

JRC SCIENTIFIC AND POLICY REPORTS

Scientific, Technical and Economic Committee for Fisheries (STECF)

Evaluation of Fishing Effort Regimes in European Waters - Part 2 (STECF-13-21)

Edited by Hans-Joachim Rätz and Steven Holmes

This report was reviewed by the STECF during its 44th plenary meeting held from 4-8 November 2013, Brussels, Belgium

Report EUR XXXXXEN

European Commission

Joint Research Centre

Institute for the Protection and Security of the Citizen

Contact information STECF secretariat

Address: TP 051, 21027 Ispra (VA), Italy E-mail: stecf-secretariat@jrc.ec.europa.eu

Tel.: 0039 0332 789343 Fax: 0039 0332 789658

https://stecf.jrc.ec.europa.eu/home http://ipsc.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/

Legal Notice

Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication.

This report does not necessarily reflect the view of the European Commission and in no way anticipates the Commission's future policy in this area.

Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): $00\,800\,6\,7\,8\,9\,10\,11$

(*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

A great deal of additional information on the European Union is available on the Internet.It can be accessed through the Europa server http://europa.eu/

JRC XXXX0

EUR XXXX EN

ISBN XXXXX

ISSN 1831-9424

doi:XXXXXXX

Luxembourg: Publications Office of the European Union, 2013

© European Union, 2013

Reproduction is authorised provided the source is acknowledged

How to cite this report:

Scientific, Technical and Economic Committee for Fisheries (STECF) – Evaluation of Fishing Effort Regimes in European Waters - Part 2 (STECF-13-21). 2013. Publications Office of the European Union, Luxembourg, EUR XXXX EN, JRC XXXX, XXX pp.

Printed in Italy

TABLE OF CONTENTS

T	ABLE OF CO	ONTENTS	3
E١	VALUATIO	N OF FISHING EFFORT REGIMES IN EUROPEAN WATERS PART 2 (STECF- 13-21)	10
R	FOLIEST TO	THE STECF	10
•	LQOLSI IC		
IN	NTRODUCT	ON	10
Sī	TECE COMI	MENTS, OBSERVATIONS, AND CONCLUSIONS	10
E	XPERT WO	RKING GROUP REPORT	26
1	EXECU	TIVE SUMMARY	27
2	RECON	MMENDATIONS OF THE WORKING GROUP	36
3	INTRO	DUCTION	26
3			
		VIS OF REFERENCE FOR EWG 13-06 AND EWG 13-13	
4	DATA	USED	62
	4.1 REP	DRT NOTATIONS	62
	4.1.1	Baltic Sea	63
	4.1.2	Cod Zones Multi-annual Plan	64
	4.1.3	Southern hake and Nephrops	65
	4.1.4	Western Channel sole	66
	4.1.5	Celtic Sea	67
	4.1.6	Bay of Biscay	67
	4.1.7	Western Waters and Deep Sea	67
	4.2 DAT	A CALL	67
	4.3 DAT	A POLICY, FORMATS AND DATA AVAILABILITY	68
	4.3.1	Data availability Table A Catch 2003-2012	69
	4.3.	1.1 Belgium	69
	4.3.	1.2 Denmark	70
	4.3.		
	4.3.		
	4.3.		
	4.3. 4.3.	,	
	4.3.		
	4.3.		
	4.3.		
	4.3.	1.11 Poland	74
	4.3.	1.12 Portugal	75
	4.3.		
	4.3.		
	4.3.		
	4.3.2	Data availability Table B nominal fishing effort 2000-2012	
	4.3 4.3	ě	
	_	I.3.2.2.1 Description of Danish procedures	
		I.3.2.2.2 Concerns about the data call	
	4.3.		
	4.3.		_

	4.3.2.5	France	
	4.3.2.6	Germany	
	4.3.2.7	Ireland	
	4.3.2.8	Latvia	
	4.3.2.9	Lithuania	
	4.3.2.10	The Netherlands	86
	4.3.2.11	Poland	86
	4.3.2.12	Portugal	
	4.3.2.13	Spain	
	4.3.2.14	Sweden	
	4.3.2.15	United Kingdom	
4.3	3.3 Data	availability Table C spatial fishing effort 2003-2012	
	4.3.3.1	Belgium	
	4.3.3.2	Denmark	91
	4.3.3.3	Estonia	_
	4.3.3.4	Finland	_
	4.3.3.5	France	
	4.3.3.6	Germany	
	4.3.3.7	Ireland	
	4.3.3.8	Latvia	
	4.3.3.9	Lithuania	
	4.3.3.10	The Netherlands	
	4.3.3.11	Poland	
	4.3.3.12	Portugal	
	4.3.3.13	Spain	
	4.3.3.14	Sweden	
	4.3.3.15	United Kingdom	
4.3	3.4 Data	availability Table D fishing Capacity in the Baltic Sea 2003-2012	
	4.3.4.1	Denmark	
	4.3.4.2	Estonia	
	4.3.4.3	Finland	
	4.3.4.4	Germany	
	4.3.4.5	Latvia	
	4.3.4.6	Lithuania	
	4.3.4.7	Poland	_
	4.3.4.8	Sweden	
4.3	3.5 Data	availability Table E spatial landings 2003-2012	
	4.3.5.1	Belgium	
	4.3.5.2	Denmark	
	4.3.5.3	Estonia	
	4.3.5.4	Finland	
	4.3.5.5	France	
	4.3.5.6	Germany	
	4.3.5.7	Ireland	_
	4.3.5.8	Latvia	
	4.3.5.9	Lithuania	
	4.3.5.10	The Netherlands	
	4.3.5.11	Poland	
	4.3.5.12	Portugal	
	4.3.5.13	Spain	
	4.3.5.14	Sweden	
	4.3.5.15	United Kingdom	
		ries specific landing and effort data 2003-2012 of small boats (< 8m or <10m)	
4.4		OF FISHERIES SPECIFIC INTERNATIONAL LANDINGS AND DISCARDS	
4.5	COVERAGE I	NDEX OF DISCARD ESTIMATES DQI	107
4.6	TREATMENT	OF CPUE DATA	108
4.7		GEARS ON THE BASIS OF CONTRIBUTION TO CATCHES	
4.8		F EFFORT AND LANDINGS BY 'UNREGULATED' GEARS	
4.9		ON OF SPATIAL INFORMATION ON EFFECTIVE EFFORT AND LANDINGS	
4.10		E OF EWG 13-13 REGARDING THE ESTIMATION OF SPATIO-TEMPORAL PATTERNS IN CATCHABILITY	
_			
4.11	AMENDN	IENTS OF THE 2013 DCF DATA CALLS TO SUPPORT FISHING EFFORT REGIME EVALUATIONS	110
	/A A T O N	C DV FIGURIO FEFORT MANACEMENT DECIME	117

5.1	BALTIC SEA EFFORT REGIME EVALUATION IN THE CONTEXT OF THE MANAGEMENT PLAN FOR BALTIC COD (COUNCIL	
REGUI	LATION (EC) No 1098/2007)	
5	1.1 ToR 1.a Fishing effort in kWdays and GTdays by area, Member State and fisheries	. 112
5.	1.2 ToR 1.b Fishing activity and capacity by area, fisheries and Member State	. 122
5.	1.3 ToR 1.b Catches (landings and discards) of cod in weight and numbers at age by fisheries	. 123
5.	1.4 Tor 1.d Catches (landings and discards) of non-cod species in weight and numbers at age by	
ar	ea, Member State and fisheries	. 136
5	1.5 ToR 1.e CPUE and LPUE of cod by area, fisheries and Member State	. 139
5.	1.6 ToR 2 Information on small boats (<8m by area)	
	5.1.6.1 Fishing effort of small boats by area, Member State and fisheries	
	5.1.6.2 Catches (landings and discards) of small boats by area, Member State and fisheries	
5	1.7 ToR 3 Fishing effort (days at sea) uptake analysis, by Member State, gear type and fishing a	
	153	
5	1.8 ToR 4 Evaluation of fully documented fisheries FDF	. 158
	5.1.8.1 Fishing effort of FDF vessels by area, Member State and fisheries in comparison with fisheries r	
	working under FDF provisions	
	5.1.8.2 Catches (landings and discards) of cod and other species taken by FDF fisheries by area, Members	er
	State and fisheries in comparison with fisheries not working under FDF provisions	
	5.1.8.3 Comparative analysis of cod selectivity by FDF fisheries and non-FDF fisheries	
	5.1.8.3.1 ToR 4 Cod selectivity by FDF fisheries and non-FDF fisheries of the Western Baltic cod	
	5.1.8.3.2 ToR 4 Cod selectivity by FDF fisheries and non-FDF fisheries of the Eastern Baltic cod	
	1.9 ToR 5 Spatio-temporal patterns in effective effort by area and fisheries	
5.	1.10 ToR 6 Remarks on quality of catches and discard estimates	
_	1.11 ToR 7 Estimation of partial fishing mortalities of cod by area, Member State and fisheries	
со	rrelation between partial cod mortality and fishing effort by area, Member State and fisheries	
	5.1.11.1 Western Baltic cod in area A	
5.	1.12 ToR 8 Spatio-temoral pattern in standardized catchability indices for cod	
	5.1.12.1 Introduction	
	5.1.12.2 Data	
	5.1.12.3 Spatial pattern of cod catchability	
5.2	KATTEGAT EFFORT REGIME EVALUATION IN THE CONTEXT OF ANNEX IIA TO COUNCIL REGULATION (EC) NO 57/2011	.)179
	2.1 ToR 1.a Fishing effort in kWdays, GTdays, kW and number of vessels by Member State and	
fis	heries 179	
	5.2.1.1 Uptake of effort baseline	
_	2.2 ToR 1.b and c Catches (landings and discards) of cod and non-cod species in weight and nun	
at	age by fisheries	
5	2.3 ToR 1.d CPUE and LPUE of cod by fisheries and Member States	. 193
5	2.4 ToR 2 Rank regulated gear groups on the basis of catches expressed both in weight and in	
nu	ımber of cod	. 197
	2.5 ToR 3 Information on small boats (<10m)	. 198
	5.2.5.1 Fishing effort of small boats by Member State	
	5.2.5.2 Catches (landings and discards) of cod and associated species by small boats by Member State	200
5	2.6 ToR 4 Evaluation of fully documented fisheries FDF	. 201
5	2.7 ToR 5 Spatio-temporal patterns in effective effort by fisheries	. 201
5	2.8 ToR 6 Remarks on quality of catches and discard estimates	
5.,	2.9 ToR 7 Estimation of conversion factors to be applied for effort transfers between regulated	
ar	oups 204	•
_	2.10 ToR 8 Correlation between partial cod mortality and fishing effort by Member State and	
	heries 205	
-	2.11 ToR 9 Trends in fishing mortality and fishing effort by Member State and fisheries with	
	gards to the cod plan (R (EC) No 1342/2008) provisions, in particular with regard to Article 13	205
	SKAGERRAK, NORTH SEA AND II EU EASTERN CHANNEL EFFORT REGIME EVALUATION IN THE CONTEXT OF ANNEX IIA	
5.3		
	CIL REGULATION (EC) NO 57/2011)	206
	3.1 ToR 1.a Fishing effort in kWdays, GTdays, kW and number of vessels by Member State and	
fis	heries 206	225
	5.3.1.1 Fishing effort of regulated gears, management area 3b	
	5.3.1.2 Fishing effort of unregulated gears, management area 3b	
_	5.3.1.3 Uptake of effort baseline	
J.,	3.2 $$ ToR 1.b Catches (landings and discards) of cod in weight and numbers at age by fisheries $$. 220

	5.3.3	ToR 1.c-d Catches (landings and discards) of non-cod species in weight and numbers at age by	,
	fisheries		- 40
	5.3.4	Tor 1.e CPUE and LPUE of cod, plaice, and sole by fisheries and by Member States	248
	5.3.5	ToR 2 Rank regulated gear groups on the basis of catches expressed both in weight and in	
		of cod, sole and plaice	
	5.3.6	ToR 3 Information on small boats (<10m)	
	5.3.6. 5.3.6.	• • • • • • • • • • • • • • • • • • • •	
	5.3.7 5.3.7.	ToR 4 Evaluation of fully documented fisheries FDF	
		rovisions	
	5.3.7.		
		sheries in comparison with fisheries not working under FDF provisions	
	5.3.7.		
	5.3.8	ToR 5 Spatio-temporal patterns in effective effort by fisheries	
	ToR 6 Re	emarks on quality of catches and discard estimates	281
	5.3.9	ToR 7 Estimation of conversion factors to be applied for effort transfers between regulated ge	
	groups		
	5.3.10	ToR 8 Estimation of partial fishing mortalities of cod, haddock, saithe, whiting, plaice and s	ole
	bv area,	Member State and fisheries and correlation between partial cod mortality and fishing effort b	
		ember State and fisheries	•
	5.3.11	ToR 9 Trends in fishing mortality and fishing effort by Member State and fisheries with	
	reaards	to the cod plan (R (EC) No 1342/2008) provisions, in particular with regard to Article 13	314
	5.3.12	ToR 10 Considerations in order to accomplish spatio-temporal patterns in standardized	
	catchab	ility indices for cod	319
	5.3.12	•	
	5.3.12	2.2 Data	319
	5.3.12	2.3 Results	322
5.4	l West	OF SCOTLAND EFFORT REGIME EVALUATION IN THE CONTEXT OF ANNEX IIA TO COUNCIL REGULATION (EC) NO	
57	/2011)		324
	5.4.1	ToR 1.a Fishing effort in kWdays, GTdays, kW and number of vessels by Member State and	
	fisheries	324	
	5.4.2	ToR 1.b and c Catches (landings and discards) of cod and non-cod species in weight and numb	ers
	at age b	y fisheries	336
	5.4.3	ToR 1.d CPUE and LPUE of cod by fisheries and by Member States	354
	5.4.4	ToR 2 Rank regulated gear groups on the basis of catches expressed both in weight and in	
	number	of cod	357
	5.4.5	ToR 3 Information on small boats (<10m)	358
	5.4.5.	Fishing effort of small boats by Member State	358
	5.4.5.	Catches (landings and discards) of cod and associated species by small boats by Member State	359
	5.4.6	ToR 4 Spatio-temporal patterns in effective effort by fisheries	361
	5.4.7	ToR 5 Remarks on quality of catches and discard estimates	369
	5.4.8	ToR 6 Estimation of conversion factors to be applied for effort transfers between regulated ge	ar
	groups	369	
	5.4.9	ToR 7 Correlation between partial cod mortality and fishing effort by Member State and fisher	ries
		370	
	5.4.10	ToR 8 Comparative analyses between trends in fishing mortality and fishing effort by Mem	ber
	State an	d fisheries and the cod plan (R (EC) No 1342/2008) provisions, in particular with regard to Artic	cle
	13	375	
	5.4.11	ToR 9 Considerations in order to accomplish spatio-temoral pattern in standardized	
	catchab	ility indices for cod	379
5.5		SEA EFFORT REGIME EVALUATION IN THE CONTEXT OF ANNEX IIA TO COUNCIL REGULATION (EC) NO 57/2011)	
	5.5.1	ToR 1.a Fishing effort in kWdays, GTdays, kW and number of vessels by Member State and	-
	fisheries		
	5.5.2	ToR 1.b and c Catches (landings and discards) of cod and non-cod species in weight and numb	ers
		y fisheries	
	5.5.3	ToR 1.d CPUE and LPUE of cod by fisheries and by Member States4	
	5.5.4	ToR 2 Rank regulated gear groups on the basis of catches expressed both in weight and in	
		of cod	401
		•	_

5.5.5	ToR 3 Information on small boats (<10m)	402
5.5.5.		
5.5.5	.2 Catches (landings and discards) of cod and associated species by small boats by Member Sta	ate 403
5.5.6	ToR 4 Spatio-temporal patterns in effective effort by fisheries	406
5.5.7	ToR 5 Remarks on quality of catches and discard estimates	411
5.5.8	ToR 6 Estimation of conversion factors to be applied for effort transfers between regulati	ed gear
groups	411	_
5.5.9	ToR 7 Estimation of partial fishing mortalities of cod by area, Member State and fisheries	and
	ion between partial cod mortality and fishing effort by area, Member State and fisheries .	
5.5.10	ToR 8 Comparative analyses between trends in fishing mortality and fishing effort by	
	nd fisheries and the cod plan (R (EC) No 1342/2008) provisions, in particular with regard to	
13	415	Aiticie
	C SEA EFFORT REGIME EVALUATION FOR FISHERIES WHICH WOULD BE AFFECTED BY THE EXTENSION OF THE CO	ND
	NT PLAN	_
5.6.1	ToR 1.a Fishing effort in kWdays, GTdays and number of vessels by area, Member state of	ina
fisheries		
5.6.1.		
5.6.2	ToR 1.b Catches (landings and discards) of cod in weight and numbers at age by area, Mo	
	nd fisheries	
5.6.2.		
5.6.2	J. ,	
5.6.3	ToR 1.c Catches (landings and discards) of non-cod species in weight and numbers at age	
-	lember State and fisheries	
5.6.3.		
5.6.3		
5.6.4	ToR 1.d CPUE and LPUE of cod by area, fisheries and Member States	
5.6.4	7	
5.6.4.		
5.6.5	ToR 2 Main species by gear group and remarks on quality of catches and discard estimat	
5.6.5		
5.6.5.		
5.6.6	ToR 3 Information on small boats (<10m by area)	
5.6.6. 5.6.6.	, ,	
5.6.7	ToR 4 Data quality and any unexpected evolutions of the trends in catches and effort by a	
	r State and fisheries	
5.6.8	•	
	ToR 5 Correlation between partial cod mortality and fisheries	
5.6.9	Spatio-temporal patterns in effective effort by fisheries	
	HERN HAKE AND <i>NEPHROPS</i> EFFORT REGIME EVALUATION IN THE CONTEXT OF ANNEX IIB TO COUNCIL REGULATION IN THE C	
	/2012	
5.7.1	ToR 1.a Fishing effort in kWdays, GTdays and number of vessels by Member state and fis	heries
	500	
5.7.1.	, , , , , ,	
5.7.2	ToR 1.b Catches (landings and discards) of hake and Norway lobster in weight and numb	
age by I	Member State and fisheries	510
5.7.3	ToR 1.c Catches (landings and discards) of species other than hake and Norway lobster, i	n
particul	ar anglerfish, in weight and numbers at age by Member State and fisheries	517
5.7.4	ToR 1.d CPUE and LPUE of hake, Norway lobster and anglerfish by fisheries	
5.7.5	Information on small boats (<10m by area)	
5.7.6	ToR 2 Remarks on quality of catches and discard estimates	
5.7.7	ToR 3 Trend in calculated maximum effort of regulated gears and uptake by Member Sta	
5.7.8	ToR 4 Correlation between partial hake mortality and fishing effort by Member State and	
fisheries		•
5.7.9		hahili+
	ToR 5 Considerations in order to accomplish spatio-temoral patterns in standardized cate	
	for hake, Nephrops and anglerfish	
	TERN CHANNEL EFFORT REGIME EVALUATION IN THE CONTEXT OF ANNEX IIC TO COUNCIL REGULATION (EC)	
57/2011)		
	Table of Fishing affect in UNA laws CT-laws and according affect and by Namelan Ctate and fi	chariac
5.8.1	ToR 1.a Fishing effort in kWdays, GTdays, and number of vessels by Member State and fi	siieries

5.8.2	ok 1.b Catches (landings and discards) of sole in weight and numbers at age by Jisheries	. 545
5.8.3	oR 1.c Catches (landings and discards) of non-sole species in weight and numbers at age by	,
fisheries		
5.8.4	ToR 1.d CPUE and LPUE of sole, plaice and cod by fisheries and Member States	
5.8.5	OR 2 Information on small boats (<10m)	
5.8.5	Fishing effort of small boats by Member State	
5.8.5	Catches (landings and discards) of sole and associated species by small boats by Member State.	
5.8.6	OR 3 Evaluation of fully documented fisheries FDFFishing effort of FDF by Member State and fisheries in comparison with fisheries not working ur	
5.8.6 FDF p	visions	
5.8.6	Catches (landings and discards) of sole and other species taken by FDF fisheries by Member Star	
and f	neries in comparison with fisheries not working under FDF provisions	
5.8.6	Comparative analysis of sole selectivity by FDF fisheries and non-FDF fisheries	560
5.8.7	oR 4 Spatio-temporal patterns in effective effort by fisheries	. 561
5.8.8	or 5 Trend in calculated maximum effort of regulated gears and uptake by Member State	. 575
5.8.9	oR 6 Data quality and any unexpected evolutions of the trends in catches and effort by Mer	nber
State ar	fisheries	
5.8.10	ToR 7 Correlation between partial sole mortality and fishing effort by Member State and	
fisheries	577	
5.8.11	New ToR to facilitate STECF's management plan evaluation	583
5.8.1		
	mortality between fleet segments (including non-regulated)	
5.8.1		
	583	,
5.8.1	Recent changes in management	588
5.9 DEEP	A AND WESTERN WATERS EFFORT REGIME EVALUATIONS	.589
5.9.1	oR 1a Fishing effort by area	. 592
5.9.1	Fishing effort in ICES area I by fisheries and Member States only linked to Deep Sea species	597
5.9.1	Fishing effort in ICES area II by fisheries and Member States only linked to Deep Sea species	598
5.9.1	Fishing effort in ICES area III by fisheries and Member States only linked to Deep Sea species	
5.9.1	Fishing effort in ICES area IV by fisheries and Member States only linked to Deep Sea species	
5.9.1	Fishing effort in ICES area V	
5.9.1	Fishing effort in ICES area VI	
5.9.1	Fishing effort in ICES area VII excluding VIId	
5.9.1	Fishing effort in ICES area VIId	
5.9.1 5.9.1	Fishing effort in the Biologically Sensitive Area	
5.9.1		
5.9.1	•	
5.9.1	· · · · · · · · · · · · · · · · · · ·	
5.9.1		
5.9.1	•	
5.9.1		
5.9.1	Fishing effort in CECAF area 34.1.3	677
5.9.1	Fishing effort in CECAF area 34.2	678
5.9.2	FoR 1b Catches (landings and discards) by area	. 683
5.9.2	Catches in ICES area I by fisheries and Member States only linked to Deep Sea species	683
5.9.2	Catches in ICES area II by fisheries and Member States only linked to Deep Sea species	684
5.9.2	Catches in ICES area III by fisheries and Member States only linked to Deep Sea species	
5.9.2	Catches in ICES area IV by fisheries and Member States only linked to Deep Sea species	
5.9.2	Catches in ICES area V by fisheries and Member States	
5.9.2	Catches in ICES area VI by fisheries and Member States	
5.9.2	Catches in ICES area VII excluding VIId by fisheries and Member States	
5.9.2	Catches in ICES area VIId by fisheries and Member States	
5.9.2	Catches in ICES area VIII by ficheries and Member States	
5.9.2	·	
5.9.2 5.9.2	•	
5.9.2		
5.9.2	, , , , , , , , , , , , , , , , , , , ,	
5.9.2	, , , , , , , , , , , , , , , , , , , ,	
5.9.2		
	•	

5.9.2.17	Catches in CECAF area 34.1.3 by fisheries and Member States	752
5.9.2.18	Catches in CECAF area 34.2 by fisheries and Member States	753
5.9.3 T	oR 1c CPUE and LPUE (landings and discards) by area	758
5.9.3.1	CPUE in ICES area I by fisheries and Member States only linked to Deep Sea species	759
5.9.3.2	CPUE in ICES area II by fisheries and Member States only linked to Deep Sea species	
5.9.3.3	CPUE in ICES area III by fisheries and Member States only linked to Deep Sea species	760
5.9.3.4	CPUE in ICES area IV by fisheries and Member States only linked to Deep Sea species	760
5.9.3.5	CPUE in ICES area V by fisheries and Member States	760
5.9.3.6	CPUE in ICES area VI by fisheries and Member States	762
5.9.3.7	CPUE in ICES area VII excluding VIId by fisheries and Member States	764
5.9.3.8	CPUE in ICES area VIId by fisheries and Member States	767
5.9.3.9	CPUE in the Biologically Sensitive Area by fisheries and Member States	
5.9.3.10	CPUE in ICES area VIII by fisheries and Member States	770
5.9.3.11	,	
5.9.3.12	,	
5.9.3.13	, , , , , , , , , , , , , , , , , , , ,	
5.9.3.14		
5.9.3.15	,	
5.9.3.16	,	
5.9.3.17		
5.9.3.18	•	
5.9.4 T	oR 2 Potential requirement, provision, process, and evaluation of VMS data to Deep Sea	
fisheries m	nanagement	781
5.9.5 T	oR 3 Recent effort trends in pelagic fisheries, with emphasis on ICES areas XI, X and CECA	Α <i>F</i>
	81	
5.9.6 T	oR 5 Comments on data quality and unexpected effects in Deep Sea and Western Water	s
	ata	
•	DF BISCAY EFFORT REGIME EVALUATION IN THE CONTEXT OF COUNCIL REGULATION (EC) NO 388/2006)	
5.10.1	ToR 1.a Fishing effort in kWdays, GTdays and number of vessels by Member State and	
fisheries	782	700
5.10.2	ToR 1.b Fishing capacity in GT of relevant vessels by Member State and fisheries	
5.10.3	ToR 1.c Catches (landings and discards) of common sole in weight and numbers at age	ру
fisheries	796	
5.10.4	ToR 1.c Catches (landings and discards) of non-sole species in weight and numbers at	age by
fisheries	800	
5.10.5	ToR 2 Information on small boats (<10m)	819
5.10.5.1	• ,	
5.10.5.2		
State	827	-
5.10.6	ToR 3 Spatio-temporal patterns in effective effort by fisheries	832
5.10.7	ToR 4 Comments on data quality and any unexpected evolutions of the trends in catch	
	Nember State and fisheries	
5.10.8	ToR 5 Correlation between partial sole mortality and fishing effort by Member State a	
fisheries	844	IU
Jistieties	844	
REFERENC	ES	849
		
EWG 13-0	6 PART 1 AND EWG 13-13 PART 2 : LIST OF PARTICIPANTS	851
LICT OF S	ACKCROLIND DOCUMENTS	050
11N1 ()F RA	ACKGROUND DOCUMENTS	X53

SCIENTIFIC, TECHNICAL AND ECONOMIC COMMITTEE FOR FISHERIES (STECF)

EVALUATION OF FISHING EFFORT REGIMES IN EUROPEAN WATERS PART 2 (STECF- 13-21)

THIS REPORT WAS REVIEWED DURING THE PLENARY MEETING HELD IN BRUSSELS, BELGIUM, 4-8 November 2013

Request to the STECF

STECF is requested to review the report of the **EWG-13-13** held during October 7–11, 2013 in Barza d'Ispra, Italy, evaluate the findings and make any appropriate comments and recommendations.

Introduction

The report of the Expert Working Group on Evaluation of fishing effort regimes in European Waters Part 2 (EWG -13-13) was reviewed by the STECF during its 44th plenary meeting held from 4-8 November 2013, Brussels, Belgium.

The following observations, conclusions and recommendations represent the outcomes of the STECF review.

STECF COMMENTS, OBSERVATIONS, AND CONCLUSIONS

STECF notes that the ToR regarding the requested fishing effort regime evaluations for the following sea areas have been fully addressed:

- 1. Eastern and Western Baltic,
- 2. the Kattegat,
- 3. the Skagerrak, North Sea, European waters in ICES Div.2 and the Eastern Channel,
- 4. to the West of Scotland.
- 5. Irish Sea,
- 6. Celtic Sea,
- 7. Atlantic waters off the Iberian Peninsula.
- 8. Western Channel,
- 9. Western Waters and Deep Sea
- 10. and the Bay of Biscay.

STECF notes that the Report and its Appendices provide updated estimates of trends in fishing effort, landings and discards by species, CPUE and LPUE by fisheries and species, and partial fishing mortalities for effort regulated and non-regulated fisheries by Member States. STECF endorses the findings and observations expressed in the report.

2013 DCF Fishing Effort Data Call

The report of EWG 13-13 is based on data submitted by Member States in response to the DCF fishing effort data call in 2013. STECF notes a general improvement in Member States' submissions with regard to data completeness and quality as well as improved compliance with deadlines. However, the work of the EWG 13-13 once again was compromised by delays in some Member States' submissions, incomplete and erroneous data submissions and re-submissions. Section 4 of the Report contains detailed information regarding compliance with data submission deadlines and various aspects regarding the data quality.

STECF notes that its 2012 recommendations to amend the 2013 DCF data call to support fishing effort regime evaluation were implemented and that these changes have supported and will continue to support the accomplishment of specific ToR. STECF notes that the DCF data call in 2013 imposed an additional workload on Member States because of the need to reaggregate and resubmit data for earlier years than 2012 in addition to the data requested for 2012. The outcome of the call was that Denmark, Portugal and UK (without Scotland) have revised their complete time series of fisheries-specific catch and effort data. Catch (landings and discards) and effort data from Spain were provided for 2012 and discard data were provided for earlier years thereby enabling an improved evaluation of the effort regime for Southern hake and *Nephrops*.

STECF proposes an Index of Discard Coverage (DQI) to facilitate the use of the discard estimates provided in the STECF data bases on fisheries-specific catch and fishing effort. The DQI is expressed by stock, fishery and Member State as the proportion of national landings covered by discard estimates in relation to the total national landings;

 $DQI = \Sigma Ld / \Sigma L$

where L denotes landings (t) and Ld landings with a discard estimate.

While the DQI is a useful indicator of the proportion of landings by fishery by Member State and stock that are sampled for discards, it does not reflect the level of discarding each fishery carries out. Furthermore, the DQI does not distinguish between a fishery with a high discard rate and a fishery with a low discard rate, or the level of sampling allocated to each fishery. It's an exploratory tool that allows the identification of the proportion of overall landings by fishery that was sampled.

In order to aid interpretation of the DQI, the DQI is further classified in three separate groups as follows:

- A = 67 % or more of the landings have an accompanying discard estimate,
- B = 34-66 % of the landings have an accompanying discard estimate, and
- C = less the 33 % of the landings have an accompanying discard estimate.

STECF considers category A estimates to be sufficiently reliable to be used for assessment purposes, as the majority of the landings by species and fishery are accompanied with a discard estimate. However it should be noted once again that this DQI cannot inform on the quality of the discard rate estimates supplied by nations (as affected for example by the proportion of fishing trips sampled for discards).

Category B discard estimates are considered to be less reliable than category A and require careful scrutiny before they are used for assessment purposes.

Category C discard estimates are the least reliable and STECF considers that they should not be used for assessment purposes.

STECF notes that all fisheries-specific parameters for the various fishing effort regimes can be downloaded at the corresponding aggregation level as digital Appendixes to the present report from the EWG 13-13 web page: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313

Major findings regarding the regional fishing effort regime evaluations are summarized in the following regional sections.

Effort regime evaluation for the Baltic

Since 2010, deployed effort of regulated gears remained rather constant in both cod plan areas A (subdivisions 22-24) and B (subdivisions 25-28) with a slight increase in regulated otter trawls.

The effort-regulated otter trawls are the major cod gears, contributing 55 and 74% to the cod catch in areas A and B in 2012, respectively. The second important contributor to catches among the ranked cod gears are gill nets. Cod discards are generally low but slightly higher for area B, showing an increasing trend in most recent years for regulated otter trawls.

With a lack of information from Estonia, small boats <8m LOA were found to constitute 7 and 12% to the overall effort deployed in the Baltic in 2011 and 2012, respectively. Small boats are primarily operating in the northern cod plan area C (subdivisions 29-32).

STECF undertook a provisional quantitative analysis regarding the estimation of effort deployed in units of days at sea by Member State, and compared the national uptake with the calculated maximum effort available. STECF notes that its approach to estimate the maximum days at sea available per year and Member State from the product of reported number of active vessels using one of the regulated gears times the days at sea per vessel can only serve as an approximation of the effort ceiling.

The provisional uptake analysis revealed that the average annual uptake of available days at sea over the time period 2008-2012 remained in the range of 36-38% in area A, 34-47% in the area B and 53-83% for the areas A and B combined.

According to the information submitted by member States, only Denmark has operated under the fully documented fisheries (FDF) scheme in the Baltic in 2012. The reported Danish catch of cod caught in FDF with regulated gears amounted to 333 t in area A and 406 t in area B, representing 3% of the overall catch. A preliminary analyses of cod selectivity revealed that non-FDF fisheries were catching younger fish. However, the effects of different age reading methods applied in different national institutes remain unclear. Such preliminary results require further investigation.

Close correlations between fishing mortality and fishing effort measured in kW days at sea as well as between partial fishing mortalities and the specific fishing effort by fisheries were found. While good correlation does not always mean 'cause and effect', the results here suggest that management of fishing mortality by fishing effort in units of kWdays may provide a useful auxiliary measure to catch constraints and technical measures.

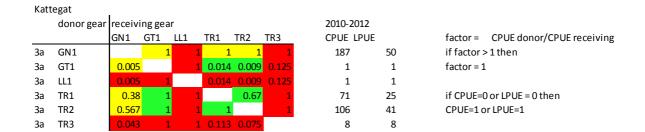
A provisional analysis on spatio-temporal patterns in cod catchability based on catch rates from commercial fisheries and surveys reveals a more homogenous distribution pattern as compared to the patterns in cod abundance indices, catches and fishing effort which are highest in the central Baltic Sea.

Effort regime evaluation for the Kattegat

Fisheries in the Kattegat are almost exclusively conducted by Denmark and Sweden (88% and 11% of the total regulated effort in 2012, respectively) using predominantly trawls and

primarily the gear class TR2. The TR2 gear constitutes 90% of the total regulated effort. Beam trawls are forbidden.

There are three effort derogations in place in Kattegat for TR2, CPart13B, CPart13C and CPart11. All the Danish TR2 effort is under the derogation CPart13C from 2010 onwards while the German TR2 effort is partly under the derogation CPart13B between 2010 and 2011. STECF notes that the uptake of the regulated gear TR2 exceeds the maximum effort levels defined in the annual TAC and quota regulations since 2010 as Member States applied additional effort allocations under article 13 of the cod plan.


Only Sweden reported under the derogation article 11 in gear category TR2, achieving the <1.5% cod catch by using a sorting grid. This represented 68% of the Swedish TR2 effort in Kattegat 2012. The effort deployed by passive gears (GN1, GT and LL1) is relatively small, with a stable share of around 3% of the total regulated effort in 2012. The effort deployed by unregulated gear categories (including effort under the derogation CPart11) was 30% of the total effort in 2012.

In 2012, the nominal effort (kW days at sea) deployed by small vessels (LOA<10m) constituted 12% of the total effort in the area.

According the ranked regulated gear groups' contributions to cod catch and landings in 2012, only the TR2 is estimated to exceed the level of the cumulative 20% and thus considered subject to annual effort adjustments (Coun. Reg. 1342/2008, art. 12(4)).

STECF notes that information on Fully Documented Fisheries FDF was only provided by Sweden and only for 2010. FDF fishing effort and catches appear negligible and are not evaluated further.

The estimated cod CPUE and respective effort transfer factors between donor and receiving regulated gear groups based on averages 2010-2012 are given below. Red cells are indicated to be imprecise due to lack of adequate discard information. Yellow cells indicate sufficient sampling and green cells good sampling information. The conversion factors are estimated based on CPUE (g/kWday) while LPUE (g/kWday) values are also provided.

STECF notes that that ICES did not provide an analytical assessment of cod in the Kattegat in 2013. STECF is therefore unable to provide analyses dealing with the partial fishing mortalities by fisheries (metiers), the respective correlations between partial fishing mortality and fishing effort and the review of reductions in fishing mortality of the effort regulated gear groups in relation to the cod plan provisions.

Effort regime evaluation for the Skagerrak, North Sea including 2EU and Eastern Channel

STECF notes that in this area, a substantial part of the effort is deployed by Non-European fleets (primarily Norway); this component is not accounted for in this report, except for the part dealing with partial fishing mortalities by fisheries. Norwegian fishing effort is reported to ICES (ICES, 2013). Catch and effort data including the special conditions of the cod management plan in force since 2009 (CPart11 and CPart13) have been provided by all Member States with significant fishing activity in this area. Additionally, distinction is now provided across the various CPart13 specifications (A, B, or C).

The North Sea (area 3b2) is the main fishing area (78% of the total 2012 regulated effort in area 3b), followed by the Eastern Channel (15%, 3b3), while the Skagerrak represents a smaller component (7%, 3b1). In all three sub areas, regulated effort has decreased since 2003. In area 3b2 (North Sea and 2EU), regulated effort is equally shared between beam trawls and demersal trawls/seines (47% and 47% of total 2012 regulated effort respectively). Small mesh beam trawling (80-119 mm, BT2) and demersal trawls/seines with larger mesh sizes (>=100mm, TR1) are the predominant fisheries. In the Eastern Channel, demersal trawls/seines are also the main gears (65% of the 2012 regulated effort in the area, mainly smaller mesh size 70-99mm TR2), but with beam trawls and passive gears representing important fisheries (19% and 16% of the 2012 regulated effort respectively). The main gears in management area 3b1 (Skagerrak) are demersal trawls/seines (90% of the 2012 regulated effort) with a predominance of TR2.

The estimated overall reduction in effort (kW days at sea) in 2012 of regulated gears in the entire area 3b amounts to 41% compared to the average 2005-2007 and to 10% compared to 2011.

Since 2003 the effort of small boats (LOA<10m) gradually increased from 3% to 9% of the overall effort deployed in the entire area 3b (Skagerrak, North Sea and 2EU, Eastern Channel) in 2012.

TR1 and TR2 gears were identified as the major cod catching gears and exceeded the 20% cumulative cod catch in 2012 and are thus considered subject to annual effort adjustments (Coun. Reg. 1342/2008, art. 12(4)).

In 2012 fully documented fisheries again represented only a small but increasing proportion of the total effort (5.6%). The importance of the main cod gear (TR1) has increased further and is estimated at 28.9% of the TR1 effort deployed in 2012. In total, 36% of cod catches by EU vessels were taken during FDF trials.

A preliminary analysis of selectivity for cod by FDF and non-FDF fisheries indicated that cod catch compositions at age from Danish and Scottish FDF fisheries were rather similar to the catch compositions at age from all fisheries by these countries. STECF notes that only these two countries conducted separate sampling and applied separate data aggregation and raising procedures. Any further investigations would require two individual data sets, one which comprises an exclusive set of non-FDF fisheries, and second one which represents an exclusive set on FDF fisheries.

The estimated cod CPUE (average 2010-2012, g/kWday) and respective effort transfer factors between donor and receiving regulated gear groups for the cod management area comprising the Skagerrak, North Sea, EU part of IIa, and Eastern Channel are given below. Red cells indicate imprecise values due to lack of adequate discard information. Yellow cells indicate sufficient sampling and green cells good sampling information. STECF notes that the report also provides the conversion factors for each of the three sub-areas mentioned above.

Skag	Skagerrak, North Sea and 2 EU, Eastern Channel												
	donor gear	receivi	ng gea	r				2010-2	012				
		BT1	BT2	GN1	GT1	LL1	TR1	TR2	TR3	CPUE	LPUE	factor = CPUE donor/CPUE receiving	
3b	BT1		1	0.228	1	0.437	0.217	0.962	1	227	227	7 if factor > 1 then	
3b	BT2	0.203		0.046	0.24	0.088	0.044	0.195	1	. 46	41	1 factor = 1	
3b	GN1	1	1		1	. 1	0.949	1	1	995	970)	
3b	GT1	0.846	1	0.193	i e	0.369	0.183	0.814	1	192	140	if CPUE=0 or LPUE = 0 then	
3b	LL1	1	1	0.523	1		0.496	1	_ 1	520	520	CPUE=1 or LPUE=1	
3b	TR1	1	1	1	. 1	. 1		1	1	1048	902	2	
3b	TR2	1	1	0.237	' 1	0.454	0.225		1	236	125	5	
3b	TR3	0.044	0.217	0.01	0.052	0.019	0.01	0.042		10	10)	

The Report presents partial fishing mortalities by regulated fisheries and Member States in relation to the estimated fishing mortality by ICES (2013) and the landings and discards volumes in relation to the estimated total catch for the year available. STECF notes that the correlations between the partial Fs for cod and effort are significant for some important regulated metiers catching cod but insignificant for others. In all three sub-areas 3b1, 3b2 and 3b3, the correlations between the summed partial Fs of cod for regulated gears and respective sums of fishing effort in units of kW days at sea are statistically significant. While good correlation does not always mean 'cause and effect', the results here suggest that management of fishing mortality by fishing effort in units of kWdays may provide a useful auxiliary measure to catch constraints and technical measures.

Cod mortality due to discarding has generally been high, but has declined since 2008.

STECF notes that partial F of cod for all Member States has reduced since 2008, though such reductions have not always been consistent (i.e. linearly proportional) with changes in effort by regulated gears. However, STECF notes that the estimated trends in partial fishing mortality are dependent on the changed perception of the exploitation status in 2011 and 2012 derived from the 2013 ICES assessment of the North Sea cod stock. For the UK fleet, partial F appears to have reduced in line with the overall F reductions required under the plan, though effort has not. This suggests that there has been some decoupling of cod from fishing effort, consistent with cod avoidance or discard reduction.

STECF notes that Article 13.2a has not been adopted by any Member State, and so there was no detailed discussion of this provision in this section. Article 13.2b is for 'effort groups in which the fishing activity of one or more vessels results in a catch composition of less than 5% cod per fishing trip'. STECF has already stated that a catch composition special condition was not necessarily consistent with reductions in cod mortality as it does not control the overall amount of cod caught. However, STECF concludes that the proportion of the overall fishing mortality on cod accounted for by all fisheries operating under Article 13.2b remains low and did not exceed 5% during 2009-2012.

STECF notes that Article 13.2c has only been adopted by the UK in areas 3b1, 3b2 or 3b3 and is applied to the entire fleet using regulated gears unless they are subject to Article 13.2b or exempted under Article 11. STECF notes that the respective UK (ENG, SCO, NIR) gear types TR1 have reduced their fishing effort in kWdays at sea by 20 % since 2009, which corresponds with an estimated reduction in fishing mortality of cod by 36% over the same period. During 2009-2012, the fishing effort of TR2 gears operating under Article 13.2.c declined by 11%, with a reduction in fishing mortality by 31% over the same period. The respective fisheries by Northern Ireland are negligible and were not operative in 2012.

A provisional analysis on spatio-temporal patterns in cod catchability (the probability for an individual cod to be captured) based on catch rates from commercial fisheries and surveys reveals that the probability of any individual cod in the population to be caught is not evenly distributed over the North Sea with the lowest probability where cod abundance is highest, i.e. around the Shetlands in the northern North Sea, the Skagerrak and the Eastern Channel.

Effort regime evaluation for the West of Scotland

The fishery West of Scotland is primarily an otter trawl fishery; beam trawls and static gears are hardly used. Effort within regulated gears is 56% less in 2012 compared to 2003. Regulated effort by trawl and seine gears (TR gears under Coun. Reg. (EC) 1342/2008) shows a long term decrease in effort and fell to its lowest level in the time series in 2011, but was stable between 2011 and 2012 for those nations reporting in both years. Overall effort of small boats (LOA<10m) is 10% higher in 2012 compared to 2003 although it has been relatively stable since 2006.

The most important category in terms of cod catch and landings is TR1 which over the period 2010-2012 on average, accounted for 94% and 99% of the total cod landings and catches by weight respectively from VIa. The second most important gear category is TR2, which can be seen to be a gear category with Nephrops as the dominant species in the landings. Based on the relative contribution TR1 is the only gear group where the percentage cumulative cod catch in 2012 exceeded 20% and thus considered subject to annual effort adjustments (Coun. Reg. 1342/2008, art. 12(4)).

The table of international conversion factors is based on average CPUE (2010-2012). Discard data are scarce for many regulated gear groups but have been interpreted as representative for TR1 and TR2. Red cells indicate imprecise values due to lack of adequate discard information, green cells good sampling information.

Wes	West of Scotland														
	donor gear	receiv	ing g	eai	r						2010-2012				
		BT1	BT2		GN1	LL1		TR1	TR2	_,	CPUE L	PUE		factor =	
3d	BT1			1	0.143	}	1	0.004	0.5		1	1		if factor > 1 then	
3d	BT2	:	l		0.143	3	1	0.004	0.5		1	1		factor = 1	
3d	GN1	1	l	1			1	0.028	1		7	7			
3d	LL1	:	l	1	0.143			0.004	0.5		1	1		if CPUE=0 or LPUE = 0 then	
3d	TR1	:	l	1	1		1		1		252	33		CPUE=1 or LPUE=1	
3d	TR2	:	1	1	0.286	;	1	0.008	3		2	2			

Overall the correlation between partial F of cod and estimated fishing effort of regulated gears is statistically significant but negative. STECF is unable to determine the reason why there are negative or insignificant relationship between F and effort for the greatest cod contributors to cod catches from VIa. Nevertheless from the information reported by Member States, the management measures in place in VIa have not been successful in achieving a reduction in fishing mortality.

STECF notes that for Member States other than the UK partial F has reduced since 2008, though such reductions have not always been consistent (i.e. linearly proportional) with changes in effort by regulated gears. In the UK, a reduction in effort is recorded (less than

that to bring effort to 0.32 of effort in 2008) but partial F is recorded as increased in 2011 and 2012 compared to 2008.

STECF notes that Article 13.2a of the cod plan has not been adopted by any Member State, and so there was no detailed discussion of this provision in this section. Article 13.2b is for 'effort groups in which the fishing activity of one or more vessels results in a catch composition of less than 5% cod per fishing trip'. West of Scotland article 13.2b fisheries are estimated to have accounted for 10% of regulated gear partial F in 2011 but less than 1% in 2012.

STECF notes that Article 13.2c has only been adopted by IRL and the UK in area 3d, and these fisheries contributed a minor part of the cod catch. STECF notes that vessels operating under article 13.2d contribute the majority of cod fishing mortality over all gear types. The partial F for this one category is between 0.7 and 0.8. This is true for landings and discards with discards making a much greater contribution to fishing mortality in recent years. Overall, STECF concludes that are no indications that the Scottish TR1 fishery working under any of articles 13.2.b, c or d have contributed to a reduction in fishing mortality of cod west of Scotland.

Effort regime evaluation for the Irish Sea

During 2003-2010, overall nominal effort (kW*days at sea) for boats LOA>=10m declined continuously by 43%. Since then, effort has remained stable. The trend in fishing effort of regulated gears appears similar with a decrease by 53% during 2003-2010 and remained stable from 2010 to 2012. Since 2007, the dominating regulated gear in terms of kW days has been the trawled TR2 (>75%) with an increasing trend (80% in 2012). Since 2009, the cod plan provisions of 13.2 a, b and c are applied when using effort-regulated gears.

During 2007-2012, small boats' effort (LOA<10m) varied without a clear trend and constituted among 11-15% of the overall effort deployed. Effort of small boats dropped during 2009 and 2010, increasing again thereafter.

STECF notes that discard information available within the Irish Sea is incomplete and thus impedes analyses of catch compositions and trends by fisheries. Based on the relative contributions to overall deployed effort, GN1, TR1 and TR2 are gear groups where the proportional cumulative cod landings in 2012 exceeded 20% and are thus subject to annual effort adjustments (Coun. Reg. 1342/2008, art. 12(4)).

The table of international effort conversion factors is based on average CPUE (2010-2012) is given below. LPUEs are used for GN1, GT1, and LL1 fisheries as time series of discard data

were not available. TR2 and BT2 are the only two gear categories where discard data were available over the three previous years. Red cells indicate imprecise values due to lack of adequate discard information. Yellow cells indicate sufficient sampling.

Irisł	Irish Sea													
	donor gear	receivi	eiving gear											
		BT2	GN1	GT1	LL1	TR1	TR2	CPUE	LPUE	factor =				
3c	BT2		0.03	0.079	1	0.17	1	90	58	if factor > 1 then				
3c	GN1	1		1	. 1	1	1	3033	3033	factor = 1				
3c	GT1	1	0.375		1	1	1	1136	1136					
3c	LL1	0.011	0	0.001		0.002	0.013	1	1	if CPUE=0 or LPUE = 0 then				
3c	TR1	1	0.174	0.465	1		1	528	523	CPUE=1 or LPUE=1				
3c	TR2	0.878	0.026	0.07	' 1	0.15		79	42					

STECF notes that the correlations between the summed partial Fs for landings of the regulated fisheries and their estimated fishing efforts are insignificant. STECF is unable to determine the reason why the relationship between partial Fs of most Member State fisheries using regulated gears are not significantly correlated with their specific effort estimates. STECF notes that the lack of discards prevents reliable conclusions regarding the effects of fishing effort management in relation to cod in the Irish Sea.

Effort regime evaluation for the Celtic Sea

The review of trends in fisheries-specific effort and catches in the Celtic Sea is presented at the level of aggregation for the fisheries defined in the multi-annual cod plan, to allow managers to evaluate the data with the view to the potential extension of the cod plan to include the Celtic Sea. The Celtic Sea is defined into two management areas, i.e. ICES Subdivisions 7bcefghjk and ICES Sub-divisions 7fg. In 2012 in terms of kWdays at sea deployed by effort regulated gear groups and vessels ≥10m, France contributed 40%, Ireland 20%, England and Wales 15%, Spain 13%, Belgium 7%, and Scotland 4% (ICES Sub-divisions 7bcefghjk).

Trends in fishing effort for the sensitive cod gears and non-regulated gears are presented in the report. Spanish data are only included for 2012 as no data for earlier periods have been submitted by the Spanish Authorities. The demersal fisheries are dominated by the gears TR1, TR2 and BT2. In recent years (since 2008) fishing effort has been relatively stable, with the increase in 2012 due to the inclusion of Spanish data for 2012 only. Total effort for countries excluding Spain has remained stable overall. In 2012, "unregulated" gears were deployed by France (26%), Ireland (21%), England (19%) and Dutch (16%). There appeared a peak in 2010 of pelagic boats obviously fishing for boarfish in the Celtic Sea.

The relative contribution of effort in terms of kWdays at sea deployed by small vessels (<10m) increased from 5% in 2003 to 8% in 2012 as compared with the overall effort deployed in the Celtic Sea (ICES Sub-divisions 7bcefghjk).

STECF notes that the correlations between the summed partial F of catches from all regulated gears and their specific effort estimates in kW days at sea over the main fisheries (effort regulated fisheries in the cod plan) are insignificant in the entire Celtic Sea (7bcefghjk). However, the relations between summed partial F of catches and fishing effort from all regulated gears become significant when the area is reduced to the ICES subdivisions 7fg. While good correlation does not always mean 'cause and effect', the results here suggest that management of fishing mortality by fishing effort in units of kWdays may provide a useful auxiliary measure to catch constraints and technical measures.

Effort regime evaluation for southern hake and Norway lobster

STECF notes that the major data deficiency in its analyses is the lack of Spanish catch and effort data in 2010 and 2011. Furthermore it is important to note that Spanish fishing vessels using regulated gears were not granted fishing effort derogations by the Spanish Authorities in 2012 as provided for in Annex IIB to the annual TAC and Quota regulations.

The nominal effort of regulated gears (3a-c) declined by 27% during 2007-2012 and by 23% from 2009 to 2012. The major effort regulated gears are the bottom trawls. Bottom trawl effort subject to effort regulation decreased by 31% since 2007 and by 18% since 2009. Given that Spain has not provided data for small vessels (LOA<10m) and that Portuguese data for small vessels do not provide gear or fishery specific information STECF is unable to conclude on the effects of small vessels.

In 2012, regulated bottom trawls caught more than half of the hake and anglerfish catches and the 97% of Nephrops catches in Divisions VIIIc-IXa. The LPUE for hake displays a continuous increase since 2005, and catch rates (CPUE OR LPUE) of Nephrops in Div. IXa and anglerfish in Div. VIIIc-IXa have continuously decreased since 2007. The same trend is apparent in both the data submitted to STECF in response to the DCF data calls and the data estimated by ICES.

STECF estimated partial F for hake and the regulated gear groups by Member States and correlated the time series with fishing effort in units of kWdays at sea. Given the data deficiency in 2010 and 2011, STECF does not further conclude on the significant correlation between the summed partial Fs of hake for regulated gear groups and their fishing effort with respect to the effects of fishing effort management.

Effort regime evaluation for Western Channel sole

STECF notes the majority of fishing effort deployed in the Western Channel is effort that is not being regulated by the Management plan for sole in Division VIIe. The two regulated gear groups, beam trawls and the static nets, account for only a relatively small proportion (about 15%) of the overall deployed effort.

The effort (kW days at sea) of gear groups regulated by fishing effort appears to have remained stable since 2009 after a major drop prior to 2008. From 2009-2012, the reported regulated beam trawl (≥ 80 mm) effort steadily increased and by 2012 was 17% higher compared with 2009. Over the same period, the lower reported effort by regulated static nets (< 220 mm) decreased by 42%. The effort from the vessels <10m fluctuated between 13% and 25% of the effort deployed by the vessels >10m and shows an increasing trend since 2005.

STECF notes that estimated sole catches are dominated by effort regulated beam trawls (67% in 2012), while static nets contributed a minor share (6% in 2012). STECF reiterates its observation that a relatively high percentage of sole is caught by gears that are not being regulated by this regulation. Sole catches of unregulated gears are in excess of 27% of the overall sole catches in area 7e for each year of the data series (2004-2012). The otter trawl gear is the main unregulated gear involved and accounts for over of 22% of total sole catches in recent years.

STECF notes that only UK (England and Wales) had vessels operating under an FDF scheme for the first time in 2012. 7 vessels were operational in the FDF fisheries using the regulated beam trawl gear (3a) and one vessel using the unregulated beam trawl gear (mesh size <80mm). The total numbers of English vessels operating such gears are 43 and 2 respectively. The effort of the FDF fisheries to the total deployed effort by the regulated beamers (3a) and unregulated beamers amount to 17% and 1% respectively. The catches of sole from to FDF fisheries represent 23% and 28% of the total international catches of the 3a regulated gears and the unregulated beamers, respectively.

STECF estimated the uptake of the permitted fishing effort in units of days at sea per vessel. The results should be interpreted with caution as the estimated ceilings are based on number of active vessels times the number of days allowed. STECF notes that the number of active vessels and their associated days at sea may be overestimated (multiple counted) if they changed regulated gears. For the regulated beam trawl fleet (3a), the English series indicate an increasing uptake (47% - 95%) over time whereas the Belgian and the French regulated beam trawl fleet show a stable uptake on a low (around 10%) and high level (around 65%) respectively. The English regulated static gear (3b) show a slight increase in uptake (20%-40%) over time whereas the French regulated static gear show a stable uptake of around 50%. National amendments to the effort regulations were granted to UK in 2011.

STECF notes that the correlations between the summed partial Fs for sole landings of the regulated fisheries and their estimated fishing efforts are significant for the period 2005-2012. While good correlation does not always mean 'cause and effect', the results here suggest that management of fishing mortality by fishing effort in units of kWdays may provide a useful auxiliary measure to catch constraints and technical measures for the regulated gears. The lack of discard information in the assessment and forecast of fishing opportunities should be considered when assessing management risks.

Effort regime evaluation for the Western Waters and Deep Sea

In accordance with the Terms of reference, the Report presents trends in effort, catch estimates and CPUE for defined fisheries (major gear groups) for 18 management areas within the convention areas of ICES and CECAF. STECF notes that the EWG experienced extreme difficulties in preparing the data and the interpretation of them is confounded by data deficiencies described in section 4 of the report. STECF also notes that discard information is often scarce.

Effort within the Deep sea and Western waters has been compiled for kW*days-at-sea, GT*days-at-sea, and numbers of vessels. Within the report the focus is on kW*Days at sea. Information on GT*days at sea and numbers of vessels, landings, discards, CPUE and LPUE is available via the website (electronic appendixes to the report): http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313

Bottom trawl effort is concentrated in ICES Area VI as well as the Continental shelf and slope to the west and southwest of Ireland and the UK. Bottom trawl effort in the Bay of Biscay, the Cantabrian Sea and off the Portuguese coast increased in 2012 compared to 2010 and 2011. Beam trawling is concentrated in the Celtic sea and the western English Channel. While beam trawls are not a deepwater gear some of the species caught are classified under Annex 2 of the deep sea regulation. Pelagic trawling was concentrated to the west of Ireland, and to the west and north of Scotland in the mid 2000s. This effort decreased greatly between 2007 and 2009, increased again in 2010, but has reduced again in 2011 and 2012. Longline effort was concentrated on the shelf and slope between Shetland and Portugal but has been in decline in recent years. Longline effort from the Azores has shown an increase since 2009. In the mid 2000s gill net effort was concentrated in the Celtic sea and Porcupine Bank. Due to existing restrictions in the use of deepwater gill nets much of this effort is now concentrated in the Celtic sea, with some effort in the North sea, west of Scotland and the Bay of Biscay. Catch estimates are provided in tabular format according to the requested rankings of deep sea, demersal and pelagic species, respectively.

Effort regime evaluation for the Bay of Biscay

STECF notes that all the analyses and trends presented in the report include data from Spain for 2012 only as Spain did not provide corresponding data for previous years to the DCF data call for fishing effort regime evaluations. In interpreting the trends in fishing effort and estimated catches, it is important to take into account that discard information is scarce and patchy and in some cases, is of dubious quality.

STECF notes that the multiannual plan for the sustainable exploitation of the stock of sole in the Bay of Biscay (R (EC) 388/2006) prescribes maximum annual fishing capacity for Member States' vessels that hold a special permit to fish. The report provides fisheries-specific catch and effort data for the Northern Bay of Biscay (ICES Div. VIIIa) and the southern Bay of Biscay (ICES Div. VIIIb). In VIIIa, 90% of the reported deployed effort in 2012 was French, 9% Spanish and 1% Belgian. The main French fisheries are otter trawl, trammel net, gill net and pelagic trawls. The main Spanish fisheries are longline, otter trawl and gill net. In VIIIb, 69% of the reported deployed effort in 2012 was French, 25% Spanish and 6% Belgian. The main French fisheries are otter trawl, trammel net, gill net, longline and pelagic trawl. The main Spain fisheries are otter trawl, longline and pelagic trawl.

Due to data deficiencies, STECF was unable to fully evaluate the effort regime for sole in the Bay of Biscay. France and Spain provided the data on trends in fishing capacity requested in the data call, in the unit of gross tonnage and for the year 2012 only.

From 2010 to 2012 the overall trend in fishing effort in units of kW days at sea increased by 4% in the area VIIIa and by 35% in VIIIb, although this observation is largely due to the inclusion of Spanish data for 2012 only. During 2010-2012, less than 50% of the reported deployed effort (kW days at sea) was accounted for by vessels carrying the special fishing permit in area VIIIa. In area VIIIb, the relative contribution of licensed vessels varied between 57% and 68%.

During 2010-2012, small boats (LOA<10m) contributed about 20% to the effort deployed in area VIIIa and about 10%-15% in area VIIIb after significant increases in deployed effort by small boats for earlier years in both areas. Spain has not provided any information regarding deployed fishing effort of small boats operating in the Bay of Biscay.

STECF notes that the correlations between the summed partial Fs based only on landings from the major fisheries and the corresponding reported fishing effort are significant in area 8a but insignificant in area 8b. As those analyses do not take account of discards and the time series do not incorporate Spanish data, the results are questionable and may not be representative.

STECF acknowledges the considerable efforts taken by the Expert Working Group on Evaluation of fishing effort regimes in European Waters Part 2 (EWG -13-13) and endorses the findings in the report.

Conclusions on Future procedures

STECF notes that the aggregated information of the five so-called fishing effort data bases, compiled from annual data calls directed to Member States since 2003 and DCF data calls by DG Mare since 2011, comprise detailed time series of fishery-specific catch and effort data.

STECF notes that these fishing effort data bases relate to all European regional Seas except the Mediterranean and Black Seas. Nevertheless, the specific data calls for the Mediterranean and Black Seas are designed such that the data provided under such calls are compatible with the existing effort data bases. In the recent past, the fishing effort data bases, have not only been used to provide advice on the 10 regional fishing effort regime evaluations but have also formed the basis of advice on a diverse number of topics including requests for advice on fishery-specific discard estimates and catch compositions in relation to various provisions prescribed in management and recovery plans.

STECF notes that due to changes in personnel in JRC, the ability to operate the data aggregation and evaluation tools developed to handle Member States' submissions under the annual effort data calls may need to be re-coded. Such a re-coding is likely to be necessary because whoever is tasked with replacing those personnel at JRC who formerly dealt with such data will have considerable difficulty in understanding the database structures and extraction procedures and there is a danger that output will be less reliable than hitherto.

Presently, the effort databases are coded in MS ACCESS. STECF notes, that in recognition of the strategic value of the effort databases, the JRC intends to devote additional resources to undertake a major revision to the databases and re-code in SQL. This will allow full integration with the DCF database scheme and facilitate the enhancement, accessibility and management of the databases. To this end the JRC will employ additional staff for a fixed period of time. Recognising the current and future importance and value of the effort databases, the STECF fully endorses the JRC initiative which aims to ensure continued provision of sound scientific advice.

REPORT TO THE STECF

EXPERT WORKING GROUP ON FISHING EFFORT REGIME EVALUATIONS PART 2 (EWG-13-13)

BARZA D'ISPRA, ITALY, 7-11 October 2013

This report does not necessarily reflect the view of the STECF and the European Commission and in no way anticipates the Commission's future policy in this area

1 EXECUTIVE SUMMARY

STECF EWG 13-13 notes that it has extensively addressed the ToR regarding the requested fishing effort regime evaluations in the

- 11. Eastern and Western Baltic,
- 12. the Kattegat,
- 13. the Skagerrak, North Sea, European waters in ICES Div.2 and the Eastern Channel,
- 14. to the West of Scotland.
- 15. Irish Sea.
- 16. Celtic Sea,
- 17. Atlantic waters off the Iberian Peninsula,
- 18. Western Channel,
- 19. Western Waters and Deep Sea
- 20. and the Bay of Biscay.

The EWG 13-13 provides updated estimates of trends in fishing effort, landings and discards by species, CPUE and LPUE by fisheries and species, and partial fishing mortalities for effort regulated and non-regulated fisheries by Member States.

2013 DCF Fishing Effort Data Call

The report of EWG 13-13 is based on data submitted by Member States in response to the DCF fishing effort data call in 2013. STECF EWG 13-13 notes a general improvement in Member States' submissions with regard to data completeness and quality as well as improved compliance with deadlines. However, the work of the EWG 13-13 once again was compromised by delays in some Member States' submissions, incomplete and erroneous data submissions and re-submissions.

EWG 13-13 notes that its 2012 recommendations to amend the 2013 DCF data call to support fishing effort regime evaluation were implemented and that these changes have supported and will continue to support the accomplishment of specific ToR. STECF EWG 13-13 notes that the DCF data call in 2013 imposed an additional workload on Member States because of the need to re-aggregate and resubmit data for earlier years than 2012 in addition to the data requested for 2012. The outcome of the call was that Denmark, Portugal and UK (without Scotland) have revised their complete time series of fisheries-specific catch and effort data. Catch (landings and discards) and effort data from Spain were provided for 2012 and discard data were provided for earlier years thereby enabling an improved evaluation of the effort regime for Southern hake and *Nephrops*.

EWG 13-13 has proposed an Index of Discard Coverage (DQI) to facilitate the use of the discard estimates provided in the STECF data bases on fisheries-specific catch and fishing effort. The DQI is expressed by stock, fishery and Member State as the proportion of national landings covered by discard estimates in relation to the total national landings;

$$DQI = \Sigma Ld / \Sigma L$$

where L denotes landings (t) and Ld landings with a discard estimate.

While the DQI is a useful indicator of the proportion of landings by fishery by Member State and stock that are sampled for discards, it does not reflect the level of discarding each fishery carries out. Furthermore, the DQI does not distinguish between a fishery with a high discard rate and a fishery with a low discard rate, or the level of sampling allocated to each fishery. It's an exploratory tool that allows the identification of the proportion of overall landings by fishery that was sampled.

In order to aid interpretation of the DQI, the DQI is further classified in three separate groups as follows:

- A = 67 % or more of the landings have an accompanying discard estimate,
- B = 34-66 % of the landings have an accompanying discard estimate, and
- C = less the 33 % of the landings have an accompanying discard estimate.

EWG 13-13 considers category A estimates to be sufficiently reliable to be used for assessment purposes, as the majority of the landings by species and fishery are accompanied with a discard estimate. However it should be noted once again that this DQI cannot inform on the quality of the discard rate estimates supplied by nations (as affected for example by the proportion of fishing trips sampled for discards).

Category B discard estimates are considered to be less reliable than category A and require careful scrutiny before they are used for assessment purposes.

Category C discard estimates are the least reliable and STECF EWG 13-13 considers that they should not be used for assessment purposes.

STECF EWG 13-13 notes that all fisheries-specific parameters for the various fishing effort regimes can be downloaded at the corresponding aggregation level as digital Appendixes to the present report from the EWG 13-13 web page: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313.

Major findings regarding the regional fishing effort regime evaluations as derived by STECF EWG 13-06 are summarized in the following sections, specifically for each of the reviews undertaken and covering new or additional ToR as appropriate.

Effort regime evaluation for the Baltic

Since 2010, deployed effort of regulated gears remained rather constant in both cod plan areas A (subdivisions 22-24) and B (subdivisions 25-28) with a slight increase in regulated otter trawls.

The effort-regulated otter trawls are the major cod gears, contributing 55 and 74% to the cod catch in areas A and B in 2012, respectively. The second important contributor to catches among the ranked cod gears are gill nets. Cod discards are generally low but slightly higher for area B, showing an increasing trend in most recent years for regulated otter trawls.

With a lack of information from Estonia, small boats <8m LOA were found to constitute 7 and 12% to the overall effort deployed in the Baltic in 2011 and 2012, respectively. Small boats are primarily operating in the northern cod plan area C (subdivisions 29-32).

STECF EWG 13-13 undertook a provisional quantitative analysis regarding the estimation of effort deployed in units of days at sea by Member State, and compared the national uptake with the calculated maximum effort available. STECF EWG 13-13 notes that its approach to estimate the maximum days at sea available per year and Member State from the product of reported number of active vessels using one of the regulated gears times the days at sea per vessel can only serve as an approximation of the effort ceiling. The provisional uptake analysis revealed that the average annual uptake of available days at sea over the time period 2008-2012 remained in the range of 36-38% in area A, 34-47% in the area B and 53-83% for the areas A and B combined.

According to the information submitted by member States, only Denmark has operated under the fully documented fisheries (FDF) scheme in the Baltic in 2012. The reported Danish catch of cod caught in FDF with regulated gears amounted to 333 t in area A and 406 t in area B, representing 3% of the overall catch. A preliminary analyses of cod selectivity revealed that non-FDF fisheries were catching

younger fish. However, the effects of different age reading methods applied in different national institutes remain unclear. Such preliminary results require further investigation.

Close correlations between fishing mortality and fishing effort measured in kW days at sea as well as between partial fishing mortalities and the specific fishing effort by fisheries were found. While good correlation does not always mean 'cause and effect', the results here suggest that management of fishing mortality by fishing effort in units of kWdays may provide a useful auxiliary measure to catch constraints and technical measures.

A provisional analysis on spatio-temporal patterns in cod catchability based on catch rates from commercial fisheries and surveys reveals a more homogenous distribution pattern as compared to the patterns in cod abundance indices, catches and fishing effort which are highest in the central Baltic Sea.

Effort regime evaluation for the Kattegat

Fisheries in the Kattegat are almost exclusively conducted by Denmark and Sweden (88% and 11% of the total regulated effort in 2012, respectively) using predominantly trawls and primarily the gear class TR2. The TR2 gear constitutes 90% of the total regulated effort. Beam trawls are forbidden.

There are three effort derogations in place in Kattegat for TR2, CPart13B, CPart13C and CPart11. All the Danish TR2 effort is under the derogation CPart13C from 2010 onwards while the German TR2 effort is partly under the derogation CPart13B between 2010 and 2011. STECF EWG 13-13 notes that the uptake of the regulated gear TR2 exceeds the maximum effort levels defined in the annual TAC and quota regulations since 2010 as Member States applied additional effort allocations under article 13 of the cod plan.

Only Sweden reported under the derogation article 11 in gear category TR2, achieving the <1.5% cod catch by using a sorting grid. This represented 68% of the Swedish TR2 effort in Kattegat 2012. The effort deployed by passive gears (GN1, GT and LL1) is relatively small, with a stable share of around 3% of the total regulated effort in 2012. The effort deployed by unregulated gear categories (including effort under the derogation CPart11) was 30% of the total effort in 2012.

In 2012, the nominal effort (kW days at sea) deployed by small vessels (LOA<10m) constituted 12% of the total effort in the area.

According the ranked regulated gear groups' contributions to cod catch and landings in 2012, only the TR2 is estimated to exceed the level of the cumulative 20% and thus considered subject to annual effort adjustments (Coun. Reg. 1342/2008, art. 12(4)).

EWG 13-13 notes that information on Fully Documented Fisheries FDF was only provided by Sweden and only for 2010. FDF fishing effort and catches appear negligible and are not evaluated further.

The estimated cod CPUE and respective effort transfer factors between donor and receiving regulated gear groups based on averages 2010-2012 are given below. Red cells are indicated to be imprecise due to lack of adequate discard information. Yellow cells indicate sufficient sampling and green cells good sampling information. The conversion factors are estimated based on CPUE while LPUE values are also provided.

Katt	tegat												
	donor gear	receiv	ing gea	r				2010-201	2010-2012				
		GN1	GT1	LL1	TR1	TR2	TR3	CPUE LPI	JE	factor = CPUE donor/CPUE receiving			
3a	GN1		1	. 1	1	. 1	1	187	50	if factor > 1 then			
3a	GT1	0.005	5	1	0.014	0.009	0.125	1	1	factor = 1			
3a	LL1	0.005	1		0.014	0.009	0.125	1	1				
3a	TR1	0.38	3 1	1		0.67	1	71	25	if CPUE=0 or LPUE = 0 then			
3a	TR2	0.567	' 1	1	1		1	106	41	CPUE=1 or LPUE=1			
3a	TR3	0.043	1	1	0.113	0.075		8	8				

STECF EWG 13-13 notes that that ICES did not provide an analytical assessment of cod in the Kattegat in 2013. STECF EWG 13-06 is therefore unable to provide analyses dealing with the partial fishing mortalities by fisheries (metiers), the respective correlations between partial fishing mortality and fishing effort and the review of reductions in fishing mortality of the effort regulated gear groups in relation to the cod plan provisions.

Effort regime evaluation for the Skagerrak, North Sea including 2EU and Eastern Channel

STECF EWG 13-13 notes that in this area, a substantial part of the effort is deployed by Non-European fleets (primarily Norway); this component is not accounted for in this report, except for the part dealing with partial fishing mortalities by fisheries. Norwegian fishing effort is reported to ICES (ICES, 2013). Catch and effort data including the special conditions of the cod management plan in force since 2009 (CPart11 and CPart13) have been provided by all Member States with significant fishing activity in this area. Additionally, distinction is now provided across the various CPart13 specifications (A, B, or C).

The North Sea (area 3b2) is the main fishing area (78% of the total 2012 regulated effort in area 3b), followed by the Eastern Channel (15%, 3b3), while the Skagerrak represents a smaller component (7%, 3b1). In all three sub areas, regulated effort has decreased since 2003. In area 3b2 (North Sea and 2EU), regulated effort is equally shared between beam trawls and demersal trawls/seines (47% and 47% of total 2012 regulated effort respectively). Small mesh beam trawling (80-119 mm, BT2) and demersal trawls/seines with larger mesh sizes (>=100mm, TR1) are the predominant fisheries. In the Eastern Channel, demersal trawls/seines are also the main gears (65% of the 2012 regulated effort in the area, mainly smaller mesh size 70-99mm TR2), but with beam trawls and passive gears representing important fisheries (19% and 16% of the 2012 regulated effort respectively). The main gears in management area 3b1 (Skagerrak) are demersal trawls/seines (90% of the 2012 regulated effort) with a predominance of TR2.

The estimated overall reduction in effort (kW days at sea) in 2012 of regulated gears in the entire area 3b amounts to 41% compared to the average 2005-2007 and to 10% compared to 2011.

Since 2003 the effort of small boats (LOA<10m) gradually increased from 3% to 9% of the overall effort deployed in the entire area 3b (Skagerrak, North Sea and 2EU, Eastern Channel) in 2012.

TR1 and TR2 gears were identified as the major cod catching gears and exceeded the 20% cumulative cod catch in 2012 and are thus considered subject to annual effort adjustments (Coun. Reg. 1342/2008, art. 12(4)).

In 2012 fully documented fisheries again represented only a small but increasing proportion of the total effort (5.6%). The importance of the main cod gear (TR1) has increased further and is estimated at 28.9% of the TR1 effort deployed in 2012. In total, 36% of cod catches by EU vessels were taken during FDF trials.

A preliminary analysis of selectivity for cod by FDF and non-FDF fisheries indicated that cod catch compositions at age from Danish and Scottish FDF fisheries were rather similar to the catch compositions at age from all fisheries by these countries. STECF EWG 13-13 notes that only these two countries conducted separate sampling and applied separate data aggregation and raising

procedures. Any further investigations would require two individual data sets, one which comprises an exclusive set of non-FDF fisheries, and second one which represents an exclusive set on FDF fisheries.

The estimated cod CPUE (average 2010-2012) and respective effort transfer factors between donor and receiving regulated gear groups for the cod management area comprising the Skagerrak, North Sea, EU part of IIa, and Eastern Channel are given below. Red cells indicate imprecise values due to lack of adequate discard information. Yellow cells indicate sufficient sampling and green cells good sampling information. EWG 13-13 notes that the report also provides the conversion factors for each of the three sub-areas mentioned above.

Skag	Skagerrak, North Sea and 2 EU, Eastern Channel													
	donor gear	receivi	ng gea	r						2010-20	2010-2012			
		BT1	BT2	GN1	GT1	LL1	TR1	TR2	TR3	CPUE	LPUE	factor = CPUE donor/CPUE receiving		
3b	BT1		1	0.228	1	0.437	0.217	0.962	2 1	227	227	if factor > 1 then		
3b	BT2	0.203		0.046	0.24	0.088	0.044	0.199	1	. 46	41	factor = 1		
3b	GN1	1	1		1	1	0.949	1	1	995	970			
3b	GT1	0.846	1	0.193		0.369	0.183	0.814	<mark>!</mark> 1	192	140	if CPUE=0 or LPUE = 0 then		
3b	LL1	1	1	0.523	1		0.496	1	<u> </u>	520	520	CPUE=1 or LPUE=1		
3b	TR1	1	1	1	1	1		1	1	1048	902			
3b	TR2	1	1	0.237	1	0.454	0.225		1	236	125			
3b	TR3	0.044	0.217	0.01	0.052	0.019	0.01	0.042	2	10	10			

The Report presents partial fishing mortalities by regulated fisheries and Member States in relation to the estimated fishing mortality by ICES (2013) and the landings and discards volumes in relation to the estimated total catch for the year available. STECF EWG 13-13 notes that the correlations between the partial Fs for cod and effort are significant for some important regulated metiers catching cod but insignificant for others. In all three sub-areas 3b1, 3b2 and 3b3, the correlations between the summed partial Fs of cod for regulated gears and respective sums of fishing effort in units of kW days at sea are statistically significant. While good correlation does not always mean 'cause and effect', the results here suggest that management of fishing mortality by fishing effort in units of kWdays may provide a useful auxiliary measure to catch constraints and technical measures.

Mortality due to discarding has generally been high, but has declined since 2008.

STECF EWG 13-13 notes that partial F of cod for all Member States has reduced since 2008, though such reductions have not always been consistent (i.e. linearly proportional) with changes in effort by regulated gears. However, STECF EWG 13-13 notes that the estimated trends in partial fishing mortality are dependent on the changed perception of the exploitation status in 2011 and 2012 derived from the 2013 ICES assessment of the North Sea cod stock. In the UK, partial F appears to have reduced consistent with the overall F reductions required under the plan, though effort has not. This suggests that there has been some decoupling of cod from fishing effort, consistent with cod avoidance or discard reduction.

STECF EWG 13-13 notes that Article 13.2a has not been adopted by any Member State, and so there was no detailed discussion of this provision in this section. Article 13.2b is for 'effort groups in which the fishing activity of one or more vessels results in a catch composition of less than 5% cod per fishing trip'. STECF EWG 13-13 has already stated that a catch composition special condition was not necessarily consistent with reductions in cod mortality as it does not control the overall amount of cod caught. However, STECF EWG 13-13 concludes that the contribution of all fisheries operating under Article 13.2b to the estimated fishing mortality of cod remains low and did not exceed 5% during 2009-2012.

STECF EWG 13-13 notes that Article 13.2c has only been adopted by the UK in areas 3b1, 3b2 or 3b3 and is applied to the entire fleet using regulated gears when not subject to Article 13.2b or exempted under Article 11. STECF EWG 13-13 notes that the respective UK (ENG, SCO, NIR) gear types TR1 have reduced their fishing effort in kWdays at sea by 20 % since 2009, which coincides with an estimated reduction in fishing mortality of cod by 36%. During 2009-2012, the fishing effort of TR2 gears operating under Article 13.2c declined by 11%, with a reduction in fishing mortality by

31% over the same period. The respective fisheries by Northern Ireland are negligible and were not operative in 2012.

A provisional analysis on spatio-temporal patterns in cod catchability based on catch rates from commercial fisheries and surveys reveals that cod catchability is not evenly distributed over the North Sea. The area of lowest cod catchability is generally found where cod abundance is highest, i.e. around the Shetlands in the northern North Sea, the Skagerrak and the Eastern Channel.

Effort regime evaluation for the West of Scotland

The fishery West of Scotland is primarily an otter trawl fishery; beam trawls and static gears are hardly used. Effort within regulated gears is 56% less in 2012 compared to 2003. Regulated effort by trawl and seine gears (TR gears under Coun. Reg. (EC) 1342/2008) shows a long term decrease in effort and fell to its lowest level in the time series in 2011, but was stable between 2011 and 2012 for those nations reporting in both years. Overall effort of small boats (LOA<10m) is 10% higher in 2012 compared to 2003 although it has been relatively stable since 2006.

The most important category in terms of cod catch and landings is TR1 which over the period 2010-2012 on average, accounted for 94% and 99% of the total cod landings and catches by weight respectively from VIa. The second most important gear category is TR2, which can be seen to be a gear category with Nephrops as the dominant species in the landings. Based on the relative contribution TR1 is the only gear group where the percentage cumulative cod catch in 2012 exceeded 20% and thus considered subject to annual effort adjustments (Coun. Reg. 1342/2008, art. 12(4)).

The table of international conversion factors is based on average CPUE (2010-2012). Discard data are scarce for many regulated gear groups but have been interpreted as representative for TR1 and TR2. Red cells indicate imprecise values due to lack of adequate discard information, green cells good sampling information.

West of Scotland _											
	donor gear	receiv	ing ge	ar				2010-20	2010-2012		
		BT1	BT2	GN1	LL1	TR1	TR2	CPUE LF	PUE	factor =	
3d	BT1			1 0.143	3	1 0.004	4 0.5	1	1	if factor > 1 then	
3d	BT2	1	L	0.143	3	1 0.004	4 0.5	1	1	factor = 1	
3d	GN1	1	L	1		1 0.028	3 1	7	7		
3d	LL1	1	L	1 0.143	3	0.004	4 0.5	1	1	if CPUE=0 or LPUE = 0 then	
3d	TR1	1	L	1 :	1	1	1	252	33	CPUE=1 or LPUE=1	
3d	TR2	1	L	1 0.286	5	0.008	3	2	2		

Overall the correlation between partial F of cod and estimated fishing effort of regulated gears is statistically significant but negative. STECF EG 13-13 is unable to determine the reason why there are negative or insignificant relationship between F and effort for the greatest cod contributors to cod catches from VIa. Nevertheless from the information reported by Member States, the management measures in place in VIa have not been successful in achieving a reduction in fishing mortality.

STECF EWG 13-13 notes that for Member States other than the UK partial F has reduced since 2008, though such reductions have not always been consistent (i.e. linearly proportional) with changes in effort by regulated gears. In the UK, a reduction in effort is recorded (less than that to bring effort to 0.32 of effort in 2008) but partial F is recorded as increased in 2011 and 2012 compared to 2008.

STECF EWG 13-13 notes that Article 13.2a of the cod plan has not been adopted by any Member State, and so there was no detailed discussion of this provision in this section. Article 13.2b is for 'effort groups in which the fishing activity of one or more vessels results in a catch composition of less than 5% cod per fishing trips'. West of Scotland article 13.2b fisheries are estimated to have accounted for 10% of regulated gear partial F in 2011 but less than 1% in 2012. STECF EWG 13-13 notes that Article 13c has only been adopted by IRL and the UK in area 3d, and these fisheries contributed a minor part of the cod catch. STECF EWG 13-13 notes that vessels operating under article 13.2d contribute the majority of cod fishing mortality over all gear types. The partial F for this one category is between 0.7 and 0.8. This is true for landings and discards with discards making a much greater contribution to fishing mortality in recent years. Overall, STECF EWG 13-13 concludes

that are no indications that the Scottish TR1 fishery working under any of articles 13.2.b, c or d have contributed to a reduction in fishing mortality of cod west of Scotland.

Effort regime evaluation for the Irish Sea

During 2003-2010, overall nominal effort (kW*days at sea) for boats LOA>=10m declined continuously by 43%. Since then, effort has remained stable. The trend in fishing effort of regulated gears appears similar with a decrease by 53% during 2003-2010 and remained stable from 2010 to 2012. Since 2007, the dominating regulated gear in terms of kW days has been the trawled TR2 (>75%) with an increasing trend (80% in 2012). Since 2009, the cod plan provisions of 13.2 a, b and c are applied when using effort-regulated gears.

