
Minireview

A unifying quantitative framework for exploring the
multiple facets of microbial biodiversity across
diverse scales

Arthur Escalas,1* Thierry Bouvier,1

Maud A. Mouchet,2 Fabien Leprieur,1

Corinne Bouvier,1 Marc Troussellier1 and
David Mouillot1

1UMR 5119 CNRS-UM2-UM1-IRD-Ifremer Ecologie des
systèmes marins côtiers, Université Montpellier 2 cc
093, 34 095 Montpellier Cedex 5, France.
2UMR 5553 LECA, BP 53, 2233 Rue de la Piscine,
38041 Grenoble Cedex 9, France.

Summary

Recent developments of molecular tools have revolu-
tionized our knowledge of microbial biodiversity by
allowing detailed exploration of its different facets
and generating unprecedented amount of data. One
key issue with such large datasets is the development
of diversity measures that cope with different data
outputs and allow comparison of biodiversity across
different scales. Diversity has indeed three compo-
nents: local (α), regional (γ) and the overall difference
between local communities (β). Current measures of
microbial diversity, derived from several approaches,
provide complementary but different views. They only
capture the β component of diversity, compare com-
munities in a pairwise way, consider all species as
equivalent or lack a mathematically explicit relation-
ship among the α, β and γ components. We propose
a unified quantitative framework based on the Rao
quadratic entropy, to obtain an additive decomposi-
tion of diversity (γ = α + β), so the three components
can be compared, and that integrate the relationship
(phylogenetic or functional) among Microbial Diver-
sity Units that compose a microbial community. We
show how this framework is adapted to all types of
molecular data, and we highlight crucial issues in

microbial ecology that would benefit from this frame-
work and propose ready-to-use R-functions to easily
set up our approach.

Introduction

Through their important biomass and their diversified
metabolic abilities, micro-organisms play a key role in the
regulation of ecological processes, such as organic
matter degradation, in all ecosystems (Sleator et al.,
2008). However, the diversity of micro-organisms, repre-
senting a large portion of all biological diversity, has been
only recently and partially described thanks to major
advances in molecular methods, which is particularly true
for bacteria and microbial eukaryotes (Fierer and Lennon,
2011). Indeed, the use of nucleic acid-based analyses has
revealed that microbial diversity levels have been under-
estimated by several orders of magnitude over the past
few decades (Ward et al., 1990; Rappe and Giovannoni,
2003; DeSantis et al., 2005). By improving our capacity to
assess microbial community composition (i.e. the number
and identity of taxonomical units) and structure (i.e. the
abundance distribution among these units as well as their
phylogenetic relatedness), the era of molecular microbi-
ology already does and will even more provide a better
understanding the ecological processes that shape these
communities and underpin ecosystem functioning (Bell
et al., 2005). To gain from this unprecedented mass of
information, we need to unify the calculations of different
diversity indices while considering the wide range of avail-
able and forthcoming data from genes to functions.
Moreover, diversity indices should be able to quantify the
biodiversity of microbial communities and its variations
across spatial and temporal scales, and along environ-
mental gradients (Christen, 2008).

Quantifying the diversity of ecological communities has
become a multifaceted issue for all groups of organisms
including microbes (Devictor et al., 2010). Species
belonging to a community can differ in their abundance,
their taxonomic affiliation, their phylogenetic relatedness
along with their ecological functions (Bryant et al., 2008;
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Peter et al., 2011). These last three facets of biodiversity
were coined as taxonomic, phylogenetic and functional
diversity respectively. Beyond the simple assessment of
community composition, in terms of microbial taxa,
species or OTU (operational taxonomic unit) richness, the
phylogenetic structure sheds light on evolutionary con-
straints and historical contingencies shaping microbial
communities, while their functional structure indubitably
relates to ecosystem functioning (Salles et al., 2009;
Bissett et al., 2011; Peter et al., 2011; Pommier et al.,
2012). In other words, while taxonomic diversity is the
facet of diversity that provides information about how
many and which microbes are present in the community,
phylogenetic diversity informs about their evolutionary
history, and functional diversity quantifies the breadth of
roles that they play. However, the current indices used to
estimate the level of microbial diversity are mainly
restricted to community composition and rarely embrace
the different facets of community structure by including
phylogenetic and functional information along with the
distribution of abundances among lineages or functional
groups (Lozupone et al., 2007; Bryant et al., 2008). This is
even more critical as environmental filtering may operate
at the level of lineages instead of isolated species, and
specific microbial processes may rely on a single
phylotype or functional group (Bryant et al., 2008; Peter
et al., 2011). This could be the case, for example, if
a niche-based process selects lineages or species
according to biological traits associated with specific
phylogenetic groups (Pommier et al., 2012).

The importance of measuring the different facets of
biodiversity (taxonomic, phylogenetic and functional)
while taking into account scale effects is fundamental
when quantifying microbial diversity with a biogeographi-
cal perspective or tackling macroecological issues
(Odonnell et al., 1994; Christen, 2008; Fierer and Lennon,
2011). This could benefit the development of theories and
hypotheses in regards to the factors that structure micro-
bial communities, their response to environmental pres-
sures and the connections between diversity and function
(Kembel, 2009; Stegen et al., 2012). Surprisingly, only
few microbiological studies have used the historical
Whittaker’s biogeographical framework (Whittaker, 1960;
1972), along with its biodiversity decomposition into local
(α), inter-sites (β) and regional (γ) components (Griffiths
et al., 2011). Here, the term ‘decomposition of biodiversity’
refers to the idea that there are different components (or
levels) that, together, constitute the biodiversity at a
certain scale. This approach is for instance particularly
useful in biogeography where one wants to estimate the
biodiversity across a landscape composed of different
localities inhabited by different biological communities.
Hence, the biodiversity estimation in each locality corre-
sponds to the α level, the difference between these

localities is the β level and the overall biodiversity across
all localities is the γ level.

