.313

3.4. Prior specification for density independent parameters and initial states314

Following the above discussion on the process error, we place a normal315

prior on h ∼ N (0, Iσ2
h) with σh = log 10/1.96. In the deterministic process316

model and in the absence of density dependence (i.e., low noise and low317

population abundance), the prior on the intrinsic rate of growth says that318

there is less than a 5% chance that the latent population state will change319

by more than an order of magnitude. For the initial states, we assume320

independent normal priors, logX0 ∼ N
(
0, Iσ2

logX0

)
, with mean zero and321

standard deviation σlogX0 = 2.322

3.5. Model comparison323

Our goal is to determine the relative fits of each of the above model-324

hypotheses of sardine-anchovy dependence to the time series of landings325

data. We used two approaches for model comparison, Bayes factors and326

the Deviance Information Criterion (DIC). The Bayes factor is a pairwise327

comparison of two models, say Mi and Mj, and if the models Mi and Mj are328

equally likely before seeing the data, then the Bayes factor gives the poste-329

rior odds in favor of Mi, BFij = p(y|Mi)/p(y|Mj) (Kass and Raftery, 1995),330
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where y are all observations from the first to the last year of the time series,331

t ∈ {1, . . . , T}. The marginal likelihood p(y|Mi) =
∫
p(y|θi,Mi)p(θi|Mi)dθi,332

where θi is the vector of unknown parameters under Mi, gives the proba-333

bility of the data under model Mi. The Bayes factors may be interpreted334

as evidence against a particular model with the following categories on the335

logarithmic scale (modified from Jeffreys, 1961; Kass and Raftery, 1995),336

log10(BFij) Evidence against Mj

0 to 1/2 Weak
1/2 to 1 Substantial
1 to 2 Strong
> 2 Decisive

337

Bayes factors are known to exhibit sensitivity to the priors. We address338

this feature in two ways. First, we investigated the sensitivity of both meth-339

ods for model comparison under alternative choices of priors: a “broad prior”,340

with double the default standard deviations for priors of non-noise static pa-341

rameters; and a “half-Cauchy prior”, with a half-Cauchy for the process noise342

standard deviation. For the latter option, we set the scale parameter such343

that 99% of the prior probability mass is less than the upper bound of the344

process noise standard deviation given above (Section 3.3). Gelman (2006)345

suggests considering the half-Cauchy as an alternative prior to the uniform346

distribution; this option removes the upper bound on the process noise while347

placing greater support for low values of process noise.348

Second, we also considered the Deviance Information Criterion (DIC)349

(Spiegelhalter et al., 2002). DIC is defined by DIC = D(θ) + pD, where350

D(θ) = −2 log p(y|θ) is the deviance, D(θ̄) uses the posterior mean as a351

point estimate of θ, D(θ) is the deviance averaged over the posterior, and352

pD = D(θ)−D(θ̄) is the estimated effective number of parameters.353

3.6. Synthetic Data354

To test that the model-comparison approach can potentially detect the355

correct hypothesis from all alternatives, we generated a synthetic dataset356

under Hpro of length T = 100 years with parameter values: logx0 = [0, 0]′,357

G(i,i) = G(j,j) = 0.4, h = [−1,−1]′, σ
(i)
ω = 0.2, σ

(j)
ω = 0.4, σ

(i)
ε = 0.3, σ

(j)
ε =358

0.5, and ρε = 0.5. We then fit models Mi for i ∈ {ind, pro, isi, obs} under359

the default prior choice, the broad prior, and the half-Cauchy prior. Bayes360

factors and DIC were calculated for each prior choice. Similarly, we evaluated361
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model comparison under each prior choice for every empirical dataset to test362

the sensitivity of conclusions to the choice of priors.363

3.7. Estimation364

The state space model (Eq. 3) is linear and has Gaussian noise. We365

therefore used the Kalman filter to estimate the latent states conditional on366

the static parameters (Harvey, 1989; Schnute, 1994). We used an adaptive367

MCMC (AdMCMC) random-walk Metropolis algorithm with an acceptance368

probability that is jointly determined by the priors for the static parameters369

(Section 3), denoted by p(θ), and the likelihood conditional on the proposed370

set of static parameters, denoted by p (y1:T |θ) = p (y1|θ)
∏T

t=2 p
(
yt|y1:(t−1),θ

)
,371

that is derived from the Kalman filter (Harvey, 1989; Schnute, 1994). The tar-372

get posterior distribution is then p (θ|y1:T ) ∝ p (y1:T |θ) p (θ). The Metropolis-373

Hastings acceptance probability at iteration j for the proposed static param-374

eters θ∗j is given by,375

α
(
θj−1,θ

∗
j

)
= min

(
1,

p
(
y1:T |θ∗j

)
p
(
θ∗j
)

p (y1:T |θj−1) p (θj−1)

)
,

where θ∗j is generated from a multivariate normal proposal distribution, de-376

noted q
(
θj−1,θ

∗
j

)
, centered at θj−1.377

We used an adaptive proposal qj (θj−1, ·) at iteration j for the proposed378

static parameters θ∗j that satisfies theoretical properties for ergodicity (Roberts379

and Rosenthal, 2009) and consisted of the mixture,380

qj (θj−1, ·) = γN
(
θ∗j ;θj−1,

1

d
Σj−1

)
+ (1− γ)N

(
θ∗j ;θj−1,

0.12

d
Id,d

)
, (4)

where Σj−1 is the empirical covariance matrix of the static parameters for381

all iterations up to and including iteration j − 1, d is the number of static382

parameters, Id,d is the d × d identity matrix, and γ is the weighting of the383

adaptive portion, here set equal to 0.95. The scaling coefficients were set384

to values proposed by Roberts and Rosenthal (2009) that approximate a385

theoretically optimal proposal for a multivariate normal posterior (Gelman386

et al., 2003), except that we have adjusted the scaling of the covariance matrix387