During 2007-2012, small boats' effort (LOA<10m) varied without a clear trend and constituted among 11-15% of the overall effort deployed. Effort of small boats dropped during 2009 and 2010, increasing again thereafter.

STECF EWG 13-13 notes that discard information available within the Irish Sea is incomplete and thus impedes analyses of catch compositions and trends by fisheries. Based on the relative contributions to overall deployed effort, GN1, TR1 and TR2 are gear groups where the proportional cumulative cod landings in 2012 exceeded 20% and are thus subject to annual effort adjustments (Coun. Reg. 1342/2008, art. 12(4)).

The table of international effort conversion factors is based on average CPUE (2010-2012) is given below. LPUEs are used for GN1, GT1, and LL1 fisheries as time series of discard data were not available. TR2 and BT2 are the only two gear categories where discard data were available over the three previous years. Red cells indicate imprecise values due to lack of adequate discard information. Yellow cells indicate sufficient sampling.

Irish Sea												
	donor gear receiving gear											
		BT2	GN1	GT1	LL1	TR1	TR2	CPUE I	LPUE	factor =		
3c	BT2		0.03	0.079	1	0.17	1	90	58	if factor > 1 then		
3c	GN1	1		1	. 1	1	1	3033	3033	factor = 1		
3c	GT1	1	0.375		1	1	1	1136	1136			
3c	LL1	0.011	. 0	0.001		0.002	0.013	1	1	if CPUE=0 or LPUE = 0 then		
3c	TR1	1	0.174	0.465	1		1	528	523	CPUE=1 or LPUE=1		
3c	TR2	0.878	0.026	0.07	1	0.15		79	42			

STECF EWG 13-13 notes that the correlations between the summed partial Fs for landings of the regulated fisheries and their estimated fishing efforts are insignificant. STECF EWG 13-13 is unable to determine the reason why the relationship between partial Fs of most Member State fisheries using regulated gears are not significantly correlated with their specific effort estimates. STECF EWG 13-13 notes that the lack of discards prevents reliable conclusions regarding the effects of fishing effort management in relation to cod in the Irish Sea.

Effort regime evaluation for the Celtic Sea

The review of trends in fisheries-specific effort and catches in the Celtic Sea is presented at the level of aggregation for the fisheries defined in the multi-annual cod plan, to allow managers to evaluate the data with the view to the potential extension of the cod plan to include the Celtic Sea. The Celtic Sea is defined into two management areas, i.e. ICES Sub-divisions 7bcefghjk and ICES Sub-divisions 7fg. In 2012 in terms of kWdays at sea deployed by effort regulated gear groups and vessels ≥10m, France contributed 40%, Ireland 20%, England and Wales 15%, Spain 13%, Belgium 7%, and Scotland 4% (ICES Sub-divisions 7bcefghjk).

Trends in fishing effort for the sensitive cod gears and non-regulated gears are presented in the report. Spanish data are only included for 2012 as no data for earlier periods have been submitted by the

Spanish Authorities. The demersal fisheries are dominated by the gears TR1, TR2 and BT2. In recent years (since 2008) fishing effort has been relatively stable, with the increase in 2012 due to the inclusion of Spanish data for 2012 only. Total effort for countries excluding Spain has remained stable overall. In 2012, "unregulated" gears were deployed by France (26%), Ireland (21%), England (19%) and Dutch (16%). There appeared a peak in 2010 of pelagic boats obviously fishing for boarfish in the Celtic Sea.

The relative contribution of effort in terms of kWdays at sea deployed by small vessels (<10m) increased from 5% in 2003 to 8% in 2012 as compared with the overall effort deployed in the Celtic Sea (ICES Sub-divisions 7bcefghik).

STECF EWG 13-13 notes that the correlations between the summed partial F of catches from all regulated gears and their specific effort estimates in kW days at sea over the main fisheries (effort regulated fisheries in the cod plan) are insignificant in the entire Celtic Sea (7bcefghjk). However, the relations between summed partial F of catches and fishing effort from all regulated gears become significant when the area is reduced to the ICES subdivisions 7fg. While good correlation does not always mean 'cause and effect', the results here suggest that management of fishing mortality by fishing effort in units of kWdays may provide a useful auxiliary measure to catch constraints and technical measures.

Effort regime evaluation for southern hake and Norway lobster

STECF EWG 13-13 notes that the major data deficiency in its analyses is the lack of Spanish catch and effort data in 2010 and 2011. Furthermore it is important to note that Spanish fishing vessels using regulated gears were not granted fishing effort derogations by the Spanish Authorities in 2012 as provided for in Annex IIB to the annual TAC and Quota regulations.

The nominal effort of regulated gears (3a-c) declined by 27% during 2007-2012 and by 23% from 2009 to 2012. The major effort regulated gears are the bottom trawls. Bottom trawl effort subject to effort regulation decreased by 31% since 2007 and by 18% since 2009. Given that Spain has not provided data for small vessels (LOA<10m) and that Portuguese data do not provide gear or fishery specific information, STECF EWG 13-13 is unable to conclude on the effects of small vessels.

In 2012, regulated bottom trawls caught more than half of the hake and anglerfish catches and the 97% of Nephrops catches in Divisions VIIIc-IXa. The LPUE for hake displays a continuous increase since 2005, and catch rates (CPUE OR LPUE) of Nephrops in Div. IXa and anglerfish in Div. VIIIc-IXa have continuously decreased since 2007. The same trend is apparent in both the data submitted to STECF EWG 13-13 in response to the DCF data calls and the data estimated by ICES.

STECF EWG 13-13 estimated partial F for hake and the regulated gear groups by Member States and correlated the time series with fishing effort in units of kWdays at sea. Given the data deficiency in 2010 and 2011, STECF EWG 13-13 does not further conclude on the significant correlation between the summed partial Fs of hake for regulated gear groups and their fishing effort with respect to the effects of fishing effort management.

Effort regime evaluation for Western Channel sole

STECF notes the majority of fishing effort deployed in the Western Channel is effort that is not being regulated by the Management plan for sole in Division VIIe. The two regulated gear groups, beam trawls and the static nets, account for only a relatively small proportion (about 15%) of the overall deployed effort.

The effort (kW days at sea) of gear groups regulated by fishing effort appears to have remained stable since 2009 after a major drop prior to 2008. From 2009-2012, the reported regulated beam trawl (\geq 80 mm) effort steadily increased and by 2012 was 17% higher compared with 2009. Over the same period, the lower reported effort by regulated static nets (< 220 mm) decreased by 42%. The effort from the vessels <10m fluctuated between 13% and 25% of the effort deployed by the vessels >10m and shows an increasing trend since 2005.

STECF notes that estimated sole catches are dominated by effort regulated beam trawls (67% in 2012), while static nets contributed a minor share (6% in 2012). STECF reiterates its observation that a relatively high percentage of sole is caught by gears that are not being regulated by this regulation. Sole catches of unregulated gears are in excess of 27% of the overall sole catches in area 7e for each year of the data series (2004-2012). The otter trawl gear is the main unregulated gear involved and accounts for over of 22% of total sole catches in recent years.

STECF EWG 13-13 notes that only UK (England and Wales) had vessels operating under an FDF scheme for the first time in 2012. 7 vessels were operational in the FDF fisheries using the regulated beam trawl gear (3a) and one vessel using the unregulated beam trawl gear (mesh size <80mm). The total numbers of English vessels operating such gears are 43 and 2 respectively. The effort of the FDF fisheries to the total deployed effort by the regulated beamers (3a) and unregulated beamers amount to 17% and 1% respectively. The catches of sole from to FDF fisheries represent 23% and 28% of the total international catches of the 3a regulated gears and the unregulated beamers, respectively.

STECF EWG 13-13 estimated the uptake of the permitted fishing effort in units of days at sea per vessel. The results should be interpreted with caution as the estimated ceilings are based on number of active vessels times the number of days allowed. STECF EWG 13-13 notes that the number of active vessels and their associated days at sea may be overestimated (multiple counted) if they changed regulated gears. For the regulated beam trawl fleet (3a), the English series indicate an increasing uptake (47% - 95%) over time whereas the Belgian and the French regulated beam trawl fleet show a stable uptake on a low (around 10%) and high level (around 65%) respectively. The English regulated static gear (3b) show a slight increase in uptake (20%-40%) over time whereas the French regulated static gear show a stable uptake of around 50%. National amendments to the effort regulations were granted to UK in 2011.

STECF EWG 13-13 notes that the correlations between the summed partial Fs for sole landings of the regulated fisheries and their estimated fishing efforts are significant for the period 2005-2012. While good correlation does not always mean 'cause and effect', the results here suggest that management of fishing mortality by fishing effort in units of kWdays may provide a useful auxiliary measure to catch constraints and technical measures for the regulated gears. The lack of discard information in the assessment and forecast of fishing opportunities should be considered when assessing management risks.

Effort regime evaluation for the Western Waters and Deep Sea

In accordance with the Terms of reference, the Report presents trends in effort, catch estimates and CPUE for defined fisheries (major gear groups) for 18 management areas within the convention areas of ICES and CECAF. The EWG experienced extreme difficulties in preparing the data and the interpretation of them is confounded by data deficiencies described in section 4 of the report. STECF EWG 13-13 also notes that discard information is often scarce.

Effort within the Deep sea and Western waters has been compiled for kW*days-at-sea, GT*days-at-sea, and numbers of vessels. Within the report the focus is on kW*Days at sea. Information on GT*days at sea and numbers of vessels, landings, discards, CPUE and LPUE is available via the website (electronic appendixes to the report): http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313

Bottom trawl effort is concentrated in ICES Area VI as well as the Continental shelf and slope to the west and southwest of Ireland and the UK. Bottom trawl effort in the Bay of Biscay, the Cantabrian Sea and off the Portuguese coast increased in 2012 compared to 2010 and 2011. Beam trawling is concentrated in the Celtic sea and the western English Channel. While beam trawls are not a deepwater gear some of the species caught are classified under Annex 2 of the deep sea regulation. Pelagic trawling was concentrated to the west of Ireland, and to the west and north of Scotland in the mid 2000s. This effort decreased greatly between 2007 and 2009, increased again in 2010, but has reduced again in 2011 and 2012. Longline effort was concentrated on the shelf and slope between Shetland and Portugal but has been in decline in recent years. Longline effort from the Azores has

shown an increase since 2009. In the mid 2000s gill net effort was concentrated in the Celtic sea and Porcupine Bank. Due to existing restrictions in the use of deepwater gill nets much of this effort is now concentrated in the Celtic sea, with some effort in the North sea, west of Scotland and the Bay of Biscay. Catch estimates are provided in tabular format according to the requested rankings of deep sea, demersal and pelagic species, respectively.

Effort regime evaluation for the Bay of Biscay

STECF EWG 13-13 notes that all the analyses and trends presented in the report include data from Spain for 2012 only as Spain did not provide corresponding data for previous years to the DCF data call for fishing effort regime evaluations. In interpreting the trends in fishing effort and estimated catches, it is important to take into account that discard information is scarce and patchy and in some cases, is of dubious quality.

STECF EWG 13-13 notes that the multiannual plan for the sustainable exploitation of the stock of sole in the Bay of Biscay (R (EC) 388/2006) prescribes maximum annual fishing capacity for Member States' vessels that hold a special permit to fish. The report provides fisheries-specific catch and effort data for the Northern Bay of Biscay (ICES Div. VIIIa) and the southern Bay of Biscay (ICES Div. VIIIb). In VIIIa, 90% of the reported deployed effort in 2012 was French, 9% Spanish and 1% Belgian. The main French fisheries are otter trawl, trammel net, gill net and pelagic trawls. The main Spanish fisheries are longline, otter trawl and gill net. In VIIIb, 69% of the reported deployed effort in 2012 was French, 25% Spanish and 6% Belgian. The main French fisheries are otter trawl, trammel net, gill net, longline and pelagic trawl. The main Spain fisheries are otter trawl, longline and pelagic trawl.

Due to data deficiencies, STECF EWG 13-13 was unable to fully evaluate the effort regime for sole in the Bay of Biscay. France and Spain provided the data on trends in fishing capacity requested in the data call, in the unit of gross tonnage and for the year 2012 only.

From 2010 to 2012 the overall trend in fishing effort in units of kW days at sea increased by 4% in the area VIIIa and by 35% in VIIIb, although this observation is largely due to the inclusion of Spanish data for 2012 only. During 2010-2012, less than 50% of the reported deployed effort (kW days at sea) was accounted for by vessels carrying the special fishing permit in area VIIIa. In area VIIIb, the relative contribution of licensed vessels varied between 57% and 68%.

During 2010-2012, small boats (LOA<10m) contributed about 20% to the effort deployed in area VIIIa and about 10%-15% in area VIIIb after significant increases in deployed effort by small boats for earlier years in both areas. Spain has not provided any information regarding deployed fishing effort of small boats operating in the Bay of Biscay.

STECF EWG 13-13 notes that the correlations between the summed partial Fs based only on landings from the major fisheries and the corresponding reported fishing effort are significant in area 8a but insignificant in area 8b. As those analyses do not take account of discards and the time series do not incorporate Spanish data, the results are questionable and may not be representative.

2 RECOMMENDATIONS OF THE WORKING GROUP

The EWG 13-13 has no specific recommendations.

3 Introduction

The STECF EWG 13-13 met during 7-11 October 2013 at the Casa Don Guanella, Barza d'Ispra, Italy. The meeting started by 9 am on 7 October and was adjourned by 12.30 on 11 October 2013. Working conditions provided were considered optimum.

Due to the extensive ToR and the required DCF data evaluation the STECF EWG 13-13 fishing effort regime evaluations part 2 is considered a follow up of the working group EWG 13-06 fishing effort regime evaluations part 1 (report: Evaluation of Fishing Effort Regimes in European Waters - Part 1, STECF-13-13). The present report is largely based on evaluations and findings accomplished in July 2013 during the second STECF plenary in 2013. However, the present report also considers data updates and finalization of outstanding tasks.

The STECF EWG 13-13 notes that it was unable to fully address all ToR due to time constraints and late data availability. Sections dealing with incomplete responses to specific tasks are clearly indicated in the present report.

3.1 Terms of Reference for EWG 13-06 and EWG 13-13

Background

The Commission consults the STECF 'Working Group on fishing effort regime evaluations' on a review of fisheries regulated through fishing effort management schemes adopted in application of

- \checkmark the long term plan for cod stocks [R(EC) No 1342/2008],
- ✓ the recovery plan for Southern hake and Norway lobster stocks in the Cantabrian Sea and Western Iberian peninsula [R(EC) No 2166/2005],
- ✓ the multi-annual plan for the North Sea plaice and sole stocks [R(EC) No 676/2007],
- ✓ the multi-annual plan of Western Channel sole stock [R(EC) No 509/2007],
- ✓ the multi-annual plan for the cod stocks in the Baltic Sea [R(EC) No 1098/2007],
- \checkmark the multi-annual plan for the sustainable exploitation of the stock of sole in the Bay of Biscay [R(EC) No 388/2006],
- ✓ R(EC) No 2347/2002 establishing specific access requirements and associated conditions applicable to fishing for deep sea stocks, and
- ✓ R(EC) No 1954/2003 on the management of the fishing effort relating to certain Community fishing areas and resources so called Western Waters regime.

The overarching request is for: i) an assessment of fishing effort deployed by fisheries

and métiers which are currently affected by fishing effort management schemes as defined in Annex II of the TAC and Quota Regulations Regulation and including an assessment of fishing effort deployed by fisheries and métiers which would be affected by the extension of the cod recovery plan to the Celtic Sea and an assessment of effort in the Biscay sole fishery.); ii) an assessment of effort in the Baltic Sea and iii) an assessment of effort in Deep Sea and Western Waters regimes.

There will be two meetings of this STECF Working Group which will take place from 17 to 21 June 2013 and from 07-11 October 2013.

Terms of Reference: see Annex

Annex

1 – Assessment of fishing effort deployed by fisheries and métiers which are currently affected by fishing effort management schemes defined in the Baltic Sea cod management plan R(EC) No 1098/2007

Terms of Reference:

1. To provide historical series, as far back in time as possible, according to each of the following fishing areas:

Areas covered by the R(EC) No 1098/2007 (Baltic Sea)

- (i) ICES division 22 to 24,
- (ii) ICES divisions 25 to 28, by distinguishing areas 27 and 28.2
- (iii) ICES divisions 29 to 32,

The data should also be broken down by

Member State;

Regulated gear types defined in R(EC) No 1098/2007 (and by associated special conditions defined in the Appendix 6 of the data call);

Unregulated gear types catching cod in fishing areas (i), (ii) and (iii);

- a. Fishing effort, measured in kW.days and in GT.days
- b. Fishing activity measured in days absent from port (according to definitions adopted in R(EC) No 1098/2007) and fishing capacity measured in kW, GT and in number of vessels concerned per year.
- c. Catches (landings and discards provided separately) of cod in the Baltic Sea by weight and by numbers at age.
- d. Catches (landings and discards provided separately) of non-cod in the Baltic Sea by species, by weight and by numbers at age
- e. Landings Per Unit of Effort (LPUE) and Catches Per Unit Effort (CPUE) of cod in the Baltic Sea (such data shall be issued by Member state, fishing area (i), (ii) and (iii) and fishing gear concerned in accordance with **Art. 3 of R(EC) No 2187/2005).**

- 2. To assess the fishing effort and catches (landings and discards separately) of cod in the Baltic Sea and associated species corresponding to vessels of length overall smaller than 8 metres in each fishery, by gear and by Member State.
- 3. To quantify the evolution of the calculated maximum effort in units of days at sea allocated annually to the cod fleet (regulated gear types) and the uptake of this effort.
- 4. To assess the catches (absolute values, landings and discards provided separately) and effort deployed in 2011 and 2012 corresponding to vessels participating in trials on fully documented fisheries FDF, by species, by gear and Member State, with the aim to determine the quality of the data submitted, the potentials and limitations of the fully documented fisheries and to what extend in particular catches (absolute values, landings and discards provided separately) differs from the figures estimated by the STECF for vessels not participating in these trials. STECF is requested to quantify and comment on the extent of changes in cod selectivity by FDF fisheries in comparison with the fisheries not participating in FDF schemes. If discard values are not provided or it is 0, the assessment should be made on basis of reported catch composition and its age structure.
- 5. To plot, the spatial distribution of the fishing effort in unties of hours fished by regulated gears deployed in the Baltic Sea, according to data reported in logbooks on the basis of ICES statistical rectangles and to provide interpretation of any changes or trends.
- 6. To comment on data quality and to highlight any unexpected evolutions in the estimated parameters which are not in line with the general trend, in particular as regards discard estimates of cod and pelagic species.
- 7. To assess and present in a tabular form the annual partial fishing mortalities of cod, for landings and discards separately, as generated by the effort regulated gears and the non-regulated gears by fishing areas and Member States, the latter non-regulated gears as a single lump group. The trends in gear group specific partial fishing mortalities shall then be compared with (correlated against) the trends in gear group specific fishing effort in units if kW days at sea of the gears mentioned by fishing areas and Member States.
- 8. To identify, based on available data on fisheries specific landings and effort by statistical rectangle, ways to estimate standardised catchability indices for cod in the Baltic, considering the best practice to account for discards and to raise landings to catch figures. Detailed maps on estimated annual cod catchability indices shall then be presented for these areas.

2 – Assessment of fishing effort deployed by fisheries and métiers which are currently affected by fishing effort management schemes defined in the Kattegat (Annex IIA to Regulation (EC) No 43/2012 and 44/2012)

Terms of Reference:

1. To provide historical series, as far back in time as possible, according to each of the following fishing area:

Kattegat (ICES functional unit IIIaS)

The data should also be broken down by

Member State:

Regulated gear types defined in **Annex I** to **R(EC)** No 1342/2008 (and by associated special conditions defined in the Appendix 6 of the data call);

Unregulated gear types catching cod;

- a. Fishing effort, measured in kW.days, in GT.days, in number of vessels concerned.
- b. Catches (landings and discards provided separately) of cod by weight and by numbers at age.
- c. Catches (landings and discards provided separately) of non-cod by species, by weight and by numbers at age
- d. Landings Per Unit of Effort (LPUE) and Catches Per Unit Effort (CPUE) of cod (such data shall be issued by Member state, fishing area and fishing effort group designed in **Annex I to R(EC) No 1342/2008**).
- 2. Based on the information compiled under point (1) above, to rank fishing effort groups as designed in **Annex I to R(EC) No 1342/2008**, on the basis of their contribution to catches including estimated discards and landings expressed in weight of cod.
- 3. To assess the fishing effort and catches (landings and discards) of cod and associated species corresponding to vessels of length overall smaller than 10 metres in each fishery, by gear (corresponding to regulated and unregulated gear as defined in Annex II framework) and by Member State according to sampling plans implemented to estimate these parameters.

- 4 To assess the catches (absolute values, landings and discards provided separately) and effort deployed in 2011 and 2012 corresponding to vessels participating in trials on fully documented fisheries, by species, by gear and Member State, with the aim to determine the quality of the data submitted, the potentials and limitations of the fully documented fisheries and to what extend in particular catches (absolute values, landings and discards provided separately) differs from the figures estimated by the STECF for vessels not participating in these trials. STECF is requested to quantify and comment on the extent of changes in cod selectivity by FDF fisheries in comparison with the fisheries not participating in FDF schemes. If discard values are not provided or it is 0, the assessment should be made on basis of reported catch composition and its age structure.
- 5. To plot, the spatial distribution of the fishing effort in units of hours fished of regulated gears deployed in the Kattegat, according to data reported in logbooks on the basis of ICES statistical rectangles and to provide interpretation of any changes or trends.
- 6. To comment on data quality and to highlight any unexpected evolutions in the estimated parameters which are not in line with the general trend, in particular as regards the discard estimates of cod, Norway lobster and pelagic species.
- 7. To develop and calculate standard cpue's, lpue's and standard correction factors to be used (within a MS) for transferring effort across gear groups with different cpue (Reg. (EC) No 1342/2008 Art 17, paragraph 5).

Commission Regulation (EU) No 237/2010 article 8(b) describes:

Correction factor = cpue donor gear /cpue receiving gear

The cpue's and lpue's have to be calculated per area per gear group (regulated gear) and presented in a table. Another table shall be provided for the standard correction factors between the regulated gear groups based on each cpue's and lpue's. Correction factors >=1 will all be set at value 1.

- 8. To assess and present in a tabular form the annual partial fishing mortalities of cod, for landings and discards separately, as generated by the effort regulated gears (Annex I to Council Reg. 1342/2008) and the non-regulated gears by Member States, the latter non-regulated gears as a single lump group. The trends in gear group specific partial fishing mortalities shall then be compared with (correlated against) the trends in gear group specific fishing effort in units of kW days at sea of the gears mentioned by Member States.
- 9. To quantitatively assess the annual trend in cod mortality that would have resulted from the fishing mortality adjustments in Article 7 and the trends in fishing effort that would have resulted from Article 12 of Council Reg. 1342/2008, for the period 2008 to 2012. STECF is then requested to quantitatively assess the partial cod fishing mortality and fishing effort trends of the regulated gears

that were observed during 2008 to 2012. STECF is requested to comment on the questions if and to which extent the Member States application of Article 13, Paragraph 2, points a, b, and c have supported the reduction of cod fishing mortality as defined in Articles 7 and 9 and whether the increased fishing effort deployed by Member States was commensurate with the fishing mortality level to be achieved in 2012. The group is requested to quantify for each Member State and effort group (Annex I to Council Reg. 1342/2008) the partial target fishing mortality of cod, and partial fishing mortality of cod generated in excess of the cod plan, and, if a significant correlation between cod fishing mortality and fishing effort exists, the corresponding amounts of target fishing effort and of the excessive fishing effort in units of kW.days at sea.

3 – Assessment of fishing effort deployed by fisheries and métiers which are currently affected by fishing effort management schemes defined in the Skagerrak, the North Sea and the Eastern Channel (Annex IIA to Regulation (EC) No 43/2012 and 44/2012)

Terms of Reference:

- 1. To provide historical series, as far back in time as possible, according to each of the following fishing areas:
 - (i) Skagerrak (ICES functional Unit IIIaN),
 - (ii) North Sea (EC waters of ICES sub-area IIa and ICES sub-area IV),
 - (iii) Eastern channel (ICES division VIId)

The data should also be broken down by

Member State:

Regulated gear types designed in **Annex I** to **R(EC) No 1342/2008** (and by associated special conditions defined in the Appendix 6 of the data call);

Unregulated gear types catching cod, sole and plaice in fishing areas (i), (ii) and (iii);

- a. Fishing effort, measured in kW.days, in GT.days, in number of vessels concerned and days at sea for the sole and plaice fishery.
- b. Fishing capacity in kW.
- c. Catches (landings and discards provided separately) of cod, sole and plaice by weight and by numbers at age.
- d. Catches (landings and discards provided separately) of non-cod, non-sole and non-plaice by species, by weight and by numbers at age.
- e. Landings Per Unit of Effort (LPUE) and Catches Per Unit Effort (CPUE) of cod, sole and plaice (such data shall be issued by Member state, fishing area and fishing effort group designed in Annex I to R(EC) No 1342/2008).

- 2. Based on the information compiled under point (1) above, to rank fishing effort groups as designed in **Annex I to R(EC) No 1342/2008**, on the basis of their contribution to catches including discards and landings expressed in weight of cod, sole and plaice.
- 3. To assess the fishing effort and catches (landings and discards) of cod, sole and plaice and associated species corresponding to vessels of length overall smaller than 10 metres in each fishery, by gear (corresponding to regulated and unregulated gear as defined in Annex II framework) and by Member.
- 4. To assess the catches (absolute values, landings and discards provided separately) and effort deployed in 2011 and 2012 corresponding to vessels participating in trials on fully documented fisheries, by species, by gear and Member State, with the aim to determine the quality of the data submitted, the potentials and limitations of the fully documented fisheries and to what extend in particular catches (absolute values, landings and discards provided separately) differs from the figures estimated by the STECF for vessels not participating in these trials. STECF is requested to quantify and comment on the extent of changes in cod selectivity by FDF fisheries in comparison with the fisheries not participating in FDF schemes. If discard values are not provided or it is 0, the assessment should be made on basis of reported catch composition and its age structure.
- 5. To plot, the spatial distribution of the fishing effort in units of hours fished of regulated gears deployed in the Skagerrak, the North Sea and the Eastern Channel, according to data reported in logbooks on the basis of ICES statistical rectangles and to provide interpretation of any changes or trends.
- 6. To comment on data quality and highlight any unexpected evolutions in the estimated parameters which are not in line with the general trend, in particular as regards the discard estimates of cod, Norway lobster and pelagic species.
- 7. To develop and calculate standard cpue's, lpue's and standard correction factors to be used (within a MS) for transfering effort across gear groups with different cpue (Reg. (EC) No 1342/2008 Art 17, paragraph 5).

Commission Regulation (EU) No 237/2010 article 8(b) describes:

Correction factor = cpue donor gear /cpue receiving gear

The cpue's and lpue's have to be calculated per area per gear group (regulated gear) and presented in a table. Another table shall be provided for the standard correction factors between regulated gears groups based on each cpue's and lpue's. Correction factors >=1 will all be set at value 1.

8. To assess and present in a tabular form the annual partial fishing mortalities of cod, haddock, saithe (Skagerrak and North Sea only), whiting, plaice (North Sea only) and sole (North Sea only), for

landings and discards separately, as generated by the effort regulated gears (Annex I to Council Reg. 1342/2008) and the non-regulated gears by Member States, the latter non-regulated gears as a single lump group. The trends in gear group specific partial fishing mortalities shall then be compared with (correlated against) the trends in gear group specific fishing effort in units of kW days at sea of the gears mentioned by Member States.

9. To quantitatively assess the annual trend in cod mortality that would have resulted from the fishing mortality adjustments in Article 8 and the trends in fishing effort that would have resulted from Article 12 of Council Reg. 1342/2008, for the period 2008 to 2012. STECF is then requested to quantitatively assess the partial cod fishing mortality and fishing effort trends of the regulated gears that were observed during 2008 to 2012. STECF is requested to comment on the questions if and to which extent the Member States application of Article 13, Paragraph 2, points a, b, and c have supported the reduction of cod fishing mortality as defined in Articles 8 and 9 and whether the increased fishing effort deployed by Member States was commensurate with the fishing mortality level to be achieved in 2012. The group is requested to quantify for each Member State and effort group (Annex I to Council Reg. 1342/2008) the partial target fishing mortality of cod, and partial fishing mortality of cod generated in excess of the cod plan, and, if a significant correlation between cod fishing mortality and fishing effort exists, the corresponding amounts of target fishing effort and of the excessive fishing effort in units of kW.days at sea

10. To identify, based on available data on fisheries specific landings and effort by statistical rectangle, ways to estimate standardised catchability indices for cod, plaice and sole in areas Skagerrak, North Sea and Eastern Channel and 2EU, considering the best practice to account for discards and to raise landings to catch figures. Detailed maps on estimated annual catchability indices by species shall then be presented for these areas.

4- Assessment of fishing effort deployed by fisheries and métiers which are currently affected by fishing effort management schemes defined in the West of Scotland (Annex II A to Regulation (EC) No 43/2012 and 44/2012)

Terms of Reference:

1. To provide historical series, as far back in time as possible, according to each of the following fishing area:

West of Scotland (ICES division VIa and EC waters of Vb)

The data should also be broken down by

Member State;

Regulated gear types designed in **Annex I** to **R(EC) No 1342/2008** (and by associated special conditions defined in Appendix 6 to the data call as far as relevant);

Unregulated gear types catching cod;

- a. Fishing effort, measured in kW.days, in GT.days and in number of vessels concerned
- b. Catches (landings and discards provided separately) of cod by weight and by numbers at age.
- c. Catches (landings and discards provided separately) of non-cod by species, by weight and by numbers at age.
- d. Landings Per Unit of Effort (LPUE) and Catches Per Unit Effort (CPUE) of cod (such data shall be issued by Member state, fishing area and fishing effort group designed in **Annex I to R(EC) No 1342/2008**).
- 2. Based on the information compiled under point (1) above, to rank fishing effort groups as designed in **Annex I to R(EC) No 1342/2008**, on the basis of their contribution to catches including discards and landings expressed in weight of cod.
- 3. To assess the fishing effort and catches (landings and discards) of cod and associated species corresponding to vessels of length overall smaller than 10 metres in each fishery, by gear (corresponding to regulated and unregulated gear as defined in Annex II framework) and by Member State.

- 4. To plot, the spatial distribution of the fishing effort in units of hours fished of regulated gears deployed in the West of Scotland, according to data reported in logbooks on the basis of ICES statistical rectangles and to provide interpretation of any changes or trends.
- 5. To comment on data quality and to highlight any unexpected evolutions in the estimated parameters which are not in line with the general trend, in particular as regards discard estimates of cod, Norway lobster and pelagic species.
- 6. To develop and calculate standard cpue's, lpue's and standard correction factors to be used (within a MS) for transfering effort across gear groups with different cpue (Reg. (EC) No 1342/2008 Art 17, paragraph 5).

Commission Regulation (EU) No 237/2010 article 8(b) describes:

Correction factor = cpue donor gear /cpue receiving gear

The cpue's and lpue's have to be calculated per area per gear group (regulated gear) and presented in a table. Another table shall be provided for the standard correction factors between regulated gear groups based on each cpue's and lpue's. Correction factors >=1 will all be set at value 1.

7. To assess and present in a tabular form the annual partial fishing mortalities of cod, haddock, saithe (VIa only), for landings and discards separately, as generated by the effort regulated gears (Annex I to Council Reg. 1342/2008) and the non-regulated gears by Member States, the latter non-regulated gears as a single lump group. The trends in gear group specific partial fishing mortalities shall then be compared with (correlated against) the trends in gear group specific fishing effort in units of kW days at sea of the gears mentioned by Member States.

8.To quantitatively assess the annual trend in cod mortality that would have resulted from the fishing mortality adjustments in Article 7 and the trends in fishing effort that would have resulted from Article 12 of Council Reg. 1342/2008, for the period 2008 to 2012. STECF is then requested to quantitatively assess the partial cod fishing mortality and fishing effort trends of the regulated gears that were observed during 2008 to 2012. STECF is requested to comment on the questions if and to which extent the Member States application of Article 13, Paragraph 2, points a, b, c and d have supported the reduction of cod fishing mortality as defined in Articles 7 and 9 and whether the increased fishing effort deployed by Member States was commensurate with the fishing mortality level to be achieved in 2012. The group is requested to quantify for each Member State and effort group (Annex I to Council Reg. 1342/2008) the partial target fishing mortality of cod, and partial fishing mortality of cod generated in excess of the cod plan, and, if a significant correlation between cod fishing mortality and fishing effort exists, the corresponding amounts of target fishing effort and of the excessive fishing effort in units of kW.days at sea.

9. To identify, based on available data on fisheries specific landings and effort by statistical rectangle, ways to estimate standardised catchability indices for cod West of Scotland, considering the best practice to account for discards and to raise landings to catch figures. Detailed maps on estimated annual cod catchability indices shall then be presented for this area.

5 – Assessment of fishing effort deployed by fisheries and métiers which are currently affected by fishing effort management schemes defined in the Irish Sea (Annex IIA to Regulation (EC) No 43/2012 and 44/2012)

Terms of Reference:

1. To provide historical series, as far back in time as possible, according to each of the following fishing area:

Irish Sea (ICES division VIIa)

The data should also be broken down by

Member State;

Regulated gear types designed in **Annex I** to **R(EC)** No 1342/2008 (and by associated special conditions defined in Appendix 6 to the data call as far as relevant);

Unregulated gear types catching cod;

- a. Fishing effort, measured in kW.days, in GT.days and in number of vessels concerned
- b. Catches (landings and discards provided separately) of cod by weight and by numbers at age.
- c. Catches (landings and discards provided separately) of non-cod by species, by weight and by numbers at age
- d. Landings Per Unit of Effort (LPUE) and Catches Per Unit Effort (CPUE) of cod (such data shall be issued by Member state, fishing area and fishing effort group designed in **Annex I to R(EC) No 1342/2008**).
- 2. Based on the information compiled under point (1) above, to rank fishing effort groups as designed in **Annex I to R(EC) No 1342/2008**, on the basis of their contribution to catches including discards and landings expressed in weight of cod.
- 3. To assess the fishing effort and catches (landings and discards) of cod and associated species corresponding to vessels of length overall smaller than 10 metres in each fishery, by gear

(corresponding to regulated and unregulated gear as defined in Annex II framework) and by Member State.

- 4. To plot, the spatial distribution of the fishing effort in units of hours fished of regulated gears deployed in the Irish Sea, according to data reported in logbooks on the basis of ICES statistical rectangles and to provide interpretation of any changes or trends.
- 5. To comment on data quality and to highlight any unexpected evolutions in the estimated parameters which are not in line with the general trend, in particular as regards the discard estimates of cod, Norway lobster and pelagic species.
- 6. To develop and calculate standard cpue's, lpue's and standard correction factors to be used (within a MS) for transferring effort across gear groups with different cpue (Reg. (EC) No 1342/2008 Art 17, paragraph 5).

Commission Regulation (EU) No 237/2010 article 8(b) describes:

Correction factor = cpue donor gear /cpue receiving gear

The cpue's and lpue's have to be calculated per area per gear group (regulated gear) and presented in a table. Another table shall be provided for the standard correction factors between regulated gear groups based on each cpue's and lpue's. Correction factors >=1 will all be set at value 1.

7. To assess and present in a tabular form the annual partial fishing mortalities of cod, for landings and discards separately, as generated by the effort regulated gears (Annex I to Council Reg. 1342/2008) and the non-regulated gears by Member States, the latter non-regulated gears as a single lump group. The trends in gear group specific partial fishing mortalities shall then be compared with (correlated against) the trends in gear group specific fishing effort in units of kW days at sea of the gears mentioned by Member States.

8.To quantitatively assess the annual trend in cod mortality that would have resulted from the fishing mortality adjustments in Article 7 and the trends in fishing effort that would have resulted from Article 12 of Council Reg. 1342/2008, for the period 2008 to 2012. STECF is then requested to quantitatively assess the partial cod fishing mortality and fishing effort trends of the regulated gears that were observed during 2008 to 2012. STECF is requested to comment on the questions if and to which extent the Member States application of Articles 13, Paragraph 2, points a, b, and c have supported the reduction of cod fishing mortality as defined in Article 7 and 9 and whether the increased fishing effort deployed by Member States was commensurate with the fishing mortality level to be achieved in 2012. The group is requested to quantify for each Member State and effort group (Annex I to Council Reg. 1342/2008) the partial target fishing mortality of cod, and partial fishing mortality of cod generated in excess of the cod plan, and, if a significant correlation between cod fishing mortality and fishing effort exists, the corresponding amounts of target fishing effort and of the excessive fishing effort in units of kW.days at sea.

6 – Assessment of fishing effort deployed by fisheries and métiers which will be affected by the extension of the cod recovery plan to the Celtic Sea

Terms of Reference:

- 1. To provide historical series, as far back in time as possible, according to each of the following fishing area:
 - (i) Celtic Sea (total of ICES divisions VIIb, VIIc, VIIe, VIIf, VIIg, VIIh, VIIj and VIIk) and
 - (ii) combined area Bristol Channel/South-East Ireland (total of the subset of ICES divisions VIIf and VIIg)

The data should also be broken down by:

Member State;

Regulated gear types designed in Annex I to R(EC) No 1342/2008;

Unregulated gear types catching cod;

- a. Fishing effort, measured in kW.days, in GT.days and in number of vessels concerned
- b. Catches (landings and discards provided separately) of cod by weight and by numbers at age.
- c. Catches (landings and discards provided separately) of non-cod by species, by weight and by numbers at age.
- d. Landings Per Unit of Effort (LPUE) and Catches Per Unit Effort (CPUE) of cod (such data shall be issued by Member state and fishing effort groups as designed in **Annex I to R(EC) No 1342/2008**).
- 2. When providing and explaining data in accordance with point (1), the following **specific question** should be answered as well:

For VIIf+VIIg only, identify the **main species** (volume and percentage) caught per gear category, and related trends in recent years. Specify when this calculation has taken account of discards as well.

Special request: to analyse discards and their development per gear type in each of the ICES divisions concerning hake, monkfish and megrim. This analysis should be carried out referring to fish lengths/age of discards.

- 3. To assess the fishing effort and catches (landings and discards) of cod and associated species corresponding to vessels of length overall smaller than 10 metres in each fishery, by gear (corresponding to regulated and unregulated gear as defined in Annex II framework) and by Member State according to sampling plans implemented to estimate these parameters.
- 5. To comment on data quality and to highlight any unexpected evolutions in the estimated parameters which are not in line with the general trend, in particular as regards the discard estimates of cod, Norway lobster and pelagic species.
- 6. To assess and present in a tabular form the annual partial fishing mortalities of cod, for landings and discards separately, as generated by the gears defined in Annex I to Council Reg. 1342/2008) and the other gears by Member States, the latter other gear groups as a single lump group. The trends in gear group specific partial fishing mortalities shall then be compared with (correlated against) the trends in gear group specific fishing effort in units of kW days at sea of the gears mentioned by Member States.

7 – Assessment of fishing effort deployed by vessels under the Southern hake and Norway lobster plan (Council Regulation (EC) No 2166/2005) operating in the Atlantic waters of the Iberian Peninsula as specified in Annex IIB of Council Regulation (EC) No 43/2012 and 44/2012

Terms of Reference:

1. The STECF is requested to compile, validate, analyse and assess the following historical data on fishing effort and catches in relation to vessels under the Southern hake and Norway lobster plan (Regulation (EC) 2166/2005):

details by Member State on both effort (2000-2012) deployed and catches (2003-2012) made by all fishing vessels, included those with less than 10 meters, in each fishery, broken down by age, gear type, and mesh size

The data should be broken down and assessed by:

Member State;

Regulated gear types, area as laid down in Annex IIB of Council Regulation (EC) No 43/2012 and 44/2012 and associated special conditions as laid down in Appendix 6 to the data call; unregulated gear types catching hake and Norway lobster;

for the following parameters:

- a. fishing effort measured in kW.days, in GT.days and in number of vessels concerned;
- b. catches (landings and discards provided separately) of hake and Norway lobster by weight and by numbers at age;
- c. catches (landings and discards provided separately) of species other than hake and Norway lobster in areas covered by Annex IIB mentioned above (a particular attention should be paid to Anglerfish catches), by species, by weight and by numbers at age;
- d. landings Per Unit of Effort (LPUE) and Catches Per Unit Effort (CPUE) of hake, Norway lobster and Anglerfish in areas covered by Annex IIB (such data shall be issued by Member state, fishing gear and special conditions listed in **Annex IIB of Council Regulation (EC) No 43/2012** and 44/2012);

In assessing the data described above, particular attention should be paid to:

the quality of estimates of total catches and discards;

both the fishing effort and catches including landings and discards of hake, Norway lobster, anglerfish, and associated species including pelagics in relation to vessels of overall length smaller than 10 metres in each fishery, by gear (regulated and unregulated gears) and by Member State. The representativeness of data originated from sampling schemes should also be assessed.

to the description of the spatial distribution of the fishing effort of regulated gears deployed in the Atlantic waters of the Iberian Peninsula according to data reported in logbooks on the basis of ICES statistical rectangles with the aim to determine to what extent fishing effort has moved from long distance to coastal areas since the implementation of the fishing effort regime.

An excel table listing the kW.days from 2000 to 2012 broken down per gear type, special condition and Member State should be made available.

to comment on data quality and to highlight any unexpected evolutions in the estimated parameterss which are not in line with the general trend, in particular as regards discard estimates of hake, Norway lobster, anglerfish and pelagic species.

- 2. In the context of the revision of the current Southern hake and Norway lobster recovery plan (Council Regulation (EC) No 2166/2005) and on the basis of the data provided, the STECF is requested to assess the fishing effort regime, in particular commenting on the quality and completeness of these data used to assess the impact of future effort management measures proposed by the Commission.
- 3. To compare the evaluation of days allocated to the vessels carrying regulated gears (allowed activity) and really used by those vessels.
- 4. To assess the correlation between fishing mortality rates and the effort in units of kW days at sea deployed by Member States.

If a good correlation between fishing mortality rates and spend fishing effort is found, the WG is asked to explain or describe it. In case the correlation between the nominal fishing effort and the fishing mortality rates is weak, the WG is asked to describe whether this is due to a wrong descriptor (wrong descriptor for fishing capacity) or due to other factors.

5. To identify, based on available data on fisheries specific landings and effort by statistical rectangle, ways to estimate standardised catchability indices for Nephrops, hake and monk in ICES Div. 8c and 9a, considering the best practice to account for discards and to raise landings to catch figures. Detailed maps on estimated annual catchability indices by species shall then be presented for these areas.

8 – Assessment of fishing effort deployed by fisheries and métiers which are currently affected by fishing effort management schemes defined in the Western Channel (Western Channel sole stocks ICES zone VIIe, Annex IIC to Regulation (EC) No 43/2012)

Terms of Reference:

1. To provide historical series, as far back in time as possible, according to each of the following fishing area:

Western Channel (ICES division VIIe)

The data should also be broken down by

Member State:

Regulated gear types designed in **Annex IIC** to **R(EC)** No 43/2012 (and by associated special conditions defined therein as far as relevant);

Unregulated gear types catching sole;

- a. Fishing effort, measured in kW.days, in GT.days and in number of vessels concerned.
- b. Catches (landings and discards provided separately) of sole by weight and by numbers at age.
- c. Catches (landings and discards provided separately) of non-sole by species, by weight and by numbers at age.
- d. Landings Per Unit of Effort (LPUE) and Catches Per Unit Effort (CPUE) of sole (such data shall be issued by Member state and fishing gear listed in **Annex IIC to R(EC) No 43/2012**).
- 2. To assess the fishing effort and catches (landings and discards) of sole and associated species corresponding to vessels of length overall smaller than 10 metres in each fishery, by gear (corresponding to regulated and unregulated gear as defined in Annex II framework) and by Member State according to sampling plans implemented to estimate these parameters.
- 4 To assess the catches (absolute values, landings and discards provided separately) and effort deployed in 2011 and 2012 corresponding to vessels participating in trials on fully documented fisheries, by species, by gear and Member State, with the aim to determine the quality of the data submitted, the potentials and limitations of the fully documented fisheries and to what extend in particular catches (absolute values, landings and discards provided separately) differs from the figures estimated by the STECF for vessels not participating in these trials. STECF is requested to quantify

and comment on the extent of changes in sole selectivity by FDF fisheries in comparison with the fisheries not participating in FDF schemes.

- 4. To plot, the spatial distribution of the fishing effort of regulated gears deployed in the Western Channel, according to data reported in logbooks on the basis of ICES statistical rectangles and to provide interpretation of any changes or trends.
- 5. To quantify the annual days at sea allocated to the vessels carrying regulated gears (allowed activity) and the uptake of such effort allowances.
- 6. To comment on data quality and to highlight any unexpected evolutions in the estimated parameters which are not in line with the general trend, in particular as regards the discard estimates of sole, plaice, Norway lobster and pelagic species.
- 7. To assess and present in a tabular form the annual partial fishing mortalities of sole, for landings and discards separately, as generated by the effort regulated gears (Annex I to Council Reg. 1342/2008) and the non-regulated gears by Member States, the latter non-regulated gears as a single lump group. The trends in gear group specific partial fishing mortalities shall then be compared with (correlated against) the trends in gear group specific fishing effort in units of kW days at sea of the gears mentioned by Member States.

9 - Assessment of fishing effort and evaluation of management measures to be assessed in 2009 (Deep sea and Western Waters effort regime)

Terms of Reference:

- 1. To provide historical series, as far back in time as possible, according to each of the following fishing areas:
 - (i) ICES area I (EU waters; non EU waters), only linked to Deep Sea species
 - (ii) ICES area II (EU waters; non EU waters), only linked to Deep Sea species
 - (iii) ICES area III (EU waters; non EU waters), only linked to Deep Sea species
 - (iv) ICES area IV (EU waters; non EU waters), only linked to Deep Sea species
 - (v) ICES area V (EU waters; non EU waters)
 - (vi) ICES area VI (EU waters; non EU waters)
 - (vii) ICES area VII excluding VIId (EU waters; non EU waters)
 - (viii) ICES division VIId
 - (ix) the Biologically Sensitive Area as defined in Article 6 of Reg (EC) No 1954/2003
 - (x) ICES area VIII (EU waters; non EU waters)
 - (xi) ICES area IX (EU waters; non EU waters)
 - (xii) ICES area X (EU waters; non EU waters)
 - (xiii) ICES area XII (EU waters; non EU waters), only linked to Deep Sea species
 - (xiv) ICES area XIV (EU waters; non EU waters), only linked to Deep Sea species
 - (xv) CECAF area 34.1.1 (EU waters; non EU waters)
 - (xvi) CECAF area 34.1.2 (EU waters; non EU waters)
 - (xvii) CECAF area 34.1.3 (EU waters; non EU waters)
 - (xviii) CECAF area 34.2 (EU waters; non EU waters)

The data should also be broken down by

Men	nber State;	
The	following gear types:	
_	Regulated gear types	

- o Beam trawls
- o Bottom trawls & demersal seines
- o dredges
- o drifting longlines or set longlines (bottom)
- o driftnets or set gillnets
- o trammel nets
- o pots & traps

Unregulated gear types:

- o Pelagic trawls and pelagic seines;
- o longlines (surface)

- a. Fishing effort, measured in kW.days, in GT.days and in number of vessels concerned
- b. Catches (landings and discards provided separately) by weight of:
- 5 most important (in weight landed) demersal species excluding scallops, edible crab,
 spider crab,
- Scallops
- Spider crab and edible crab
- 5 most important (in weight landed) Deep-sea species (according to Annex I and II of Reg 2347/2002), only related to fisheries which have been identified with special condition DEEP
- 4 most important (in weight landed) pelagic species, plus always tuna-like species (SKJ,ALB,YFT,BET,SWO).
- c. Landings Per Unit of Effort (LPUE) and Catches Per Unit Effort (CPUE) by Member State and gear, given by total catches of the gear divided by kW-days and GT-days.

2. When providing and explaining of	data in accordance	with point (1), t	he following specific	c question
should be answered as well:				

Discuss whether additional data on fishing depth and VMS position could improve the analysis and interpretation of deep sea fisheries, and how these data could be called from MS, processes and presented

- 3. To identify recent effort trends in pelagic fisheries where possible, in particular in areas XI, X and CECAF areas.
- 4. To comment on data quality and to highlight any unexpected evolutions in the estimated parameters which are not in line with the general trend, in particular as regards the discard estimates of pelagic species.

10 – Assessment of fishing effort deployed by fisheries and métiers which are currently affected by the multiannual plan for the sustainable exploitation of the stock of common sole in the Bay of Biscay (R(EC) No 388/2006)

Terms of Reference:

1. To provide historical series, as far back in time as possible, according to each of the following fishing areas:

ICES division VIIIa, and

ICES division VIIIb

The data should also be broken down by:

Member State:

Type of gear (as laid down in **Annex IV of Commission Decision 2008/949/CE**) for regulated vessels (as laid down in **Article 5 of R(EC) No 388/2006**)

Type of gear (as laid down in **Annex IV of Commission Decision 2008/949/CE**) for unregulated vessels (as laid down in **Article 5 of R(EC) No 388/2006**)

- a. Fishing effort, measured in kW.days, in GT.days and in number of vessels concerned
- b. Fishing capacity in GT
- c. Catches (landings and discards provided separately) of common sole (*Solea solea*) by weight and by numbers at age.
- d. Catches (landings and discards provided separately) of species other than common sole, by weight and by numbers at age

- 2. To assess the fishing effort and catches (landings and discards separately) of common sole and associated species corresponding to vessels of length overall smaller than 10 metres in each fishery, by gear and by Member State.
- 3. To describe the spatial distribution of the fishing effort in units of hours fished deployed in the Bay of Biscay, according to data reported in logbooks on the basis of ICES statistical rectangles, with the aim to determine the spatial distribution of fishing effort and its development among the time period.
- 4. To comment on data quality and to highlight any unexpected evolutions in the estimated parameters which are not in line with the general trend, in particular as regards discard estimates of sole and pelagic species.
- 5. To assess and present in a tabular form the annual partial fishing mortalities of sole, for landings and discards separately, as generated by the major gear types and separately for vessels with and without the special fishing permit (>2 tons of sole/a). The trends in gear group specific partial fishing mortalities shall then be compared with (correlated against) the trends in gear group specific fishing effort in units of kW days at sea of the gears mentioned by Member States.

3.2 Participants

Section 7 of the present report lists the participants of the STECF EWG 13-06 and 13-13.

4 DATA USED

The following sections provide an overview on data definition, acquisition, and evaluation procedures agreed by the expert working group.

There are also provided experts' descriptions regarding the national data features/quality as submitted by the Member States in response to the DCF data call in 2013 for fishing effort regime evaluations.

The national sections provide specific information regarding the nations' methods applied to estimate the days at sea, and if the applied method is regarded as being consistent with the provisions of the DCF or the Control Regulation (Coun. Reg. No. 1224/2009). However, STECF EWG 13-13 is unable to evaluate these national statements.

Furthermore, the national data quality sections for the Baltic provide information regarding the consideration of drifting longlines (LLD) in the effort regulated gear category LONGLINE (LL) of the DCF data calls for fishing effort regime evaluations in 2013 and earlier.

4.1 Report Notations

4.1.1 Baltic Sea

To identify the categories assessed for effort and catch this working group adopts terminology that matches definitions made in the management plan for Baltic cod (R(EC) 1098/2007). This means that all trawls, Danish seines, gill nets, entangling nets or trammel nets with mesh size >=90mm and longlines were assumed to be regulated gears (Table 4.1.1.1). Remaining gear and mesh size combinations were taken to be unregulated gears (Table 4.1.1.2).

Sub-Areas were defined according to Council Regulation (EC) 1098/2007. This means that Subdivision 22-24 is declared as fishing area "A", Subdivision 25-28 as "B" and Subdivision 29-32 as "C".

Table. 4.1.1.1 Regulated gear types, mesh sizes and special conditions as defined in Reg. (EC) No. 1098/2007.

Gear	Mesh Size	SPECON
OTTER	>=90mm	none
OTTER	>=90mm	BACOMA
Danish Seine	>=90mm	none
Danish Seine	>=90mm	BACOMA
Pelagic Trawl	>=90mm	none
Pelagic Trawl	>=90mm	BACOMA
Pelagic Seine	>=90mm	none
Pelagic Seine	>=90mm	BACOMA
Gill net	>=90mm	none
Trammel net	>=90mm	none
BEAM	>=90mm	none
Longlines		

Table 4.1.1.2 Unregulated gear types, mesh sizes and special conditions as defined in Reg. (EC) No. 1098/2007.

Gear	Mesh Size	SPECON
OTTER	<90mm	none
Danish Seine	<90mm	none
Pelagic Trawl	<90mm	none
Pelagic Seine	<90mm	none
Gill net	<90mm	none
Trammel net	<90mm	none
Beam Trawl	<90mm	none
DREDGE	all	none
POTS	all	none

STECF EWG 13-13 noted that the new variable FISHING_ACTIVITY_DAYS was defined in Table D of the 2013 DCF data call to support fishing effort regime evaluations. This new variable required a re-submission of the whole time series of data and generally the Member managed to cover the request. Thus, new analyses are presented in the Baltic Sea section of the presented report.

4.1.2 Cod Zones Multi-annual Plan

The compilation of effort data as described in this report represents a continuation of a process which was initiated in association with the establishment of recovery plans for various European cod and hake stocks.

In addition to other properties, major gear types are used to identify fisheries which are not effort regulated. The notation and categorisation effort regulated fisheries used has reflected that defined in the relevant technical regulations. The most recent revision of the cod recovery plan, and the associated effort regime are described in Regulation 1342/2008.

Under the revised 'cod plan' the following gear groupings are set out in Annex I of the Regulation together with areas in which they apply. Throughout the report reference is made to gears such as TR1, TR2 etc. Under the revised scheme Member States are allocated 'effort pots' in KW*days for each category which can then be managed nationally. EU allocated 'days at sea' per vessel are no longer applicable. The following summary of gear and area codes that apply in the current cod plan is taken from Annex 1 of Regulation 1342/2008.

STECF 13-13 notes that, in accordance with the ToR, the areas of the plan for the North Sea cod were split into Skagerrak (3b1), North Sea and 2 EU (3b2) and Eastern Channel (3b3). The present report provides the requested fisheries parameters by these sub-areas 3b1, 3b2 and 3b3.

ANNEX I

Effort groups are defined by one of the gear groupings set out in point 1 and one of the geographical areas set out in point 2.

- 1. Gear groupings
- (a) Bottom trawls and seines (OTB, OTT, PTB, SDN, SSC, SPR) of mesh:
- TR1 equal to or larger than 100 mm,
- TR2 equal to or larger than 70 mm and less than 100 mm,
- TR3 equal to or larger than 16 mm and less than 32 mm;
- (b) Beam trawls (TBB) of mesh:
- BT1 equal to or larger than 120 mm
- BT2 equal to or larger than 80 mm and less than 120 mm;
- (c) Gill nets, entangling nets (GN);
- (d) Trammel nets (GT);
- (e) Longlines (LL).
- 2. Groupings of geographical areas:

For the purposes of this Annex, the following geographical groupings shall apply:

- (a) Kattegat;
- (b) (i) Skagerrak; (ii) that part of ICES zone IIIa not covered by the Skagerrak and the Kattegat;

ICES zone IV and EC waters of ICES zone IIa; (iii) ICES zone VIId;

- (c) ICES zone VIIa;
- (d) ICES zone VIa.

This categorisation is relatively simple when compared to that of the previous version of the cod recovery plan, and the number of 'special conditions' under which vessels have differing allocations of effort is relatively restricted. The current cod recovery plan makes allowance for vessels which can demonstrate a track record of having caught less than 1,5% cod to be excluded from the effort regime (Regulation 1342/2008, Article 11, para 2b). There is also scope for groups of vessels to be allocated additional effort if they participate in discard reduction or cod avoidance schemes leading to equivalent or greater reductions in cod mortality than the corresponding effort restriction (Regulation 1342/2008, Article 13, para 2c). These conditions are represented in the database as follows:

Condition	Code
Effort deployed by those boats granted the <1.5% derogation excluding them from the effort regime	CPart11
Effort deployed by vessels operating in Member State schemes under Article 13: highly selective gear with less than 1 % cod.	CPart13A
Effort deployed by vessels operating in Member State schemes under Article 13: cod avoiding fishing trips with less than 5% cod.	CPart13B
Effort deployed by vessels operating in Member State schemes under Article 13: cod avoidance or discard reduction plans.	CPart13C
Effort deployed by vessels operating in Member State schemes under Article 13: fisheries off West of Scotland to the west of the cod line.	CPart13D

The new requested aggregation required data resubmission for the years 2009-2011 in addition to the data update for 2012 as defined in the 2013 DCF data call. The majority of the Member States aggregated their figures accordingly and thus the present report comprises updated analyses.

4.1.3 Southern hake and Nephrops

Notation devised for effort categories specified under Annex IIB of Regulation (EC) No. 43/2012 remains the same as in previous reports. Under Annex IIB the gears group is defined under point 2 and special conditions under point 6.1. The group of gears includes bottom trawls, gill nets and bottom long lines all together. In 2007 (Annex IIB in R (EC) No. 41/07) there are separate groups for trawl (3a), for gill nets (3b) and for longline (3c). These gear groups were merged in the 2008 legislation. The working group considered maintaining the 3 separate categories is important in terms of maximising the clarity of information from results. Therefore, gear groups and codifications have been kept as in 2007. Table 4.1.3.1 links notation with gear group and special conditions. So, for example, a vessel using a gill net of mesh size \geq 60mm and conforming to the hake catch composition rules would belong to derogation "3.b IIB61". In order to provide additional insight into fisheries specific impact, the EWG 13-13 also defined trammel nets as a separate metier using the code "3t".

Table. 4.1.3.1 Gear group and special conditions of Annex IIB, Reg. (EC) No. 43/2012

Gear group (Regulation (EC) 41/2007)		Special condition							
Regulation		Mesh size	(D	•			Special condition Effort		Effort Regime
point	Gear	range	Regulation	gulation(EC) 43/2012)	EWG	Derogation			
		(mm)	point	Description	code				
3.a	OTTER	≥ 32		Hake landings <5 tonnes in 2009 or 2010					
3.b	GILL	≥ 60		AND	IIB61	Yes			
3.c	LONGLINE	-	6.1	Nephrops landings <2.5 tonnes in 2009 or 2010					
3.a	OTTER	≥ 32							
3.b	GILL	≥ 60		Other cases	none	No			
3.c	LONGLINE	-							

OTTER = Trawl or Danish seine or "similar gears"

GILL = Gill net

LONGLINES = Bottom longlines

4.1.4 Western Channel sole

Under Annex IIC gear groups are defined under point 3 and special conditions under point 7. Table 4.1.4.1 links notation with gear group and special conditions. So, for example, a vessel using a static net of mesh size less than 220mm belongs to derogation "3.b".

Table. 4.1.4.1 Gear group and special conditions of Annex IIC, Reg. (EC) No. 40/2008. Note that no special conditions are currently in operation under Annex IIC.

Derogation		Mesh size range		Special Condition	
Gear group Point 3	Special condition Point 7	Gear	mesh size mm From	mesh size To mm	
3.a		ВТ	80	inf	none
3.b		GE & TR	0	219	none

BT = Beam Trawl

GE = Gill net or entangling net

TR = Trammel net

4.1.5 Celtic Sea

STECF EWG 13-13 defined the codes of gears as identical to the ones for the cod zones given in section 4.1.2.

4.1.6 Bay of Biscay

STECF EWG 13-13 defined the codes of major gear groups as identical in the 2013 DCF data call with an identification of the boats holding a special fishing permit as defined in R (EC) No 388/2006, encoded as SBcIIIart5.

4.1.7 Western Waters and Deep Sea

STECF EWG 13-13 defined the codes of major gear groups as identical in the 2013 DCF data call with an identification of the boats conducting deep sea trips, encoded as DEEP.

4.2 Data call

The DCF data call 2013 to support fishing effort regime evaluations published on 20 February 2013 with a deadline on 3 May 2013. The data call is fully documented at the JRC DCF web page: https://datacollection.jrc.ec.europa.eu/home

The STECF EWG 13-13 notes that the 2013 data call is largely consistent with the data call issued in 2012 for the same purpose. However, there was one new parameter added to the specific Baltic Sea Table D defined as fishing activity in units of days at sea.

4.3 Data policy, formats and data availability

Originally, the catch and effort data base structures used by STECF-SGRST were developed by the ICES Study Group on the Development of Fishery-based Forecasts (ICES CM 2004/ACFM:11, 41 pp.) with few amendments required for the review of specific fishery regulations. Over time, there have been numerous changes to the original database and the way in which data are stored and accessed in order to reflect changes to some of the effort regimes and to accommodate data from deep-water and Fully Documented Fisheries.

Experts reported on national data policies for the national fleet specific landings, discards and effort data and generally supported the continued use of the data by STECF but with required permission for any use by other scientific or non-scientific groups. This implies that national experts need to be contacted for their consent before granting access to the data.

JRC requests to be informed about applications for data access and any notifications.

4.3.1 Data availability Table A Catch 2003-2012

Table 4.3.1.1 Overview of the catch data submission for the 2013 Fishing Effort Regimes data call. In bold the dates when catch data where submitted after the official submission deadline (3th of May).

Country	Data Submission	First Submission (Deadline 3-May)	Last Re-submission
BEL	DCF website	18-April	
DEU	DCF website	2-May	5-May
DNK	DCF website	1-May	15-May
ESP	DCF website/File corrected during the meeting	13-May	8-October
EST	DCF website	3-May	
FIN	DCF website	3-May	
FRA	DCF website	17-May	20-June
GBR	DCF website/	12-Jun	16-June
GBR SCO	DCF website	3-May	9-October (NIR)
IRL	DCF website	3-May	
LTU	DCF website	2-May	
LVA	DCF website	30-Apr	
NLD	DCF website	15-May	
POL	DCF website	7-May	
PTR	DCF website/File corrected during the meeting	3-May	17-June
SWE	DCF website	1-May	

4.3.1.1 Belgium

A number of 2676 records were submitted for 2012. No update for previous year's data was needed. There were few records with missing mesh size information for gear types such as trammels, dredges and gillnets. Moreover, many records regard species that are not listed in the official data call, like BLL, RJN, RJM, RJC and RJH. The only special condition reported for 2012 data was SBCIIIart5. This year, all officially recorded species by the Belgian authorities were provided. However, it should be noted that the sum of all provided landings do not match the total Belgian landings as there are a minority of species landed and recorded as e.g. "other demersal" or "other crustacean" which are not provided to the EGW 13-13.

Belgium provided fleet specific landings data for 2003-2012 derived from official logbook databases for all vessels \geq 10 meters. The data covers all areas in which the Belgian fleets are active and conform to the requested aggregation, by quarter, area, gear and mesh sizes.

The species provided are: anglerfish, bib, brill, brown shrimp, cod, conger eel, cuttlefish, dab, dogfish, edible crab, flounder, great scallop, grey gurnard, haddock, hake, horse mackerel, lemon sole, ling, mackerel, megrim, Nephrops, octopus, plaice, pollack, red gurnard, saithe, sea bass, skates and rays, sole, spurdog, squid, striped mullet, tub gurnard, turbot, whelk, whitch flounder, whiting and wolffish.

The age composition on landings for sole and plaice in ICES subdivisions IV, VIIa, VIId, VIIfg and sole in subdivision VIIIa and b have been provided by quarter for the Belgian beam trawlers. The total numbers of samples, as well as numbers at aged by quarter have been apportioned in the same ratio as total quarterly beam trawl fleet landings to annual landings.

Discard data for 2004-2011 were provided from the Belgian Beam trawl fleet for the following species: anglerfish, brill, cod, dab, haddock, hake, lemon sole, plaice, saithe, sole, skates and rays, turbot and whiting. For 2012 discard information was also provided for bib, ling, Striped mullet, pollack and whitch flounder The areas covered are 4, 7a, 7d, 7e, 7f, 7g, 8a and 8b. Belgian discard data represent all ages and are disaggregation by age for cod in areas 4, 7a, 7e, 7f and 7g; for sole in areas 4, 7a, 7d, 7f, 7g, 8a and 8b; and for plaice in areas 4, 7a, 7d, 7f and 7g. The discards information for the other species mentioned above are without disaggregation by age. Information by area for all observer-trips during the year has been merged together, giving an annual percentage of discards estimate per species. The annual estimates of discard rate have been assumed to apply in each of the 4 quarters.

There is no information on misreporting. The landings in the database are based on combined information of logbook data and sale slips. The actual landed weight is split according the logbook information on hours fished in the respective rectangles.

As Belgium does not have trip-by-trip information on the true mesh size for its fleets for 2003-2006, Belgium (as well as other countries) agreed to assume certain mesh sizes for its beam trawler fleets. Beamers operating in the Bay of Biscay (VIIIa,b) were assumed to use a 70-79 mm mesh size as this is the minimum legal mesh size in that area for beamers. For the North Sea, the trips were split according to the rectangles reported in the logbooks, and mesh sizes were allocated in line with Council Regulation (EC) N° 2056/2001. This regulation stipulates that beam trawlers are prohibited to use less than 120 mm in ICES Division IV to the north of 56° 00' N. Therefore all beam trawl information from this part of ICES Division IV was accounted against an assumed >120mm mesh size. The same regulation also stipulates that within the rectangle with coordinates along the east coast of the UK between 55° 00' N and 56° 00' N and the points 55° 00' N $- 05^{\circ}$ 00' E and 56° 00' N $- 05^{\circ}$ 00' E, beam trawlers can use 100 to 119 mm mesh size. Here also it was assumed that the mesh size used by the Belgian Beam trawl fleet was 100-119 mm. For the rest of ICES Division IV (the southern part) a mesh size of 80-89 mm was assumed for the beam trawlers. Apart from these assumed mesh size which are based on rectangle information from logbooks, it was also assumed that the shrimp fishery used a mesh size of 16-31 mm. The mesh size of the beam trawl fleets in the other area's was assumed to be 80-89 mm. Since 2007 mesh sizes used by beam trawls operating in different areas have been based on the true mesh sizes used on each trip.

The Belgian gear categories are: beam, dredge, gill, longline, otter, and trammel. For trammel nets, no assumptions of mesh sizes were made. The only specific condition reported for 2012 data was SBCIIIart5 for all Belgian vessels operating in areas 8a and 8b.

Belgium did not provide any information for vessels under 10m.

4.3.1.2 Denmark

A number of 154019 records were submitted for 2003 - 2012, the whole time series. There were few records with missing gear information as well as few records for pots, dem_seines, gills, otters without any mesh size reported. No BACOMA or T90 specific conditions.

Danish data were submitted on time, and with the requested information for all tables. However, a major revision was performed in 2012, and full time series were submitted for the tables A-D, thus ensuring improved consistency in the extraction methods used across years.

The revised extraction procedures have been made compatible with the RDB FishFrame database, in order to get a unique raising procedure for all Danish catch information (discards and age-based information), thus improving the consistency of data reported to the various forums within e.g. ICES and STECF. As such, data raised in FishFrame will now be used for the STECF Effort data call. Where the categories in the FishFrame format and the STECF Effort format are not the same, the data are scaled according to the landings.

All records (154019 rows in Table A) passed the Data Submission filters, and only a very small proportion of the reported Danish fisheries activities have missing information. The resubmission of older years means that the information on previous special conditions implemented between 2004 and 2008 during the first cod plan is not available anymore.

The Danish 2012 submission still does not cover the special conditions BACOMA or T90 in the Baltic, as these are not compulsory to report in logbooks according to control regulations 1224/2009 and 404/2011.

4.3.1.3 Estonia

A number of 532 records were submitted for 2012. No updates for previous year's data. There were many records with inconsistent mesh size ranges.

STECF-EWG 13-13 notes that discards were provided for flounder only. The reason for that is the discarding ban in the Estonian fishery in the Baltic Sea according to MS legislation. The data set presented includes many inconsistent mesh sizes. The drifting long —lines are not used in Estonian fishery.

4.3.1.4 Finland

A number of 385 records were submitted for 2012. No updates for previous year's data. Finish data were submitted in an inconsistent format together with a hint towards the data confidentiality clause in the DCF.

STECF EWG 13-13 could not make use of the Finish data given its specific ToR.

4.3.1.5 France

A number of 20538 records were submitted for 2012. No updates for previous years data. There were few records with missing area information as well as records for pots without any mesh size reported. Only data regarding species and gears that are requested in the official data call have been submitted as a consequence records regarding species or gears not requested are missing.

The specific conditions Cpart11, Cpart13B, IIB72ab, DEEP and SBcIIIart5 have been provided for eligible vessels and fisheries for 2012. The data were not updated for the 2009-2011 on this specific issue.

France provided landings data for 2003-2012 derived from official logbook databases for all registered vessels 10m and over and from monthly declarative forms (contain declarative monthly data on fishing effort and catches per species by dates, locations and gears) for all registered vessels under 10m (logbooks are not mandatory for these vessels but they are covered by these monthly

declarative forms). The data covers all areas requested in the data call and conforms to the requested aggregation, by quarter, area, gear and mesh sizes.

Neither biological data (age data) nor discards data were provided. Discards data have been provided the years before for 2010 and 2011 but care is required in the use of these data to draw firm conclusions about catch composition.

4.3.1.6 Germany

A number of 16377 records were submitted for 2004 and 2009 - 2012 time periods. There were few records with missing gear information as well as few records for pots, dem_seines, gills, otters without any mesh size reported.

Fleet specific landings and estimated discard data were provided as outlined in the data call for 2003-2012 derived from official logbook data covering all vessels ≥10m. For the Baltic information for vessels >=8m is provided. Information on landings are provided for vessels <10m (North Sea) and <8m (Baltic) based on landings declarations from these vessels in a more aggregated format as logbooks are not mandatory for these vessels. All data provided do not include unallocated landings. The estimation of discards is based on about 20-30 observer trips per year. It is impossible to cover all quarter-gear-mesh size combinations in the data call. Therefore, final discard estimates in this report are to some extent based on observations from other countries. The data consider the aggregation by quarter, area, gear, mesh size, and existing derogations including special conditions of 8.1.a, 8.1.c, 8.1.d, 8.1.e and 8.1.f for the years 2003-2008 as requested. For 2009 onwards the special conditions from the new cod management plan are used. Some few records did not pass the Data Submission filters when some information on e.g. gear, mesh size was missing, but these records represent only a very small proportion of the reported German fisheries activities. They are related to fishing operations with seldom gears for which no code is available in the STECF data call.

4.3.1.7 Ireland

A number of 73788 records were submitted for 2009 - 2012. There were few records with missing gear information as well as few records for pots, gills, otters without any mesh size reported.

In 2013 Ireland provided fleet specific landings data for 2009-2012 derived from declared landings within the national logbook database (IFIS) for all vessels ≥10 meters in length. Operational landings information was used to provide landings data within the Biologically Sensitive Area (BSA). All species requested by the group and landed by Irish vessels have been provided in the requested aggregation. The following special condition information was supplied: none, CPart13a, CPart13b, CPart13c, CPart13d, CPart11 and DEEP. SPECON DEEP is a duplication of effort within the relevant areas. This submission adds to unchanged 2003-2008 data submitted in 2012.

Under 10 meter vessels are not required to complete logbooks, therefore landings data from these vessels are obtained from monthly reports. These reports provide species live weight by ICES area on a monthly basis. No vessel, gear, or effort information is recorded. There is some doubt as to the accuracy of these monthly reports.

It was not possible to accurately aggregate data to the level of EU, coast, and RFMO. Data was assigned according to the following: Where an EU category existed within an area, all data from that area was categorised as EU, with the exception of ICES division X assumed to be RFMO. Those ICES divisions without an EU category where assumed as 1 coast and 2 coast.

There is no quantitative information on misreporting although area misreporting for cod is know to be an issue between VIIg and VIIa.

Minor revisions were made to the 2009-2011 data due to continuing revisions and improvements to the national database.

Irish biological landings information is not recorded with mesh size information, this was reconstructed by linking to the logbooks database, where possible. The age composition of the landings was estimated for each quarter of 2009-2012, by gear, area and species (any higher level of disaggregation would violate the sampling design). The age compositions were then assigned to each of the remaining categories (vessel_length; mesh,fishery; specon) based on the reported landings in each of these categories.

Similarly, discard data were raised up to the fleet level for each year, quarter, gear, area and species. Fishing effort (hours fished) was used for all species as the auxiliary variable. The age compositions were then assigned to each of the remaining categories (vessel_length; mesh,fishery; specon) based on the effort (kWdays) in each of these categories. Discards that were observed to be zero are included.

Warnings:

- 1) Differences between ICES stock assessment working group data STECF data will arise because different levels of stratification were used; we applied the most disaggregated level of stratification possible for the STECF data call, while working group estimates are generally produced by merging a number of strata. Additionally, the discard estimates for the working groups are produced using different auxiliary variables for certain stocks. Because of the large number of species involved it was decided to use a single auxiliary variable for all species.
- 2) Because the data are estimated by year, quarter, gear and area, it is meaningless to compare age compositions between vessel length categories, mesh size categories and special conditions; the age composition will be identical for all of these sub-categories)
- 3) Most categories (year, quarter, vessel length, gear, mesh etc) have not been sampled and sample numbers are very low for categories that have been sampled. Therefore the biological data should be treated with extreme caution. It would be more useful to ask for the raw data so this can be aggregated at whatever level is appropriate.
- 4) There will be many cases where a year-quarter-area-gear-vessel length-mesh-fishery-specon combination has not been sampled but there will be biological information (including 'observed' zero values for discards). This is because the biological information is estimated for year-quarter-area-gear combinations and then assigned to the various year-quarter-area-gear-vessel length-mesh-fishery-specon combinations based on landings or effort.

It is possible for numbers-at-age to be <0.001 thousand (i.e. less than one fish). This can arise when a certain year-quarter-area-gear-vessel length-mesh-fishery-specon combination has a very small amount of effort or landings. The numbers-at-age estimated for the year-quarter-area-gear combination will then be multiplied by a very small number. When these numbers are rounded to three decimals, a zero value can result.

4.3.1.8 Latvia

A number of 147 records were submitted for 2012. No updates for previous year's data.

Latvian data were submitted on time and in accordance with required format. Fleet specific landings, estimated discards and biological data were provided for 2012 only and appended to the previous time

series. All data concerning fishing operations e.g. gear, mesh size, area etc. were derived from logbooks and covered all fleet segments.

Discards data were collected under the Latvian National Programme according the sampling strategy. The discard volume was determined in cod fishery: GNS_DEF_110-156_0_0 and OTB_DEF_>=105_1_110. The sampling scheme does not cover all quarter-gear-mesh size combinations in the data call.

Latvian fishermen do not traditionally use drifting lines (LLD).

4.3.1.9 Lithuania

A number of 141 records were submitted for 2012. No updates for previous year's data.

STECF EWG 13-13 notes that discards for cod were estimated and provided only.

Lithuanian fishermen do not traditionally use drifting lines (LLD).

4.3.1.10 The Netherlands

The Netherlands provided landings and discard data for 2012. No updates for previous years were submitted. It is noted however that landings and discards data for all species and fisheries of previous years is being reanalyzed. Results so far indicate that there may be differences between the data generated by the Dutch monitoring and raising programme and the data that is contained in the STECF database. If the analysis is being completed in time, it will be considered to resubmit the complete time series before the October 2013 meeting of the STECF EWG.

After correction of some records all records (1788 rows in Table A) passed the Data Submission filters.

4.3.1.11 Poland

A number of 1592 records were submitted for 2012. No updates for previous year's data. No mesh size range information reported for vessels under 10 meters. No specific condition reported. Few records for vessels > 10m with no mesh size range information mainly for pots and gills. Only 18 records with discard information for COD, FLX, TUR, PLE and FPP.

The following section is kept unchanged from last year report: Comparison of 2011 mesh size data with 2004-2010 shows that they are not consistent and significantly different. Neither mesh size nor SPECON (BACOMA window, T90) information were available from the database for 2004-2010. Thus these information were estimated based on expert knowledge and assumptions. Targeted species assemblages (métier), actually fish species caught and gear used were taken into account to identify mesh size. In 2011 data about mesh size were calculated based on actual information derived from logbooks, this caused that many "-1" values (missing values) which were reported for 2001-2010, become known and changed into "16-31" or "32-54" in 2011. Information on discards was provided for cod (2003-2011) taken in fisheries targeting cod and discards for herring, sprat and flounder was delivered for 2011 only.

4.3.1.12 Portugal

Portugal resubmitted data on landings for the period 2003-2011 and new data for 2012 for all species, correcting to tons what was provided in 2012 in kilograms. Data from all years were resubmitted in kilograms and not in tons as requested in the data call. No differences were found between the resubmitted data in 2012 and the data submitted in 2011.

Some mistakes related to the presence of duplicated lines for the area 9b EU with aggregated data were detected and corrected. The duplicates were allocated to the area 9b RFMO, according to the ID field. The fields "NO_SAMPLES_LANDINGS" or "NO_LENGTH_MEASUREMENTS_LANDINGS" presenting the value "-2" resulting from lines aggregation were corrected to "-1", meaning that the information is not available. Although most of inconsistencies from previous years in the combination of GEAR*SPECON have been corrected in the data submitted this year, there are still a few mistakes remaining as, e.g. for gears "PEL_TRAWL", "PEL_SEINE" and "POTS" with special condition "DEEP".

In the period 2004-2010, hake discards were provided, assuming that they were proportional to the trawl landings. However, considering that, according to the Data Collection Framework raising procedures, discards are raised using effort and not landings and that the data call grouping is not consistent with the sampled DCF métiers, in 2012 hake discards from Portugal were removed from the database.

The Portuguese annual discard estimates have high coefficients of variation (> 30%). The assignment of these data to the data call disaggregated métiers when the métiers do not perfectly match is not possible without making strong assumptions different from those used in the established raising procedures and that could lead to completely different total discard estimates.

Therefore, in 2012, data on hake annual discards by DCF métiers were provided and included in tables and figures in aggregated form.

At present, the procedure used to raise discards from haul to fleet level in the Portuguese trawl fisheries is adapted from Fernandes et al. (2010) (Jardim and Fernandes, in prep.). Using this procedure, species with low frequency of occurrence or abundance in discards (i.e., a large number of zeros in the data set) cannot be reliably estimated at fleet level (Jardim et al., 2011). The frequency of occurrence and abundance of most species in the discards of the Portuguese bottom trawl fleet was below 30%. Consequently, annual trawl discard volumes and length frequencies at fleet level were only estimated for some métiers, species and years.

In what concerns gillnets and trammel nets, sampled from late 2009 onwards, the sampling methodologies used in these fisheries were only recently standardized (Prista and Jardim, 2011). These are only two of the several métiers that can be performed by the so-called Portuguese polyvalent fleet (or multi-gear fleet). Besides nets, the vessels in this fleet are also frequently licensed to use pots and bottom longlines, and frequently carry out several métiers in a single fishing trip and/or switch métiers during the year. Such uncertainties in determining fishing effort at métier level, along with low spatial-temporal coverage of fleet activity and difficulties in raising data from multi-métier fishing trips to fleet level have hampered the estimation of gillnet and trammel net discards. No estimates at fleet level have been performed to date. Bottom longlines are not among the selected métiers for onboard sampling under the DCF National program.

In 2013, discard estimates are presented only for bottom otter trawl. The problem of different metier aggregation in DCF and in the data call request is not yet solved and the total discards by species were allocated to the data call more disaggregated metiers proportionally to their landings, although this procedure is considered inappropriate. In this way, discards are presented for hake and blue whiting for the period 2004-2012 and for some years for Norway lobster and mackerel. Zero discards have been reported for black scabbard fish, sole, sea breams, several species of sharks and *Nephrops* in most of the years,

No discard estimates were presented for other metiers than trawl due to the reasons presented above.

Age data: There is a serious concern about European hake growth. Tagging experiences show that growth rate could be two times higher than expected, although the true value is uncertain (ICES, 2009). At present, the assessment model is length based (ICES, 2010a).

No age data were provided for hake neither for the other main species. For Norway lobster, there is not a standardized ageing methodology.

4.3.1.13 Spain

Data provided in 2013:

Between May and June of 2013 Spain provided catch data from 2012 by quarter, vessel length range, gear, mesh size range and metier (fishery). Landings were provided for BSA; ICES Subareas 1, 2, 8, 10 and 12; ICES Divisions 5b, 6a, 6b, 7a, 7b, 7c, 7d, 7e, 7f, 7g, 7h, 7j, 7k, 8a, 8b, 8c, 8d, 8e, 9a, 9b and 14b and CECAF Divisions 34.1.1, 34.1.2, 34.1.3 and 34.2.0. Landings were divided by COAST/EU/RFMO zones where appropriate. All landings were split in special condition DEEP and NONE (according to the Effort Regime in Deep Sea fisheries). In ICES Divisions 8c and 9a there were not special condition (IIB72ab) landings (Hake Plan) because no vessel in 2012 has applied for that condition in relation to hake and *Nephrops* recovery plan (Annex IIB of R(EU) No 43/2012). Landings were not divided in either Cod or Sole Plan special conditions owing to lack of time. Landings were provided for 83 of the 122 species of the 2013 data call (the other 39 do not appear in our fisheries). No information about vessels under 10 meters was provided since data source was logbooks, but 2012 Annex IIB (Hake Recovery Plan in 8c & 9a), which is the main Plan for Spain, does not deal with vessels under 10 meters.