The estimation of these biodiversity components can be
achieved either with indices related to community compo-
sition (species richness) or with more sophisticated
indices embracing the different facets of community struc-
ture. Recently, Lozupone and Knight (2008) plainly
reviewed the indices designed to estimate separately the
α and β components of the Whittaker’s decomposition for
different types of data. While the use of these indices led
to valuable insights in microbial ecology and biogeogra-
phy such as the existence of universal patterns (e.g. taxa–
area relationship and community assembly rules;
Fuhrman, 2009), in our view, they exhibit several limita-
tions. Indeed, former classical indices dedicated to the
estimation of community differences (e.g. Jaccard,
Sorensen and Bray–Curtis) only capture the β component
of diversity, leaving apart the α and γ components. They
also often compare communities in a pairwise way and
consider all species as equivalent. Similarly, recent
indices including species abundance distributions,
phylogenetic or functional differences between species
(e.g. Unifrac, VAW-UniFrac and βMNTD) only account for
the β component of diversity (Lozupone et al., 2007;
Kembel, 2009; Chang et al., 2011; Stegen et al., 2012).
This can be a limiting view of biodiversity across scales as
estimating differences between communities (β-diversity)
does not provide any information about the biodiversity of
local communities (α) and of the whole system (γ). For
instance, for a given level of β-diversity estimated
between two communities, using the Bray–Curtis or the
Unifrac dissimilarity index, these two communities can
have either a low or a high level of α diversity, and these
two scenarios cannot be discriminated. In this case, the
estimation of biodiversity is only partial and would require
the comparison of the β-diversity value to α and γ-values
to fully assess the biodiversity across the system. Moreo-
ver, the α, β and γ components are often estimated using
different and independent indices, which prevent any
mathematically explicit relationship among them and thus
any comparison, contrary to the Whittaker’s framework.
Finally, no consensus has emerged about how and in
which cases these indices should be used according to
the earlier-mentioned limitations. We, thus, urgently need
to improve our way of analysing the different facets of
microbial diversity across scales through a unified and
flexible framework that allows us (i) to estimate β-diversity
for a set of two or more communities, (ii) to estimate
simultaneously the three components using a similar unit,
(iii) to compare the three components using a decompo-
sition of γ diversity and (iv) to integrate data of different
nature (e.g. abundance, taxonomy, phylogeny and func-
tion). New indices recently developed for biogeography
and community analyses of macro-organisms may fulfil
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this gap and may successfully be applied to the microbial
world (Allen et al., 2009; Ricotta and Szeidl, 2009;
Devictor et al., 2010).

Here we aim to (i) briefly review the different kinds of
methods used to assess the different facets of biodiversity
in microbial communities and classify the generated data;
(ii) propose a unified, flexible and multifaceted framework
to estimate microbial diversity based on taxonomic,
phylogenetic or functional data and across temporal and
spatial scales; (iii) present some possible applications of
this framework in microbial ecology and finally (iv) provide
appropriate ready-to-use resources for organizing and
analysing multiple microbiological data.

Measuring the diversity of microbial communities:
different methods for different data

We first present the available methods to study the differ-
ent facets of microbial biodiversity along with their advan-
tages, disadvantages, some key considerations for their
application and the associated data (Table 1).

Methods for studying the different facets of biodiversity
in microbial communities

The presented methods were selected based on their
potential to be used for extensive biodiversity studies.
They also need to be well established in the literature,
independent of cultivation, allow the characterization of
microbes’ biodiversity while focusing on the community
level, and allow the analysis and the comparison of a
large number of samples in a standardized and reproduc-
ible way. Moreover, in order to be used with the proposed
framework, these methods should provide a table output
depicting the microbial composition (in rows) of the
studied communities (in columns). Based on these crite-
ria, we set aside several methods used to assess micro-
bial diversity such as the family of fluorescent in situ
hybridization methods because their sample size limita-
tion and their low resolution or the community-level physi-
ological profile methods such as Biolog Ecoplates
because they are not culture-independent methods and
are biased by inoculums variability (Kirk et al., 2004).
Hence, we focus on high-throughput nucleic acids-based
methods even if they have well-known limitations such as
nucleic acid extraction step (Petric et al., 2011). The fol-
lowing section briefly reviews some key characteristics of
the chosen methods, along with their advantages and
disadvantages.

One of the most common approaches to study the
diversity of microbial communities is the use of ribosomal
RNA (rRNA) gene analysis using fingerprinting methods.
These fingerprint techniques are based on electrophoretic
separation of PCR products (or amplicons) amplified from

nucleic acid extracted from a sample (Nocker et al.,
2007). The separation step can be performed by gel elec-
trophoresis, chromatographic or capillary electrophoresis,
and is based on amplicon length (T-RFLP, ARISA and
LH-PCR) or nucleotide composition (SSCP, DGGE and
DHPLC). For each community (i.e. sample), the resulting
output is a profile specific of the studied community with
respect to migration distance and relative intensity of
band or peak, which refer theoretically to a unique
sequence (Loisel et al., 2006). All fingerprints are
affected by the same nucleic acid extraction and PCR
biases (unspecific amplification, generation of chimeric
sequences, formation of heteroduplexes and nucleotide
misincorporation), and are inherently limited in the
maximum number of microbial units detected (Von
Wintzingerode et al., 1997; Loisel et al., 2006). Moreover,
the diversity estimation is biased by migration issues
leading to comigration of multiple amplicons (up to 15)
under one band or peak, or the formation of several bands
or peaks for one amplicon (Kisand and Wikner, 2003). For
detailed comparisons of fingerprint methods, see else-
where (Kirk et al., 2004; Nocker et al., 2007).

During the last decade, the development of
metagenomic tools with even higher resolution has revo-
lutionized the description of biodiversity in microbial com-
munities. The metagenomic term refers to the culture-
independent analysis of complete genomes of microbial
communities, directly isolated from an environmental
sample (water, soil and air) or living on plants or animal
hosts (Sleator et al., 2008; Petrosino et al., 2009;
Metzker, 2010). Metagenomic methods considered here
(sequencing and microarrays) offer the highest through-
put and resolution for microbial diversity assessment and
could avoid biases introduced during PCR amplification of
marker genes (von Mering et al., 2007).