of the adaptive mixture component from 2.382/d to 1/d to help increase388

mixing.389

We initialized the static parameters by sampling from the priors and390

started the AdMCMC algorithm with 600 iterations from the nonadaptive391
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mixture component in Equation (4) (i.e., with γ = 0). We then ran the392

algorithm for 1 million samples using the proposal Equation (4) with γ =393

0.95, thinned to every 50th sample, and monitored trace plots for suitable394

mixing. We report the posterior means and 95% credible intervals (CIs) of395

the static parameters based on the last half of the adaptive phase, which396

after thinning provided 10,000 samples drawn from the posterior.397

The marginal likelihoods are required for calculation of the Bayes factors398

and are defined as p (y1:T |Mi) =
∫
p (y1:T |θi,Mi) p (θi,Mi) dθi, where θi de-399

notes the vector of static parameters for model Mi. We used the importance400

sampling estimator p̂ (y1:T |Mi) = N−1
∑N

j=1 p
(
y1:T |θji ,Mi

)
p
(
θji ,Mi

)
/g(θji )401

(e.g., Sinharay and Stern, 2005), where the density g(θji ) = T
(
θji ; δ = θ̄i,Σθi ,402

ν = 2
)

is a Student’s t distribution centered at the posterior mean, θ̄i, with403

ν = 2 degrees of freedom and Σθi defined by the empirical covariance ma-404

trix of the posterior samples. The N samples θji were drawn from this same405

distribution, θji ∼ T
(
δ = θ̄i,Σθi , ν = 2

)
. We used N = 100, 000 samples,406

which provided a level of accuracy sufficient to interpret the Bayes factors407

on the logarithmic scale.408

4. Results409

4.1. Synthetic data analyses410

In accord with the synthetic dataset generated under Hpro, both Bayes411

factors and DIC ranked the true model Mpro as the best-fitting model (Ap-412

pendix A). Moreover, the 95% CI intervals for Mpro models under all priors413

contained the true parameters that generated the synthetic dataset. The414

observation model was the second best fitting model. Across all prior choices415

(default, “broad” and “half-Cauchy” priors, Table A.1), the relative rank-416

ings provided by Bayes factors and DIC were unchanged with Mpro and Mobs417

closely ranked together as the best fitting models.418

4.2. Real data analyses419

For a given species and dataset, the standard deviations of both the420

process and observation error were similar across all models (Figure 2, Table421

B.1). There was some evidence that process noise is higher for California422

anchovy than sardine, where the probability that σ
(s)
ε > σ

(a)
ε was greater than423

0.90 for every model but Mcom. The estimated observation error was higher424

for anchovy than sardine in Peru with P
(
σ

(a)
ω > σ

(s)
ω

)
> 0.95 for all models.425
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Process noise and observation error magnitudes were relatively similar for426

South Africa. In Japan, the estimated process noise was significantly higher427

for sardine compared to anchovy (Figure 2), and the Japanese data sets had428

the lowest observation noise.429

Estimates of intraspecific density dependence appeared weaker for sardine430

than anchovy (Figure 3, Table B.1). For sardine, the 95% CI for G(s,s)
431

admitted density independence for all models in every data set but California.432

For anchovy, the 95% CI for G(a,a) excluded density independence for all433

models from Peru, South Africa, and Japan (Pacific). Differences between434

the two species were most apparent in Peru. There, G(s,s) was significantly435

higher than G(a,a) and h(s) significantly less than h(a) for all models but Mcom.436

On the other hand, a significant difference was seen for model Mcom in the437

short Japan series. Although these are the only significant differences among438

these parameters, it is notable that the posterior means for G(a,a) were less439

than G(s,s) in every analysis, which suggests that anchovy may have stronger440

intraspecific density dependence than sardine.441

We now step through the model selection results and present the esti-442

mated latent path spaces for the top ranked models of each location. The443

estimated latent path space for the best fitting models from each dataset are444

shown in Figure 4.445

California–The Bayes factors suggested that Mpro was the best-fitting446

model with substantial support over the other models (Table 1). Whereas the447

Bayes factors suggested that all of the other models have equivalent support,448

DIC instead ranked the model with interspecific competition (Mcom) very449

closely with Mpro as the best-fitting models.450

This is the shortest data series considered in the paper, and in Figure 5451

the marginal posterior distributions and prior distributions are plotted for the452

best fitting model Mpro. We note that although the posterior distributions453

for the standard deviations of the noise processes were broad, their modes454

fell well within the bounds specified by the uniform priors. Comparatively455

narrow marginal posterior distributions were evident for both G and h. The456

posterior mode of ρε was strongly negative, which suggests some evidence for457

negative dependence in the process noise between the two species.458

Peru–The Bayes factors suggested that Mpro was the best model, but459

with weak support relative to Mind and Mobs. The DIC rankings suggested460

that no particular model dominates.461

South Africa–The Bayes factors suggested that model Mpro was the best462

fitting model, but with only weak support over Mind and Mobs. Model Mcom463
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was the worst. DIC ranked Mpro and Mobs as the best models.464