Discard data were calculated through the appropriated Spanish discard/landing rate for 8c & 9a gear otter for the following species and years: ANF (2012), HKE (2012), JAX (2012), LEZ (2012), MAC (2007 & 2012), NEP (2004-2005 & 2012), SHO (2005), WHB (2004-2009, 2012). If there were not landings of one species, discard could not have been calculated. This is expected to be corrected in the future raising by effort. 8c & 9a otter Spanish HKE discards from 2004-2009 have been already provided to the group in 2010 (see below). For other cases (ALF 2012, ANE 2007-2009, BLI 2012, BSF 2006-2007, COP 2012, COE 2012, CRE 2012, DCA 2009, DGS 2012, GAG 2012, HAL 2012, LEM 2012, LIN 2012, MAC 2003-2006 & 2008-2009, NEP 2006-2009, POK 2012, POL 2012, RNG 2012, SBR 2004-2009 & 2012, SCE 2012, SOL 2005-2009 & 2012, TUR 2012, WHG 2007 & 2012 and WIT 2012) Portuguese discard rates were applied in order to calculate the Spanish discards in 9a against the criterion of the 8c & 9a experts in the EWG. In all those cases Portuguese discard rates were cero except in MAC 2005 and HAD, LEM, RNG, WHG and WIT 2012.

No of samples of landings, discards and catch and No of length and age measurements of landings, discards and catch were not provided for 2012 due to the lack of time.

Hake and monkfish ages were not provided since there are relevant doubts in the correspondent international working groups about the ageing of these species (see February 2010 STECF Hake Benchmark and 2011-2013 ICES WGHMM reports). Nephrops ages were not provided because there is not a standardized methodology ageing in this species. Other species age information was not provided because lack of time.

Spanish catch data described above were revised through a re-submission on 26 September 2013. EWG13-13 notes that the data re-submission comprises 55,842 records. However, 37,324 records do not specify the vessel length. 3,515 records do not specify the gear used. 953 records have inconsistent area codes, i.e. 6b, 7c, 7j, 8d, 9b, 14b, 34.1.1, 34.1.2. and 34.1.3, as these areas are defined with zonal attachments, i.e. COAST, EU or RFMO. 7,334 records are indicated as duplicates,

that means that your data are not fully aggregated over the aggregation fields requested, i.e. COUNTRY, YEAR, QUARTER, VESSEL_LENGTH, GEAR, MESH_SIZE_RANGE, FISHERY, AREA, SPECON, SPECIES. Moreover, certain discard estimates were revised again during the EWG 13-13 on 8 October 2013.

Data provided in 2011 and 2012:

Spain did not provide data in 2011 and 2012; therefore, there are not 2010 and 2011 data.

4.3.1.14 Sweden

A number of 10652 records were submitted for 2011 - 2012 time period. There were few records with missing gear information as well as few records for pots, dem_seines and gills without any mesh size reported.

Sweden has provided catch data, both landings and discards in the required format for the years 2003-2012, including vessels <10m LOA. Age distribution data were submitted for cod landings and discards in the Baltic, Skagerrak and Kattegat and for plaice discards in Skagerrak and Kattegat. Landings in tonnes were retrieved from logbooks and the age distribution data for landings were collected by market sampling. The discard data were collected under the Swedish on board discard sampling programme. Discard data were raised according to the national sampling schemes, stratified by nationally identified fisheries and not by the highly disaggregated vessel length classes and mesh size groups in the STECF data call, to maintain as much stability as possible in the raising procedure and not compromise the quality of the data by extrapolations from very few samples. Discards were then allocated to the more disaggregated format proportionally to the landings of the target species used in the raising. This has the implication that it is not always possible to compare discard rates or age distributions between gears and mesh sizes in the format of the STECF data base since they could have been estimated from the same samples. Vessel length classes were not considered in the stratification and raising. No discards have been submitted for fisheries not covered by the sampling programme. The main nationally identified Swedish fisheries that were sampled for discards (each one treated as one stratum) in 2012 were:

In the Baltic:

- Trawls targeting cod (Mesh size >=105mm, including mid water trawls targeting cod and both trawls with BACOMA exit window and T90 mesh)
- Passive gears (including both gillnets and trammel nets)

In Skagerrak and Kattegat (Skagerrak and Kattegat being treated as separate strata):

- Trawls targeting demersal fish/Nephrops, with a mesh size of >=90mm.(including both TR2 and TR1)
- Trawls targeting Nephrops, with a 35mm sorting grid and a mesh size of 70-89mm (under derogation CPart11 in the cod plan)
- Demersal Pandalus trawls without a sorting grid (Mesh size 32-54mm)
- Demersal Pandalus trawls with a 19mm sorting grid (Mesh size 32-54mm)

Landings of cod have been prohibited in Sweden during parts of 2003, 2004, 2005, 2006 and 2012 which has resulted in discard of adult cod. Gillnets were not sampled in Skagerrak or Kattegat, meaning that discards for those gears have been extrapolated in the STECF data base from Danish discard data.

Drifting longlines, targeting salmon, were included in the "Longline" category in the data set.

Since hand and pole lines are under effort regulation in the cod plan in the Baltic Sea but not in Skagerrak or Kattegat, and the "Longline" category is considered a regulated gear in the STECF data base, those gears were included in the "Longline" category in the Baltic and not in other areas.

There is no information on misreporting.

4.3.1.15 United Kingdom

England, Wales and Northern Ireland: Data were submitted covering the period 2009-2012, with 2009-2011 revised to include splitting the CPart13 landings, discards and biological data into the separate components of CPart13a, CPart13b, CPart13c and CPart13d. Where samples were available (covering 2011 and 2012), Fully Documented Fishery vessels were treated separately for discard and biological raising for the species under full documentation (i.e. cod in the North Sea, sole in the western channel), while discards and biological data raising for other species was kept consistent with non-FDF vessels. For 2011 and 2012 data years, AFBNI provided new data on discard estimates and biological sampling, replacing the previously submitted data. As in previous years, there were a number of records with missing mesh size information and a combination of DEEP specific conditions and BSA area which were ignored during the analysis. Specific conditions reported were DEEP, CPart11, CPart13a,b,c, FDFIIA and FDFIIC.

Voyage information on the non-Scottish UK national data base, FAD, calculates days at sea based on the dates of the voyage start and the voyage end. Voyage information on the Scottish national data base, FIN, calculates days at sea as the number of 24 hour periods in the duration of the voyage, rounded up. Vessels landing into Scotland are entered onto FIN; those landing into the rest of the UK are entered into FAD. Scottish vessels landing out with the UK are entered into FIN; Rest UK vessels landing outwith the UK are entered into FAD. Because most voyages by Rest UK vessels are entered into FAD; the calculation of days at sea is generally date based. Days at sea for voyages leaving on the same date as the return of the previous voyage are adjusted down by half a day applied to each voyage involved.

The information is not available on a comparable basis before 2003 because this was before the completion of the EU wide vessel gross tonnage recalibration exercise. Activity and gear is assessed daily; where activity in a single day covers more than one area (ICES Rectangle level) or more than one gear; that day's effort is apportioned equally between the area/gears recorded.

Vessels <10m: No specific consideration is given to estimating discards for vessels < 10m and discard sampling staff tend not to sail on vessels in the 10 metre and under category. In 2003 the Scottish Fisheries Statistics showed landings of the main commercial demersal species from vessels <=10 m to be below the level where sampling intensities as defined in Appendix XV (Section H) of regulation (EC) 1639/2001 (Table 2) requires sampling to be carried out. Estimation of demersal discards for vessels <10m is based on the assumption that all vessels targeting Nephrops and operating in the same sampling area have the same catching and discarding characteristics.

Discard data from Northern Ireland were revised for 2011 and 2012 on 9 October 2013 during EWG 13-13.

Scotland: Separate submission without significant data deficiencies.

4.3.2 Data availability Table B nominal fishing effort 2000-2012

Table 4.3.2.1 Overview of the effort data submission for the 2013 Fishing Effort Regimes data call. In bold the dates when effort data where submitted after the official submission deadline (3th of May).

Country	Data Submission	First Submission (Deadline 3-May)	Last Re-submission
BEL	DCF website	18-April	1 October
DEU	DCF website	2-May	
DNK	DCF website	1-May	28-May
ESP	DCF website	29-May	18-June
EST	DCF website	3-May	
FIN	DCF website	3-May	
FRA	DCF website	21-May	11-June
GBR	DCF website	5-June	16-June
GBR SCO	DCF website	26-April	24 October
IRL	DCF website	30-April	15-May
LTU	DCF website	1-May	2-May
LVA	DCF website	30-April	30-April
NLD	DCF website	15-May	15-May
POL	DCF website	7-May	
PTR	DCF website	3-May	17-June
SWE	DCF website	1-May	

4.3.2.1 Belgium

Data submitted for 2012 compose of 164 records in total. No update for previous year's data was needed. There were few records submitted with no mesh size information for trammels, gillnet and dredges. The only specific condition reported for 2012 data was SBCIIIart5.

Belgium did not provide any information for vessels under 10m.

Belgium provided effort data (kw*days at sea) for 2003-2012 by quarter, for all relevant areas where the Belgian fleets are operational. Since 2003 effort (and landings) are split proportionally over the rectangles as effort became available by rectangle from logbook data. As Belgium does not have trip-by-trip information on the true mesh size for its fleets for 2003-2006, Belgium (as well as other countries) agreed to assume certain mesh sizes for its beam trawler fleets. Beamers operating in area VIIIa,b were assumed to use a 70-79 mm mesh size as this is the minimum legal mesh size in that area for beamers. For the North Sea, the trips were split according to the rectangles reported in the logbooks, and mesh sizes were allocated in line with Council Regulation (EC) N° 2056/2001. This regulation stipulates that beam trawlers are prohibited to use less than 120 mm in ICES Division IV to the north of 56° 00' N. Therefore all beam trawl information from this part of ICES Division IV was accounted against an assumed >120mm mesh size. The same regulation also stipulates that within the

rectangle with coordinates along the east coast of the UK between 55° 00' N and 56° 00' N and the points 55° 00' N -05° 00' E and 56° 00' N -05° 00' E, beam trawlers can use 100 to 119 mm mesh size. Here also it was assumed that the mesh size used by the Belgian Beam trawl fleet was 100-119 mm. For the rest of ICES Division IV (the southern part) a mesh size of 80-89 mm was assumed for the beam trawlers. Apart from these assumed mesh size which are based on rectangle information from logbooks, it was also assumed that the shrimp fishery used a mesh size of 16-31 mm. The mesh size of the beam trawl fleets in the other area's was assumed to be 80-89 mm. Since 2007 mesh sizes used by beam trawls operating in different areas have been based on the true mesh sizes used on each trip.

Trip information on the national data base calculates days at sea based on the voyage start date and the voyage end date. For example, a voyage starting on one date and returning (landing) the following day will be accounted for 2 days at sea. Each day a vessel is at sea is counted only once with the effort details allocated according to the longest voyage on that date. Nominal effort in kwdays is calculated as days at sea multiplied by the power of the vessel in kilowatts at the trip landing date. Activity and gear is assessed daily; where activity in a single day covers more than one area or more than one gear; that day's effort is allocated completely to the area/gear with the longest activity that day. Based on the detailed information given it remains unclear to the STECF EWG 13-13 if the data are consistent with Control or DCF Regulation.

The Belgian gear categories are: beam, dredge, gill, longline, otter, and trammel. For trammel nets, no assumptions of mesh sizes were made. The only specific condition reported for 2012 data was SBCIIIart5 for all Belgian vessels operating in areas 8a and 8b.

The data described above were re-submitted for the period 2010-2012. The re-submission was conducted on 1 October 2013. The resubmission comprised 466 records.

4.3.2.2 Denmark

4.3.2.2.1 Description of Danish procedures

Data submitted for 2000 - 2012, the whole time series, compose of 27537 records in total. There were few records with missing gear information as well as few records for pots, dem_seines, gills, otters without any mesh size reported. No BACOMA or T90 specific conditions.

Danish data were submitted on time, and with the requested information for all tables. However, a major revision was performed in 2012, and full time series were submitted for the tables A-D, thus ensuring improved consistency in the extraction methods used across years.

Major changes have been brought to the effort data. Until 2012 the effort data (Table B) were calculated and provided by the Danish AgriFish Agency, using the logbook register and the sales slips register separately. The other datasets were provided by DTU Aqua using the DFAD database, which is a coupling of the logbook register, the sales slips register and the vessel register based on a logbook sheet number. Maintaining two different systems increases the risk of errors. Running two different types of data sources also increases the risk of discrepancies between the resulting datasets, as the extraction procedures used slightly different algorithms. Some examples are given below:

• SMALL VESSELS: In the previous procedure, logbook data were used systematically for vessels larger than 8 meters in the Baltic Sea, and larger than 10m for other areas, and sale slips were used systematically for smaller vessels, and one trip (landing date) counted as one day. In the revised 2013 procedure, the merged logbook - sales slips database shows that some large vessels may have some sale slips but no logbooks, or that some small vessels actually fill in logbooks and have a gear. That means that some trips that had gear=-1 in the

old method will have a gear assigned in the 2013 method. There is therefore more accuracy in using the combined database throughout, and the "none" gear category has globally diminished.

- AREA: In the previous procedure area for the effort data set was set to the logbook area when the logbook was used (the larger vessels) and to sales slips area when the sales slips data were used (the smaller vessels). In the 2013 procedure, there are still some cases where the logbook area differs from the sales slips area, or where the Baltic subdivision is missing. Therefore a standard procedure for area assignment has been implemented for setting the "DFAD area", following the rules:
 - 1. If there is a logbook area this is used
 - 2. If the trip does not have a logbook the sales slips area is used
 - 3. In the Baltic Sea if the square is 39G4 and the logbook area is 3D and the sales slip area contains information about the subdivision (3D24 or 3D25), the sales slips area is used.
 - 4. If the area is 3D, the ICES rectangle information is used to assign the subdivision.
 - 5. If the area is still 3D (no ICES rectangle information is available), the sales slips area is used.
 - 6. If the area is still 3D the area of the previous trip with the same vessel within 3D with a subdivision assigned, this subdivision is used.
 - 7. If the area is still 3D the most used subdivision for that vessel is used.
 - 8. If the area is still 3D the most used subdivision during the year is used.

The last steps are mainly used on old data.

• SPECON:

- O DEEP: The deep-water fishery is defined as option (2) catch of Deep Sea species $retained > 100 \ kg$. For the effort data this has been calculated from the logbook catch registration, which is the weight estimated by the fisherman. In DFAD the weights from the sales slips are used. When the weights of deep water species are close to 100 kg, the difference in the weight estimated and measured might lead to a difference in which trips goes into the DEEP specific condition.
- o FDFBAL: In the Baltic Sea the fishermen are not obliged to keep the camera turned on. The fully documented fishery by the Danish AgriFish Agency is only implemented in the North Sea and Skagerrak.

Additionally, the various issues mentioned in last year's report have been corrected.

All records (27537 rows in Table B) passed the Data Submission filters, and only a very small proportion of the reported Danish fisheries activities have missing information. The resubmission of older years means that the information on previous special conditions implemented between 2004 and 2008 during the first cod plan is not available anymore.

The Danish 2012 submission still does not cover the special conditions BACOMA or T90 in the Baltic, as these are not compulsory to report in logbooks according to control regulations 1224/2009 and 404/2011.

4.3.2.2.2 Concerns about the data call

On May 2nd, the Danish AgriFish Agency wrote to the EC about a number of concerns regarding the data call. These concerns are reported below:

"In relation to upload of the Danish figures, the AgriFish Agency is of the opinion that it is necessary to provide The Commission with comments to the methodology for compiling the figures in order to have transparency in the process and ensure proper use and interpretation of the data. Further it is also necessary to address a few remarks to the annexes of the data call in order to ensure a common understanding.

Our comments below refer to point B and D and corresponding appendixes regarding effort data for 2000-2012 (point B and D):

- 1) With regard to point 6 GEAR (B). In Council Regulation 1342/2008, annex 1, the different gear segments are defined by stating the statistical code for the gear(s) in parenthesis. However, the gear coding in appendix 3 of the data call is not consistent with the gear coding of Council Regulation 1342/2008. This is the case for GILL and LONGLINE. GILL includes codes GNS and GND, however none of the two statistical codes are mentioned in 1342/2008 which only mentions GN which is a general code for Gill Nets. This causes confusion when compiling data. With regard to LONGLINE only LL is mentioned in Regulation 1342/2008 but LONGLINE includes poles (LHP), drifting lines (LLD) etc. Again this causes confusion in establishing a link to existing administrative procedures.
- 2) Further point 6 GEAR (B) and 4 GEAR (D): In Council Regulation 1098/2007 there are no specific gear codes mentioned, but in Council Regulation 1124/2010 (Tac and Quota Regulation for the Baltic 2011), Annex 2, there are mentioned a wide range of gears, although not with a statistical code, which all has to have a mesh size of 90 mm or above. In Annex 2, it is stated that drifting lines (LLD) should not be included and there is no references to drift nets. This causes confusion when compiling the data and establishing link to existing administrative procedures.

As stated above in point 1) and 2) there is lack of consistency between the gears applied in the administrative legislation and the gears applied in the data call. Analysis and conclusions based on this data call must bear these inconsistencies in mind.

The gears applied by Denmark in this data call is:

POINT B	POINT D (REGGEAR>=90 mm)
BEAM: TBB	BEAM : Not included
OTTER: OTB, TB, PTB, OTT, TBN, TBS	OTTER : OTB, TB, PTB, OTT, TBN
DEM_SEINE : SDN, SSC, SB	DEM_SEINE : SDN, SSC, SB
PEL_TRAWL: OTM, TM, PTM	PEL_TRAWL :OTM, TM, PTM
PEL_SEINE: PS, PSN	PEL_SEINE: PS, PSN
DREDGE : DRB	DREDGE : Not included
LONGLINE : LL, LX, LH, LLS, LLD, LHP	LONGLINE : LL, LX, LLS
GILL: GN, GNS, GND	GILL: GN, GNS, GND
TRAMMEL: GTR	TRAMMEL: GTR
POTS: FYK, FPN, FPO, FIX	POTS : Not included

- 3) With regard to point 9 AREA (B) and 5 AREA (D) Denmark will like to stress that the data quality on IBSFC areas in 3C24 and 3D24 is not as good as for the remaining areas when it comes to registrations for square 39G4 which is in both areas. The quality of the data has improved in recent years, but still there may be inconsistences.
- 4) Point 10 (B) SPECON: There is no information in the logbook with regard to whether a vessel has applied BACOMA or T90 and the vessel is not obliged to fill in this information in the logbook. Consequently Denmark has no information with regard to Baltic Technical Conditions. Further Denmark has only applied article 13C in Regulation 1342/2008 and no data is reported for Cod Plan R(EC) No 43/2009. Deep-water species is defined in line with Regulation 2347/2002 which states fishing trips >= 100 kg mix of species mentioned in the regulation. Fully documented fisheries are defined by the vessels participating and the date of entering the scheme.
- 5) Point 11 FISHING_ACTIVITY (B): Denmark submitted data previous years based on the definition in the data call which was calendar days at sea. This is also the case this year although it is not the definition applied for administrating the rules in regulation 1342/2008 and regulation 1098/2007. However the baseline was calculated with this definition and the Commission was informed of the inconsistency between the definition in the data call and the definition applied by the Danish Administration and as such the time series of the data call will not be broken. In general applying calendar days combined with gear codes defined in the data call results in approximately 5-10 percent higher fishing activity and even more in one or two segments.

Denmark believes that there should be transparency in the process of how data are compiled in Member States and the mentioned points above are not a methodology report, but points which help

researchers understand what data can be used for when conducting analysis. Therefore Denmark suggests that all Member States submits a methodology report on how data are compiled (data sources, definitions, sampling methods applied etc.) and the reports are distributed to every country. This procedure is well known for Member States submitting fishery statistics to Eurostat according to Regulations administered by Eurostat."

4.3.2.3 Estonia

A number of 58 records were submitted for 2012. No updates for previous year's data.

The effort (days at sea) was calculated according to the Control Regulation. STECF EWG 13-13 noted that the data provided are only for vessels >=12m.

4.3.2.4 Finland

A number of 73 records were submitted for 2012. No updates for previous year's data.

Finish data were submitted in an inconsistent format together with a hint towards the data confidentiality clause in the DCF. STECF EWG 13-13 could not make use of the Finish data given its specific ToR.

4.3.2.5 France

A total number of 3079 records were submitted only for 2012. No updates for previous years data. There were 15 records with missing area information. Some inconsistent "gear*mesh size*area*specon" combination were observed, it concern the combination "pots*mesh size:-1" and combinations with missing area information. No fishing capacity data before 2012. Only data regarding gears that are requested in the official data call have been submitted as a consequence records regarding gears not requested are missing.

The specific conditions Cpart11, Cpart13B, IIB72ab, DEEP and SBcIIIart5 have been provided for eligible vessels and fisheries for 2012. The data were not updated for the 2009-2011 on this specific issue.

Fishing activity data have been provided only for the period 2010 - 2012 (no fishing activity data for 2003 - 2009). Fishing capacity data were provided for the first time for 2012 in kW. No fishing capacity data are available for the other years. It should be noted that this field is asked as kW or GT depending of the area, would be much easier to fill it if it was duplicated in kW and GT.

France provided effort data for 2003-2012 derived from official logbook databases for all registered vessels 10m and over and from monthly declarative forms (contain declarative monthly data on fishing effort and catches per species by dates, locations and gears) for all registered vessels under 10m (logbooks are not mandatory for these vessels but they are covered by these monthly declarative forms). The data covers all areas requested in the data call and conforms to the requested aggregation, by quarter, area, gear and mesh sizes. Days at sea are estimated with consistency with the DCF regulation (any continuous period of 24 hours (or part thereof) during which a vessel is present within an area and absent from port).

4.3.2.6 Germany

Data submitted for 2009 - 2012 compose of 2234 records in total. There were very few records with missing gear information as well as records for pots without any mesh size reported.

Germany provided fleet specific effort data for 2000-2012 in the requested formats derived from official logbook data. However, data on vessels <10m in the North Sea and <8m in the Baltic do not cover all vessels and trips because these vessels normally do not have to fill out logbooks. For the scientific evaluations in this report, the calculation procedure follows closely the description in the STECF technical report "Some technical guidance towards national fleet specific fishing effort and catch data aggregation" (ISBN 978-92-79-12134-0). This implies a calculation of kw-days based on calendar days and effort related to rescue operations etc. are not subtracted. Based on the detailed information given it remains unclear to the STECF EWG 13-13 if the data are consistent with Control or DCF Regulation. The data consider the aggregation by quarter, area, gear, mesh size, and existing derogations including special conditions of 8.1.a, 8.1.c, 8.1.d, 8.1.e and 8.1.f for the years 2000-2008. For 2009 onwards the special conditions from the new cod management plan are used. Some few records did not pass the Data Submission filters when some information on e.g. gear, mesh size was missing, but these records represent only a very small proportion of the reported German fisheries activities. They are related to fishing operations with seldom gears for which no code is available in the STECF data call.

For the Baltic Sea, drifting lines LLD are included in regulated LONGLINE category.

4.3.2.7 Ireland

Data submitted for 2009 - 2012 compose of 2961 records in total. There were few records with missing gear information as well as few records for pots, gills, dredges and otters without any mesh size reported.

Ireland provided fleet specific kW*days-at-sea, GT*days-at-sea, kw capacity, and vessel numbers for 2009-2012 in the requested aggregation format, derived from the national logbook database (IFIS) for vessels ≥10 meters in length. The following special condition information was supplied: none, CPart13a, CPart13b, CPart13c, CPart13d, CPart11 and DEEP. Specon DEEP is a duplication of effort within the relevant areas. Days-at-sea data were constructed following the methodology guidelines provided by the Joint Research Council at a meeting held by the Commission in February 2009 and according to the Control Regulation. Only one gear and area combination is applied to any one vessel day assigned according to the dominant fishing activity. Data from 2000-2008 from 2012 submission were retained in 2013. Revisions to earlier data are due to ongoing revisions and improvements within the national database.

Fishing activity was not provided as Ireland does not operate within the areas for which this data was requested.

Mesh size information was only available from 2003 onwards.

Days-at-sea effort for 2000-2002 is presented as a calculated proxy, obtained from the average ratio of operational fishing days to days-at-sea by gear during 2003 to 2005.

Vessels less than 10m in length are not required to complete logbooks, and therefore no effort is available for these vessels.

It was not possible to accurately aggregate data to the level of EU, coast, and RFMO. Data was assigned according to the following: Where an EU category existed within an area, all data from that

area was categorised as EU, with the exception of ICES division X assumed to be RFMO. Those ICES divisions without an EU category where assumed as 1 coast and 2 coast.

4.3.2.8 Latvia

A number of 71 records were submitted for 2012. No updates for previous year's data.

Latvian data were submitted on time and in accordance with required format. Fleet specific effort data by quarter, gear, mesh size and area were provided for 2012 only and appended to the previous time series. All requested effort data, such as days at sea, kW*Days and Gt*Days completely covered all fleet segments for 2008-2012, and only offshore fishery for the period 2003-2007. It was impossible to estimate accurately effort data in kW*days and Gt*days for the boats less than 10 m operated in coastal zone for years till 2008, because fishermen in that period filled logbooks without data about boats. That is the main reason for incomplete information concerning small scale fishery segment for the period of 2005-2007. However, "days at sea" were fully presented for this period.

Fishing activity (days at sea) were calculated on the base of voyage start date and the voyage end date, by subtraction returning date from departure date. In case when a voyage started and ended in the same date it was adopted as 1 day at sea. If the vessels during the trip operated in more than one area each day was attributed to the area where the most fishing time was spent. Based on the detailed information given it remains unclear to the STECF EWG 13-13 if the data are consistent with Control or DCF Regulation.

All effort data were based on the information derived from logbook.

4.3.2.9 Lithuania

A number of 86 records were submitted for 2012. No updates for previous year's data.

Days at sea were measured according Control Regulation.

4.3.2.10 The Netherlands

The Netherlands provided effort data for 2012. No updates for previous years were submitted. The data was provided in the requested format using the official logbook data for vessels < 10 m, >= 10 < 15 m and > 15 m.

All records (363 rows in Table B) passed the Data Submission filters.

Effort calculation is assumed to be based on days absent from port. As the national database contains not only departure date and arrival date but also the time of departure and the time of arrival, the absence can be calculated more precisely than just days. At the October meeting this information will be made final, based on information of the Ministry of Economic Affairs.

4.3.2.11 Poland

A number of 1448 records were submitted for 2011-2012. No mesh size range information reported for vessels under 10 meters. No specific condition reported.

STECF EWG 13-13 notes that a different method of estimation of mesh size ranges in 2011 (compared to the previous years) caused inconsistent mesh size classes, which used to be "110-156" in 2004-2010 period. This mostly concerns vessels under 10 meters. Other variables seem to be very consistent across years.

4.3.2.12 Portugal

Portugal provided kW*days, GT*days and number of vessels for 2000-2012 in the requested aggregation format, derived from the national logbook database for vessels ≥10 meters in length. Data are provided by quarter, vessel length, gear, mesh size range, area and special condition.

No data on allowed activity were provided.

Data on fishing activity and fishing capacity were provided for vessels ≥ 10 meters operating with regulated gears and with specon=NONE (under effort restrictions).

Vessels < 10 meters are not required to complete logbooks. Effort of these vessels was estimated based on sales records and data are not available for all fields of the data call.

Some mistakes related to the presence of duplicated lines for the area 9b EU with aggregated data were detected and corrected. The duplicates were allocated to the area 9b RFMO, according to the ID field. The fields "FISHING_ACTIVITY" or "FISHING_CAPACITY" presenting the value "-2" resulting from lines aggregation were corrected to "-1", meaning that the information is not available. Although most of inconsistencies from previous years in the combination of GEAR*SPECON have been corrected in the data submitted this year, there are still a few mistakes remaining as, e.g. for gears "PEL_TRAWL", "PEL_SEINE" and "POTS" with special condition "DEEP".

4.3.2.13 Spain

Data provided in 2013:

Between May and June of 2013 Spain provided nominal fishing effort data from 2012 by quarter, vessel length range, gear, mesh size range and metier (fishery). Data were provided for BSA; ICES Subareas 1, 2, 8, 10 and 12; ICES Divisions 5b, 6a, 6b, 7a, 7b, 7c, 7d, 7e, 7f, 7g, 7h, 7j, 7k, 8a, 8b, 8c, 8d, 8e, 9a, 9b and 14b and CECAF Divisions 34.1.1, 34.1.2, 34.1.3 and 34.2.0. Data were divided by COAST/EU/RFMO zones where appropriate. Data were split in special condition DEEP and NONE (according to the Effort Regime in Deep Sea fisheries). In ICES Divisions 8c and 9a there were not special condition (IIB72ab) data (Hake Plan) because no vessel in 2012 has applied for that condition in relation to hake and *Nephrops* recovery plan (Annex IIB of R(EU) No 43/2012). Data were not divided in either Cod or Sole Plan special conditions owing to lack of time. Spain provided fishing activity, fishing capacity, nominal effort, GT days at sea and number of vessels, as de 2013 Data Call requested.

No information about vessels under 10 meters was provided since data source was logbooks, but 2012 Annex IIB (Hake Recovery Plan in 8c & 9a), which is the main Plan for Spain, does not deal with vessels under 10 meters.

Data provided in 2011 and 2012:

Spain did not provide data in 2011 and 2012; therefore, there are not 2010 and 2011 data.

Data provided in 2010:

All the following comments correspond to the data provided in 2010:

Spain provided nominal fishing effort data from 2002-2009 data. 2000 and 2001 data were not provided because of the low quality of logbooks those years. Data were provided by quarter, vessel length range, gear and mesh size range. Data were provided for 8c and 9a from 2002-2009 divided by special condition IIB72AB and NONE according to the Southern Hake Plan and also special condition DEEP data (according to the Effort Regime in Deep Sea fisheries) were added. For 2009, also DEEP data of ICES Subarea 12 and ICES Divisions 6a, 7b, 7c, 7h, 8a, 8b, 8c, 9a and 14a were provided. Special condition NONE landings according to the Effort Regime in Deep Sea fisheries for 2009 were not provided by misunderstanding of the instructions. Data were divided by COAST/EU/RFMO zones. Spain provided fishing activity, nominal effort, GT days at sea and number of vessels.

No information about vessels under 10 meters was provided since data source was logbooks, but Annex IIB (Hake Recovery Plan in 8c & 9a), which is the main Plan for Spain, does not deal with vessels under 10 meters.

4.3.2.14 Sweden

A number of 1083 records were submitted for 2012. There were few records with missing gear information as well as few records for pots, dredges, dem_seines and gills without any mesh size reported.

Sweden has previously provided all required effort data in the requested format from 2000-2012, apart from capacity data, which was provided for the years 2003-2012 for the Baltic Sea and from 2009-2012 for all other areas. Days at sea were calculated according to the DCF definition, i.e. continuous 24-hours periods absent from port. Nominal effort data for vessels <10m LOA were included but is not considered reliable until 2009.

For the Baltic Sea, drifting lines LLD are included in regulated LONGLINE category.

4.3.2.15 United Kingdom

England, Wales and Northern Ireland: A fully revised time series (2003-2012) was provided this year, which resulted in minor changes to earlier years (2003-2008) and included the separation of special condition CPart13 into its components a,b,c,d. A number of records were submitted with missing mesh sizes for pots and dredges where mesh size was not applicable. Some records with both area BSA and special condition DEEP were submitted and ignored in the analysis. Special conditions reported were DEEP, CPart11, CPart13a,b,c,d, FDFIIA and FDFIIC.

Nominal effort in kwdays is calculated as days at sea multiplied by the power of the vessel in kilowatts at the voyage landing date.

GT_days_at_sea is calculated for years from 2003 as the days at sea multiplied by the Gross Tonnage of the vessel at the voyage landing date.

Scotland: A number of 10596 records were submitted for 2000-2012 time period, the full time series. There were few records with missing gear and/or area and/or mesh size information.

New data was submitted for 2012 and a revision submitted for 2000-2011 to accommodate the new 'fishing-capacity' field for all the fleets for vessels 10m and over and for vessels under 10 meters. Scotland supplies data where records present no gear type information and/or no mesh size

information for the purpose of data completeness. As in previous years there were records for area BSA and specific condition DEEP which were ignored in the analysis. Specific conditions reported were DEEP, FDFIIA, CPart11 and CPart13. Any effort in the Cod Recovery Zone for TR1 and TR2 gears was assigned to special condition CPart13A, CPart13B, CPart13C, CPart13D.

Vessels <10m: For vessels <10m effort is considered under reported 2000-2005 because of under reporting of POTS and shell fishing by hand. The <10m effort data for Scottish registered vessels 2000-2008 excludes voyages landing into ports in England and other non-Scottish areas of the UK. Scottish under 10m boats are known to use more than one type of gear on individual trips or within a quarter and multiple counting of boats is therefore significant.

Vessels landing into Scotland are entered into the Scottish database where the calculation of days at sea is based on the number of 24 hour periods, rounded up. Scottish vessels landing into the rest of the UK are entered into the UK (non-Scottish) database which calculates days at sea based on the dates of the voyage start and the voyage end. Days at sea for voyages leaving on the same date as the return of the previous voyage are adjusted down by half a day. Based on the detailed information given it remains unclear to the STECF EWG 13-13 if the data are consistent with Control or DCF Regulation.

On 24 October 2013 Scottish catch data for TR1 and TR2 gear groups in 2010-12 with specon NONE in the North Sea and West of Scotland were re-assigned the special condition of the cod plan article 13.2c (CPart13C).

4.3.3 Data availability Table C spatial fishing effort 2003-2012

Table 4.3.3.1 Overview of the spatial effort data submission for the 2013 Fishing Effort Regimes data call. In bold the dates when spatial effort data where submitted after the official submission deadline (4th of May).

Country	Data Submission	First Submission (Deadline 3-May)	Last Re-submission (Meeting 17-June to 21-June)
BEL	DCF website	18-April	
DEU	DCF website	3-May	
DNK	DCF website	1-May	2-May
ESP	DCF website	29-May	18-June
EST	DCF website	3-May	
FIN	DCF website	3-May	
FRA	DCF website	21-May	11-June
GBR	DCF website	6-June	16-June
GBR SCO	DCF website	3-May	
IRL	DCF website	2-May	
LTU	DCF website	15-April	
LVA	DCF website	30-April	
NLD	DCF website	15-May	
POL	DCF website	30-Apr	7-May
PTR	DCF website	3-May	17-June
SWE	DCF website	1-May	

4.3.3.1 Belgium

Data submitted only for 2012. No updates for previous years' data were needed. In total, 614 records were submitted. There were few records with missing mesh size information for gears such as trammels, gillnets and dredges.

Belgium did not provide any information for vessels under 10m.

Belgium provided effective effort by ICES statistical rectangle in units of hours trawled for the period 2003-2012, derived from the official logbook databases for all vessels \geq 10 meters. The data covers all areas in which the Belgian fleets are active and conform to the requested aggregation, by quarter, area, gear and mesh sizes. No spatial effort information is available for vessels less than 10m in length.

Trawled hours were calculated by summing fishing time to the aggregation level requested in the data call. To ensure consistency between datasets, the same base operational logbooks data was used as for the aggregation of days-at-sea effort.

As Belgium does not have trip-by-trip information on the true mesh size for its fleets for 2003-2006, Belgium (as well as other countries) agreed to assume certain mesh sizes for its beam trawler fleets.

Beamers operating in the Bay of Biscay (VIIIa,b) were assumed to use a 70-79 mm mesh size as this is the minimum legal mesh size in that area for beamers. For the North Sea, the trips were split according to the rectangles reported in the logbooks, and mesh sizes were allocated in line with Council Regulation (EC) N° 2056/2001. This regulation stipulates that beam trawlers are prohibited to use less than 120 mm in ICES Division IV to the north of 56° 00' N. Therefore all beam trawl information from this part of ICES Division IV was accounted against an assumed >120mm mesh size. The same regulation also stipulates that within the rectangle with coordinates along the east coast of the UK between 55° 00' N and 56° 00' N and the points 55° 00' N $- 05^{\circ}$ 00' E and 56° 00' N $- 05^{\circ}$ 00' E, beam trawlers can use 100 to 119 mm mesh size. Here also it was assumed that the mesh size used by the Belgian Beam trawl fleet was 100-119 mm. For the rest of ICES Division IV (the southern part) a mesh size of 80-89 mm was assumed for the beam trawlers. Apart from these assumed mesh size which are based on rectangle information from logbooks, it was also assumed that the shrimp fishery used a mesh size of 16-31 mm. The mesh size of the beam trawl fleets in the other area's was assumed to be 80-89 mm. Since 2007 mesh sizes used by beam trawls operating in different areas have been based on the true mesh sizes used on each trip.

The Belgian gear categories are: beam, dredge, gill, longline, otter, and trammel. For trammel nets, no assumptions of mesh sizes were made. The only specific condition reported for 2012 data was SBCIIIart5 for all Belgian vessels operating in areas 8a and 8b.

4.3.3.2 Denmark

Data submitted for 2003 - 2012, the whole time series, compose of 62078 records in total. There were few records with missing gear information as well as few records for pots, dem_seines, gills, otters without any mesh size reported. No BACOMA or T90 specific conditions.

Danish data were submitted on time, and with the requested information for all tables. However, a major revision was performed in 2012, and full time series were submitted for the tables A-D, thus ensuring improved consistency in the extraction methods used across years.

All records (62078 rows in Table C) passed the Data Submission filters, and only a very small proportion of the reported Danish fisheries activities have missing information. The resubmission of older years means that the information on previous special conditions implemented between 2004 and 2008 during the first cod plan is not available anymore.

The Danish 2012 submission still does not cover the special conditions BACOMA or T90 in the Baltic, as these are not compulsory to report in logbooks according to control regulations 1224/2009 and 404/2011.

More details on the Danish data are given under section effort data table B, and these are also valid for Table C.

4.3.3.3 Estonia

A number of 288 records were submitted for 2012. No updates for previous year's data. There were many records with inconsistent mesh size ranges.

STECF EWG 13-13 noted that data were provided only for vessels >=12m.

4.3.3.4 Finland

A number of 73 records were submitted for 2012. No updates for previous year's data.

Finish data were submitted in an inconsistent format together with a hint towards the data confidentiality clause in the DCF. STECF EWG 13-13 could not make use of the Finish data given its specific ToR.

4.3.3.5 France

A total number of 11599 records were submitted only for 2012. No updates for previous years data. There were few records with missing area information as well as records with missing statistical rectangle information (data is available for the ICES division but not at this level of aggregation). Some inconsistent "gear*mesh size*area*specon" combination were observed, it concern the combination "pots*mesh size:-1" and combinations with missing area information. Only data regarding gears that are requested in the official data call have been submitted as a consequence records regarding gears not requested are missing.

The specific conditions Cpart11, Cpart13B, IIB72ab, DEEP and SBcIIIart5 have been provided for eligible vessels and fisheries for 2012. The data were not updated for the 2009-2011 on this specific issue.

France provided specific effort data by rectangle for 2003-2012 derived from official logbook databases for all registered vessels 10m and over and from monthly declarative forms (contain declarative monthly data on fishing effort and catches per species by dates, locations and gears) for all registered vessels under 10m (logbooks are not mandatory for these vessels but they are covered by these monthly declarative forms). The data covers all areas requested in the data call and conforms to the requested aggregation, by quarter, area, gear and mesh sizes.

4.3.3.6 Germany

Data submitted for 2012 composes of 2174 records in total. There were very few records with missing gear information as well as records for pots without any mesh size reported.

Data for vessels <10m in the North Sea and 8m in the Baltic could not be submitted as these vessels do not have to fill out logbooks. Some few records did not pass the Data Submission filters when some information on e.g. gear, mesh size was missing, but these records represent only a very small proportion of the reported German fisheries activities. They are related to fishing operations with seldom gears for which no code is available in the STECF data call.

4.3.3.7 Ireland

Ireland provided effective effort by ICES statistical rectangle in units of hours fished for the period 2009-2012 in the requested aggregation format, derived from the national logbook database (IFIS) for vessels ≥10m in length. In total 12544 records were submitted with few records without a gear information and few without mesh size for pots, gills, dredges and otters. Hours fished were calculated by summing fishing time reported within the logbook operations. To ensure consistency between datasets, the same base operational logbooks data was used as for the aggregation of days-at-sea effort. The following special condition information was supplied: none, CPart13a, CPart13b, CPart13c, CPart13d, CPart11 and DEEP. Specon DEEP is a duplication of effort within the relevant areas. Data from 2000-2008 from 2012 submission were retained in 2013. Revisions to earlier data are due to ongoing revisions and improvements within the national database.

No spatial effort information is available for vessels less than 10m in length.

It was not possible to accurately aggregate data to the level of EU, coast, and RFMO. Data was assigned according to the following: Where an EU category existed within an area, all data from that area was categorised as EU, with the exception of ICES division X assumed to be RFMO. Those ICES divisions without an EU category where assumed as 1 coast and 2 coast.

4.3.3.8 Latvia

A number of 198 records were submitted for 2012. No updates for previous year's data.

Latvian data were submitted on time and in accordance with required format. Fleet specific effort data Hours fished by ICES statistical rectangles were provided for 2012 only and appended to the previous time series. Effective effort (Hours fished) was calculated by summing fishing duration for each operation during the trip. For the small boats less than 10 m this parameter was calculated as fishing days multiplied by 24. Effort data were derived from logbooks and covered all fleet segments for the period of 2005-2012. Fleet specific effort data for small boats (<8m) were not provided for 2003 – 2004.

4.3.3.9 Lithuania

A number of 134 records were submitted for 2012. No updates for previous year's data.

No comments.

4.3.3.10 The Netherlands

The Netherlands only provided effort by rectangle data for 2012. No updates for previous years were submitted. The data was provided in the requested format using the official logbook data for vessels < 10 m, >= 10 <=15 m and >15 m.

Not all records (1975 rows in Table C) passed the Data Submission filters due to the fact that rectangles are only defined for ICES areas and not for CECAF areas. Despite this, all records were submitted.

4.3.3.11 Poland

A number of 3095 records were submitted for 2011-2012. No mesh size range information reported for vessels under 10 meters. No specific condition reported.

STECF EWG 13-13 notes that relative changes of the total effective effort seem to be consisted across the years. Mesh size data breakdown for 2011 is not comparable with previous years because of different aggregation method used (as described above).

4.3.3.12 Portugal

Portugal provided effective effort (in hours) by rectangle for the period 2003-2012 for vessels ≥ 10 meters with the aggregation requested by the data call, based on logbook data. Data for the ICES areas 6b, 7k, 8c, 8d, 8e, 9a, 9b, 10, 12 and 14, as well as for the CECAF areas were provided. Around 10% of records, identified as having wrong ICES rectangle codes, with 3 characters instead of 4, were corrected (e.g. "4C1" corrected to "04C1"). Although not identified as errors, all lower case codes were changed to upper case, to be used by case sensitive programs.

No spatial effort information is available for vessels < 10 meters, since they are not required to complete logbooks.

4.3.3.13 Spain

Data provided in 2013:

Between May and June of 2013 Spain provided spatial fishing effort data from 2012 by quarter, vessel length range, gear, mesh size range and metier (fishery). Data were provided for BSA; ICES Subareas 1, 2, 5, 6, 8, 9, 10, 12 and 14; ICES Divisions 3b3, 3c, 3d, 7a, 7b, 7c, 7d, 7e, 7f, 7g, 7h, 7j, 7k, 8a, 8b, 8c, 8d, 8e and 9a and CECAF Divisions 34.1.1, 34.1.2, 34.1.3 and 34.2.0. Data were divided by COAST/EU/RFMO zones where appropriate. Data were split in special condition DEEP and NONE (according to the Effort Regime in Deep Sea fisheries). In ICES Divisions 8c and 9a there were not special condition (IIB72ab) data (Hake Plan) because no vessel in 2012 has applied for that condition in relation to hake and *Nephrops* recovery plan (Annex IIB of R(EU) No 43/2012). Data were not divided in either Cod or Sole Plan special conditions owing to lack of time.

No information about vessels under 10 meters was provided since data source was logbooks, but 2012 Annex IIB (Hake Recovery Plan in 8c & 9a), which is the main Plan for Spain, does not deal with vessels under 10 meters.

Data provided in 2011 and 2012:

Spain did not provide data in 2011 and 2012; therefore, there are not 2010 and 2011 data.

Data provided in 2010:

All the following comments correspond to the data provided in 2010:

Spain provided spatial fishing effort data for 2002 to 2009. Data were provided by quarter, vessel length range (only in 2009), gear and mesh size range. Data were provided for 8c and 9a from 2002-2009 divided by special condition IIB72AB and NONE according to the Southern Hake Plan and also special condition DEEP data (according to the Effort Regime in Deep Sea fisheries) were added. For 2009, also DEEP data of ICES Subarea 12 and ICES Divisions 6a, 7b, 7c, 7h, 8a, 8b, 8c and 9a were provided. Special condition NONE landings according to the Effort Regime in Deep Sea fisheries for 2009 were not provided by misunderstanding of the instructions. Data were divided by COAST/EU/RFMO zones.

No information about vessels under 10 meters was provided since data source was logbooks, but Annex IIB (Hake Recovery Plan in 8c & 9a), which is the main Plan for Spain, does not deal with vessels under 10 meters.

4.3.3.14 Sweden

A number of 2180 records were submitted for 2012. There were few records with missing gear information as well as few records for pots and otters without any mesh size reported.

Specific effort data by rectangle has been submitted in the required format for the years 2003-2012, including vessels <10m LOA. Hours fished were derived from fishing time reported by fishing activity in the logbooks.

4.3.3.15 United Kingdom

A fully revised time series (2003-2012) was provided this year, which resulted in minor changes to earlier years (2003-2008) and included the separation of special condition CPart13 into its components a,b,c,d. A number of records were submitted with missing mesh sizes for pots and dredges where mesh size was not applicable. Some records with both area BSA and special condition DEEP were submitted and ignored in the analysis. Special conditions reported were DEEP, CPart11, CPart13a,b,c,d, FDFIIA and FDFIIC.

Where activity in a single day covers more than one area (ICES Rectangle level) or more than one gear; that day's effort is apportioned equally between the area/gears recorded. The hours fished entries are simply days at sea data multiplied by 24. This is because hours fished information obtained from vessels has been proven unreliable (not a required field in logbooks).

Scotland: A number of 23566 records were submitted for 2009-2012 time period. There were few records with missing gear and/or area and/or mesh size information.

New data was submitted for 2012 and revised data submitted for 2009-2011 to accommodate the split in specific condition CPart13 for all the fleets for vessels 10m and over and for vessels under 10 meters.

Effort on voyages fishing in more than one rectangle is allocated according to logbook data. The hours fished entries are simply days at sea data multiplied by 24. This is because hours fished information has been proven unreliable from Scottish vessels (not a required field in logbooks).

Scotland supplies data where records present no gear type information and/or no mesh size information for the purpose of data completeness. As in previous years there were records for area BSA and specific condition DEEP which were ignored in the analysis. Specific conditions reported were DEEP, FDFIIA, CPart11 and CPart13A, CPart13B, CPart13C, CPart13D.

4.3.4 Data availability Table D fishing Capacity in the Baltic Sea 2003-2012

Table 4.3.4.1 Overview of the capacity data submission for the 2013 Fishing Effort Regimes data call. In bold the dates when capacity data where submitted after the official submission deadline (4th of May).

Country	Data Submission	First Submission (Deadline 3-May)	Last Submission (Meeting 17-June to 21-June)
DEU	DCF website	2-May	
DNK	DCF website	1-May	2-May

EST	DCF website	3-May	9-May
FIN	DCF website	3-May	
LTU	DCF website	15-April	10-May
LVA	DCF website	30-April	
POL	DCF website	7-May	
SWE	DCF website	1-May	14-June

4.3.4.1 Denmark

Data submitted for 2003 - 2012, the whole time series, compose of 296 records in total.

Danish data were submitted on time, and with the requested information for all tables. However, a major revision was performed in 2012, and full time series were submitted for the tables A-D, thus ensuring improved consistency in the extraction methods used across years.

All records (296 rows in Table D) passed the Data Submission filters. The resubmission of older years means that the information on previous special conditions implemented between 2004 and 2008 during the first cod plan is not available anymore.

The Danish 2012 submission still does not cover the special conditions BACOMA or T90 in the Baltic, as these are not compulsory to report in logbooks according to control regulations 1224/2009 and 404/2011.

More details on the Danish data are given under section effort data table B, and these are also valid for Table D.

4.3.4.2 Estonia

In total 28 records were submitted for 2008 - 2012.

STECF EWG 13-13 notes that data for vessels <12 m was not provided.

4.3.4.3 Finland

One record was submitted for 2012 with an inconsistent aggregation level for vessel length over 10 meters. There is no fishing activity available for 2008-2011.

Finish data were submitted in an inconsistent format together with a hint towards the data confidentiality clause in the DCF. STECF EWG 13-13 could not make use of the Finish data given its specific ToR.

4.3.4.4 Germany

Data submitted for 2003 - 2012, the whole time series, compose of 148 records in total.

Data on Capacity and Fishing Activity in the Baltic was provided as requested by the data call from logbook information. It was ensured that vessels do not count twice to get a realistic overview on fleet capacity. The full time series is covered.

4.3.4.5 Latvia

Data submitted for 2003 - 2012, the whole time series, compose of 81 records in total.

Latvian data were submitted on time and in accordance with required format. Fishing fleet capacity data were provided for time series 2003-2012 for active vessels operated in the Baltic Sea. Data for boats less than 8 m were provided from 2008 and afterward.

4.3.4.6 Lithuania

Data submitted for 2009 - 2012 compose of 32 records in total.

No comments.

4.3.4.7 Poland

Data submitted for 2004 - 2012 compose of 286 records in total.

STECF 12-12 notes that relative data provisions and estimated changes between years look reliable and consistent.

4.3.4.8 Sweden

Data submitted for 2003 - 2012, the whole time series, compose of 222 records in total.

Fisheries capacity data of active vessels in the Baltic Sea has been submitted in the required format for the years 2003-2012, including vessels <8m LOA. Days at sea were calculated according to the DCF definition, i.e. continuous 24-hours periods absent from port.

4.3.5 Data availability Table E spatial landings 2003-2012

Table 4.3.5.1 Overview of the spatial landings data submission for the 2013 Fishing Effort Regimes data call. In bold the dates when spatial landings data where submitted after the official submission deadline (3th of May).

		First Submission	Last Submission
Country	Data Submission	(Deadline 3-May)	(Meeting 17-June to 21-June)
BEL	DCF website	18-April	
DEU	DCF website	3-May	
DNK	DCF website	1-May	2-May
ESP	DCF website	29-May	18-June
EST	DCF website	3-May	
FIN	DCF website	3-May	
FRA	DCF website	21-May	11-June
GBR	DCF website	6-Jun	17-June
GBR SCO	DCF website	2-May	3-May
IRL	DCF website	2-May	
LTU	DCF website	17-April	
LVA	DCF website	30-April	
NLD	DCF website	15-May	
POL	DCF website	7-May	20-May
PTR	DCF website	3-May	17-June
SWE	DCF website	1-May	_

4.3.5.1 Belgium

A total number of 7905 records were submitted for 2012. No update for previous year's data was needed. There were few records with missing mesh size information for gear types such as trammels, dredges and gillnets. Moreover, many records regard species that are not listed in the official data call, like BLL, RJN, RJM, RJC and RJH. The only special condition reported for 2012 data was SBCIIIart5. This year, all officially recorded species by the Belgian authorities were provided. However, it should be noted that the sum of all provided landings do not match the total Belgian

landings as there are a minority of species landed and recorded as e.g. "other demersal" or "other crustacean" which are not provided to the EGW 13-13.

Belgium provided fleet specific landings data for 2003-2012 derived from official logbook databases for all vessels \geq 10 meters. The data covers all areas in which the Belgian fleets are active and conform to the requested aggregation, by quarter, area, gear and mesh sizes.

The species provided are: anglerfish, bib, brill, brown shrimp, cod, conger eel, cuttlefish, dab, dogfish, edible crab, flounder, great scallop, grey gurnard, haddock, hake, horse mackerel, lemon sole, ling, mackerel, megrim, Nephrops, octopus, plaice, pollack, red gurnard, saithe, sea bass, skates and rays, sole, spurdog, squid, striped mullet, tub gurnard, turbot, whelk, whitch flounder, whiting and wolffish.

As Belgium does not have trip-by-trip information on the true mesh size for its fleets for 2003-2006, Belgium (as well as other countries) agreed to assume certain mesh sizes for its beam trawler fleets. Beamers operating in the Bay of Biscay (VIIIa,b) were assumed to use a 70-79 mm mesh size as this is the minimum legal mesh size in that area for beamers. For the North Sea, the trips were split according to the rectangles reported in the logbooks, and mesh sizes were allocated in line with Council Regulation (EC) N° 2056/2001. This regulation stipulates that beam trawlers are prohibited to use less than 120 mm in ICES Division IV to the north of 56° 00' N. Therefore all beam trawl information from this part of ICES Division IV was accounted against an assumed >120mm mesh size. The same regulation also stipulates that within the rectangle with coordinates along the east coast of the UK between 55° 00' N and 56° 00' N and the points 55° 00' N - 05° 00' E and 56° 00' N - 05° 00' E, beam trawlers can use 100 to 119 mm mesh size. Here also it was assumed that the mesh size used by the Belgian Beam trawl fleet was 100-119 mm. For the rest of ICES Division IV (the southern part) a mesh size of 80-89 mm was assumed for the beam trawlers. Apart from these assumed mesh size which are based on rectangle information from logbooks, it was also assumed that the shrimp fishery used a mesh size of 16-31 mm. The mesh size of the beam trawl fleets in the other area's was assumed to be 80-89 mm. Since 2007 mesh sizes used by beam trawls operating in different areas have been based on the true mesh sizes used on each trip.

The Belgian gear categories are: beam, dredge, gill, longline, otter, and trammel. For trammel nets, no assumptions of mesh sizes were made. The only specific condition reported for 2012 data was SBCIIIart5 for all Belgian vessels operating in areas 8a and 8b.

Belgium did not provide any information for vessels under 10m.

4.3.5.2 Denmark

A number of 405759 records were submitted for 2003 - 2012, the whole time series. There were few records with missing gear information, rectangle information as well as few records for pots, dem_seines, gills, otters without any mesh size reported. No BACOMA or T90 specific conditions.

Danish data were submitted on time, and with the requested information for all tables. However, a major revision was performed in 2012, and full time series were submitted for the tables A-D, thus ensuring improved consistency in the extraction methods used across years.

The revised extraction procedures have been made compatible with the RDB FishFrame database, in order to get a unique raising procedure for all Danish catch information (discards and age-based information), thus improving the consistency of data reported to the various forums within e.g. ICES and STECF. As such, data raised in FishFrame will now be used for the STECF Effort data call. Where the categories in the FishFrame format and the STECF Effort format are not the same, the data are scaled according to the landings.

All records (405759 rows in Table E) passed the Data Submission filters, and only a very small proportion of the reported Danish fisheries activities have missing information. The resubmission of older years means that the information on previous special conditions implemented between 2004 and 2008 during the first cod plan is not available anymore.

The Danish 2012 submission still does not cover the special conditions BACOMA or T90 in the Baltic, as these are not compulsory to report in logbooks according to control regulations 1224/2009 and 404/2011.

More details on the Danish data are given under section effort data.

4.3.5.3 Estonia

A number of 1488 records were submitted for 2012. No updates for previous year's data. There were many records with inconsistent mesh size ranges.

STECF EWG 13-13 notes that the mesh sizes are inconsistent with the data call for vessels <12 m.

4.3.5.4 Finland

A number of 1654 records were submitted for 2012. No updates for previous year's data. Finish data were submitted in an inconsistent format together with a hint towards the data confidentiality clause in the DCF.

STECF EWG 13-13 could not make use of the Finish data given its specific ToR.

4.3.5.5 France

A total number of 62573 records were submitted only for 2012. No updates for previous year's data. Landings data by rectangle have been only submitted since last year and are available only for 2011 and 2012. No landings data by rectangle is available for 2003-2010. There were few records with missing area information and records with missing statistical rectangle information (data is available for the ICES division but not at this level of aggregation). Some inconsistent "gear*mesh size*area*specon" combination were observed, it concern the combination "pots*mesh size:-1" and combinations with missing area information. Only data regarding gears that are requested in the official data call have been submitted as a consequence records regarding gears not requested are missing.

The specific conditions Cpart11, Cpart13B, IIB72ab, DEEP and SBcIIIart5 have been provided for eligible vessels and fisheries for 2012. The data were not updated for the 2009-2011 on this specific issue.

France provided landings data by rectangle for 2011-2012 derived from official logbook databases for all registered vessels 10m and over and from monthly declarative forms (contain declarative monthly data on fishing effort and catches per species by dates, locations and gears) for all registered vessels under 10m (logbooks are not mandatory for these vessels but they are covered by these monthly declarative forms). The data covers all areas requested in the data call and conforms to the requested aggregation, by quarter, area, gear and mesh sizes.

4.3.5.6 Germany

A number of 9393 records were submitted for 2012. There were few records with missing gear information as well as few records for pots, dem_seines, gills, otters without any mesh size reported.

Germany aggregated the landings from logbook information as requested by ICES statistical rectangles and covers the full time series. No complete data on the spatial distribution of landings could be provided for vessels <10m in the North Sea and <8m in the Baltic as these vessels are not mandatory to provide detailed logbook information. Description on special conditions from part A and B also apply to part E. Some few records did not pass the Data Submission filters when some information on e.g. gear, mesh size was missing, but these records represent only a very small proportion of the reported German fisheries activities. They are related to fishing operations with seldom gears for which no code is available in the STECF data call.

4.3.5.7 Ireland

A number of 88629 records were submitted for 2009 - 2012. There were few records with missing gear information as well as few records for pots, dredges, gills without any mesh size reported.

Ireland provided landings by ICES statistical rectangle for the period 2008-2012 in the requested aggregation format, derived from the national logbook database (IFIS) for vessels ≥10m in length. In total 88629 records were submitted with few records without a gear information and few without mesh size for pots, gills, dredges and otters. Landings were calculated by summing live weights reported within the logbook operations as declared landings are not available at the level of statistical rectangle. To ensure consistency between datasets, the same base operational logbooks data was used as for the aggregation of declared landings within the Landings database (A). The following special condition information was supplied: none, CPart13a, CPart13b, CPart13c, CPart13d, CPart11 and DEEP. Specon DEEP is a duplication of effort within the relevant areas. Data from 2003-2008 from 2012 submission were retained in 2013. Revisions to earlier data are due to ongoing revisions and improvements within the national database.

No spatial landings information is available for vessels less than 10m in length.

It was not possible to accurately aggregate data to the level of EU, coast, and RFMO. Data was assigned according to the following: Where an EU category existed within an area, all data from that area was categorised as EU, with the exception of ICES division X assumed to be RFMO. Those ICES divisions without an EU category where assumed as 1 coast and 2 coast.

4.3.5.8 Latvia

A number of 352 records were submitted for 2012. No updates for previous year's data.

Latvian data were submitted on time and in accordance with required format. Fleet specific landings data by ICES statistical rectangle were provided for 2012 only and appended to the previous time series.

4.3.5.9 Lithuania

A number of 242 records were submitted for 2012. No updates for previous year's data.

No comments.

4.3.5.10 The Netherlands

The Netherlands only provided landings by rectangle data for 2012. No updates for previous years were submitted. The data was provided in the requested format using the official logbook data for vessels < 10 m, >= 10 <=15 m and >15 m.

All records (8266 rows in Table E) passed the Data Submission filters.

After submission it appears that specon FDFIIA was assigned to fishing activities in the area BSA, the biologically sensitive area, which appears inconsistent with the fishing regulation and the data call. After consultation of the ministry these rows are removed from the Dutch table E.

4.3.5.11 Poland

A number of 3210 records were submitted for 2012. No updates for previous year's data. No mesh size range information reported for vessels under 10 meters. No specific condition reported. Few records for vessels > 10m with no mesh size range information mainly for pots and gills.

Comparison of 2011 mesh size data with 2004-2010 shows that they are not consistent and significantly different. Neither mesh size nor SPECON (BACOMA window, T90) information were available from the database for 2004-2010. Thus these information were estimated based on expert knowledge and assumptions. Targeted species assemblages (métier), actually fish species caught and gear used were taken into account to identify mesh size. In 2011 data about mesh size were calculated based on actual information derived from logbooks, this caused that many "-1" values (missing values) which were reported for 2001-2010, become known and changed into "16-31" or "32-54" in 2011.

4.3.5.12 Portugal

Portugal provided landings by species and by rectangle for the period 2003-2012 for vessels ≥ 10 meters with the aggregation requested by the data call, based on logbook data. Data for the ICES areas 6b, 7k, 8c, 8d, 8e, 9a, 9b, 10, 12 and 14, as well as for the CECAF areas were provided. Around 20% of records, identified as having wrong ICES rectangle codes, with 3 characters instead of 4, were corrected (e.g. "4C1" corrected to "04C1"). Although not identified as errors, all lower case codes were changed to upper case, to be used by case sensitive programs.

No spatial effort information is available for vessels < 10 meters, since they are not required to complete logbooks. No quality check was performed.

4.3.5.13 Spain

Data provided in 2013:

Between May and June of 2013 Spain provided spatial landings data from 2012 by quarter, vessel length range, gear, mesh size range and metier (fishery). Landings were provided for BSA; ICES Subareas 1, 2, 5, 6, 8, 9, 10, 12 and 14; ICES Divisions 3b3, 3c,7a, 7b, 7c, 7d, 7e, 7f, 7g, 7h, 7j, 7k, 8a, 8b, 8c, 8d, 8e, 9a and CECAF Divisions 34.1.1, 34.1.2, 34.1.3 and 34.2.0. Landings were divided by COAST/EU/RFMO zones where appropriate. All landings were split in special condition DEEP and NONE (according to the Effort Regime in Deep Sea fisheries). In ICES Divisions 8c and 9a there

were not special condition (IIB72ab) landings (Hake Plan) because no vessel in 2012 has applied for that condition in relation to hake and *Nephrops* recovery plan (Annex IIB of R(EU) No 43/2012). Landings were not divided in either Cod or Sole Plan special conditions owing to lack of time. Landings were provided for 79 of the 122 species of the 2013 data call (the other 43 do not appear in our fisheries by rectangle). No information about vessels under 10 meters was provided since data source was logbooks, but 2012 Annex IIB (Hake Recovery Plan in 8c & 9a), which is the main Plan for Spain, does not deal with vessels under 10 meters.

There were no data from Spain submitted for earlier years.

4.3.5.14 Sweden

A number of 7505 records were submitted for 2012. No updates for previous years data. There were few records with missing gear information as well as few records for pots, dem_seines and gills without any mesh size reported.

Landings data by rectangle has been submitted in the required format for the years 2003-2012, including landings by vessels <10m LOA. Landings were derived from the logbook data base.

4.3.5.15 United Kingdom

A fully revised time series (2003-2012) was provided this year, which resulted in minor changes to earlier years (2003-2008) and included the separation of special condition CPart13 into its components a,b,c,d. A number of records were submitted with missing mesh sizes for pots and dredges where mesh size was not applicable. Some records with both area BSA and special condition DEEP were submitted and ignored in the analysis. Special conditions reported were DEEP, CPart11, CPart13a,b,c,d, FDFIIA and FDFIIC.

Scotland: A number of 200057 records were submitted for 2007, 2009 - 2012 time period. There were few records with missing gear information as well as few records for otters, trammels, dem_seines and gills without any mesh size reported.

New data was submitted for 2012 and revised data submitted for 2009-2011 to accommodate the split in specific condition CPart13 for all the fleets for vessels 10m and over and for vessels under 10 meters according to the data call. Specific conditions reported were DEEP (2003-2008), DEEP and CPart13A, CPart13B, CPart13C, CPart13D (2009) and DEEP, FDFIIA, CPart11 and CPart13A, CPart13B, CPart13D (2010-2012).

4.3.6 Fisheries specific landing and effort data 2003-2012 of small boats (< 8m or <10m)

This STECF EWG 13-13- report provides an overview of landings and effort data provided by the experts regarding their national fisheries of small vessels<8m or <10m, which are not obliged to report their landings through logbooks but rather do landings declarations.

Previously, information on small vessels has been provided in the reports only as a series of individual country reports describing activities and landings. In this report individual country information is again provided where available – new information is provided from several countries. An attempt is also made to compile available information for each area into overall figures. Since not all countries were able to fulfil this part of the data call, the aggregate estimates for each region of the cod recovery zone must be considered as minimum estimates. Nevertheless, they begin to give an idea of the scale of landings contributed by these smaller classes of vessel and can be used to comment on the likely relative importance compared with the regulated vessels.

Member States' data submissions for small boats are summarized in the previous sections by data table A-E, sections 4.3.1-5, respectively.

4.4 Estimation of fisheries specific international landings and discards

The estimation of fisheries specific international landings and discards is based on linking the information about fisheries specific discards and catch and discards at age among countries and replacing poor or lacking values with aggregated information from other countries.

Reported data by country are aggregated by fisheries properties and raised to the officially reported landings or discards in the format stipulated in the annual DCF fishing effort data calls. A similar format had been designed by ICES SGDFF 2004 (ICES 2004) format. Fisheries definitions are based on area, year, quarter, gear, mesh size groups, special conditions as defined in Council Reg. 41/2007 Annexes IIA-C and 57/2011 Annexes IIA-C or the multiannual management plans, and national fisheries (metiers) definitions.

The data aggregation and estimation procedures follow the simple raising strategies outlined below:

Data aggregation:

The national fisheries data (row specific records in the data submissions from Member States) are classified to their management areas or sub-areas, species, years, quarters and effort regulated gear groups by disregarding the country and national fishery definitions (metiers).

Estimation of discard rates by fisheries and raising of discard for non-sampled fisheries:

Let the following notation be: D=discards, L= landings, snf = national fishery with a discard value from 0 to X, unf = non-sampled fishery without a discard value.

The available landings and discards are aggregated (summed) over fisheries (by species, year, quarter, effort regulated area, effort regulated gear, special condition) and mean discard rates DR are calculated:

$$DR = \frac{\sum_{snf} D_{snf}}{\sum_{snf} (L_{snf} + D_{snf})}$$
 if $D_{snf} \ge 0$ and with $L_{snf} + D_{snf} > 0$

Fisheries specific discard amounts are then calculated if no discard information is available by

$$D_{unf} = \frac{L_{unf}.DR}{(1-DR)}$$
 where D_{unf} is null (empty)

Fisheries without any discard information, i.e. no average DR could be estimated, remain without any discard estimation as no quantitative information is available.

Estimation (raising) of landings in numbers and mean weight at age for non or poorly sampled national fleets

A poorly sampled fishery is defined as such if the Sum of Products SOP derived from numbers at age landed times weight at age

$$SOP_{snf} < 0.75 \text{ or } SOP_{snf} > 1.25$$

Data of landings in numbers at age and their weight at age of poorly sampled fisheries are replaced with -1, meaning no information available.

Let *i* be the age reference.

Landings in numbers ($N_{snf,i}$) and mean weight at age ($W_{snf,i}$) are aggregated (summed for $N_{snf,i}$ and averaged for $W_{snf,i}$) over all sampled fisheries when SOP_{snf} ≥ 0.75 and SOP_{snf} ≤ 1.25 .

Raising of numbers at age and respective fill in of mean weights at ages 0-11 to non or poorly sampled fisheries by

$$N_{unf,i} = \frac{\sum_{snf} (N_{snf,i}).L_{unf}}{\sum_{snf} L_{snf}}$$

$$W_{unf,i} = mean(W_{snf,i})$$

The mean weights are non-weighted and an appropriate weighing procedure, e.g. number of fish measured, should be explored.

Fisheries for which no summed landings in numbers at age information and mean weights at ages could be estimated remain non-raised, i.e. without any quantitative information.

Estimation (raising) of discards in numbers and mean weight at age for non or poor sampled fleets

A poorly sampled fishery is defined as such if the Sum of Products SOP derived from numbers at age discarded times weight at age

$$SOP_{snf} < 0.75 \text{ or } SOP_{snf} > 1.25$$

Data of discards in numbers at age and their weight at age of poorly sampled fisheries are replaced with -1, meaning no information available.

Let *i* be the age reference.

Discards in numbers $(N_{snf,i})$ and mean weight at age $(W_{snf,i})$ are aggregated (summed for $N_{snf,i}$ and averaged for $W_{snf,i}$) over all sampled fisheries when $SOP_{snf} \geq 0.75$ and $SOP_{snf} \leq 1.25$.

Raising of numbers at age and respective fill in of mean weights at ages 0-11 to non or poorly sampled fisheries by

$$N_{unf,i} = \frac{\sum_{snf} (N_{snf,i}).D_{unf}}{\sum_{snf} D_{snf}}$$

$$W_{unf,i} = mean(W_{snf,i})$$

The mean weights are non-weighted and an appropriate weighing procedure, e.g. number of fish measured, should be explored.

Fisheries for which no summed discards in numbers at age information and mean weights at ages could be estimated remain non-raised, i.e. without any quantitative information.

Estimation of catch and catch at age in numbers including discards

Catches by fisheries are estimated as the sum of landings and discards, also where discards are lacking.

Catches at ages 0-11 in numbers by fisheries are estimated as the sum of landings at age in numbers and discards at age in numbers, also where discards are lacking.

Mean weights at ages 0-11 are estimated at weighted means (according to ratios of landings at age and discards at age to catches at age, respectively).

Finally, all fisheries' catches and catches at ages in numbers and mean weights are aggregated (summed or averaged, as appropriate) over management areas, species, years, effort regulated gear groups and special conditions.

It needs to be realised that fisheries for which no aggregated information on discards or landings in numbers at age and discards in numbers at age is available from other countries fisheries remain non-raised. STECF EWG 13-13 concludes that these non-raised fisheries may need to be subject to a specific raising procedure if total catch and catch in numbers is to be estimated and if the individual non-raised fisheries constitute significant catches.

The EWG 13-13 notes that sampling of catch at sea including discards is expensive and difficult. This means that sampling coverage tends to be rather limited, and estimates of discards are subject to high uncertainty. This is true of all the discard data used here, and in some cases the discard estimates presented represent the first attempt to use the discard data from some fisheries in an advisory context. Where the coverage is considered adequate to estimate the overall catch compositions of specific fleets these are presented, but they are intended only to provide an approximate indication of fleet catch compositions. In cases where there are little data, the estimated discard rates may be biased and imprecise (Stratoudakis *et al.*, 1999). The mean weights are estimated as unweighted means. This results in a biased estimate. An appropriate weighing procedure, i.e. number of fish measured, should be explored.

EWG 13-13 further notes that the approach of discard estimation applied is generally consistent with the method used in the discard estimates published by the FAO (Kelleher, 2004). However, the group also notes that the design of a discard sampling scheme might differ depending on whether the objective was to estimate total discards, or discard for specific fleets. In the current context estimates from sampling schemes designed for the former purpose are being used for the latter purpose which again means the estimates should only be used with caution. Where this is the case, comparisons are

made between the estimates of total discards used for assessment purposes, and the fleet-specific estimates used here.

4.5 Coverage Index of Discard Estimates DQI

STECF EWG 13-13 noted the high emphasis on discard estimates for scientific, advisory and management purposes. STECF EWG 13-13 notes that the scientific resources to monitor discards by fisheries are limited and thus best use of the scarce national information requires a defined raising procedure. Furthermore, STECF EWG 13-13 also notes that it has developed and applied a consistent approach to estimate discards by fisheries (Member State, species, year, quarter, area, gear, special condition) as described in the previous section 4.4. The available landings and discard quantities have been provided by Member States in accordance with the DCF data calls to support fishing effort regime evaluations. The provisions of the DCF data call invite the Member State to estimate its discards applying best practices and to omit the submission of an estimate if the discard sampling is considered inadequate or best practices cannot be applied. STECF EWG 13-13 estimates discards by fisheries based on reported landings quantities by applying an average discard rate if a Member State has not provided a discard estimate.

In order to allow an assessment of the representativeness of the discard estimates by species and fisheries, STECF EWG 13-13 has developed and provided a coverage index attached to its provided discard estimates in this report and its electronic appendixes provided on the website of the STECF EWG 13-13. The discard coverage index is called DQI.

STECF EWG 13-13 notes that the DQI does not support precise conclusions on data quality based on scientific criteria but rather aims to classify the available information and is therefore fully dependent on correctness of the submitted national landings and discards estimates.

The index represents the sum of landings with discard estimates by species and fishery (species, year, area, gear, special condition) in relation with the total sum of landings in the given segment. It is estimated as

$$DQI = \Sigma L_d \, / \, \Sigma L$$

where L denotes landings (t) and L_d landings with a discard estimate.

In order to facilitate the interpretation of the DQI value, the DQI is classified in three groups. The groups are defined as

- A = 67 % or more of the provided landings are with an accompanying discard estimate,
- B = 34-66 % of the provided landings are with an accompanying discard estimate, and
- C = less the 33 % of the provided landings are with an accompanying discard estimate.

STECF EWG 13-13 interprets the A qualified discard estimates as rather representative as the majority of the landings by species and fishery are provided with national discard estimates. However it should be noted again that this discard coverage index cannot inform on the quality of the discard

rate estimates supplied by nations (as affected for example by the proportion of fishing trips sampled for discards).

The B qualified discard estimates are then seen as requiring a careful review before any use.

Finally, STECF EWG 13-13 advises the C qualified discard estimates in its deliveries (tables and appendixes) not to be used as the majority of the reported landings lack a discard estimate.

4.6 Treatment of CPUE data

In this report, EWG 13-13 presents CPUE by regulated gears in units of g/(kW*days). Where discard estimates are not available, the trends in LPUE (landings per unit of effort) are given in the same units. Unfortunately, discard information continues to be sparse or absent for some categories of gear in some areas. The STECF EWG wishes to stress again that great care should be used in the interpretation of the discard and resulting catch data owing to the incomplete nature of information on discarded fish.

EWG 13-13 notes that CPUE series are often interpreted and used as stock abundance indicator. However, EWG 13-13 emphasises that the presented trends in CPUE by fleets are subject to selective fishing strategies (area, gear, mesh size etc.) and thus maybe biased. On the other hand, CPUE derived from targeted fisheries may provide very useful information on stock abundance trends. Furthermore, it must be taken into consideration that the majority of the CPUE trends represent only overall weights in the landings (LPUE) without discards or with poorly estimated discards. Ideally, the CPUE should be based on age disaggregated abundance rather than overall weights and reflect technological creep when trends over longer periods are evaluated.

4.7 Ranking of gears on the basis of contribution to catches

Where required, EWG 13-13 presented the ranked contributions of the individual effort regulated gears to cod, plaice and sole catches for the years 2003 to 2012. There was discussion about whether the ranking should be based on a single recent year (possibly reflecting the most up to date importance of the different gear types in contributing to mortality of these species) or an average for a range of years (which allows for any aberrations in the series). A presented rankings are according to catch estimates or landings in 2012.

The catch estimates are based on the sums of the landings and discards where available. EWG 13-13 considers the catch estimates as uncertain where fisheries lack discard estimates or they are poorly sampled. The ranking according to catch in numbers only considers derogations for which catch in numbers are available. STECF EWG 13-13 wishes to stress again that great care should be used in the interpretation of the discard and resulting catch data owing to the incomplete nature of information on discarded fish.

4.8 Summary of effort and landings by 'unregulated' gears

In the summary tables of effort a total value for a 'none' category is provided. This 'none' category represents

i) gear types and mesh sizes which are unregulated, i.e. non-regulated by effort in addition to

- ii) unidentified mesh sizes. In the main effort summary tables, this category is not broken down into its constituent gears.
- iii) the so-called derogation Swedish grid, which was encoded as IIA83b and CPart11, respectively. This gear configuration is explicitly exempted from the effort regime (R (EC) No 754/2009).

However, STECF EWG 13-13 has provided a break down of the main gears within the 'none' category in a dedicated subsection for each area. Information is given on effort (kW*days at sea) for gears such as 'beam', otter, pots, dredges etc, and for catches by these gears of key species (e.g. cod, plaice and sole). This analysis helps to identify which gears contribute significantly to landings of these species but which are not currently regulated.

With the adoption of the revised cod recovery plan towards the end of 2008 and the simplified list of regulated gears for which data are now collated, the compilation of the unregulated categories was more straightforward in 2009 onward and the data appear to be reliable.

It is important in making use of the data in this report, that the 'none' material is not counted more than once. It would be preferable to use data from the sections covering unregulated gears.

4.9 Presentation of spatial information on effective effort and landings

STECF EWG 13-13 notes that minimum geographic resolution in the available logbook information on landings and effective effort is by ICES rectangle and considers analyses to only be possible at that resolution at the present time. In a number of the smaller areas, however, this resolution is inadequate for describing any localised changes of effort distribution (for example, in the Kattegat) and finer scale is desirable. Increasing availability of VMS data should provide opportunities for improved resolution in due course. STECF EWG 13-13 notes that only major changes in the geographical distribution patterns should be given attention given the imprecision of the created data set. A full set of figures is available electronically but a selection of key gears is included in this report.

Figures use a common scale across years for a given gear group (e.g. TR1) but scales are unique to each category such that the colours assigned to statistical rectangles for category TR1 cannot be compared directly to those assigned for category TR2. Note that this year the scale used in the plots relates to the actual effort values (rather than the percentile method used in previous years).

4.10 Response of EWG 13-13 regarding the estimation of spatio-temporal patterns in catchability

STECF EWG 13-13 continued its considerations which started during STECF EWG 13-06 and adopted the definition of catchability (q) as the relationship between the catch rate (CPUE) and the true population size. Consequently, the unit of catchability is fish caught per fish available per effort unit and per time unit, or, in easier words, catchability can conceptually be considered as the probability of any single fish being caught (Jul-Larsen *et al.*, 2003).

STECF EWG 13-13 notes that many factors are related to catchability, e.g. mainly fish abundance at a certain time in a certain area and gear efficiency (fishing power) including use of the gear and fishers' experience (Marchal *et al.*, 2001). A standard solution to evaluate changes in catchability is therefore to compare catch rates from commercial and research fishing where the catchability of the research fishing is holding constant from year to year (Neis *et al.*,1999):

```
CPUE (fishery)/CPUE (survey) = q (fishery)/q (survey)
```

This catchability index has no units, as it represents the ratio of fish caught per fish available per effort unit and per time unit.

STECF EWG 13-13 identified the needs to estimate catchability coefficients and to undertake spatiotemporal analyses of them. The calculation of catchability indices for cod per ICES statistical square (rectangle) and year is derived from standardized and averaged ratios between CPUE by fishery and CPUE based on survey indices.

The estimation of catches by rectangle is derived from a raising procedure applied to landings data by stock, nation, fishery (effort regulated gear groups), year, quarter and rectangle to estimate discards and conclude on catches at this aggregation level. National landings by stock, fishery, year, quarter and rectangle were raised by average national discards rates obtained by stock, fishery, year and quarter without rectangle:

```
C_{stock, nation, fishery, year, rectangle} = \sum (L_{stock, nation, fishery, year, rectangle} / (1 - DR_{stock, nation, fishery, year})),
```

where C denotes the catch in weight (t), L denotes the landings in weight (t), and DR denotes a specific average discard rate based on the DCF data submissions of landings and discards. Where the discard rate is unknown, landings figures were accepted as a best estimate of catches.

Average national commercial catch rates by stock, fishery, year and rectangle were then estimated from

```
CPUE stock, nation, fishery, year, rectangle = C stock, nation, fishery, year, rectangle / E stock, nation, fishery, year, rectangle,
```

where CPUE denotes the catch rates, C the estimated catch in weight (t) and E the fishing effort in units of fished hours.

The catchability index CA per stock, year and rectangle is then derived from the ratio between the averaged commercial CPUE values by stock, nation, fishery, year and rectangle, each of them divided by the CPUE from the respective average scientific survey CPUE in units of weight (kg). Both catch rate estimates, the commercial and the scientific ones, were made subject to log transformation in order to reduce the high variation between years and rectangles.

$$CA_{stock, year, rectangle} = \sum_{n} \left(ln \left(1 + CPUE_{stock, nation, fishery, year, rectangle} \right) / ln (1 + CPUE_{stock, survey, year, rectangle}) \right) / n,$$

where n is the number of nation-fleet combinations.

4.11 Amendments of the 2013 DCF data calls to support fishing effort regime evaluations

STECF EWG 13-13 noted that its recommendations to amend the 2013 DCF data call to support fishing effort regime evaluation have been implemented and that these changes will support the accomplishment of specific ToR.

STECF EWG 13-13 noted that the 2013 DCF data call to support fishing effort regime evaluations covered few but important changes as compared with the data call in 2012. The only structural change in the 2013 data call was the an additional variable called for the Baltic Sea specific fishing effort analyses, called FISHING_ACTIVITY_DAYS at a rather high aggregation level (by the cod plan areas A and B, country, year and all effort regulated gears). This additional variable was defined for the entire period of the data call (2003-2012) and thus required a complete re-submission of data for the period 2003-2011 in addition to the requested data update for 2012.

The second major change of the DCF data call in 2013 regards the definition of the multiannual cod plan (Coun. REg. No 1342/2008) specific provisions given in art 13, paragraphs a, b, c and d. Member States were invited to deliver fisheries specific catch and effort data to support specific analyses related to the cod plan implementation, which required re-submission for the years 2009-2011 in addition to the requested update for 2012.

The third major change of the DCF data call in 2013 regards additional analyses of fully documented for sole in the Western Channel.

STECF EWG 13-13 noted that the DCF data call in 2013 required re-submissions of re-aggregated data in addition to the re-quested data update for 2012, which implied additional workload for the national institutions involved in the DCF framework.

5 EVALUATIONS BY FISHING EFFORT MANAGEMENT REGIME

5.1 Baltic Sea effort regime evaluation in the context of the management plan for Baltic cod (Council Regulation (EC) No 1098/2007)

5.1.1 ToR 1.a Fishing effort in kWdays and GTdays by area, Member State and fisheries

Table 5.1.1.1 lists the trends in effort for gear categories defined in the cod management plan Council Regulation (EC) 1098/2007 in kW*days at sea for the whole Baltic. Table 5.1.1.2 lists the trends in effort by gear category and area for regulated gears. Table 5.1.1.3 lists relative annual effort dynamics in Baltic cod r-GILL and r- OTTER fisheries in 2004-2012 by gear category and area. Figures 5.1.1.1 – 5.1.1.6 show effort trends in regulated and unregulated gear categories by areas.