Historically, the most standard metagenomic approach
is gene-based cloning and sequencing, which involves
the cloning and sequencing of amplicons using the
Sanger method (Suenaga, 2012). This chain-termination
method (Sanger et al., 1977), improved and still in use,
produces high-quality reads (sequences) up to 1000 bp
and has a wider coverage of the targeted sequences and
a better resolution than other sequencing approaches
(Xiong et al., 2010). In counterpart, the cloning step can
be time consuming and laborious, reducing the sample
throughput or leading to arbitrary loss of genomic DNA
(Metzker, 2010; Zinger et al., 2012). The use of direct
pyrosequencing of amplified fragments can avoid the
cloning step, but the length of the reads is shorter with this
method, which makes the process of genome assembly
more difficult (Fierer and Lennon, 2011). Moreover, gene-
based sequencing (with cloning or not) is restricted to
PCR-amplified sequences and so is affected by PCR
biases. Overall, the limitation here lies in the reliability of
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relative abundance distributions for detected sequences
because the extraction, amplification and cloning steps of
nucleic acid may introduce quantitative biases. These
gene-based sequencing approaches are progressively
being replaced by whole metagenomic sequencing, which
produces reads from the whole metagenome sequences
and could benefit from the development of new amplifica-
tion methods such as whole genome amplification or
emulsion PCR (Shendure and Ji, 2008; Petrosino et al.,
2009). Whole metagenomic DNA can be randomly
sheared before cloning and sequencing, this is the case in
the shotgun approach, or can be directly sequenced using
next generation sequencing (NGS) methods (Petrosino
et al., 2009; Roh et al., 2010); for a detailed comparison of
NGS methods see elsewhere (Shendure and Ji, 2008;
Metzker, 2010). These whole metagenomic sequencing
approaches generate thousands of short sequences
(reads) that can be assembled in longer sequences using
bioinformatic automated pipelines (Hirsch et al., 2010;
Santamaria et al., 2012). Recent developments in high-
throughput sequencing are limited by the computing step,
but rapid improvements are underway (von Mering et al.,
2007; Metzker, 2010).

Another recently improved metagenomic approach is
the microarray, which are glass slides on which DNA
fragments are spotted and serve as probes for the hybridi-
zation of the labelled metagenomic DNA. Next, fluores-
cent label intensity is measured, which reveals the
presence of hybridized DNA on the slides (Zhou, 2003).
Microarrays overcome some of the restrictions of other
methods such as the low resolution of fingerprint
methods, the laborious cloning step of some sequencing
approaches and avoids the amplification step by direct
hybridization of metagenomic DNA on the slides (Roh
et al., 2010). However, microarrays only detect already
sequenced genes as the probes spotted on the slides are
designed using reference databases (Zhou, 2003; Hirsch
et al., 2010).

For detailed comparisons of metagenomic approaches
see Metzker (2010), Roh and colleagues (2010) and Su
and colleagues (2012).

Markers to assess the biodiversity of
microbial communities

Basically there are two categories of marker genes,
group-specific genes and functional encoding genes
(Stahl, 2007). Group-specific genes (taxonomic or
phylogenetic) correspond to conserved biopolymers that
can be used to infer taxonomic or phylogenetic relation-
ships among the organisms. Functional encoding genes
code for specific proteins and could be used to evaluate
specific chemical transformations or potential activity of
microbial populations (Stahl, 2007).

The taxonomic and phylogenetic relationships between
prokaryotes can be deduced from sequence comparisons
of conserved group-specific genes. To do so, these genes
should be widely distributed, should not be frequently
transmitted horizontally and should be present as a single
copy. In addition, they should not be too long for being
easily amplified and sequenced, but not too short in order
to contain enough information. Moreover, they should
have a ‘good’ level of resolution, that is they should not be
too conserved nor too variable (Gevers and Coenye,
2007). The group-specific markers that are the most com-
monly used in microbial ecology are the rRNA genes
because they are universally present, functionally con-
stant and are composed of conserved and more variable
domains (Vos et al., 2012). Modern microbial taxonomy
and phylogeny benefit from the PCR sequencing of the
genes coding for the small (16S) or large (23S) rRNA
molecules (Gevers and Coenye, 2007; Stahl, 2007).
However, other genes had been used as group-specific
marker genes to delineate relationships between micro-
organisms such as recA, gyrB, rpoB, rpoD, hsp60, soda,
atpD and infB (Gevers and Coenye, 2007; Bonilla-Rosso
et al., 2012; Vos et al., 2012).

Functional encoding genes have been used as markers
for studying the diversity of microbial functions in different
nucleic acid-based approaches such as fingerprints
(Hirsch et al., 2010), microarrays (He et al., 2008) or
various sequencing approaches (Dinsdale et al., 2008;
Carvalhais et al., 2012).

In any of the earlier presented nucleic acid-based
methods, the target molecule should be either DNA or
RNA, the latter being the transcribed version of the
former, and the use of reverse transcription is required to
generate cDNA from RNA (Stahl, 2007). In an ecological
perspective, DNA and RNA targets provide different
views of the microbial communities, which correspond,
respectively, to metagenomic and metatranscriptomic
approaches. When using a group-specific marker and its
corresponding DNA and RNA versions, 16S rDNA and
16S rRNA for instance, we can differentiate present
versus active bacteria respectively (Gremion et al., 2003).
In the case of functional encoding genes, one can differ-
entiate present (potential) versus expressed (realized)
functions depending on the use of DNA or mRNA respec-
tively (Sleator et al., 2008; Roh et al., 2010). Note that
total environmental RNA extracted from microbial commu-
nities is mainly composed of rRNA and transfer RNA, with
approximately 1–5% mRNA (Carvalhais et al., 2012).