Japan (Pacific)–The Bayes factors showed weak support for Mcom relative465

to the other models, except for Mobs with which it was tied. Mpro was the466

worst-fitting model but the evidence against it was weak. The DIC ranking467

on the other hand favored Mcom over the other models.468

Japan (Combined)–The Bayes factors suggested that the best-fitting model469

was Mpro, but with only weak support over Mind and Mobs. Mcom was the470

worst-fitting model. The DIC values suggested that Mpro was the best model471

and Mcom the worst. A complementary analysis on the subset of this dataset472

for the years that match those of the Japan (Pacific) series suggested strong473

support for Mpro over Mind and Mobs (Table C.1).474

For the best-fitting model Mpro of this time series, which was the longest475

considered in this paper, we considered the bivariate relationships from the476

posterior (Figure 6). For both species, negative dependence existed between477

h(i) and G(i,i). This corresponds to a trade-off between density dependence478

and density independence seen in Gompertz process models (Dennis et al.,479

2006). Negative dependence also existed between the magnitude of the envi-480

ronmental and observational noise; this dependence was stronger for anchovy481

than sardine.482

4.3. Prior sensitivity483

For the Bayes factor model comparison with the real data sets, the relative484

rankings of Mpro and Mcom for the Japan (Pacific) and California analyses485

depended on the choice of prior. In the Mpro comparison to Mcom, the broad486

prior choice provided less support for Mcom in the Japan (Pacific) series487

relative to the default prior choice. This may have occurred because overly488

broad priors in a Bayes factor comparison favor the simpler model (Kass489

and Raftery, 1995), which is Mpro in this case. In contrast, the Bayes factor490

comparison for California under the half-Cauchy prior choice provided less491

support for Mpro than the default prior. This may have occurred because492

the half-Cauchy prior provides less support for moderately high values of493

σ
(i)
ε than the default prior. Posterior means for σ

(i)
ε were lower under the494

half-Cauchy prior than the default prior (a reduction of 70% for anchovy495

and 40% for sardine). Pairwise model comparisons that have substantial496

evidence in favor of one model were consistent in the sense that there was497

never substantial evidence for the other model under an alternative prior498

choice (Tables 1, Appendix D).499
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The DIC rankings were also broadly consistent, and had identical rankings500

across prior choices for the Japanese and South African datasets. The rank501

order for the California dataset did depend on the prior choice with the half-502

Cauchy prior leading to Mcom having a very low value of DIC; however, the503

posterior distribution for this model showed evidence for multimodality, and504

the simple application of DIC to the posterior means of the parameters may505

not be appropriate (Spiegelhalter et al., 2002). For the Peru data set, the half-506

Cauchy prior also led to better performance by Mpro and Mobs relative to the507

other models, whereas the DIC ranked Mcom, which again had a multimodal508

posterior, as the best model.509

5. Discussion510

The process dependence hypothesis Hpro had the broadest support out of511

the four hypotheses considered. Model Mpro either shared or solely occupied512

the top rank for all time series. Nevertheless, the independence hypothe-513

sis (Hind) and the observational dependence hypothesis (Hobs) could not be514

discounted for four of the five time series. Moreover, the community in-515

teractions hypothesis (Hcom) had some support for the Japan (Pacific) time516

series, which is based on a subset of the Japan (combined) data. A secondary517

analysis performed on the Japan (combined) series for the same period as518

the shorter Japan (Pacific) series found strong support for Mpro over Mcom.519

Conclusions for the Japanese stocks were evidently affected by geographical520

scale, temporal scale, stock composition, or a combination of these factors.521

Thus, although the environmental dependence hypothesis performed best in522

most of the analyses considered, all hypotheses found some support.523

As expected, the Bayes factors exhibited some sensitivity to the choice of524

priors, but not enough to draw the main conclusions into question. Pairwise525

model comparisons that had substantial evidence in favor of one model were526

consistent in the sense that there was never substantial evidence for the527

other model under an alternative prior choice. The relative rankings of the528

different models as given by DIC were preserved under each prior choice in529

most cases. However, comparatively low DIC values were seen if the posterior530

distribution exhibited multimodality; in this case, simply applying DIC using531

the posterior mean as a point estimate may be inappropriate (Spiegelhalter532

et al., 2002). Excepting those analyses that exhibited a multimodal posterior,533

Mpro remained among the top ranked models for four of the five data sets for534

both DIC and Bayes factors no matter the prior choice.535
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We take the success of Mpro to most likely signal the effect of dependent536

environmental stochasticity that arise from one or more underlying common537

factors. Process noise dependence could theoretically be introduced by fish-538

eries management or economics that affect the exploitation rates, but this539

seems less likely than the environmental hypotheses that receive the most at-540

tention in the literature. The negative fluctuations between Japanese sardine541

and anchovy landings, for instance, are thought to be driven by changes in542

stock abundance rather than the fisheries alternately targeting the different543

species (Hayasi, 1967).544

There was some evidence that intraspecific density dependence may be545

stronger for anchovy than sardine (Figure 3). The 95% CIs for G(s,s) in the546

sardine populations admitted the possibility of no negative density depen-547

dence for every model in every data set but California (Table B.1). These548

small pelagic systems may thus exhibit susceptability to environmental and549

anthropogenic perturbations in line with the sentiment of Beverton (1990).550

Small pelagic fishes may be susceptible to perturbations because of their551

short lifespan and young age at maturity (Yatsu et al., 2008). Reactivity552

provides a useful metric for measuring transitory susceptibility to perturba-553

tions; in general, it is a nonlinear function of the density dependent parame-554

ters given by G (Caswell and Neubert, 2005). If the system described by G555

is reactive then some perturbations will be amplified by the process model556

and the system response can be difficult to predict. Neubert et al. (2009)557

provide a frequentist test for the null hypothesis that reactivity is exactly558

zero. In our Bayesian approach, we have obtained posterior samples for each559

model, and so it is easy to not only evaluate the probability that any model560

is reactive but also to examine conditional probabilities with other nonlinear561

functions of the process model parameters. For instance, Mcom was the best562

ranked model for the Japan (Pacific) data set, and there was a posterior563

probability of 0.8 that this system is reactive. However, we could also look564

at the conditional probability that the system is reactive, given that the sys-565

tem is also stable. Returning to the analysis of Mcom for the Japan (Pacific)566

data, we found that ∼ 0.88 probability that the system was stable. Given567

that the system was stable, there was a conditional probability of ∼ 0.77568

that the system was reactive, and 0.68 joint probability that the system was569

both stable and reactive.570

The sometimes dramatic nature of the antagonistic fluctuations of sar-571

dine and anchovy has prompted discussions of regime shifts (e.g., Lluch-Belda572

et al., 1989; Alheit and Niquen, 2004). We did not consider the added compli-573
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cation of a model developed specifically for regime shifts, although the models574