In accordance with the ToR respective tables by gear-category, area and Member States in GT*days at sea (GT gross tonnage), activity (in days absent from port) and capacity (number of vessels) are available on the web site of the EWG. STECF EWG 13-06/13-13 emphasize that the days at sea and number of vessels need to be interpreted with care and cannot be added across gear categories as the individual vessels may have been engaged in more than one of the defined fleets and thus could be multiple counted.

There have been marked reductions in effort measured in kW-days in 2004-2012 both for regulated gears in accordance with Council Regulation (EC) 1097/2007 and unregulated gears. The total effort deployed in the Baltic in 2012 was 53% lower compared to 2004 and 46% lower compared with 2011 (Table 5.1.1.1).

A clear reduction in total effort could be observed for area A until 2010. Since then the total effort stabilized. The effort dynamics in main regulated gear types show contrasting trends in 2011-2012: the effort of regulated pelagic trawls decreases and that of regulated demersal seine increased while regulated otter trawl effort remained unchanged (Figures 5.1.1.1.-5.1.1.2). Figures 5.1.1.2 and 5.1.1.3 display the trends in area B. The overall effort of regulated gears has increased since 2010 slightly due to increase in r-otter effort. The effort of non-regulated gears decreased from 2011 substantially. In area C the effort deployed with unregulated gears shows clear decreasing trend since 2010 (Figure 5.1.1.5). Since the majority of cod catches stem from areas A and B (see section below), the slight increase in total effort can be observed both for regulated and unregulated gears. Table 5.1.1.3 describes the relative annual effort dynamics in Baltic cod r-GILL and r-OTTER fisheries in 2004-2012. The total effort showed a consistent decreasing trend in area A until 2011. A decrease could be observed also in area B, however until 2010 only. In 2011-2012 an increase by followed, driven mostly by otter trawl effort. The effort dynamics in area C did not show any particular trend. In 2011-2012 however, a substantial increase in effort was observed both in gillnet and otter trawl effort (Table 5.1.1.3).

The effort in ICES Sub-division 28.2 decreased in 2012 after the increase in 2011 both in the regulated gillnet and otter trawl fisheries (Figure 5.1.1.8).

The decrease in total effort for the main gears catching cod in areas A and B (regulated otter, see section below) was obvious for all Member States (Table 5.1.1.4). When combining specon BACOMA and none, the reductions were most pronounced for Denmark (-58%) and Germany (-47%) in area A, and most pronounced for Poland (-72%) and Sweden (-25%) in area B. In contrast, the effort for r-Gill (the second most important gear, see section below) increased for Denmark and Germany in area A (by 10% and 16% respectively). Combined effort decreased for Latvia (-98%) and for Poland (-46%). This indicates a certain shift between métiers. In area B the effort increased from 2011 to 2012 in r- otter trawl fishery- in Germany by 67%, Poland by 49% and in Lithuania by 20%.

The effort decreased substantially for regulated gill nets in all Member States. The sharp increase of pelagic effort in 2004–2005, described in the Figure 5.1.1.5 can be explained by the inclusion of Estonian data set from 2005-2010, showing substantial pelagic effort.

In Sub-division 28.2 only Latvia reported the information on effort deployed in regulated GILL fishery. The effort has decreased over the period of 2004-2012 by 54% and for regulated otter-trawls by 58% (Figures 5.1.1.7 - 5.1.1.8).

For area C the full time series of information for regulated otter trawls was not available to the group. The effort for regulated gill nets decreased by 13% in 2004-2012. An increase in effort by 25% was observed from 2011 to 2012 (Sweden). The use of BACOMA-trawls increased over the years (see Figures 5.1.1.2, 5.1.1.4 and 5.1.1.6). However, as already mentioned several Member States were not able to identify vessels fishing with BACOMA-trawls from logbook data. Therefore, the increase in the usage of BACOMA-trawls is most likely underestimated substantially and trends are highly uncertain.

Table 5.1.1.1 Trend in nominal effort (kW*days at sea) by gear categories according to Council Regulation (EC) 1098/2007, 2004-2012. An "r" in front of the gear type indicates regulated gears. Gear types without an "r" are non-regulated gears. Data from Sweden and Poland were only available from 2003 or 2004 respectively. Relative change from 2004 to 2012.

REG GEAR COD	SPECON	2004	2005	2006	2007	2008	2009	2010	2011	2012	rel. change
BEAM	none	0	132	1090	881	27566	16298	884	884	368	1,00
DEM_SEINE	none	50829	31212	20892	20597	12522	5337	5031	12266	882	-0,98
DREDGE	none	78384	72955	97700	110931	45088	48712	65364	56203	91968	0,17
GILL	none	2514485	2781351	2465917	2293892	2019216	1862392	1922682	1906426	775303	-0,69
none	none	75976	144961	174621	150574	118723	114766	84697	68246	77949	0,03
OTTER	none	2870433	2450721	1971668	1672218	1353484	1477623	1197194	1101870	973442	-0,66
PEL_SEINE	none	2499	0	0	0	3528	16467	13674	12645	27163	9,87
PEL_TRAWL	none	15552840	62133235	45906681	39463937	43240579	40031349	29616128	26579447	8216408	-0,47
POTS	none	1519123	1616616	1346062	1211896	1209985	883458	1035858	919071	379577	-0,75
r-BEAM	BACOMA	0	0	0	0	3867	0	0	0	0	0,00
	none	0	0	0	0	0	0	129	0	0	0,00
r-DEM_SEINE	BACOMA	0	0	35178	46741	46182	62042	36621	52390	29641	1,00
	none	404467	277118	262991	243984	181854	122508	95833	62941	113731	-0,72
r-GILL	none	9883237	8720856	7812598	6689205	6010468	4751522	4123605	3777836	3975573	-0,60
r-LONGLINE	none	1441251	1762927	1696057	1007443	732605	901565	816726	792860	572124	-0,60
r-OTTER	BACOMA	8077219	6708057	8744572	6593542	5519745	4073745	4223497	3584428	3535393	-0,56
	none	5997614	6125856	3554966	2555771	2427194	2099090	2103909	3342583	4089663	-0,32
	T90	0	0	0	0	0	9536	160701	276747	195488	1,00
r-PEL_TRAWL	BACOMA	1185898	577852	1689966	1636710	854557	349455	199507	936461	181573	-0,85
	none	249065	219359	119545	37349	3887	27748	12921	27136	19629	-0,92
r-TRAMMEL	none	237634	474368	432884	502123	539744	564008	445131	418462	487356	1,05
TRAMMEL	none	20495	31581	32540	31788	25870	11054	11927	10883	5265	-0,74
Grand total		50161449	94129157	76365928	64269582	64376664	57428675	46172019	43939785	23748496	-0,53

Table 5.1.1.2. Trend in nominal effort (kW*days at sea) by regulated gear categories and area 2003-2012. An "r" in front of the gear type indicates regulated gears in accordance with Council Regulation (EC) 1098/2007. Data from Sweden and Poland were only available from 2003 and 2004 respectively.

ANNEX	REG AREA COD	REG GEAR COD	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Bal	28.2	r-DEM_SEINE	1534	804	0	0	0	0	4091	3967	0	3273
Bal	28.2	r-GILL	128458	38171	62083	52887	52229	16129	15303	23211	17613	10418
Bal	28.2	r-OTTER	44642	88489	84119	64123	60310	34048	19735	4865	36969	23786
Bal	28.2	r-PEL_TRAWL	882		6850	5500	1100		2860			
Sum			175516	127464	153052	122510	113639	50177	41989	32043	54582	37477
Bal	Α	r-BEAM	442	0	0	0	0	3867	0	129	0	0
Bal	Α	r-DEM_SEINE	367804	401961	265914	276632	277345	220254	160744	101579	68761	91495
Bal	Α	r-GILL	2136791	2202578	3605681	3464031	3182556	3025722	2353090	2043431	1929540	1887253
Bal	Α	r-LONGLINE	176508	230860	555892	409225	300403	166043	205986	160958	175618	204547
Bal	Α	r-OTTER	5286832	4961432	5171790	4124965	4367256	3537808	2807271	2362321	2450277	2475071
Bal	Α	r-PEL_TRAWL	30931	20233	67882	50463	40983	6994	2744	11521	8247	2319
Bal	Α	r-TRAMMEL	247947	227298	467533	424155	487260	528888	546918	441372	416361	484318
Sum	Α		8247255	8044362	10134692	8749471	8655803	7489576	6076753	5121311	5048804	5145003
Bal	В	r-DEM_SEINE	729	1702	11204	21537	13380	7782	19715	26908	46570	48604
Bal	В	r-GILL	3516915	7551967	4959662	4199675	3379807	2902885	2320231	1983437	1772316	2003874
Bal	В	r-LONGLINE	555385	1210391	1207035	1286832	707040	566482	695579	655768	617242	367577
Bal	В	r-OTTER	4232302	9024912	7573972	8104996	4718919	4368681	3355365	4120921	4716512	5321587
Bal	В	r-PEL_TRAWL	73507	1414730	722479	1753548	1631976	851450	371599	200907	955350	198883
Bal	В	r-TRAMMEL	12374	10336	6835	8464	14863	10856	17090	3759	2101	3038
Sum	В		8391212	19214038	14481187	15375052	10465985	8708136	6779579	6991700	8110091	7943563
Bal	С	r-GILL	88826	90521	93430	96005	74613	65732	62898	73526	58367	74028
Bal	С	r-LONGLINE	992	0	0	0	0	80	0	0	0	0
Bal	С	r-OTTER	0	0	4032	5454	2828	6402	0	0	0	100
Bal	С	r-TRAMMEL	0	0	0	265	0	0	0	0	0	0
Sum	С		89818	90521	97462	101724	77441	72214	62898	73526	58367	74128
Sum	BC		8481030	19304559	14578649	15476776	10543426	8780350	6842477	7065226	8168458	8017691

Table 5.1.1.3. Relative annual effort dynamics in Baltic cod r-GILL and r- OTTER fisheries in 2004-2012.

REG GEAR COD	REG AREA C	COD SPECON	2004/2005	2005/2006	2006/2007	2007/2008	2008/2009	2009/2010	2010/2011	2011/2012
r-GILL		28.2 none	0.63	-0.15	-0.01	-0.69	-0.05	0.52	-0.24	-0.41
	Α	none	0.64	-0.04	-0.08	-0.05	-0.22	-0.13	-0.06	-0.02
	В	none	-0.34	-0.15	-0.20	-0.14	-0.20	-0.15	-0.11	0.13
	С	none	0.03	0.03	-0.22	-0.12	-0.04	0.17	-0.21	0.27
r-OTTER		28.2 BACOMA	-0.05	-0.24	-0.06	-0.44	-0.42	-0.75	6.60	-0.36
	Α	BACOMA	0.58	2.49	0.23	-0.27	-0.25	-0.14	0.03	-0.10
		none	0.00	-0.54	-0.11	-0.08	-0.16	-0.19	0.03	0.12
		T90	0.00	0.00	0.00	0.00	0.00	1.00	0.83	-0.10
	В	BACOMA	-0.21	0.10	-0.39	-0.09	-0.27	0.14	-0.23	0.04
		none	0.09	-0.05	-0.53	0.03	-0.07	0.41	1.29	0.28
		T90	0.00	0.00	0.00	0.00	1.00	13.51	0.70	-0.33
	С	BACOMA	0.00	0.00	0.00	1.00	-1.00	0.00	0.00	0.00
		none	1.00	0.35	-0.48	0.50	-1.00	0.00	0.00	1.00
All regulated gea	rs 28.2		0.15	-0.20	-0.04	-0.55	-0.30	-0.20	0.94	-0.37
All regulated gea	ars A		0.23	-0.14	-0.01	-0.13	-0.21	-0.15	-0.01	0.00
All regulated gea	ars B		-0.24	-0.02	-0.34	-0.10	-0.22	0.08	0.06	0.13
All regulated gea	rs C		0.08	0.04	-0.24	-0.07	-0.13	0.17	-0.21	0.27

Table 5.1.1.4 Trend in nominal effort (kW*days at sea) by regulated gear categories according to Council Regulation (EC) 1098/2007, area and Member State for 2004-2012. Data from Estonia were only available from 2005.

	COD REG GEAR COD	COUNTRY	2004	2005	2006	2007	2008	2009	2010	2011	2012
28.2	r-DEM_SEINE	LVA	804					4091	3967		3273
	r-GILL	EST			166						
		LVA	38171	62083	52721	52229	16129	15303	23211	17613	10418
	r-OTTER	EST			221	221					
		LVA	88489	84119	63902	60089	34048	19735	4865	36969	23786
	r-PEL_TRAWL	LVA		6850	5500	1100		2860			
A	r-BEAM	DEU					3867				
		DNK							129		
	r-DEM_SEINE	DEU	7398	1912	23422	37741	38400	42327	9713	13789	1764
		DNK	394563	264002	253210	239604	181854	118417	91866	54972	89731
	r-GILL	DEU	662527	1135980	1449940	1457215	1247682	932027	893907	809150	771580
		DNK	540757	1245235	993868	804366	872897	723711	610449	593694	597244
		EST		40887	57436	19041	39051	41349			
		LTU		19111	32901						
		LVA	142491	171002	161456	30116	12676	3528	11604	6174	2940
		POL	236261	331555	199045	325354	228173	135263	84558	81024	126904
		SWE	620542	661911	569385	546464	625243	517212	442913	439498	388585
	r-LONGLINE	DEU	80543	122727	119348	100892	97335	122409	74286	62880	58865
		DNK	86314	164621	202815	126714	32557	33817	42527	46243	56902
		LTU		12533	0						
		POL	17962	143615	46306	53736	21615	6391	4502	6118	7932
		SWE	46041	112396	40756	19061	14536	43369	39643	60377	80848
	r-OTTER	DEU	1753928	1686831	1481387	1491775	1207722	1028646	933844	964057	932751
		DNK	2814169	2879424	2035587	1812121	1669672	1415553	1145919	1077878	1182374
		EST		4199					4248		2650
		LTU		57602	84342						
		LVA		17632		18488			7920		
		POL	172618	310416	185144	618979	315079	172795	114560	101350	146051
		SWE	220717	215686	338505	425893	345335	190277	155830	306992	211245
	r-PEL TRAWL	DEU	3975	17039	20699	30856	3443	2502.7	3740	5756	1607
		DNK	11156	14346	24308	6246	2831	2744	7621	561	322
		EST	11150	662	24300	1269	2031	2/44	7021	301	322
		LTU		16799	0	1205					
		POL	2220	16612	1258	2612			160		
		SWE	2882	2424	4198	2012	720		100	1930	390
	- TDANANEI					122416	128657	124660	77750		104519
	r-TRAMMEL	DEU	21308	40549 368285	67494	132416 309684	349896	134669	77750 301565	106349	
		DNK	176833		311401			317238		271304	335772
D	- DEM CEINE	SWE	29157	58699	45260	45160	50335	95011	62057	38708	44027
В	r-DEM_SEINE	DEU	822	*****	11756	9000	7782	19715	26908	38601	27877
		DNK	880	11204	9781	4380				7936	20727
	- 6111	POL	0000	42704	44507	44004	5040	5504		33	
	r-GILL	DEU	8290	43704	14527	11824	5048	6594			
		DNK	247793	288548	255355	190114	195224	170484	133853	129032	109307
		EST		287824	253368	128268	40036	31107			
		LTU		93187	55397	90686	128949	107267	104170	78123	48511
		LVA	1471236	701180	596996	568781	539579	401856	361015	350477	273839
		POL	4339027	2361250	1992875	1556930	1079645	791231	788566	695263	1121302
		SWE	1485621	1183969	1031157	833204	914404	811692	595833	519421	450915
	r-LONGLINE	DEU	11771	15007	9881	11920	17580	12580	6600	2420	
		DNK	112769	154482	157371	86736	45320	63169	76826	76881	41313
		LTU		264	59543	35332	34991	6664	3956	5514	
		POL	712715	691955	738832	410561	270046	412292	391897	324267	187100
		SWE	373136	345327	321205	162491	198545	200874	176489	208160	139164
	r-OTTER	DEU	211999	280977	163096	80177	191198	220844	276398	108001	180536
		DNK	891009	993201	1279055	585792	644737	629248	781262	1071791	1160176
		EST		94896	5729	9503			96642	179832	79178
		LTU		342503	192759	170844	382050	286887	332848	398109	477440
		LVA	322019	242532	350925	186093	229860	198632	218426	473943	376406
		POL	5657875	3902889	4457610	2534977	1715576	1018609	1245924	1064287	1582454
		SWE	1942010	1716974	1655822	1151533	1205260	1001145	1169421	1420549	1465397
	r-PEL TRAWL	DEU	182107	143688	141492	70379	16691	36135	61303	128870	48484
		DNK	51827	44286	94797	31103	1056	4030	3536	5080	3750
		EST		214426	355398	702922	703021	219177	114680	714754	86256
		LTU		1100	89918	85447	61407	20974	1764	4420	6837
		LVA	114489	4122	29965	122803	10521	14473			18648
		POL	921668	193724	628134	440888	21895	36317	3424	2428	14087
		SWE	144639	121133	413844	178434	36859	40493	16200	99798	20821
	r-TRAMMEL	DNK	2167	5598	7550	12631	5910	15546	3693	1185	546
	Aiviiviee	SWE	8169	1237	914	2232	4946	1544	66	916	2492
c	r.GU!		0103			2232	4540	1344	00	310	2432
С	r-GILL	EST		166	166						F 70
		POL	00501	0225	05000	74640	65700	62000	70505	FORCE	573
	- 1 0 1 0 1 0 1 1 1	SWE	90521	93264	95839	74613	65732	62898	73526	58367	73455
	r-LONGLINE	SWE					80		0		
	r-OTTER	EST		3628	5454	2828	4242				
		POL									100
		SWE		404			2160				
	r-TRAMMEL	SWE			265						

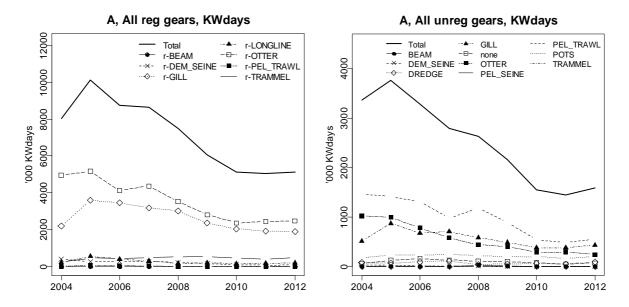


Figure 5.1.1.1. Area A Baltic: Trend in nominal effort by gear types 2004-2012 (kW*days at sea). Left panel: Regulated gears. Right panel: Unregulated gears. Note that data from Poland, Latvia and Lithuania are only available from 2004 and from Estonian from 2005 onwards. Therefore, effort trends are shown from 2004 to 2012. No data from Finland.

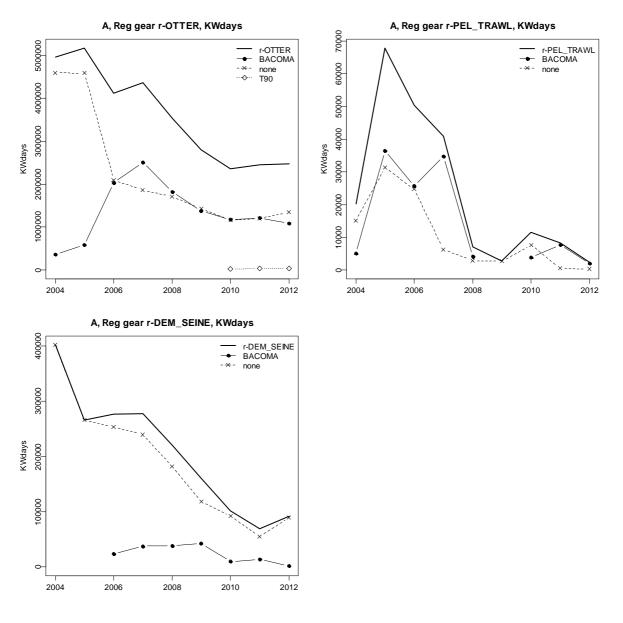


Figure 5.1.1.2. Area A Baltic: Trend in nominal effort by special conditions, 2004-2012 (kW *days at sea). Note that data from Poland, Latvia and Lithuania are only available from 2004 and from Estonian from 2005 onwards. Therefore, effort trends are shown from 2004 to 2012. No data from Finland.

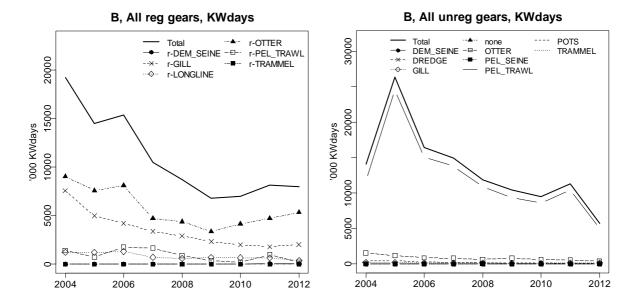


Figure 5.1.1.3. Area B Baltic: Trend in nominal effort by gear types 2004-2012 (kW *days at sea). Left: Regulated gears. Right: Unregulated gears. Note that data from Poland, Latvia and Lithuania are only available from 2004 onwards. Therefore, effort trends are shown from 2004 to 2012. Additionally, Estonian data set of 2005-2012 was included in database. No data from Finland.

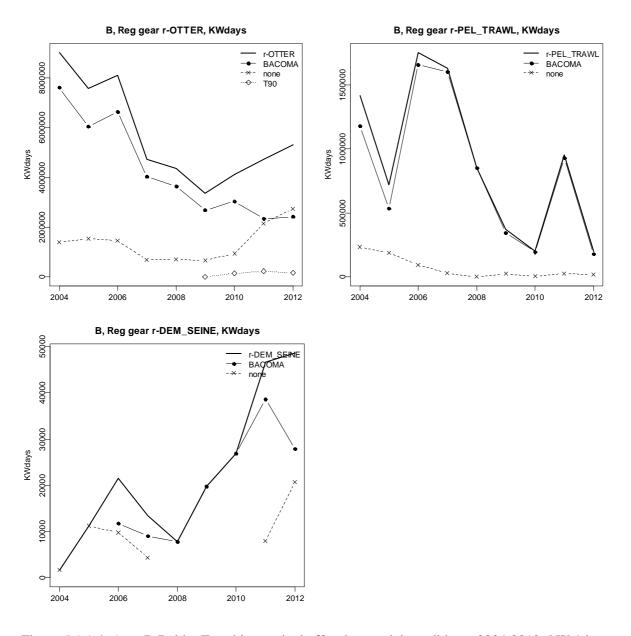


Figure 5.1.1.4. Area B Baltic: Trend in nominal effort by special conditions, 2004-2012 (kW *days at sea). Note that data from Poland, Latvia and Lithuania are only available from 2004 and from Estonian from 2005 onwards. Therefore, effort trends are shown from 2004 to 2012. No data from Finland.

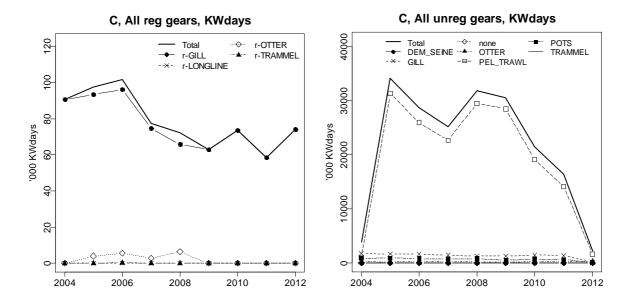


Figure 5.1.1.5. Area C Baltic: Trend in nominal effort by gear types 2004-2012 (kW *days at sea). Left: Regulated gears. Right: Unregulated gears. Note that data from Poland, Latvia and Lithuania are only available from 2004 onwards. Therefore, effort trends are shown from 2004 to 2011. Additionally, Estonian data from 2005-2012 (including substantial pelagic effort) was included. No data from Finland.

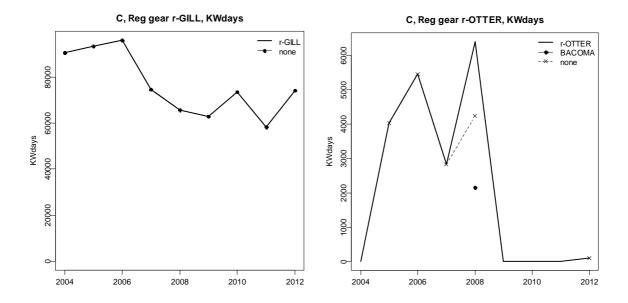


Figure 5.1.1.6. Area C Baltic: Trend in nominal effort by special conditions, 2004-2012 (kW *days at sea). Note that data from Poland, Latvia and Lithuania are only available from 2004 and from Estonian from 2005 onwards Therefore, effort trends are shown from 2004 to 2012. No data from Finland.

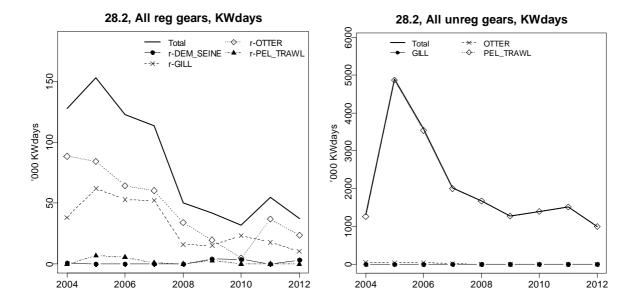


Figure 5.1.1.7. Sub-division 28.2. Baltic: Trend in nominal effort by gear types 2004-2012 (kW *days at sea). Left: Regulated gears. Right: Unregulated gears. Note that data from Poland, Latvia and Lithuania are only available from 2004 and from Estonian from 2005 onwards. Therefore, effort trends are shown from 2004 to 2012. No data from Finland.

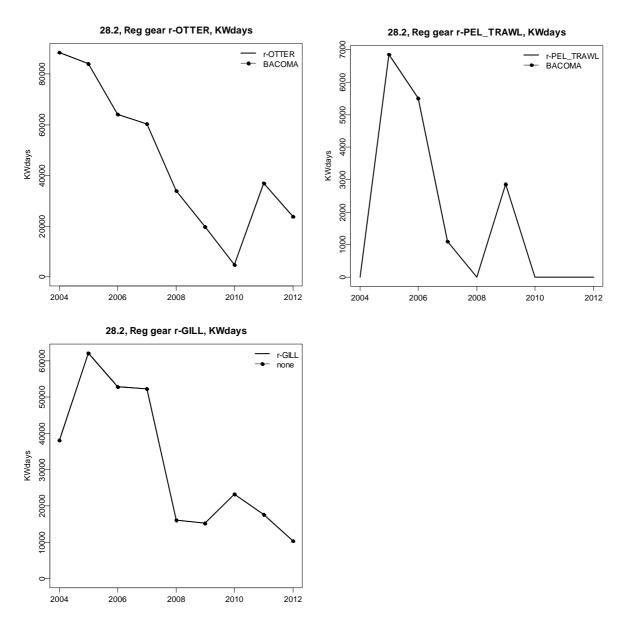


Figure 5.1.1.8. Sub-division 28.2. Baltic: Trend in nominal effort by special conditions, 2004-2012 (kW *days at sea). Note that data from Poland, Latvia and Lithuania are only available from 2004 and from Estonian from 2005 onwards. Therefore, effort trends are shown from 2004 to 2012. No data from Finland.

5.1.2 ToR 1.b Fishing activity and capacity by area, fisheries and Member State

Table 5.1.2.1 lists the estimated days at sea by area, main regulated gears (r-otter and r-gill) and Member State. The results show a clear decreasing trend over the areas A and B from total of 153,000 days at sea in 2004 to 76,000 days in 2011. In 2012 the overall number of days at sea increased again to 82,000 days. The total decrease in fishing activity has been mostly driven by the respective trend in area B only (from 104,000 to 45,000 days). The decreasing trend was observed both in regulated gillnets and otter-trawls. At the same time the fishing activity in area A has stabilised around 37,000-38,000 days in 2010-2012. The figures presented in the table should be, however, taken cautiously,

since the multi-fold counting may have taken place in the cases where certain vessels may have deployed more than one specific regulated gear.

Uptake of days at sea against the available days at sea by Member State and area for regulated and non-regulated gear types in 2008-2012 is presented in the Section 5.1.7.

Table 5.1.2.1 Days at sea by area, regulated gear and Member State.

REG AREA COD	REG GEAR COD	COUNTRY	2004	2005	2006	2007	2008	2009	2010	2011	2012
A	r-GILL	DEU	7219	14201	22002	21213	17262	13418	11971	11310	11142
		DNK	5661	15776	13324	11008	11983	9358	8284	7917	7813
		EST		115	124	68	125	151			
		LTU									
		LVA	811	1044	997	145	47	12	48	21	10
		POL	3908	4173	2656	4062	2912	1914	1129	1106	1551
		SWE	5329	5743	5015	4958	5547	4643	4057	3944	3331
	r-OTTER	DEU	9467	8771	8125	7952	6727	5677	5239	5317	5002
		DNK	15836	16086	11915	9922	9264	8205	6945	6105	6535
		EST		7					6		
		LTU									
		LVA		76		84			36		
		POL	748	1361	589	2374	1323	940	717	733	1120
		SWE	705	589	807	960	728	415	331	691	498
Total A			49684	67942	65554	62746	55918	44733	38763	37144	37002
В	r-GILL	DEU	50	361	82	58	24	50			
		DNK	1886	3243	2974	2320	2367	2050	1617	1676	1224
		EST		462	458	308	140	101			
		LTU						944	821	635	538
		LVA	9376	4413	3501	3306	3024	2447	2213	2140	1715
		POL	40916	25446	21835	17523	13910	11214	10733	10156	14991
		SWE	15348	12125	10484	9220	10766	9395	6868	6188	5121
	r-OTTER	DEU	644	996	625	282	775	1078	1365	485	666
		DNK	4190	4775	5880	2790	2644	2749	3137	4145	4532
		EST		100	26	43			171	281	313
		LTU						1300	1508	1812	2202
		LVA	1421	1054	1546	797	1012	806	892	2005	1422
		POL	24902	15831	17179	10038	7031	4601	5562	5647	8628
		SWE	5079	4262	4041	2640	2847	2539	2810	3427	3454
Total B			103812	73068	68631	49325	44540	39274	37697	38597	44806
Grand Total A+B			153496	141010	134185	112071	100458	84007	76460	75741	81808

5.1.3 ToR 1.b Catches (landings and discards) of cod in weight and numbers at age by fisheries

The following tables list the landings and discards for cod by gear category, area and Member State (Table 5.1.3.1) as well as aggregated over Member States (Table 5.1.3.2). Discard rates per year, gear category, area and country can be found in Table 5.1.3.3 and aggregated over Member States in Table 5.1.3.2. In addition, in Table 5.1.3.4 discard rates by areas, gear category and years are presented, while in Table 5.1.3.5 discard and landing data by age is listed. Figures on landings and discards for the most important gear categories catching cod were also provided (Figure 5.1.3.1).

The overall problem highlighted in this section is the poor quality of discard data in terms of fisheries coverage, as already outlined. In addition, data from Poland are only available from 2004 and for Estonia, from 2005 onwards. Therefore, for the analyses of catch and discard trends, year 2003 was be excluded from analyses as in previous years.

The overall landings of Baltic cod in 2012 were 2.3% higher compared to 2011 (ICES, 2012). Discards fluctuate around low values without any trend over years. Despite the quality of discard estimates has essentially improved since the introduction of EU Data Collection Programs, the estimates should still be taken with caution.

Most cod landings stem from areas A and B. According to the available data area C plays only a marginal role in cod present distribution pattern in the Baltic (e.g. landings of 2012 in A+B=68222 tonnes; landings in area C=76 tonnes 0.1% of total).

Cod discard rates are higher in area B followed by area A, showing certain increase in most recent years for regulated otter trawls (Figure 5.1.3.1). This can be explained with the increase of the Eastern Baltic cod stock (ICES, 2012). For regulated gears the average discard rate in area B was 13% against 5% in area A in 2012 (Table 5.1.3.1). For area C only very minor discard rate has been observed in gillnet fishery. This probably reflects the distribution of the cod stock. Average discard rates were higher for regulated otter trawls (up to 16% and for pelagic trawls – 13% in area B in 2012). The discards from gillnet fishery generally remained below 10%. Discard rates between Member States are of comparable magnitude. Only in area B the discard rates for r-Otter were significantly higher for Sweden, Germany and Poland compared to the other countries in some years.

1.3% of total cod landings were taken in Fully Documented Fishery (FDF). The discard rates in FDF of cod were available for 2012 and areas A and B only. Only in regulated demersal seine fishery the share of FDF was in the comparable magnitude (around 50% of total). The average discard rates in FDF and non-FDF by comparable regulated gear types in 2012 are presented in the Table 5.1.8.1.1. The data suggests that the discard rates were significantly lower in FDF in demersal seine and otter trawl whereas in pelagic trawl fisheries the values were similar.

Table 5.1.3.1 Landings (t) and discards (t) for cod in 2004-2012 by gear category, area and Member State. An "r" in front of the gear type indicates regulated gears in accordance with Council Regulation (EC) 1098/2007. Gear types without an "r" are non-regulated gears. Data from Estonia are only available from 2005 onwards.

REG AREA	REG GEAR	SPECON	COUNTRY	2004 L 20	004 D 3	0051 2	2005 D. 1	20061 2	006 D .	20071 2	007 D	20081 2	008 D	2009 1 2	009 D 1	2010 2	010 D	2011 2	011 D 1	2012 2	012 D
	GILL	none	EST	2004 L 20	JU4 D 2	2003 L 2	2005 D .	2000 L 2	000 D 2	2007 L 2	0070	2008 L 2	U08 D .	2009 L 2	009 D .	2010 L 2	010 0	2011 L 2	0110 2	0	012 D
	GILL	none	LVA													0		0		0	
28.2	OTTER	none	LVA			0		0													
28.2	PEL_TRAWL	none	EST															0			
1	PEL_TRAWL	none	LVA	17		9		9		13		5				1		3		1	
1	POTS	none	EST																	0	
28.2	r-GILL	none	LVA	74		151	4	90	1	102	7	39	1	39	0	37	0	36	0	33	
28.2	r-OTTER	BACOMA	EST							1										1.4	
28.2 28.2	r-OTTER r-OTTER	BACOMA BACOMA	LTU LVA	173	1	195		168	1	93		57		121		12		41		14 114	
28.2		BACOMA	LVA	1/3		155		100		23		37		121		12		41		114	
	BEAM	none	DEU													2		3			
1	DEM_SEINE	none	DNK	0	0	1		7		0											
	DEM_SEINE	none	POL	0	0					0											
A	DREDGE	none	DNK																		
	GILL	none	DEU	0	0	22	1	21		17		4		1	0	3	0	0	0	1	0
	GILL	none	DNK	58	0	216	24	123		117		21		12	0	7	0	7	0	2	0
	GILL	none	POL	9	0	1	0	1		5		3		1	0	0	0			0	0
	GILL	none	SWE	0	0	1	0	0		1		0		1	0	1	0	2	0	1	0
	none	none	DEU	3		18		34	1	9		3		3						0	
1	none	none	DNK	2829		446		849	18	110		59		27		46	0	47		63	
1	none OTTER	none none	SWE DEU	21		23 77		7 60	0	35 39		15 57		33	0	17 22	34	52		8	0
	OTTER	none	DNK	77		124		125		51		23		24	0	8	15	9		7	0
	OTTER	none	POL	3		3		1		1		0		24	U	U	13	7		0	0
	OTTER	none	SWE	1		0		1		0				0	0			,		1	0
1 1	PEL_TRAWL	none	DEU	26	0	65		83		50		47		17	0	17	0	6	2	3	0
	PEL_TRAWL	none	DNK	36	0	86		92		47		28		18	0	20	0	11	4	4	0
Α	PEL_TRAWL	none	LVA							11				0	0						
	PEL_TRAWL	none	POL	10	0	35		40		9		16		0	0	1	0	1	1	1	0
	PEL_TRAWL	none	SWE	60	1	71		53		31		27		23	0	28	0	25	9	3	1
	POTS	none	DEU	2		0		2		0		1		4		14	0	4	0	3	0
	POTS	none	DNK	_		278		86		180		66		60		87	0	49	1	43	1
	POTS	none	POL	0		2		1		_						2					
Α	POTS r-BEAM	none BACOMA	SWE DEU	3		3		4		6		9		0		2	0	4	0	4	0
A	r-BEAM	none	DEU									,									
Ā		BACOMA	DEU					51		143		250		194		51		71		4	
A	r-DEM_SEINE	none	DEU	6	1	37															
	r-DEM_SEINE	none	DNK	1369	171	1014		1392		1460		1268	10	601	48	481	85	388	42	438	9
Α	r-GILL	none	DEU	624	13	1140	48	1744	0	1699	0	1534	1	874	88	1174	40	864	29	1030	16
Α	r-GILL	none	DNK	1490	18	2935	145	2382	1	2177	1	1933	3	1447	78	1426	130	1516	0	1518	24
A	r-GILL	none	EST			60	4	102	0	52	0	132	0	194	8						
	r-GILL	none	LVA	247	2	406	21	580	1	90	0	30	0	23	1	71	4	24	1	11	0
	r-GILL	none	POL	316	9	449	19	436	0	884	0	641	0	266	36	168	8	225	4	403	9
1	r-GILL	none	SWE	1217	18	1151	46	1063	0	1153	1	1245	2	946	40	817	17	870	15	873	11
	r-LONGLINE	none	DEU	24	1	59	4	32		20	0	20		13	0	32	0	27	1	14	0
	r-LONGLINE	none	DNK	313	5	617	31	497		432	12	136		127	1	164	0	229	3	202	3
	r-LONGLINE	none none	LTU POL	33	1	8 258	0 14	128		265	1	78		10	0	13	0	20	0	20	0
	r-LONGLINE r-LONGLINE	none	SWE	113	1	204	7	100		203 54	0	78 58		157	0	107	0	167	2	29 231	0 4
1	r-OTTER	BACOMA	DEU	113	3	204	,	4944	333	4941	319	3155	231	2623	300	2556	567	3133	411	3028	170
		BACOMA	EST			1	0									0	0			3	0
		BACOMA				57	0	1	0	173	14					87	11			-	
Α	r-OTTER	BACOMA		129	12	309	1	177	15	1182	80	611	39	238	21	127	12	224	49		
A		BACOMA		755	40	634	2	1217	60	1525	132	1256	51	879	91	429	45	1241	542	984	161
	r-OTTER	none	DEU	3685	440	4670	1207	22	2	9	1	18	2	4	0	1	0	17	1	1	0
	r-OTTER	none	DNK	7697	814	6866	1823	6675	634	7170	554	5708	486	5531	503	4543	963	5546	692	5876	293
		none	LTU			129	28	42	5												
		none	POL															7	1	386	32
	r-OTTER	none	SWE													19	2				
	r-OTTER	T90	SWE					70	0	107		5	0			45 13	4	149	65 4	173	39
	r-PEL_TRAWL r-PEL_TRAWL	BACOMA				1	0	76	U	187 10		5	U			13		13	4	5	
	r-PEL_TRAWL					27	0	2	0	3											
	r-PEL_TRAWL			8	0	5	0	7	0	٠		2	0					6	2		
	r-PEL_TRAWL		DEU	11	2	35	6	0	0												
	r-PEL_TRAWL		DNK	17	2	41	10	102	10	19	1	8	1	24	2	36	6	0		1	0
	r-PEL_TRAWL	ı	LTU			10	2			_					_	_	_				
Α	r-TRAMMEL	none	DEU	2	0	16	1	29		88		96	0	61	8	42	3	77	0	103	3
	r-TRAMMEL	none	DNK	251	4	482	60	496		473		471	0	297	14	359	35	395	0	557	12
1 1	r-TRAMMEL	none	SWE	24	0	65	5	80		36		47	0	47	1	89	1	71	1	56	1
	TRAMMEL	none	DEU			3		2		3		1		0				0			
	TRAMMEL	none	DNK	4		18		4		4		6		0		1		0		0	
1	TRAMMEL	none	POL	0																	
A	TRAMMEL	none	SWE																		

Table 5.1.3.1 continued

Second Column	В	DEM SEINE	none	DNK															1			_
MINICIPAL MORNE	l I			1			0												1			
BILL NOME STATE OF THE PROPERTY OF THE PROPERT	l I						- 0						6									
SIL OPE	l I				49		87	1	56		40				1	0						
SILL COOK	l I	1		1	"		٠,	-	50		40		·		-						0	0
ORL ORD ORL ORD ORL				1															0	0		Ĭ
BIL None N	l I	1		1	6		2	0	2		1		1		2	0	1	0			5	0
December Conce C	l I	1		1	-																	
DOME	l I				1099																	
STITEM				1											4						20.	
OTTER																1			0	n		
OTTER		1		1	67		76		25		10											
OTTER	D	1		1	0,		,,		33		10		3		•	-			_	·		
OTTER	D	1		1													U	U				
OTTER		1		1	20		22				2		2				0	0	21	4	22	_
SEL_TRAMIL Once COLU S		1		1											22	2						
SECTION SECT							22		15				10		22				3	1		U
S	1	_		I			06		22				-		14	1		_			0	
SEL_TRAMIL Once LTU		_		1	30												3	0			U	U
SEL_TRANK	l I	_		1			4/		U		40		19				24	40				
PRI_TRANN		_		I																		
PE_TRANK Nome	l I			1																		
S	1	_		1																		
S	1	_			102				36				79		96	12	22	0	13	3	2	0
B		1		1			0				0										_	
POTS	l I	1		1																	0	0
Dem Dem Series Concern Dem	l I	1		1																		
					0		0									1		0		0		0
Sem Fight Sem Come DNK Delta 19 172 5 6 1 2 0 8 0 19 1 1 1 1 1 1 1 1	l I	_							67		58		94		339		233		365		208	
F-GILL		_	l	1																		
No.	l I																		93		257	
No. Figure Figu	1	1		1																		
Colii	1	1		1	631	17											483	46	419	19	258	16
F-GILL None IVA 3380 347 2106 70 1821 68 1657 195 1964 73 2331 74 2330 237 170 86 235 134 77 239 169 170 177 239 169 170 177 239 183 184 232 239 237 170 86 235 134 236 236 234 236	В	r-GILL	none	EST			301	9	296	13	229	21	168	7	161	5						
Fig.	В	r-GILL	none	LTU			3	0			1	0			451	16	484	139	305	0	188	10
	В	r-GILL	none	LVA	3380	147	2106	70	1821	68	1657	195	1964	73	2333	74	2336	237	1710	86	1235	113
FLONGINE none DIV	В	r-GILL	none	POL	5217	162	3496	112	3582	143	2048	136	2788	73	3448	144	3323	259	2939	174	3477	209
FLONGISINE None Nort 17	В	r-GILL	none	SWE	2894	40	1864	58	1629	60	1517	94	1969	78	1835	98	1081	32	802	40	710	19
FLONGISINE	В	r-LONGLINE	none	DEU	0	0	1	0	0				0	0			0	0				
F.CONGLINE CONGLINE CONGLIN	В	r-LONGLINE	none	DNK	257	4	519	11	332		205		117	0	92	6	144	17	127	6	60	2
F.CONGLINE	В	r-LONGLINE	none	LTU											29	0	22	0	17	0		
FOTTER SACOMA DEU	В	r-LONGLINE	none	POL	2122	28	1804	26	2553		1371		913	3	514	36	1372	175	1104	45	709	26
FOTTER BACOMA CTU FOTTER C	В	r-LONGLINE	none	SWE	1197	16	951	19	896		537		724	1	621	48	412	62	356	21	316	14
FOTTER BACOMA LT	В	r-OTTER	BACOMA	DEU					1199	221	596	111	1960	123	1991	260	2456	244	793	103	1634	279
POTTER	В	r-OTTER	ВАСОМА	EST			73	5	28	5	63	12					526	55	622	113	404	98
POTTER	В	r-OTTER	BACOMA	LTU											2042	189	2595	232	2702	110	2165	117
POTTER	В	r-OTTER	BACOMA	LVA	623	26	931	22	1603	107	1043	40	1658	158	1776	130	2434	314	2856	445	2692	454
FOTTER	В	r-OTTER	васома	POL	5366	283	5291	360	6282	706	3399	510	4466	275	5478	491	6548	626	6039	919		
Part	В	r-OTTER	ВАСОМА	SWE	7131	426	4502	649	5357	1334	6108	1459	5792	665	6785	982	7030	656	7009	1623	8085	2629
POTTER	В	r-OTTER	none	DEU	1039	56	1570	113					26	1	34	2						
FOTTER None POL None POL None POL None N	В	r-OTTER	none	DNK	3899	252	3740	303	6692	832	4717	571	6068	336	6943	502	9851	584	10017	849	11232	1366
POTTER None SWE No. No. SWE No.	В	r-OTTER	none	LTU			23	2	112	12	669	71										
POTTER None SWE No. No. SWE No.	l I	1	none	POL															474	40	9187	1398
B	l I	1	l	1											156	21	274	27				
B		1																	1145	277	753	229
B									728	125	870	95	260	12								
B	1	_	ı	1			103															
B	1	_	ı	1						-		_						_				
B					348	9	6		140	28	751	87	32	3	122	11				-		
B																	28	1	150	28	200	20
R																					95	30
B								22	2000	333	1220	221	102	JZ	334	70	114		555	101	23	30
B				1					562	62	360	/11	15	1	9.4	7	57	2	51	1	22	2
B				1	410	32							13	1					31	4	22	3
B				1			122	э	131	61	1/32	100			210	U	13	U	17	4	02	12
B				1															17	1		
B	1	_			-														24	7	4	1
B						^	2	^	A		20		27		70	^	10				4	
B TRAMMEL none SWE 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	1	1	1													10					
C GILL none EST	1										U				U	U			U	U	U	U
C GILL none FIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					1	U	U	U	U				U								^	
C GILL none SWE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	1	1	1	_				•		0				•		2		4		U	
C OTTER none SWE 0 0 0 4 1 0 PEL_TRAWL none DNK C POTS none EST C POTS none FIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			l		"	U					U	U	Ü	Ü	O	Ü			1	U		
C PEL_TRAWL none DNK C POTS none EST C POTS none FIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	l I				_			U		0							U	U				
C POTS none EST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	l I				0		0		4												1	0
C POTS none FIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					-																	
C r-GILL none POL 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1	1	1	l	1	_		_								_	_					0	
C r-GILL none SWE 12 10 10 13 15 34 2 41 1 60 3 65 2 C r-LONGLINE none SWE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	l I				0	0	0	0							0	0						
C r-LONGLINE none SWE 0 0 r-OTTER BACOMA SWE 1 1 GRAND TOTAL A+B+C 61062 3133 53984 5344 63087 5364 57412 5083 50302 2769 53673 4522 57667 6034 59105 7441 61246 8011	1	1	l	1	l .						_				_				_			
C r-OTTER BACOMA SWE 1 1 GRAND TOTAL A+B+C 61062 3133 53984 5344 63087 5364 57412 5083 50302 2769 53673 4522 57667 6034 59105 7441 61246 8011	1				12		10		10		13				34	2	41	1	60	3	65	2
GRAND TOTAL A+B+C 61062 3133 53984 5344 63087 5364 57412 5083 50302 2769 53673 4522 57667 6034 59105 7441 61246 8011	l I				-																	
			BACOMA	SWE																		
GRAND TOTAL 28.2 264 1 355 4 267 2 209 7 101 1 160 0 50 0 80 0 162	l l																					8011
	ICPAND TOT	AL 28.2			264	1	355	4	267	2	209	7	101	1	160	0	50	0	80	0	162	

Table 5.1.3.2. Landings (t) and discards (t) for cod in 2004-2012 by gear category and area. An "r" in front of the gear type indicates regulated gears in accordance with Council Regulation (EC) 1098/2007. Gear types without an "r" are non-regulated gears. Data from Estonia are only available from 2005 onwards.

REG AREA	REG GEAR	SPECON	2004 L 2	nna n	2005 L 3	2005 D	2006 L 3	2006 D	2007 1 2	2007 D	2008 1 .	ח אחמ	2009 1 2	2009 D	2010 1	2010 D	2011 1	2011 D	2012 2	012 D
28.2	GILL	none	2004 L 2	.004 D	2003 L 2	2003 D	2000 L 2	2000 D	2007 L 2	.007 D .	2000 L 2	2000 D .	2003 L 2	2003 D	0	2010 D	0	2011 0	0	.012 D
28.2	OTTER	none			0		0								- 0		- 0		- 0	
28.2	PEL TRAWL	none	17		9		9		13		5				1		4		1	
28.2	POTS	none	- 17						13										0	
28.2	r-GILL	none	74		151	4	90	1	102	7	39	1	39	0	37	0	36	0	33	
28.2	r-OTTER	BACOMA	173	1	195	- 4	168	1	94		57		121	- 0	12	- 0	41	- 0	128	
28.2	r-PEL TRAWL	BACOMA	1/3		155		100		54		37		121		12		41		120	
A	BEAM	none													2		3			
Α Δ	DEM SEINE		0	0	1		7		0								3			
Α Δ	DREDGE	none none	U	U	1				0											
Α Δ	GILL		67		240	25	146		139		20		- 11		10	0	9	0		
Α .		none	_	0		25	_				29		14	0	10	_		U	5	0
Α .	none	none	2833		487		890	19	155		77		36		63	0	47		63	
A	OTTER	none	103		204		187		91		80		57	0	30	49	69		16	0
Α	PEL_TRAWL	none	132	1	256		269		148		117		59	0	66	0	43	16	11	1
A	POTS	none	5		282		93		186		68		64		102	0	57	1	50	1
A	r-BEAM	BACOMA									9									
A	r-BEAM	none																		
Α	r-DEM_SEINE						51		143		250		194		51		71		4	
Α	r-DEM_SEINE		1375	172	1051		1392		1460		1268	10	601	48	481	85	388	42	438	9
Α	r-GILL	none	3893	61	6141	283	6307	3	6054	3	5513	6	3750	251	3655	200	3499	48	3837	61
Α	r-LONGLINE	none	483	9	1145	56	757		772	14	291		308	2	316	0	442	6	476	7
Α	r-OTTER	BACOMA	884	52	1003	3	6339	409	7821	544	5022	321	3740	412	3199	635	4597	1002	4016	332
Α	r-OTTER	none	11382	1254	11665	3059	6739	640	7179	555	5726	487	5535	503	4562	965	5570	695	6262	325
Α	r-OTTER	T90													45	4	149	65	173	39
Α	r-PEL_TRAWL	BACOMA	8	0	32	0	85	1	200		7	0			13		18	6	5	
Α	r-PEL TRAWL	none	28	5	86	19	102	10	19	1	8	1	24	2	36	6	0		1	0
Α	r-TRAMMEL	none	276	4	563	66	606		597		613	0	404	22	490	39	544	2	716	16
Α	TRAMMEL	none	4		21		5		7		7		0		1		0		0	
В	DEM SEINE	none			0												1			
В	DREDGE	none									6									
В	GILL	none	55		89	1	58		40		9		3	0	1	0	14	1	5	0
В	none	none	1104		46		95		19		10		4		2	0			184	
В	OTTER	none	129		129		57		29		21		35	4	11	0	35	5	24	6
В	PEL TRAWL	none	521		661		376		505		397		413	36	273	212	315	33	56	17
В	POTS	none	0		0		2		0		1		12	1	8	0	3	0	1	0
В	r-DEM SEINE	BACOMA					67		58		94		339		233		365		208	
B	r-DEM SEINE	none	1		162		85		46		-						93		257	
В	r-GILL	none	12142	367	8733	278	8094	312	6210	499	7799	267	9063	369	7706	713	6174	319	5869	366
В	r-LONGLINE	none	3576	48	3276	56	3781	312	2113	433	1754	4	1256	90	1950	254	1604	72	1085	42
В	r-OTTER	BACOMA	13120		10796		14469	2272	11209	2131	13877		18071		21588		20021	3312		3577
В	r-OTTER	none	4938	308	5333	417	6804	844	5387	642	6093	338	7133		10125		10490		20419	2764
В	r-OTTER	T90	4330	200	2233	41/	0004	044	JJ01	U4Z	0033	330	7133	12	887	75	1145	277	753	2764
B	r-PEL_TRAWL		2030	56	664		3852	611	4670	473	1098	113	2065	182	1636	52	3184	633	1158	201
В	r-PEL_TRAWL		1946	60	902	45	1354	144	2101	221	1098	113	312	182 7	71	3	3184 69	5	108	15
	_		1940	00	302	45	1334	144	2101	221	15	1	512	/	/1	3			109	15
B B	r-PEL_TRAWL	T90	10		2				20		20		70	0	10		24	7	1	
ı .	r-TRAMMEL	none	10	0	3	0	4		38		28		70	0	10		2	0	1	0
В	TRAMMEL	none	1	0	0	0	0				0								-	
С	GILL	none	0	0	1	0	0	0	0	0	0	0	0	0	2	0	1	0	0	
C	OTTER	none	0		0		4												1	0
C	PEL_TRAWL	none																		
С	POTS	none	0	0	0	0							0	0					0	
С	r-GILL	none	12		10		10		13		15		34	2	41	1	60	3	66	2
С	r-LONGLINE	none									0									
C I	r-OTTER	BACOMA	1								1									

Table 5.1.3.3. Discard rates for cod 2004-2012 by gear category, area and country. An "r" in front of the gear type indicates regulated gears in accordance with Council Regulation (EC) 1098/2007). Gear types without an "r" are non-regulated gears. Data from Estonia are only available from 2005 onwards.

250 1251	250 2512		0011117011	2004	2005	2006	2007	2000	2000	2010	2011	2012
REG_AREA	REG_GEAR	SPECON	COUNTRY	2004	2005	2006	2007	2008	2009	2010	2011	2012
28.2	GILL	none	EST									
28.2	GILL	none	LVA									
28.2	OTTER	none	LVA									
28.2	PEL_TRAWL	none	EST									
28.2	PEL_TRAWL	none	LVA									
28.2	POTS	none	EST									
28.2	r-GILL	none	LVA		0.024	0.016	0.068	0.03	0.003	0.001	0.008	
28.2	r-OTTER											
28.2	r-OTTER	BACOMA	LTU									
28.2	r-OTTER	BACOMA	LVA	0.003		0.003						
28.2	r-PEL_TRAWL	BACOMA	LVA									
Α	BEAM	none	DEU									
Α	DEM_SEINE	none	DNK	1								
Α	DEM_SEINE	none	POL	0								
Α	DREDGE	none	DNK									
Α	GILL	none	DEU	0	0.038				0	0	0.012	0.017
Α	GILL	none	DNK	0	0.101				0	0	0.008	0.014
Α	GILL	none	POL	0	0.155				0	0		0.02
Α	GILL	none	SWE	0	0.053				0.016	0	0.01	0.015
Α	none	none	DEU			0.028						
Α	none	none	DNK			0.02				0		
Α	none	none	SWE			0.004				0		
Α	OTTER	none	DEU						0	0.605		0
Α	OTTER	none	DNK						0	0.653		0.047
Α	OTTER	none	POL									0
Α	OTTER	none	SWE						0.091			0.028
Α	PEL_TRAWL	none	DEU	0.008					0	0	0.269	0.07
Α	PEL_TRAWL	none	DNK	0.004					0	0	0.285	0.098
Α	PEL_TRAWL	none	LVA						0			
Α	PEL TRAWL	none	POL	0.01					0.022	0	0.302	0.235
Α	_ PEL_TRAWL	none	SWE	0.008					0.001		0.271	
Α	POTS	none	DEU							0		0.016
Α	POTS	none	DNK							0		0.017
A	POTS	none	POL									
A	POTS	none	SWE							0	0.02	0.01
A	r-BEAM	BACOMA	DEU								0.02	0.01
A	r-BEAM	none	DEU									
A	r-DEM_SEINE		DEU									
A	r-DEM SEINE		DEU	0.126								
A	r-DEM_SEINE		DNK	0.120				0.008	0.074	0 15	0.097	0.02
A	r-GILL	none	DEU		0.041	0	Λ			0.033		
A	r-GILL	none	DNK		0.041	0		0.001				0.013
A	r-GILL	none	EST	0.012		0.002			0.031	0.004	J	5.510
A	r-GILL	none	LVA	0.009		0.002	0.001			0.054	0 024	0.011
	r-GILL		POL	0.009		0.001		0		0.034		
A	r-GILL r-GILL	none	SWE		0.04		0.001			0.046		
A		none			0.038	U	0.001	0.002	0.04			
A	r-LONGLINE	none	DEU								0.018	
A	r-LONGLINE	none	DNK	0.017	0.049		0.028		0.008	U	0.013	0.014
A	r-LONGLINE	none	LTU	0.022	0.053		0.005		0.014	^	0.047	0.043
A	r-LONGLINE	none	POL	0.033			0.005		0.014		0.017	
Α	r-LONGLINE	none	SWE	0.022	0.034		0.003		0.001	0	0.013	0.016

Table 5.1.3.3 continued.

	1											
Α	r-OTTER	BACOMA	DEU			0.063	0.061	0.068	0.103	0.182	0.116	0.053
Α	r-OTTER	BACOMA	EST		0.011					0.093		0.072
Α	r-OTTER	BACOMA	LVA		0.004	0.055	0.075			0.113		
Α	r-OTTER	BACOMA	POL	0.087	0.002	0.081	0.063	0.061	0.081	0.088	0.179	
Α	r-OTTER	BACOMA	SWE	0.05	0.003	0.047	0.079	0.039	0.094	0.094	0.304	0.141
Α	r-OTTER	none	DEU	0.107	0.205	0.082	0.073	0.077	0.086	0.178	0.081	0.046
Α	r-OTTER	none	DNK	0.096	0.21	0.087	0.072	0.078	0.083	0.175	0.111	0.047
Α	r-OTTER	none	LTU		0.179	0.098						
Α	r-OTTER	none	POL								0.122	0.077
Α	r-OTTER	none	SWE							0.08		
Α	r-OTTER	T90	SWE								0.303	0.185
Α	r-PEL TRAWL					0.006		0.023			0.238	
Α	r-PEL TRAWL				0.013							
A	r-PEL TRAWL					0.028						
A	r-PEL TRAWL			0.016		0.022		0.033			0.27	
A	r-PEL TRAWL		DEU		0.155			0.000			0.27	
A	r-PEL_TRAWL		DNK				0.072	0 079	0 083	O 148		0.037
A	r-PEL_TRAWL		LTU	0.123	0.203	0.007	0.072	5.575	0.003	0.170		0.037
A	r-TRAMMEL	none	DEU	0.015				0 001	O 111	0.077	0 002	0.024
A	r-TRAIVIIVIEL	none	DNK	0.015					0.111			0.024
A	r-TRAMMEL TRAMMEL	none	SWE	0.016	0.005			0.001	0.019	0.009	0.02	0.013
A		none	DEU									
A	TRAMMEL	none	DNK									
A	TRAMMEL	none	POL									
A	TRAMMEL	none	SWE									
В	DEM_SEINE	none	DNK									
В	DEM_SEINE	none	EST									
В	DREDGE	none	DNK									
В	GILL	none	DNK		0.006				0.018			_
В	GILL	none	EST									0
В	GILL	none	LVA								0.03	
В	GILL	none	POL		0.023				0.078		0.053	0
В	GILL	none	SWE		0.067				0.062		0.051	0
В	none	none	DNK							0		
В	none	none	SWE							0		
В	OTTER	none	DEU						0.102	0	0.246	
В	OTTER	none	DNK						0.102	0	0.176	
В	OTTER	none	LTU							0		
В	OTTER	none	LVA									
В	OTTER	none	POL								0.125	0.2
В	OTTER	none	SWE						0.1	0	0.186	0.203
В	PEL_TRAWL	none	DEU							0.623		1
В	PEL_TRAWL	none	DNK						0.088	0.568	0.092	0.2
В	PEL_TRAWL	none	EST						0.072		0.102	
В	PEL_TRAWL	none	LTU						0	0.588	0	0.24
В	PEL_TRAWL	none	LVA						0.08	0.404	0.098	0.224
В	PEL_TRAWL	none	POL							0.486		
В	PEL_TRAWL	none	SWE						0.113		0.188	0.16
В	POTS	none	DNK									
В	POTS	none	EST									0.043
В	POTS	none	POL								0.071	
В	POTS	none	SWE						0.057	0	0.069	0.03
В	r-DEM_SEINE		DEU								2.303	2.00
В	r-DEM_SEINE		DEU									
В	r-DEM_SEINE		DNK									
ח	I-DLINI SEINE	ווטוופ	DINK									

Table 5.1.3.3 continued.

		•										
В	r-GILL	none	DEU				0.059					
В	r-GILL	none	DNK	0.026	0.029	0.035	0.067	0.037	0.037	0.086	0.044	0.057
В	r-GILL	none	EST		0.029	0.042	0.083	0.038	0.029			
В	r-GILL	none	LTU		0.022		0.032		0.034	0.224	0	0.052
В	r-GILL	none	LVA	0.042	0.032	0.036	0.105	0.036	0.031	0.092	0.048	0.084
В	r-GILL	none	POL	0.03	0.031	0.038	0.062	0.026	0.04	0.072	0.056	0.057
В	r-GILL	none	SWE	0.014			0.058					
В	r-LONGLINE	none	DEU		0.013	0.000	0.000	0.000	0.001	0.056	0.0.0	0.020
В	r-LONGLINE	none	DNK	0.014	0.02			_	0.063		0.047	0.035
В	r-LONGLINE	none	LTU	0.014	0.02			0.001	0.003	0.104	0.047	0.033
	r-LONGLINE		POL	0.012	0.014			0.003	0.066		_	0.036
В		none										
В	r-LONGLINE	none	SWE	0.013	0.02	0.456	0.456		0.072			
В	r-OTTER	BACOMA					0.156	0.059	0.115		0.115	
В	r-OTTER	BACOMA			0.064	0.142	0.157				0.153	
В	r-OTTER	BACOMA									0.039	
В	r-OTTER	BACOMA					0.036					0.144
В	r-OTTER	BACOMA	POL				0.131					
В	r-OTTER	BACOMA	SWE	0.056	0.126	0.199	0.193	0.103	0.126	0.085	0.188	0.245
В	r-OTTER	none	DEU	0.051	0.067			0.053	0.067			
В	r-OTTER	none	DNK	0.061	0.075	0.111	0.108	0.053	0.067	0.056	0.078	0.108
В	r-OTTER	none	LTU		0.064	0.096	0.096					
В	r-OTTER	none	POL								0.078	0.132
В	r-OTTER	none	SWE						0.119	0.09		
В	r-OTTER	T90	SWE								0.195	0.234
В	r-PEL_TRAWL					0.146	0.099	0.046				
В	r-PEL TRAWL		EST				0.086					
В	r-PEL TRAWL					0.132	0.000	0.055	0.073	0.023		0.145
В	r-PEL_TRAWL			0.026		0 169	0.104	U U63	0.08		U	0.145
В	r-PEL TRAWL			0.020			0.104			0.020	0.16	0.143
	_											0.227
	r-PEL_TRAWL			0.05	0.007	0.197	0.156	0.164	0.104	0.076	0.246	0.237
В	r-PEL_TRAWL		DEU	0.018		0.404	0.4	0.05	0.000	0.055	0.076	0.407
В	r-PEL_TRAWL		DNK	0.071		0.101	0.1	0.05	0.069		0.076	0.107
В	r-PEL_TRAWL		LTU		0.039	0.093	0.094		0	0		
В	r-PEL_TRAWL		POL								0.031	0.123
В	r-PEL_TRAWL		SWE									0.222
В	r-PEL_TRAWL	T90	SWE								0.238	
В	r-TRAMMEL	none	DNK	0.013	0				0.006		0	0.018
В	r-TRAMMEL	none	SWE	0.014	0.023				0.058		0	0.037
В	TRAMMEL	none	SWE	0.018	0.016							
С	GILL	none	EST									
С	GILL	none	FIN	0	0	0	0	0	0.011	0	0.001	
С	GILL	none	SWE		0	0				0		
С	OTTER	none	SWE									0.044
С	PEL_TRAWL	none	DNK									
c	POTS	none	EST									
С	POTS	none	FIN	0	0				0.333			
C	r-GILL	none	POL	U	U				0.555			0.044
	r-GILL		SWE						0.047	U US	0.054	
С		none							0.047	0.03	0.034	0.028
С	r-LONGLINE	none	SWE									
C	r-OTTER		SWE									
	nented Fisher		DALL									
A	PEL_TRAWL	FDFBAL	DNK									
Α	r-DEM_SEINE		DNK									0.002
Α	r-OTTER	FDFBAL	DNK									0.057
В	PEL_TRAWL	FDFBAL	DNK									
В	r-OTTER	FDFBAL	DNK									0.083
В	r-PEL_TRAWL	FDFBAL	DNK									0.108

Table 5.1.3.4. Discard rates for cod 2004-2012 by gear category and area. An "r" in front of the gear type indicates regulated gears in accordance with Council Regulation (EC) 1098/2007. Gear types without an "r" are non-regulated gears. Data from Estonia are only available from 2005 onwards. Qualifier for discard estimates (DQI): A>66% of landings were covered with discard estimates, 33%>B<=66%, C<=33%.

REG_AREA	REG_GEAR	SPECON	2004 DQI	2005 DQI	2006 DQI	2007 DQI	2008 DQI	2009 DQI	2010 DQI	2011 DQI	2012 DQI
28.2	GILL	none									
28.2	OTTER	none									
28.2	PEL_TRAWL	none									
28.2	POTS	none									
28.2	r-GILL	none		0.024 C	0.016 C	0.068 A	0.03 B	0.003 B	0.001 C	0.008 C	
28.2	r-OTTER	BACOMA	0.003 B		0.003 B						
28.2	r-PEL_TRAWL										
Α	BEAM	none									
Α	DEM_SEINE	none	0.25 C								
Α	DREDGE	none									
Α	GILL	none	0 C	0.096 C				0.001 C	0 C	0.009 C	0.015 C
Α	none	none			0.02 C				0 C		
Α	OTTER	none						0 C	0.619 C		0.022 C
Α	PEL_TRAWL	none	0.007 C					0.001 C	0 B	0.275 B	0.121 C
Α	POTS	none							0 C	0.02 C	0.017 C
Α	r-BEAM	BACOMA									
Α	r-BEAM	none									
Α	r-DEM_SEINE										
Α	r-DEM_SEINE		0.111 A				0.008 A	0.074 A	0.15 A	0.097 A	0.02 A
A	r-GILL	none	0.015 C	0.044 C	0 C	0 C	0.001 C	0.063 C	0.052 A	0.014 A	0.016 B
Α	r-LONGLINE	none	0.019 C	0.047 C		0.018 C		0.005 C	0 B	0.013 B	0.015 B
Α	r-OTTER	BACOMA	0.056 B	0.003 C	0.061 B	0.065 B	0.06 A	0.099 A	0.166 A	0.179 A	0.076 A
Α	r-OTTER	none	0.099 A	0.208 A	0.087 A	0.072 A	0.078 A	0.083 A	0.175 A	0.111 A	0.049 A
Α	r-OTTER	T90							0.088 A	0.303 A	0.185 A
Α	r-PEL_TRAWL		0.016 C	0.004 C	0.007 C		0.025 C			0.248 C	
Α	r-PEL_TRAWL	none	0.14 B	0.181 B	0.087 A	0.072 A	0.079 A	0.083 A	0.148 A		0.037 A
Α	r-TRAMMEL	none	0.015 C	0.105 C			0.001 C	0.053 C	0.074 A	0.003 A	0.022 C
Α	TRAMMEL	NONE									
В	DEM_SEINE	none									
В	DREDGE	none									
В	GILL	none		0.006 C				0.054 C	0 C	0.052 C	0 C
В	none	none							0 C		
В	OTTER	none						0.101 B	0 A	0.133 C	0.2 C
В	PEL_TRAWL	none						0.08 B	0.437 C	0.094 C	0.235 C
В	POTS	none						0.057 A	0 A	0.071 C	0.03 A
В	r-DEM_SEINE										
В	r-DEM_SEINE										
В	r-GILL	none	0.029 B	0.031 C	0.037 C	0.074 C	0.033 C	0.039 B	0.085 B	0.049 B	0.059 B
В	r-LONGLINE	none	0.013 C	0.017 C			0.002 C	0.067 B	0.115 C	0.043 C	0.037 C
В	r-OTTER	BACOMA	0.053 B	0.088 B	0.141 B	0.16 A	0.081 A	0.102 A	0.09 B	0.142 A	0.193 A
В	r-OTTER	none	0.059 A	0.072 A	0.11 A	0.107 A	0.053 A	0.069 A	0.057 A	0.078 A	0.119 A
В	r-OTTER	T90						0.137 A	0.078 A	0.195 A	0.234 A
В	r-PEL_TRAWL		0.027 B		0.137 A	0.092 A	0.093 B	0.081 A	0.031 A	0.166 A	0.148 B
В	r-PEL_TRAWL		0.03 A	0.047 A	0.096 B	0.095 C	0.05 A	0.022 A	0.045 A	0.065 A	0.124 C
В	r-PEL_TRAWL									0.238 A	
В	r-TRAMMEL	none	0.014 C	0.005 C				0.007 C		0 C	0.022 C
В	TRAMMEL	none	0.018 A	0.016 C							
С	GILL	none	0 A	0 C	0 A	0 A	0 A	0.011 A	0 A	0.001 A	
С	OTTER	none									0.044 A
С	PEL_TRAWL	none									
С	POTS	none	0 A	0 A				0.333 A			
С	r-GILL	none						0.047 A	0.03 A	0.054 A	0.028 A
С	r-LONGLINE	none									
С	r-OTTER	BACOMA									
Fully Docu	mented Fisher	-									
Α	_	FDFBAL									
Α	r-DEM_SEINE										0.002 A
Α	r-OTTER	FDFBAL									0.057 A
В	PEL_TRAWL	FDFBAL									
В	r-OTTER	FDFBAL									0.083 A
В	r-PEL_TRAWL	FDFBAL									0.108 A

Table 5.1.3.5. Cod landings (L) and discards (D) at ages 1-5 ('000) by gear category and area 2003-2012.Landing and discard estimates in tons are for all age range (1-9). An "r" in front of the gear type indicates regulated gears in accordance with Council Regulation (EC) 1098/2007 (see section 2.6). Gear types without an "r" are non-regulated gears. Data on age distribution were available for areas A and B only. Data from Estonia are only available from 2005 onwards. Full dataset is available in Annex 03.

REG_AREA	Year	REG_GEAR	SPECON	Landings t	Discards t	AGE 0L	AGE 0D	AGE 1L	AGE 1D	AGE 2L	AGE 2D	AGE 3L	AGE 3D	AGE 4L	AGE 4D	AGE 5L	AGE 5D
28.2	2003	r-GILL	none	242,442	5,675	0,000	0,000	0,000	1,310	0,000	0,816	10,419	7,726	166,899	2,333	80,304	0,291
28.2	2003	r-OTTER	BACOMA		0,400	0,000	0,000	0,000	0,000	0,079	0,015	2,161	0,166	20,566	0,575	36,293	0,004
28.2		r-OTTER	BACOMA		0,501	0,000	0,000	0,000	0,000	0,000	0,000	0,727	0,000	9,787	0,000	29,728	0,000
28.2 28.2		r-OTTER	BACOMA		0,000	0,000	0,000	0,000	0,000	0,000	0,000	3,959	0,000	77,516	0,000	83,452	0,000
28.2		r-GILL r-OTTER	none BACOMA	89,968	1,428 0.500	0,000	0,000	0,000	0,000	0,000	0,077 0.000	0,501 18,528	0,644	30,662 77,589	1,134 0.000	46,102 49,796	0,060 0.000
28.2		r-GILL	none	101,768	7,395	0,000	0,000	0,000	0,628	0,000	6,210	4,525	5,449	35,336	0,355	49,796	0,000
28.2	2008	r-GILL	none	39,315	1,220	0,000	0,000	0,000	0,022	0,000	0,707	5,182	1,239	11,685	0,197	12,642	0,044
A	2003	DREDGE	none	8,795	0,000	0,000	0,000	1,418	0,000	9,286	0,000	0,507	0,000	0,010	0,000	0,003	0,000
Α	2003	GILL	none	105,543	5,355	0,000	0,000	3,363	2,892	34,113	13,184	25,607	0,766	11,869	0,005	2,588	0,000
Α	2003	none	none	2734,176	0,000	0,000	0,000	133,256	0,000	1250,361	0,000	687,504	0,000	254,332	0,000	49,569	0,000
Α	2003	OTTER	none	158,778	0,000	0,000	0,000	20,095	0,000	90,164	0,000	43,402	0,000	8,748	0,000	2,167	0,000
A	2003	PEL_TRAWL		118,099	0,000	0,000	0,000	4,686	0,000	62,937	0,000	41,928	0,000	9,483	0,000	2,015	0,000
A		TRAMMEL		4,308	0,186	0,000	0,000	0,000	0,098	0,587	0,457	0,812	0,029	0,608	0,000	0,146	0,000
A	2003	r-DEM_SEIN r-GILL	none	1398,457 3936,838	163,944 130,647	0,000	0,000	190,387 174,845	69,062 70,294	654,885 1430,652	306,867 318,490	491,030 1012,326	31,495 18,840	109,946 392,061	0,991 0,203	21,726 86,425	0,000 0,000
	2003	r-LONGLINE		366,763	5,168	0,000	0,000	8,363	0,000	124,813	0,000	160,955	0,000	39,043	0,000	10,770	0,000
A	2003	r-OTTER	none	11126,456	2800,158	0,000	7,468	1112,470	1502,030	5704,457	4995,317	3676,498	438,571	934,000	5,180	165,095	0,342
А	2003	r-PEL_TRAW		82,747	9,906	0,000	0,052	15,901	4,551	50,156	19,617	17,967	1,804	3,439	0,037	0,704	0,000
Α		r-TRAMMEL		311,497	17,387	0,000	0,000	2,325	9,384	46,944	42,808	43,877	2,496	44,351	0,025	10,364	0,000
Α	2004	GILL	none	67,035	0,000	0,000	0,000	2,335	0,000	11,446	0,000	26,996	0,000	5,843	0,000	1,468	0,000
Α	2004	none	none	2833,301	0,000	0,000	0,000	185,010	0,000	768,794	0,000	1334,224	0,000	241,663	0,000	40,894	0,000
	2004	OTTER	none	102,599	0,000	0,000	0,000	10,030	0,000	38,837	0,000	39,709	0,000	7,125	0,000	1,511	0,000
Α Δ	2004	PEL_TRAWL		132,471	0,960	0,000	0,000	10,498	0,000	26,973	0,000	65,329	0,000	9,997	0,000	2,406	0,000
A	2004 2004	TRAMMEL r-DEM_SEIN		4,402 1375,380	0,000 171,893	0,000	0,000	0,003 94,997	0,000 104,942	0,060 484,682	0,000 201,856	1,361 757,995	0,000 132,580	0,653 66,648	0,000 0,000	0,180 14,056	0,000 0,000
A		r-GILL	none	3893,437	60,960	0,000	0.000	128,022	8,700	885,610	15,267	1384,634	9,079	386,699	0.000	75,459	0,000
A	2004	r-LONGLINE		482,777	9,428	0,000	0,000	28,536	3,031	184,832	5,355	173,437	3,429	40,700	0,000	7,293	0,000
A			none	11381,583	1254,266	0,000	0,000	577,692	833,868	2983,786	1471,611	6694,522	942,534	796,820	0,000	156,169	0,000
Α	2004	r-PEL_TRAW	none	28,304	4,622	0,000	0,000	3,256	3,071	15,022	5,419	9,644	3,466	2,586	0,000	0,212	0,000
Α	2004	r-TRAMMEL	none	276,432	4,207	0,000	0,000	2,907	0,000	8,630	0,000	77,989	0,000	33,685	0,000	10,229	0,000
Α		DEM_SEINE		0,506	0,000	0,000	0,000	0,001	0,000	0,226	0,000	0,086	0,000	0,093	0,000	0,020	0,000
	2005	GILL	none	240,218	25,463	0,000	0,000	7,357	9,031	102,642	44,896	33,624	2,166	37,541	0,239	8,816	0,120
A A	2005	none	none	486,624	0,000	0,000	0,000	9,698	0,000	201,728	0,000	65,227	0,000	97,155	0,000	14,095	0,000
Α	2005 2005	OTTER r-PEL_TRAW	none	204,472 32,330	0,000 0,141	0,000	0,000	6,688 0,000	0,000	115,023 0,000	0,000 0,038	38,524 2,933	0,000 0,308	32,242 20,794	0,000 0,011	8,022 7,095	0,000 0,000
A	2005	r-PEL_TRAW		86,252	19,086	0,000	0,000	1,366	8,392	52,657	41,848	19,487	1,972	13,700	0,256	4,806	0,000
A	2005	POTS	none	281,631	0,000	0,000	0,000	33,196	0,000	229,427	0,000	30,965	0,000	17,971	0,000	4,277	0,000
Α	2005	TRAMMEL		20,909	0,000	0,000	0,000	0,378	0,000	4,364	0,000	1,500	0,000	4,630	0,000	0,775	0,000
Α	2005	r-DEM_SEIN	none	1051,193	0,000	0,000	0,000	54,575	0,000	730,950	0,000	206,704	0,000	137,037	0,000	23,801	0,000
Α		r-GILL	none	6140,981	283,293	0,000	0,000	191,645	91,922	2635,377	313,933	881,598	15,195	941,689	1,723	227,624	0,870
A	2005	r-LONGLINE		1145,408	56,206	0,000	0,000	14,660	0,000	534,727	0,000	239,649	0,000	148,441	0,000	54,279	0,000
A		r-OTTER	none	11665,061	3058,567	0,000	0,000	441,511	1880,248	7178,875	6178,209	2096,723	263,876	1742,035	34,388	413,883	16,987
A A	2005 2005	r-OTTER r-PEL_TRAW	BACOMA	1002,574 86,252	3,062 19,086	0,000	0,000	0,000 1,366	0,000 8,392	0,000 52,657	2,458 41,848	32,160 19,487	4,895 1,972	234,715 13,700	0,829 0,256	208,977 4,806	0,000 0,126
A	2005	r-PEL_TRAW		32,330	0,141	0,000	0,000	0,000	0,000	0,000	0,038	2,933	0,308	20,794	0,256	7,095	0,126
A		r-TRAMMEL		563,390	65,862	0,000	0,000	8,071	24,147	114,602	120,330	34,827	5,686	135,119	0,715	17,453	0,345
Α		DEM_SEINE		6,594	0,000	0,000	0,000	0,352	0,000	1,962	0,000	2,955	0,000	0,355	0,000	0,069	0,000
Α	2006	GILL _	none	146,171	0,000	0,000	0,000	2,169	0,000	24,474	0,000	83,994	0,000	7,576	0,000	3,988	0,000
A	2006	none	none	889,788	18,586	0,000	0,000	12,765	3,208	140,293	18,586	503,504	23,712	42,537	1,280	31,479	0,000
A	2006	OTTER	none	186,667	0,000	0,000	0,000	0,249	0,000	12,767	0,000	135,730	0,000	7,539	0,000	7,204	0,000
A A	2006	PEL_TRAWL		268,690	0,000	0,000	0,000	1,746	0,000	20,649	0,000	177,610	0,000	7,369	0,000	9,509	0,000
A	2006	POTS TRAMMEL	none	93,015 5,461	0,000	0,000	0,000	3,208 0,055	0,000	26,142 0,340	0,000	53,292 1,805	0,000	3,682 0,189	0,000	1,060 0,365	0,000 0,000
A		r-DEM SEIN		1391,601	0,000	0,000	0,000	26,704	0,000	222,779	0,000	1,805	0,000	66,730	0,000	26,074	0,000
A		r-GILL	none	6306,766	2,762	0,000	0,000	97,548	2,719	986,136	2,365	3177,159	0,976	355,581	0,000	229,456	0,000
A		r-LONGLINE		756,842	0,000	0,000	0,000	3,441	0,000	123,912	0,000	440,729	0,000	35,895	0,000	22,597	0,000
Α	2006	r-OTTER	ВАСОМА	6338,549	409,084	0,000	0,000	211,947	399,305	1675,254	319,994	4225,444	171,639	106,040	0,000	37,891	0,000
Α	2006	r-OTTER	none	6739,476	640,469	0,000	0,000	95,551	111,653	1011,860	638,773	4853,112	797,364	291,387	50,688	196,383	3,388
Α	2006	r-PEL_TRAW		102,090	9,702	0,000	0,000	6,033	1,692	34,160	9,677	60,498	12,080	4,874	0,768	1,429	0,052
	2006	r-TRAMMEL		605,785	0,000	0,000	0,000	2,788	0,000	27,096	0,000	236,791	0,000	33,287	0,000	44,762	0,000
A	2007	DEM_SEINE		0,233	0,000	0,000	0,000	0,001	0,000	0,037	0,000	0,060	0,000	0,066	0,000	0,025	0,000
А	2007	GILL	none	139,386	0,000	0,000	0,000	0,451	0,000	20,412	0,000	29,672	0,000	45,552	0,000	11,717	0,000

Table 5.1.3.5 continued.