Data generated and associated microbial
biodiversity facets

The data outputs of selected methods are represented in
Fig. 1. In the rest of the article, we will use the generic
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term Microbial Diversity Unit (MDU) to refer to the different
diversity units that compose a microbial community.
These MDUs can correspond to different facets of biodi-
versity: the diversity of nucleic acid fragments, taxa,
phylogenetic lineages or functions depending on the
method and the genetic marker.

The data obtained using fingerprint methods can be
represented as a presence–absence matrix for each MDU
in each sample (Fig. 1). Although there is still an ongoing
debate about how to name the units detected by finger-
prints (e.g. OTU, biotype, ribotype, genotype, phylotype
and ribosomal genotypes), all these terms refer to the
same entities. They are in fact nucleic acid fragments
(amplicons) that are discriminated in various ways, which
depend on the method, to give a snapshot of the com-
plexity of the microbial community. Consequently, in the
case of fingerprints, the generic term MDU will refer to
these entities, and the associated diversity will be called
‘fingerprint’s nucleic acid fragments diversity’. Consider-
ing the earlier-mentioned PCR biases, there is still a
debate on the possibility to use band intensities, peak
heights or areas as relative abundances of MDUs (Bent
et al., 2007). Taking into account the limited resolution of

the method and the earlier definition of MDU, it is impor-
tant to note that these MDUs may not correspond to any
taxonomic or phylogenetic group. Hence, the resolution of
fingerprints methods is limited as they do not provide any
clues about which microbes compose the community.
However, it is possible to collect and sequence the MDUs
(e.g. bands in DGGE) to know their taxonomic affiliation.
This allowed, in the context of many experiment, the iden-
tification of the organism of interest, but this approach
remains complicated in practice and is still considered
limited (Zinger et al., 2012). The amplified fragment may
also correspond to a functional encoding gene (mer,
amoA, nifH, nozZ, mcrA, etc.). In such a case, what is
estimated is the diversity of the gene encoding the func-
tion within the community but not the whole diversity of the
community functions because fingerprints can analyse
only one gene at a time (Stahl, 2007; Hirsch et al., 2010).

Measuring the taxonomic diversity of micro-organisms
requires their identification and classification into the dif-
ferent levels of taxonomic hierarchy such as genus,
family, order and phylum (Odonnell et al., 1994;
Santamaria et al., 2012). This approach is still widely used
to study microbial diversity, but affiliation of microbes into

Fig. 1. The different ways to obtain data for the different facets of microbial biodiversity using the methods presented in Table 1. See text and
references therein for a detailed description of the different steps presented here.
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taxonomic levels is no longer done on the basis of their
phenotypic characteristics but rather using their genetic
similarity with known taxa (Huse et al., 2008). This simi-
larity is estimated using nucleotide sequences of group-
specific marker genes (usually the 16S rRNA gene)
present in the community metagenome (Odonnell et al.,
1994). The sequences can be obtained using earlier pre-
sented sequencing approaches and can then be com-
pared with reference databases to obtain their taxonomic
affiliation (Christen, 2008; Santamaria et al., 2012; Fig. 1).
The description of this step (called binning) is beyond the
scope of this work (but see Kunin et al., 2008; Santamaria
et al., 2012 for further details). Although there is some
quantitative biases associated with the nucleic acids
extraction, PCR and cloning steps, metagenomics
approaches provide the relative abundances of detected
MDUs (i.e. taxa or OTUs).

The taxonomic diversity of microbial communities can
be also estimated using microarrays designed with
probes corresponding to group-specific marker genes of
different microbial taxa. For instance, the PhyloChip G3 is
a microarray able to detect more than 60 000 different
MDUs (i.e. taxa) (Kellogg et al., 2012). The probes hybrid-
ized on the array provide the MDU composition of the
community, and their hybridization intensities can be
linked to the relative abundances of MDUs to fully assess
the quantitative structure of microbial communities, i.e.
the abundance distribution among MDUs (Fig. 1;
DeSantis et al., 2005; Handley et al., 2012). The resulting
data are a table with detected MDUs in rows and the
studied samples in column (Fig. 1).

The investigation of phylogenetic diversity of microbial
communities has increased since the development
of metagenomic methods, providing deeper insight
into the processes that influence their composition and
structure (Martin, 2002; Christen, 2008). To assess the
phylogenetic diversity of microbial communities, one
needs to know the phylogenetic relatedness between the
microbes present in the community. A first way is to deter-
mine the taxonomic diversity of the community using the
sequencing approaches described previously and then to
assign the identified MDUs to lineages of a reference
phylogenetic tree (Petrosino et al., 2009; Liggenstoffer
et al., 2010). Phylogenetic relatedness between MDUs
can also be obtained by comparing directly their respec-
tive sequences with referenced sequences (Kembel et al.,
2011). As in the case of taxonomic MDUs, these
approaches provide the relative abundances of the
phylogenetic MDUs (i.e. the leaves of the phylogenetic
tree).

The phylogenetic diversity of microbial communities
can also be estimated using microarrays. Indeed, the list
of positive hybridized probes (positive MDUs) can be
used to prune the phylogenetic tree relating the entire

spotted probes on the array. This gives the tree relating
only the MDUs composing the studied community
(Holmes et al., 2010).

In both cases (sequencing and microarrays), the result-
ing dataset is a table containing the detected MDUs and
the studied samples, associated with a phylogenetic tree
or a phylogenetic distance matrix depicting the related-
ness among MDUs (Fig. 1).