can and do capture transitions between sardine and anchovy dominated ma-575

rine ecosystems. The success of the correlated environmental stochasticity576

could be interpreted as support for regime shifts, in that it suggested that577

negative dependence between sardine and anchovy is environmentally forced578

(deYoung et al., 2004), but this external forcing may be driven by oscillating579

mechanisms such as the El Niño-Southern Oscillation that are not typically580

considered regime shifts (Alheit and Niquen, 2004).581

One explanation for oceanic regime shifts suggests that positive feedbacks582

generated by biological mechanisms may maintain alternative stable states583

(e.g., Scheffer et al., 2001). The process model (Equation 3) is linear and so584

does not admit alternative stable states. However, this process model may585

approximate nonlinear systems (Ives et al., 2003; Neubert et al., 2009). If586

so considered, the sign of the off-diagonal elements of the matrix G provides587

evidence of whether or not feedback cycles may assist in maintaining regime588

change. In our analyses, only the Japan (Pacific) data set provided some589

support for a biological model Mcom with non-zero interspecific interactions590

between sardine and anchovy. Moreover, using samples from the posterior591

of this analysis (Mcom for the Japan (Pacific) dataset) to consider joint de-592

pendence among the entries of G, the posterior probability of competitive593

interactions, and hence positive feedback between sardine and anchovy, was594

only 0.10. This analysis thus suggested that regime shifts are not sustained595

by positive feedback among sardine and anchovy.596

To test the four general hypotheses considered in this paper with the597

diverse landings data, we used a parsimonious state space model that did598

not explicitly include fishing effort or aspects of catchability for the three599

reasons discussed in Section 3.1. Instead, our simple model is based on600

the observation of Beverton (1990) that the exploitation rate f for small601

pelagic fisheries is often sustained at relatively high levels across changes602

in stock abundance of more than an order of magnitude. The observation603

error captures variation in the exploitation rate that affects catch as a proxy604

index of the latent states. Moreover, process noise captures the variation605

in the exploitation rate that affects the trajectory of the latent states over606

time, in addition to the environmental stochasticity introduced by processes607

that affect recruitment and mortality. Whether or not this is a valid model608

depends on the nature of the fishery; at a minimum, it requires an active609

fishery that targets the stocks.610

Some evidence of a catch–abundance relationship, for instance, is sug-611
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gested for the Japanese stocks of anchovy and sardine, where the estimates612

of biomass available in recent years are correlated with landings data (Taka-613

suka et al., 2008). Borges et al. (2003) also correlated annual recruitment of614

Portuguese sardine with variation in the catch for the following year. They615

attributed this association to changes in effective effort that track the sar-616

dine population over time. However, this result is also consistent with a617

relatively constant f , which also absorbs the problem of changing catcha-618

bility as discussed in Section 3.1. Nevertheless, inferences from commercial619

catch or catch-effort data of small pelagic fisheries will always be limited620

without annual fishery independent surveys that can help identify changes621

in catchability (Reed and Simons, 1996). Many small pelagic fisheries have622

ongoing fishery independent surveys (Barange et al., 2009a) that will assist623

analyses of temporal dependence among stocks as longer time series become624

available.625

The estimation procedure used here (Section 3.7) may also be extended to626

accommodate nonlinear process models using a particle filter representation627

of the likelihood and MCMC over the static parameters (Andrieu et al., 2010).628

Combining this approach with the adaptive Metropolis proposal presented629

in Section 3.7 provides a flexible methodology to include nonlinear process630

models for flexible negative density dependence or depensation (Peters et al.,631

2010, submitted manuscript). Such an approach can also accommodate non-632

Gaussian observation error (Hosack et al., In Press), which Knape et al.633

(2011) notes may affect estimates of density dependence in Gompertz state634

space models.635

6. Conclusion636

Four hypotheses of temporal dependence between sardine and anchovy637

landings were tested using five different data sets of sardine and anchovy638

landings. The hypotheses were independence, process dependence, commu-639

nity interactions, and observation dependence. The hypothesis of process640

dependence found the broadest support, however, some support was found641

for all hypotheses depending on the specificities of the sardine and anchovy642

time series. In general, sardine and anchovy landings suggest strong process643

dependence with susceptibility to environmental and anthropogenic pertur-644

bations and undercompensating intraspecific density dependence. Results645

suggest that for specific stocks the best fitting hypothesis may depend on646

the geographic scale, temporal scale, and stock composition of the time se-647
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ries. Further developments should consider a refined specification of model648

structure and the identification of appropriate scales of analysis relevant to649

both biological and fisheries dynamics of small pelagics.650
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Figure 1: A 100 year time series of annual landings of Japanese stocks of anchovy (black
line) and sardine (grey line), as reported by Yatsu et al. (2005) and Takasuka et al. (2008),
for the years 1905-2004.

●
●

●

●

● ● ●
●

● ● ● ●

● ● ● ●
● ● ● ●

● ● ● ●

● ●
●

●

● ● ●
●

● ●
● ●

● ● ● ●

0.2

0.4

0.6

0.8

1.0

1.2

σ ε(i)

California Peru South Africa Japan (Pacific) Japan (Combined)

● ●

●

●

●
● ●

●

● ●
● ●

● ● ● ● ● ● ● ●

● ● ●
●

● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

0.2

0.4

0.6

0.8

1.0

σ ω(i)

M
in

d

M
e

n
v

M
c

o
m

M
o

b
s

M
in

d

M
e

n
v

M
c

o
m

M
o

b
s

M
in

d

M
e

n
v

M
c

o
m

M
o

b
s

M
in

d

M
e

n
v

M
c

o
m

M
o

b
s

M
in

d

M
e

n
v

M
c

o
m

M
o

b
s

Figure 2: Posterior means (points) and 95% CI (lines) for (top) standard deviation of

process error σ
(a)
ε (anchovy in black) and σ

(s)
ε (sardine in grey) and (bottom) standard

deviation of observation error σ
(a)
ω (black) and σ

(s)
ω (grey).