A A	2007 2007		none none	154,875 90,843	0,000 0,000	0,000	0,000	0,951 0,062	0,000	31,964 9,212	0,000 0,000	28,888 15,909	0,000 0.000	40,084 33,210	0,000 0.000	9,126 6,155	0,000 0,000
A	2007	PEL TRAWL		148,132	0,000	0,000	0,000	0,002	0,000	13,267	0,000	17,425	0,000	46,137	0,000	5,914	0,000
A	2007	_	none	186,091	0,000	0,000	0,000	2,260	0,000	52,113	0,000	61,268	0,000	61,552	0.000	14.881	0.000
Α	2007	TRAMMEL	none	7,317	0,000	0,000	0,000	0,000	0,000	0,187	0,000	0,282	0,000	1,788	0,000	0,334	0,000
Α	2007	r-DEM_SEIN	none	1460,247	0,000	0,000	0,000	3,826	0,000	234,072	0,000	387,580	0,000	574,943	0,000	123,718	0,000
A	2007		none	6054,472	2,617	0,000	0,000	43,744	1,462	678,642	3,632	1091,873	0,290	1833,389	0,000	407,805	0,000
A	2007	r-LONGLINE		772,041	14,324	0,000	0,000	3,063	0,713	103,758	18,622	136,096	14,324	219,008	5,011	50,505	0,713
A A	2007 2007	r-OTTER r-PEL_TRAW		14999,390 19,190	1098,757 1,493	0,000	0,000	853,633 0,150	743,958 0,109	3877,274 3,628	1375,546 1,879	3891,482 5,469	608,410 1,440	4103,649 6,627	211,422 0,499	559,512 1,423	36,504 0,098
A	2007	r-TRAMMEL		597,414	0.000	0.000	0.000	0,683	0,000	31,854	0.000	31,801	0,000	144,985	0.000	27,910	0,000
Α	2008	GILL	none	28,817	0,000	0,000	0,000	0,034	0,000	1,283	0,000	4,834	0,000	4,461	0,000	3,689	0,000
Α	2008	none	none	76,854	0,000	0,000	0,000	0,407	0,000	7,055	0,000	16,695	0,000	11,748	0,000	8,549	0,000
Α	2008		none	80,065	0,000	0,000	0,000	0,227	0,000	5,218	0,000	18,692	0,000	17,568	0,000	8,825	0,000
A A	2008	PEL_TRAWL		116,775	0,000	0,000	0,000	182,767	0,000	51,899	0,000	21,972	0,000	16,302	0,000	7,524	0,000
A	2008	POTS TRAMMEL	none	68,294 7,257	0,000	0,000	0,000	1,597 0,000	0,000	12,868 0,013	0,000 0,000	20,337 0,297	0,000	14,764 0,466	0,000	8,591 0,954	0,000
A	2008	r-DEM SEIN		1267,765	10,105	0,000	0,377	4,403	9,225	94,060	26,550	385.754	13,079	325.146	2.286	227,674	0,000
Α	2008	r-GILL	none	5513,246	6,279	0,000	0,000	6,707	2,150	341,299	8,448	1137,736	4,211	769,266	0,481	672,391	0,031
Α	2008	r-LONGLINE	none	290,809	0,000	0,000	0,000	1,843	0,000	36,023	0,000	74,412	0,000	63,028	0,000	41,925	0,000
Α	2008		BACOMA	5021,790	320,983	0,000	0,000	138,265	196,334	1489,197	440,498	2306,215	194,064	765,944	20,750	213,850	0,712
A	2008		none	5726,272	487,297	0,000	0,089	25,862	72,648	647,799	390,854	1450,842	455,904	1164,535	223,080	862,176	21,827
A A	2008	r-PEL_TRAW		7,719	0,664	0,000	0,000	0,015	0,098	1,064	0,532	1,395	0,622	0,944	0,304	0,977	0,029
A	2008 2009	r-TRAMMEL GILL	none	613,282 13,864	0,444 0,012	0,000	0,000	0,742 0,591	0,173 0,008	12,900 0,520	0,487 0,024	64,129 2,187	0,328 0,009	56,120 3,860	0,120 0,000	59,461 1,899	0,012 0,000
A	2009		none	36,231	0,000	0,000	0,000	3,327	0,000	4,072	0,000	7,701	0,000	10,539	0,000	4,647	0,000
A	2009		none	56,998	0,005	0,000	0,000	1013,205	0,002	0,352	0,009	4,339	0,004	7,980	0,000	6,074	0,000
Α	2009	PEL_TRAWL		58,931	0,040	0,000	0,000	139,908	0,000	61,877	0,000	14,885	0,000	6,737	0,000	4,299	0,000
Α	2009	POTS	none	64,351	0,000	0,000	0,000	13,557	0,000	16,979	0,000	16,251	0,000	19,831	0,000	7,514	0,000
A A	2009 2009	TRAMMEL r-DEM SEIN		0,290 601,495	0,000 47,854	0,000	0,000	0,000 10,767	0,000 3,116	0,000 24,062	0,000 34,273	0,058 150,606	0,000 58,782	0,058 215,093	0,000 23,443	0,000 114,395	0,000 3,344
A	2009	_	none	3750.198	250,737	0,000	0,000	46,533	64,023	78,031	206.492	481,925	266,488	841,817	66,125	441,510	3,544
A	2009	r-LONGLINE		307,758	1,664	0,000	0,000	3,932	1,023	10,138	3,302	57,315	1,241	97,314	0,040	49,397	0,000
Α	2009		ВАСОМА	3739,569	412,246	0,000	0,000	17,819	142,284	339,036	373,526	1487,656	442,329	1365,046	160,057	339,768	9,825
Α	2009		none	5534,930	503,310	0,000	0,000	172,644	33,897	404,320	360,800	1378,985	618,270	2043,857	246,540	914,817	35,194
A	2009	r-PEL_TRAW		23,821	2,164	0,000	0,000	2,675	0,141	5,654	1,550	6,486	2,658	8,221	1,060	2,995	0,151
A A	2009	r-TRAMMEL GILL		404,346	22,447	0,000	0,000	8,995	11,975	6,644	37,399	19,747	22,752	49,571	3,653	44,415	0,109
A	2010 2010		none none	10,311 62,566	0,000 0,000	0,000	0,000	0,007 0,526	0,000	1,933 18,696	0,000 0,000	3,354 19,694	0,000 0,000	2,334 11,839	0,000	0,922 5,142	0,000 0,000
A	2010		none	30,343	49,363	0,000	0,000	0,000	0,000	1,645	0,000	3,972	0,000	4,563	0,000	3,308	0,000
Α	2010	PEL_TRAWL		65,755	0,000	0,000	0,000	0,014	0,000	16,017	0,000	15,995	0,000	7,044	0,000	4,573	0,000
Α	2010		none	102,277	0,000	0,000	0,000	0,053	0,000	31,279	0,000	43,507	0,000	29,752	0,000	10,047	0,000
A	2010		none	0,518	0,000	0,000	0,000	0,000	0,000	0,055	0,000	0,180	0,000	0,115	0,000	0,059	0,000
A A	2010 2010	r-DEM_SEIN r-GILL	none none	481,093 3655,238	85,135 199.794	0,000	0,000 3.434	0,000 13.929	1,288 51.232	79,373 781.066	93,963 259.641	147,026 925.521	109,632 266.784	154,697 613,217	39,362 72.112	71,078 312,453	4,311 7,133
A	2010	r-LONGLINE		315,807	0,000	0,000	0,000	0,239	0,000	83,194	0,000	89,773	0,000	62,454	0,000	28,094	0,000
A	2010		BACOMA		635,266	0,000	0,000	52,748	647,978	1494,484	975,888	994,199	58,206	260,027	0,000	64,698	0,000
Α	2010	r-OTTER	none	4562,303	964,992	0,000	0,006	1,912	15,937	840,136	1082,751	1416,354		1259,741	444,775	606,947	48,706
Α	2010		T90	44,805	4,304	0,000	0,000	1,202	4,487	20,933	6,734	13,174	0,349	3,954	0,000	1,057	0,000
A		r-PEL_TRAW		36,408	6,339	0,000	0,000	0,000	0,096	7,078	6,997	11,663	8,163	11,342	2,931	5,367	0,321
A A	2010 2011	r-TRAMMEL GILL	none	490,012 8.886	39,351 0.078	0,000	0,032	2,416 0,000	2,570 0.018	55,942 0,156	54,051 0.075	64,846 1,638	58,105 0,055	57,390 3,143	15,746 0.000	51,157 1.079	1,559 0.000
A			none	46,687	0,000	0,000	0,000	0,000	0,000	0,872	0,000	12,342	0,000	14,653	0,000	7,264	0,000
A	2011		none	68,568	0,000	0,000	0,000	0,000	0,000	0,956	0,000	15,114	0,000	24,488	0,000	8,227	0,000
Α	2011	PEL_TRAWL	none	43,041	16,305	0,000	0,000	0,032	2,364	5,266	19,019	16,413	13,815	12,322	0,359	3,140	0,000
A	2011		none	56,807	1,138	0,000	0,000	0,000	0,493	3,428	1,273	26,299	0,286	18,477	0,003	4,089	0,000
A	2011	TRAMMEL		0,236	0,000	0,000	0,000	0,000	0,000	0,002	0,000	0,050	0,000	0,093	0,000	0,030	0,000
A A	2011 2011	r-DEM_SEIN r-GILL	none	388,043 3498,519	41,812 48,298	0,000	0,000	0,000 8,396	0,022 32,418	2,207 320,085	3,566 63,589	66,064 1009,718	46,463 24,838	159,704 773,023	55,485 0,731	77,599 277,468	6,550 0,195
A	2011	r-LONGLINE		441,707	6,041	0,000	0,000	0,000	2,017	28,395	7,663	130,567	3,560	118,013	0,081	61,089	0,193
A	2011			4597,402	1001,577	0,000	0,000	84,873	335,143	1850,980	1284,899	2027,690	519,243	481,701	11,695	92,519	0,000
A			none	5569,917	694,780	0,000	0,000	0,219	0,445	98,798	59,595	1310,138	771,963	2113,085	921,707	1076,486	108,814
Α			T90	149,196	64,834	0,000	0,000	0,000	12,178	49,083	80,762	74,244	41,872	27,446	0,448	5,934	0,000
A	2011	r-PEL_TRAW		18,285	6,034	0,000	0,000	0,000	0,334	1,812	7,567	12,388	5,026	4,338	0,020	0,864	0,000
Α	2011	r-PEL_TRAW r-TRAMMEL		0,096	0,000	0,000	0,000	0,000	0,000 0,702	0,000 11,687	0,000 2.139	0,009 80.843	0,000 0,879	0,040 131.043	0,000 0.019	0,008 40.333	0,000 0,005
A			none	543,574 4,553	1,661 0,069	0.000	0,000	0,000	0,702	0,466	0,039	1,336	0,879	1,184	0,019	40,333 0,579	0,005
A			none	62,651	0,000	0,000	0,000	0,000	0,000	1,087	0,000	10,676	0,000	28,272	0,000	15,091	0,000
Α			none	16,389	0,367	0,000	0,000	0,000	0,019	0,633	0,130	1,868	0,377	4,252	0,344	3,055	0,031

Table 5.1.3.5 continued.

A	2012	PEL_TRAWL		10,774	1,477	0,000	0,000	0,000	0,045	1,010	1,494	2,404	1,454	4,841	0,606	1,809	0,078
A	2012		none	50,143	0,847	0,000	0,000	0,000	1,543	2,783	0,699	17,430	0,096	19,855	0,057	9,105	0,000
A	2012	TRAMMEL r-DEM SEIN		0,201 437,903	0,000 8,740	0,000	0,000	0,000 0,000	0,000 0,068	0,011 7,779	0,000 1,747	0,051 104,453	0,000 9,791	0,067 186,686	0,000 9,033	0,041 91,594	0,000 0,832
A		_	none	3836,835	60,582	0,000	6,050	71,804	68,528	698,417	73,525	660,471	20,534	925,538	6,672	418,819	0,832
A	2012	r-LONGLINE		476,250	7.161	0,000	0,000	0,000	9,184	28,142		92,612	2,643	215,492	1.497	82,615	0,726
A	2012		BACOMA		331,956	0,000	3,961	218,386	104,727	962,984	6,155 355,818	1310,275	243,595	1188,712	70,960	141,655	0,182 8,942
A	2012		none	6262,260	324,825	0,000	0,000	0,000	2,455	45,139	76,068	1106,915	363,408	3216,977	323,628	1483,365	29,627
A			T90	172,840	39,223	0,000	0,000	0,000	1,683	9,024	40,541	42,476	37,540	109,162	15,669	23,961	1,973
A	2012	r-PEL_TRAW		0,568	0,022	0,000	0,000	0,000	0,000	0,000	0,004	0,062	0,024	0,431	0,022	0,180	0,002
A	2012	r-TRAMMEL		715.763	15,743	0.000	0,095	0.326	13.068	11,897	27,892	46,167	3,378	81,319	0,719	110,410	0,019
В	2003		none	31,528	0,000	0,000	0,000	0,000	0,000	1,571	0,000	15,189	0,000	11,032	0,000	1,577	0,000
В	2003		none	1238,725	0,000	0,000	0,000	0,000	0,000	132,161	0,000	544,132	0,000	342,507	0,000	96,809	0,000
В	2003	OTTER	none	64,638	0,000	0,000	0,000	0,000	0,000	7,472	0,000	41,982	0,000	16,308	0,000	2,612	0,000
В	2003	PEL TRAWL	none	98,249	0,000	0,000	0,000	0,000	0,000	14,071	0,000	60,629	0,000	22,583	0,000	5,088	0,000
В	2003	r-TRAMMEL	none	13,143	0,407	0,000	0,000	0,000	0,000	0,584	0,000	5,941	0,000	4,617	0,000	0,870	0,000
В	2003	r-DEM_SEIN	none	7,459	0,000	0,000	0,000	0,000	0,000	5,328	0,000	4,115	0,000	0,496	0,000	0,073	0,000
В	2003	r-GILL	none	8120,135	197,911	0,000	0,000	0,000	0,000	1056,765	19,230	2350,174	38,983	2080,705	21,291	1182,381	10,831
В	2003	r-LONGLINE	none	1294,942	34,086	0,000	0,000	0,000	0,000	87,150	0,000	356,529	0,000	295,695	0,000	129,524	0,000
В	2003		BACOMA		550,258	0,000	0,000	0,000	7,514	2,437	182,925	446,544		1982,102	258,804	1599,822	4,406
В	2003		none	9723,659	2061,095	0,000	0,000	186,754	841,772	1912,766	2944,511	5254,801		2313,363	0,000	692,708	0,000
В	2003	r-PEL_TRAW		170,383	44,462	0,000	0,000	0,000	17,657	15,857	63,172	100,825	34,406	49,832	0,000	13,131	0,000
В	2003	r-TRAMMEL		13,143	0,407	0,000	0,000	0,000	0,000	0,584	0,000	5,941	0,000	4,617	0,000	0,870	0,000
В	2004		none	55,110	0,000	0,000	0,000	0,000	0,000	1,592	0,000	16,013	0,000	19,629	0,000	4,892	0,000
B R	2004 2004		none	1104,282 128,921	0,000	0,000	0,000	0,000	0,000	59,085	0,000 0.000	360,377	0,000	374,332	0,000	83,013 6.967	0,000 0.000
1			none	-	.,	.,	.,	.,	.,	7,340	.,	57,671	.,	46,040	-,	.,	.,
B B	2004	PEL_TRAWL r-DEM_SEIN		515,735 0,303	0,000	0,000	0,000	0,000 0,000	0,000	58,095 0,011	0,000 0,000	243,399 0,188	0,000 0,000	169,956 0,116	0,000	24,031 0,011	0,000 0,000
В	2004		none	12122,992	365,897	0,000	0,000	0,000	12,740	168,172	76,237	2467,915	236,639	4214,353	66,474	2172,492	37,373
В	2004	r-LONGLINE		3576,300	48,032	0,000	0,000	0,000	0,000	284,670	0,000	1256,400	0,000	1037,213	0.000	220,499	0.000
В	2004			13120,166	735,572	0.000	0.000	0,000	0,000	0.000	405,200	1439,184	1112,037	4091,680	250,888	3083,751	4,392
В	2004		none	3899,472	252,222	0,000	0,000	0,000	102,557	358,008	348,679	1948,481	171,779	1463,408	2,755	208,698	0,000
В	2004	r-PEL_TRAW	васома	2030,425	55,618	0,000	0,000	0,000	0,000	1,005	21,237	323,172	91,154	888,683	0,145	286,590	0,000
В	2004	r-PEL_TRAW	none	416,153	32,008	0,000	0,000	11,760	13,015	11,212	44,251	70,797	21,800	59,906	0,352	10,045	0,000
В	2004	r-TRAMMEL	none	9,736	0,134	0,000	0,000	0,000	0,000	0,182	0,000	2,575	0,000	3,919	0,000	0,842	0,000
В	2005	GILL	none	89,315	0,552	0,000	0,000	0,000	0,000	8,142	0,000	19,954	0,000	29,404	0,000	12,260	0,000
В	2005		none	45,994	0,000	0,000	0,000	0,000	0,000	3,088	0,000	18,234	0,000	22,121	0,000	4,148	0,000
В	2005		none	129,049	0,000	0,000	0,000	0,000	0,000	14,571	0,000	44,941	0,000	52,465	0,000	12,033	0,000
В	2005	PEL_TRAWL		661,256	0,000	0,000	0,000	0,000	0,000	82,517	0,000	240,106	0,000	272,651	0,000	59,921	0,000
B B	2005 2005	POTS r-DEM SEIN	none	0,427 161,643	0,000	0,000	0,000	0,000 0,000	0,000	0,034 66,131	0,000 0,000	0,166 58,650	0,000	0,213 28,336	0,000	0,047 8,664	0,000 0,000
В			none	8561,637	272,902	0,000	0,000	0,000	0,000	354,695	40,525	2387,492	166,510	3149,161	61,044	1246,451	11,258
В	2005	r-LONGLINE		3274.410	56.157	0.000	0.000	0.000	0,159	395.872	0.000	1334.551	23,699	1059.401	0.000	270.086	0.000
В				10796,252	1035,666	0.000	0.000	0,000	13,221	86,211	944,119	2879,072		3892,831	322,075	2493,484	40,789
В	2005		none	3763,402	304,250	0,000	0,000	0,000	117,283	792,526	707,369	1431,798	97,845	1288,979	0,000	277,595	0,000
В	2005	r-PEL_TRAW		323,544	22,564	0,000	0,000	8,617	25,306	150,592	35,220	76,179	3,151	50,407	0,000	8,996	0,000
В	2005	r-TRAMMEL		3,191	0,017	0,000	0,000	0,000	0,000	0,521	0,000	0,752	0,000	0,664	0,000	0,299	0,000
В	2006	GILL	none	58,208	0,000	0,000	0,000	0,000	0,000	4,733	0,000	29,625	0,000	13,514	0,000	4,317	0,000
В	2006	none	none	95,366	0,000	0,000	0,000	0,000	0,000	8,218	0,000	51,977	0,000	21,091	0,000	6,123	0,000
В	2006		none	57,044	0,000	0,000	0,000	0,000	0,000	6,324	0,000	40,169	0,000	14,542	0,000	3,335	0,000
В	2006	PEL_TRAWL		375,971	0,000	0,000	0,000	0,000	0,000	56,988	0,000	266,235	0,000	86,029	0,000	19,695	0,000
В	2006	r-DEM_SEIN		85,156	0,000	0,000	0,000	0,000	0,000	7,874	0,000	56,869	0,000	23,479	0,000	5,463	0,000
В	2006		none	8078,003	310,869	0,000	0,000	0,000	2,112	265,433	31,488	2931,962	172,236	2472,701	210,281	1694,074	14,490
B B	2006 2006	r-LONGLINE r-OTTER		3781,001 13270,645	0,000	0,000	0,000	0,000	0,000	320,795	0,000	1975,799 5345,561	0,000	1128,439 5573,658	0,000	299,642	0,000 42,629
В	2006			6804,347	2152,157 843,576	0,000	0,000	0,000	1,715 5,124	408,876 745,305	1334,366 483,356	4928,197	3625,404 1599,919	1927,948	254,314 132,678	2313,141 426,729	0,000
В	2006	r-DITER r-PEL_TRAW	none BACOMA	4478.501	630.208	0,000	0,000	0,000	0,876	745,305 99,520	483,356 234,945	3273,450		1927,948	22,686	426,729 294,636	0,000
В	2006	r-TRAMMEL		4,476	0,000	0,000	0,000	0,000	0,000	0,592	0,000	2,296	0,000	0,769	0,000	0,270	0,000
В	2007		none	40,493	0,000	0,000	0,000	0,000	0,000	0,063	0,000	2,528	0,000	14,784	0,000	11,165	0,000
В	2007		none	18,756	0,000	0,000	0,000	0,000	0,000	0,149	0,000	2,011	0,000	8,989	0,000	5,466	0,000
В	2007		none	28,813	0,000	0,000	0,000	0,000	0,000	0,170	0,000	3,458	0,000	15,348	0,000	9,339	0,000
В	2007	PEL_TRAWL	none	504,949	0,000	0,000	0,000	0,000	0,000	2,091	0,000	52,181	0,000	261,264	0,000	172,379	0,000
В	2007	POTS	none	0,323	0,000	0,000	0,000	0,000	0,000	0,006	0,000	0,054	0,000	0,161	0,000	0,066	0,000
В	2007	r-DEM_SEIN	none	46,469	0,000	0,000	0,000	0,000	0,000	0,000	0,000	4,328	0,000	25,058	0,000	15,757	0,000
В	2007		none	6208,746	498,907	0,000	0,000	0,000	48,173	37,625	218,950	978,365	208,825	2499,211	75,159	1471,979	69,180
В	2007	r-LONGLINE		2113,310	0,000	0,000	0,000	0,000	0,000	3,725	0,000	350,248	0,000	1039,613	0,000	414,076	0,000
В	2007			10612,297	2020,333	0,000	0,000	0,000	0,000	30,871	639,470	1568,782		3377,864	153,357	3625,667	0,000
В	2007		none	5386,859	642,141	0,000	0,000	0,000	2,747	34,925	99,967	673,803	549,734	3128,276	672,518	1853,047	195,106
l _p	2007 2007	r-PEL_TRAW r-PEL_TRAW		3800,237 2101,460	377,237	0,000	0,000	209,301 0.000	230,404 0,952	636,694 0,167	374,342 34,436	1226,690 220,150	262,764 189,362	1731,113 1186,120	29,689 231,663	224,482 797,716	0,000 67,211
ь	2007	I-PEL_IRAW	none	2101,400	221,193	0,000	0,000	0,000	0,552	0,10/	34,430	2 ZU, 10U	109,302	1100,120	231,003	/3/,/10	07,211

Table 5.1.3.5 continued.

B B	2007 2008	r-TRAMMEL		38,160	0,000	0,000	0,000	0,000	0,000	0,084	0,000	2,239	0,000	13,555	0,000	10,708	0,000
В	2008		none none	6,043 8,637	0,000	0,000	0,000 0,000	0,000 0,000	0,000	0,041 0,126	0,000 0,000	0,873 1,084	0,000 0,000	2,815 1,898	0,000 0,000	2,713 2,216	0,000 0,000
В	2008		none	9,675	0.000	0,000	0,000	0,000	0,000	0,126	0,000	2,076	0,000	3,098	0,000	2,496	0.000
В	2008		none	20,495	0,000	0,000	0,000	0,000	0,000	0,361	0,000	4,907	0,000	8,598	0,000	7,096	0,000
В	2008	PEL_TRAWL		396,640	0,000	0,000	0,000	0,000	0,000	9,281	0,000	89,703	0,000	150,847	0,000	131,912	0,000
В	2008	_	none	7791,219	266,605	0,000	0,000	0,000	1,838	28,776	166,189	1863,144	239,703	2150,026	66,735	2096,495	32,379
В	2008	r-LONGLINE	none	1754,144	3,880	0,000	0,000	0,000	0,000	6,156	0,000	472,553	0,000	770,126	0,000	249,890	0,000
В	2008	r-OTTER	васома	11916,364	1098,417	0,000	0,000	149,288	153,732	1590,381	850,014	4472,054	1395,370	4782,521	144,907	1471,002	24,575
В	2008		none	6093,474	337,800	0,000	0,000	0,000	0,418	122,572	42,342	1415,644	300,478	2407,057	294,112	2026,280	121,774
В	2008	r-PEL_TRAW			113,342	0,000	0,000	30,223	33,868	333,656	153,861	517,845	83,980	208,626	9,668	60,510	0,601
В	2008	r-TRAMMEL		28,353	0,000	0,000	0,000	0,000	0,000	0,373	0,000	6,999	0,000	8,219	0,000	5,084	0,000
B B	2009 2009		none	2,989	0,171	0,000	0,000	0,000	0,000	0,000	0,171	0,279	0,171	0,880	0,000	0,797	0,000 0.000
В	2009	PEL_TRAWL	none	34,614 413,476	3,878 36,176	0,000 0,000	0,000 0,000	0,000 0,000	0,385 1,349	0,112 0,079	5,441 42,467	4,327 36,843	4,533 51,154	13,636 134,141	0,289 2,435	9,847 112,782	0,000
В	2009		none	9062,544	369,035	0,000	0,000	0,000	59,662	255,722	626,162	1712,125	384,337	2405,398	20.321	2054,033	6,159
В	2009	r-LONGLINE		1255,514	90,493	0,000	0,000	0,000	21,621	104,921	176.558	478,484	84,196	310,710	2,415	143,953	0,000
В	2009			18071,000	2052,499	0,000	0,000	24,610	215,044	764,414	2449,634	8085,416	2539,333	8059,779	254,711	2077,618	9,056
В	2009	r-OTTER	none	7133,436	525,734	0,000	0,000	0,000	1,103	50,114	83,422	1658,670	499,746	3337,205	482,191	2162,661	141,325
В	2009	r-PEL_TRAW	васома	2376,819	188,702	0,000	0,000	3,954	11,474	111,875	124,260	833,189	203,856	923,997	66,395	317,687	7,510
В	2009	r-TRAMMEL	none	70,443	0,466	0,000	0,000	0,000	0,277	0,031	1,103	3,927	0,129	17,374	0,037	18,677	0,000
В	2010		none	1,239	0,000	0,000	0,000	0,000	0,000	0,096	0,000	0,529	0,000	0,405	0,000	0,086	0,000
В	2010		none	1,816	0,000	0,000	0,000	0,000	0,000	0,017	0,000	0,276	0,000	0,725	0,000	0,485	0,000
В	2010		none	11,199	0,000	0,000	0,000	0,000	0,000	0,694	0,000	4,431	0,000	4,491	0,000	1,296	0,000
B B	2010 2010	PEL_TRAWL		273,136 7,641	211,914 0,000	0,000	0,000	0,000 0,000	0,000	5,987 0,557	0,000 0,000	69,558 2,995	0,000	119,341 2,659	0,000	37,076 0,728	0,000 0,000
В	2010		none none	7,641 7706,365	712,828	0,000	0,000	0,000	181,799	248,873	1128,392	2,995 2034,126	870,209	2,659	156,689	1205,142	0,000
В	2010	r-LONGLINE		1949,737	254,215	0,000	0,000	0,000	27,354	35,755	352,314	606,979	332,342	823,338	23,476	254,530	0,456
В	2010			21588,374	2127,636	0,000	0,000	0,000	310,719	966,903	2839,646	8693,222	2598,773	9983,226	185,949	2276,169	3,118
В	2010	r-OTTER	none	10124,523	611,447	0,000	0,000	0,000	5,291	55,491	100,314	1256,954	381,637	5679,440	784,581	3226,323	186,687
В	2010	r-OTTER	T90	886,700	74,835	0,000	0,000	0,000	16,033	52,274	117,621	348,701	56,324	374,120	4,291	81,793	0,068
В		DEM_SEINE		1,082	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,101	0,000	0,495	0,000	0,504	0,000
В	2011		none	13,711	0,757	0,000	0,000	0,000	0,142	1,645	1,372	9,120	0,193	3,280	0,000	0,654	0,000
В	2011		none	35,161 315,074	5,386	0,000	0,000	0,000 0,000	0,992	9,929	9,779	17,863	2,317	6,354	0,034	3,774	0,000
В	2011	PEL_TRAWL	none	2,700	32,737 0,206	0,000	0,000	0,000	6,456 0,071	65,506 0,404	60,562 0,429	220,961 1,740	12,951 0,034	54,011 0,605	0,127 0,000	13,793 0,136	0,000 0,000
В	2011	r-DEM SEIN		93,312	0,000	0,000	0,000	0,000	0,000	0.000	0,000	4,575	0,000	33,279	0,000	42,322	0,000
В		_	none	6173,926	319,345	0,000	0,000	0,000	129,171	547,427	611,833	2552,157	87,671	2037,039	1,856	997,704	1,951
В	2011	r-LONGLINE		1603,978	72,465	0,000	0,000	0,000	13,272	184,832	133,072	764,367	38,907	508,672	0,589	197,607	0,200
В	2011	r-OTTER	васома	20021,413	3311,837	0,000	0,000	32,272	273,825	3984,488	5083,217	11338,987	2533,254	5566,180	119,413	1881,637	12,001
В	2011		none	10490,397	889,470	0,000	0,000	0,000	2,063	9,379	62,776	1204,313	694,894	4423,991	1226,073	4604,909	362,276
В	2011		T90	1145,249	277,341	0,000	0,000	0,000	12,003	168,884	427,147	952,817	218,338	215,263	1,419	23,276	0,000
В	2011	r-PEL_TRAW			633,439	0,000	0,000	98,789	146,066	1360,286	924,228	1998,537	459,687	417,126	9,888	49,081	0,164
В	2011	r-PEL_TRAW		68,634 23.938	4,787	0,000	0,000	0,000	0,011 0.049	0,000	0,338	2,963	3,739	24,862	6,599 0.004	32,813 0,401	1,951 0,000
В		r-TRAMMEL		1,538	7,493 0,000	0,000	0,000	0,000	0,049	2,451 0,002	10,979 0,000	20,953 0,135	6,589 0,000	4,960 0,507	0,004	0,511	0,000
В	2012		none	5,263	0,000	0,000	0,000	0,000	0,000	0.000	0,000	1,815	0,000	2.003	0,000	0,115	0,000
В	2012		none	184,128	0,000	0,000	0,000	0,000	0,000	0,083	0,000	11,425	0,000	85,362	0,000	93,005	0,000
В	2012		none	23,730	5,929	0,000	0,000	0,000	0,175	2,236	4,740	20,362	8,823	6,498	2,114	1,083	0,000
В	2012	PEL_TRAWL	none	55,798	17,130	0,000	0,000	0,000	0,082	1,259	5,167	39,147	34,663	26,943	7,367	3,727	0,002
В	2012		none	1,052	0,033	0,000	0,000	0,000	0,025	0,038	0,035	0,501	0,043	0,494	0,005	0,129	0,000
В		r-DEM_SEIN		257,080	0,000	0,000	0,000	0,000	0,000	0,000	0,000	14,338	0,000	136,754	0,000	155,468	0,000
В			none	5868,838	366,326	0,000	0,000	0,000	184,577	190,993	229,049	2072,650	273,597	1870,805	125,369	1081,324	124,277
B B	2012 2012	r-LONGLINE r-OTTER		1085,295 14979,899	42,137 3577,229	0,000	0,000	0,000 0,000	23,980 39,256	51,727 829,551	28,929 1252,610	562,240 8910,497	57,001 5665,798	413,948 4990,605	19,256 1763,891	154,357 1341,699	0,545 449,610
В			none	20418,548	2763,958	0,000	0,000	0,000	8,774	162,732	530,606	4555,018	2346,346	10961,636	2650,029	8953,221	1369,514
В			T90	752,612	229,499	0,000	0,000	0,000	3,871	43,951	104,657	579,521	402,450	296,209	96,155	49,003	2,053
В	2012	r-PEL_TRAW			200,851	0,000	0,000	0,000	1,734	118,507	81,013	534,927	375,861	415,564	54,870	98,779	0,110
В	2012	r-PEL_TRAW		108,386	15,292	0,000	0,000	0,000	0,092	0,316	2,665	12,760	13,410	65,149	14,825	58,022	7,595
С	2010		none	41,104	0,000	0,000	0,371	2,209	7,635	3,674	1,250	0,000	1,544	2,075	0,515	0,032	0,000
С	2011		none	59,892	0,000	0,000	0,363	7,114	8,473	4,574	3,427	0,000	0,713	6,826	1,236	0,001	0,010
C	2012		none	0,500	0,000	0,000	0,000	0,050	0,080	0,044	0,023	0,000	0,039	0,036	0,015	0,002	0,000
C	2012		none	65,513	0,000	0,000	0,003	0,958	5,282	5,497	1,903	0,000	0,622	1,406	3,044	0,523	0,014
A A	2012	PEL_TRAWL		0,071	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,006	0,000	0,047	0,000	0,023	0,000
A A	2012 2012	_	FDFBAL FDFBAL	256,520 76,642	0,519 4,654	0,000 0,000	0,000 0,000	0,000 0,000	0,004 0,037	6,379 0,902	0,104 0,929	76,209 25,494	0,581 5,215	98,828 49,338	0,536 4,811	48,519 17,556	0,050 0,442
В	2012	PEL_TRAWL		0.008	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0.001	0,000	0,007	0,000	0,005	0,000
В			FDFBAL	404,892	36,693	0,000	0,000	0,000	0,167	0,490	2,642	37,005	16,667	224,276	46,657	211,689	25,983
В		r-PEL_TRAW		1,436	0,174	0,000	0,000	0,000	0,001	0,000	0,013	0,075	0,079	0,822	0,221	0,863	0,123

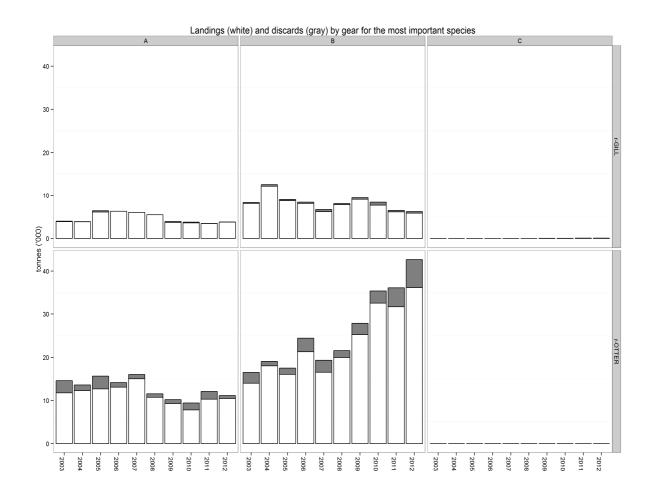


Figure 5.1.3.1. Catch and landings in tonnes of Baltic cod by area and gear category 2003-2012. Upper panels represent regulated gillnets, lower panels regulated otter trawls in accordance with R(EC) 1098/2007 (see Section 2.6). White bars show landings, grey bars discards.

5.1.4 Tor 1.d Catches (landings and discards) of non-cod species in weight and numbers at age by area, Member State and fisheries

The information on landings and discards of major NON-COD species by the gear types and fishing areas is presented in the Table 5.1.4.1. The Table 5.1.4.2 presents the available discard information for main pelagic species herring and sprat. According to the data uploaded by Member States during the 2013 effort data call the discarding rate of pelagics is generally low. So for herring in area A only the regulated otter trawl without SPECON showed the consistent discard rates. However, according to quality index the discard data provided for this segment of fishery can be regarded as covered by a high proportion of landings with discard information (>66%) for 3 years only. Some discarding has been reported also for gillnet fishery in all areas. The coverage of landings with discard information however remained in most cases below 33%.

For sprat the consistent but low-level discarding was reported for gillnet fishery in area C.

Table 5.1.4.1. Major non-cod species caught at ages 1-9 (thousands) in landings, discards and discard rates in the Baltic by area, gears (rindicates regulated gears). Please note that data is only for 2012. Complete data set from 2004 to 2012 is available in Appendix 03.

REG AREA	SPECIES	REG GEAR	SPECON	Landings t	Discards t	AGE OL	AGE 0D	AGE 1L	AGE 1D	AGE 2L	AGE 2D	AGE 3L	AGE 3D	AGE 4L	AGE 4D	AGE 5L	AGE 5D	AGE 6L	AGE 6D	AGE 7L	AGE 7D	AGE 8L	AGE 8D	AGE 9L	AGE 9D
28.2	FLX	POTS	none	0.423	0,027	0,000	0,000	0,000	0,033	0,000	0,339	0,055	0,266	0,633	0,000	0,585	0,000	0,601	0,000	0,519	0,000	0,246	0,000	0,091	0.000
28.2	FLX	r-GILL	none	4,508	0,027	0,000	0,000	0,000	0,000	0,000	0,000	0,438	0,000	2,191	0,000	4,390	0,000	2,197	0,000	4,245	0,000	2,098	0,000	1,460	0.000
28.2	FLX	r-DEM SEINE		114,310	2,772	0,000	0,000	0,000	0,000	0.000	0,000	0,000	33,951	84,119	0,000	168,234	0,000	182,256	0,000	56,077	0,000	112,158	0,000	28,038	0,000
28.2	FLX	_	BACOMA		0.000	0.000	0.000	0,000	0.000	0.000	0,000	3.042	0.000	10,349	0,000	19,965	0,000	20,161	0.000	31,318	0.000	56,782	0.000	31,843	0.000
28.2	HER	PEL TRAWL		2630,702	0,000	3,590	0,000	4093,739	0,000	2804.143	0,000	2771,248	0,000	9244,577	0,000	15359,600	0,000	8990,991	0,000	5857,850	0,000	2952,326	0,000	3515,101	0,000
28.2	SPR	PEL TRAWL		31526,988	0.000	106743.621	0.000	523031.797	0.000	753448,290	0.000	346186.417	0.000	1074120.932	0.000	154617.911	0.000	121371.196	0.000	75554.414	0,000	70442.862	0.000	0.000	0.000
A	FLX	GILL	none	4.948	0,000	0.000	0.000	0.000	0.000	0.547	0.000	3.053	0.000	4.427	0.000	1.711	0,000	1.931	0.000	0.027	0.000	0.018	0.000	0.000	0.000
A	FLX	none	none	8,739	0,000	0,000	0,000	0,173	0,000	8,619	0,000	6,250	0,000	4,984	0,000	1,680	0,000	1,352	0,000	0,078	0,000	0,069	0,000	0,000	0,000
Α	FLX	OTTER	none	1.787	0,101	0.000	0,000	0.099	0.005	3.569	0,095	1.718	0,105	0.387	0,083	0.000	0,021	0.000	0,012	0.000	0.003	0.000	0.001	0,000	0.001
Α	FLX	PEL TRAWL	none	0,526	0,000	0,000	0,000	0,000	0,000	0,011	0,000	0,305	0,000	0,492	0,000	0,281	0,000	0,053	0,000	0,025	0,000	0,037	0,000	0,036	0,000
A	FLX	POTS	none	18.015	0,000	0.000	0,000	0.398	0.000	14.846	0,000	12.034	0,000	11.860	0,000	5,279	0,000	2.903	0,000	0,729	0,000	0,225	0.000	0,000	0.000
Α	FLX	TRAMMEL	none	0,362	0,000	0,000	0,000	0,000	0,000	0,545	0,000	0,304	0,000	0,080	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
A	FLX	r-DEM SEINE	E none	15,248	92,981	0,000	0,000	0,277	4,606	17,828	87,391	13,449	97,400	6,573	76,400	4,642	19,641	1,644	11,298	0,610	3,284	0,138	1,106	0,000	1,275
A	FLX	r-GILL	none	701,406	1450,170	0,000	0,000	0,000	0,000	201,566	0,000	322,741	0,000	446,243	0,000	593,049	0,000	128,164	0,000	61,750	0,000	50,101	0,000	24,467	0,000
A	FLX	r-LONGLINE	none	2,076	0,000	0,000	0,000	0,037	0,000	0,875	0,000	1,170	0,000	1,619	0,000	0,919	0,000	0,306	0,000	0,459	0,000	0,000	0,000	0,000	0,000
Α	FLX	r-OTTER	none	1326,337	1453,431	0,000	0,000	29,661	70,482	1783,614	1590,127	1165,829	1490,069	672,864	1168,796	289,176	300,478	77,935	172,836	42,587	50,248	15,872	16,877	12,700	19,461
Α	FLX	r-TRAMMEL		70,284	79,008	0,000	0,000	0,098	0,000	78,127	0,000	57,495	0,000	28,517	0,000	9,334	0,000	8,429	0,000	0,571	0,000	0,154	0,000	0,167	0,000
Α	HER	GILL	none	4795,301	0,000	0,000	0,000	0,000	0,000	0,000	0,000	400,226	0,000	176,878	0,000	16142,230	0,000	7224,000	0,000	2828,534	0,000	33,688	0,000	0,000	0,000
A	HER	PEL_TRAWL	none	12041,400	0,000	0,000	0,000	15993,815	0,000	59175,725	0,000	54972,984	0,000	17136,669	0,000	8985,206	0,000	3225,371	0,000	4736,072	0,000	185,199	0,000	410,489	0,000
A	HER	POTS	none	385,349	0,000	0,000	0,000	0,000	0,000	1115,417	0,000	1028,608	0,000	1132,645	0,000	676,836	0,000	291,292	0,000	88,961	0,000	23,364	0,000	48,371	0,000
Α	PLE	GILL	none	0,868	0,000	0,000	0,000	0,000	0,000	0,124	0,000	1,213	0,000	0,552	0,000	0,164	0,000	0,105	0,000	0,047	0,000	0,022	0,000	0,010	0,000
Α	PLE	none	none	4,087	0,000	0,000	0,000	0,005	0,000	1,874	0,000	5,075	0,000	2,778	0,000	0,414	0,000	0,166	0,000	0,051	0,000	0,023	0,000	0,061	0,000
Α	PLE	OTTER	none	2,996	0,049	0,000	0,000	0,006	0,003	2,445	0,087	3,638	0,083	1,586	0,028	0,262	0,002	0,024	0,000	0,006	0,000	0,003	0,000	0,009	0,000
A	PLE	PEL_TRAWL	none	1,193	0,000	0,000	0,000	0,000	0,000	0,114	0,000	2,216	0,000	1,205	0,000	0,375	0,000	0,035	0,000	0,005	0,000	0,002	0,000	0,000	0,000
A	PLE	POTS	none	1,560	0,000	0,000	0,000	0,029	0,000	0,968	0,000	1,711	0,000	0,678	0,000	0,306	0,000	0,152	0,000	0,160	0,000	0,032	0,000	0,007	0,000
A	PLE	TRAMMEL	none	0,082	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,079	0,000	0,086	0,000	0,003	0,000	0,003	0,000	0,000	0,000	0,000	0,000	0,006	0,000
A	PLE	r-DEM_SEINE	Enone	23,310	55,635	0,000	0,000	0,221	5,493	8,687	113,100	28,319	147,272	11,308	15,154	5,484	1,066	3,063	0,000	2,261	0,000	0,858	0,102	0,086	0,000
A	PLE	r-GILL	none	409,970	162,403	0,000	0,000	0,694	7,934	138,407	113,036	498,225	274,203	259,870	126,991	50,619	6,147	29,342	0,337	13,240	0,000	5,797	0,000	5,334	0,000
A	PLE	r-LONGLINE		0,021	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,062	0,000	0,007	0,000	0,002	0,000	0,001	0,000	0,001	0,000	0,000	0,000	0,000	0,000
A	PLE	r-OTTER	BACOMA		293,770	0,000	0,000	0,000	34,773	96,890	795,122	523,705	1033,120	393,397	115,631	87,896	4,453	17,759	1,079	7,644	0,455	2,401	0,181	0,924	0,000
A	PLE	r-OTTER	none	1018,585	757,396	0,000	0,000	6,524	75,748	659,145	1546,977	1382,307	2031,612	614,136	197,830	205,808	14,101	53,473	0,000	41,075	0,000	18,553	1,280	3,635	0,000
A	PLE	r-PEL_TRAW		0,001	0,005	0,000	0,000	0,000	0,001	0,000	0,011	0,003	0,016	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
A	PLE	r-TRAMMEL		263,715	56,522	0,000	0,000	0,314	0,000	66,613	3,376	270,923	45,119	185,910	44,730	30,964	7,200	23,777	0,554	7,962	0,000	3,867	0,000	4,741	0,000
A	SPR	PEL_TRAWL	none	8358,001	0,000	0,000	0,000	82226,407	0,000	261997,552	0,000	154983,828	0,000	88029,608	0,000	21315,854	0,000	3538,886	0,000	1179,626	0,000	0,000	0,000	0,000	0,000
В	FLX	r-GILL	none	2268,917	1343,359	0,000	0,000	0,000	0,000	0,000	356,797	264,604	1714,091	741,251	1993,332	1333,932	1035,423	630,777	174,504	796,284	465,359	820,524	0,000	878,554	77,550
В	FLX	r-OTTER	BACOMA	1042,050	2040,200	0,000	0,000	0,000	0,284	8,765	31,262	100,109	730,366	471,300	1990,664	708,546	1471,142	483,128	514,199	426,962	400,036	230,454	207,162	444,145	397,203
В	FLX	r-OTTER	none	5901,797	58178,395	0,000	0,000	0,000	0,000	0,000	0,000	4383,635	0,000	5841,520	0,000	4712,868	0,000	1184,770	0,000	342,959	0,000	56,120	0,000	89,791	0,000
В	FLX	r-OTTER	T90	5,017	119,229	0,000	0,000	0,000	0,016	0,029	1,996	0,183	42,279	2,832	113,490	3,167	85,568	2,176	30,845	1,296	24,457	1,282	12,096	1,907	24,076
В	HER	GILL	none	502,966	0,000	0,000	0,000	0,000	0,000	0,000	0,000	171,275	0,000	381,237	0,000	1439,703	0,000	451,030	0,000	549,047	0,000	281,125	0,000	438,579	0,000
В	HER	OTTER	none	4783,035	0,000	0,000	0,000	6629,816	0,000	5979,591	0,000	2622,163	0,000	14510,401	0,000	27254,000	0,000	5244,333	0,000	8262,422	0,000	3710,561	0,000	3265,493	0,000
В	HER	PEL_TRAWL		47388,338	0,000	5596,122	0,000	152084,078	0,000	119446,810	0,000	176287,902	0,000	183861,379	0,000	316027,563	0,000	87875,980	0,000	108414,294	0,000	47123,454	0,000	27792,420	0,000
В	HER	POTS	none	7690,575	0,000	0,000	0,000	0,000	0,000	16425,111	0,000	44733,766	0,000	58511,996	0,000	65869,484	0,000	10050,258	0,000	35824,961	0,000	4825,212	0,000	1959,412	0,000
В	PLE	none	none	0,049	0,000	0,000	0,000	0,000	0,000	0,095	0,000	0,056	0,000	0,007	0,000	0,003	0,000	0,002	0,000	0,001	0,000	0,001	0,000	0,000	0,000
В	PLE	r-DEM_SEINE		0,087	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,044	0,000	0,050	0,000	0,042	0,000	0,019	0,000	0,015	0,000	0,012	0,000	0,002	0,000
В	PLE	r-GILL	none	43,996	121,146	0,000	0,000	0,000	0,000	0,887	0,000	39,785	0,000	23,383	0,000	18,618	0,000	8,534	0,000	6,426	0,000	5,320	0,000	1,109	0,000
В	PLE	r-OTTER	BACOMA		307,453	0,000	0,000	0,000	58,308	0,673	324,417	55,587	1555,291	60,336	166,982	8,213	0,000	0,641	0,000	0,358	0,000	0,000	0,000	0,000	0,000
В	PLE	r-OTTER	none	138,935	388,732	0,000	0,000	0,000	63,996	268,458	1225,704	152,997	746,194	18,469	34,205	13,528	10,890	6,503	2,933	4,978	0,000	3,657	0,383	0,614	0,000
В	PLE	r-TRAMMEL		0,834	0,008	0,000	0,000	0,000	0,000	0,142	0,000	1,301	0,000	0,387	0,000	0,166	0,000	0,127	0,000	0,063	0,000	0,031	0,000	0,000	0,000
В	SPR	PEL_TRAWL		118172,765	0,000	20098,700	0,000	2508498,707	0,000	2711903,449	0,000	2155352,311	0,000	3653811,312	0,000	579993,101	0,000	197409,281	0,000	98509,001	0,000	83110,796	0,000	1201,889	0,000
C	HER	_		15998,535	0,000	9819,382	0,000	158847,271	0,000	97610,959	0,000	170750,842	0,000	177093,848	0,000	163576,581	0,000	45200,531	0,000	30162,435	0,000	2707,532	0,000	2629,247	0,000
C	HER	POTS	none	713,785	0,000	0,000	0,000	55,999	0,000	714,245	0,000	2688,002	0,000	5559,694	0,000	8002,094	0,000	3122,229	0,000	2283,230	0,000	857,682	0,000	688,698	0,000
С	SPR	PEL_TRAWL	none	42215,988	0,000	8675,366	0,000	1405008,588	0,000	1160950,199	0,000	457987,407	0,000	1440329,250	0,000	299074,609	0,000	165435,959	0,000	72903,281	0,000	158463,719	0,000	0,000	0,000

Table 5.1.4.2. Discard rates for small pelagic species (herring and sprat) in 2004-2012 by gear category and area. An "r" in front of the gear type indicates regulated gears in accordance with Council Regulation (EC) 1098/2007. Gear types without an "r" are non-regulated gears. Data from Estonia are only available from 2005 onwards. Qualifier for discard estimates: A>66% of landings were covered with discard estimates, 33%>B<=66%, C<=33%.

SPECIES	REG_AREA	REG_GEAR	SPECON	2004 DQI	2005 DQI	2006 DQI	2007 DQI	2008 DQI	2009 DQI	2010 DQI	2011 DQI	2012 DQI
HER	Α	DEM_SEINE	none	0 C								
HER	Α	GILL	none							0 C	0 C	0 C
HER	Α	none	none									
HER	Α	OTTER	none						0.055 C	0.111 C		
HER	Α	PEL_SEINE	NONE									
HER	Α	PEL_TRAWL	none						0 C			
HER	Α	POTS	none									
HER	Α	TRAMMEL	none									
HER	A	r-DEM_SEINE		1 A				0.911 A	1 A		1 A	1 A
HER	Α	r-GILL	none						0.092 C	0 B	0.265 C	0.249 C
HER	A	r-LONGLINE	none									
HER	Α	r-OTTER	BACOMA						0.039 C		0 C	0.046 A
HER	A	r-OTTER	none	0.491 C	0.926 A	0.876 C	0.669 C	0.994 C	0.975 A	0.949 C	0.807 A	0.997 C
HER	A	_										
HER	A			0 C	0 C	0.007 C		1 A	0.40.0	1 A	0.00.0	
HER	A	r-TRAMMEL	none		0 C				0.12 C	0 B	0.28 B	0.394 C
HER	В	DEM_SEINE	none						0.0		0 A	
HER	В	GILL	none						0 C	0 C	0 C	0 C
HER	В	none	none									
HER	В	OTTER	none							0 C	0 A	
HER	В	PEL_SEINE	none						0.0	0.0	0 A	
HER	В	PEL_TRAWL	none						0 C	0 C	0.004 C	
HER	В	POTS	none									
HER	В	TRAMMEL	none									
HER	В	r-DEM_SEINE							0.400.0	0.070.0	044.0	0.054.0
HER	В	r-GILL	none						0.408 C	0.079 C	0.14 C	0.861 C
HER	В	r-LONGLINE	none								0.04.0	
HER	В	r-OTTER	BACOMA	0.0	0.4	0.202.4			0.4		0.01 C	1 A
HER	В	r-OTTER	none	0 B	0 A	0.202 A	0 A	0 A	0 A	0 A	١.,	
HER	В	r-OTTER	T90								1 A	1 A
HER	В		BACOMA									
HER HER	B C	r-PEL_TRAWL GILL	none	0.001 C	0.006 C	1 A 0.015 C	0.1 C	0.05 C	0.045 C	0.043 C	0.052 C	
HER	C	none	none none	0.001 C	0.006 C	0.015 C	0.1 C	0.03 C	0.045 C	0.043 C	0.032 C	
HER	C	OTTER	none								0 A	
HER	c	PEL TRAWL	none						0 C	0 C	0 C	
HER	c	POTS	none	0.001 A	0 A	0.026 A	0.003 A	0 A	0.001 A	0 B	0.002 B	
HER	c	r-DEM_SEINE	none	0.001 A	UA	0.020 A	0.003 A	UA	0.001 A	ОВ	0.002 B	
HER	c	r-GILL	none									0.167 C
SPR	A	none	none									0.107 C
SPR	A	OTTER	none						0.009 C	0.02 C		
SPR	A	PEL_TRAWL	none						0.003 C	0.02 C	0 C	
SPR	A	TRAMMEL	none						0.0		0.0	
SPR	A	r-DEM SEINE	none					1 A				1 A
SPR	A	r-GILL	none					/ .				1
SPR	A	r-LONGLINE	none									
SPR	A	r-OTTER	BACOMA									0.006 A
SPR	A	r-OTTER	none	0.001 C	0 C	0.879 C	0 A	0.148 C	0.117 C	0.004 C	0.002 C	0.058 C
SPR	A	r-PEL TRAWL	none		0 C	1 A]	0.140 C	0.117 C	0.004 C		
SPR	В	DEM SEINE	none									
SPR	В	GILL	none									
SPR	В	none	none									
SPR	В	OTTER	none								0 A	
SPR	В	PEL SEINE	none]	
SPR	В	PEL TRAWL	none			1			0 C	0 C	0.003 C	
SPR	В	POTS	NONE							-		
SPR	В	r-OTTER	BACOMA								0 C	
SPR	В	r-OTTER	none	0 C	0 C	1						
SPR	В	r-PEL_TRAWL				1					1	
SPR	В	r-PEL TRAWL										
SPR	C	GILL	none	0.016 A	0.083 A	0.108 A	0.01 A	0.008 A	0.014 A	0.154 A	0.168 A	
SPR	c	none	none]]		
SPR	c	OTTER	none								0 C	
SPR	c	PEL TRAWL	none						0 C	0 C	0 C	
SPR	c	POTS	none	0 A	0 A	1 A	0 A	0 A			0 A	
SPR	c	r-DEM_SEINE]	J]]]]	
			•									

5.1.5 ToR 1.e CPUE and LPUE of cod by area, fisheries and Member State

Although it was explicitly asked to analyse CPUE and LPUE time series of Baltic cod for gear categories which are in accordance with Council Regulation (EC) 2187/2005 only, the STECF EWG used the categories from the cod management plan to be consistent within the report and to provide respective advice.

The Tables 5.1.5.1, 5.1.5.2 and Figures 5.1.5.1-5.1.5.2 provide data on CPUE and LPUE by year and derogation as well as aggregated over countries. The CPUE figures in the table should only be considered indicative since estimated discard ratios depend on sampling intensity.

CPUEs and LPUEs were in general higher for otter trawls, demersal seines and pelagic trawls compared to gill nets. CPUEs and LPUEs varied considerably between countries. CPUE and LPUE aggregated over countries and years have shown a generally increasing trend in areas A –C up to 2011, although CPUEs and LPUEs showed some inter-annual variability. In 2012 both the CPUE and LPUE trends indicated certain variability. In area A the CPUE in r-otter decreased somewhat from the level of 2011, while LPUE estimate was stable, indicating decreased discarding. For r-gill both CPUE and LPUE retained the level close to recent years. In area B CPUEs and LPUEs decreased somewhat in 2011 for r-gill and retained the level in r-otter. The relatively high CPUE and LPUE values in areas B and C in the most recent years can be explained by the dynamics of Eastern Baltic cod stock (ICES, 2012; Tables 3.4.2.1 and 3.4.2.2).

The updated information on CPUE and LPUE by area, gear and Member States, made available to EWG13-06 and EWG13-13 can be found on STECF website in the Appendix 4: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313. Analysis of CPUE and LPUE data broken down by area, gear and Member State revealed that the temporal dynamics of respective CPUE and LPUE values was rather similar. Below only the CPUE values from Baltic cod fishery by country and effort-regulated gears are considered.

CPUE (g/kW*days) of cod in regulated gillnet fisheries by Member States, areas combined is presented in Figure 5.1.5.3. In general, the cod CPUE values in the effort-regulated gillnet fishery did not reveal any clear trend in most of the Member States and fluctuated around 3000 (DNK), 1500 (SWE) and 1700 g/kW*days (DEU) average values respectively during the period. The highest CPUE has shown LTU (around 4500 g/kW*days in 2009-2012. Also LVA has shown high values since 2004.The POL CPUE index has increased from 1200 g/kW*days in 2004 up to 3600 g/kW*days in 2011-2012.

Effort-regulated otter-trawl fishery (R-OTTER) CPUE (g/kW*days) of cod in r-otter gear fisheries by Member States, areas combined is presented in the Figure 5.1.5.4. The overall CPUE trend in effort-regulated otter trawl fishery has been decreasing in the most recent period, mainly driven by the exceptional values in POL and LVA data sets (values of 2011 and 2010, respectively). The CPUE index of DNK increased 2.3 times from around 4000 up to 8000 g/kW*days in 2004-2012. The DEU CPUE index was also increasing reaching maximum value above 7000 g/kW*days in 2008 but then decreased to the level of 2006-2007. The LVA CPUE index was fluctuating significantly over the period, reaching 12000 g/kW*days in 2010 but decreasing to 7000-8000 g/kW*days in 2011-2012. The SWE CPUE index has increased steadily in 2004-2012 except in 2008 and 2010 exceeding 6000 g/kW*days in 2012. The data available to the EWG13-06/13-13 of POL CPUE show the steady increase in 2004-2009, following sudden drop in 2011 and increase to the highest on record in 2012. Analyses of cod CPUE by country have shown (Figure 5.1.5.5) that overall average CPUE of r-otter trawl fisheries has been almost twice bigger than that of r-gillnet fisheries CPUE in 2004-2012 period. Analyses of CPUE dynamics by areas A and B (Figure 5.1.5.5.) show that average CPUE (g/kW*days) of cod in r-otter gear fisheries in area B was app. 52% higher than in area A (6300 and

3000 g/kW*days, respectively). EST, LVA and LTU data were excluded from the area A, since the total proportion of these Member States was only marginal in the area A (from 0 to maximum 2% of the total annual effort). The different average CPUE level in areas A and B can indicate at recently increased Eastern Baltic cod stock abundance, supporting the higher fishing efficiency in area B when compared to the area A in 2004-2012.

Table 5.1.5.1. Baltic: Cod CPUE (g/KW*days) by derogation, and year, 2004-2012 for areas A, B, C and 28.2.

REG AREA	REG GEAR	SPECON	CPUE 2004	CPUE 2005 (CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011 (CPUE 2012	CPUE 2010-2012
28.2	GILL	none	0	0	0	0	0		0	0	0	0
28.2	OTTER	none		0	0		0	0	0	0	0	0
28.2	PEL_TRAWL	none	13	2	3	7	3		1	2	1	1
28.2	r-GILL	none	1912	2513	1740	2087	2542	2549	1594	2044	3168	2069
28.2	r-OTTER	BACOMA	1966	2330	2620	1559	1674	6131	2467	1109	5381	2758
28.2	r-PEL_TRAWL	BACOMA	0				0		0	0	0	0
Α	BEAM	none	0						2262	3394	0	2341
Α	DEM_SEINE	none	0	0	406	0			0	0	0	0
Α	DREDGE	none							0	0	0	0
Α	GILL	none	130	305	215	198	46	27	26	26	9	20
Α	none	none	45174	3796	5756	1148	704	357	810	886	860	847
Α	OTTER	none	100	208	239	156	181	138	272	227	70	196
Α	PEL_TRAWL	none	91	180	205	150	100	65	119	121	22	86
Α	POTS	none	28	1218	401	740	315	312	518	334	254	370
Α	r-BEAM	BACOMA	0	0	0	0	2327	0	0	0	0	0
Α	r-BEAM	none	0	0	0	0	0	0	0	0	0	0
Α	r-DEM_SEINE	BACOMA	0	0	2177	3789	6510	4583	5354	5077	2268	4987
Α	r-DEM SEINE	none	3849	3952	5497	6093	7028	5481	6161	7804	4970	6091
Α	r-GILL	none	1796	1781	1821	1904	1825	1701	1886	1839	2066	1928
Α	r-LONGLINE	none	2131	2159	1847	2620	1753	1500	1963	2551	2361	2304
Α	r-OTTER	BACOMA	2544	1724	3322	3339	2924	3024	3263	4620	3983	3962
Α	r-OTTER	none	2751	3209	3525	4154	3632	4210	4743	5232	4890	4954
Α	r-OTTER	T90	0	0	0	0	0	0	2195	5229	5781	4754
Α	r-PEL TRAWL	BACOMA	1568	904	3305	5758	1441	0	3333	2992	3005	3092
Α	r-PEL TRAWL		2115	3314	4526	3362	2826	9475	5642	0	3106	5174
Α	r-TRAMMEL	none	1232	1345	1431	1229	1161	783	1201	1309	1511	1346
Α	TRAMMEL	none	1566	1347	669	1118	475	0	402	0	0	89
В	DEM SEINE	none		0	0				0	87	0	57
В	DREDGE	none	0	0	0	0	4525	0	0	0	0	0
В	GILL	none	256	417	398	324	57	28	14	96	34	53
В	none	none	103400	2925	6332	1307	1116	379	312	0	64358	9098
В	OTTER	none	84	110	66	33	32	44	15	75	76	51
В	PEL TRAWL	none	44	27	25	37	36	48	57	33	15	38
В	POTS	none	0	0	3	0	5	85	52	28	8	32
В	r-DEM SEINE	BACOMA	0	0	5699	6444	12079	17195	8659	9456	7461	8631
В	r-DEM SEINE		588	14459	8690	10731	0	0	0	11670	12399	12197
В	r-GILL	none	1656	1817	2001	1985	2778	4065	4245	3663	3111	3672
В	r-LONGLINE	none	2994	2760	2939	2991	3102	1935	3362	2715	3069	3053
В	r-OTTER	BACOMA	1818	1959	2533	3312	4129	7505	7792	9990	7667	8411
В	r-OTTER	none	3736	3751	5253	8721	9032	11523	11438	5306	8452	7775
В	r-OTTER	T90	0	0	0	0	0	9333	6952	6034	6177	6315
В	r-PEL TRAWL	BACOMA	1767	1240	2691	3212	1424	6486	8630	4110	7573	5265
В	r-PEL TRAWL		8579	5033	15802	74687	14205	12758	13962	2785	6423	5314
В	r-TRAMMEL	none	967	439	473	2557	2579	4154	2660	952	0	1349
В	TRAMMEL	none	0	0	0		0		0	0	0	0
C	GILL	none	0	1	0	0	0	0	1	1	0	1
C	OTTER	none	0	0	14	-		_	0	0	3	1
C	PEL TRAWL	none	Ü	ŭ					0	0	0	0
c	POTS	none	0	0				0	0	0	0	0
C	r-GILL	none	133	107	104	161	213	556	585	1079	905	840
C	r-LONGLINE	none	0	0	0	0	0	0	0	0	0	0
C	r-OTTER	BACOMA	0	0	0	0	463	0	0	0	0	0
-			·	ŭ	Ü	Ū	.00	Ū	ŭ	·	·	ŭ

Table 5.1.5.2 Baltic: Cod LPUE (g/KW*days) by derogation and year, 2004-2011 for areas A, B, C and 28.2.

REG AREA COD	REG GEAR COD	SPECON	LPUE 2004	LPUE 2005	LPUE 2006	LPUE 2007	LPUE 2008	LPUE 2009	LPUE 2010	LPUE 2011	LPUE 2012	LPUE 2010-2012
28.2	GILL	none	0	0	0	0	0		0	0	0	0
28.2	OTTER	none		0	0		0	0	0	0	0	0
28.2	PEL_TRAWL	none	13	2	3	7	3		1	2	1	1
28.2	r-GILL	none	1912	2432	1702	1953	2480	2549	1594	2044	3168	2069
28.2	r-OTTER	BACOMA	1955	2330	2620	1559	1674	6131	2467	1109	5381	2758
28.2	r-PEL TRAWL	BACOMA	0				0		0	0	0	0
A	BEAM	none	0						2262	3394	0	2341
A	DEM_SEINE	none	0	0	406	0			0	0	0	0
Α	DREDGE	none							0	0	0	0
Α	GILL	none	130	276	215	198	46	27	26	26	9	20
A	none	none	45174	3796	5642	1148	704	357	810	886	860	847
A	OTTER	none	100	208	239	156	181	138	107	227	70	138
A	PEL TRAWL	none	89	180	205	150	100	65	119	88	18	74
A	POTS	none	28	1218	401	740	315	312	518	328	254	368
A	r-BEAM	BACOMA	0	0	0	0	2327	0	0	0		0
A	r-BEAM	none	0	0	0	0	0	0	0	0		0
A	r-DEM SEINE	BACOMA	0	0	2177	3789	6510	4583	5354	5077	2268	4987
A	r-DEM_SEINE	none	3421	3952	5497	6093	6973	5084	5236	7058	4881	5525
A	r-GILL	none	1767	1703	1820	1902	1822	1592	1789	1814	2033	1876
A	r-LONGLINE	none	2084	2060	1847	2573	1753	1495	1963	2517	2332	2282
A	r-OTTER	BACOMA	2400	1718	3120	3121	2749	2724	2723	3793	3679	3396
A	r-OTTER	none	2400	2542	3220	3856	3347	3858	3916	4650	4650	4420
A		T90										
A	r-OTTER		0	0	0	0	0	0	2016	3641	4717	3673
	r-PEL_TRAWL	BACOMA	1568	904	3305	5758	1441	0	3333	2472	3005	2798
A A	r-PEL_TRAWL	none	1851	2772	4122	3042	2826	8746	4724	0		4351
	r-TRAMMEL	none	1219	1202	1431	1229	1161	741	1110	1302		1303
A	TRAMMEL	none	1566	1347	669	1118	475	0	402	0		89
В	DEM_SEINE	none		0	0				0	87	0	57
В	DREDGE	none	0	0	0	0	4525	0	0	0		0
В	GILL	none	256	412	398	324	57	19	14	89	34	51
В	none	none	103400	2925	6332	1307	1116	379	312	0		9098
В	OTTER	none	84	110	66	33	32	42	15	66	58	43
В	PEL_TRAWL	none	44	27	25	37	36	44	32	30		27
В	POTS	none	0	0	3	0	5	85	52	19	8	29
В	r-DEM_SEINE	BACOMA	0	0	5699	6444	12079	17195	8659	9456	7461	8631
В	r-DEM_SEINE	none	588	14459	8690	10731	0	0	0	11670	12399	12197
В	r-GILL	none	1608	1761	1928	1837	2687	3906	3885	3484	2929	3429
В	r-LONGLINE	none	2956	2715	2939	2991	3095	1804	2975	2599	2954	2829
В	r-OTTER	BACOMA	1722	1787	2176	2783	3795	6740	7093	8572	6189	7255
В	r-OTTER	none	3517	3479	4673	7793	8559	10734	10785	4891	7444	7042
В	r-OTTER	T90	0	0	0	0	0	8075	6410	4855	4741	5225
В	r-PEL_TRAWL	BACOMA	1719	1240	2323	2917	1289	5961	8364	3428	6443	4584
В	r-PEL_TRAWL	none	8319	4793	14283	67550	14205	12478	13208	2596	5594	4826
В	r-TRAMMEL	none	967	439	473	2557	2579	4096	2660	952	0	1349
В	TRAMMEL	none	0	0	0		0		0	0	0	0
С	GILL	none	0	1	0	0	0	0	1	1	0	1
С	OTTER	none	0	0	14				0	0	0	0
С	PEL_TRAWL	none							0	0	0	0
С	POTS	none	0	0				0	0	0	0	0
С	r-GILL	none	133	107	104	161	213	541	571	1028	865	806
С	r-LONGLINE	none	0	0	0	0	0	0	0	0	0	0
	r-OTTER	BACOMA	0	0	0	0	463	0	0	0	0	0

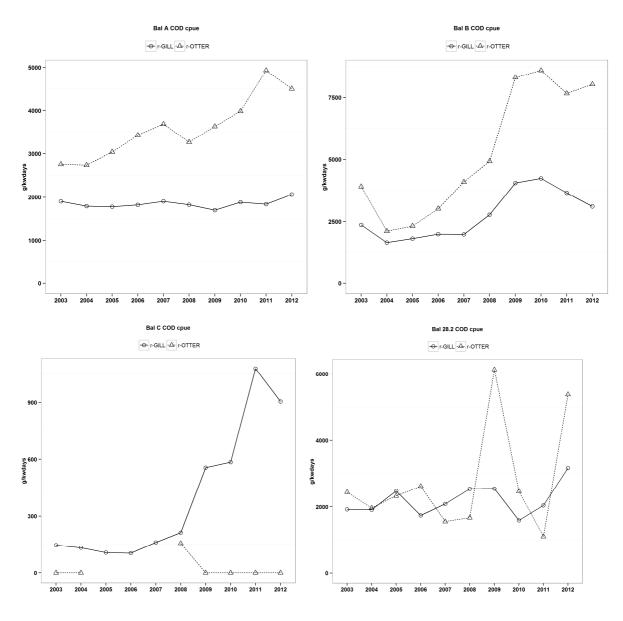


Figure 5.1.5.1. Cod CPUE (g/KW*days) by derogation, country and year, 2003-2012 for areas A, B, C and 28.2.

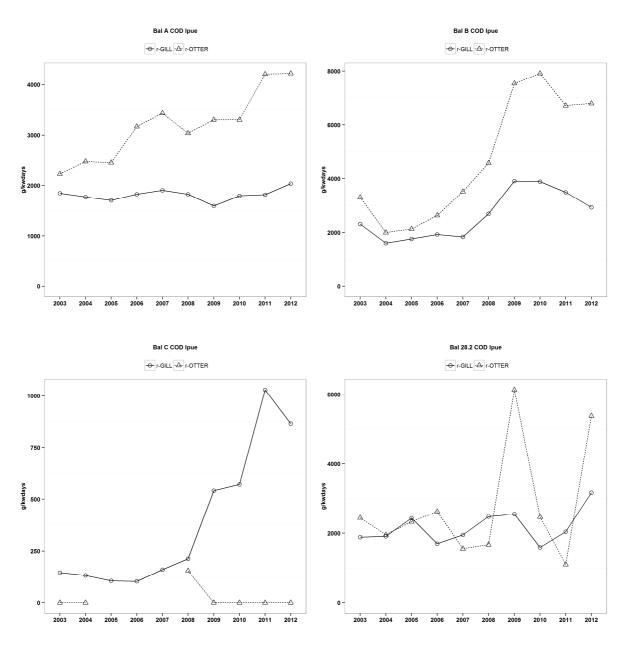


Figure 5.1.5.2. Cod LPUE (g/KW*days) by derogation, country and year, 2003-2012 for areas A, B, C and 28.2.

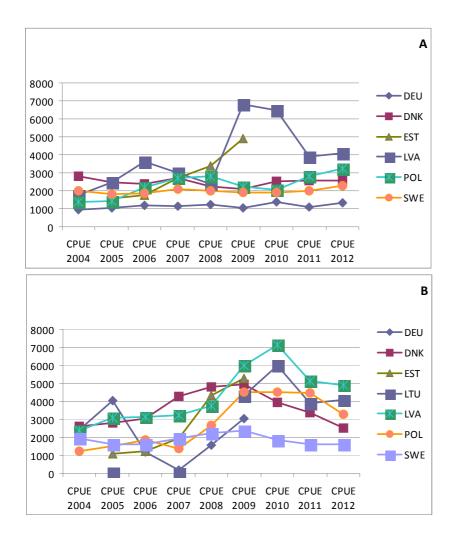
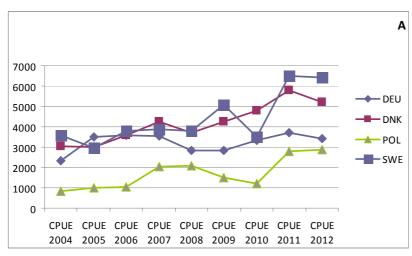



Figure 5.1.5.3. CPUE (g/kW*days) of cod in regulated gill net fisheries in the areas A and B, Baltic Sea by Member States, 2004-2012.

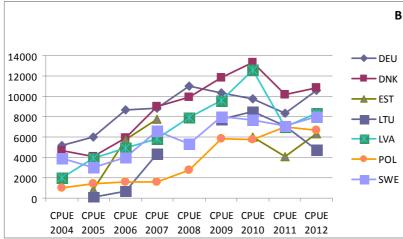
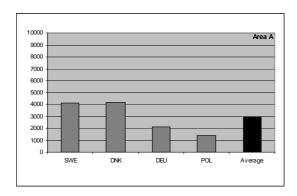



Figure 5.1.5.4. CPUE (g/kW*days) of cod in regulated otter trawl fisheries in the areas A and B, Baltic Sea by Member States, 2004-2012.

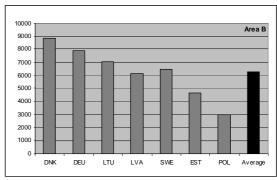


Figure 5.1.5.5. Average CPUE (g/kW*days) of cod in r-otter trawl fisheries by Member States in area A and area B (Sub-division 28.2. included), in 2004-2012.

Ranked gear categories according to catches and landings of cod by area can be found in Tables 5.1.5.3 and 5.1.5.4.

There are some differences in the dominating gear that are responsible for the cod catches. Throughout the period of observations the otter trawl fishery was dominant in areas A and B with gillnet fishery as the second most important cod catching gear. In area C, gillnets were the major gears although the total amount of cod catches was low compared to the areas A and B. The variation in the dominance of particular gear types between years is limited in areas A and B. Gillnets were clearly dominating gear in area C in 2003-2012. In the Sub-division 28.2, only trawls and gillnets were involved in cod fishery during the period (except minor catch by pelagic trawls in 2003). The proportion between gears had been changing on annual basis without clear trend. However, due to the present distribution pattern of the Eastern Baltic cod stock, the cod is taken only as by-catch in the Sub-division 28.2. According to available data, cod catches from unregulated gear types do not play a significant role.

Table 5.1.5.3. Ranked gear categories according to the proportional catches of cod 2003-2012, ascending ranking according to 2012.

REG_AREA	SPECIES	REG_GEAR	2003 Rel	2004 Rel	2005 Rel	2006 Rel	2007 Rel	2008 Rel	2009 Rel	2010 Rel	2011 Rel	2012 Rel
28.2	COD	r-PEL_TRAWL	0.030									
28.2	COD	r-GILL	0.674	0.298	0.441	0.354	0.537	0.418	0.244	0.755	0.468	0.205
28.2	COD	r-OTTER	0.296	0.702	0.559	0.646	0.463	0.582	0.756	0.245	0.532	0.795
REG_AREA	SPECIES	REG_GEAR	2003 Rel	2004 Rel	2005 Rel	2006 Rel	2007 Rel	2008 Rel	2009 Rel	2010 Rel	2011 Rel	2012 Rel
Α	COD	r-BEAM	0.000					0.000				
Α	COD	r-PEL_TRAWL	0.004	0.002	0.005	0.008	0.009	0.001	0.002	0.004	0.001	0.000
Α	COD	r-LONGLINE	0.018	0.025	0.048	0.032	0.031	0.015	0.020	0.021	0.026	0.029
Α	COD	r-DEM_SEINE	0.074	0.078	0.042	0.062	0.063	0.078	0.053	0.042	0.029	0.027
Α	COD	r-TRAMMEL	0.016	0.014	0.025	0.026	0.024	0.031	0.027	0.036	0.032	0.044
Α	COD	r-GILL	0.194	0.199	0.255	0.269	0.239	0.283	0.253	0.261	0.207	0.233
Α	COD	r-OTTER	0.694	0.683	0.625	0.603	0.635	0.592	0.645	0.637	0.705	0.667
REG_AREA	A SPECIES	REG_GEAR	2003 Rel	2004 Rel	2005 Rel	2006 Rel	2007 Rel	2008 Rel	2009 Rel	2010 Rel	2011 Rel	2012 Rel
REG_AREA	A SPECIES	REG_GEAR r-TRAMMEL	2003 Rel 0.000						2009 Rel 0.002			2012 Rel 0.000
_		_		0.000	0.000	0.000	0.001	0.001	0.002	0.000	0.000	
В	COD	r-TRAMMEL	0.000	0.000	0.000 0.005	0.000 0.004	0.001 0.003	0.001 0.003	0.002 0.008	0.000 0.005	0.000 0.009	0.000
B B	COD	r-TRAMMEL r-DEM_SEINE	0.000 0.000 0.050	0.000 0.000 0.092	0.000 0.005 0.105	0.000 0.004 0.088	0.001 0.003 0.059	0.001 0.003 0.054	0.002 0.008 0.032	0.000 0.005 0.046	0.000 0.009 0.034	0.000 0.009
B B B	COD COD	r-TRAMMEL r-DEM_SEINE r-LONGLINE	0.000 0.000 0.050	0.000 0.000 0.092 0.104	0.000 0.005 0.105 0.051	0.000 0.004 0.088 0.139	0.001 0.003 0.059 0.209	0.001 0.003 0.054 0.037	0.002 0.008 0.032 0.062	0.000 0.005 0.046 0.037	0.000 0.009 0.034 0.081	0.000 0.009 0.022
B B B	COD COD COD	r-TRAMMEL r-DEM_SEINE r-LONGLINE r-PEL_TRAWL	0.000 0.000 0.050 0.009	0.000 0.000 0.092 0.104 0.318	0.000 0.005 0.105 0.051 0.284	0.000 0.004 0.088 0.139 0.196	0.001 0.003 0.059 0.209 0.187	0.001 0.003 0.054 0.037 0.247	0.002 0.008 0.032 0.062 0.226	0.000 0.005 0.046 0.037 0.175	0.000 0.009 0.034 0.081 0.133	0.000 0.009 0.022 0.029
B B B B	COD COD COD COD	r-TRAMMEL r-DEM_SEINE r-LONGLINE r-PEL_TRAWL r-GILL	0.000 0.000 0.050 0.009 0.314	0.000 0.000 0.092 0.104 0.318	0.000 0.005 0.105 0.051 0.284	0.000 0.004 0.088 0.139 0.196	0.001 0.003 0.059 0.209 0.187	0.001 0.003 0.054 0.037 0.247	0.002 0.008 0.032 0.062 0.226	0.000 0.005 0.046 0.037 0.175	0.000 0.009 0.034 0.081 0.133	0.000 0.009 0.022 0.029 0.120
B B B B B	COD COD COD COD COD	r-TRAMMEL r-DEM_SEINE r-LONGLINE r-PEL_TRAWL r-GILL	0.000 0.000 0.050 0.009 0.314 0.626	0.000 0.000 0.092 0.104 0.318 0.486	0.000 0.005 0.105 0.051 0.284 0.555	0.000 0.004 0.088 0.139 0.196 0.572	0.001 0.003 0.059 0.209 0.187 0.541	0.001 0.003 0.054 0.037 0.247 0.659	0.002 0.008 0.032 0.062 0.226 0.670	0.000 0.005 0.046 0.037 0.175 0.737	0.000 0.009 0.034 0.081 0.133	0.000 0.009 0.022 0.029 0.120 0.821
B B B B B	COD COD COD COD COD	r-TRAMMEL r-DEM_SEINE r-LONGLINE r-PEL_TRAWL r-GILL r-OTTER	0.000 0.000 0.050 0.009 0.314 0.626	0.000 0.000 0.092 0.104 0.318 0.486	0.000 0.005 0.105 0.051 0.284 0.555	0.000 0.004 0.088 0.139 0.196 0.572	0.001 0.003 0.059 0.209 0.187 0.541	0.001 0.003 0.054 0.037 0.247 0.659	0.002 0.008 0.032 0.062 0.226 0.670 2009 Rel	0.000 0.005 0.046 0.037 0.175 0.737	0.000 0.009 0.034 0.081 0.133 0.742	0.000 0.009 0.022 0.029 0.120 0.821
B B B B B	COD COD COD COD COD COD	r-TRAMMEL r-DEM_SEINE r-LONGLINE r-PEL_TRAWL r-GILL r-OTTER	0.000 0.000 0.050 0.009 0.314 0.626	0.000 0.000 0.092 0.104 0.318 0.486	0.000 0.005 0.105 0.051 0.284 0.555	0.000 0.004 0.088 0.139 0.196 0.572	0.001 0.003 0.059 0.209 0.187 0.541	0.001 0.003 0.054 0.037 0.247 0.659	0.002 0.008 0.032 0.062 0.226 0.670 2009 Rel	0.000 0.005 0.046 0.037 0.175 0.737	0.000 0.009 0.034 0.081 0.133 0.742	0.000 0.009 0.022 0.029 0.120 0.821

Table 5.1.5.4 Ranked gear categories according to the proportional landings of cod 2003-2012, ascending ranking according to 2012.