The functional diversity of micro-organisms is now
widely considered as the biodiversity component under-
pinning ecosystem functioning (Christen, 2008). Its esti-
mation drastically differs depending on the size of the
studied organisms. Indeed, for macro-organisms (e.g.
plants, fishes and birds), functions performed by each
species or populations are usually approximated by
measuring functional traits on individuals and finally cal-
culating the functional diversity of communities (Mendez
et al., 2012; Villéger et al., 2012). Even if this approach is
possible for some groups of micro-organisms such as
zooplankton or flagellates, it becomes more difficult to set
up as the size of studied organisms decreases (Barnett
et al., 2007; Kruk et al., 2010). When communities are
composed of bacterial, archaeal or microbial eukaryotes
populations, this species-centred approach is currently
impossible because we cannot separate all the popula-
tions that compose a community to measure their specific
functional traits. In the near future, the development of
technologies such as MicroFISH, NanoSIMS and flow
cytometry may allow assigning simultaneously both iden-
tity and functions to specific microbes forming natural
communities (Amann and Fuchs, 2008). However, today,
the functional diversity of certain groups of micro-
organisms such as bacteria, archaea and microbial
eukaryotes is only assessed at the community level using
nucleic acid-based methods (Dinsdale et al., 2008; He
et al., 2008; Yavitt et al., 2012). Metagenomic data pro-
vides extensive information about gene content and their
potential functions, and metatranscriptomic assesses
what genes may be expressed. Whatever the approach,
the functional data are obtained as lists of functional
encoding genes associated with the whole community
(Fig. 1). These genes can, however, be treated as dis-
crete functional units (MDUs) composing the functional
diversity of microbial communities, exactly the same way
as taxa compose their taxonomic diversity. This diversity
of functions can be obtained using whole metagenomic
sequencing approaches by comparing the obtained
sequences to databases containing sequences of func-
tional genes (Dinsdale et al., 2008; Prakash and Taylor,
2012). As it is the case for taxa or phylogenetic groups,
relative abundances of these functional MDUs can be
extracted, providing a full quantitative assessment of
functional community structure. Similarly, using probes
corresponding to sequences of functional genes,
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microarrays can provide the functional diversity of micro-
bial communities along with the relative abundances of
detected functions (He et al., 2008).

The resulting dataset is a table containing the detected
MDUs in rows and the studied samples in column (Fig. 1).
In the near future, we may use functional data in the same
way as we use phylogenetic data, as it is done for macro-
organisms. Then, combining a taxonomic MDU composi-
tion table and a functional matrix depicting the functions
performed by each MDU, we will be able to assess micro-
bial functional diversity using the tools primarily devel-
oped for macro-organisms (Mouchet et al., 2010).

Decomposing the biodiversity into α, β and
γ components

Biodiversity across scales

Biodiversity is classically decomposed across temporal
and spatial scales into three levels considered as compo-
nents: (i) local diversity (α), (ii) regional diversity (γ) and
(iii) the difference among local communities (β).
β-diversity is also referred as differentiation diversity and
turnover (Whittaker, 1960; Vellend, 2001; Jurasinski et al.,
2009; Anderson et al., 2011). Although these last two
terms are often synonymous in the literature, they actually
apply to different concepts (Tuomisto, 2010a,b; Anderson
et al., 2011). ‘Differentiation diversity’ refers to the varia-
tion in community structure regardless of any external
gradient and often estimated using (dis)similarity or dis-
tance estimators (Jurasinski et al., 2009; Anderson et al.,
2011). ‘Turnover’ can be defined as a directional (along a
gradient) pairwise estimation of change in community
structure (according to Jurasinski et al., 2009 and
Anderson et al., 2011, but criticized in Tuomisto,
2010a,b). To prevent ambiguity, we use the generic term
β-diversity throughout the paper to refer to between com-
munity diversity based on an additive partitioning of bio-
diversity components.

Since Whittaker’s seminal works on β-diversity
(Whittaker, 1960; 1972), the number of proposed indices
to quantify the three components of diversity has drasti-
cally increased (Koleff et al., 2003; Tuomisto, 2010a,b;
Anderson et al., 2011). β-diversity indices can be divided
into two classes whether they are based on a dissimilarity
metric or deduced from the decomposition of diversity into
α, β and γ components. In the first case, β-diversity is
simply estimated as a pairwise intercommunity distance
using a chosen dissimilarity metric (e.g. Sorensen,
Jaccard or Bray–Curtis dissimilarity). This is achieved
regardless of α and γ components (Koleff et al., 2003;
Zinger et al., 2012). An important limitation of this
dissimilarity-based approach of β-diversity is that the
same intercommunity dissimilarity value (e.g. calculated
with the Bray–Curtis index) may be obtained between two

pairs of communities, which have different local diversity
values (estimated with another index). In the second
case, diversity is decomposed into α, β and γ compo-
nents, all being related within an additive, β = γ – ᾱ or a
multiplicative framework, β = γ/ᾱ, in which ᾱ corresponds
to the mean local diversity across samples (Whittaker,
1960).

Additive decomposition of the Rao quadratic entropy

The Rao quadratic entropy (Q) is a measure of diversity
that combines species-relative abundances and pairwise
interspecies differences. By combining these two features
of diversity, this index measures the community structure
rather than its composition. This approach therefore com-
plements the classic estimation of diversity using indices
based on species richness, evenness or community com-
position (i.e. basically who is present in the community). In
the context of microbial ecology, species can be replaced
by any MDUs, such as phylotypes, OTU, taxa, species or
functional genes, according to the method used (Table 1).

Here, we propose to use additive partitioning of the Rao
quadratic entropy, which has several valuable properties
in comparison to independent α, β and γ diversity estima-
tions (Rao, 1982; Ricotta and Szeidl, 2009). Additive par-
titioning has the advantage, over its multiplicative
counterpart, to express the three components (α, β and γ)
in the same unit (phylotype, taxa, OTU, functional genes,
microbial unit, etc.) so they can be compared directly
(Lande, 1996). Another advantage of this framework is
that α-diversity values do not influence the calculation of
β-diversity values (Jost, 2007; 2010). The additive prop-
erty also enables the calculation of the relative contribu-
tions of α- and β-diversity to the γ-diversity and in doing
so, to compare their values among multiple scales and
studies (Lande, 1996). Finally, using this framework,
β-diversity can be estimated globally for a set of commu-
nities or between pairs of communities.