22



●
●

●

●

● ●
●

●

● ●
●

●

● ●

●

●

● ● ● ●
● ●

●

●

● ● ●
●

● ●
●

●

● ●
●

● ● ● ● ●

−0.5

0.0

0.5

1.0

G
(i,

 i)

California Peru South Africa Japan (Pacific) Japan (Combined)

● ●

●

●

●
●

●

●

● ●

●

●

● ●

●

●
● ● ● ●

● ●
●

●

● ●

●

●

● ●

●

●

● ●

●

● ● ● ● ●

−1

0

1

2

h
(i)

M
in

d

M
e

n
v

M
c

o
m

M
o

b
s

M
in

d

M
e

n
v

M
c

o
m

M
o

b
s

M
in

d

M
e

n
v

M
c

o
m

M
o

b
s

M
in

d

M
e

n
v

M
c

o
m

M
o

b
s

M
in

d

M
e

n
v

M
c

o
m

M
o

b
s

Figure 3: Posterior means (points) and 95% CI (lines) for (top) intraspecific density de-
pendence G(a,a) (black) and G(s,s) (grey). The horizontal dashed line correponds to a
random walk for models without intraspecific density dependence (i.e., excluding Mcom);
for these same models, estimates of density dependence below the dotted line correspond
to overcompensating density dependence and the region in between the lines corresponds
to undercompensating negative density dependence. Bottom: density independent param-
eters h(a) (black) and h(s) (grey).
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Figure 4: Minimum mean square estimates of the smoothed mean for the latent path space
(white line) with ±2 smoothed standard deviations. Observations are overlaid points.
Latent path space estimates are based on the best fitting model for each series (Table 1).
The x-axes are given in years beginning with the first observation of both anchovy and
sardine landings. For the two related Japan series, the arrows denote the year in which
the shorter Japan (Pacific) series begins.
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Table 1: Bayes factors and DIC results under the default choice of priors. For a given
dataset, the entry log10 (BFij), which corresponds to the logarithm of the Bayes factor
for the ith row and the jth column, gives the evidence for Mi and the evidence against
Mj . Thresholds for interpreting the Bayes factors on the log scale are given in Section 3.5.
Note that the Bayes factor table for a given dataset is antisymmetric. Bayes factors with
substantial evidence for or against Mi are in bold.

Mind Mpro Mcom Mobs DIC

California

Mind 0 -0.6 0 0.1 94.9
Mpro 0.6 0 0.6 0.7 90.7
Mcom 0 -0.6 0 0.1 90.6
Mobs -0.1 -0.7 -0.1 0 95.0

Peru

Mind 0 -0.2 1.1 0 261.6
Mpro 0.2 0 1.3 0.2 261.1
Mcom -1.1 -1.3 0 -1.1 261.0
Mobs 0 -0.2 1.1 0 261.4

South Africa

Mind 0 -0.4 1.5 -0.2 112.8
Mpro 0.4 0 1.9 0.2 110.2
Mcom -1.5 -1.9 0 -1.8 117.7
Mobs 0.2 -0.2 1.8 0 110.9

Japan (Pacific)

Mind 0 0.2 -0.1 -0.1 114.3
Mpro -0.2 0 -0.3 -0.2 115.0
Mcom 0.1 0.3 0 0 107.8
Mobs 0.1 0.2 0 0 114.1

Japan (Combined)

Mind 0 -0.4 2.7 -0.1 97.1
Mpro 0.4 0 3.1 0.3 94.6
Mcom -2.7 -3.1 0 -2.8 99.4
Mobs 0.1 -0.3 2.8 0 96.5
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Figure 5: Marginal posterior distributions (histograms) and prior densities (grey lines) of
the static parameters of the best-fitting model Mpro for the California landings data.
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Figure 6: Bivariate marginal posterior distributions of the static parameters of the best-
fitting model Mpro for the Japan (combined) landings data. The lower diagonal shows
pairwise samples drawn from the posterior. The upper diagonal shows the linear cor-
relation coefficients with those greater than 0.5 in bold. For legibility, the initial state
parameters x0 are not shown.
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L., Köster, F., Massé, J., Ñiquen, M., Nishida, H., Oozeki, Y., Palomera,667