REG_AREA	A SPECIES	REG_GEAR	2003 Rel	2004 Rel	2005 Rel	2006 Rel	2007 Rel	2008 Rel	2009 Rel	2010 Rel	2011 Rel	2012 Rel
28.2	COD	r-PEL_TRAWL	0.030									
28.2	COD	r-GILL	0.670	0.300	0.436	0.349	0.520	0.406	0.244	0.755	0.468	0.205
28.2	COD	r-OTTER	0.299	0.700	0.564	0.651	0.480	0.594	0.756	0.245	0.532	0.795
REG_AREA	A SPECIES	REG_GEAR	2003 Rel	2004 Rel	2005 Rel	2006 Rel	2007 Rel	2008 Rel	2009 Rel	2010 Rel	2011 Rel	2012 Rel
Α	COD	r-BEAM	0.000					0.000				
Α	COD	r-PEL_TRAWL	0.005	0.002	0.005	0.008	0.009	0.001	0.002	0.004	0.001	0.000
Α	COD	r-LONGLINE	0.021	0.026	0.053	0.034	0.032	0.016	0.021	0.025	0.029	0.030
Α	COD	r-DEM_SEINE	0.078	0.075	0.048	0.064	0.066	0.081	0.055	0.041	0.030	0.028
Α	COD	r-TRAMMEL	0.017	0.015	0.026	0.027	0.025	0.033	0.028	0.038	0.036	0.045
Α	COD	r-GILL	0.220	0.212	0.283	0.282	0.250	0.295	0.258	0.284	0.229	0.241
Α	COD	r-OTTER	0.659	0.669	0.584	0.584	0.619	0.575	0.637	0.608	0.675	0.656
REG_AREA	A SPECIES	REG_GEAR	2003 Rel	2004 Rel	2005 Rel	2006 Rel	2007 Rel	2008 Rel	2009 Rel	2010 Rel	2011 Rel	2012 Rel
REG_AREA	A SPECIES	REG_GEAR r-TRAMMEL	2003 Rel 0.001		2005 Rel 0.000							2012 Rel 0.000
_		_	0.001	0.000		0.000	0.001	0.001	0.002	0.000	0.000	
В	COD	r-TRAMMEL	0.001	0.000	0.000	0.000 0.004	0.001 0.003	0.001 0.003	0.002 0.009	0.000 0.005	0.000 0.011	0.000
B B	COD	r-TRAMMEL r-DEM_SEINE	0.001 0.000 0.055	0.000 0.000 0.095	0.000 0.005	0.000 0.004 0.098	0.001 0.003 0.066	0.001 0.003 0.057	0.002 0.009 0.033	0.000 0.005 0.044	0.000 0.011 0.037	0.000 0.010
B B B	COD COD	r-TRAMMEL r-DEM_SEINE r-LONGLINE	0.001 0.000 0.055	0.000 0.000 0.095 0.105	0.000 0.005 0.110	0.000 0.004 0.098 0.135	0.001 0.003 0.066 0.213	0.001 0.003 0.057 0.036	0.002 0.009 0.033 0.062	0.000 0.005 0.044 0.039	0.000 0.011 0.037 0.076	0.000 0.010 0.024
B B B	COD COD COD	r-TRAMMEL r-DEM_SEINE r-LONGLINE r-PEL_TRAWL	0.001 0.000 0.055 0.009	0.000 0.000 0.095 0.105 0.322	0.000 0.005 0.110 0.052 0.292	0.000 0.004 0.098 0.135 0.210	0.001 0.003 0.066 0.213 0.195	0.001 0.003 0.057 0.036 0.254	0.002 0.009 0.033 0.062 0.236	0.000 0.005 0.044 0.039 0.174	0.000 0.011 0.037 0.076 0.143	0.000 0.010 0.024 0.028
B B B B	COD COD COD COD	r-TRAMMEL r-DEM_SEINE r-LONGLINE r-PEL_TRAWL r-GILL	0.001 0.000 0.055 0.009 0.344	0.000 0.000 0.095 0.105 0.322	0.000 0.005 0.110 0.052 0.292	0.000 0.004 0.098 0.135 0.210	0.001 0.003 0.066 0.213 0.195	0.001 0.003 0.057 0.036 0.254	0.002 0.009 0.033 0.062 0.236	0.000 0.005 0.044 0.039 0.174	0.000 0.011 0.037 0.076 0.143	0.000 0.010 0.024 0.028 0.131
B B B B B	COD COD COD COD COD	r-TRAMMEL r-DEM_SEINE r-LONGLINE r-PEL_TRAWL r-GILL	0.001 0.000 0.055 0.009 0.344 0.592	0.000 0.000 0.095 0.105 0.322 0.478	0.000 0.005 0.110 0.052 0.292 0.540	0.000 0.004 0.098 0.135 0.210 0.552	0.001 0.003 0.066 0.213 0.195 0.521	0.001 0.003 0.057 0.036 0.254 0.649	0.002 0.009 0.033 0.062 0.236 0.659	0.000 0.005 0.044 0.039 0.174 0.737	0.000 0.011 0.037 0.076 0.143	0.000 0.010 0.024 0.028 0.131 0.806
B B B B B	COD COD COD COD COD	r-trammel r-dem_seine r-longline r-pel_trawl r-gill r-otter	0.001 0.000 0.055 0.009 0.344 0.592	0.000 0.000 0.095 0.105 0.322 0.478	0.000 0.005 0.110 0.052 0.292 0.540	0.000 0.004 0.098 0.135 0.210 0.552	0.001 0.003 0.066 0.213 0.195 0.521	0.001 0.003 0.057 0.036 0.254 0.649	0.002 0.009 0.033 0.062 0.236 0.659	0.000 0.005 0.044 0.039 0.174 0.737	0.000 0.011 0.037 0.076 0.143 0.733	0.000 0.010 0.024 0.028 0.131 0.806
B B B B B	COD COD COD COD COD COD	r-trammel r-dem_seine r-longline r-pel_trawl r-gill r-otter	0.001 0.000 0.055 0.009 0.344 0.592	0.000 0.000 0.095 0.105 0.322 0.478	0.000 0.005 0.110 0.052 0.292 0.540	0.000 0.004 0.098 0.135 0.210 0.552	0.001 0.003 0.066 0.213 0.195 0.521	0.001 0.003 0.057 0.036 0.254 0.649	0.002 0.009 0.033 0.062 0.236 0.659 2009 Rel	0.000 0.005 0.044 0.039 0.174 0.737	0.000 0.011 0.037 0.076 0.143 0.733	0.000 0.010 0.024 0.028 0.131 0.806

5.1.6 ToR 2 Information on small boats (<8m by area)

An updated dataset on fishing effort and catches (landings and discards) of cod corresponding to vessels of the overall length 1 below 8 m by gear and Member State were made available for EWG 13-06 and 13-13 .Lithuania provided data from 2006-2012 and Latvia from 2009-2012. Estonia did not provide effort data for this fleet segment.

5.1.6.1 Fishing effort of small boats by area, Member State and fisheries

According to provided information (Table 5.1.6.1.1), in 2003-2012 the highest fishing effort was deployed by Finland, Sweden and Poland (86% of total fishing effort in that fleet segment in 2012) (Figure 5.1.6.1.1).

The most of efforts were distributed between non regulated gill nets (44%), pots (31%) and regulated gill nets (16%) (Figure 5.1.6.1.2). Only 9% of fishing effort was deployed by other types of fishing gears.

The highest fishing effort was deployed in the area C (62% on average comparing with total fishing effort); the lowest in the area A (10% on average comparing with total fishing effort) (Figure 5.1.6.1.3). 28% of fishing effort was deployed in area B. Fishing effort in the Sub-division 28.2 consisted <1% of all fishing efforts in the area B only in 2012. Dynamics of fishing efforts in areas A, B, C has shown that from 2004 fishing effort in the area B significantly decreased; in the areas A, C fishing efforts fluctuated around its average.

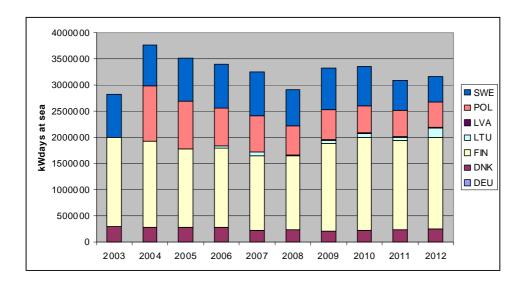


Figure 5.1.6.1.1. Distribution of fishing effort (kW days at sea) by Member States in 2003 - 2012. Small boats.

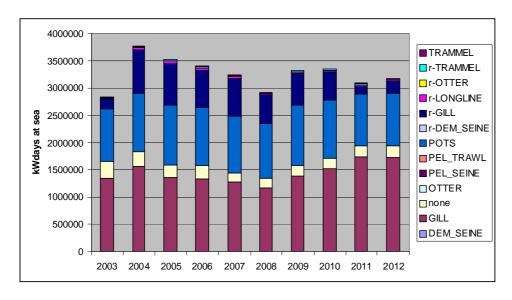


Figure 5.1.6.1.2. Distribution of fishing effort (kW days at sea) by different fishing gears in 2003 – 2012. Small boats.

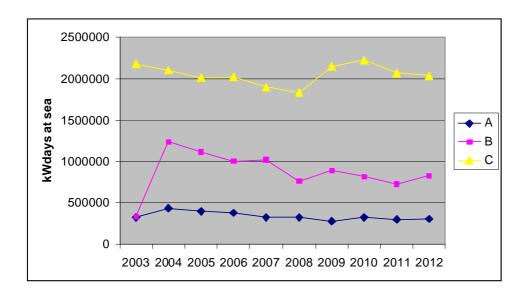


Figure 5.1.6.1.3. Dynamics of fishing effort (kW days at sea) in areas A, B, C. Small boats.

Table 5.1.5.1.1 Fishing effort (kWdays at sea) of small boats by area, Member State and fisheries in 2003-2012.

Section Sect	ANNEX	REG AREA COD	REG GEAR COD	SPECON	COUNTRY	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Ball Ball Port						2003	2004	2003	2000	2007	2000			2011	594
Section Sect															
Ball A DMASSINE none DNA 1986 1986 1997 1988 388 1942 399	Bal	28.2	_		LVA							7387	5022	6518	3432
Ball A	Bal	Α	DEM_SEINE	none	DNK				34			32			
Ball A	Bal	Α	DEM_SEINE	none	POL		1925	1035							
Bail A	Bal	Α	DEM_SEINE	none	SWE			16							
Bal A	Bal	Α	GILL	none	DNK	664	356	4026	7693	4976	4158	3089	1542	3049	2575
Ball A	Bal	A	GILL	none	POL		70644	49864	34033	43230	35850	21984	35190	40226	48359
Set	Bal	A	GILL	none	SWE	2871	6271		885			1353	485	313	442
Ball A			none	none	DNK	263032	248064	204447	207229	144252	154790	142535	168846	184330	200985
Bal A OTTRE none POL			none	none	SWE	22		2813		2659		279	706		
Bal A				none			8		19						
Bal A POTS none															
Ball A					_										2455
Set A															8841
Second S						28974	23886		28788	23451	12845		29839	8425	14312
Bail A								8	_			32			32
Bal								45677	45057	4 4570	24405	45050	42.52		44750
Bal						62								10/23	11759
Sail A						24002								45376	0.470
Ball A															9473
Bal						/82		2/66	4149						793
Bail A								202		29	97	/53	102	1/3	826
Sail									121	F4	1.50	C	222		
Bal						/10	23							0000	2845
Fig. A							0110								6458
Bai						3072	0110								212
Bal B							3058							24	212
Bal B										3414		3/1		1054	
Bai B GILL					_		3111	333	31				O.E.	1034	
Bal B GILL			_					56	19						
Bal B GILL												34504	30277	16793	48662
Bal B		В													1013
Bal B							145108	109011	72210	71172	60146				386491
Bal B	Bal	В	GILL	none	SWE	11760	17940	17036	18779	21529	17550	27674	31454	28688	33454
Bal B	Bal	В	none	none	DNK	34833	25493	22940	27175	22623	24599	29787	23237	25846	19750
Bal B	Bal	В	none	none	SWE	249	9		1014	4495	1166	1175	998		1798
Bal B	Bal	В	PEL_SEINE	none	POL									22	
Bal B	Bal	В	PEL_TRAWL	none	POL			59							
Bal B	Bal	В	POTS	none	DNK					8					
Bal B	Bal	В	POTS	NONE	LTU									5018	4869
Bal B	Bal	В	POTS	none	POL		124796	107603	69044	59160	46886	44134	69259	29144	36719
Bal B			POTS	none	SWE	152174	138253	149638	180982	205254	137653	162669	129568	85842	85807
Bal B				none	LVA										0
Bal B				none				1060				3415	2783	45	79
Bal B r-GILL none LVA 613889 572660 483645 447619 343626 398418 322538 22 Bal B r-GILL none SWE 118038 111340 86034 71269 79583 81410 68069 61424 42923 Bal B r-LONGLINE none DNK 223 718 2210 2163 1041 117 Bal B r-LONGLINE none LTU 1966 10496 132 1041 117 Bal B r-LONGLINE none LTU 1966 10496 14925 13281 8997 Bal B r-LONGLINE none POL 30606 27836 21358 19258 12028 14925 13281 8997 Bal B r-LONGLINE none SWE 6965 12481 15858 8229 8089 6978 6209 5882 3589				none					30799	67068	16778				
Bal B r-GILL none POL 613889 572660 483645 447619 343626 398418 322538 22 Bal B r-GILL none SWE 118038 111340 86034 71269 79583 81410 68069 61424 42923 Bal B r-LONGLINE none LTU 1966 10496 132 1041 117 Bal B r-LONGLINE none LTU 1966 10496 132 1270 3787 7999 Bal B r-LONGLINE none LTU 30606 27836 21358 19258 12028 14925 13281 8997 Bal B r-LONGLINE none POL 30606 27836 21358 19258 12028 14925 13281 8997 Bal B r-LONGLINE none SWE 6965 12481 15858 8229 8089 6978 62															127316
Bal B r-GILL none SWE 118038 111340 86034 71269 79583 81410 68069 61424 42923 Bal B r-LONGLINE none DNK 223 718 2210 2163 1041 117 Bal B r-LONGLINE none LTU 1966 10496 132 2170 3787 7999 Bal B r-LONGLINE none LTU 30606 27836 21358 19258 12028 14925 13281 8997 Bal B r-LONGLINE none POL 30606 27836 21358 19258 12028 14925 13281 8997 Bal B r-LONGLINE none SWE 6965 12481 15858 8229 8089 6978 6209 5882 3589 Bal B r-TRAMMEL none DNK 1433 3881 3238 3931 3740							64		4077		04				1694
Bal B r-LONGLINE none DNK 223 718 2210 2163 1041 117 Bal B r-LONGLINE none LTU 1966 10496 132 2170 3787 7999 Bal B r-LONGLINE none POL 30606 27836 21358 19258 12028 14925 13281 8997 Bal B r-LONGLINE none SWE 6965 12481 15858 8229 8089 6978 6209 5882 3589 Bal B r-LOTTER none DNK 54						44000									40
Bal B r-LONGLINE none LTU 1966 10496 132 2170 3787 7999 Bal B r-LONGLINE none LTU 30606 27836 21358 19258 12028 14925 13281 8997 Bal B r-LONGLINE none SWE 6965 12481 15858 8229 8089 6978 6209 5882 3589 Bal B r-CTTER none DNK						118038	111340		/1269						55460
Bal B r-LONGLINE none LTU 30606 27836 21358 19258 12028 14925 13281 8997 Bal B r-LONGLINE none SWE 6965 12481 15858 8229 8089 6978 6209 5882 3589 Bal B r-OTTER none DNK S 54 S 54 S 54 S 54 S 54 S 54 S 53 589 3589 S 588 3538 3589 S 358								223	1000			2163	1041	117	18
Bal B r-LONGLINE none POL 30606 27836 21358 19258 12028 14925 13281 8997 Bal B r-LONGLINE none SWE 6965 12481 15858 8229 8089 6978 6209 5882 3589 Bal B r-OTTER none DNK 54									1966	10496	132	2170	2707	7000	2981
Bal B r-LONGLINE none SWE 6965 12481 15858 8229 8089 6978 6209 5882 3589 Bal B r-OTTER none DNK 54 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>30000</td> <td>27020</td> <td>21250</td> <td>10250</td> <td>12020</td> <td></td> <td></td> <td></td> <td></td>							30000	27020	21250	10250	12020				
Bal B r-OTTER none DNK 54 54 Bal B r-TRAMMEL none SWE 1423 3881 3238 3931 3740 3410 1530 11884 10915 Bal B TRAMMEL none POL 119 37 31 31 31 31 31 31 31 31 31 31 31 32 32 32 32 32 34 31 31 31 31 31 32 33 31 33 31 33 31 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 34 33 34 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>606 5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6490 4140</td></t<>						606 5									6490 4140
Bal B r-TRAMMEL none SWE 1423 3881 3238 3931 3740 3410 1530 11884 10915 Bal B TRAMMEL none POL 119 37 31 31 33 33 33 33 33 33 33 33 33 33 33 33 33 33 34 <td></td> <td></td> <td></td> <td></td> <td></td> <td>0905</td> <td>12401</td> <td>13038</td> <td>0229</td> <td>0009</td> <td></td> <td>0209</td> <td>3002</td> <td>3309</td> <td>4140</td>						0905	12401	13038	0229	0009		0209	3002	3309	4140
Bal B TRAMMEL none POL 119 37 31 31 31 31 31 33 31 33 34 34 34						1472	3881	3238	3931	374∩		1530	11884	10915	9024
Bal B TRAMMEL none SWE 6098 6999 3406 11500 5455 4858 5238 5030 5433 Bal C DEM_SEINE none SWE 1827 824 526 526 528 5030 5433 Bal C GILL none FIN 1168557 1152304 1000201 1033994 957521 888768 1057622 1188962 1101469 10 Bal C GILL none POL 500 1						1423		3230	3,31			1550	11004	10313	5024
Bal C DEM_SEINE none SWE 1827 824 526 527 526 527 5						6092		3406	11500			5238	5030	5433	
Bal C GILL none FIN 1168557 1152304 1000201 1033994 957521 888768 1057622 1188962 1101469 10 Bal C GILL none POL - - - - - 102 Bal C GILL none SWE 165644 160268 173471 166700 168797 154373 185927 169655 139908 1 Bal C none none SWE 3523 257 1269 4478 2030 2206 9670 331 6665 Bal C OTTER none SWE 816 66 - - - - - - 527856 609518 586124 599198 6 Bal C POTS none SWE 255454 240193 275226 277286 251989 227243 247262 234842 191732 1								3400	11300		.555	3230	3030	3433	
Bal C GILL none POL 102 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1000201</td> <td>1033994</td> <td></td> <td>888768</td> <td>1057622</td> <td>1188962</td> <td>1101469</td> <td>1087866</td>								1000201	1033994		888768	1057622	1188962	1101469	1087866
Bal C GILL none SWE 165644 160268 173471 166700 168797 154373 185927 169655 139908 1 Bal C none none SWE 3523 257 1269 4478 2030 2206 9670 331 6665 Bal C OTTER none SWE 816 66							. === .								
Bal C none none SWE 3523 257 1269 4478 2030 2206 9670 331 6665 Bal C OTTER none SWE 816 66 50						165644	160268	173471	166700	168797	154373	185927	169655		106857
Bal C OTTER none SWE 816 66 66 527856 609518 586124 599198 66 Bal C POTS none FIN 532031 505759 510189 483518 472706 527856 609518 586124 599198 6 Bal C POTS none SWE 255454 240193 275226 277286 251989 227243 247262 234842 191732 1 Bal C r-GILL none SWE 47268 39858 49762 46841 40313 28534 38939 38007 25078															2469
Bal C POTS none FIN 532031 505759 510189 483518 472706 527856 609518 586124 599198 6 Bal C POTS none SWE 255454 240193 275226 277286 251989 227243 247262 234842 191732 1 Bal C r-GILL none SWE 47268 39858 49762 46841 40313 28534 38939 38007 25078															
Bal C POTS none SWE 255454 240193 275226 277286 251989 227243 247262 234842 191732 1 Bal C r-GILL none SWE 47268 39858 49762 46841 40313 28534 38939 38007 25078							505759	510189		472706	527856	609518	586124	599198	664637
															140684
															29051
	Bal	С	r-LONGLINE	none	SWE				3077						
Bal C TRAMMEL none SWE 912 912	Bal	С	TRAMMEL	none	SWE	912	912								

5.1.6.2 Catches (landings and discards) of small boats by area, Member State and fisheries

STECF notes that discard observation and estimation are scarce for small boats. Using the information available, the estimated catches are believed to represent rather landings. According to provided information (Table 5.1.6.2.1) the biggest cod landings on average were taken with fishing gears named as "none" (34%) and regulated gill nets (34%) (Figure 5.1.6.2.1). Other important gears for cod landings were unregulated gill nets (23%) and regulated longlines (7%). By other types of fishing gears 2% of cod was fished only.

The landings of cod were taken almost equally from the areas A and B (Figure 5.1.6.2.2). The landings of cod in the area C consisted of less than 0.1% of total landings. The landings of cod in the Sub-division 28.2 consisted of 2% of all landings in the area B. The negative trend in total cod landings observed since 2005, reversed in 2012 mainly due to the increased landing figures in area B. Comparison of the most recent period (2010-2012) can be characterized by increase of the share of non-regulated gillnet catches . The share of r-gill remains unchanged in 2011-2012 (Figure 5.1.6.2.1). Landings of cod corresponding to vessels of the overall length less than 8 m consist of 4.2% of total catches in the area A, 1.6% - in the areas B+C and 2.2% - for all Baltic.

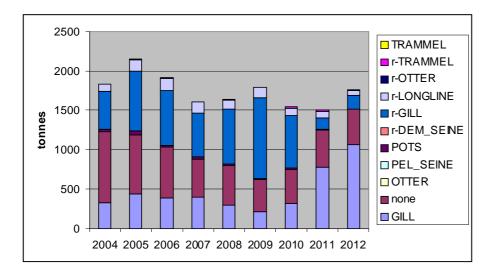


Figure 5.1.6.2.1 Distribution of cod landings taken by different gear types in 2004–2012. Small boats.

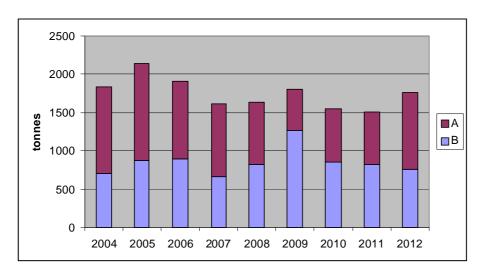


Figure 5.1.6.2.2. Dynamics of cod landings in 2004 – 2012 in the areas A and B. Small boats.

Table 5.1.6.2.1. Cod landings and discards taken by < 8 m vessels by area, gear type and Member State in 2004-2012 (t).

REG_AREA	REG_GEAR	COUNTRY	SPECON	2004 L	2004 D	2005 L	2005 D	2006 L	2006 D	2007 L	2007 D	2008 L	2008 D	2009 L	2009 D	2010 L	2010 D	2011 L	2011 D	2012 L	2012 D
28.2	GILL	EST	none			0.139	0	0.03	0	0.12	0	0.182	0	0.243	0	0.168	0	0.282	0	0.263	0
28.2	POTS	EST	none			0.002	0					0.198	0	0.104	0	0.15	0	0.164	0	0.147	0
28.2	r-LONGLINE	EST	none									0.004	0					0.013	0		
28.2	GILL	LVA	none							0.137	0	0.12	0			0.011	0			0.05	0
28.2		LVA	none									0.012	0			0.005	0				
28.2	r-GILL	LVA	none			8.417	0	39.05	0	50.342	0	35.52	0	8.461	0	5.85	0	3.65	0	4.422	0
Α	GILL	DEU	none	318.361		426.537	0	371.402		375.492	0	274.343	0	193.613	0	307.331	0	257.194	0	578.837	0
Α	none	DEU	none	0.019	0	2.784	0	0.291	0	0.289	0										
Α	POTS	DEU	none	0.064	0			0.139	0	0.351	0	0.093	0	0.3	0	1.47	0	0.384	0	1.327	0.004
Α	r-LONGLINE	DEU	none	2.881	0		0.085	3.461	0	2.289	0	1.157	0	0.198	0	0.032	0	0.049	0	2.472	0
A	GILL	DNK	none	1.564	0	9.493	0	9.268	0	11.897	0	16.02	0	5.864	0	0.698	0	2.492	0	1.068	0
A	none	DNK	none	717.51	0	594.038	0	478.029		345.447	0			227.117	0	290.895	0	337.403	0	352.823	0
Α.	OTTER	DNK	none					0.087	0	0 = 10		0.027	0								
Δ	POTS	DNK DNK	none			20.175	0	9.164	0	9.549	0	1.061	0	1.485 0.001	0	6.09	0	2.333	0.051	5.117	0.086
A	r-DEM_SEINE r-GILL	DNK	none	0.013	0.001	115.975	5.335	71.609	0	68,508	0	76.074	0	47,482	0.323	29,899	3.21	26.826	0	33.286	0.546
^			none	0.702					0		0		0		0.323		5.21		0		0.546
Δ	r-LONGLINE r-OTTER	DNK DNK	none none	0.702	0.035	20.701 0.019	0.847	10.281 0.193	0.017	43.403 0.05	0.004	16.735 0.57	0.044	9.947 0.022	0.004	8.416 0.022	0.086	6.199	U	6.682	U
^	r-TRAMMEL	DNK	none	0.730	0.057	2.873	0.021	3.466	0.017	5.409	0.004	9.24	0.044	3.575	0.004	6.342	0.785	16,619	0	5.254	0.023
^	TRAMMEL	DNK	none			0.002	0.124	0.263	0	3.403	U	0.008	0	0.016	0.012	0.342	0.763	10.015	U	3.234	0.023
Δ	GILL	POL	none	0.65	0	0.002	0	0.203	0	0.506	0	0.008	0	0.016	0			3,598	0		
Δ	POTS	POL	none	0.65	0	0.4	U	0.23	U	0.002	0	0.532	U	0.120	U			3.330	U		
A	r-GILL	POL	none	36.704	0.809	13.365	0.493	15.393	0	23.144	0	17.898	0	15.835	0	10.235	0.539				
Δ	r-LONGLINE	POL	none	30.704	0.005	13.303	0.433	13.333	·	23.144		0.37	0	15.055	Ü	10.233	0.555				
A	none	SWE	none	1.43	0	1.435	0	2.172	0	3,375	0	5.805	0	0.08	0	0.645	0				
A	POTS	SWE	none	9.587	0	13.549	0	6.745	0	13.212	0	4.28	0	2.671	0.017	1.932	0	2,736	0.062	2.861	0.059
Α	r-GILL	SWE	none	38.975	0.582		1.868	30.316	0	39,144	0	62.261	0	23,732	0.081	26.38	0.522	28,962	0.512	14.813	0.219
Α	r-LONGLINE	SWE	none	6.315	0.18	3.153	0.144														
Α	r-TRAMMEL	SWE	none	1.397	0.018	3.143	0.248	0.124	0			0.018	0	0.361	0.001	0.551	0.009	2.967	0.046	1	0.016
В	GILL	DNK	none									0.178	0								
В	none	DNK	none	185.557	0	147.197	0	152.503	0	136.781	0	169.28	0	180.255	0	136.908	0	130.394	0	87.022	0
В	r-GILL	DNK	none			3.814	0.035			6.27	0	23.087	0.039	21.622	0.489	10.153	0.181	0.027	0.002	0.189	0.008
В	r-LONGLINE	DNK	none			0.337	0.02			4.602	0	13.7	0	17.455	1.046	9.046	1.522	0.503	0.007	0.039	0.001
В	r-OTTER	DNK	none									0.256	0.037								
В	GILL	EST	none			0.427	0	0.204	0	0.283	0	0.338	0	0.359	0.002	0.342	0	0.444	0	0.517	0.003
В	POTS	EST	none			0.42	0	0.11	0	0.147	0	0.552	0	0.314	0.022	0.382	0	0.285	0.02	0.317	0.013
В	r-LONGLINE	EST	none									0.004	0					0.013	0.001		
В	r-GILL	LTU	none			107.68	0	60.534	0	55.577	0	48.012	0	30.7	0	48.2	0	25.1	0	50.3	2.133
В	r-LONGLINE	LTU	none					1.043	0			2.095	0	7	0	11.6	0	23.2	0	5.1	0.078
В	GILL	LVA	none					0.12	0			0.01	0							0.05	0
В	r-GILL	LVA	none			6.885	0.034	62.759	4.497	68.333	0	30.885	0.025	7.076	0.214	10.703	0.312	9.696	0.375	15.246	0.554
В	GILL	POL	none	5.646	0	1.748	0	4.235	0	1.44	0	2.072	0	5.916	0.049	6.826	0	510.719	0	484.779	2.975
В	PEL_SEINE	POL	none	0.700		4.050	_	0.04	_	0.00=	_	0.242	_	0.425	0.001	0.1	_	0.005	0	0.467	0.000
В	POTS r-GILL	POL POL	none	0.793	0 3.725	1.858 420.446	0 4.07	0.814 382.058	0 39.525	0.005	0	0.213	0.826	0.425	0.034 21.538	0.1 467.33	12.526	0.449	0.032	0.167	0.006
B B	r-GILL r-LONGLINE	POL	none	285.318 32.274	3.725 0.411	52.882		382.058 102.677	39.525	194.836 66.001	0	43.576	0.826	794.467 82.984	5.693	467.33 67.851	6.742	50.686	1.297	0.2 34.35	1.234
В	GILL	SWE	none	32.2/4	0.411	0.14	1.075	0.001	0	0.001	0	0.09	0	0.055	0.003	0.044	0.742	30.066	1.29/	0.02	0.001
B	none	SWE	none	0.211	0	0.14	U	5.423	0	1.791	0	2,946	0	1.422	0.003	1,403	0			0.02	0.001
В	POTS	SWE	none	13.459	0	12.079	0	12.951	0	11.378	0	13.754	0	7.051	0.491	6.025	0	3.822	0.262	2.456	0.096
В	r-GILL	SWE	none	117.981	1.689		1.781	74.419		96.492	0	99.658	0.234	86.209	4.777	63.722	1.771	54.547	3.303	58.127	1.963
В	r-LONGLINE	SWE	none	57.466	0.768	57.702	1.064	32.653	0	24.713	0	37.134	0.234	17.31	1.239	5.163	0.715	54.547	0.409	13.593	0.466
В	r-TRAMMEL	SWE	none	0.108	0.001	0.359	0.012	0.2	0	0.308	0	0.148	0	0.021	0.001	5.345	0.107	0.883	0.403	1.626	0.400
В	TRAMMEL	SWE	none	0.176	0.003	0.186	0.008	0.288	0	0.500	U	0.007	0	0.002	0.001	0.002	0.107	0.003	0.0.4	1.020	5.0.5
c	GILL	EST	none		,	0.455	0.000	0.263	0	0.369	0	1.468	0	3.139	0.047	2.85	0.08	2,636	0.029	2.159	0.045
c	POTS	EST	none	l		0.012	0	0.004	0	0.035	0	0.037	0	0.114	0.001	0.121	0.00	0.117	0.023	0.107	0.009
c	r-GILL	EST	none	l			-	0.004	0								-		-		
c	r-LONGLINE	EST	none	l										0.002	0					0.003	0
c	GILL	FIN	none	0.061	0	0.063	0	0.124	0	0.045	0	0.268	0	0.643	0.009	1.058	0.02	0.836	0.005	0.462	0.011
c	POTS	FIN	none	0.009	0			0.002	0	0.005	0	0.004	0	0.086	0.001	0.123	0	0.012	0	0.058	0.005
c	GILL	SWE	none	0.2	0	0.004	0			0.002	0	0.246	0			0.004	0			0.008	0
С	POTS	SWE	none	l																	
С	r-GILL	SWE	none	<u> </u>										0.117	0.008	0.004	0				
. —	. ——	. ——	. —																		

Table 5.1.6.2.2. Cod landings and discards taken by < 8 m vessels by area and gear type in 2004-2011 2012 (t).

REG AREA	REG GEAR	SPECON	2004 L	2004 D	2005 L	2005 D	2006 L	2006 D	2007 L	2007 D	2008 L	2008 D	2009 L	2009 D	2010L	2010 D	2011L	2011 D	2012 L	2012 D
28.2	GILL	none			0.139	0	0.03	0	0.257	0	0.302	0	0.243	0	0.179	0	0.282	0	0.313	0
28.2	POTS	none			0.002	0					0.198	0	0.104	0	0.15	0	0.164	0	0.147	0
28.2	r-DEM_SEINE	none									0.012	0			0.005	0				
28.2	r-GILL	none			8.417	0	39.05	0	50.342	0	35.52	0	8,461	0	5.85	0	3.65	0	4.422	0
28.2	r-LON GLINE	none									0.004	0					0.013	0		
A	GILL	none	320.575	0	436.43	0	380.9	0	387.895	0	291.315	0	199,608	0	308.029	0	263.284	0	579.905	0
A	none	none	718.959	0	598.257	0	480.492	0	349.111	0	334.992	0	227.197	0	291.54	0	337.403	0	352.823	0
A	OTTER	none					0.087	0			0.027	0								
A	POTS	none	9.851	0	33.724	0	16.048	0	23.114	0	5.434	0	4,456	0.017	9.492	0	5.453	0.113	9.305	0.149
A	r-DEM_SEINE	none											0.001	0						
A	r-GILL	none	75.692	1.392	170.503	7.696	117.318	0	130.796	0	156,233	0	87.049	0.404	66.514	4.271	55.788	0.512	48.099	0.765
A	r-LON GLINE	none	9.898	0.215	27.652	1.076	13.742	0	45.692	0	18.262	0	10.145	0	8.448	0	6.248	0	9.134	0
A	r-OTTER	none	0.736	0.057	0.019	0.021	0.193	0.017	0.05	0.004	0.57	0.044	0.022	0.004	0.022	0.086				
A	r-TRAMMEL	none	1.397	0.018	6.016	0.372	3.59	0	5.409	0	9.258	0	3,986	0.013	6.893	0.794	19.586	0.046	6.254	0.039
A	TRAMMEL	none			0.002	0	0.263	0			0.008	0	0.016	0						
В	GILL	none	5.646	0	2.315	0	4.56	0	1.724	0		0	6.33	0.054	7.212	0	511.163	0	485,366	2.979
В	none	none	185.768	0	147.197	0	157.926	0	138,572	0	172,226	0	181.677	0	138.311	0	130.394	0	87.038	0
В	PEL_SEINE	none															0.005	0		
8	POTS	none	14.252	0	14.357	0	13.875	0	11.53	0	14,519	0	7.79	0.547	6.507	0	4.556	0.314	2.94	0.115
В	r-GILL	none	403.299	5.414	598.62	5.92	579.77	55.156	421.508	0	530.684	1.124	940.074	27.018	600.108	15.8	89.37	3.68	124.062	4.667
В	r-LON GLINE	none	89.74	1.179	110.921	2.159	136.373	0	95.316	0	96.509	0	124,749	7.978	93.66	8.979	80.402	1.714	53.082	1.779
8	r-OTTER	none									0.256	0.037								
В	r-TRAMMEL	none	0.108	0.001	0.359	0.012	0.2	0	0.308	0	0.148	0	0.021	0.001	5.345	0.107	0.883	0.044	1.626	0.079
8	TRAMMEL	none	0.176	0.003	0.186	0.008	0.288	0			0.007	0	0.002	0	0.002	0				
C	GILL	none	0.261	0	0.522	0	0.387	0	0.416	0	1.982	0	3.782	0.056	3.912	0.1	3.472	0.034	2.629	0.036
C	POTS	none	0.009	0	0.012	0	0.006	0	0.04	0	0.041	0	0.2	0.002	0.244	0	0.129	0	0.165	0.014
c	r-GILL	none					0.004	0					0.117	0.008	0.004	0				
C	r-LON GLINE	none											0.002	0					0.003	0

5.1.7 ToR 3 Fishing effort (days at sea) uptake analysis, by Member State, gear type and fishing area.

The EWG 13-06 was addressed the task of quantifying the evolution of the calculated maximum effort allocated to the cod fleet (ceiling of days using regulated gear types) in relation to the effort actually used by that fleet and was asked to highlight possible shifts between métiers.

The uptake of days at sea against the available days at sea by Member State and area for regulated and non-regulated gear types in 2008-2012 is presented in the Table 5.1.7.1. and on the Figures 5.1.7.1 – 5.1.7.3. The uptake of days at sea with regulated gears remained clearly below the available maximum in all areas and Member States. The average uptake of available days at sea over the time period 2008-2012 remained in the range of 36-38% in area A, 34-47% in the area B and 53-83% for the areas A and B combined. Only one Member State slightly exceeded the allowed limit for regulated gears in areas A and B combined in 2011 (Figure 5.1.7.3). No clear trend in average uptake could be revealed over the observed period.

Table 5.1.7.1. Uptake of available days at sea by Member State and area for regulated and nonregulated gear types in 2008-2012.

Reg	Area	MS	Category	Gear types	2008	2009	2010	2011	2012
BAL	Α	DEU	Limit		65339	53868	45612	41728	39772
BAL	Α		Uptake	Nonreg	2034	889	863	609	448
BAL	Α		Uptake	Reg	33414	25373	21911	23187	21568
BAL	Α	DNK	Limit		69799	53265	41268	40587	35534
BAL	Α		Uptake	Nonreg	1942	1789	1857	1890	2064
BAL	Α		Uptake	Reg	22923	17797	15505	15568	15139
BAL	Α	POL	Limit		10035	7638	4887	2934	4401
BAL	Α		Uptake	Nonreg	6438	5608	5234	5624	5726
BAL	Α		Uptake	Reg	872	925	466	315	592
BAL	Α	SWE	Limit	Ū	11373	7638	7240	6194	6683
BAL	Α		Uptake	Nonreg	1618	2416	1870	1144	1080
BAL	Α		Uptake	Reg	5124	4007	3638	3003	2864
				_					
BAL	В	DEU	Limit		534	160	160	320	320
BAL	В		Uptake	Nonreg				165	217
BAL	В		Uptake	Reg	139	32	24	79	25
BAL	В	DNK	Limit		3382	2080	3200	3200	1920
BAL	В		Uptake	Nonreg	871	1215	967	460	259
BAL	В		Uptake	Reg	1530	1070	1361	2045	967
BAL	В	EST	Limit		1602	960	480	1440	1440
BAL	В		Uptake	Nonreg	869	960	1136	1111	3733
BAL	В		Uptake	Reg	221	89	58	521	180
BAL	В	LTU	Limit			5120	4320	3840	4320
BAL	В		Uptake	Nonreg		397	433	522	254
BAL	В		Uptake	Reg		3006	2690	2526	3207
BAL	В	LVA	Limit		9968	9920	7840	6240	6880
BAL	В		Uptake	Nonreg	3527	2763	2650	2667	1793
BAL	В		Uptake	Reg	4853	4567	3388	4518	4357
BAL	В	POL	Limit		55714	39520	41440	36000	46880
BAL	В		Uptake	Nonreg	6272	8824	8529	8837	8280
BAL	В		Uptake	Reg	15244	11885	13845	11775	17024
BAL	В	SWE	Limit		27768	24800	20960	16960	18080
BAL	В		Uptake	Nonreg	7121	6680	5899	5031	3923
BAL	В		Uptake	Reg	11654	10479	8190	5827	5015
BAL	AB				2008	2009	2010	2011	2012
BAL	AB	DEU	Limit		10035	11457	9412	4727	4401
BAL	AB		Uptake	Nonreg	300	375	397	102	
BAL	AB		Uptake	Reg	5705	7347	6046	3581	3431
BAL	AB	DNK	Limit		23861	23316	17919	12551	14344
BAL	AB		Uptake	Nonreg	123	342	342	444	454
BAL	AB		Uptake	Reg	10494	11181	10496	8565	10580
BAL	AB	EST	Limit		446	402	362		326
BAL	AB		Uptake	Nonreg				1	22
BAL	AB		Uptake	Reg	265	258	218		253
BAL	AB	LTU	Limit						
BAL	AB		Uptake	Nonreg		90	146	124	
BAL	AB			Reg					
BAL	AB	LVA	Limit		669	402	1448	163	163
BAL	AB		Uptake	Nonreg				113	
BAL	AB		Uptake	Reg	501	261	1166	223	151
BAL	AB	POL	Limit		33896	16482	10317	10921	15485
DAI	AB		Uptake	Nonreg	3050	3469	1622	3449	3091
BAL	70								
BAL	AB		Uptake	Reg	12029	6780	5874	6974	10343
		SWE		Reg	12029 16725	6780 15075	5874 11222	6974 14181	10343 13855
BAL	AB	SWE	Uptake	Reg Nonreg					

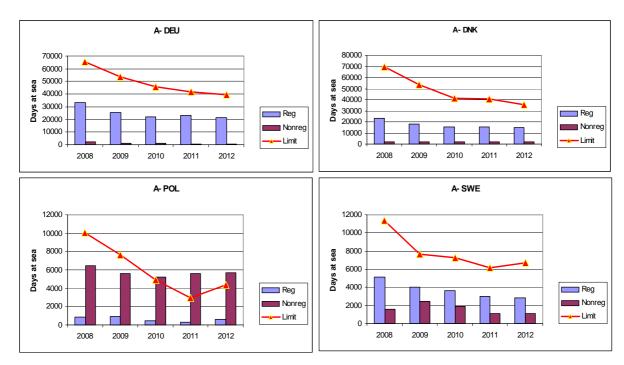


Figure 5.1.7.1. Fishing area A. Uptake of available days at sea by Member States and regulated and non-regulated gears.

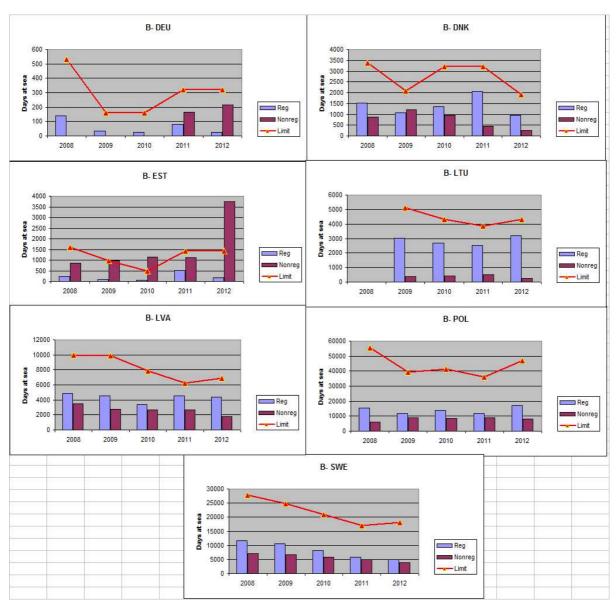


Figure 5.1.7.2. Fishing area B. Uptake of available days at sea by Member States and regulated and non-regulated gears.

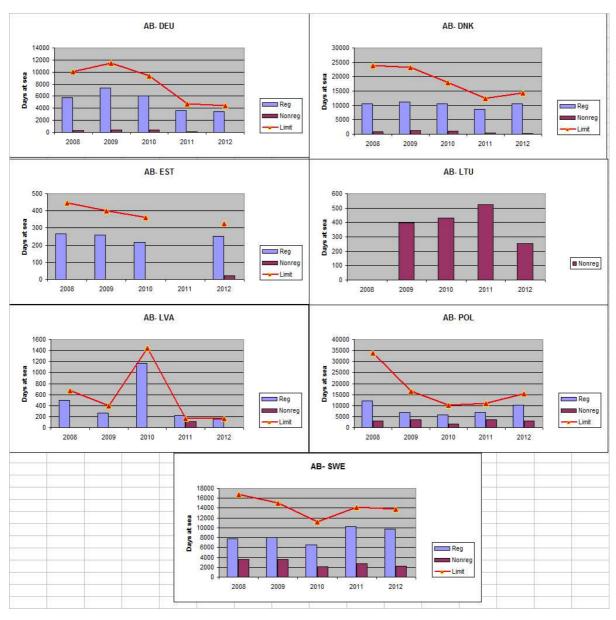


Figure 5.1.7.3. Fishing areas A and B combined. Uptake of available days at sea by Member States and regulated and non-regulated gears.

5.1.8 ToR 4 Evaluation of fully documented fisheries FDF

5.1.8.1 Fishing effort of FDF vessels by area, Member State and fisheries in comparison with fisheries not working under FDF provisions

Only Denmark has reported FDF fisheries in the Baltic in 2012 in both areas A (Western Baltic) and B (Eastern Baltic). Table 5.1.8.1.1 provides the information on effort deployed in fully documented fishery, which was made available to EWG 13-13. The fully documented fishery represented on average 2.3% of the total Danish regulated effort deployed in both areas A and B in 2012. FDF share in overall effort used with respective gear types was generally below 1%. Only for regulated demersal seine in area A the share of FDF reached 37%.

Table 5.1.8.1.1 Danish fishing effort (kW*days at sea) in Fully Documented Fishery (FDF) and total (all countries) non-FDF effort in 2012 by areas A (Western Baltic) and B (Eastern Baltic).

Area	Specon	MS	REG Gear_COD	FDF Effort	All Non-FDF effort	%
Α	FDFBAL	DNK	PEL_TRAWL	880	548950	0.2
Α	FDFBAL	DNK	r-DEM_SEINE	33798	91495	36.9
Α	FDFBAL	DNK	r-OTTER	7810	2475071	0.3
В	FDFBAL	DNK	PEL_TRAWL	7040	5005154	0.1
В	FDFBAL	DNK	r-OTTER	33660	5321587	0.6
В	FDFBAL	DNK	r-PEL_TRAWL	770	198883	0.4

5.1.8.2 Catches (landings and discards) of cod and other species taken by FDF fisheries by area, Member State and fisheries in comparison with fisheries not working under FDF provisions

The reported Danish landings of cod from the fully documented fishery with regulated gears amounted to 333 t in area A and 406 t in area B (total 739 t) in 2012 (Table 5.1.3.5.). The landings from FDF covered 4% from the reported cod landings in these areas in 2012. The discards from FDF are presented in the Section 5.1.3 of the current report. FDF reported about 42 t of cod discards in 2012.

5.1.8.3 Comparative analysis of cod selectivity by FDF fisheries and non-FDF fisheries

STECF EWG 13-06 discussed its new ToR to compare cod selectivity in FDF and non-FDF fisheries. STECF EWG 13-06 interpreted the task as to compare age specific fishing patters (partial Fs by fishery and age group). As a first step into the requested analyses, STECF EWG 13-06 estimated and presented the landing and discards at age by FDF and non-FDF fisheries. STECF EWG 13-06 noted that any attempt to compare the selectivity of FDF and non-FDF fisheries implies that Member States sampling and raising procedures to estimate the specific age compositions of landings and discards are specific for these fisheries. Since the data of Danish FDF in 2012 only were made available, the EWG decided to evaluate the age composition of landings and discards of comparative gear types from FDF and non-FDF. STECF EWG-13-13 further elaborated the available information looking solutions for different pattern in landings and discard age structures observed in areas A and B. The findings of both non-FDF and FDF fisheries for the Western and Eastern cod stocks are presented below in Sections 5.1.8.3.1 and 5.1.8.3.2 respectively.

5.1.8.3.1 ToR 4 Cod selectivity by FDF fisheries and non-FDF fisheries of the Western Baltic cod

Table 5.1.8.1 and Figure 5.1.8.1 provide the overview of age composition of landings taken with regulated gears in FDF and non-FDF in area A (Sub-divisions 22-24, Western Baltic cod).

The main gears in the area A (r-otter and r-demersal seine) show now difference in age composition of cod landings from FDF and non-FDF fisheries. In both gears landings are dominated by the age groups 3-5. However, the age composition of discards shows certain fisheries-dependent pattern in case of r-otter, where the share of age group 2 in non-FDF significantly exceeded the respective value of FDF. In case of r-demersal seine, the discard structure of both fisheries was identical.

The same age groups dominate also the age composition of discards and thus hint at a clear difference in age composition in age range 2-5. The age composition of landings from non-FDF fisheries were shifted to the younger age groups indicating at the substantial difference in selectivity. However, the data should be taken with caution because of potential systematic differences in age reading in areas A and B.

Table 5.1.8.1. Age composition of cod landings and discards in FDF and non-FDF in area A (Western Baltic) in 2012 t.

Durino	,	012															
Landings																	
REG-AREA	ANNEX	REG_GEAR	SPECON	Landings t	Landings no	AGE 0L	AGE 1L	AGE 2L	AGE 3L	AGE 4L	AGE 5L	AGE 6L	AGE 7L	AGE 8L	AGE 9L	AGE 10L	AGE 11L
Α	Bal	PEL_TRAWL	none	10.774	10.472	C	0	1.01	2.404	4.841	1.809	0.364	0.039	0.005	0	0	0
Α	FDFBAL	PEL_TRAWL	FDFBAL	0.071	0.079	0	0	0	0.006	0.047	0.023	0.002	0.001	0	0	0	0
Α	Bal	r-DEM_SEINE	none	437.903	414.98	C	0	7.779	104.453	186.686	91.594	23.208	1.013	0.157	0.09	0	0
Α	FDFBAL	r-DEM_SEINE	FDFBAL	256.52	244.024		0	6.379	76.209	98.828	48.519	13.515	0.478	0.061	0.035	0	0
Α	Bal	r-OTTER	BACOMA	4015.657	3848.549	C	218.386	962.984	1310.275	1188.712	141.655	21.941	3.506	0.85	0.161	0.079	0
A	Bal	r-OTTER	none	6262.26	6181.5	C	0	45.139	1106.915	3216.977	1483.365	296.954	27.777	3.542	0.831	0	0
A	Bal	r-OTTER	T90	172.84	189.386	C	0	9.024	42.476	109.162	23.961	3.762	0.73	0.218	0.042	0.011	0
Α	FDFBAL	r-OTTER	FDFBAL	76.642	95.916	0	0	0.902	25.494	49.338	17.556	2.09	0.517	0.019	0	0	0
Discards																	
REG-AREA	ANNEX	REG_GEAR	SPECON	Discards t	Discards no	AGE 0D	AGE 1D	AGE 2D	AGE 3D	AGE 4D	AGE 5D	AGE 6D	AGE 7D	AGE 8D			
A	Bal	PEL_TRAWL	none	1.477	3.677	0	0.045	1.494	1.454	0.606	0.078	0	0	0			
A	FDFBAL	PEL_TRAWL	FDFBAL	0	0	0	0	0	0	0	0	0	0	0			
A	Bal	r-DEM_SEINE	none	8.74	21.686	C	0.068	1.747	9.791	9.033	0.832	0.215	0	0			
A	FDFBAL	r-DEM_SEINE	FDFBAL	0.519	1.287	0	0.004	0.104	0.581	0.536	0.05	0.012	0	0			
A	Bal	r-OTTER	BACOMA	331.956	788.075	3.961	104.727	355.818	243.595	70.96	8.942	0.046	0.026	0			
A	Bal	r-OTTER	none	324.825	802.898	C	2.455	76.068	363.408	323.628	29.627	7.712	0	0			
A	Bal	r-OTTER	T90	39.223	97.411	C	1.683	40.541	37.54	15.669	1.973	0.003	0.002	0			
Α	FDFBAL	r-OTTER	FDFBAL	4.654	11.549	C	0.037	0.929	5.215	4.811	0.442	0.115	0	0			

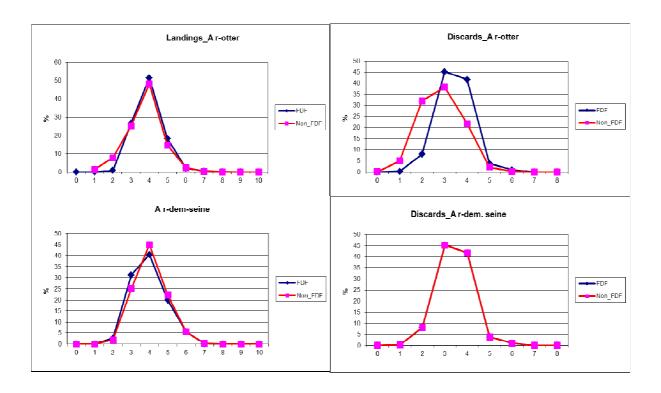


Figure 5.1.8.1. Age composition of cod landings (left panels) and discards from Fully Documented Fishery (FDF) and non-FDF in area A in 2012.

5.1.8.3.2 ToR 4 Cod selectivity by FDF fisheries and non-FDF fisheries of the Eastern Baltic cod

Table 5.1.8.2 and Figure 5.1.8.2 provide the overview of age composition of landings taken with regulated gears in FDF and non-FDF in area A (Sub-divisions 25-28, Eastern Baltic cod). The main comparable gears (r-otter and r-gill) show a clear difference in age compositions over the ages 3-5. The age composition of landings in non-FDF was shifted towards the younger age groups in both gear types indicating potential difference in selectivity. The main difference occurs in age group 3, which is significantly higher represented in the non-FDF. The similar pattern can be observed in the discard composition.

Table 5.1.8.2. Age composition of cod discards in FDF and non-FDF in area B (Eastern Baltic) in 2012, t.

Landings																	
REG_AREA	ANNEX	REG_GEAR	SPECON	Landings t	Landings no	AGE 0L	AGE 1L	AGE 2L	AGE 3L	AGE 4L	AGE 5L	AGE 6L	AGE 7L	AGE 8L	AGE 9L	AGE 10L	AGE 11L
В	Bal	PEL_TRAWL	none	55.798	72.29	() (1.259	39.147	26.943	3.727	1.202	0.008	0.002	0.002	0	0
В	FDFBAL	PEL_TRAWL	FDFBAL	0.008	0.014	() (0	0.001	0.007	0.005	0.001	0	0	0	0	0
В	Bal	r-OTTER	BACOMA	14979.899	17813.862	() (829.551	8910.497	4990.605	1341.699	1023.244	409.885	224.181	60.009	24.191	0
В	Bal	r-OTTER	none	20418.548	27254.002	() (162.732	4555.018	10961.636	8953.221	2222.529	308.05	84.665	4.709	1.048	0.394
В	Bal	r-OTTER	T90	752.612	984.9	() (43.951	579.521	296.209	49.003	14.449	1.396	0.278	0.077	0.016	0
В	FDFBAL	r-OTTER	FDFBAL	404.892	536.325	() (0.49	37.005	224.276	211.689	52.469	8.022	2.235	0.108	0.031	. 0
В	Bal	r-PEL_TRAWL	BACOMA	1158.093	1185.22	() (118.507	534.927	415.564	98.779	15.818	0.944	0.673	0.008	0	0
В	Bal	r-PEL_TRAWL	none	108.386	149.793	() (0.316	12.76	65.149	58.022	11.822	1.515	0.183	0.026	0	0
В	FDFBAL	r-PEL_TRAWL	FDFBAL	1.436	1.964	() (0	0.075	0.822	0.863	0.176	0.025	0.003	0	0	0

D	iscards														
R	EG_AREA	ANNEX	REG_GEAR	SPECON	Discards t	Discards no	AGE 0D	AGE 1D	AGE 2D	AGE 3D	AGE 4D	AGE 5D	AGE 6D	AGE 7D	AGE 8D
В	1	Bal	PEL_TRAWL	none	17.13	47.281	. 0	0.082	5.167	34.663	7.367	0.002	0	0	0
В		FDFBAL	PEL_TRAWL	FDFBAL	0	0	0	0	0	0	0	0	0	0	0
В		Bal	r-OTTER	BACOMA	3577.229	9370.848	0	39.256	1252.61	5665.798	1763.891	449.61	174.155	24.335	1.193
В		Bal	r-OTTER	none	2763.958	7053.126	0	8.774	530.606	2346.346	2650.029	1369.514	145.943	1.914	0
В		Bal	r-OTTER	T90	229.499	609.222	0	3.871	104.657	402.45	96.155	2.053	0	0.019	0.017
В		FDFBAL	r-OTTER	FDFBAL	36.693	94.92	0	0.167	2.642	16.667	46.657	25.983	2.768	0.036	0
В		Bal	r-PEL_TRAWL	BACOMA	200.851	513.588	0	1.734	81.013	375.861	54.87	0.11	0	0	0
В		Bal	r-PEL_TRAWL	none	15.292	39.405	0	0.092	2.665	13.41	14.825	7.595	0.811	0.007	0
В		FDFBAL	r-PEL_TRAWL	FDFBAL	0.174	0.45	0	0.001	0.013	0.079	0.221	0.123	0.013	0	0

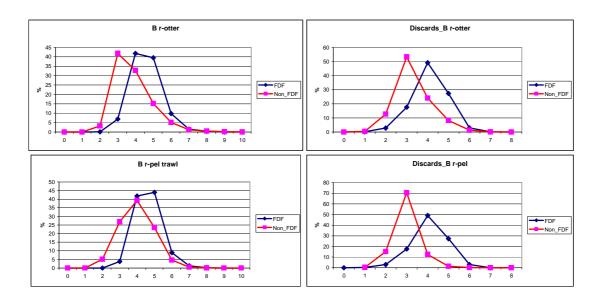


Figure 5.1.8.2. Age composition of cod landings (left panels) and discards from Fully Documented Fishery (FDF) and non-FDF in area B in 2012.

The ICES Baltic Fisheries Assessment Working Group has reiterated in its reports that the age composition data of Eastern Baltic cod from both the commercial catches and the survey suffer from severe in-consistencies, between countries and years (ICES 2013). ICES has tried to solve the problem by establishing a special study groups. For example the Report of the ICES Study Group on Baltic Cod Age Reading (ICES 2000) presents the observed differences in age reading results between countries, indicating that the age reading countries fall into 3 groups showing similar results: 1) Sweden+Germany, 2) Denmark and 3) Poland+Latvia+Russia. The different age interpretation can also be observed in CANUM data presented in the Reports of the Baltic Fisheries Assessment Working Group (ICES 2006, 2012, 2013).

Therefore, the presented above results from the FDF analysis should be taken with caution because of potential differences in age reading in areas A and B. Differently from the area A, the age reading of cod from non-FDF in area B is executed in a number of institutes, with distinct differences in interpretation of cod otoliths. As the FDF data currently stem from Denmark it may imply that differences between FDF and non-FDF age compositions in area B (Eastern stock) may at least partly result from potential inconsistencies in age interpretation between Denmark and other Baltic countries.

Since the majority (56% of otter trawl landings) in area A stem from Denmark, as well as the age readings, the potential country effect does not emerge here.

5.1.9 ToR 5 Spatio-temporal patterns in effective effort by area and fisheries

According to available effort data in units of fished hours, the spatial distribution of deployed otter trawl effort (Figure 5.1.9.1) did not show any particular trend over the time series. During 2003–2005 the highest fishing effort concentration was observed in areas of Bornholm Deep and in the northern part of Polish EEZ. However, the effort seems to be distributed more evenly across the areas A-C after 2006.

The gillnet effort has been concentrated in areas A and B without any clear temporal pattern (Figure 5.1.9.2). During 2003–2012 period the biggest fishing efforts concentration was in the Polish coastal areas. The Figure 5.1.9.3 shows the general distribution pattern of another big contributor of effort in the Baltic – the pelagic trawls. The distribution pattern indicates the high concentration of effort in the areas of Bornholm and Gdansk Deep as well as in the Sub-division 28.2 in 2003-2007.

The pelagic trawl effort was distributed rather evenly in the most recent years. This can be explained with northward distribution of sprat stock in recent years (ICES, 2012).

A full set of effort distribution figures, will be made available on the web page of the EWG 13-06/13-13.

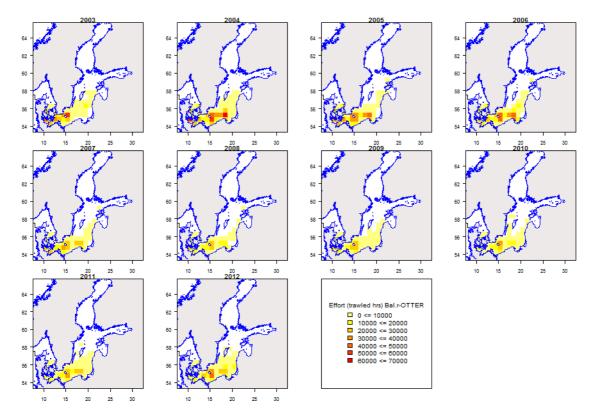


Figure 5.1.9.1 Spatial distribution of effective effort (trawled hours) r-OTTER 2003-2012. There was no data reported on the spatial distribution from Finland.

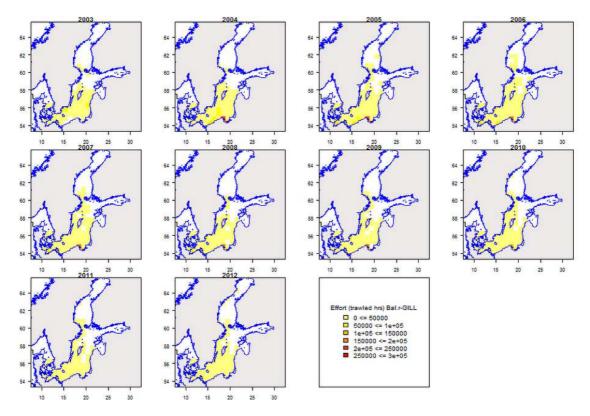


Figure. 5.1.9.2 Spatial distribution of effective effort (fishing hours) r-Gill 2003-2012. There was no data reported on the spatial distribution from Finland.

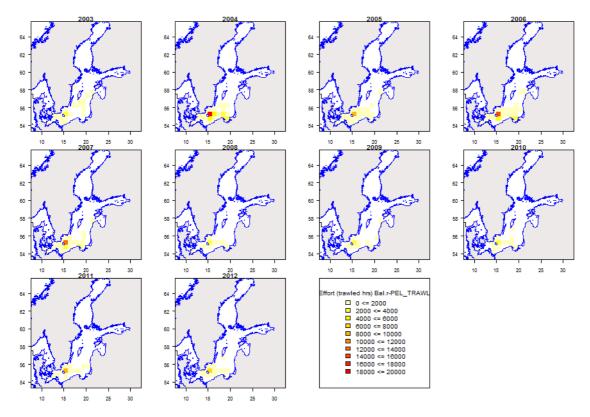


Figure 5.1.9.3 Spatial distribution of effective effort (fishing hours) pelagic trawls 2003-2012. There was no data reported on the spatial distribution from Finland.

5.1.10 ToR 6 Remarks on quality of catches and discard estimates

Discard estimates were available from all Baltic Member States except for Finland. This country, however has landed small quantities of the eastern cod stock (approximately 1% of the total landings). It seems that the sampling intensity, particularly in passive gears, was generally lower as compared to active gears. This might imply that even if all major métiers were sampled, the discard estimate is an underestimate compared to the real discard. Therefore, variation in discard figures from year to year must be taken with caution and may not reflect the true exploitation pattern of the fishery. The EU Data Collection Framework (DCF) defines which metiers (Level 6) are to be sampled in a country following the rules of the fisheries metiers ranking system. The sampling strata include also Baltic ICES Sub-divisions (not ICES rectangles) and months. Independently of the uncertainties in the discard estimates available to the STECF EWG, the changes in discard level reflect relatively well the year-classes strength of the eastern Baltic cod stock, which is in particular evident for the active gears (see Figure 5.1.3.1). Also discard ratio estimates for the Member States for the same year and fishing gears are close and follow the same trends across years studied.

5.1.11 ToR 7 Estimation of partial fishing mortalities of cod by area, Member State and fisheries and correlation between partial cod mortality and fishing effort by area, Member State and fisheries

5.1.11.1 Western Baltic cod in area A

The STECF EWG 13-06 presents partial fishing mortalities by fisheries using regulated gears and Member States in relation to the estimated fishing mortality by ICES (2013) and the catches (s. Tab. 5.1.11.1.1), landings (s. Tab. 5.1.11.1.2) and discards volumes (s. Tab. 5.1.11.1.3), respectively. The full list of partial fishing mortalities of all fisheries can be downloaded from the EWG's web page. The anticipated trend in fishing mortality and fishing effort in units of kW days at sea as derived from the cod plan is also presented in upper parts of such tables. The sustainable exploitation target is defined as Fmsy= 0.26. The trends in fishing effort in units of kWdays at sea of the relevant fisheries are also presented in Tables 5.1.11.1.1-3. The presented parameters r (value of Pearson's coefficient of correlation), numbers of points considered as well as a p value to quantify the statistical significance (\leq 0.05) allow conclusions about the quality of the correlation between the partial F and fisheries specific fishing effort. The correlations between partial F and fishing effort are shown in Fig. 5.1.11.1.1.

It can be concluded from the estimated F in 2012 (Tab. 5.1.11.1.1) that the stock is subject to overfishing and that the annual F reductions are not following the plan. Discard mortality is generally low (Tab. 5.1.11.1.3). In recent years the listed effort regulated fisheries do contribute more than 82% to the total fishing mortality.

STECF EWG 13-06/13-13 note that the correlations between the summed partial Fs of regulated fisheries for catch and landings of the major fisheries and their estimated fishing efforts are significant. The correlation between the rather low partial Fs of discards and effort is not significant, but discarding is considered a minor issue in the Western Baltic anyway. The partial Fs of most of the Member States fisheries using regulated gears are also closely correlated with their specific effort estimates in kW days at sea. This indicates that effective fisheries management by fishing effort in units of kWdays at sea appears possible, also as an auxiliary measure to catch constraints and technical measures.

Table 5.1.11.1.1 Western Baltic cod in area A. The upper left part of the table lists estimated F trajectories from the management plan and the ICES 2013 assessment, as well as partial Fs based on catches of fisheries using regulated gears. The lower left part lists the estimated partial F based on estimated catches from the regulated fisheries. The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs of all effort regulated gears to the overall F estimate of the stock.

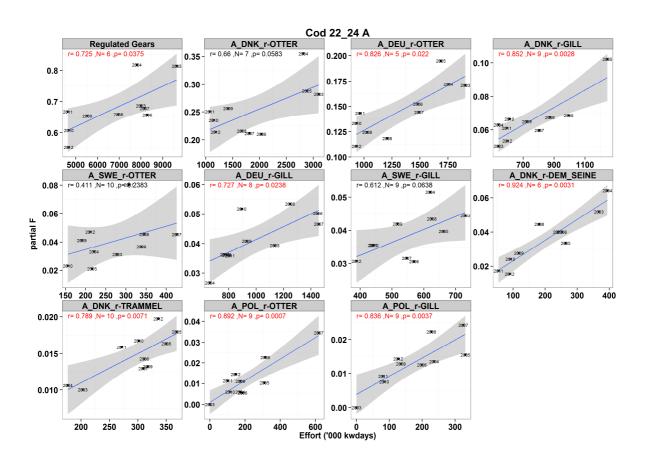

2008 m	oving refe	rence yea	r annual F re	ductions by	10 percei	nt until F<=	0.6, Fmsy=	0.26						Effort kWdays at sea													
				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012			
F plan								0.765	0.689	0.62	0.558	0.502	0.452	Effort plan/ TAC regu	lations not a	pplicable as	days at sea p	er vessel									
reducti	ion F plan								-0.10	-0.10	-0.10	-0.10	-0.10	reduction													
F estim	nated			1.042	1.076	0.995	0.766	0.765	0.802	0.797	0.769	0.761	0.698	Effort estimated (re	8247255	8044362	10115581	8716570	8655803	7489576	6076753	5121182	5048804	5145003			
reducti	ion F estim	ated							0.05	-0.01	-0.04	-0.01	-0.08	reduction						-0.13	-0.19	-0.16	-0.01	0.02			
Fpar														EFFORT											2003-201	12	
Countr	y Gear	Specon	catch.cate	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	r	р	n
DEU	r-BEAM	none	catches	0.00002					0.00032						442					3867							
DEU	r-DEM_SI	Inone	catches		0.00028	0.00124	0.00148	0.00391	0.00871	0.00825	0.00219	0.00285	0.00015			7398	1912	23422	37741	38400	42327	9713	13789	1764	0.865	0.003	
DEU	r-GILL	none	catches	0.03612	0.02657	0.03942	0.05016	0.04654	0.05342	0.04088	0.05174	0.03590	0.03628		786357	662527	1135980	1449940	1457215	1247682	932027	893907	809150	771580	0.727	0.017	
DEU	r-LONGLI	None	catches	0.00050	0.00102	0.00209	0.00092	0.00057	0.00069	0.00058	0.00137	0.00111	0.00050		78859	80543	122727	119348	100892	97335	122409	74286	62880	58865	0.239	0.506	
DEU	r-OTTER	none	catches	0.17086	0.17206	0.19490	0.15245	0.14432	0.11854	0.12447	0.13318	0.14323	0.11092		1906314	1753928	1686831	1481387	1491775	1207722	1028646	933844	964057	932751	0.826	0.003	1
DEU	r-PEL_TR	Anone	catches	0.00156	0.00055	0.00138	0.00219	0.00512	0.00017		0.00055	0.00067	0.00019		14111	3975	17039	20699	30856	3443		3740	5756	1607	0.946	0.000	
DEU	r-TRAMN	11 none	catches	0.00008	0.00008	0.00057	0.00085	0.00242	0.00335	0.00290	0.00195	0.00312	0.00367		10392	21308	40549	67494	132416	128657	134669	77750	106349	104519	0.906	0.000	
DNK	r-DEM SI	Inone	catches	0.05193	0.06425	0.03362	0.04002	0.03999	0.04448	0.02761	0.02414	0.01728	0.01548		367804	394563	264002	253210	239604	181854	118417	91866	54972	89731	0.924	0.000	
DNK	r-GILL	none	catches	0.05039	0.06293	0.10216	0.06853	0.05965	0.06736	0.06485	0.06633	0.06096	0.05347		540709	540757	1245235	993868	804366	872897	723711	610449	593694	597244	0.852	0.002	
DNK	r-LONGLI	N none	catches	0.01088	0.01326	0.02152	0.01428	0.01218	0.00472	0.00547	0.00698	0.00931	0.00711		89919	86314	164621	202815	126714	32557	33817	42527	46243	56902	0.837	0.003	
DNK	r-OTTER	none	catches	0.28211	0.35498	0.28814	0.21016	0.21154	0.21559	0.25655	0.23472	0.25079	0.21385		3101135	2814169	2879424	2035587	1812121	1669672	1415553	1145919	1077878	1182374	0.660	0.038	
DNK	r-PEL TR	Anone	catches	0.00152	0.00082	0.00170	0.00321	0.00057	0.00029	0.00110	0.00182	0.00000	0.00002		16820	11156	14346	24308	6246	2831	2744	7621	561	322	0.882	0.001	
DNK	r-TRAMN	11 none	catches	0.01003	0.01062	0.01798	0.01427	0.01296	0.01639	0.01322	0.01678	0.01589	0.01974		203137	176833	368285	311401	309684	349896	317238	301565	271304	335772	0.789	0.007	
EST	r-GILL	none	catches			0.00211	0.00294	0.00142	0.00460	0.00861							40887	57436	19041	39051	41349				0.252	0.683	
EST	r-OTTER	none	catches			0.00005					0.00002		0.00012				4199					4248		2650			
EST	r-PEL TR		catches			0.00004		0.00027									662		1269								
LTU	r-LONGLI		catches			0.00027											12533	0									
LTU	r-OTTER	none	catches			0.00521	0.00135										57602	84342									
LTU	r-PEL TR		catches			0.00041											16799	0									
LVA	r-GILL	none	catches	0.00425	0.01038	0.01415	0.01669	0.00246	0.00103	0.00101	0.00321	0.00098	0.00040		79148	142491	171002	161456	30116	12676	3528	11604	6174	2940	0.964	0.000	
LVA	r-OTTER	none	catches	0.00008		0.00191	0.00003	0.00512			0.00417				880		17632		18488			7920			0.608	0.392	
POL	r-GILL	none	catches		0.01353		0.01253	0.02423	0.02230	0.01284	0.00749	0.00919	0.01429			236261	331555	199045	325354	228173	135263	84558	81024	126904			
POL	r-LONGLI	Nnone	catches		0.00142	0.00899	0.00369	0.00730	0.00271	0.00045	0.00055	0.00080	0.00100			17962	143615	46306	53736	21615	6391	4502	6118	7932		0.000	
POL	r-OTTER	none	catches		0.00590	0.01028	0.00553	0.03455	0.02265	0.01100	0.00593	0.01126	0.01449			172618	310416	185144	618979	315079	172795	114560	101350	146051	0.867	0.002	
POL	r-PEL TR		catches			0.00088	0.00005	0.00008								2220	16612	1258	2612			160			0.999	0.000	
SWE	r-GILL	none	catches	0.04442	0.05152		0.03057	0.03159	0.04341	0.04191	0.03556	0.03557	0.03068		730577	620542	661911	569385	546464	625243	517212	442913	439498	388585			
SWE	r-LONGLI		catches	0.00098	0.00482	0.00699	0.00286	0.00149	0.00200	0.00666	0.00456	0.00679	0.00814		7730	46041	112396	40756	19061	14536	43369	39643	60377	80848		0.002	
SWE	r-OTTER		catches	0.03124	0.03315			0.04537	0.04547	0.04126	0.02318	0.08026			278503	220717	215686	338505	425893	345335	190277	155830	306992	211245		0.238	
SWE	r-PEL TR		catches		0.00035	0.00015	0.00022		0.00007			0.00031				2882	2424	4198		720			1930	390		. ===	
SWE	r-TRAMN		catches	0.00083	0.00101	0.00232	0.00230	0.00098	0.00163	0.00203	0.00384	0.00291	0.00195		34418	29157	58699	45260	45160	50335	95011	62057	38708	44027	0.372	0.290	
Sum				0.69780	0.82950	0.83477	0.67400	0.69463	0.67990	0.67165	0.63026	0.68918	0.57952		8247255	8044362	10115581	8716570	8655803	7489576	6076753	5121182	5048804	5145003		0.024	1
	sum Fpar/F			0.67	0.77	0.84	0.88	0.91	0.85	0.84	0.82	0.91	0.83								,		,				

Table 5.1.11.1.2 Western Baltic cod in area A. The upper left part of the table lists estimated F trajectories from the management plan and the ICES 2013 assessment, as well as partial Fs based on landings of fisheries using regulated gears. The lower left part lists the estimated partial F based on landings from the regulated fisheries. The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs of all effort regulated gears to the overall F estimate of the stock.

2008 m	oving refe	rence year	annual F re	ductions by	10 perce	nt until F<=	0.6, Fmsy=	0.26						Effort kWdays at sea	1												
				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012			
F plan								0.765	0.689	0.62	0.558	0.502	0.452	Effort plan/ TAC reg	ulations not a	applicable as	days at sea p	er vessel									
reducti	ion F plan								-0.10	-0.10	-0.10	-0.10	-0.10	reduction													
F estim	nated			1.042	1.076	0.995	0.766	0.765	0.802	0.797	0.769	0.761	0.698	Effort estimated (re	8247255	8044362	10115581	8716570	8655803	7489576	6076753	5121182	5048804	5145003			
reducti	ion F estim	ated							0.05	-0.01	-0.04	-0.01	-0.08	reduction						-0.13	-0.19	-0.16	-0.01	0.02			
Fpar														EFFORT											2003-20	12	
Countr	y Gear	Specon	catch.cate	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	r	р	n
DEU	r-BEAM	none	landings	0.00002					0.00032					,	442					3867							
DEU	r-DEM SE	Inone	landings		0.00025	0.00124	0.00148	0.00391	0.00871	0.00825	0.00219	0.00285	0.00015			7398	1912	23422	37741	38400	42327	9713	13789	1764	0.865	0.003	
DEU	r-GILL	none	landings	0.03506	0.02602	0.03782	0.05015	0.04653	0.05339	0.03715	0.05004	0.03472	0.03573		786357	662527	1135980	1449940	1457215	1247682	932027	893907	809150	771580	0.756	0.011	1
DEU	r-LONGLI	Nnone	landings	0.00049	0.00100	0.00197	0.00092	0.00056	0.00069	0.00056	0.00137	0.00109	0.00050		78859	80543	122727	119348	100892	97335	122409	74286	62880	58865			1
DEU	r-OTTER		landings	0.12208	0.15370		0.14282	0.13557	0.11045			0.12663	0.10500		1906314	1753928	1686831	1481387	1491775	1207722	1028646	933844	964057	932751	0.716		
DEU	r-PEL TRA		landings	0.00145	0.00046		0.00218		0.00017		0.00055	0.00051	0.00019		14111	3975	17039	20699	30856	3443		3740	5756	1607	0.936		
DEU	r-TRAMIV		landings	0.00007	0.00007	0.00053	0.00085	0.00242	0.00334	0.00258	0.00180	0.00311	0.00358		10392	21308	40549	67494	132416	128657	134669	77750	106349	104519	0.899	0.000	
DNK	r-DEM SE	none	landings	0.04648	0.05712	0.03362	0.04002	0.03999	0.04413	0.02558	0.02051	0.01560	0.01518		367804	394563	264002	253210	239604	181854	118417	91866	54972	89731	0.916	0.000	1
DNK	r-GILL	none	landings	0.04794	0.06216		0.06850	0.05963	0.06727	0.06155	0.06078	0.06095	0.05263		540709	540757	1245235	993868	804366	872897	723711	610449	593694	597244	0.883	0.001	1
DNK	r-LONGLI		landings	0.01073	0.01304	0.02047	0.01428	0.01184	0.00472	0.00542	0.00698	0.00919	0.00702		89919	86314	164621	202815	126714	32557	33817	42527	46243	56902	0.849	0.002	
DNK	r-OTTER		landings	0.24017	0.32103	0.22769	0.19193	0.19637	0.19868	0.23516	0.19366	0.22296	0.20370		3101135	2814169	2879424	2035587	1812121	1669672	1415553	1145919	1077878	1182374		0.097	1
DNK	r-PEL_TR/		landings	0.00130	0.00072	0.00135	0.00293	0.00053	0.00027	0.00101	0.00155	0.00000	0.00002		16820	11156	14346	24308	6246	2831	2744	7621	561	322			1
DNK	r-TRAMIV		landings		0.01046		0.01427	0.01296	0.01638	0.01262	0.01529	0.01589	0.01931		203137	176833	368285	311401	309684	349896	317238	301565	271304	335772			
EST	r-GILL	none	landings	0.000		0.00199	0.00293	0.00142				0.0000					40887	57436	19041	39051	41349				0.256		
EST	r-OTTER		landings			0.00005	0.000	0.000	0.00	0.0000	0.00002		0.00011				4199	0.1.00				4248		2650	0.200		
EST	r-PEL TRA		landings			0.00004		0.00027									662		1269								
LTU	r-LONGLI		landings			0.00025		0.0000									12533	0									
LTU	r-OTTER		landings			0.00427	0.00122										57602	84342									
LTU	r-PEL TRA		landings			0.00034											16799	0									
LVA	r-GILL	none	landings	0.00413	0.01029		0.01667	0.00246	0.00103	0.00097	0.00304	0.00095	0.00040		79148	142491	171002	161456	30116	12676	3528	11604	6174	2940	0.961	0.000	1
LVA	r-OTTER	none	landings	0.00008		0.00190	0.00002	0.00473	,		0.00370				880	2.2.52	17632	202.00	18488		2220	7920	52. 1	25 10	0.647	0.353	
POL	r-GILL	none	landings	,	0.01316		0.01253	0.02422	0.02229	0.01130	0.00714	0.00904	0.01399		230	236261	331555	199045	325354	228173	135263	84558	81024	126904			
POL	r-LONGLI		landings		0.00137	0.00854	0.00369	0.00726	0.00271	0.00044	0.00055	0.00078	0.00099			17962	143615	46306	53736	21615	6391	4502	6118	7932	0.908	0.001	
POL	r-OTTER		landings		0.00539	0.01026	0.00508	0.03237	0.02127			0.00926				172618	310416	185144	618979	315079	172795	114560	101350	146051	0.885		
POL	r-PEL TRA		landings			0.00088	0.00004	0.00008								2220	16612	1258	2612		2.2.33	160			0.999	0.000	
SWE	r-GILL	none	landings	0.04371	0.05077		0.03056	0.03157	0.04332	0.04023	0.03483	0.03498	0.03028		730577	620542	661911	569385	546464	625243	517212	442913	439498	388585	0.621	0.055	1
SWE	r-LONGLI		landings	0.00097	0.00472	0.00675	0.00286	0.00149	0.00200	0.00666	0.00456	0.00670	0.00801		7730	46041	112396	40756	19061	14536	43369	39643	60377	80848	0.832	0.003	1
SWE	r-OTTER		landings	0.02890	0.03150	0.02104	0.03498		0.04370	0.03738	0.02102	0.05588	0.04012		278503	220717	215686	338505	425893	345335	190277	155830	306992	211245		0.099	1
SWE	r-PEL TRA		landings	2.22030	0.00035	0.00015	0.00021	5.5 1270	0.00007	2.23730		0.00023	5.5.012		270505	2882	2424	4198	.25055	720	230277	255050	1930	390	2.331	2.033	
SWE	r-TRAMIV		landings	0.00080	0.00033	0.00013	0.0021	0.00098	0.00162	0.00199	0.00380	0.0025	0.00192		34418	29157	58699	45260	45160	50335	95011	62057	38708	44027	0.366	0.298	1
Sum			. arranngs	0.59386	0.76458	0.71917	0.64342	0.66404	0.65113	0.61893	0.54778	0.61417	0.55221		8247255	8044362	10115581	8716570	8655803	7489576	6076753	5121182	5048804	5145003		0.021	10
	um Fpar/F			0.55500	0.70430	0.71517	0.84	0.00404	0.03113	0.78	0.71	0.01417	0.33221		GE 47233	55 H302	10113301	0.203/0	5555655	55570	30.0733	3121102	50.0004	31 13003	5.710	5.021	

Table 5.1.11.1.3 Western Baltic cod in area A. The upper left part of the table lists estimated F trajectories from the management plan and the ICES 2013 assessment, as well as partial Fs based on discards of fisheries using regulated gears. The lower left part lists the estimated partial F based on landings from the regulated fisheries. The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs of all effort -regulated gears to the overall F estimate of the stock.