At the local scale, Rao quadratic entropy Qα represents
the expected dissimilarity between two randomly chosen
MDUs from a sampled community and hence can be
defined as the extent of dissimilarity between MDUs in a
community (e.g. the phylogenetic distance between taxa
in a community):

Q d p pij i j
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α =
==
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11

(1)

Where dij is the distance (taxonomic, phylogenetic or
functional) between the i-th and the j-th MDUs in the local
community; distances need to be ultrametric to ensure the
monotonicity of the Q with the richness (Pavoine et al.,
2005). In an ultrametric tree, the branch lengths are
scaled in a way that all distances from the root to the tips
(or leaves) of the tree (MDUs in our case) are the same
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(Vellend et al., 2010). When these distances are
unknown, dij can be set to unity. pi and pj are the relative
local abundances of the i-th and the j-th MDUs
respectively; pi and pj can be set equal for
presence–absence data. s is the number of MDUs in the
local community.

At the regional scale γ, sampled communities are
pooled together into a single regional community. The
Rao quadratic entropy at this regional scale Qγ can be
defined as the extent of dissimilarity between two ran-
domly chosen MDUs in the regional community.

Q d PPij i j

j

S

i

S
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==

∑∑
11

(2)

Where dij is the distance (taxonomic, phylogenetic or
functional) between the i-th and the j-th MDUs in the
regional community. Pi and Pj are the relative regional
abundances of the i-th and the j-th MDUs respectively. S
is the number of MDUs in the regional community. The
relative regional abundances are commonly quantified as
the mean relative abundances over local communities for
MDUs. Likewise, the quantification of local diversity, dij, Pi

and Pj, can be set to a unique value when information is
missing, e.g. dij = 1 or Pi = Pj = 1/S.

The mean intracommunity (ᾱ) quadratic entropy Qᾱ is
simply the mean of the local quadratic entropy values
across the kth studied communities. The local quadratic
entropy (Qα) can be weighted by a parameter wk or not
(see de Bello et al., 2010 for more details). For instance,
this parameter could correspond to local community
abundances:

Q w Qk

n

N
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=
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Subtracting the regional quadratic entropy (Qγ) and the
mean local quadratic entropy (Qᾱ) allows quantifying the β
component of the quadratic entropy (Qβ) using an additive
framework and hence the intercommunity diversity
(Ricotta and Szeidl, 2009; de Bello et al., 2010):

Q Q Qβ γ α= − (4)

Standardized indices

Recent studies show that many diversity indices, includ-
ing the Rao quadratic entropy, might have counterintuitive
ecological properties (Jost, 2007; Ricotta and Szeidl,
2009; de Bello et al., 2010). Indeed, when α-diversity
increases, the β-diversity decreases and approaches
zero, even in cases where there are no shared species
between sampling units. Consequently, estimated
β-diversity would be low regardless of the actual species
overlap and the change in diversity across sampling units

(Jost, 2007). We therefore applied the correction pro-
posed by Jost (2007) derived from equivalent numbers
(see de Bello et al., 2010 for further details). Following its
definition, the equivalent number of species is the number
of maximally dissimilar species having equal abundance,
which produces maximal entropy. Thus, by replacing Qᾱ

and Qγ by their equivalent numbers in Eq. 4, we obtain the
unbiased measures of intracommunity, regional and inter-
community diversity as follows (Ricotta and Szeidl, 2009):

Q Qcorrectedα α( ) ( )= −1 1 (5)

Q Qcorrectedγ γ( ) ( )= −1 1 (6)

Q Q Qcorrected corrected correctedβ γ α( ) ( ) ( )= − (7)

It is worth noting that the correction is applied on Qᾱ and
not on the local Qα so the relationship that makes Qᾱ the
mean of local Qα is lost (see de Bello et al., 2010 for more
details).

To quantify the relative proportion of α and β compo-
nents of diversity within the γ diversity, the corrected
Qβ(corrected) component of quadratic entropy can be
expressed as the percentage of the corrected Qγ(corrected)

component (total regional diversity):

Q
Q

Q
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corrected

β
β

γ
= ( )

( )

(8)

We compiled a function under the free R software (R
Development Core Team, 2011) to estimate all Rao
indices described earlier. This function, along with an
R-script is available in Appendix S1.

Theoretical examples

Our described decomposition is illustrated with four sim-
plified but realistic cases in Fig. 2, according to the nature
of the MDU data (presence/absence versus relative abun-
dance, and known versus unknown relationships among
MDUs). We built an artificial regional pool of five MDUs
(A–E) scattered across three local communities (I–III) of
similar size, i.e. three individuals [cases (A) and (B)) and
100 individuals [cases (C) and (D)] distributed into three
MDUs taken from the regional pool. For each community,
we estimated α-diversity (Qα), the mean α-diversity (Qᾱ),
the regional γ-diversity (Qγ), the β-diversity (Qβ) and the
standardized β-diversity (Qβst). The Jost correction was
applied in order to quantify diversity while accounting for
the equivalent number of species, i.e. the number of maxi-
mally dissimilar (dij = 1) and evenly distributed MDUs
required to obtain the same index value (Q) as estimated
with our dataset. In case (A), data are presence–absence
of MDUs, while pairwise distances are unknown (dij = 1).
In case (C), the relative abundances of MDUs are known.
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Cases (B) and (D) are based on the same community
matrices as cases (A) and (C), respectively, but the
phylogenetic relatedness among the five MDUs are
known in the formers. This relatedness corresponds to the
pairwise cophenetic distances between MDUs, which is
the amount of branch length relating all MDU pairs on an
ultrametric phylogenetic tree.