I., Saccardo, S., Santojanni, A., Serra, R., Somarakis, S., Stratoudakis,668

Y., Uriarte, A., van der Lingen, C., Yatsu, A., 2009a. Climate change and669

small pelagic fish. Cambridge University Press. chapter Current trends in670

the assessment and management of stocks. pp. 191–255.671

Barange, M., Coetzee, J., Takasuka, A., Hill, K., Guierrez, M., Oozeki, Y.,672

van der Lingen, C., Agostini, V., 2009b. Habitat expansion and contraction673

in anchovy and sardine populations. Progress in Oceanography 83, 251–674

260.675

Baumgartner, T.R., Soutar, A., Ferreira-Bartrina, V., 1992. Reconstruction676

of the history of Pacific sardine and northern anchovy populations over the677

past two millennia from sediments of the Santa Barbara Basin, California.678

California Cooperative Oceanic Fisheries Investigations Report 33, 24–40.679

Bertrand, A., Segura, M., Gutiérrez, D., Vásquez, L., 2004. From small-scale680

habitat loopholes to decadal cycles: a habitat-based hypothesis explaining681

fluctuations in pelagic fish populations off Peru. Fish and Fisheries 5,682

296–316.683

Beverton, R., 1990. Small marine pelagic fish and the threat of fishing: are684

they endangered? Journal of Fish Biology 37 (Supplement A), 5–16.685

Borges, M., Santos, A., Crato, N., Mendes, H., Mota, B., 2003. Sardine686

regime shifts off Portugal: a time series analysis of catches and wind con-687

ditions. Scientia Marina 67, 235–244.688

28



Butler, J.L., 1991. Mortality and recruitment of Pacific sardine, Sardinops689

sagax caerdea, larvae in the California Current. Canadian Journal of Fish-690

eries and Aquatic Science 48, 1713–1723.691

Caswell, H., Neubert, M.G., 2005. Reactivity and transient dynamics of692

discrete-time ecological systems. Journal of Difference Equations and Ap-693

plications 2, 295–310.694

Cury, P., Shannon, L., 2004. Regime shifts in upwelling ecosystems: observed695

changes and possible mechanisms in the northern and southern Benguela.696

Progress in Oceanography 60, 223–243.697

Dennis, B., Ponciano, J.M., Lele, S.R., Taper, M.T., Staples, D.F., 2006.698

Estimating density dependence, process noise, and observation error. Eco-699

logical Monographs 76, 323–341.700

deYoung, B., Harris, R., Alheit, J., Beaugrand, G., Mantua, N., Shannon, .L.,701

2004. Detecting regime shifts in the ocean: data considerations. Progress702

in Oceanography 60, 143–164.703

Finney, B., Alheit, J., Emeis, K., Field, D., Gutiérrez, D., Struck, U., 2010.704

Paleoecological studies on variability in marine fish populations: A long-705

term perspective on the impacts of climatic change on marine ecosystems.706

Journal of Marine Systems 79, 316–326.707

Gelman, A., 2006. Prior distributions for variance parameters in hierarchical708

models (Comment on article by Browne and Draper). Bayesian Analysis709

1, 515–534.710

Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B., 2003. Bayesian Data711

Analysis. Chaman and Hall/CRC, Boca Raton, FL, USA. 2nd edition.712

Gutiérrez, M., Swartzman, G., Bertrand, A., Bertrand, S., 2007. Anchovy713

(Engraulis ringens) and sardine (Sardinops sagax ) spatial dynamics and714

aggregation patterns in the Humboldt Current ecosystem, Peru, from 1983-715

2003. Fisheries Oceanography 16, 155–168.716

Harvey, A., 1989. Forecasting, structural time series models and the Kalman717

filter. Cambridge University Press.718

29



Hayasi, S., 1967. A note on the biology and fishery of the Japanese anchovy719

Engraulis japonica (Houttuyn). California Cooperative Oceanic Fisheries720

Investigations Report 11, 44–57.721

Hilborn, R., Walters, C.J., 1992. Quantitative Fisheries Stock Assessment.722

Chapman and Hall.723

Hosack, G.R., Peters, G.W., Hayes, K.R., In Press. Estimating density de-724

pendence and latent population trajectories with unknown observation er-725

ror. Methods in Ecology and Evolution.726

Irigoien, X., de Roos, A., 2011. The role of intraguild predation in the727

population dynamics of small pelagic fish. Marine Biology 158, 1683–1690.728

Ives, A.R., Dennis, B., Cottingham, K.L., Carpenter, S.R., 2003. Estimat-729

ing community stability and ecological interactions from time-series data.730

Ecological Monographs 73, 301–330.731

Jeffreys, H., 1961. Theory of probability. Clarendon Press. 3rd edition.732

Jury, E.I., 1962. A simplified stability criterion for linear discrete systems.733

Proceedings of the Institute of Radio Engineers 50, 1493–1500.734

Kass, R.E., Raftery, A.E., 1995. Bayes factors. Journal of the American735

Statistical Association 90, 773–795.736

Kimura, D.K., Balsiger, J.W., Ito, D.H., 1996. Kalman filtering the delay-737

difference equation: practical approaches and simulations. Fishery Bulletin738

94, 678–691.739

Kishida, T., Matsuda, H., 1993. Statistical analyses of intra- and interspe-740

cific density effects on recruitment of chub mackerel and sardine in Japan.741

Fisheries Oceanography 2, 278–287.742
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Appendix A. Synthetic study model comparison840

Table A.1: Bayes factor and DIC results for synthetic data. The true model is Mpro

with correlated process noise. Variations on prior choice: default with uniform priors on
process and observation noise, broad prior with twice standard deviation for normal priors
of other static parameters, and default choice but with a half-Cauchy prior on process
noise standard deviations.

Mind Mpro Mcom Mobs DIC

Uniform

Mind 0 -1.5 1.8 -1.1 283.9
Mpro 1.5 0 3.3 0.4 276.1
Mcom -1.8 -3.3 0 -2.9 288.3
Mobs 1.1 -0.4 2.9 0 278.3

Broad

Mind 0 -1.5 2.4 -1.1 284.5
Mpro 1.5 0 3.9 0.4 276.6
Mcom -2.4 -3.9 0 -3.5 288.9
Mobs 1.1 -0.4 3.5 0 278.8

Half-Cauchy

Mind 0 -1.4 1.5 -1.3 285.9
Mpro 1.4 0 3 0.2 277.3
Mcom -1.5 -3 0 -2.8 291.2
Mobs 1.3 -0.2 2.8 0 279.6
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Appendix B. Posterior means and 95% CI’s of model parameters841

for the real data analyses.842
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Table B.1: Posterior means and 95% credible intervals of the model parameters.
Model Parameter California Peru South Africa Japan (Pacific) Japan (Combined)

Mind

x
(a)
0 2.29 [0.23, 4.23] 2.07 [-0.85, 4.61] 1.38 [-0.63, 2.83] 1.03 [0.42, 1.65] -1.27 [-1.74, -0.82]

x
(s)
0 -3.71 [-4.96, -2.35] -2.87 [-4.54, -1.17] 3.16 [1.95, 4.45] -0.98 [-2.24, 0.25] 0.15 [-0.68, 0.99]

h(a) 0.02 [-0.35, 0.42] 0.98 [0.11, 1.96] 1.3 [0.47, 2.19] 0.2 [0.02, 0.4] 0.05 [0.01, 0.1]

h(s) 0.34 [0.14, 0.51] -0.02 [-0.29, 0.26] 0.38 [-0.07, 0.93] 0.02 [-0.14, 0.2] 0.03 [-0.07, 0.14]