2008 n	moving reference ye	ear annual F	reductions by	y 10 percer	nt until F<=	0.6, Fmsy	=0.26							Effort kWdays at sea													
				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012			
F plan	1							0.765	0.689	0.62	0.558	0.502	0.452	Effort plan/TAC reg	ulations not a	applicable as	days at sea p	er vessel									
reduct	tion F plan								-0.10	-0.10	-0.10	-0.10	-0.10	reduction													
Festin	mated			1.042	1.076	0.995	0.766	0.765	0.802	0.797	0.769	0.761	0.698	Effort estimated (re	8247255	8044362	10115581	8716570	8655803	7489576	6076753	5121182	5048804	5145003			
reduct	tion F estimated								0.05	-0.01	-0.04	-0.01	-0.08	reduction						-0.13	-0.19	-0.16	-0.01	0.02			
Fpar														EFFORT											2003-201	12	
Count	try Gear	Specon	catch.cate	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	r	р	n
DEU	r-BEAM	none	discards	0.00000					0.00000						442					3867							
DEU	r-DEM_SEINE	none	discards		0.00004	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000			7398	1912	23422	37741	38400	42327	9713	13789	1764			
DEU	r-GILL	none	discards	0.00106	0.00056	0.00160	0.00001	0.00001	0.00003	0.00373	0.00171	0.00118	0.00055		786357	662527	1135980	1449940	1457215	1247682	932027	893907	809150	771580	-0.378	0.281	
DEU	r-LONGLINE	none	discards	0.00001	0.00002	0.00012	0.00000	0.00001	0.00000	0.00001	0.00000	0.00002	0.00001		78859	80543	122727	119348	100892	97335	122409	74286	62880	58865			
DEU	r-OTTER	none	discards	0.04879	0.01837	0.04004	0.00964	0.00875	0.00809	0.01277	0.02418	0.01660	0.00591		1906314	1753928	1686831	1481387	1491775	1207722	1028646	933844	964057	932751	0.590	0.073	
DEU	r-PEL_TRAWL	none	discards	0.00011	0.00009	0.00021	0.00001	0.00000	0.00000		0.00000	0.00016	0.00000		14111	3975	17039	20699	30856	3443		3740	5756	1607			
DEU	r-TRAMMEL	none	discards	0.00000	0.00000	0.00004	0.00000	0.00000	0.00000	0.00032	0.00015	0.00001	0.00009		10392	21308	40549	67494	132416	128657	134669	77750	106349	104519			
DNK	r-DEM_SEINE	none	discards	0.00545	0.00713	0.00000	0.00000	0.00000	0.00035	0.00203	0.00363	0.00168	0.00030		367804	394563	264002	253210	239604	181854	118417	91866	54972	89731	0.495	0.146	
DNK	r-GILL	none	discards	0.00245	0.00077	0.00482	0.00003	0.00002	0.00010	0.00331	0.00556	0.00000	0.00085		540709	540757	1245235	993868	804366	872897	723711	610449	593694	597244	0.159	0.661	
DNK	r-LONGLINE	none	discards	0.00015	0.00022	0.00104	0.00000	0.00034	0.00000	0.00005	0.00000	0.00012	0.00010		89919	86314	164621	202815	126714	32557	33817	42527	46243	56902	0.488	0.153	
DNK	r-OTTER	none	discards	0.04193	0.03395	0.06045	0.01823	0.01517	0.01691	0.02138	0.04106	0.02783	0.01015		3101135	2814169	2879424	2035587	1812121	1669672	1415553	1145919	1077878	1182374	0.579	0.079	
DNK	r-PEL TRAWL	none	discards	0.00022	0.00010	0.00034	0.00028	0.00004	0.00002	0.00009	0.00027	0.00000	0.00000		16820	11156	14346	24308	6246	2831	2744	7621	561	322			
DNK	r-TRAMMEL	none	discards	0.00055	0.00016	0.00199	0.00000	0.00000	0.00001	0.00060	0.00149	0.00000	0.00043		203137	176833	368285	311401	309684	349896	317238	301565	271304	335772	0.313	0.379	
EST	r-GILL	none	discards			0.00013	0.00001	0.00000	0.00001	0.00035							40887	57436	19041	39051	41349						
EST	r-OTTER	none	discards			0.00000					0.00000		0.00001				4199					4248		2650			
EST	r-PEL TRAWL	none	discards			0.00000		0.00000									662		1269								
LTU	r-LONGLINE	none	discards			0.00001											12533	0									
LTU	r-OTTER	none	discards			0.00093	0.00013										57602	84342									
LTU	r-PEL TRAWL	none	discards			0.00007											16799	0									
LVA	r-GILL	none	discards	0.00012	0.00010	0.00070	0.00002	0.00000	0.00000	0.00005	0.00017	0.00002	0.00000		79148	142491	171002	161456	30116	12676	3528	11604	6174	2940	0.562	0.091	
LVA	r-OTTER	none	discards	0.00000		0.00001	0.00000	0.00039			0.00047				880		17632		18488			7920					
POL	r-GILL	none	discards		0.00037	0.00062	0.00001	0.00001	0.00000	0.00155	0.00035	0.00015	0.00030			236261	331555	199045	325354	228173	135263	84558	81024	126904	-0.176	0.651	
POL	r-LONGLINE	none	discards		0.00005	0.00045	0.00000	0.00004	0.00000	0.00001	0.00000	0.00001	0.00001			17962	143615	46306	53736	21615	6391	4502	6118	7932			
POL	r-OTTER	none	discards		0.00051	0.00002	0.00045	0.00218	0.00137	0.00090	0.00052	0.00199	0.00111			172618	310416	185144	618979	315079	172795	114560	101350	146051	0.411	0.272	
POL	r-PEL TRAWL	none	discards			0.00000	0.00000	0.00000								2220	16612	1258	2612			160					
SWE	r-GILL	none	discards	0.00071	0.00075	0.00152	0.00001	0.00002	0.00008	0.00168	0.00073	0.00058	0.00040		730577	620542	661911	569385	546464	625243	517212	442913	439498	388585	0.119	0.743	
SWE	r-LONGLINE	none	discards	0.00001	0.00011	0.00023	0.00000	0.00000	0.00000	0.00001	0.00000	0.00009	0.00013		7730	46041	112396	40756	19061	14536	43369	39643	60377	80848			
SWE	r-OTTER	none	discards	0.00235	0.00166	0.00007	0.00174	0.00361	0.00177	0.00388	0.00216	0.02438	0.00695		278503	220717	215686	338505	425893	345335	190277	155830	306992	211245	0.137	0.706	
SWE	r-PEL TRAWL	none	discards		0.00001	0.00000	0.00000		0.00000			0.00008				2882	2424	4198		720			1930	390			
SWE	r-TRAMMEL	none	discards	0.00003	0.00002	0.00015	0.00000	0.00000		0.00004	0.00004	0.00006	0.00002		34418	29157	58699	45260	45160	50335	95011	62057	38708	44027			
Sum				0.10394	0.06499	0.11556	0.03057	0.03059	0.02874	0.05276					8247255	8044362	10115581	8716570	8655803	7489576	6076753	5121182	5048804	5145003	0.210	0.560	
	sum Fpar/F			0.1	0.06	0.12	0.04	0.04	0.04	0.07	0.11	0.1	0.04		5217255	2211302		2.20570	2223003	55570	22.0733	511102	22.0001	15005		2.500	

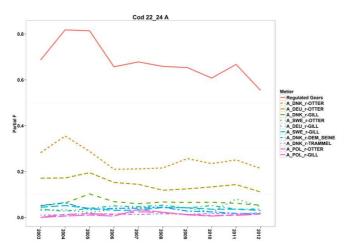


Fig. 5.1.11.1.1 Western Baltic cod in area A. Effort estimates versus partial fishing mortality by Member state and regulated gears in 2003-1012. The lower panel shows the temporal trends in partial Fs. Eastern Baltic cod in area B

The STECF EWG presents partial fishing mortalities by fisheries using regulated gears and Member States in relation to the estimated fishing mortality by ICES (2013) and the catches (see Table 5.1.11.2.1), landings (see Table 5.1.11.2.2) and discards volumes (see Table 5.1.11.2.3), respectively. The full list of partial fishing mortalities of all fisheries can be downloaded from the EWG's web page. The anticipated trend in fishing mortality and fishing effort in units of kW days at sea as derived from the cod plan is also presented in upper parts of such tables. The sustainable exploitation target is defined as Fmsy=0.46. The trends in fishing effort in units of kWdays at sea of the relevant fisheries are also presented in Tables 5.1.11.2.1-3. The presented parameters r (value of Pearson's coefficient of correlation), numbers of points considered as well as a p value to quantify the statistical significance (\leq 0.05) allow conclusions about the quality of the correlation between the partial F and fisheries specific fishing effort. The correlations between partial F and fishing effort are shown in Fig. 5.1.11.2.1.

It can be concluded from the estimated F in 2012 (Table 5.1.11.2.1) that the stock is sustainably exploited and that the annual F reductions had been following the plan since 2008. According to Eero et al. (2012), the stock recovery is due to increased productivity (recruitment) and improved control over catches. Discard mortality is generally low. Since 2009, the listed effort regulated fisheries do contribute 80% or more to the total fishing mortality.

STECF EWG 13-06/13-13 note that the correlations between the summed partial Fs for catch and landings of the many effort regulated fisheries and their estimated fishing efforts are highly significant. There is no significant correlation between the partial Fs and fisheries specific discards, which constitute minor parts to the overall fishing mortality. The partial Fs of most of the Member States fisheries using regulated gears are also closely correlated with their specific effort estimates in kW days at sea. This indicates that effective fisheries management by fishing effort in units of kWdays at sea appears possible, also as an auxiliary measure to catch constraints and technical measures.

Table 5.1.11.2.1 Eastern Baltic cod in areas B and C. The upper left part of the table lists estimated F trajectories from the management plan and the ICES 2013 assessment, as well as partial Fs based on catches of fisheries using regulated gears. The lower left part lists the estimated partial F based on estimated catches from the regulated fisheries. The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs of all effort regulated gears to the overall F estimate of the stock.

2008 m	oving reference y	ear annual	F reduction:	by 10 perc	ent until F	<=0.3, Fms	sy=0.46		Reference					Effort kW days at sea													
				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012			
plan								0.771	0.694	0.625	0.563	0.507	0.456	Effort plan/ TAC regu	ulations not a	pplicable as	days at sea p	oer vessel									
educti	on F plan								-0.10	-0.10	-0.10	-0.10	-0.10	reduction													
estim	ated			1.063	1.224	1.003	0.906	0.771	0.552	0.468	0.422	0.392	0.373	Effort estimated (re	8391212	19214038	14481187	15375052	10465985	8708136	6779579	6991700	8110058	7943563			
educti	on F estimated								-0.28	-0.15	-0.10	-0.07	-0.05							-0.17	-0.22	0.03	0.16	-0.02			
par														EFFORT											2003-20	12	
Countr	Gear	Specon	catch.cate	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011		r	p	a
DEU	r-DEM_SEINE	none	catches		0.00001		0.00081	0.00081	0.00113	0.00306	0.00182	0.00264	0.00134			822		11756	9000	7782	19715	26908	38601	27877	0.750	0.032	
DEU	r-GILL	none	catches	0.00074	0.00036	0.00311	0.00020	0.00002	0.00010	0.00018					11696	8290	43704	14527	11824	5048	6594				0.958	0.001	
DEU	r-LONGLINE	none	catches		0.00000	0.00002	0.00000		0.00000		0.00000				10248	11771	15007	9881	11920	17580	12580	6600	2420				
DEU	r-OTTER	none	catches	0.01941	0.01918	0.02958	0.01726	0.00987	0.02533	0.02066	0.02117	0.00647	0.01235		334236	211999	280977	163096	80177	191198	220844	276398	108001	180536	0.717	0.020	
DEU	r-PEL_TRAWL	none	catches		0.02728	0.01056	0.01037	0.01348	0.00326	0.00831	0.00989	0.01597	0.00440			182107	143688	141492	70379	16691	36135	61303	128870	48484	0.789	0.011	
ONK	r-DEM_SEINE	none	catches	0.00011	0.00001	0.00284	0.00104	0.00065				0.00067	0.00166		729	880	11204	9781	4380				7936	20727	0.707	0.076	
ONK	r-GILL	none	catches	0.01484	0.01135	0.01432	0.00946	0.01132	0.01126	0.00765	0.00414	0.00316	0.00176		286771	247793	288548	255355	190114	195224	170484	133853	129032	109307	0.918	0.000	
ONK	r-LONGLINE	none	catches	0.00533	0.00456	0.00931	0.00404	0.00287	0.00140	0.00089	0.00126	0.00096	0.00040		228195	112769	154482	157371	86736	45320	63169	76826	76881	41313	0.757	0.011	
ONK	r-OTTER	none	catches	0.10503	0.07269	0.07110	0.09151	0.07386	0.07686	0.06726	0.08181	0.07842	0.08131		1369397	891009	993201	1279055	585792	644737	629248	781262	1071791	1160176	0.765	0.010	
ONK	r-PEL_TRAWL	none	catches	0.00317	0.00785	0.00385	0.00762	0.00573	0.00018	0.00091	0.00048	0.00040	0.00016		68442	51827	44286	94797	31103	1056	4030	3536	5080	3750	0.831	0.003	
ONK	r-TRAMMEL	none	catches	0.00018	0.00014	0.00004	0.00005	0.00053	0.00033	0.00064	0.00008	0.00001	0.00000		3278	2167	5598	7550	12631	5910	15546	3693	1185	546	0.875	0.001	
ST	r-GILL	none	catches			0.00545	0.00376	0.00349	0.00209	0.00149							287824	253368	128268	40036	31107				0.935	0.020	
ST	r-OTTER	none	catches			0.00138	0.00040	0.00104			0.00455	0.00530	0.00324				94896	5729	9503			96642	179832	79178	0.856	0.030	
ST	r-PEL_TRAWL	none	catches			0.00181	0.00389	0.00681	0.00810	0.00436	0.00215	0.00473	0.00210				214426	355398	702922	703021	219177	114680	714754	86256	0.864	0.006	
.TU	r-GILL	none	catches			0.00006		0.00002		0.00421	0.00489	0.00220	0.00128				93187	55397	90686	128949	107267	104170	78123	48511	0.454	0.259	
.TU	r-LONGLINE	none	catches							0.00026	0.00017	0.00013					264	59543	35332	34991	6664	3956	5514				
.TU	r-OTTER	none	catches			0.00044	0.00151	0.01034		0.02015	0.02216	0.02029	0.01473				342503	192759	170844	382050	286887	332848	398109	477440	0.390	0.340	
.TU	r-PEL_TRAWL	none	catches			0.00224	0.01061	0.02671		0.00197	0.00010	0.00027	0.00045				1100	89918	85447	61407	20974	1764	4420	6837	0.854	0.007	
.VA	r-GILL	none	catches	0.04656	0.06176	0.03828	0.02298	0.02587	0.02445	0.02175	0.02017	0.01296	0.00870		1397564	1471236	701180	596996	568781	539579	401856	361015	350477	273839	0.949	0.000	
.VA	r-OTTER	none	catches	0.01193	0.01137	0.01675	0.02080	0.01512	0.02179	0.01722	0.02154	0.02382	0.02031		458330	322019	242532	350925	186093	229860	198632	218426	473943	376406	0.035	0.924	
VA	r-PEL_TRAWL	none	catches	0.00045	0.00626	0.00010	0.00204	0.01171	0.00042	0.00120			0.00102		5065	114489	4122	29965	122803	10521	14473			18648	0.948	0.000	
OL	r-GILL	none	catches		0.09419	0.06346	0.04530	0.03050	0.03434	0.03245	0.02808	0.02247	0.02379			4339027	2361250	1992875	1556930	1079645	791231	788566	695263	1121302	0.965	0.000	
OL	r-LONGLINE	none	catches		0.03766	0.03220	0.03105	0.01915	0.01099	0.00497	0.01213	0.00829	0.00474			712715	691955	738832	410561	270046	412292	391897	324267	187100	0.925	0.000	
OL	r-OTTER	none	catches		0.09891	0.09937	0.08500	0.05459	0.05691	0.05392	0.05625	0.05393	0.06831			5657875	3902889	4457610	2534977	1715576	1018609	1245924	1064287	1582454	0.898	0.001	
OL	r-PEL_TRAWL	none	catches		0.02116	0.00413	0.01380	0.01954	0.00042	0.00245	0.00023	0.00142	0.00061			921668	193724	628134	440888	21895	36317	3424	2428	14087	0.932	0.000	
SWE	r-GILL	none	catches	0.06079	0.05138	0.03380	0.02054	0.02249	0.02457	0.01746	0.00872	0.00607	0.00471		1820884	1485621	1183969	1031157	833204	914404	811692	595833	519421	450915	0.986	0.000	
SWE	r-LONGLINE	none	catches	0.01431	0.02124	0.01707	0.01090	0.00750	0.00870	0.00604	0.00372	0.00273	0.00213		316942	373136	345327	321205	162491	198545	200874	176489	208160	139164	0.912	0.000	
SWE	r-OTTER	none	catches	0.10866	0.13232	0.09058	0.08138	0.10568	0.07750	0.07258	0.07016	0.07256	0.07549		2070339	1942010	1716974	1655822	1151533	1205260	1001145	1169421	1420549	1465397	0.650	0.042	
WE	r-PEL_TRAWL	none	catches		0.00911	0.00564	0.02419	0.02028	0.00233	0.00398	0.00097	0.00552	0.00084			144639	121133	413844	178434	36859	40493	16200	99798	20821	0.919	0.000	
SWE	r-TRAMMEL	none	catches	0.00002	0.00004	0.00001	0.00000	0.00001	0.00001	0.00000		0.00000	0.00000		9096	8169	1237	914	2232	4946	1544	66	916	2492			
Sum				0.39153	0.68883	0.55750	0.52051	0.49999	0.39247	0.37602	0.37664		0.33583		8391212	19214038	14481187	15375052	10465985	8708136	6779579	6991700	8110058	7943563	0.955	0.000	
	um Fpar/F			0.37	0.56	0.56	0.57	0.65	0.71	0.8	0.89	0.9	0.9										. ,				

Table 5.1.11.2.2 Eastern Baltic cod in areas B and C. The upper left part of the table lists estimated F trajectories from the management plan and the ICES 2013 assessment, as well as partial Fs based on landings of fisheries using regulated gears. The lower left part lists the estimated partial F based on estimated catches from the regulated fisheries. The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs of all effort regulated gears to the overall F estimate of the stock.

2008 m	oving reference y	ear annual	F reduction:	by 10 per	cent until F	<=0.3, Fms	sy=0.46		Reference	year				Effort kW days at sea													
				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012			
Fplan								0.771	0.694	0.625	0.563	0.507	0.456	Effort plan/ TAC regu	lations not a	applicable as	days at sea p	ervessel									
reducti	on F plan								-0.10	-0.10	-0.10	-0.10	-0.10	reduction													
estim	ated			1.063	1.224	1.003	0.906	0.771	0.552	0.468	0.422	0.392	0.373	Effort estimated (re	8391212	19214038	14481187	15375052	10465985	8708136	6779579	6991700	8110058	7943563			
reducti	on F estimated								-0.28	-0.15	-0.10	-0.07	-0.05							-0.17	-0.22	0.03	0.16	-0.02			
Fpar														EFFORT											2003-20	12	
Countr	y Gear	Specon	catch.cate	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011		r	p n	1
DEU	r-DEM_SEINE	none	landings		0.00001		0.00081	0.00081	0.00113	0.00306	0.00182	0.00264	0.00134			822		11756	9000	7782	19715	26908	38601	27877	0.750	0.032	
DEU	r-GILL	none	landings	0.00073	0.00034	0.00302	0.00019	0.00002	0.00010	0.00017					11696	8290	43704	14527	11824	5048	6594				0.957	0.001	
DEU	r-LONGLINE	none	landings		0.00000	0.00002	0.00000		0.00000		0.00000				10248	11771	15007	9881	11920	17580	12580	6600	2420				
DEU	r-OTTER	none	landings	0.01833	0.01819	0.02760	0.01458	0.00833	0.02383	0.01829	0.01926	0.00572	0.01055		334236	211999	280977	163096	80177	191198	220844	276398	108001	180536	0.731	0.016	1
DEU	r-PEL_TRAWL	none	landings		0.02679	0.01017	0.00885	0.01215	0.00312	0.00761	0.00963	0.01369	0.00381			182107	143688	141492	70379	16691	36135	61303	128870	48484	0.771	0.015	
DNK	r-DEM_SEINE	none	landings	0.00011	0.00001	0.00284	0.00104	0.00065				0.00067	0.00166		729	880	11204	9781	4380				7936	20727	0.707	0.076	
DNK	r-GILL	none	landings	0.01450	0.01105	0.01391	0.00912	0.01057	0.01083	0.00737	0.00378	0.00302	0.00166		286771	247793	288548	255355	190114	195224	170484	133853	129032	109307	0.926	0.000	1
DNK	r-LONGLINE	none	landings	0.00520	0.00450	0.00912	0.00404	0.00287	0.00140	0.00084	0.00113	0.00091	0.00039		228195	112769	154482	157371	86736	45320	63169	76826	76881	41313	0.756	0.011	1
DNK	r-OTTER	none	landings	0.08359	0.06828	0.06577	0.08139	0.06589	0.07282	0.06272	0.07723	0.07229	0.07249		1369397	891009	993201	1279055	585792	644737	629248	781262	1071791	1160176	0.700	0.024	1
DNK	r-PEL_TRAWL	none	landings	0.00252	0.00729	0.00354	0.00685	0.00516	0.00017	0.00085	0.00045	0.00037	0.00014		68442	51827	44286	94797	31103	1056	4030	3536	5080	3750	0.810	0.005	1
DNK	r-TRAMMEL	none	landings	0.00017	0.00013	0.00004	0.00005	0.00053	0.00033	0.00063	0.00008	0.00001	0.00000		3278	2167	5598	7550	12631	5910	15546	3693	1185	546	0.878	0.001	1
EST	r-GILL	none	landings			0.00529	0.00360	0.00320	0.00201	0.00145							287824	253368	128268	40036	31107				0.939	0.018	
EST	r-OTTER	none	landings			0.00129	0.00035	0.00087			0.00412	0.00449	0.00261				94896	5729	9503			96642	179832	79178	0.853	0.031	- (
EST	r-PEL_TRAWL	none	landings			0.00181	0.00337	0.00623	0.00733	0.00402	0.00209	0.00395	0.00179				214426	355398	702922	703021	219177	114680	714754	86256	0.839	0.009	
LTU	r-GILL	none	landings			0.00006		0.00002		0.00407	0.00379	0.00220	0.00121				93187	55397	90686	128949	107267	104170	78123	48511	0.429	0.289	
LTU	r-LONGLINE	none	landings							0.00026	0.00017	0.00013					264	59543	35332	34991	6664	3956	5514				
LTU	r-OTTER	none	landings			0.00041	0.00137	0.00935		0.01844	0.02034	0.01950	0.01397				342503	192759	170844	382050	286887	332848	398109	477440	0.414	0.308	
LTU	r-PEL_TRAWL	none	landings			0.00215	0.00962	0.02419		0.00197	0.00010	0.00027	0.00039				1100	89918	85447	61407	20974	1764	4420	6837	0.854	0.007	
.VA	r-GILL	none	landings	0.04544	0.05918	0.03704	0.02215	0.02315	0.02357	0.02108	0.01831	0.01234	0.00797		1397564	1471236	701180	596996	568781	539579	401856	361015	350477	273839	0.952	0.000	1
.VA	r-OTTER	none	landings	0.01133	0.01091	0.01637	0.01950	0.01457	0.01989	0.01605	0.01908	0.02061	0.01738		458330	322019	242532	350925	186093	229860	198632	218426	473943	376406	-0.056	0.878	1
VA	r-PEL_TRAWL	none	landings	0.00045	0.00610	0.00010	0.00170	0.01049	0.00038	0.00110			0.00087		5065	114489	4122	29965	122803	10521	14473			18648	0.960	0.000	8
POL	r-GILL	none	landings		0.09135	0.06148	0.04356	0.02861	0.03346	0.03115	0.02605	0.02121	0.02244			4339027	2361250	1992875	1556930	1079645	791231	788566	695263	1121302	0.964	0.000	9
POL	r-LONGLINE	none	landings		0.03716	0.03174	0.03105	0.01915	0.01096	0.00464	0.01075	0.00796	0.00457			712715	691955	738832	410561	270046	412292	391897	324267	187100	0.922	0.000	
POL	r-OTTER	none	landings		0.09396	0.09304	0.07641	0.04747	0.05360	0.04949	0.05134	0.04700	0.05929			5657875	3902889	4457610	2534977	1715576	1018609	1245924	1064287	1582454	0.896	0.001	
POL	r-PEL_TRAWL	none	landings		0.02080	0.00413	0.01352	0.01924	0.00040	0.00236	0.00022	0.00121	0.00053			921668	193724	628134	440888	21895	36317	3424	2428	14087	0.932	0.000	
SWE	r-GILL	none	landings	0.05934	0.05068	0.03279	0.01981	0.02118	0.02363	0.01657	0.00847	0.00579	0.00459		1820884	1485621	1183969	1031157	833204	914404	811692	595833	519421	450915	0.986	0.000	1
SWE	r-LONGLINE	none	landings	0.01394	0.02096	0.01673	0.01090	0.00750	0.00869	0.00561	0.00323	0.00257	0.00204		316942	373136	345327	321205	162491	198545	200874	176489	208160	139164	0.910	0.000	1
SWE	r-OTTER	none	landings	0.09320	0.12485	0.07917	0.06515	0.08530	0.06951	0.06340	0.06422	0.05885	0.05704		2070339	1942010	1716974	1655822	1151533	1205260	1001145	1169421	1420549	1465397	0.614	0.059	1
SWE	r-PEL_TRAWL	none	landings		0.00865	0.00564	0.01941	0.01712	0.00194	0.00356	0.00089	0.00417	0.00064			144639	121133	413844	178434	36859	40493	16200	99798	20821	0.910	0.001	
SWE	r-TRAMMEL	none	landings	0.00002	0.00004	0.00001	0.00000	0.00001	0.00001	0.00000		0.00000	0.00000		9096	8169	1237	914	2232	4946	1544	66	916	2492			
Sum				0.34887	0.66123	0.52528	0.46839	0.44463	0.36911	0.34676	0.34655	0.31157	0.28937		8391212	19214038	14481187	15375052	10465985	8708136	6779579	6991700	8110058	7943563	0.945	0.000	10
hecks	um Fpar/F			0.33	0.54	0.52	0.52	0.58	0.67	0.74	0.82	0.79	0.78														

Table 5.1.11.2.3 Eastern Baltic cod in areas B and C. The upper left part of the table lists estimated F trajectories from the management plan and the ICES 2013 assessment, as well as partial Fs based on discards of fisheries using regulated gears. The lower left part lists the estimated partial F based on estimated catches from the regulated fisheries. The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs of all effort regulated gears to the overall F estimate of the stock.

2008 m	oving reference y	ear annua	I F reduction	s by 10 per	cent until F	<=0.3, Fms	sy=0.46		Reference	year				Effort kW days at sea	1												
				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012			
Fplan								0.771	0.694	0.625	0.563	0.507	0.456	Effort plan/ TAC regu	lations not a	pplicable as	days at sea p	oer vessel									
reduct	on F plan								-0.10	-0.10	-0.10	-0.10	-0.10	reduction													
estin	nated			1.063	1.224	1.003	0.906	0.771	0.552	0.468	0.422	0.392	0.373	Effort estimated (re	8391212	19214038	14481187	15375052	10465985	8708136	6779579	6991700	8110058	7943563			
reduct	on F estimated								-0.28	-0.15	-0.10	-0.07	-0.05							-0.17	-0.22	0.03	0.16	-0.02			
par														EFFORT											2003-201	.2	
Countr	y Gear	Specon	catch.cate	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011		r	p n	
DEU	r-DEM_SEINE	none	discards		0.00000		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000			822		11756	9000	7782	19715	26908	38601	27877			
DEU	r-GILL	none	discards	0.00001	0.00002	0.00009	0.00001	0.00000	0.00000	0.00001					11696	8290	43704	14527	11824	5048	6594						
DEU	r-LONGLINE	none	discards		0.00000	0.00000	0.00000		0.00000		0.00000				10248	11771	15007	9881	11920	17580	12580	6600	2420				
DEU	r-OTTER	none	discards	0.00108	0.00098	0.00198	0.00269	0.00154	0.00149	0.00237	0.00191	0.00074	0.00180		334236	211999	280977	163096	80177	191198	220844	276398	108001	180536	0.077	0.833	
DEU	r-PEL_TRAWL	none	discards		0.00049	0.00039	0.00152	0.00133	0.00015	0.00070	0.00027	0.00228	0.00059			182107	143688	141492	70379	16691	36135	61303	128870	48484	0.336	0.377	
DNK	r-DEM_SEINE	none	discards	0.00000	0.00000	0.00000	0.00000	0.00000				0.00000	0.00000		729	880	11204	9781	4380				7936	20727			
DNK	r-GILL	none	discards	0.00034	0.00029	0.00041	0.00033	0.00075	0.00042	0.00028	0.00036	0.00014	0.00010		286771	247793	288548	255355	190114	195224	170484	133853	129032	109307	0.333	0.347	
DNK	r-LONGLINE	none	discards	0.00014	0.00006	0.00019	0.00000	0.00000	0.00000	0.00006	0.00013	0.00004	0.00001		228195	112769	154482	157371	86736	45320	63169	76826	76881	41313			
DNK	r-OTTER	none	discards	0.02144	0.00442	0.00532	0.01012	0.00798	0.00404	0.00454	0.00458	0.00613	0.00882		1369397	891009	993201	1279055	585792	644737	629248	781262	1071791	1160176	0.700	0.024	
DNK	r-PEL_TRAWL	none	discards	0.00066	0.00056	0.00031	0.00077	0.00057	0.00001	0.00006	0.00003	0.00003	0.00002		68442	51827	44286	94797	31103	1056	4030	3536	5080	3750	0.938	0.000	
DNK	r-TRAMMEL	none	discards	0.00001	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		3278	2167	5598	7550	12631	5910	15546	3693	1185	546			
EST	r-GILL	none	discards			0.00016	0.00016	0.00029	0.00008	0.00004							287824	253368	128268	40036	31107						
EST	r-OTTER	none	discards			0.00009	0.00006	0.00016			0.00043	0.00081	0.00063				94896	5729	9503			96642	179832	79178	0.779	0.068	
EST	r-PEL_TRAWL	none	discards			0.00000	0.00051	0.00059	0.00077	0.00034	0.00006	0.00078	0.00030				214426	355398	702922	703021	219177	114680	714754	86256	0.874	0.005	
LTU	r-GILL	none	discards			0.00000		0.00000		0.00014	0.00109	0.00000	0.00007				93187	55397	90686	128949	107267	104170	78123	48511	0.406	0.318	
TU	r-LONGLINE	none	discards							0.00000	0.00000	0.00000					264	59543	35332	34991	6664	3956	5514				
LTU	r-OTTER	none	discards			0.00003	0.00015	0.00099		0.00171	0.00182	0.00079	0.00075				342503	192759	170844	382050	286887	332848	398109	477440	0.033	0.938	
LTU	r-PEL_TRAWL	none	discards			0.00009	0.00099	0.00252		0.00000	0.00000	0.00000	0.00007				1100	89918	85447	61407	20974	1764	4420	6837	0.854	0.007	
VA	r-GILL	none	discards	0.00112	0.00258	0.00124	0.00083	0.00272	0.00088	0.00067	0.00186	0.00062	0.00073		1397564	1471236	701180	596996	568781	539579	401856	361015	350477	273839	0.424	0.222	
VA	r-OTTER	none	discards	0.00060	0.00046	0.00039	0.00130	0.00055	0.00189	0.00118	0.00246	0.00321	0.00293		458330	322019	242532	350925	186093	229860	198632	218426	473943	376406	0.323	0.363	
LVA	r-PEL_TRAWL	none	discards	0.00000	0.00016	0.00000	0.00034	0.00122	0.00003	0.00010			0.00015		5065	114489	4122	29965	122803	10521	14473			18648	0.732	0.039	
POL	r-GILL	none	discards		0.00284	0.00198	0.00174	0.00189	0.00088	0.00130	0.00203	0.00126	0.00135			4339027	2361250	1992875	1556930	1079645	791231	788566	695263	1121302	0.815	0.007	
POL	r-LONGLINE	none	discards		0.00050	0.00046	0.00000	0.00000	0.00003	0.00033	0.00137	0.00032	0.00017			712715	691955	738832	410561	270046	412292	391897	324267	187100	0.041	0.916	
POL	r-OTTER	none	discards		0.00495	0.00633	0.00859	0.00712	0.00331	0.00443	0.00491	0.00692	0.00902			5657875	3902889	4457610	2534977	1715576	1018609	1245924	1064287	1582454	0.147	0.706	
POL	r-PEL_TRAWL	none	discards		0.00036	0.00000	0.00028	0.00030	0.00002	0.00008	0.00001	0.00021	0.00007			921668	193724	628134	440888	21895	36317	3424	2428	14087			
SWE	r-GILL	none	discards	0.00145	0.00070	0.00101	0.00073	0.00131	0.00094	0.00089	0.00025	0.00029	0.00012		1820884	1485621	1183969	1031157	833204	914404	811692	595833	519421	450915	0.711	0.021	
SWE	r-LONGLINE	none	discards	0.00037	0.00028	0.00034	0.00000	0.00000	0.00001	0.00043	0.00049	0.00015	0.00009		316942	373136	345327	321205	162491	198545	200874	176489	208160	139164			
SWE	r-OTTER	none	discards	0.01547	0.00747	0.01141	0.01623	0.02038	0.00798	0.00918	0.00594	0.01371	0.01845		2070339	1942010	1716974	1655822	1151533	1205260	1001145	1169421	1420549	1465397	0.121	0.739	
SWE	r-PEL_TRAWL	none	discards		0.00046	0.00000	0.00478	0.00316	0.00038	0.00041	0.00007	0.00136	0.00020			144639	121133	413844	178434	36859	40493	16200	99798	20821	0.896	0.001	
SWE	r-TRAMMEL	none	discards	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		0.00000	0.00000		9096	8169	1237	914	2232	4946	1544	66	916	2492			
Sum				0.04269	0.02758	0.03222	0.05213	0.05537	0.02331	0.02925	0.03007		0.04644		8391212	19214038	14481187	15375052	10465985	8708136	6779579	6991700	8110058	7943563	0.013	0.971	
	um Fpar/F			0.04	0.02	0.03	0.06	0.07	0.04	0.06	0.07	0.1	0.12				,,							0000	. ,		

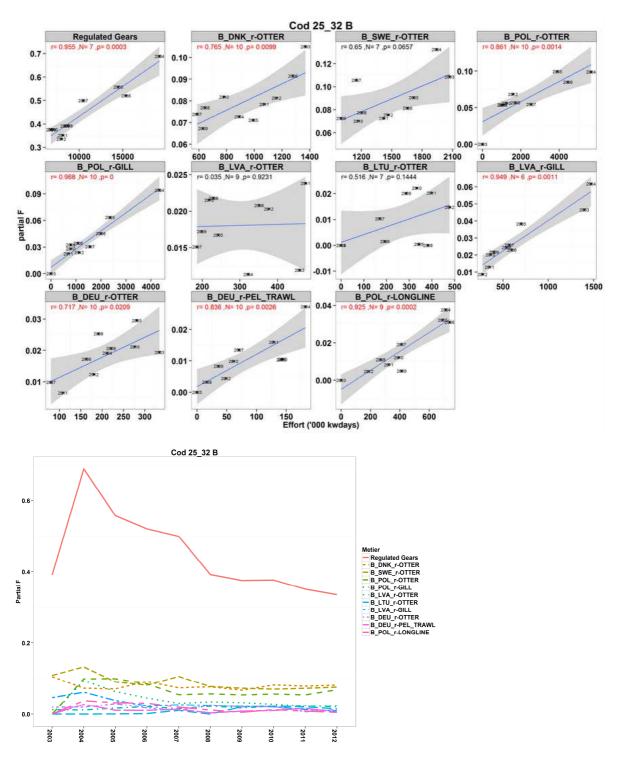


Fig. 5.1.11.2.1 Eastern Baltic cod area B and C. Effort estimates versus partial fishing mortality by Member State and regulated gears in 2003-1012. The lower panel shows the temporal trends in partial Fs.

5.1.12 ToR 8 Spatio-temoral pattern in standardized catchability indices for cod

5.1.12.1 Introduction

Catchability (q) is defined as the relationship between the catch rate (CPUE) and the true population size. Consequently, the unit of catchability is fish caught per fish available per effort unit and per time unit, or, in easier words, catchability can conceptually be considered as the probability of any single fish being caught (Jul-Larsen *et al.*, 2003).

Many factors are related to catchability, e.g. mainly fish abundance at a certain time in a certain area and gear efficiency (fishing power) including use of the gear and fishers' experience (Marchal *et al.*, 2001). A standard solution to evaluate changes in catchability is therefore to compare catch rates from commercial and research fishing where the catchability of the research fishing is holding constant from year to year (Neis *et al.*, 1999):

CPUE (fishery)/CPUE (survey) = q (fishery)/q (survey)

This catchability index has no units. STECF EWG 13-13 interprets the resulting ratio as an index of fishing mortality per individual fish independent of stock size, which allows spatio-temporal analyses. The calculation of catchability indices for cod per ICES statistical square (rectangle) and year from standardized and averaged ratios between CPUE by fishery /BITS Q1-Q4 indices are therefore believed to provide indications of spatio-temporal patterns.

5.1.12.2 Data

STECF EWG13-13 performed the analyses using DCF data from 2013 DCF data call to support fishing effort regime evaluations and Baltic International Trawl Survey (BITS) data from 2006-2012, Below the approach, taken by EWG and main findings are presented. The database of scientific survey data used by the EWG can be found at ICES DATRAS web page: http://datras.ices.dk/Data_products/Download/Download_Data_public.aspx

BITS Q1 and Q4 data were downloaded from ICES DATRAS server, i.e. station data and catch data for the years 2003-2012. Only hauls assigned valid and with haul duration equal or longer the 20 min. were considered. Stations with cod catches were selected using the species codes 164712 (TSN from the Integrated Taxonomic Information System ITIS) and 126436 (WoRMS, Word Register of Marine Species), as appropriate. The two data sets were linked and CatCatchWg (grams) was standardized to kg/hour.

Annual average Q1-Q4 abundance indices (kg/hours) per rectangle were calculated for cod and averaged the period 2006-2012.

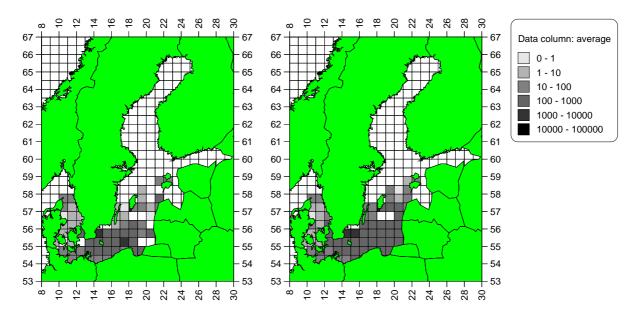


Fig. 5.1.12.1. Average annual Baltic Sea BITS Q1-4 CPUE indices (kg/hours) per rectangle for cod in 2012 (left panel) and averaged over 2006-2011 (right panel).

In 2012, cod appears widely distributed over the central and southern Baltic Sea into the Belts (Fig. 5.1.12.1.). There highest abundances are quite homogeneously concentrated in the Central Baltic Sea what is expected according to the relatively good state of the Eastern Baltic cod stock in recent years. Cod becomes less abundant around the central Baltic, in particular in the northern rectangles. These pronounced patterns are stable in 2012 and as average over the years 2006-2011.

DCF data on annual landings per rectangle (Table E, landings in tons) were summed for all effort regulated gear groups by rectangle and year, excluding the recorded landings of small vessels (<8m). The landings per rectangle and fishery (métier) were raised to catches based on discard rates estimated by year, management area, gear, mesh size, special condition (derogation, where applicable for effort regulated gears), and nation. The additional consideration of the nation (additional to the defined management areas of the DCF) during the process of catch estimation by rectangle (landings plus raised estimates of discards by rectangles) is assumed to improve the calculation of specific geographical fisheries effects. The estimated cod catches per rectangle are shown in Fig. 5.1.12.2. Average geographical distribution of estimated catches resembles the stock distribution as perceived from the BITS Q1-Q4 survey indices (Fig. 5.1.12.1. and 5.1.12.2). Highest catches are seen in the central and southern Baltic Sea, while there seems almost no cod fishing in the northern Baltic Sea. These patterns appear quite steady, as the geographical patterns in average estimates of cod catches over 2006-2011 is very similar with the recent situation in 2012 (Fig. 5.1.12.2).

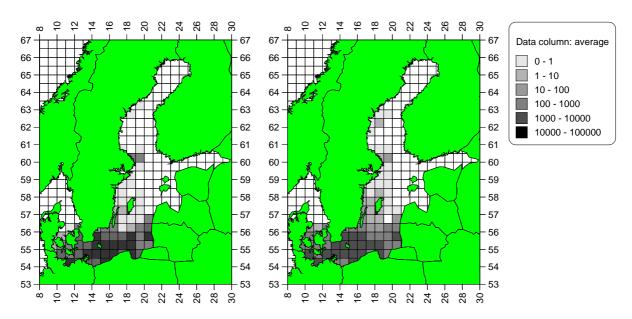


Fig. 5.1.12.2. Annual cod catches (t) of effort regulated gear groups per rectangle in 2012 (left panel) and averaged for the period 2006-2011 (right panel).

Fisheries specific DCF data on annual fishing effort per rectangle (Table C, fished hours per rectangle) were summed across all effort regulated gear groups and years, excluding the under 8m boats. The resulting annual fishing effort estimates per rectangle and year were averaged for the period 2006-2011 and the geographical distribution patterns are shown in Fig. 5.1.12.3. Again, the effort patterns reveal a picture where most of it is concentrated in the central and southern Baltic Sea, while northern areas show significantly lower effort figures. The lighter grey shaded rectangles of the most recent data (2012) indicate a similar geographical pattern but with a significant reduction in effort deployed by effort regulated gears.

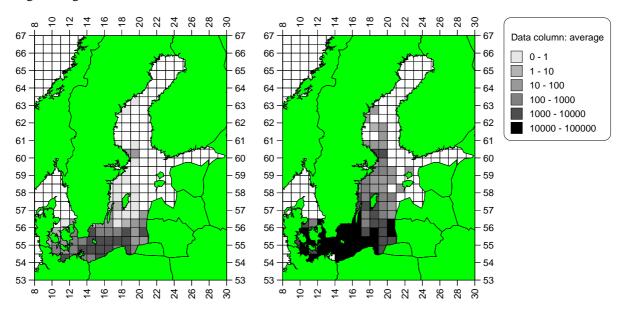


Fig. 5.1.12.3. Annual fishing effort (hours fished) of effort regulated gear groups per rectangle in 2012 (left panel) and averaged for the period 2006-2011 (right panel).

The annual effective effort data of effort regulated gears by rectangle (Table C, in units of hours fished) and estimated annual cod catches of effort regulated gears per rectangle data (Table E, in units of tons) were linked and for each fishery the annual CPUE (kg/hours) was calculated.

Annual catchability coefficients by fishery and rectangle are determined from the log-transformed CPUE per fishery divided by the log-transformed BITS survey indices for cod. Log-transformation was done like f(x) = ln(x+1) to decrease the variation and to avoid negative values. Such standardised catchability indices were then averaged over each of the rectangles and over period 2006-2011 and compared with the 2012 estimates.

5.1.12.3 Spatial pattern of cod catchability

The resulting geographical patterns in cod catchability values are shown in Fig. 5.1.12.4. The catchabily is estimated to be quite homogeneous over the rectangles where catches, fishing effort and stock abundance are high, i.e. in the central and southern Baltic Sea. There appears to be no specific pattern to distinguish between the Eastern and Western Baltic cod stocks despite to the differences in stock size.

The reason could be linked to the suggested increase in westward feeding migrations of the Eastern Baltic cod and elevated mixing rate in the most recent period (ICES 2013). Where stock abundance is estimated lower based on BITS survey indices, the catchability is increased and scattered, i.e. in the rectangles around the major distribution of the cod stocks and their fisheries. Houghton and Flatman (1981) have demonstrated an inverse correlation between catchability and abundance also for the North Sea cod.

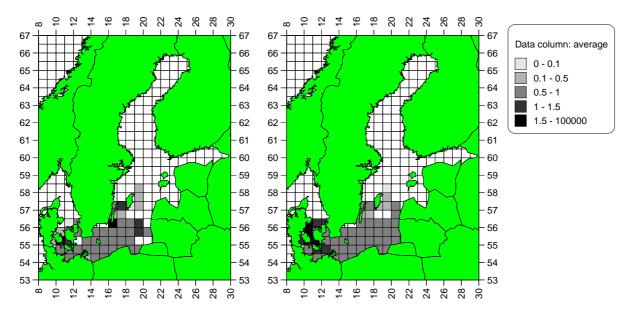


Fig. 5.1.12.4. Average cod catchability (ln(CPUE)/(ln(BITS Q1 index)) of all regulated gear groups per rectangle in 2012 (left panel) and averaged for the period 2006-2011 (right panel).

5.2 Kattegat effort regime evaluation in the context of Annex IIA to Council Regulation (EC) No 57/2011)

5.2.1 ToR 1.a Fishing effort in kWdays, GTdays, kW and number of vessels by Member State and fisheries

Trends in effort by the new cod plan gear groups and by country are shown in Table (5.2.1.1). In 2012 70% of the total effort was deployed by gears that are under effort regulation in the cod plan, dominated by the TR2 fishery, and the total effort in Kattegat has decreased by 42% between 2003 and 2012. The effort deployed by regulated gears has decreased by 54% since 2003 but between 2011 and 2012 it increased by 11% (266 406 kW*days). The largest part (233 353 kW*days) of the increase is found in the Danish TR2 fishery, which is under the derogation CPart13c from 2010 onwards. The Danish TR2 fishery effort decreased by 35% between 2003 and 2006 and has since then remained quite stable. The Swedish regulated TR2 effort has decreased by 81% since 2003, partly due to a move towards the unregulated CPart11 (using a 35mm Nephrops sorting grid, introduced in 2003) which constituted 68% of the Swedish TR2 effort in 2012 and partly to an overall decrease in effort (41% since 2003).

The effort carried out by unregulated gears, including the Swedish Nephrops sorting grid under the derogation CPart11, has increased from 776 555 kW*days in 2003 to 1 158 146 kW*days in 2012, an increase by 49% (Table 5.2.1.3).

Table 5.2.1.1 Kattegat: Trend in nominal effort (kW*days at sea) by regulated gear group and country. 2003-2012. The gear category TR2 does not include effort carried out under the derogation CPart11 (from 2009 onwards) or IIA83b (2004-2008).

REG ARE	A REG GEAR	COUNTRY	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	Rel. 2003	Rel. 2011
3a	GN1	DEU	13612	14289	26827	38486	39725	31562	23156	19526	21484	11860	0.87	0.55
3a	GN1	DNK	184739	111648	129061	103851	72616	65829	80031	64536	46211	19778	0.11	0.43
3a	GN1	SWE	20309	17690	9609	14748	14949	32697	33120	32270	27481	35082	1.73	1.28
3a	GT1	DNK	12963	14791	28220	24754	11927	11758	22410	13398	11408	5279	0.41	0.46
3a	GT1	SWE	25558	11254	12833	19178	34170	29266	17518	26612	25205	14941	0.58	0.59
3a	LL1	DNK	3240	3080		220					221	397	0.12	1.80
3a	LL1	SWE	5683	1376	10684	27478	37856	25234					0.00	
3a	TR1	DEU	894	2390	4985	5262	5526	1964				4309	4.82	
3a	TR1	DNK	201690	191743	203625	191632	184599	156198	100777	67525	48671	100989	0.50	2.07
3a	TR1	SWE	44370	15121	24870	5160	19799	57592	6985	13626	1006		0.00	0.00
3a	TR2	DEU	35966	31861	7505	10318	35338	38716	19918	30730	13670	2645	0.07	0.19
3a	TR2	DNK	3457175	3062610	2546820	2250888	2026560	2148333	2208298	2378545	2000136	2233489	0.65	1.12
3a	TR2	SWE	1369635	1043622	1046257	1062871	1041966	920320	436355	284594	271686	260287	0.19	0.96
3a	TR3	DEU												
3a	TR3	DNK	655409	483712	485616	359693	301698	146119	75792	27110	25572	70101	0.11	2.74
3a	TR3	SWE					1470		1148					
Total			6031243	5005187	4536912	4114539	3828199	3665588	3025508	2958472	2492751	2759157	0.46	1.11

Table 5.2.1.2 Kattegat: Trend in nominal effort (kW*days at sea) by regulated gear group and derogation 2003-2012. All the Danish TR2 effort is under the derogation CPart13C from 2010 onwards while the German TR2 effort is partly under the derogation CPart13B between 2010 and 2011.

REG AREA	A REG GEAR	SPECON	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	Rel. 2003	Rel. 2011
3a	GN1	none	218660	143627	165497	157085	127290	130088	136307	116332	95176	66720	0.31	0.70
3a	GT1	none	38521	26045	41053	43932	46097	41024	39928	40010	36613	20220	0.52	0.55
3a	LL1	none	8923	4456	10684	27698	37856	25234			221	397	0.04	1.80
3a	TR1	none	246954	209254	233480	202054	209924	215754	107762	81151	49677	105298	0.43	2.12
3a	TR2	CPart13B								20020	4180			0.00
3a	TR2	CPart13C								2378545	2000136	2233489		1.12
3a	TR2	none	4862776	4128181	3486593	3324077	3103864	3107369	2664571	295304	281176	262932	0.05	0.94
3a	TR3	none	655409	483712	485616	359693	303168	146119	76940	27110	25572	70101	0.11	2.74
Total			6031243	4995275	4422923	4114539	3828199	3665588	3025508	2958472	2492751	2759157	0.46	1.11

Table 5.2.1.3 Trend in nominal effort (kW*days at sea) of unregulated gears in Kattegat 2003-2012. Sweden is the only country using the derogation Cpart11/IIIA83B.

REG AREA	A GEAR	SPECON	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012 R	el. 2003 Re	el. 2011
3a	BEAM	none	126	118									0.00	
3a	DEM_SEINE	none	813		354								0.00	
3a	DREDGE	none	1136	426	26658	39802	50977	55259	35442	36517	51741	67491	59.41	1.30
3a	none	none	1047	3318	2579	2806	2712	188	19260	16306	15267	34391	32.85	2.25
3a	OTTER	none	292195	206117	189146	258514	198403	151091	229931	72299	30432	60366	0.21	1.98
3a	PEL_SEINE	none	31059	20680	25640	52976	32560	16157	11000	19876	19160	2760	0.09	0.14
3a	PEL_TRAWL	none	395285	392938	450906	374702	358100	195358	340860	277918	336209	400608	1.01	1.19
3a	POTS	none	54894	85806	65321	75311	86516	75233	64289	29897	32929	46114	0.84	1.40
3a	TR2	CPart11							415194	482432	426638	546416		1.28
3a	TR2	IIA83B		9912	113989	165425	233076	307336						
Total			776555	719315	874593	969536	962344	800622	1115976	935245	912376	1158146	1.49	1.27
			776555	719315	874593	969536	962344	800622	1115976	935245	912376	1158146	1.49	1.27

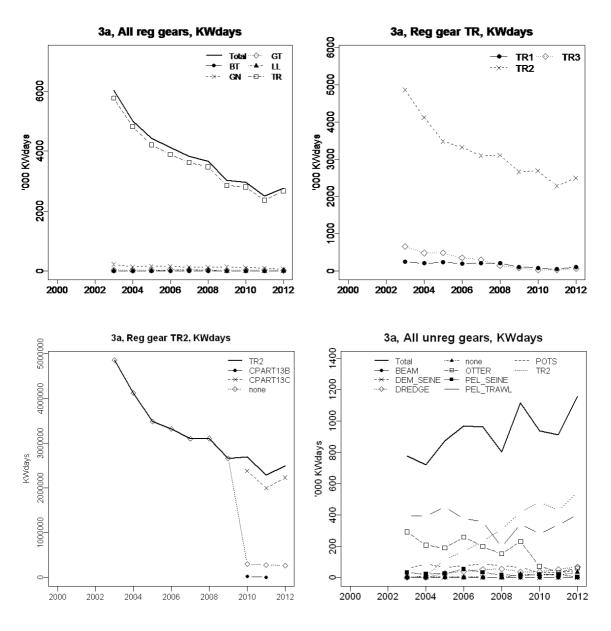


Figure 5.2.1.1. Kattegat: Top left: Trend in nominal effort (Kw *days at sea) by regulated gear types, 2003-2012. TR=Demersal trawl, BT=Beam trawl, GN=Gillnet, GT=Trammel net, LL=Longline. Note that the derogations CPart11 and IIA83b are not included in the TR gear category since they are considered unregulated.

Top right: effort by gear types within gear group TR; TR1=mesh size \geq 100mm; TR2=mesh size \geq 70, \leq 100mm; TR3 \geq 16, \leq 32 mm. The derogations CPart11 and IIA83b are not included in the TR2 category.

Bottom left: Effort by derogation within gear type TR2. Note that the derogations CPart11 and IIA83b are not included in the TR2 category.

Bottom right: effort by unregulated gear categories. The TR2 effort here is the effort carried out under the derogations IIA83B (2003-2008) and CPart11 (2009-2012).

The effort deployed in Gross tonnage days (GTdays), number of vessels and fishing capacity in kW by metier are not described in this report but can be found on the STECF EWG 13-13 website under the Final Report section: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1306:

Relative changes in data since last submissions:

Since previous year's data submission Sweden has not made any changes, while Denmark has revised all data, both catch and effort, for the whole time series. The relative change in nominal effort data is presented in Table 5.2.1.4. The largest relative changes in effort are found in unregulated gears that constitutes a small part of the deployed effort in Kattegat in absolute values.

Table 5.2.1.4. Relative change in nominal effort (kW*days at sea) compared to the previous year's data submissions, by country, gear and vessel length.

ANNEX	REG AF	REA REG GEAR COL	COUNT	TRY VESSEL LENGTH	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
lla	3a	DEM_SEINE	DNK	O10T15M				0								
IIa	3a	DEM_SEINE	DNK	O15M				0		0						
IIa	3a	DREDGE	DNK	O15M	-0.075	-0.924	-0.919	-0.849	-0.934	-0.209	0	0	0	-0.036	0	0
IIa	3a	GN1	DNK	O10T15M	0	-0.003	0	0	0	-0.005	0	-0.002	-0.006	-0.061	-0.049	0
IIa	3a	GN1	DNK	O15M	0	0	0	0	0	-0.019	-0.013	-0.012	-0.009	0.005	0	0
IIa	3a	GT1	DNK	O10T15M	0	-0.012	-0.098	-0.217	0	0	-0.007	-0.016	0	-0.043	-0.065	0
IIa	3a	GT1	DNK	O15M	0.003			0.032		0		0		0	0	0
IIa	3a	LL1	DNK	O10T15M	0		0	0								
IIa	3a	LL1	DNK	O15M		0	0	0	0		0					0
IIa	3a	none	DNK	O10T15M	-0.119	-0.211	-0.017	-0.338	-0.447	-0.871		-0.813	-0.943	-0.969	-0.853	0
IIa	3a	none	DNK	O15M	-0.084	-0.267	-0.719		-0.891	-0.645	-0.83	-0.831				-0.466
IIa	3a	OTTER	DNK	O10T15M	0	0	0	0	0	0	0	0	0	-0.2	0	0
IIa	3a	OTTER	DNK	O15M	-0.003	-0.003	-0.004	0.005	0.001	-0.003	0	-0.011	-0.061	-0.021	-0.075	0.004
IIa	3a	PEL_TRAWL	DNK	O10T15M	0	0	0	0	0	0	0	0	0	-0.235	-0.288	0.089
IIa	3a	PEL_TRAWL	DNK	O15M	0	0	0	0	0.013	0.016	0	0.065	0.028	-0.164	-0.102	0.028
IIa	3a	POTS	DNK	O10T15M				0			0					
IIa	3a	POTS	DNK	O15M	0			0		0	0	0				0
IIa	3a	TR1	DNK	O10T15M	0	0	0.001	-0.001	0.001	-0.013	-0.009	-0.008	-0.002	-0.032	-0.012	0
IIa	3a	TR1	DNK	O15M	-0.001	0.005	0	0	0	-0.009	-0.011	-0.014	-0.041	-0.032	-0.056	0
IIa	3a	TR2	DNK	O10T15M	0	0	0	0	0	-0.001	-0.002	0	0	-0.007		
IIa	3a	TR2	DNK	O15M	0	0	0	0.001	0.002	0	-0.001	0	0	0		
IIa	3a	TR3	DNK	O10T15M	0	0	0	0.002	0.011	0	-0.005	-0.003	0	-0.35	-0.461	0
Ila	3a	TR3	DNK	O15M	-0.005	0	0	0.002	0.003	0	0.005	-0.016	-0.047	-0.174	-0.083	0

5.2.1.1 Uptake of effort baseline

The uptake of effort baselines is presented on Figure 5.2.1.1.1). Care must be taken in the interpretation of this figure, for a number of reasons, including e.g.: i) the baseline displayed here is extracted from the TAC and quotas regulations nr 43/2009, 53/2010, 57/2011, 44/2012 and 40/2013, and do not take into account the effort buyback performed by Member states as part of Article 13 and/or other agreements. This information is sometimes publicly available for some Member States, but not for all and STECF EWG 13-13 has not been provided with this information specifically; ii) as described in section 4, the

effort information provided to STECF EWG 13-13 by a number of Member States is calculated in calendar days, whereas the actual regulation of effort uptake is based on 24h periods, which can lead to some differences especially in coastal fisheries; iii) STECF data are calculated by calendar year whereas the effort baselines apply from February to January.

All regulated gear categories in Kattegat are well below the effort base line apart from the TR2 fishery, which is the predominant fishery in the area. The TR2 overshoot is probably due a combination of the points mentioned above and particularly the fact that the Danish TR2 fishery, which constituted 89% of the total TR2 nominal effort 2012, is entirely under the derogation CPart13c which allows effort to be bought back by the Member State.

Figure 5.2.1.1.1 Management area 3a, Kattegat. Uptake of effort 2000-2012 by regulated gear category. Solid line=deployed effort in kW*days at sea, dashed line=Effort base line from the TAC and quota regulation for the years 2009-2013.

5.2.2 ToR 1.b and c Catches (landings and discards) of cod and non-cod species in weight and numbers at age by fisheries

STECF EWG 13-13 presents the requested cod and non-cod species in weight by fisheries. Age specific data are not presented here but are available on the internet page of the STECF EWG 13-13: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1306

The total landings of cod in Kattegat, all gears included, have decreased substantially from 2036 tonnes in 2003 to 84 tonnes in 2012, whereof 77 tonnes were taken by regulated gears and 87% were taken by the

regulated TR2 gear category. The cod landings taken by gill nets and trammel nets were very small, less than 1 tonne in 2012. The majority of the cod discards are also generated by the TR fishery, 122 tonnes in 2012. The landings of non-cod species in Kattegat have also decreased steadily since 2003, apart from the landings of Nephrops, the main target species in Kattegat in recent years, which have remained quite stable through the whole time series. The landings and discards of the most important species for regulated gears are shown in Table 5.2.2.1a and b.

Pelagic fisheries are not sampled for discards in Kattegat and it is therefore not possible to give a meaningful estimate of pelagic discards. Discards in pelagic fisheries are to the large extent caused by slipping (discarding of the whole catch), which is very difficult to sample since the frequence of slipping events is believed to vary largely between seasons and areas and could also potentially be subject to a significant observer effect.

For the first time the STECF EWG 13-13 report includes an index of discard coverage DQI, by year, gear category, derogation and species, which is presented in Table 5.2.2.9. The criteria of the index are described in section 4.5.

Table 5.2.2.1.a. Kattegat landings (L), discards (D) and discard rate (R) of cod (COD), haddock (HAD), Nephrops (NEP), plaice (PLE), sole (SOL) and whiting (WGH) by regulated gear category and derogation 2003-2007. The derogations CPart11 and IIA83B are considered unregulated and are not included. Landings of the most important species by unregulated gears are shown in Table 5.2.2.3-6.

	REG_GEAF		SPECIES	2003 L	2003 D	2003 R	2004 L	2004 D	2004 R	2005 L	2005 D	2005 R	2006 L	2006 D	2006 R	2007 L	2007 D	2007 R
3a	GN1	none	COD	90.712	1357.697	0.937	35.977	199.049	0.847	26.641			25.552			28.81		
3a	GT1	none	COD	20.997	36.509	0.635	14.662	1.491	0.092	6.667			3.187			4.097		
3a	LL1	none	COD	20.064			1.566			0.687			2.649			0.228		
3a	TR1	none	COD	206.984	85.035	0.291	110.844	57.038	0.34	120.203	29.484	0.197	50.902	20.232	0.284	84.996	55.374	0.394
3a	TR2	CPart13B	COD															
3a	TR2	CPart13C	COD	4540.05	4000 504	0.000		****		C 40 05 C	405.40	0.40			0.554	*** ***	*** ***	0.400
3a	TR2	none	COD		1029.504	0.389	983.038	1152.44	0.54	643.056	485.42	0.43	641.663	821.111	0.561	461.626	440.378	0.488
3a	TR3	none	COD	51.079 2008.686	55.415	0.52	8.102 1154.189	57.134	0.876	7.187 804.441			2.759 726.712			1.08 580.837		
3a	of COD lan GN1		HAD	5.48			2.614	0.093	0.034	0.115			0.075			0.82		
3a	GT1	none none	HAD	0.036			0.02	0.005	0.034	0.113			0.073			0.82		
3a	U.1	none	HAD	0.869			0.02	0.003	0.2	0.276			0.045			0.222		
3a	TR1	none	HAD	16.866	5.697	0.252	2.262	1.05	0.317	3.883	0.444	0.103	2.749	5.696	0.674	8.84	3.105	0.26
3a	TR2	CPart13B	HAD	10.000	3.037	0.232	2.202	1.05	0.517	3.003	0.444	0.103	2.743	3.030	0.074	0.04	3.103	0.20
3a	TR2	CPart13C	HAD															
3a	TR2	none	HAD	254.815	87.571	0.256	48.991	111.135	0.694	116.936	37.23	0.241	60.975	158.015	0.722	141.557	27.291	0.162
3a	TR3	none	HAD	44.855	0.143	0.003	0.764	0.112	0.128	0.034	37.23	0.241	0.038	136.013	0.722	0.013	27.231	0.102
	of HAD lan		HAD	322.921	0.143	0.003	54.651	0.112	0.120	121,246			63.972			151.452		
3a	GN1	none	NEP	0.012	0.178	0.937	0.409	0.287	0.412	0.025			0.056			0.17		
3a	GT1	none	NEP	1.241	1.936	0.609	0.405	0.015	1	0.786			0.003			0.28		
3a	LL1	none	NEP	1.241	1.550	0.005	•	0.015	-	0.700			0.003			0.20		
3a	TR1	none	NEP	10.392	29.846	0.742	5.976	2.397	0.286	6,404	3.899	0.378	5.623	10.749	0.657	29.202	34.506	0.542
3a	TR2	CPart13B	NEP	10.052	251040	017-12	5.570	2.007	0.200	0.404	5.055	0.570	5.025	101743	0.007	LJILOL	54.500	0.5-12
3a	TR2	CPart13C	NEP															
3a	TR2	none	NEP	1592.15	3657.413	0.697	1610.176	833.378	0.341	1424.215	719.093	0.336	1193.638	644.332	0.351	1583.065	974.173	0.381
3a	TR3	none	NEP	7.303	302.091	0.976	0.248	0.191	0.435	0.297			1.71			0.523		
Sum	n of NEP lan			1611.098			1616.809			1431.727			1201.03			1613.24		
3a	GN1	none	PLE	115.134	410.255	0.781	114.03	246.979	0.684	77.001			72.264			63.86	-	
3a	GT1	none	PLE	53.352	240.772	0.819	34.974	45.808	0.567	36.214			44.965			28.538		
3a	LL1	none	PLE	0.003														
3a	TR1	none	PLE	270.782	276.784	0.505	331.451	264.625	0.444	407.52	181.228	0.308	484.57	273.844	0.361	449.194	355.869	0.442
3a	TR2	CPart13B	PLE															
3a	TR2	CPart13C	PLE															
3a	TR2	none	PLE	1601.993	2064.586	0.563	800.15	752.743	0.485	495.556	363.532	0.423	693.635	538.285	0.437	588.122	642.968	0.522
3a	TR3	none	PLE	6.571	215.232	0.97	0.589	3.632	0.86	0.127			0.654			0.395		
Sun	n of PLE lan	dings		2047.835			1281.194			1016.418			1296.088			1130.109		
3a	GN1	none	SOL	31.977	0	0	32.85	652.861	0.952	109.759			102.533			64.605		
3a	GT1	none	SOL	5.219	0	0	4.336	50.834	0.921	17.111			16.729			15.094		
3a	LL1	none	SOL															
3a	TR1	none	SOL	4.648	19.931	0.811	4.583	1.356	0.228	9.694	0.055	0.006	17.276	0.049	0.003	9.231	0.18	0.019
3a	TR2	CPart13B	SOL															
3a	TR2	CPart13C	SOL															
3a	TR2	none	SOL	127.216	835.283	0.868	163.218	72.403	0.307	249.57	4.042	0.016	270.645	3.17	0.012	215.462	3.393	0.016
3a	TR3	none	SOL	1.045	0	0	0.013	4.545	0.997	0.064			0.041			0.026		
Sun	n of SOL lan	dings		170.105			205			386.198			407.224			304.418		
3a	GN1	none	WHG	0.025	2.148	0.988	0.123	0.379	0.755	0.068			0.017			0.097		
3a	GT1	none	WHG	0.092	0.138	0.6	0.004	0.02	0.833	0.011			0.067			0.181		
3a	LL1	none	WHG							0.007			0.02			0.002		
3a	TR1	none	WHG	2.402	74.42	0.969	0.302	5.714	0.95	1.388	5.531	0.799	0.288	8.748	0.968	1.9	21.016	0.917
3a	TR2	CPart13B	WHG															
3a	TR2	CPart13C	WHG															
3a	TR2	none	WHG	79.388	3088.033	0.975	81.003	2280.338	0.966	65.84	891.909	0.931	69.387	627.848	0.9	65.269	1001.148	0.939
		Hone	******	75.500	5000.055		01.000	2200.000	0.500	05.04	051.505	0.551	05.507	0271040	0.5	05.205		
3a	TR3	none	WHG	0.892	171.157	0.995	0.013	0.106	0.891	0.001	031.303	0.551	69.779	0271040	0.5	0.01		

Table 5.2.2.1.b. Kattegat landings (L), discards (D) and discard rate (R) of cod (COD), haddock (HAD), Nephrops (NEP), plaice (PLE), sole (SOL) and whiting (WGH) by regulated gear category and derogation 2008-2012. The derogations CPart11 and IIA83B are considered unregulated and are not included. Landings of the most important species by unregulated gears are shown in Table 5.2.2.3-6.

REG_AREA	REG_GEAR	SPECON	SPECIES	2008 L	2008 D	2008 R	2009 L	2009 D	2009 R	2010 L	2010 D	2010 R	2011 L	2011 D	2011 R	2012 L	2012 D	2012 R
3a	GN1	none	COD	46.62			13.615	100.748	0.881	10.048	4.178	0.294	2.864	35.352	0.925	0.545	0.156	0.223
3a	GT1	none	COD	3.106			1.208	1.312	0.521	0.73	0	0	0.016	0.276	0.945	0.03	0.011	0.268
3a	LL1	none	COD	13.507														
3a	TR1	none	COD	32.749	9.715	0.229	17.437	0.614	0.034	4.078	2.304	0.361	1.522	3.846	0.716	1.989	4.467	0.692
3a	TR2	CPart13B	COD							0.15			0.018					
3a	TR2	CPart13C	COD							85.105	177.723	0.676	81.139	155.18	0.657	49	104.224	0.68
3a	TR2	none	COD	305.275	136.914	0.31	123.781	55.427	0.309	27.336	10.257	0.273	38.127	21.426	0.36	24.263	18.246	0.429
3a	TR3	none	COD	0.283			0.075						0.053			0.74		
	n of COD land			401.54			156.116			127.447			123.739			76.567		
3a	GN1	none	HAD	2.239			0.16			0.002	0	0				0.002	0	0
3a	GT1	none	HAD	1.173			0.16			0.014	0	0	0.006					
3a	LL1	none	HAD	0.91														
3a	TR1	none	HAD	6.662	2.264	0.254	5.912	0.472	0.074	0.804	1.21	0.601	0.154	1.056	0.873	0.283	0.311	0.524
3a	TR2	CPart13B	HAD							0.067			0.002					
3a	TR2	CPart13C	HAD							17.512	56.923	0.765	11.067	114.067	0.912	3.929	4.387	0.528
3a	TR2	none	HAD	136.987	35.725	0.207	67.801	46.55	0.407	6.457	5.728	0.47	3.99	2.874	0.419	0.654	11.701	0.947
3a	TR3	none	HAD	0.034									0.003			1.729		
Sun	n of HAD land	ings		148.005			74.033			24.856			15.222			6.597		
3a	GN1	none	NEP	0.221			0	0.061	1	0.001	0	0	0.091	0	0			
3a	GT1	none	NEP	0.126			1.15	0.003	0.003	0.002			0.986					
3a	LL1	none	NEP													0.152		
3a	TR1	none	NEP	63.402	41.858	0.398	17.321	10.062	0.367	34.668	17.456	0.335	20.467	17.945	0.467	65.613	94.075	0.589
3a	TR2	CPart13B	NEP							16.387			5.258					
3a	TR2	CPart13C	NEP							1680.755	848.767	0.336	1086.195	1278.643	0.541	1350.869	1972.919	0.594
3a	TR2	none	NEP	1779.912	888.781	0.333	1628.267	1050.76	0.392	133.253	119.169	0.472	101.141	67.138	0.399	112.569	103.012	0.478
3a	TR3	none	NEP	1.096			0.807			0.003			1.097					
Sun	n of NEP land	ings		1844.757			1647.545			1865.069			1215.235			1529.203		
3a	GN1	none	PLE	61.128			26.98	9.782	0.266	21.522	4.561	0.175	10.499	18.813	0.642	11.291	5.003	0.307
3a	GT1	none	PLE	39.505			6.626	0.867	0.116	9.976	0.548	0.052	5.714	14.124	0.712	2.689	1.415	0.345
3a	LL1	none	PLE															
3a	TR1	none	PLE	281.734	225.288	0.444	187.133	73.565	0.282	55.411	42.551	0.434	60.669	35.543	0.369	21.831	53.254	0.709
3a	TR2	CPart13B	PLE							1.791			0.166					
3a	TR2	CPart13C	PLE							256.354	1029.602	0.801	202.833	1090.616	0.843	136.954	314.269	0.696
3a	TR2	none	PLE	481.069	294.351	0.38	295.97	606.134	0.672	34.688	94.444	0.731	14.202	59.214	0.807	12.264	16.974	0.581
3a	TR3	none	PLE	0.534			0.191			0.221			0.066			0.257		
Sur	m of PLE land	ings		863.97			516.9			379.963			294.149			185.286		
3a	GN1	none	SOL	57.436			72.474	3.129	0.041	58.238	1.762	0.029	60.753	0.678	0.011	26.421	0.202	0.008
3a	GT1	none	SOL	15.818			14.651	0.263	0.018	21.044	0.303	0.014	20.182	0.177	0.009	8.778	0.102	0.011
3a	LL1	none	SOL													0.003		
3a	TR1	none	SOL	6.881	0.748	0.098	2.252	0.231	0.093	1.638	0.683	0.294	0.975	0.157	0.139	4.082	0.042	0.01
3a	TR2	CPart13B	SOL							1.094			0.007					
3a	TR2	CPart13C	SOL							132.504	45.96	0.258	153.813	16.938	0.099	102.579	2.212	0.021
3a	TR2	none	SOL	214.77	12.984	0.057	170.131	15.777	0.085	6.146	0.607	0.09	4.048	0.415	0.093	0.689	2.55	0.787
3a	TR3	none	SOL	0.201			0.147			0.082			0.005					
	n of SOL land			295.106			259.655			220.746			239.783			142.552		
3a	GN1	none	WHG	0.356			0	1.089	1	0	0.8	1	0	0.114	1			
3a	GT1	none	WHG	0.175			0	0.092	1	0.012	0.271	0.958	0	0.053	1			
3a	LL1	none	WHG				-		-				-		_			
3a	TR1	none	WHG	1.506	9.001	0.857	0.359	1.15	0.762	0.116	0.874	0.883	0.006	0.1	0.943	0.009	0.741	0.988
3a	TR2	CPart13B	WHG							0.004			0.003					
3a	TR2	CPart13C	WHG							7.644	305.756	0.976	7.152	288.584	0.976	4.901	124.5	0.962
3a	TR2	none	WHG	40.719	255.159	0.862	22.495	170.373	0.883	6.758	37.712	0.848	5.108	34.651	0.872	1.838	11.653	0.864
3a	TR3	none	WHG	0.001		0.002	0.001	_,,,,,,	0.003	0.755	3,,,,12	0.0.0	0.100	3.11032	0.072	22.77	11.000	5.00
	n of WHG land			42.757			22.855			14.534			12.269			29.518		
	. C. WING MIN	8-		42.737			22.000			14.554			12.203			23.310		

Detailed information by country is downloadable and provided on the STECF EWG 13-13 website: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313

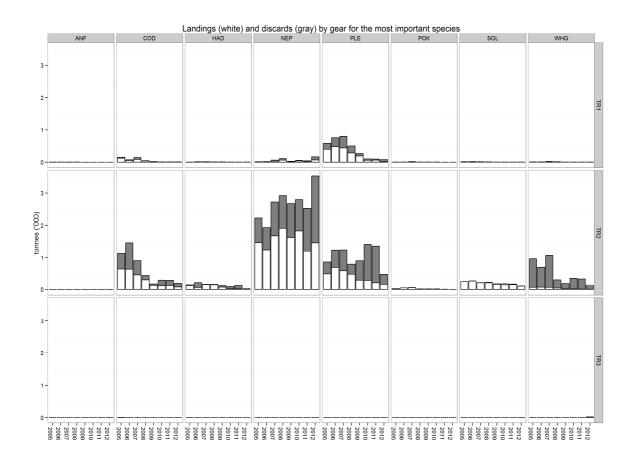


Figure 5.2.2.2. Landings (white) and discards (grey) in tonnes by the regulated gear categories TR1, TR2 and TR3 and by species in Kattegat 2005-2012. The derogations CPart11 and IIA83b are not included in the TR2 gear category above, since they are considered unregulated.

Table 5.2.2.3 Unregulated gears, landings (t) of cod in Kattegat 2003-2012. Discards for unregulated gears are not sampled for discards in Kattegat except for the Swedish sorting grid, derogation CPart11. The discards of cod for the derogation CPart11 in 2012 were 12,1 tonnes.

REG_AREA	COUNTRY	REG_GEAR	SPECON	SPECIES	2003 L	2004 L	2005 L	2006 L	2007 L	2008 L	2009 L	2010 L	2011 L	2012 L
3a	DNK	DEM_SEINE	none	COD	8.0	0	0	0	0	0	0	0	0	0
3a	DNK	none	none	COD	6.4	3.0	5.7	10.2	1.1	0.1	0.2	0	0.3	0.4
3a	DNK	OTTER	none	COD	16.9	8.0	7.6	13.9	0.6	0	0.0	0.2	0	0
3a	DNK	PEL_TRAWL	none	COD	2.0	3.8	5.0	5.0	0.4	0.1	0.1	0.1	0.2	3.8
3a	DNK	POTS	none	COD	0	0	0	0	0	0	0	0	0	0
3a	SWE	none	none	COD	0	0	0	0	0	0	0	0	0.3	0
3a	SWE	OTTER	none	COD	1.8	0.6	4.9	4.5	4.6	4.4	8.7	3.2	1.1	2.9
3a	SWE	PEL_TRAWL	none	COD	0	0	0	0	3.6	0	0	0	0	0
3a	SWE	POTS	none	COD	0	0	0	0	0	0	0	0	0	0
3a	SWE	TR2	CPART11	COD	0	0	0	0	0	0	0.1	0.2	0.4	0.1
3a	SWE	TR2	IIA83b	COD	0	0	0.3	0	0.3	0.2	0	0	0	0
Total					28.1	15.5	23.6	33.7	10.7	5.0	9.3	3.8	2.4	7.4

Table 5.2.2.4 Unregulated gears, landings (t) of plaice in Kattegat 2003-2012. Discards for unregulated gears are not sampled for discards in Kattegat except for the Swedish sorting grid, derogation CPart11. The discards of plaice for the derogation CPart11 in 2012 were 19 tonnes.

REG_AREA	COUNTRY	REG_GEAR	SPECON	SPECIES	2003 L	2004 L	2005 L	2006 L	2007 L	2008 L	2009 L	2010 L	2011 L	2012 L
3a	DEU	OTTER	none	PLE	0	0	0	0	0	0	0	0	0	0
3a	DNK	DEM_SEINE	none	PLE	0.3		0.7	0	0	0	0	0	0	0
3a	DNK	none	none	PLE	24.0	11.1	1.3	3.9	7.2	1.8	0.6	0.7	0.3	1.6
3a	DNK	OTTER	none	PLE	0.9	0.2	0.6	4.4	1.6	0.6	0.4	0.3	0.1	0
3a	DNK	PEL_TRAWL	none	PLE	0.5	0.3	0.0	0.5	0.2	0.1	0.1	0.1	0	1.2
3a	DNK	POTS	none	PLE	0.04	0	0	0	0	0	0	0	0.03	0
3a	SWE	OTTER	NONE	PLE	0.1	0	0.1	0.8	0.7	1.1	3.2	1.9	0.1	0.2
3a	SWE	TR2	CPART11	PLE	0	0	0	0	0	0	3.2	2.8	1.2	1.0
3a	SWE	TR2	IIA83b	PLE	0	0	0.1	0.3	0.7	1.7	0	0	0	0
Total					25.8	11.6	2.9	9.9	10.4	5.2	7.6	5.8	1.7	4.1

Table 5.2.2.5 Unregulated gears, landings of sole in Kattegat 2003-2012. Discards for unregulated gears are not sampled for discards in Kattegat except for the Swedish sorting grid, derogation CPart11. The discards of sole for the derogation CPart11 in 2012 were 4,6 tonnes.

REG_AREA	COUNTRY	REG_GEAR	SPECON	SPECIES	2003 L	2004 L	2005 L	2006 L	2007 L	2008 L	2009 L	2010 L	2011 L	2012 L
3a	DEU	OTTER	none	SOL	0	0	0	0.1	0	0	0	0	0	0
3a	DNK	DEM_SEINE	none	SOL	0	0	0	0	0	0	0	0	0	0
3a	DNK	none	none	SOL	2.2	1.3	2.4	2.2	2.7	1.3	0.2	0.1	0.2	1.8
3a	DNK	OTTER	none	SOL	0.3	0	0.3	1.5	0.3	0.1	0.2	0.1	0.1	0
3a	DNK	PEL_TRAWL	none	SOL	0	0.2	0	0	0	0	0	0.1	0	0
3a	DNK	POTS	none	SOL	0.4	0	0	0	0	0	0	0	0.01	0
3a	SWE	OTTER	none	SOL	0	0.01	0	0	0.03	0	0.02	0	0	0
3a	SWE	TR2	CPART11	SOL	0	0	0	0	0	0	0.8	1.7	1.5	0.4
3a	SWE	TR2	IIA83b	SOL	0	0	0.5	0.5	0.8	0.9	0	0	0	0
Total					2.9	1.5	3.2	4.2	3.8	2.3	1.2	1.9	1.9	2.2

Table 5.2.2.6 Unregulated gears, landings of Nephrops in Kattegat 2003-2012. Discards for unregulated gears are not sampled for discards in Kattegat except for the Swedish sorting grid, derogation CPart11. The discards of Nephrops for the derogation CPart11 in 2012 were 227 tonnes.

REG_ARE	A COUNTRY	REG_GEAR	SPECON	SPECIES	2003 L	2004 L	2005 L	2006 L	2007 L	2008 L	2009 L	2010 L	2011 L	2012 L
3a	DEU	OTTER	none	NEP	0	0	0	0	0	0	0	0	0	0
3a	DNK	none	none	NEP	2.0	2.1	1.9	6.2	4.5	2.0	1.9	0.7	0.9	6.0
3a	DNK	OTTER	none	NEP	2.2	0.7	1.2	1.3	0.3	0.7	1.6	1.9	0.7	0
3a	DNK	PEL_TRAWL	none	NEP	6.9	0.5	0.1	1.5	0	0.8	0.1	0.9	0	0
3a	DNK	POTS	none	NEP	0.3	0	0	0	0	0	0	0	0	0
3a	SWE	OTTER	none	NEP	0.1	0	0.1	0.4	0.2	0.4	1.4	0.3	0	0.1
3a	SWE	POTS	none	NEP	1.8	7.3	3.9	6.4	9.9	9.9	8.0	5.8	4.7	8.5
3a	SWE	TR2	CPART11	NEP	0	0	0	0	0	0	240.9	264.0	202.2	274.4
3a	SWE	TR2	IIA83b	NEP	0	2.9	46.2	51.3	95.5	129.3	0	0	0	0
Total					13.2	13.4	53.5	67.1	110.3	143.2	253.8	273.6	208.5	288.9

Relative changes in catch data since last submissions:

Since previous year's data submission Sweden has not made any changes, while Denmark has revised all data, both catch and effort, for the whole time series. The relative change in landings and discards for the most important species is presented in Table 5.2.2.7 and 5.2.2.8 respectively.

Table 5.2.2.7. Relative change in landings compared to the previous year's data submissions, by country, regulated gear category and vessel length, for cod (COD), haddock (HAD), Nephrops (NEP), plaice (PLE), sole (SOL) and whiting (WHG).