In case (A), all communities have the same Qα diver-
sity as they contain the same number of MDUs (i.e.
three). The regional Qγ value does not equal the number
of MDUs (i.e. five) because Qγ decreases with the pro-
portion of shared units among communities. Here,
MDUs A, C, D and E are shared by two communities. In
case (C), the relative abundances of MDUs are known.
Local diversity (Qα) is maximized when individuals are
evenly distributed (community I) and minimized with
unbalanced distributions of individuals amongst units
(community III).

Cases (A) and (C) exhibit the highest Qβst values among
the four cases; β-diversity represents more than 37% of
the estimated regional diversity Qγ. In cases (B) and (D),
the highest Qα value is estimated for community I, which
has the highest phylogenetic diversity (distance = 19.2) as
each MDU (A, C and E) belongs to scattered lineages.
Moreover, MDUs have similar abundances in this commu-
nity, thus increasing the estimated diversity. Community II
has the lowest Qα value in both cases. This is due to an
uneven abundance distribution among MDUs but more
importantly to the low phylogenetic diversity (dis-
tance = 14.9), explained by the presence of close relative
MDUs such as A and B. Finally, community III has inter-
mediate Qα values because the phylogenetic diversity is
intermediate (distance = 18.1) and abundances are
unevenly distributed (case D).

The estimated β-diversity (Qβst) represents 23.6% and
22.1% of the regional Qγ diversity in cases (B) and (D)

Fig. 2. Schematic example illustrating calculation of additive partitioning of Rao’s quadratic entropy (Qᾱ, Qβ and Qγ) for different types of data.
We estimated the different components of Rao entropy using the Rao function: α-diversity (Qα), the mean α-diversity (Qᾱ), the regional
γ-diversity (Qγ), the β-diversity (Qβ) and the standardized β-diversity (Qβst) (see Appendix S1 for data, R-script and R-function). We applied the
Jost correction, but the weighting of local communities was not applied because all communities contain the same number of individuals (100).
A. Presence–absence data of equally distant Microbial Diversity Units (MDUs, A–E) within local communities (I, II and III).
B. Presence–absence of phylogenetically related MDUs within local communities.
C. Abundance data of equally distant MDUs within local communities.
D. Abundance data of phylogenetically related MDUs within local communities. dij corresponds to the distance between MDUi and MDUj; coph
(MDUi and MDUj) is the cophenetic distance between MDUi and MDUj, that is the length of the branches relating these two MDUs on a
phylogenetic or functional tree; Ncom is the total number of individuals in the studied communitym, and NMDU is the number of individuals of the
MDUi. Note that Qᾱ values do not correspond to the mean local Qα values because the Jost correction was applied after the calculation of
local Qα, Qᾱ, Qβ and Qγ.

Quantitative scaling of microbial biodiversity 2651

© 2013 John Wiley & Sons Ltd and Society for Applied Microbiology, Environmental Microbiology, 15, 2642–2657



respectively. These values are lower than in cases (A) and
(B) because taking into account the phylogenetic relation-
ships between MDUs reduces the dissimilarity between
communities that share common branches on the
phylogenetic tree in addition to sharing some species.

All the data, R-scripts and R-functions required to run
these theoretical cases are available in a user friendly
format in Appendix S1.

How does this framework enrich the microbial
ecologist’s toolbox?

What do we need in microbial ecology?

Microbial ecology faces, at least, two major challenges.
The first one relies on the need to elucidate the role of
microbes not only on ecosystem functioning, but also on
ecosystem resilience and stability in the context of envi-
ronmental changes (Bell et al., 2005). The second chal-
lenge is to use the enormous amount of available and
forthcoming microbial data generated through molecular
approaches in a quantitative way that is more ecologically
relevant (Jones et al., 2012). These two challenges are
interrelated because the former needs to generate a large
number of samples (which is realistic in terms of sampling
strategy and collection), and the second will see an
increasing amount of information per individual and
species that differ in their nature (abundance, identity,
phylogeny, activity, physiology and function). To address
these challenges, microbial ecology calls for a much
better description of biodiversity, microbial processes and
interactions in space and time. Decomposing diversity, as
described earlier, in a way that fulfil Whitaker’s framework
but with more flexibility, is of high priority because it will
allow the comparison of communities in a standardized
way (time point and sites) and the integration of data of
various sorts.

Measuring community structure to complement
existing tools

Given the myriad of indices already available for microbi-
ologists, the proposal of a new framework is only valuable
if it brings additional and complementary information to
existing tools (Lozupone and Knight, 2008). Using four
theoretical cases (Fig. 3), we compared β-diversity values
estimated using the additive Rao quadratic entropy frame-
work, based on MDUs phylogenetic relatedness and their
relative abundance, with those obtained using a classical
additive composition, based on MDUs composition only
(i.e. MDUs presence/absence).

In case (A), the two communities have no MDU in
common, hence explaining the compositional β-diversity
of 50%, which represents the highest possible value for

this number of communities (see Appendix S2). The two
MDUs within each community are closely related
phylogenetically (low Qᾱ value), but these two pairs of
MDUs are phylogenetically distant between communities
(Qβst = βst = 50%, highest possible value). In this case, the
taxonomic composition and the phylogenetic structure of
the two communities differ in a similar way, i.e. the
maximum level.

In case (B), the communities contain four MDUs while
they share three of them. The estimated β-diversity, Qβst

and βst are all low because only one out of four species
differs between the communities and because the two
unshared species (A and B) are closely related
phylogenetically (this reduces the Qβst). In this case, the
taxonomic composition and the phylogenetic structure are
close between the two communities.

In case (C), the communities have no MDU in common,
and the two MDUs that compose each community have
marked unequal abundances. The β-diversity estimated
using only community composition is 50% (βst), which is
the highest possible value, as in case (A). However,
phylogenetic β-diversity (Qβst) is much lower than is case
(A) as closely phylogenetically related MDUs have the
same abundances in their respective communities (A–B
in community I, and C–D in community II). In this case, the
taxonomic composition maximally differs between the two
communities, but their phylogenetic structures are very
close.