G(a,a) 0.82 [0.52, 1.07] 0.7 [0.43, 0.96] 0.58 [0.29, 0.85] 0.8 [0.6, 0.98] 0.95 [0.89, 1]

G(s,s) 0.89 [0.79, 0.99] 0.98 [0.88, 1.07] 0.82 [0.57, 1.04] 0.96 [0.88, 1.04] 0.97 [0.91, 1.02]

σ
(a)
ε 0.72 [0.35, 1.1] 0.97 [0.61, 1.17] 0.38 [0.26, 0.5] 0.22 [0.16, 0.29] 0.2 [0.15, 0.24]

σ
(s)
ε 0.32 [0.08, 0.73] 0.84 [0.66, 1.06] 0.41 [0.23, 0.6] 0.61 [0.49, 0.76] 0.4 [0.34, 0.46]

σ
(a)
ω 0.43 [0.1, 0.86] 0.66 [0.19, 1.09] 0.17 [0.06, 0.34] 0.11 [0.05, 0.18] 0.09 [0.05, 0.14]

σ
(s)
ω 0.42 [0.2, 0.67] 0.2 [0.06, 0.43] 0.26 [0.08, 0.44] 0.16 [0.06, 0.32] 0.09 [0.05, 0.16]

Mpro

x
(a)
0 2.09 [-0.08, 4.11] 1.85 [-1.17, 4.42] 1.49 [-0.42, 2.87] 1 [0.35, 1.61] -1.3 [-1.75, -0.84]

x
(s)
0 -3.65 [-4.86, -2.29] -2.76 [-4.42, -1.05] 3.2 [2.06, 4.44] -0.99 [-2.28, 0.3] 0.13 [-0.71, 0.95]

h(a) 0.05 [-0.32, 0.46] 1.08 [0.21, 2.06] 1.27 [0.47, 2.12] 0.19 [0.01, 0.38] 0.06 [0.01, 0.1]

h(s) 0.35 [0.17, 0.52] 0 [-0.28, 0.27] 0.38 [-0.06, 0.9] 0.03 [-0.15, 0.2] 0.04 [-0.06, 0.14]

G(a,a) 0.78 [0.47, 1.04] 0.68 [0.4, 0.93] 0.59 [0.31, 0.85] 0.81 [0.62, 0.99] 0.94 [0.89, 0.99]

G(s,s) 0.87 [0.76, 0.96] 0.96 [0.86, 1.06] 0.82 [0.58, 1.03] 0.94 [0.86, 1.03] 0.96 [0.91, 1.02]

σ
(a)
ε 0.76 [0.38, 1.11] 0.96 [0.6, 1.17] 0.38 [0.26, 0.51] 0.22 [0.15, 0.3] 0.19 [0.14, 0.24]

σ
(s)
ε 0.33 [0.09, 0.72] 0.85 [0.67, 1.08] 0.41 [0.24, 0.6] 0.62 [0.5, 0.78] 0.4 [0.34, 0.46]
ρε -0.6 [-0.99, 0.36] -0.3 [-0.65, 0.07] -0.36 [-0.72, 0.08] -0.19 [-0.51, 0.17] -0.24 [-0.46, -0.02]

σ
(a)
ω 0.43 [0.1, 0.88] 0.7 [0.22, 1.1] 0.17 [0.06, 0.34] 0.11 [0.05, 0.19] 0.09 [0.05, 0.15]

σ
(s)
ω 0.41 [0.22, 0.64] 0.21 [0.06, 0.45] 0.26 [0.08, 0.44] 0.16 [0.06, 0.32] 0.09 [0.05, 0.16]

Mcom

x
(a)
0 1.1 [-3.21, 4.74] 1.7 [-1.82, 4.69] 1.15 [-1.57, 2.83] 0.84 [-0.16, 1.71] -1.3 [-1.77, -0.82]

x
(s)
0 -3.22 [-5.39, 0.33] -3.24 [-5.09, -1.32] 2.71 [0.21, 4.34] -0.89 [-2.09, 0.33] 0.02 [-0.86, 0.91]

h(a) 0.63 [-0.14, 1.42] 1.43 [0.08, 2.69] 1.54 [0.18, 2.94] 0.48 [0.22, 0.76] 0.07 [0, 0.13]

h(s) 0.49 [-0.49, 1.75] 0.61 [-0.48, 2.04] 0.96 [-0.66, 2.91] -0.41 [-1.11, 0.29] 0.07 [-0.06, 0.2]

G(a,a) 0.24 [-0.47, 0.92] 0.6 [0.25, 0.97] 0.54 [0.19, 0.87] 0.54 [0.27, 0.78] 0.94 [0.88, 1]

G(a,s) -0.41 [-0.84, 0.02] -0.1 [-0.26, 0.05] -0.05 [-0.3, 0.19] -0.06 [-0.1, -0.02] -0.01 [-0.04, 0.02]

G(s,a) -0.15 [-1.44, 0.78] -0.18 [-0.59, 0.11] -0.15 [-0.62, 0.25] 0.42 [-0.24, 1.1] -0.06 [-0.18, 0.05]

G(s,s) 0.81 [0.09, 1.33] 0.93 [0.79, 1.05] 0.76 [0.42, 1.03] 1.01 [0.89, 1.11] 0.96 [0.9, 1.02]

σ
(a)
ε 0.5 [0.1, 0.97] 0.96 [0.52, 1.17] 0.37 [0.23, 0.51] 0.21 [0.14, 0.27] 0.2 [0.15, 0.24]

σ
(s)
ε 0.33 [0.08, 0.72] 0.81 [0.59, 1.05] 0.42 [0.24, 0.62] 0.6 [0.47, 0.75] 0.39 [0.34, 0.46]

σ
(a)
ω 0.6 [0.15, 1.02] 0.69 [0.19, 1.13] 0.19 [0.06, 0.41] 0.11 [0.05, 0.2] 0.09 [0.05, 0.14]

σ
(s)
ω 0.41 [0.15, 0.68] 0.21 [0.06, 0.45] 0.26 [0.08, 0.46] 0.17 [0.06, 0.33] 0.09 [0.05, 0.16]

Mobs

x
(a)
0 2.29 [0.18, 4.21] 2.06 [-0.85, 4.56] 1.43 [-0.64, 2.84] 1.03 [0.4, 1.66] -1.27 [-1.72, -0.81]

x
(s)
0 -3.72 [-4.92, -2.32] -2.88 [-4.52, -1.21] 3.13 [2.03, 4.34] -0.99 [-2.27, 0.28] 0.16 [-0.64, 0.95]

h(a) 0.02 [-0.33, 0.43] 0.99 [0.14, 1.94] 1.29 [0.44, 2.19] 0.2 [0.01, 0.4] 0.05 [0, 0.1]

h(s) 0.34 [0.15, 0.51] -0.01 [-0.29, 0.26] 0.36 [-0.08, 0.89] 0.02 [-0.15, 0.19] 0.03 [-0.08, 0.14]

G(a,a) 0.8 [0.5, 1.07] 0.7 [0.43, 0.95] 0.59 [0.29, 0.86] 0.8 [0.61, 0.98] 0.95 [0.89, 1]

G(s,s) 0.89 [0.79, 0.98] 0.98 [0.88, 1.08] 0.83 [0.58, 1.04] 0.96 [0.88, 1.04] 0.97 [0.92, 1.02]

σ
(a)
ε 0.73 [0.34, 1.1] 0.98 [0.63, 1.17] 0.37 [0.25, 0.5] 0.22 [0.16, 0.29] 0.2 [0.15, 0.24]

σ
(s)
ε 0.32 [0.07, 0.75] 0.84 [0.67, 1.06] 0.39 [0.23, 0.58] 0.61 [0.49, 0.76] 0.4 [0.34, 0.46]

σ
(a)
ω 0.43 [0.1, 0.88] 0.65 [0.19, 1.08] 0.18 [0.06, 0.35] 0.11 [0.05, 0.19] 0.09 [0.05, 0.14]

σ
(s)
ω 0.44 [0.19, 0.7] 0.2 [0.06, 0.43] 0.28 [0.09, 0.45] 0.16 [0.06, 0.32] 0.09 [0.05, 0.16]
ρω -0.28 [-0.94, 0.71] -0.17 [-0.96, 0.9] -0.51 [-0.98, 0.56] -0.36 [-0.98, 0.79] -0.4 [-0.97, 0.67]

36



Appendix C. Analysis of abbreviated Japan (combined) time se-843

ries844

Table C.1: Bayes factor and DIC results for the analysis of the Japan (combined) data
series abbreviated to years of overlap with the Japan (Pacific) series under default prior
choice with uniform priors on process and observation noise standard deviations.

Mind Mpro Mcom Mobs DIC
Mind 0 -0.5 0.7 -0.1 82.2
Mpro 0.5 0 1.2 0.5 79.2
Mcom -0.7 -1.2 0 -0.8 80.5
Mobs 0.1 -0.5 0.8 0 81.7
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Appendix D. Model comparison under alternative priors845

This appendix provides Bayes factors and posterior means of the param-846

eter estimates under two alternative prior formulations.847

Table D.1: Bayes factor and DIC results. Broad priors.

Mind Mpro Mcom Mobs DIC

California

Mind 0 -0.6 0.4 0.1 94.0
Mpro 0.6 0 1 0.7 90.2
Mcom -0.4 -1 0 -0.4 90.4
Mobs -0.1 -0.7 0.4 0 94.5

Peru

Mind 0 -0.2 1.6 0 261.6
Mpro 0.2 0 1.8 0.2 260.5
Mcom -1.6 -1.8 0 -1.6 261.3
Mobs 0 -0.2 1.6 0 261.3

South Africa

Mind 0 -0.4 2.2 -0.2 112.9
Mpro 0.4 0 2.6 0.2 110.7
Mcom -2.2 -2.6 0 -2.4 118.3
Mobs 0.2 -0.2 2.4 0 111.4

Japan (Pacific)

Mind 0 0.2 0.4 -0.1 114.8
Mpro -0.2 0 0.3 -0.2 115.1
Mcom -0.4 -0.3 0 -0.5 108.7
Mobs 0.1 0.2 0.5 0 114.7

Japan (Combined)

Mind 0 -0.3 3.3 0 97.0
Mpro 0.3 0 3.6 0.3 94.2
Mcom -3.3 -3.6 0 -3.4 99.2
Mobs 0 -0.3 3.4 0 96.7
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Table D.2: Bayes factor and DIC results with Half-Cauchy prior for the standard deviation
of the process noise.

Mind Mpro Mcom Mobs DIC

California

Mind 0 -0.3 -0.6 0.1 166.2
Mpro 0.3 0 -0.4 0.4 162.8
Mcom 0.6 0.4 0 0.8 62.7
Mobs -0.1 -0.4 -0.8 0 164.9

Peru

Mind 0 -0.2 0.9 0 262.2
Mpro 0.2 0 1.1 0.2 261.4
Mcom -0.9 -1.1 0 -0.9 256.8
Mobs 0 -0.2 0.9 0 261.9

South Africa

Mind 0 -0.4 1.5 -0.3 112.6
Mpro 0.4 0 1.9 0.1 110.5
Mcom -1.5 -1.9 0 -1.8 118.7
Mobs 0.3 -0.1 1.8 0 111.0

Japan (Pacific)

Mind 0 0.2 -0.2 0 114.7
Mpro -0.2 0 -0.3 -0.2 115.0
Mcom 0.2 0.3 0 0.1 108.7
Mobs 0 0.2 -0.1 0 114.2

Japan (Combined)

Mind 0 -0.4 2.7 -0.1 97.2
Mpro 0.4 0 3.1 0.3 95.0
Mcom -2.7 -3.1 0 -2.8 99.2
Mobs 0.1 -0.3 2.8 0 96.7
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