In case (D), the MDU composition is the same between
the two communities, explaining the lowest compositional
β-diversity value (βst = 0) suggesting no turnover.
However, the estimated phylogenetic β-diversity (Qβst) is
high (44.7% over a maximum of 50%) as the most abun-
dant MDUs are phylogenetically distant between the two
communities. In this case, while the community composi-
tion is perfectly identical between the two communities,
their phylogenetic structure markedly differs.

Here, using four theoretical cases, we show that com-
positional and phylogenetic β-diversity are not trivially
related and that the Rao framework deserves to be
applied in addition to classical taxonomic-based analyses
in order to reveal complementary biodiversity patterns.

Potential applications in microbial ecology

To illustrate possible uses of the presented framework, we
identify three common issues that may necessitate a
scaling of biodiversity (Fig. 4).

The first example corresponds to the monitoring of one
or several bacterial communities over time (Fig. 4A). This
can refer, for instance, to the dynamic of an in situ micro-
bial community in different seasons, in experiments after
input of contaminants, nutrients or after a modification in
land use (Jones et al., 2012; Perez-Leblic et al., 2012;
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Zhou et al., 2012). The objective would be then to deter-
mine whether the structure of these communities varies
through time by estimating the relative contribution of Qᾱ

and Qβ values to Qγ values. If Qᾱ explains most of Qγ, then
microbial communities remain stable through time, while a
higher contribution of Qβ to Qγ would mean a major
change in community structure.

Another possibility for use of our approach (Fig. 4B) is
when investigating spatial processes across systems,
metacommunities, and the dynamics of biodiversity and
ecosystem processes from the nano to the regional scale
(Jones et al., 2012; Yavitt et al., 2012). The relative con-
tribution of Qᾱ and Qβ values to Qγ values, and their
interactions with biotic and abiotic factors, may shed light
on the processes underpinning empirical community pat-
terns, i.e. the patch dynamics, species sorting, source–
sink effects and neutral model frameworks (Logue et al.,
2011).

The last example refers to micro-organism–macro-
organism associations (Fig. 4C) and corresponds to the
study of host-associated microbial communities. In the
last years, there has been increased interest in under-
standing the structure of the indigenous microbiota that
inhabit the surface or the inside of terrestrial and aquatic
animals and plants (Fierer et al., 2012; Mouchet et al.,
2012). The application of ecological theory to the host-
associated microbiota, through description of α, β and γ
components of diversity and their interactions, may push
us beyond simple descriptions of community structure
towards the understanding of mechanisms that structure
their diversity and functions. Consequently, this could lead
us to a better understanding of their role in animal and
plant health (Fierer et al., 2012).

The three potential applications described earlier are
not exhaustive. Within natural communities, the microbial
taxa coexist with a wide range of physiologic states,

Fig. 3. Comparison of the additive framework for the Rao quadratic entropy with a composition-based additive partition of Microbial Diversity
Unit (MDU) diversity. In each case (A–D), we calculated an additive partition of the regional diversity. We estimated Qᾱ, Qβ and Qβst

components of diversity using the Rao quadratic entropy framework (Q). We estimated ᾱ, β and βst using an additive composition-based
framework, i.e. a framework that considers all MDUs as equivalent and uses only presence/absence of MDUs within communities, where:
γ = the number of MDUs across communities; ᾱ = the mean number of MDUs per community; β = γ − ᾱ; βst = β/γ. The big circles correspond to
20 individuals and the small circles to 1.
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expressed as different activity levels from very active to
latent or even dead states (Del Giorgio and Gasol, 2008).
Moreover, communities are dominated by species repre-
sented by few individuals with wide functional potential
(Szabo et al., 2007). The loss and persistence of these
categories of cells in the assemblage, as well as their
relative importance in assembly processes are still
unknown. However, there may be key players to explain
the persistence of species and their global diversity pat-
terns. These issues may benefit from the assessment of
α, β and γ diversity of these cell categories at the different
scales described in Fig. 4.

Concluding remarks

The modern molecular tools presented here allow esti-
mating different facets of microbial diversity (taxonomic,
phylogenetic and functional) with different but high levels
of resolution and standardization. Many recent papers
rely on this multifaceted approach to address questions
such as the understanding of biogeographical patterns
(Griffiths et al., 2011; Nemergut et al., 2011), the
multiscale assessment of diversity and the comprehen-
sion of microbial community assembly rules (Lozupone
and Knight, 2007; Fierer et al., 2012; Zinger et al., 2012).
While these studies have facilitated the development of
concepts and test major theories, they are not consistent
in the way they measure the different components of
diversity (α, β and γ) across scales, phylogenies and
functions, so comparison between studies is not possible.
The framework proposed by de Bello et al. (2010) and
that we have adapted to the microbial world is unique by
combining the dissimilarity and the relative abundances
among the community members (here MDUs), and being

flexible to cope with different kinds of data that are, or will
be, generated by molecular tools. In addition, it provides a
standardized methodology for the comparison of α, β and
γ components across different facets of microbial diver-
sity. Thus, large datasets covering microbial cell identity
and function that are currently methodologically accessi-
ble, as well as the unified framework of diversity calcula-
tions described here, are key ingredients for successful
findings in spatio-temporal distributions of microbial life,
along with comparisons between case studies.
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Appendix S1. This is the R-script that explains the content
of the supplementary files and how to use the Rao function.
Appendix S2. This file contains complementary information
about the uses and behaviour of the Rao function.
F(Rao).R. This is the R-code of the Rao function.
PhyloTree.tre. This file is a NEWICK phylogenetic tree and
served as example in the Appendix S1 R-script.
Fig. S1. Fig2_community.abundance.txt: This is a matrix of
the data used for Fig. 2. These data served as example in the
Appendix S1 R-script.
Fig. S2. Fig2_community.presence.absence.txt: This is a
matrix of the data used for Fig. 2. These data served as
example in the Appendix S1 R-script.
Fig. S3. Fig3_caseA, Fig3_caseB, Fig3_caseC, Fig3_
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