REG_AR	EA COUNTI	RY REG_GI	EAR VESSEL_	LENGTH SPECON	SPECIES	2003 L	2004 L	2005 L	2006 L	2007 L	2008 L	2009 L	2010 L	2011 L
3a.	DNK	GN1	o10t15m	none	COD	0.041	0.011	0.039	0.038	0.042	0.04	0.042	0.034	0.043
3a.	DNK	GN1	o15m	none	COD	0.041	0.043	-0.504	0.035	0.047	0.037	0.059		0.044
3a.	DNK	GT1	o10t15m	none	COD	0.033	0.041	0.047	0.031	0.039	0.041	0.045	0.04	0.136
3a	DNK	GT1	o15m	none	COD	0.023		0.048				0.036		
3a	DNK	LL1	o10t15m	none	COD	0.047								
3a	DNK	LL1	o15m	none	COD	0.038	0.041							
3a	DNK	TR1	o10t15m	none	COD	0.039	0.035	0.048	0.041	0.041	0.039	0.037	0.037	0.035
3a	DNK	TR1	o15m	none	COD	0.036	0.039	0.034	0.039	0.04	0.039	0.038	0.04	0.038
3a.	DNK	TR2	o10t15m	none	COD	0.038	0.041	0.037	0.038	0.04	0.037	0.037		
3a	DNK	TR2	o15m	none	COD	0.035	0.041	0.039	0.037	0.039	0.037	0.029		
3a.	DNK	TR3	o10t15m	none	COD	-0.404	-0.133	-0.019	-0.83	0.038	-0.708	0.03		0.053
3a.	DNK	TR3	o15m	none	COD	-0.354	-0.703	-0.569	-0.934	-0.88	-0.99	-0.296		
3a.	DNK	GN1	o10t15m	none	HAD	0.042	0.085	0.039	0.025	0.033	0.469	0.045	0.005	
3a	DNK	GN1	o15m	none	HAD	0.043	0.126			-0.153				
3a	DNK	GT1	o10t15m	none	HAD	0.0.0	020	0.059		0.100		0.045	0.088	
3a	DNK	GT1	o15m	none	HAD			-0.153				-0.259	0.000	0.026
3a	DNK	LL1	o10t15m	none	HAD	0.695		0.133				0.233		0.020
3a	DNK	LL1	o15m	none	HAD	0.042								
3a.	DNK	TR1	o10t15m		HAD	0.042	0.05	0.119	0.029	0.04	0.07	0.047	0.036	0.048
3a.	DNK	TR1	o15m	none	HAD	0.043	0.039	0.037	0.029	0.041	0.07	0.047	0.036	-0.363
за. За.	DNK	TR2	o10t15m	none	HAD	0.043	0.039	0.037	0.085	0.041	0.072	0.037	0.049	-0.363
за. За.	DNK	TR2	010t15m 015m	none	HAD	0.043	0.042	0.038	0.032	0.036	0.041	0.043		
		TR3		none	HAD	0.043	-0.983	0.030	0.034	0.036		0.043		0.024
3a	DNK DNK	TR3	o10t15m o15m	none	HAD	-0.37	-0.965	-0.994	0.039	-0.992	0.029			0.024
3a				none						-0.992	0.000		1	0.00
3a	DNK	GN1	o10t15m	none	NEP	-0.075	-0.002	0.004	0.01	0.000	0.002		- 1	0.22
3a	DNK	GN1	o15m	none	NEP	_	-0.002	_	0	0.003				-0.267
3a	DNK	GT1	o10t15m	none	NEP	0		0		-0.002		-0.001		0.092
3a.	DNK	GT1	o15m	none	NEP	0	0.040	0		0	0.004	0		-0.346
3a.	DNK	TR1	o10t15m	none	NEP	0	-0.019	0.001	0.002	-0.003	0.001	-0.004	-0.003	-0.001
3a.	DNK	TR1	o15m	none	NEP	0	-0.005	-0.009	0.036	-0.003	0	-0.006	-0.004	0.005
3a.	DNK	TR2	o10t15m	none	NEP	0	-0.001	-0.001	-0.001	0	0	0		
3a.	DNK	TR2	o15m	none	NEP	0	0.001	0.001	0	0	0	0.001		
3a.	DNK	TR3	o10t15m	none	NEP	-0.002		0.004	-0.106	0	0	0	0	0
3a	DNK	TR3	o15m	none	NEP	-0.35	-0.278	-0.85	-0.043	0.022	0	0.001		0
3a.	DNK	GN1	o10t15m	none	PLE	0.047	0.042	0.044	0.035	0.035	0.037	0.04	0.031	0.034
3a.	DNK	GN1	o15m	none	PLE	0.048	0.044	0.084	0.038	0.035	0.038	0.048	0.03	0.032
3a.	DNK	GT1	o10t15m	none	PLE	-0.586	0.049	0.012	0.033	0.166	0.037	0.054	0.043	0.032
3a.	DNK	GT1	o15m	none	PLE	0.05		0.042		0.19		0.035	0.032	0.032
3a.	DNK	LL1	o10t15m	none	PLE	0.435								
3a.	DNK	TR1	o10t15m	none	PLE	0.049	0.049	0.041	0.036	0.035	0.038	0.029	0.022	0.034
3a	DNK	TR1	o15m	none	PLE	0.049	0.047	0.041	0.036	0.036	0.038	0.041	0.045	0.034
3a	DNK	TR2	o10t15m	none	PLE	0.046	0.044	0.041	0.036	0.035	0.037	0.037		
3a	DNK	TR2	o15m	none	PLE	0.047	0.045	0.04	0.035	0.036	0.039	0.036		
3a	DNK	TR3	o10t15m	none	PLE	-0.093	0.905	0.114	-0.065	0.037	0.039	0.038	0.032	0.032
3a.	DNK	TR3	o15m	none	PLE	-0.656	-0.936	-0.984	-0.608	-0.983	0.034	-0.06		-0.024
3a.	DNK	GN1	o10t15m	none	SOL	0.025	-0.013	0.03	0.027	0.034	0.013	0.033	0.03	0.042
3a.	DNK	GN1	o15m	none	SOL	0.028	0.015	0.043	0.032	0.034	0.02	0.035	0.021	0.042
3a.	DNK	GT1	o10t15m	none	SOL	-0.073	0.019	0.024	0.021	0.034	0.02	0.031	0.038	0.046
3a	DNK	GT1	o15m	none	SOL	0.026		0.027				0.026	0.017	0.03
3a	DNK	TR1	o10t15m	none	SOL	0.015	0.016	0.019	0.031	0.037	0.019	0.037	0.028	0.051
3a.	DNK	TR1	o15m	none	SOL	0.023	0.019	0.03	0.028	0.035	0.019	0.03	0.027	0.038
3a	DNK	TR2	o10t15m	none	SOL	0.021	0.021	0.024	0.027	0.035	0.02	0.029		
3a	DNK	TR2	o15m	none	SOL	0.021	0.022	0.024	0.024	0.034	0.02	0.029		
3a	DNK	TR3	o10t15m	none	SOL	0.017	0.923	0.064	-0.488	0.032	0.024	0.023	0.018	-0.196
3a	DNK	TR3	o15m	none	SOL	-0.002	2.458	-0.024	-0.019		-0.039			-0.02
3a	DNK	GN1	o10t15m	none	WHG	-0.295	-1	-0.003	-0.038					
3a.	DNK	GN1	o15m	none	WHG	-0.153	-0.01		0.059					
3a	DNK	GT1	o10t15m	none	WHG	2.100	2.01	0.695	2.300	-0.153		-1	-0.153	
3a.	DNK	GT1	o15m	none	WHG	-0.997		0.000		5.155		'	0.100	
3a	DNK	TR1	o10t15m	none	WHG	0.015	-0.985	-0.002	-0.033	0.068	0.044	-0.95	-0.194	
3a.	DNK	TR1	o15m	none	WHG	-0.505	-0.916	-0.925	-0.033	0.000	0.106	-0.55	0.134	-0.121
за 3а	DNK	TR2	o10t15m		WHG	-0.505	0.001	-0.925 O	0.006	0.018	0.106	-0.001		-0.121
за 3a		TR2		none		-0.02 -0.215		-				-0.001		
	DNK		o15m o10t15m	none none	WHG WHG	-0.215 -0.997	-0.019	-0.031	-0.315	-0.002	-0.176	-0.001		
3a 3a	DNK DNK	TR3 TR3	015m	none	WHG	-0.998	-1	-1		-1	-1	-1		

Table 5.2.2.7. Relative change in discards compared to the previous year's data submissions, by country, regulated gear category and vessel length, for cod (COD), haddock (HAD), Nephrops (NEP), plaice (PLE) and sole (SOL).

ANNEX REG APEN COUNTY PEG GEAR VESSEL LENGTH SPECONS COUNTY CO	4 5 15 15 4	550		550 0515	VEGOE! LENGT		005050	0000 D	00045	0005.5	0000 5	0007.5	0000 D	0000 D	0040 0	0044.5
Inches 18								2003 D	2004 D	2005 D	2006 D	2007 D	2008 D	2009 D	2010 D	2011 D
18. 30																
18																
16																
Inc. Sac. DNK TR1 Oldfiffm none COL 0.459 0.421 0.478 0.025 0.025 0.025 0.027 0.025 0.																
Inc. Bas DNK TR1 Ol5m none CDD 0.828 -0.55 -0.695 0.072 0.025 -0.921 -0.921 -0.921 -0.921 -0.921 -0.921 -0.921 -0.921 -0.921 -0.921 -0.921 -0.921 -0.921 -0.921 -0.921 -0.922 -0.921 -0.921 -0.922 -0.921 -0.921 -0.922 -0.921 -0.922 -0.921 -0.922 -0.921 -0.922 -0.921 -0.922 -0.921 -0.922 -0.921 -0.922 -0.92								0.459	-0.421	-0.478	1.028	0.535	3.08	-0.978		
Incompage Inco	lla.	3a	DNK	TR1	o15m		COD	0.828	-0.51	-0.695	0.712	0.025		-0.971		
Inches March Mar	lla.	3a	DNK	TR2	o10t15m	none	COD	1.965	8.073	405.745	620.188	319.91	3.11	2.84		
	lla.	3a	DNK	TR2	o15m	none	COD	0.374	-0.1	-0.292	0.116	-0.123	-0.442	-0.566		
IR	lla.	3a	DNK	TR3	o10t15m	none	COD									
In						none										
Income MAD																
Inc.																
Main																
No																
Ina																
In								_0.157	-0.79	_0.05	0.170	_0.705	_0.275		_0.210	
Ina													-0.379		-0.210	
Ina													-0.648	0.541		
Ha																
III									5.5 15	0.00	1.501	5.511	5.555	5.55		
Ila 3a DNK GNI																
III																
III		3a	DNK	GN1	o15m		NEP									
Ind	lla	3a	DNK	GT1	o10t15m	none	NEP									
In	lla.	3a.	DNK		o15m	none										
III	lla	3a.			o10t15m	none										
In															-0.576	
III						none										
Ila 3a DNK GNI 01015m none PLE								4.67	0.57	1.162	1.031	0.47	-0.153	0.53		
III																
III																
II																
II																
Ila 3a DNK TR1																
Ila 3a DNK TR1 010t15m none PLE -0.497 1.456 0.087 0.533 0.388 1.274 0.059 -0.635 1.84 3a DNK TR2 010t15m none PLE -0.356 1.848 15.685 20.595 42.089 23.125 6.365 1.84																
Ila 3a DNK TR1 O15m none PLE -0.85 0.548 -0.013 0.448 0.971 1.396 0.003 -0.884 Ila 3a DNK TR2 O10t15m none PLE -0.326 1.848 15.863 20.595 4.2089 23.125 6.365 Ila 3a DNK TR3 O10t15m none PLE -0.397 -0.491 -0.507 -0.03 -0.214 -0.301 0.377 Ila 3a DNK TR3 O15m none PLE -0.397 -0.491 -0.507 -0.03 -0.214 -0.301 0.377 Ila 3a DNK TR3 O15m none PLE -0.397 -0.491 -0.507 -0.03 -0.214 -0.301 0.377 Ila 3a DNK GN1 O10t15m none SOL -0.518 -0.518 -0.518 -0.518 -0.507 -0.03 -0.214 -0.301 0.377 Ila 3a DNK GN1 O10t15m none SOL -0.518								-0.497	1.456	0.087	0.533	0.388	1.274	0.059	-0.635	
III																
Ila 3a DNK TR2 O15m none PLE -0.397 -0.491 -0.507 -0.03 -0.214 -0.301 0.377 Ila 3a DNK TR3 O10t15m none PLE Ila 3a DNK GN1 O10t15m none SOL Ila 3a DNK GN1 O15m none SOL Ila 3a DNK GN1 O10t15m none SOL Ila 3a DNK GT1 O10t15m none SOL Ila 3a DNK GT1 O15m none SOL Ila 3a DNK TR1 O10t15m none SOL Ila 3a DNK TR1 O15m none SOL Ila 3a DNK TR1 O15m none SOL T.165 -0.998 -0.315 T.116 -0.562 5.036 Ila 3a DNK TR2 O15m none SOL -0.908 -0.31 -0.926 -0.961 -0.936 -0.294 0.177 Ila 3a DNK TR3 O10t15m none SOL -0.908 -0.31 -0.926 -0.961 -0.936 -0.294 0.177 Ila 3a DNK TR3 O10t15m none SOL -0.908 -0.31 -0.926 -0.961 -0.936 -0.294 0.177 Ila 3a DNK TR3 O10t15m none SOL -0.908 -0.31 -0.926 -0.961 -0.936 -0.294 0.177 Ila 3a DNK GN1 O10t15m none SOL -0.908 -0.31 -0.926 -0.961 -0.936 -0.294 0.177 Ila 3a DNK GN1 O10t15m none WHG -0.908 -0.31 -0.926 -0.961 -0.936 -0.994 -0.994 Ila 3a DNK GN1 O10t15m none WHG -0.908 -0.31 -0.926 -0.961 -0.936 -0.994 -0.	lla.	3a	DNK	TR2	o10t15m		PLE	-0.326	1.848	15.863	20.595	42.089	23.125	6.365		
IIa 3a DNK GN1 O10115m none SOL IIa 3a DNK GT1 O15m none SOL IIa 3a DNK GT1 O15m none SOL IIa 3a DNK TR1 O10115m none SOL T.165 T.165 T.165 IIa 3a DNK TR1 O15m none SOL T.165 T.165 T.165 IIa 3a DNK TR2 O10115m none SOL O.912 T.1.104 O.908 O.315 T.116 O.908 O.994 IIa 3a DNK TR2 O10115m none SOL O.908 O.315 O.906 O.906 O.906 O.906 O.906 O.906 IIa 3a DNK TR3 O10115m none SOL O.908 O.908 O.906 O.906 O.906 O.908 O.908 IIa 3a DNK TR3 O15m none SOL O.908 O.908 O.908 O.908 O.908 O.908 O.908 O.908 IIa 3a DNK GN1 O10115m none WHG O.908				TR2	o15m	none	PLE	-0.397	-0.491	-0.507	-0.03	-0.214	-0.301	0.377		
III	lla.	3a	DNK	TR3	o10t15m	none	PLE									
III						none										
IIa 3a DNK GT1 O10t15m none SOL																
IIa 3a DNK TR1 o10115m none SOL 10.573 -0.986 -0.978																
Ila 3a DNK TR1 010t15m none SOL 10.573 - 0.986 - 0.998 - 0.978																
Ila 3a DNK TR1 O15m none SOL 7.165 -0.918 -0.9								10.530				0.000				
IIa 3a DNK TR2 o10t15m none SOL -0.912 11.104 -0.908 -0.315 1.116 -0.562 5.036																
Ila 3a DNK TR2 015m none SOL -0.908 -0.31 -0.926 -0.961 -0.936 -0.294 0.177 Ila 3a DNK TR3 010115m none SOL -0.908 -0.31 -0.926 -0.961 -0.936 -0.294 0.177 Ila 3a DNK GN1 010115m none WHG -0.936 -0.294									11 104	_0 000	_0.215		-0 Eco	E 000		
IIa 3a DNK TR3 o10t15m none SOL																
IIa 3a DNK GN1 o10115m none WHG IIa 3a DNK GN1 o10115m none WHG IIa 3a DNK GN1 o10115m none WHG IIa 3a DNK GT1 o10115m none WHG IIa 3a DNK GT1 o10115m none WHG IIa 3a DNK GT1 o10115m none WHG IIa 3a DNK TR1 o10115m none WHG 6,786 -0,747 -0,944 2772.03 IIa 3a DNK TR2 o10115m none WHG 4,205 14,655 22,567 0,418 986,116 255,865 27,827 IIa 3a DNK TR2 o10115m none WHG 0,515 -0,209 -0,139 -0,414 0,297 -0,643 -0,197 IIa 3a DNK TR3 o10115m none WHG 0,515 -0,209 -0,139 -0,414 0,297 -0,643 -0,197 IIa 3a DNK TR3 o10115m none WHG 0,515 -0,209 -0,139 -0,414 0,297 -0,643 -0,197 IIa 3a DNK TR3 o10115m none WHG 0,515 -0,209 -0,139 -0,414 0,297 -0,643 -0,197 IIa 3a DNK TR3 o10115m none WHG 0,515 -0,209 -0,139 -0,414 0,297 -0,643 -0,197 IIa 3a DNK TR3 o10115m none WHG 0,515 -0,209 -0,139 -0,414 0,297 -0,643 -0,197 IIa 3a DNK TR3 o10115m none WHG 0,515 -0,209 -0,139 -0,414 0,297 -0,643 -0,197 IIa 3a DNK TR3 o10115m none WHG -0,515 -0,209 -0,139 -0,414 0,297 -0,643 -0,197 IIa 3a DNK TR3 o10115m none WHG -0,515 -0,209 -0,139 -0,414 0,297 -0,643 -0,197 IIa 3a DNK TR3 o10115m none -0,515 -0,209 -0,139 -0,414 0,297 -0,643 -0,197 IIa 3a DNK TR3 o10115m none -0,515 -0,209 -0,139 -0,414 0,297 -0,643 -0,197 IIa 3a DNK TR3 o10115m none -0,515 -0,209 -0,139 -0,414 0,297 -0,643 -0,197 IIa 3a DNK TR3 o10115m none -0,515 -0,209 -0,139 -0,414 0,297 -0,643 -0,197 IIa 3a DNK TR3 010115m -0,515 -0,515 -0,209 -0,139 -0,414 0,297 -0,643 -0,197 IIa 3a DNK TR3 010115m -0,515								-0.300	-0.31	-0.320	-0.301	-0.536	-0.234	0.177		
IIa 3a DNK GN1 o10t15m none WHG																
IIa 3a DNK GT1 o10115m none WHG																
IIa 3a DNK GT1 o10t15m none WHG																
IIa 3a DNK GT1 015m none WHG																
IIa 3a DNK TR1 010115m none WHG 86.128 25.308 1.187 -0.954																
IIa 3a DNK TR1 015m none WHG 6.786 -0.747 -0.944 2772.03								86.128		1.187				-0.954		
lla 3a DNK TR2 o15m none WHG 0.515 -0.209 -0.139 -0.414 0.297 -0.643 -0.197 lla 3a DNK TR3 o10t15m none WHG	lla	3a	DNK	TR1			WHG	6.786	-0.747	-0.944	2772.03					
lla 3a DNK TR3 o10t15m none WHG	lla				o10t15m	none										
								0.515	-0.209	-0.139	-0.414	0.297	-0.643	-0.197		
lla 3a DNK TR3 o15m none WHG																
	lla	3a	DNK	TR3	o15m	none	WHG									

Table 5.2.2.9. Kattegat Index of Discard Coverage (DQI) for cod (COD), Nephrops (NEP), plaice (PLE), sole (SOL) and whiting (WHG) by regulated gear category and derogation 2003-2012. The derogations CPart11 and IIA83B are considered unregulated and are not included. A \geq 67% of landings are covered with discard estimates, B \geq 34% and \leq 66% of the landings are covered with discard estimates, C \leq 33% of the landings are covered with discard estimates.

ANNEX	REG AREA	REG GEAI	SPECON	SPECIES	2003 DQI	2004 DQI	2005 DQI	2006 DQI	2007 DQI	2008 DQI	2009 DQI	2010 DQI	2011 DQI	2012 DQI
lla	3a (GN1	none	COD	С	С					С	Α	С	Α
lla	3a (GT1	none	COD	С	С					С	Α	С	С
IIa	3a	LL1	none	COD										
IIa	3a -	TR1	none	COD	Α	Α	Α	Α	В	Α	Α	Α	Α	С
lla	3a -	TR2	CPart13B	COD										
IIa	3a -	TR2	CPart13C	COD								Α	Α	Α
IIa	3a	TR2	none	COD	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
IIa	3a -	TR3	none	COD	С	С								
IIa	3a	GN1	none	HAD		С						Α		Α
IIa	3a (GT1	none	HAD		С						Α		
IIa	3a	LL1	none	HAD										
IIa	3a -	TR1	none	HAD	Α	Α	Α	Α	В	Α	Α	Α	Α	С
IIa	3a	TR2	CPart13B	HAD										
IIa	3a -	TR2	CPart13C	HAD								Α	Α	Α
IIa	3a	TR2	none	HAD	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
IIa	3a -	TR3	none	HAD	С	С								
IIa	3a (GN1	none	NEP	С	С					Α	Α	С	
IIa	3a (GT1	none	NEP	В	Α					С			
IIa	3a	LL1	none	NEP										
IIa	3a .	TR1	none	NEP	Α	Α	Α	Α	Α	Α	Α	Α	Α	В
IIa	3a .	TR2	CPart13B	NEP										
IIa	3a	TR2	CPart13C	NEP								Α	Α	Α
IIa	3a	TR2	none	NEP	В	Α	Α	Α	Α	Α	Α	Α	Α	Α
IIa	3a .	TR3	none	NEP	Α	В								
IIa	3a (GN1	none	PLE	С	С					В	Α	В	Α
IIa	3a (GT1	none	PLE	С	С					В	Α	С	С
IIa	3a	LL1	none	PLE										
IIa	3a -	TR1	none	PLE	Α	Α	Α	Α	С	Α	Α	Α	Α	С
IIa	3a	TR2	CPart13B	PLE										
IIa	3a	TR2	CPart13C	PLE								Α	Α	Α
IIa	3a	TR2	none	PLE	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
IIa	3a	TR3	none	PLE	В	В								
IIa	3a (GN1	none	SOL	С	С					В	В	С	С
IIa	3a (GT1	none	SOL	С	С					В	С	С	С
IIa	3a	LL1	none	SOL										
IIa	3a	TR1	none	SOL	Α	Α	Α	Α	Α	Α	Α	Α	Α	С
IIa	3a	TR2	CPart13B	SOL										
IIa	3a -	TR2	CPart13C	SOL								Α	Α	Α
IIa	3a	TR2	none	SOL	Α	Α	Α	Α	Α	Α	Α	Α	Α	В
IIa	3a	TR3	none	SOL	С	Α								
IIa	3a (GN1	none	WHG	С	С					Α	Α	Α	
IIa	3a (GT1	none	WHG	С	С					Α	С	Α	
IIa	3a	LL1	none	WHG										
IIa	3a -	TR1	none	WHG	Α	Α	Α	Α	Α	Α	Α	Α	С	Α
IIa	3a	TR2	CPart13B	WHG										
IIa	3a	TR2	CPart13C	WHG								Α	Α	Α
IIa	3a	TR2	none	WHG	Α	В	Α	Α	Α	Α	Α	Α	Α	Α
IIa	3a	TR3	none	WHG	С	С								

5.2.3 ToR 1.d CPUE and LPUE of cod by fisheries and Member States

STECF EWG 13-13 presents the estimated trends in CPUE and LPUE for cod, plaice and sole in figures and tables below. CPUE and LPUE by gear and Member State is not presented in this report but can be found on the JRC website: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1306

The very high CPUE values for gillnets (GN1) and trammel nets (GT1) in 2003 and 2004 are due to a very high discard rate for those gears and is believed to be the result of poor discard estimates, which is also reflected in the Index of Discard Coverage (shown in Table 5.2.2.9).

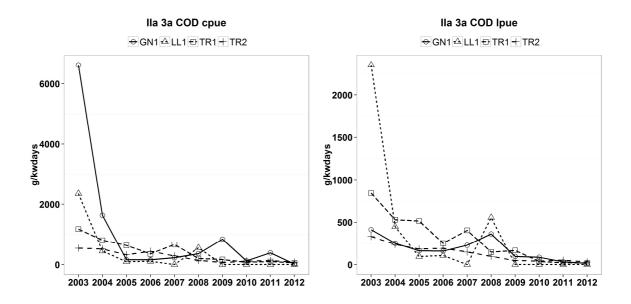


Figure 5.2.3.1 Left: CPUE (g/kWday) of cod by gear category (no special conditions) 2003-2012. Right: LPUE (g/kWday) of cod by gear category 2003-2012. CPUE and LPUE for the derogations CPart11 and IIA83b are not included in the TR2 gear category in this figure. Note that the scale on the y-axis differs between the panels.

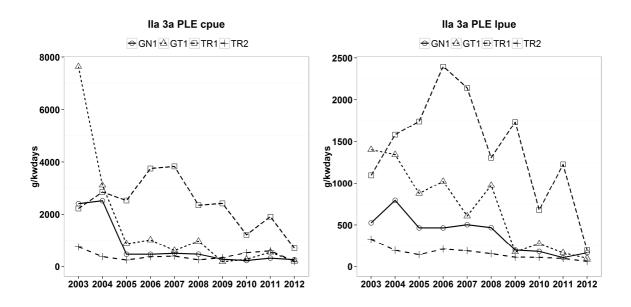


Figure 5.2.3.2 Left: CPUE (g/kWday) of plaice by gear category (no special condition) 2003-2012. Right: LPUE (g/kWday) of plaice by gear category 2003-2012. CPUE and LPUE for the derogations CPart11 and IIA83b are not included in the TR2 gear category in this figure. Note that the scale on the y-axis differs between the panels.

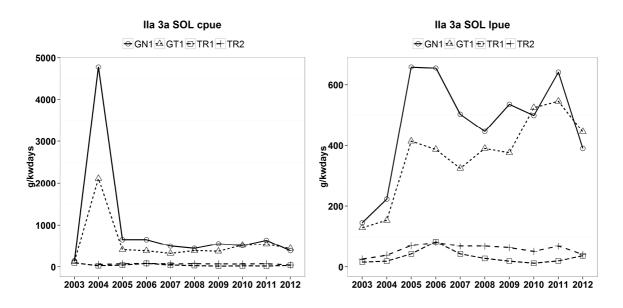


Figure 5.2.3.3 Left: CPUE (g/kWday)of sole by gear category (no special condition) 2003-2012. Right: LPUE (g/kWday) of sole by gear category 2003-2011. CPUE and LPUE for the derogations CPart11 and

IIA83b are not included in the TR2 gear category in this figure. Note that the scale on the y-axis differs between the panels.

Table 5.2.3.1. CPUE (g/kWd) of cod (COD), Nephrops (NEP), sole (SOL) and plaice (PLE) by regulated gear and derogation in Kattegat 2003-2012. The derogation CPart11/IIa83b is not included in the TR2 CPUE, since it is considered an unregulated gear.

ANNEX	SPECIES	REG AR	EA REG GEAR	SPECON	CPUE 2003 (CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012	CPUE 2010-2012
lla	COD	3a	GN1	none	6622	1636	163	159	228	361	844	120	389	15	187
lla	COD	3a	GT1	none	1480	614	171	68	87	73	50	0	0	0	0
lla	COD	3a	LL1	none	2353	449	94	108	0	555	0	0	0	0	0
lla	COD	3a	TR1	none	1178	808	638	356	667	199	167	74	101	. 57	72
lla	COD	3a	TR2	CPart13B	0	0	0	0	0	0	0	0	0	0	0
lla	COD	3a	TR2	CPart13C	0	0	0	0	0	0	0	111	118	69	99
IIa	COD	3a	TR2	none	545	518	324	440	290	142	67	129	210	164	167
IIa	COD	3a	TR3	none	162	134	14	8	3	0	0	0	0	14	8
IIa	NEP	3a	GN1	none	0	0	0	0	0	0	0	0	0	0	0
IIa	NEP	3a	GT1	none	78	0	24	0	0	0	25	0	27	0	10
IIa	NEP	3a	LL1	none							0	0	0	0	0
lla	NEP	3a	TR1	none	166	38	47	79	300	487	260	641	785	1510	1059
IIa	NEP	3a	TR2	CPart13B	0	0	0	0	0	0	0	799	1196	0	868
IIa	NEP	3a	TR2	CPart13C	0	0	0	0	0	0	0	1063	1182	1488	1243
IIa	NEP	3a	TR2	none	1079	592	615	553	823	859	1005	857	597	822	759
IIa	NEP	3a	TR3	none	471	0	0	6	0	7	0	0	39	0	8
lla	PLE	3a	GN1	none	2401	2513	465	465	503	469	271	223	315	255	262
lla	PLE	3a	GT1	none	7632	3110	877	1024	607	975	175	275	546	198	361
IIa	PLE	3a	LL1	none	0						0	0	0	0	0
IIa	PLE	3a	TR1	none	2219	2848	2523	3756	3835	2345	2413	1220	1912	712	1139
IIa	PLE	3a	TR2	CPart13B	0	0	0	0	0	0	0	100	0	0	83
IIa	PLE	3a	TR2	CPart13C	0	0	0	0	0	0	0	541	647	202	458
IIa	PLE	3a	TR2	none	754	376	246	371	397	250	339	440	263	110	278
IIa	PLE	3a	TR3	none	339	8	0	3	0	0	0	0	0	0	0
IIa	SOL	3a	GN1	none	146	4776	659	656	503	446	558	516	641	390	528
IIa	SOL	3a	GT1	none	130	2112	414	387	325	390	376	525	546	445	516
lla	SOL	3a	LL1	none							0	0	0	0	0
IIa	SOL	3a	TR1	none	97	29	43	84	43	32	19	25	20	38	30
IIa	SOL	3a	TR2	CPart13B	0	0	0	0	0	0	0	50	0	0	41
lla	SOL	3a	TR2	CPart13C	0	0	0	0	0	0	0	75	85	47	69
lla	SOL	3a	TR2	none	198	57	73	82	71	73	70	24	14	15	18
lla	SOL	3a	TR3	none	2	10	0	0	0	0	0	0	0	0	0

Table 5.2.3.2 LPUE (g/kWd) of cod (COD), Nephrops (NEP), sole (SOL) and plaice (PLE) by gear and derogation in Kattegat 2003-2012. The derogation CPart11/IIa83b is not included in the TR2 CPUE, since it is considered an unregulated gear.

ANNEX	SPECIES	REG ARE	A REG GEA	AR SPECON	LPUE 2003	LPUE 2004	LPUE 2005	LPUE 2006	LPUE 2007	LPUE 2008	LPUE 2009	LPUE 2010	LPUE 2011	LPUE 2012	LPUE 2010-2012
lla	COD	3a	GN1	none	412	251	163	159	228	361	95	86	32	15	50
lla	COD	3a	GT1	none	519	576	171	68	87	73	25	0	0	0	0
lla	COD	3a	LL1	none	2353	449	94	108	0	555	0	0	0	0	0
lla	COD	3a	TR1	none	842	530	514	252	405	148	167	37	20	19	25
lla	COD	3a	TR2	CPart13B	0	0	0	0	0	0	0	0	0	0	0
lla	COD	3a	TR2	CPart13C	0	0	0	0	0	0	0	36	40	22	33
lla	COD	3a	TR2	none	333	238	184	193	149	98	47	91	135	95	107
lla	COD	3a	TR3	none	78	19	14	8	3	0	0	0	0	14	8
lla	NEP	3a	GN1	none	0	0	0	0	0	0	0	0	0	0	0
lla	NEP	3a	GT1	none	26	0	24	0	0	0	25	0	27	0	10
lla	NEP	3a	LL1	none							0	0	0	0	0
lla	NEP	3a	TR1	none	40	29	26	30	138	292	158	431	423	617	512
lla	NEP	3a	TR2	CPart13B	0	0	0	0	0	0	0	799	1196	0	868
lla	NEP	3a	TR2	CPart13C	0	0	0	0	0	0	0	707	543	605	623
lla	NEP	3a	TR2	none	327	390	408	359	510	573	611	450	359	430	413
lla	NEP	3a	TR3	none	11	0	0	6	0	7	0	0	39	0	8
lla	PLE	3a	GN1	none	526	794	465	465	503	469	198	181	105	165	151
lla	PLE	3a	GT1	none	1402	1344	877	1024	607	975	175	275	164	99	196
lla	PLE	3a	LL1	none	0						0	0	0	0	0
lla	PLE	3a	TR1	none	1097	1582	1743	2395	2139	1307	1735	678	1228	199	580
lla	PLE	3a	TR2	CPart13B	0	0	0	0	0	0	0	100	0	0	83
lla	PLE	3a	TR2	CPart13C	0	0	0	0	0	0	0	108	101	61	90
lla	PLE	3a	TR2	none	329	194	142	209	189	155	111	119	50	46	73
lla	PLE	3a	TR3	none	9	2	0	3	0	0	0	0	0	0	0
lla	SOL	3a	GN1	none	146	223	659	656	503	446	536	499	641	390	521
lla	SOL	3a	GT1	none	130	154	414	387	325	390	376	525	546	445	516
lla	SOL	3a	LL1	none							0	0	0	0	0
lla	SOL	3a	TR1	none	16	19	43	84	43	28	19	12	20	38	25
lla	SOL	3a	TR2	CPart13B	0	0	0	0	0	0	0	50	0	0	41
lla	SOL	3a	TR2	CPart13C	0	0	0	0	0	0	0	55	77	46	59
lla	SOL	3a	TR2	none	26	39	71	81	69	69	64	17	11	0	10
lla	SOL	3a	TR3	none	2	0	0	0	0	0	0	0	0	0	0

5.2.4 ToR 2 Rank regulated gear groups on the basis of catches expressed both in weight and in number of cod

STECF EWG 13-13 presents the gear groups ranked to their relative importance of catches and landings of cod, Nephrops, plaice and sole in 2012. The TR2 category dominates the fishery of all listed species in recent years.

Table 5.2.4.1 Ranked regulated gear categories according to the proportional catches of cod, Nephrops, plaice and sole 2003-2012. Note that the derogations CPart11 and IIA83b are not included in the TR2 category below, since they are considered unregulated.

ANNEX	REG_AREA	SPECIES	REG_GEAR	2003 Rel	2004 Rel	2005 Rel	2006 Rel	2007 Rel	2008 Rel	2009 Rel	2010 Rel	2011 Rel	2012 Rel
lla	3a	COD	TR2	0.58	0.81	0.85	0.93	0.84	0.81	0.57	0.93	0.87	0.96
lla	3a	COD	TR1	0.06	0.06	0.11	0.05	0.13	0.08	0.06	0.02	0.01	0.03
lla	3a	COD	GN1	0.32	0.09	0.02	0.02	0.03	0.09	0.36	0.04	0.11	0.00
lla	3a	COD	TR3	0.02	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
lla	3a	COD	GT1	0.01	0.01	0.01	0.00	0.00	0.01	0.01	0.00	0.00	0.00
lla	3a	COD	LL1	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00
lla	3a	NEP	TR2	0.94	1.00	0.99	0.99	0.98	0.96	0.99	0.98	0.98	0.96
lla	3a	NEP	TR1	0.01	0.00	0.00	0.01	0.02	0.04	0.01	0.02	0.01	0.04
lla	3a	NEP	LL1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
lla	3a	NEP	GN1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
lla	3a	NEP	GT1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
lla	3a	NEP	TR3	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
lla	3a	PLE	TR2	0.70	0.60	0.55	0.58	0.58	0.56	0.75	0.91	0.90	0.83
lla	3a	PLE	TR1	0.10	0.23	0.38	0.36	0.38	0.37	0.22	0.06	0.06	0.13
lla	3a	PLE	GN1	0.10	0.14	0.05	0.03	0.03	0.04	0.03	0.02	0.02	0.03
lla	3a	PLE	GT1	0.06	0.03	0.02	0.02	0.01	0.03	0.01	0.01	0.01	0.01
lla	3a	PLE	TR3	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
lla	3a	PLE	LL1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
lla	3a	SOL	TR2	0.94	0.24	0.65	0.67	0.71	0.74	0.67	0.69	0.68	0.73
IIa	3a	SOL	GN1	0.03	0.69	0.28	0.25	0.21	0.18	0.27	0.22	0.24	0.18
IIa	3a	SOL	GT1	0.00	0.06	0.04	0.04	0.05	0.05	0.05	0.08	0.08	0.06
lla	3a	SOL	TR1	0.02	0.01	0.03	0.04	0.03	0.03	0.01	0.01	0.00	0.03
IIa	3a	SOL	LL1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
lla	3a	SOL	TR3	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table 5.2.4.2 Ranked regulated gear categories according to the proportional landings of cod, Nephrops, plaice and sole 2003-2012. Note that the derogations CPart11 and IIA83b are not included in the TR2 category in this table, since they are considered unregulated.

			_		_		_			_		
REG_AREA	SPECIES	REG_GEAR	2003 Rel	2004 Rel	2005 Rel	2006 Rel	2007 Rel	2008 Rel	2009 Rel	2010 Rel	2011 Rel	2012 Rel
3a	COD	TR2	0.81	0.85	0.80	0.88	0.80	0.76	0.79	0.88	0.96	0.95
3a	COD	TR1	0.10	0.10	0.15	0.07	0.15	0.08	0.11	0.03	0.02	0.03
3a	COD	GN1	0.05	0.03	0.03	0.04	0.05	0.12	0.09	0.08	0.02	0.01
3a	COD	TR3	0.03	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01
3a	COD	GT1	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.00	0.00
3a	COD	LL1	0.01	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00
3a	NEP	TR2	0.99	1.00	1.00	0.99	0.98	0.97	0.99	0.98	0.98	0.96
3a	NEP	TR1	0.01	0.00	0.00	0.00	0.02	0.03	0.01	0.02	0.02	0.04
3a	NEP	LL1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3a	NEP	GN1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3a	NEP	GT1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3a	NEP	TR3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3a	PLE	TR2	0.78	0.62	0.49	0.54	0.52	0.56	0.57	0.77	0.74	0.81
3a	PLE	TR1	0.13	0.26	0.40	0.37	0.40	0.33	0.36	0.14	0.21	0.12
3a	PLE	GN1	0.06	0.09	0.08	0.06	0.06	0.07	0.05	0.06	0.03	0.06
3a	PLE	GT1	0.03	0.03	0.04	0.03	0.03	0.05	0.01	0.03	0.02	0.02
3a	PLE	TR3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3a	PLE	LL1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3a	SOL	TR2	0.75	0.80	0.65	0.66	0.71	0.73	0.66	0.63	0.66	0.73
3a	SOL	GN1	0.19	0.16	0.28	0.25	0.21	0.19	0.28	0.26	0.25	0.18
3a	SOL	GT1	0.03	0.02	0.04	0.04	0.05	0.05	0.06	0.10	0.08	0.06
3a	SOL	TR1	0.03	0.02	0.03	0.04	0.03	0.02	0.01	0.01	0.00	0.03
3a	SOL	LL1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3a	SOL	TR3	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5.2.5 ToR 3 Information on small boats (<10m)

5.2.5.1 Fishing effort of small boats by Member State

Vessels <10m LOA are exempted from the effort regulation in Kattegat with regard to the cod plan. Tables 5.2.5.1.1 and 5.2.5.1.2 show the nominal effort (kW*days at sea) of vessels <10m LOA in Kattegat. In 2012 the nominal effort deployed by small vessels constituted 12% of the total effort in the area. The Danish effort for this group of vessels has decreased in general since 2005 and between 2011 and 2012 except for pots, that increased slightly between 2011 and 2012 but deploy a very small amount of effort. The German effort in this vessel category is insignificant. The Swedish effort of small vessels has increased by 12% since 2009.

Table 5.2.5.1.1 Nominal effort (kW*days at sea) deployed by vessels <10m LOA in Kattegat 2003-2012. Swedish effort data for vessels <10m LOA is not considered reliable before 2009 and are excluded from the table.

ANNEX	REG AREA COD	REG GEAR COD	SPECON	COUNTRY	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	Rel.2003	Rel.2009	Rel.2011
lla	3a	GN1	none	DEU				378									
lla	3a	DREDGE	none	DNK							243						
IIa	3a	GN1	none	DNK	33319	29006	52205	65655	47184	62330	46955	53325	49306	28118	0.84	0.60	0.57
lla	3a	GT1	none	DNK	7919	1335	8914	16783	8930	5112	5023	5609	2993	1810	0.23	0.36	0.60
lla	3a	LL1	none	DNK	118		201	692	256		16				0.00	0.00	
lla	3a	none	none	DNK	413225	388817	381605	345393	289656	243566	238901	212724	234535	182939	0.44	0.77	0.78
lla	3a	OTTER	none	DNK			406	1072	96	672	192			576		3.00	
lla	3a	PEL_TRAWL	none	DNK			336										
lla	3a	POTS	none	DNK			6611	7950	6942	6702	5308	4503	4506	5255		0.99	1.17
lla	3a	TR1	none	DNK	510		3210	1410	5350	80	276		910	294	0.58	1.07	0.32
lla	3a	TR2	CPart13C	DNK								45373	27981	15317			0.55
lla	3a	TR2	none	DNK	4430	7672	9307	28840	28572	33945	30304				0.00	0.00	
lla	3a	TR3	none	DNK			23		23	164	34					0.00	
lla	3a	GN1	none	SWE							62122	93134	45170	65829		1.06	1.46
lla	3a	GT1	none	SWE							38574	41407	25114	30193		0.78	1.20
lla	3a	LL1	none	SWE								209	55	0			0.00
lla	3a	none	none	SWE							39161	21438	21887	30542		0.78	1.40
lla	3a	OTTER	none	SWE							128					0.00	
lla	3a	PEL_SEINE	none	SWE													
lla	3a	POTS	none	SWE							134604	182519	105753	128945		0.96	1.22
lla	3a	TR1	none	SWE							828	966	1242	4867		5.88	3.92
lla	3a	TR2	CPART11	SWE							2891	7932	4607	3189		1.10	0.69
IIa	3a	TR2	IIA83B	SWE													
lla	3a	TR2	none	SWE							4801	17516	36719	54523		11.36	1.48
Tot. kWd DNK a	nd DEU				459521	426830	462818	468173	387009	352571	327252	321534	320231	234309		0.72	0.73
Tot. kWd SWE											283109	365121	240547	318088		1.12	1.32
Total kWd all co	untries										610361	686655	560778	552397		0.91	0.99

Table 5.2.5.1.2 . Number of vessels <10m LOA operating in Kattegat 2003-2012. Sweden has not submitted number of vessels for vessels <10m LOA before 2009.

ANNEX	REG AR	EA REG GEA	R SPECON	COUNTRY	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	Rel.2003	Rel.2009	Rel.2011
lla	3a	GN1	none	DEU				1									
lla	3a	DREDGE	none	DNK							1						
lla	3a	GN1	none	DNK	8	5	18	23	14	24	13	14	10	10	1.25	0.77	1.00
lla	3a	GT1	none	DNK	2	1	5	6	4	3	3	5	2	2	1.00	0.67	1.00
lla	3a	LL1	none	DNK	1		2	2	2		1				0.00	0.00	
lla	3a	none	none	DNK	258	243	238	211	186	174	176	154	159	156	0.60	0.89	0.98
lla	3a	OTTER	none	DNK			2	1	1	1	1			1		1.00	
lla	3a	PEL_TRAV	∧ none	DNK			1										
lla	3a	POTS	none	DNK			7	7	6	8	9	8	8	8		0.89	1.00
lla	3a	TR1	none	DNK	4		2	3	3	1	2		2	2	0.50	1.00	1.00
lla	3a	TR2	CPart13C	DNK								7	5	4			0.80
lla	3a	TR2	none	DNK	1	1	3	8	5	5	5				0.00	0.00	
lla	3a	TR3	none	DNK			1		1	2	1					0.00	
lla	3a	GN1	none	SWE							18	15	13	18		1.00	1.38
lla	3a	GT1	none	SWE							6	9	7	6		1.00	0.86
lla	3a	LL1	none	SWE								1	15	1			0.07
lla	3a	none	none	SWE							18	17	14	19		1.06	1.36
lla	3a	OTTER	none	SWE							1					0.00	
lla	3a	PEL_SEIN	Enone	SWE													
lla	3a	POTS	none	SWE							43	37	37	38		0.88	1.03
lla	3a	TR1	none	SWE							1	1	1	1		1.00	1.00
lla	3a	TR2	CPART11	SWE							4	4	6	3		0.75	0.50
lla	3a	TR2	IIA83B	SWE													
lla	3a	TR2	none	SWE							4	3	8	6		1.50	0.75
Total no	vessels D	NK and DEU			274	250	279	262	222	218	212	188	186	183		0.86	0.98
Tot. no v	essels SV	VE									289	260	274	257		0.89	0.94
Tot. no v	essels al	countries									289	260	274	257		0.89	0.94

5.2.5.2 Catches (landings and discards) of cod and associated species by small boats by Member State

Landings of cod, Nephrops, plaice and sole by vessels <10m LOA in Kattegat are presented in Table 5.2.5.2.1 and the percentage of the total landings of the same species in Table 5.2.4.2.2. The landings by small vessels show largely the same pattern as the total landings and the percentage portions have remained fairly stable through the time series.

Table 5.2.5.2.1 Landings (t) of cod, plaice, sole and Nephrops by vessels <10m LOA, 2003-2012.

COD GN1 41.4 17.0 24.0 31.6 22.0 7.9 5.4 7.6 6.7 3.5 COD GT1 0.1 0.2 0.9 1.8 1.1 1.7 3.7 3.3 1.9 1.0 COD GT1 0.1 0.2 0.9 1.8 1.1 1.7 3.7 3.3 1.9 1.0 COD LL1 1.3 0.5 1.9 6.0 7.5 1.1 0.2 0 0 0 0 0 COD none 203.6 129.8 103.1 117.6 44.1 26.4 20.2 10.7 8.1 6.7 COD GTTER 0 0 0.02 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0	SPECIES	GEAR	2003 L	2004 L	2005 L	2006 L	2007 L	2008 L	2009 L	2010 L	2011 L	2012 L
COD GT1	COD											
COD	COD											
COD	COD											
COD OTTER												
COD												
COD POTS 0.3 0.04 0.2 0.1 0.1 0.1 0 0.1 0.05 0.1 COD TR1 2.1 0 0.3 2.2 1.6 0.2 0.5 0.00 0.04 1.0 COD TR2 0.8 1.9 0.8 3.6 2.4 1.4 0.5 0.9 0 0 COD TR3 0 0 0 0 0.001 0 0 0 0 NEP GN1 0 0 0.1 0.2 0.1 0 <	COD											
COD TR1 2.1 0 0.3 2.2 1.6 0.2 0.5 0.00 0.04 1.0 COD TR2 0.8 1.9 0.8 3.6 2.4 1.4 0.5 0.9 1.2 1.2 1.2 COD TR3 0 0 0 0 0 0 0.001 0 0 0 0 0 0 0 0 0 0 0	COD	_										
COD	COD	TR1							0.5			
COD TR3	COD											
COD total 249.5	COD											
NEP GN1 0 0 0 0.1 0.2 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	COD tota											
NEP	NEP	GN1										
NEP	NEP											
NEP OTTER O	NEP											
NEP POTS 2.9 3.9 4.4 4.5 4.5 5.6 8.4 11.1 11.4 24.9 NEP TR1	NEP	OTTER	0	0	0	0.02	0.00	0.02	0.02	0	0	0
NEP	NEP	PEL TRAWL	0	0	0	0	0	0	0	0	0	0
NEP TR2 3.0 1.6 3.9 4.8 9.0 9.9 6.4 30.2 17.4 24.6 NEP TR3 0 0 0 0 0 0.01 0 0 0 NEP total 15.8 16.6 16.2 13.1 19.1 21.2 23.9 50.1 54.7 84.8 PLE DREDGE 0 0 0 0 0 0 0 0.2 0 0 PLE GN1 29.3 31.4 31.9 43.2 46.7 26.6 19.5 14.6 5.4 5.3 PLE GT1 11.9 3.1 7.5 12.2 13.4 9.8 24.7 12.9 14.0 8.8 PLE LL1 0 0 0 0.00 0.01 0 0 0 0 0 PLE none 264.8 253.8 190.1 213.9 194.9 124.0 93.5 69.0 35.2 19.1 PLE OTTER 0 0 0.1 0 0 0 0 0 0 PLE PEL_TRAWL 0 0 0.1 0 0 0 0 0 0 PLE POTS 0 0 0.1 0.0 0.0 0 0 0 0 PLE TR1 0.01 0 1.6 1.2 11.4 0.04 0.1 0 7.0 2.7 PLE TR2 11.7 15.1 1.9 11.2 16.8 10.9 14.5 15.4 10.6 2.9 PLE total 317.7 303.4 233.1 281.8 283.2 171.3 152.4 112.0 72.1 38.7 SOL GN1 2.7 4.3 25.1 23.7 15.4 19.4 17.3 24.1 21.5 13.6 SOL GN1 2.7 4.3 25.1 23.7 15.4 19.4 17.3 24.1 21.5 13.6 SOL GN1 2.7 4.3 25.1 23.7 15.4 19.4 17.3 24.1 21.5 13.6 SOL GN1 2.7 4.3 25.1 23.7 15.4 19.4 17.3 24.1 21.5 13.6 SOL GN1 0.0 0 0 0 0 0 0 0 0	NEP	_	2.9	3.9	4.4	4.5	4.5	5.6	8.4	11.1	11.4	24.9
NEP TR3	NEP	TR1	0	0	0	0.0	0.1	0	0.1	0.2	0.3	1.4
NEP total 15.8	NEP	TR2	3.0	1.6	3.9	4.8	9.0	9.9	6.4	30.2	17.4	24.6
PLE DREDGE 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 PLE GN1 29.3 31.4 31.9 43.2 46.7 26.6 19.5 14.6 5.4 5.3 PLE GT1 11.9 3.1 7.5 12.2 13.4 9.8 24.7 12.9 14.0 8.8 PLE LL1 0 0 0 0 0.00 0.01 0 0 0 0 0 0 0 PLE none 264.8 253.8 190.1 213.9 194.9 124.0 93.5 69.0 35.2 19.1 PLE OTTER 0 0 0 0 0.1 0 0 0 0 0 0 0 0 PLE PEL_TRAWL 0 0 0 0.1 0 0 0 0 0 0 0 0 0 PLE POTS 0 0 0.02 0.01 0.00 0.00 0 0 0 0 0 PLE TR1 0.01 0 1.6 1.2 11.4 0.04 0.1 0 7.0 2.7 PLE TR2 11.7 15.1 1.9 11.2 16.8 10.9 14.5 15.4 10.6 2.9 PLE TOTE 0 0 0 0 0 0 0 0 0 0 0 0 0 SOL DREDGE 0 0 0 0 0 0 0 0 0 0 0 0 0 SOL GN1 2.7 4.3 25.1 23.7 15.4 19.4 17.3 24.1 21.5 13.6 SOL GT1 0.5 0.1 6.6 10.3 10.4 9.7 11.7 9.7 8.1 3.5 SOL LL1 0 0 0 0 0 0.00 0 0 0 0 0 0 SOL GN1 2.7 4.3 25.1 23.7 15.4 19.4 17.3 24.1 21.5 13.6 SOL GT1 0.5 0.1 6.6 10.3 10.4 9.7 11.7 9.7 8.1 3.5 SOL LL1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SOL GN1 2.7 73.4 176.6 153.5 106.8 92.6 90.6 79.6 53.8 30.7 SOL DTER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NEP	TR3	0	0	0	0	0	0.01	0	0	0	0
PLE GN1 29.3 31.4 31.9 43.2 46.7 26.6 19.5 14.6 5.4 5.3 PLE GT1 11.9 3.1 7.5 12.2 13.4 9.8 24.7 12.9 14.0 8.8 PLE LL1 0 0 0 0 0.00 0.01 0 0 0 0 0 0 0 0 0 PLE none 264.8 253.8 190.1 213.9 194.9 124.0 93.5 69.0 35.2 19.1 PLE OTTER 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 PLE PEL_TRAWL 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NEP total		15.8	16.6	16.2	13.1	19.1	21.2	23.9	50.1	54.7	84.8
PLE GT1 11.9 3.1 7.5 12.2 13.4 9.8 24.7 12.9 14.0 8.8 PLE LL1 0 0 0 0 0.00 0.01 0 0 0 0 0 0 0 0 0 0	PLE	DREDGE	0	0	0	0	0	0	0.2	0	0	0
PLE LL1 0 0 0 0 0.00 0.01 0 0 0 0 0 0 0 0 0 0	PLE	GN1	29.3	31.4	31.9	43.2	46.7	26.6	19.5	14.6	5.4	5.3
PLE NONE 264.8 253.8 190.1 213.9 194.9 124.0 93.5 69.0 35.2 19.1 PLE OTTER 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PLE	GT1	11.9	3.1	7.5	12.2	13.4	9.8	24.7	12.9	14.0	8.8
PLE OTTER 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PLE	LL1	0	0	0	0.00	0.01	0	0	0	0	0
PLE PEL_TRAWL 0 0 0.1 0 <	PLE	none	264.8	253.8	190.1	213.9	194.9	124.0	93.5	69.0	35.2	19.1
PLE POTS 0 0 0.02 0.01 0.00 0.00 0 0 0 0 0.01 PLE TR1 0.01 0 1.6 1.2 11.4 0.04 0.1 0 7.0 2.7 PLE TR2 11.7 15.1 1.9 11.2 16.8 10.9 14.5 15.4 10.6 2.9 PLE total 317.7 303.4 233.1 281.8 283.2 171.3 152.4 112.0 72.1 38.7 SOL DREDGE 0 0 0 0 0 0 0 0.01 0 0 0 SOL GN1 2.7 4.3 25.1 23.7 15.4 19.4 17.3 24.1 21.5 13.6 SOL GT1 0.5 0.1 6.6 10.3 10.4 9.7 11.7 9.7 8.1 3.5 SOL LL1 0 0 0 0 0 0.06 0 0 0 0 0 0 SOL none 50.7 73.4 176.6 153.5 106.8 92.6 90.6 79.6 53.8 30.7 SOL OTTER 0 0 0 0.00 0 0 0 0 0 0 0 0 SOL PEL_TRAWL 0 0 0 0.1 0.7 0.3 0.2 0.1 0.043 0.04 0.00 SOL POTS 0.03 0 0.1 0.7 0.3 0.2 0.1 0.043 0.04 0.00 SOL TR1 0.00 0 1.9 0.4 0.6 0.1 0.00 0 0 0.02 0.00 SOL TR2 0.02 0.8 2.2 7.4 9.2 9.2 11.0 13.4 8.6 1.2	PLE	OTTER	0	0	0	0.1	0	0	0	0	0	0
PLE TR1 0.01 0 1.6 1.2 11.4 0.04 0.1 0 7.0 2.7 PLE TR2 11.7 15.1 1.9 11.2 16.8 10.9 14.5 15.4 10.6 2.9 PLE total 317.7 303.4 233.1 281.8 283.2 171.3 152.4 112.0 72.1 38.7 SOL DREDGE 0 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0	PLE	PEL_TRAWL	0	0	0.1	0	0	0	0	0	0	0
PLE TR2 11.7 15.1 1.9 11.2 16.8 10.9 14.5 15.4 10.6 2.9 PLE total 317.7 303.4 233.1 281.8 283.2 171.3 152.4 112.0 72.1 38.7 SOL DREDGE 0 0 0 0 0.01 0 0 0 SOL GN1 2.7 4.3 25.1 23.7 15.4 19.4 17.3 24.1 21.5 13.6 SOL GT1 0.5 0.1 6.6 10.3 10.4 9.7 11.7 9.7 8.1 3.5 SOL LL1 0 0 0 0.06 0 0 0 0 0 SOL none 50.7 73.4 176.6 153.5 106.8 92.6 90.6 79.6 53.8 30.7 SOL OTTER 0 0 0.00 0 0 0 0 <t< td=""><td>PLE</td><td>POTS</td><td>0</td><td>0</td><td>0.02</td><td>0.01</td><td>0.00</td><td>0.00</td><td>0</td><td>0</td><td>0</td><td>0.01</td></t<>	PLE	POTS	0	0	0.02	0.01	0.00	0.00	0	0	0	0.01
No. Pile total 317.7 303.4 233.1 281.8 283.2 171.3 152.4 112.0 72.1 38.7	PLE	TR1	0.01	0	1.6	1.2	11.4	0.04	0.1	0	7.0	2.7
SOL DREDGE 0 0 0 0 0 0.01 0 0 SOL GN1 2.7 4.3 25.1 23.7 15.4 19.4 17.3 24.1 21.5 13.6 SOL GT1 0.5 0.1 6.6 10.3 10.4 9.7 11.7 9.7 8.1 3.5 SOL LL1 0 0 0 0.06 0 0 0 0 0 SOL none 50.7 73.4 176.6 153.5 106.8 92.6 90.6 79.6 53.8 30.7 SOL OTTER 0 0 0.00 0	PLE	TR2	11.7	15.1	1.9	11.2	16.8	10.9	14.5	15.4	10.6	2.9
SOL GN1 2.7 4.3 25.1 23.7 15.4 19.4 17.3 24.1 21.5 13.6 SOL GT1 0.5 0.1 6.6 10.3 10.4 9.7 11.7 9.7 8.1 3.5 SOL LL1 0 0 0 0.06 0 0 0 0 0 SOL none 50.7 73.4 176.6 153.5 106.8 92.6 90.6 79.6 53.8 30.7 SOL OTTER 0 0 0.00 0	PLE total		317.7	303.4	233.1	281.8	283.2	171.3	152.4	112.0	72.1	38.7
SOL GT1 0.5 0.1 6.6 10.3 10.4 9.7 11.7 9.7 8.1 3.5 SOL LL1 0 0 0 0 0.06 0	SOL	DREDGE	0	0	0	0	0	0	0.01	0	0	0
SOL LL1 0 0 0 0 0.06 0 0 0 0 0 SOL none 50.7 73.4 176.6 153.5 106.8 92.6 90.6 79.6 53.8 30.7 SOL OTTER 0 0 0.00 0	SOL	GN1	2.7	4.3	25.1	23.7	15.4	19.4	17.3	24.1	21.5	13.6
SOL none 50.7 73.4 176.6 153.5 106.8 92.6 90.6 79.6 53.8 30.7 SOL OTTER 0 0 0.00 0	SOL	GT1	0.5	0.1	6.6	10.3	10.4	9.7	11.7	9.7	8.1	3.5
SOL OTTER 0 0 0 0.00 0	SOL	LL1	0	0	0	0	0.06	0	0	0	0	0
SOL PEL_TRAWL 0 <th< td=""><td>SOL</td><td>none</td><td>50.7</td><td>73.4</td><td>176.6</td><td>153.5</td><td>106.8</td><td>92.6</td><td>90.6</td><td>79.6</td><td>53.8</td><td>30.7</td></th<>	SOL	none	50.7	73.4	176.6	153.5	106.8	92.6	90.6	79.6	53.8	30.7
SOL POTS 0.03 0 0.1 0.7 0.3 0.2 0.1 0.043 0.04 0.00 SOL TR1 0.00 0 1.9 0.4 0.6 0.1 0.00 0 0.02 0.00 SOL TR2 0.02 0.8 2.2 7.4 9.2 9.2 11.0 13.4 8.6 1.2	SOL	OTTER	0	0	0	0.00	0	0	0	0	0	0
SOL TR1 0.00 0 1.9 0.4 0.6 0.1 0.00 0 0.02 0.00 SOL TR2 0.02 0.8 2.2 7.4 9.2 9.2 11.0 13.4 8.6 1.2	SOL	PEL_TRAWL	0	0	0.1	0	0	0	0	0	0	0
SOL TR2 0.02 0.8 2.2 7.4 9.2 9.2 11.0 13.4 8.6 1.2	SOL	POTS	0.03	0	0.1	0.7	0.3	0.2	0.1	0.043	0.04	0.00
	SOL	TR1	0.00	0	1.9	0.4	0.6	0.1	0.00	0	0.02	0.00
SOL total 54.0 78.6 212.5 196.0 142.8 131.2 130.8 126.8 92.2 49.0	SOL	TR2	0.02	0.8	2.2	7.4	9.2	9.2	11.0	13.4	8.6	1.2
	SOL total		54.0	78.6	212.5	196.0	142.8	131.2	130.8	126.8	92.2	49.0

Table 5.2.5.2.2 Percentage of total landings of cod, Nephrops, plaice and sole by vessels <10m LOA 2003-2012.

	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
COD	11%	11%	14%	18%	12%	9%	16%	15%	12%	14%
NEP	1%	1%	1%	1%	1%	1%	1%	2%	4%	4%
PLE	13%	19%	19%	18%	20%	16%	23%	22%	20%	17%
SOL	24%	28%	35%	32%	32%	31%	33%	36%	28%	25%

5.2.6 ToR 4 Evaluation of fully documented fisheries FDF

Since there are no FDF fisheries in Kattegat, ToR 4 could not be addressed.

5.2.7 ToR 5 Spatio-temporal patterns in effective effort by fisheries

Figures 5.2.7.1 to 5.2.7.3 show the effective effort in fishing hours carried out by the gear categories TR2, TR1 and GN1 respectively.

It should be noted that Kattegat is a rather small management area to find any changes in the pattern of the distribution of effort between the gears using statistical rectangles. A smaller grid would be required in order to pick up any spatial changes in this area.

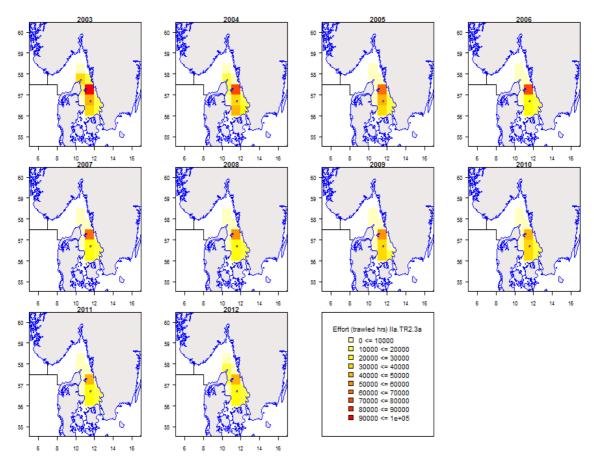


Figure 5.2.7.1 Spatial distribution of effective effort (fishing hours) for the gear category TR2 including the unregulated CPart11 and IIA83b in Kattegat 2003-2012.

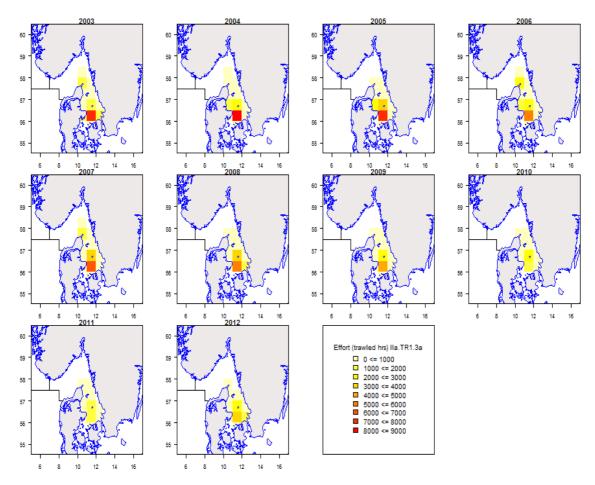


Figure 5.2.7.2 Spatial distribution of effective effort (fishing hours) for the gear category TR1 in Kattegat 2003-2012.

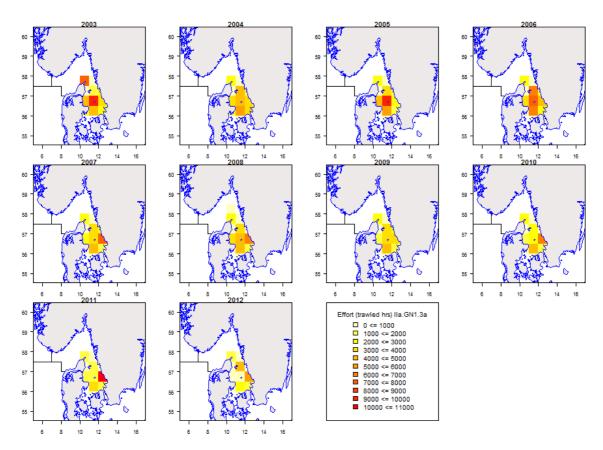


Figure 5.2.7.3. Spatial distribution of effective effort (fishing hours) for the gear category GN1 in Kattegat 2003-2012.

5.2.8 ToR 6 Remarks on quality of catches and discard estimates

The STECF EWG 13-13 expresses overall high confidence in the data and results.

5.2.9 ToR 7 Estimation of conversion factors to be applied for effort transfers between regulated gear groups

STECF EWG 13-13 presents the estimated cod CPUE and respective effort transfer factors between donor and receiving regulated gear groups in Table 5.2.8.1

Table 5.2.8.1 Cod CPUE and respective effort transfer factors between donor and receiving regulated gear groups based on averages 2010-2012. Red cells are indicated to be imprecise due to lack of adequate discard information. Yellow cells indicate sufficient sampling and green cells good sampling information.

Katt	egat												
	donor gear	receivi	ing gea	r				2010-	2012				
		GN1	GT1	LL1	TR1	TR2	TR3	CPUE	LPUE	factor	= CPUE d	onor/CPUE	receiving
3a	GN1		1	1	1	1	1	187	50	if fact	or>1then		
3a	GT1	0.005		1	0.014	0.009	0.125	1	1	factor	=1		
3a	LL1	0.005	1		0.014	0.009	0.125	1	1				
За	TR1	0.38	1	1		0.67	1	71	25	if CPU	E=0 or LPUE	= 0 then	
3a	TR2	0.567	1	1	1		1	106	41	CPUE:	=1 or LPUE=1	L	
3a	TR3	0.043	1	1	0.113	0.075		8	8				

5.2.10 ToR 8 Correlation between partial cod mortality and fishing effort by Member State and fisheries

STECF EWG 13-13 noted that ICES did not provide an analytical assessment of cod in the Kattegat in 2013. STECF EWG 13-13 is therefore unable to deal with the ToR 8.

5.2.11 ToR 9 Trends in fishing mortality and fishing effort by Member State and fisheries with regards to the cod plan (R (EC) No 1342/2008) provisions, in particular with regard to Article 13

STECF EWG 13-13 noted that ICES did not provide an analytical assessment of cod in the Kattegat in 2013. STECF EWG 13-13 is therefore unable to deal with the ToR 9.

STECF EWG 13-13 is therefore also unable to estimate the fishing effort commensurate with the fishing mortality level to be achieved in 2012 and to estimate any excessive amount of effort.

5.3 Skagerrak, North Sea and II EU Eastern Channel effort regime evaluation in the context of Annex IIA to Council Regulation (EC) No 57/2011)

5.3.1 ToR 1.a Fishing effort in kWdays, GTdays, kW and number of vessels by Member State and fisheries

In 2013, data were made available at the sub area level (3b1= Skagerrak, 3b2 = North Sea and 2 EU, 3b3 = Eastern Channel), allowing a better understanding of the general trends. Most plots and figures within this report have been now provided by sub-area accordingly, but in case of more details are needed, all information are available in the relevant digital Appendixes:

http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313

5.3.1.1 Fishing effort of regulated gears, management area 3b

Catch and effort data including the special conditions in force since 2009 (CPart11 and CPart13) have been provided by all Member States with significant fishing activity in this area. Additionally, distinction is now provided across the various CPart13 specifications (A, B, or C). The data are considered to represent a complete account of fishing effort by regulated gears in the area as reported by national administrations. As a result, any inconsistencies or problems in the data arise from the reported data rather than the subsequent compilation by the working group.

Data are given from 2005 in the tables to ease readability. Because of obvious inconsistencies in the French 2002 data, times series figures are displayed from 2003 only. As noted in previous years, the French 2009 figures should still be regarded as preliminary; they have not been revised yet.

In 2013, the group pursued its investigation of the consistencies between data submitted to STECF and data submitted to ICES WGMIXFISH for the North Sea, the Skagerrak and the Eastern English Channel (ICES, 2013). The group noted that the 2011 effort data appeared very consistent between both data sources (see chapter 4.12), with few deviations only. There is an ongoing collaboration between both groups in order to further check and improve these estimates and reduce the risk of different sources providing different figures.

Information on nominal effort (kW days at sea) by regulated in the Skagerrak, North Sea (incl. 2EU) and the Eastern Channel are listed by country and by area in Table 5.3.1.1 for the current cod plan categories. Additional information including GTdays and numbers of vessels or the extended time series can be found on the STECF website and in the Appendices.

Information related to the Fully Documented Fishery (FDF) is dealt with specifically in section 5.3.8 further below.

Overall trends in nominal aggregated effort in kilowatt-days by gear category and sub-areas are given in Tables 5.3.1.2 and shown in Figures 5.3.1.1 (by gear type) and 5.3.1.2 (by mesh size grouping). An

overview on effort from unregulated gears by subarea is given in table 5.3.1.3 as well as the share of regulated gear effort in total effort in table 5.3.1.4. A more detailed analysis of unregulated gears is presented in section 5.3.1.2.

The North Sea is the main fishing area (78% of the total 2012 regulated effort in area 3b), followed by The English Channel (16%), while the Skagerrak represents a smaller component (6%).

In all three sub areas, regulated effort has decreased since 2003. Overall, the share of regulated gears to total effort in area 3b has also decreased regularly, down to 63% in 2012 on average (but no more than 45% in Skagerrak).

In area 3b2 (North Sea), regulated effort is equally shared between beam trawls and demersal trawls/seines (49% and 45% of total 2012 regulated effort respectively). Small mesh beam trawling (80-119 mm, BT2) and demersal trawls/seines with larger mesh sizes (>=100mm, TR1) are the predominant fisheries. In the Eastern Channel, demersal trawls/seines are also the main gears (65% of the 2012 regulated effort in the area, mainly smaller mesh size 70-99mm TR2), but with beam trawls and passive gears representing important fisheries as well (19% and 15% of the 2012 regulated effort respectively). The main gears in management area 3b1 (Skagerrak) are demersal trawls/seines (88% of the 2012 regulated effort), with a predominance of TR2.

The overall effort by demersal trawls / seines has shown a reduction since 2003, especially in the North Sea. The effort by larger mesh (TR1) had remained relatively stable over the previous cod plan (2004-2009) but has been declining since the full implementation of the new cod plan in 2010. A part of the TR1 decrease observed in 2012 (-14% between 2011 and 2012) is linked to the shift of the French saithe fishery into unregulated Article11 for that year.

In the Skagerrak, trawling effort has been slightly more stable since 2007. In the Eastern Channel TR2 effort has also remained constant over the last three years.

It must be kept in mind that the current grouping covers many different fisheries. TR2 in particular gathers as different fisheries as e.g. *Nephrops* trawling, mainly in the Northern North Sea, and whiting trawling in the south-western North Sea, and these local fisheries may follow different dynamics. Similarly, TR1 fisheries cover a mixed whitefish fishery, a saithe-targeted fishery as well as a plaice targeted fishery in the southern North Sea.

A number of CPArt 13 SPECON has been applied over the recent years, as displayed in Figures 5.3.1.3 and 5.3.1.4. In 2013, distinction has been made over the various types.

For the whole area 3b, 53% and 68% of the regulated effort (i.e. excluding article 11) by TR1 and TR2 is under Article 13

Many English fisheries other than demersal trawls/Seines have been reported under Article13B, i.e. catching less than 5%, both in the North Sea and in the Eastern Channel.

There are a number of Article 13 derogations used for trawls/seines fisheries (both TR1 and TR2) in the North Sea. Germany, Scotland and England have reported 60%, 72% and 100% of their TR1 effort in Article 13 respectively. UK has also reported 100% of TR2 effort under Article 13.

Article 13C has represented the largest Specon. It is only used by the UK, but is overall operated at fishing effort levels comparable to the "none" specon. The Art13B has been applied by the UK as well, but also by Germany. Article 13A has only been reported by Northern Irland in 2012.

There is only a limited use of Article 13 in the Skagerrak (3b1), operated by the German saithe fishery.

As a quality check, STECF routinely compares the data currently submitted with the data submitted during the previous year, as is displayed in table 5.3.1.5. Compared to the data submitted in 2012, updates were primarily reported by Denmark, England, with few other minor changes by other countries. Belgium revised data between the effort part1 and 2 meetings. While some changes ratio can appear large in the table below, they usually apply to categories with limited effort, and this does not affect the overall perception of trends from previous years' report. The updates represent some improvements of the quality of the data submitted, so this year's data are considered more consistent.

Table 5.3.1.1 Area 3b: Trend in regulated nominal effort (kW *days at sea) by Gear group, country and specon, 2005-2012 (the extended time series is available on the STECF website). NB TR2 CPArt11 and SPECON IIA83b is accounted for in the *un*regulated gears

ANNEX		REG GEAF			2005	2006	2007	2008	2009	2010	2011	2012	rel 05-07	rel 2011
la	3b1	BT1	DEU	NONE				884						
la	3b1	BT1	DNK	none	320631	277249	329335	78260	42335	52098	59305	123592	0.40	2.08
la	3b1	BT1	NLD	none	137531	70311	108445	22570	27415	109513	442			
la	3b1	BT1	SCO	none		4476								
la	3b1	BT2	DEU	NONE										
lla	3b1	BT2	DNK	none	38835	50351	103304	36836	29052	3678				
lla	3b1	BT2	NLD	none	522477	542233	519000	74615	31846	138751	884			
lla	3b1	GN1	DEU	none	1579	1158	6919	3174	1980	660		17636	5.48	
lla	3b1	GN1	DNK	none	322715	294630	283147	321868	371533	327758	306895	242996	0.81	0.79
lla	3b1	GN1	SWE	none	89748	76409	58618	96877	101209	67326	70682	76606	1.02	1.08
lla	3b1	GT1	DNK	none	2450	9463	236	25240	36891	44205	40159	37525	9.27	0.93
lla	3b1	GT1	SWE	none	27824	56771	62309	63022	36250	21260	23899	25752	0.53	1.08
lla	3b1	LL1	DNK	none	2501	3130	1814	2255	1173	2481	33199	30454	12.27	0.92
lla	3b1	LL1	SWE	none	38665	108455	153999	42453	0		396	660	0.01	1.67
lla	3b1	TR1	DEU	CPart13B					119193	20700	30300	16063		0.53
lla	3b1	TR1	DEU	none	178369	260596	304370	189600	132585	82954	64169	82526	0.33	1.29
lla	3b1	TR1	DNK	none	1299770	1276319	1449368	1290895	1285901	1351258	918690	999170	0.74	1.09
lla	3b1	TR1	NLD	none			16547	11576	1369	120821				
lla	3b1	TR1	sco	none		575								
lla	3b1	TR1	SWE	none	109502	55251	88670	92874	10554	11528	27124	25524	0.30	0.94
lla	3b1	TR2	DEU	none					660	4180	2200			
lla	3b1	TR2	DNK	none	3998032	3290591	2359541	2613146	2817250	2759331	2941652	2436599	0.76	0.83
lla	3b1	TR2	NLD	none				2942	732	2942				
lla	3b1	TR2	SWE	IIA83B	542007	664971	894575	735039					T	
lla	3b1	TR2	SWE	none	1428840	1450466	1158228	1364854	781107	661331	514449	467823	0.35	0.91
IIa	3b1	TR3	DNK	none	233393	71910	37373	17405	18494	11401	1145	3621	0.03	
lla	3b1	TR3	SWE	none	1564	588	919			1986				
IIa	3b2	BT1	BEL	none	1509759	1333012	1320169	984056	575501	535636	671368	963867	0.69	1.44
IIa	3b2	BT1	DEU	none	2128	53986	30297	16790		884	1535	2793	0.10	
IIa	3b2	BT1	DNK	none	996227	511642	527282	370939	366679	513056	373757	317294	0.47	
IIa	3b2	BT1	ENG	CPart13B						202685	169873	384590		2.26
IIa	3b2	BT1	ENG	none	618160	1321240	305837	228530	265710			40284	0.05	
IIa	3b2	BT1	FRA	none	010100	1021210	505057	220000	200720			.0201	0.00	
lla	3b2	BT1	NIR	none	36825									
IIa	3b2	BT1	NLD	none	719292	1528652	720068	370417	412420	378796	308516	1090258	1.10	3.53
IIa	3b2	BT1	SCO	none	730810	598616	349914	68568	53082	370730	500510	1030230		5.55
Ila	3b2	BT2	BEL	none	3884007	3418751	2707991	3536979	3327143	2480357	1742532	1269319	0.38	0.73
IIa	3b2	BT2	DEU	NONE	2212397	1927398	1590823	1464163	1666322	1801775	1242171	1071896	0.56	
IIa	3b2	BT2	DNK	none	62036	42447	1390	2894	49163	1001773	440	242	0.01	
lla	3b2	BT2	ENG	CPart13B	02030	42447	1330	2034	47771	2863860	2644958	2412375	0.01	0.91
lla	3b2	BT2	ENG	none	4046341	2974409	3251512	1975399	2444807	401247	96356	79036	0.02	
lla lla	3b2	BT2	FRA	none	75129 16785	66203	103453	88053	88053	40118	67545	57044	0.70	0.84
lla lla	3b2	BT2	NIR	none		20022660	37931313	27646245	20606412	20510104	25775207	22420200	0.50	0.07
lla lla	3b2	BT2	NLD	none	44478122	38823660		27646215	28696410	28510104	25776297	22428296	0.56	
lla	3b2	BT2	SCO	none	4185262	3108933	2790115	1351720	554376	144306	05303	68262	0.02	
lla	3b2	GN1	BEL	none	148827	127951	128626	158409	161734	97609	95383	45103	0.33	
lla	3b2	GN1	DEU	none	271624	235427	145714	278008	233164	275364	225797	269836	1.24	
lla 	3b2	GN1	DNK	none	2031057	1795453	949658	1003603	1050057	1195617	1136118	1080149	0.68	
lla 	3b2	GN1	ENG	CPart13B			40			111390	152556	102172		0.67
lla 	3b2	GN1	ENG	none	308275	308517	180503	70981	175602	74835	73826	61957	0.23	
lla	3b2	GN1	FRA	none	46058	31231	61545	47746	46493	2149	7803	3322	0.07	
lla	3b2	GN1	NLD	none	387945	511580	521697	507733	419797	357091	316070	295035	0.62	
lla	3b2	GN1	SCO	none	165644	293823	320785	417076	376332	440579	607650	569749	2.19	
lla	3b2	GT1	BEL	none			15402	18000	5014	19041	18155	25216	1.64	1.39
lla	3b2	GT1	DEU	none		1547			15444	1188	924			
lla	3b2	GT1	DNK	none	237800	175339	98614	100902	158205	130662	182841	321220	1.88	1.76
lla	3b2	GT1	ENG	none	5342	11100	3291	12918	12654	17355	12003	5823	0.89	0.49
lla	3b2	GT1	FRA	none	813190	1785801	1703889	1010253	1010253	634781	690428	636164	0.44	0.92
lla	3b2	GT1	NLD	none				740	26917	37399	21431	29054		1.36

Table 5.3.1.1 (ctd)

lla	3b2	LL1	BEL	none				1768		1660	128	786		6.14
IIa	3b2	LL1	DNK	none	41626	42159	15924	25347	28769	45576	29388	21089	0.63	0.72
IIa	3b2	LL1	ENG	CPart13B					143					
IIa 	3b2	LL1	ENG	none	142602	54974	15752	6164	4318	12052	6253	15449	0.22	2.47
IIa 	3b2	LL1	FRA	none				99602	99602	48552	7644	14962		1.96
IIa	3b2	LL1	NLD	none		75.40	1407	275000	C24444	142	400050	50100	45.44	0.07
lla	3b2	LL1	SCO	none	4220	7542	1487	276898	621114	301689	183352	68192	15.11	0.37
lla	3b2	LL1	SWE	none	4239	15026	11020	10928	11352	6600	8184	5016	0.50	0.61
lla	3b2	TR1	BEL	none CDor#13D			161520	201379	220428	212429	128701	183682 747693	1.14	1.43 0.92
lla	3b2	TR1	DEU	CPart13B	1988209	2176131	1726604	1505100	808679 759368	898007 829604	815730 741965	495051	0.25	
IIa IIa	3b2 3b2	TR1	DNK	none	6405176	6020308	1736694 3801069	1585192	3793148	3592389		3593770	0.66	0.67 0.98
	3b2	TR1	ENG	CPart13B	0403170	0020308	3001003	4034203	898933	964206	3664621 874021	939503	0.00	1.07
lla	3b2	TR1	ENG	CPart136					1242445					0.74
IIa IIa	3b2	TR1	ENG	none	1254880	1823891	1501499	1846925	1242443	1144923	1254762	931671		0.74
IIa	3b2	TR1	FRA	CPart13B	1234000	1023031	1301455	1040323				29600		
IIa	3b2	TR1	FRA	NONE	1901534	2675348	2418190	2714146	2622538	1913401	1727371	324	0.00	0.00
lla	3b2	TR1	IRL	NONE	1501554	2073346	2410150	2/14140	2022330	1515401	1/2/3/1	324	0.00	0.00
	3b2	TR1	NIR	CPart13A								2672		
IIa IIa	3b2	TR1	NIR	CPart13A CPart13B					41944	23326	33246	16573		0.50
lla	3b2	TR1	NIR	CPart13c					14196	6034	33240	2781		0.50
lla	3b2	TR1	NIR	none	70710	51951	61460	49104	14130	0034		2701		
lla	3b2	TR1	NLD	none	547564	532260	631492	1400068	1316055	1290080	1173220	1329299	2.33	1.13
lla	3b2	TR1	SCO	CPart13B	347304	332200	031432	1400008	692932	955808	810706	36937	2.33	0.05
lla	3b2	TR1	sco	CPart13C					11552644	9486824	9185531	9265940		1.01
lla	3b2	TR1	SCO	none	12158295	11660764	11022982	12176292	11332044	3400024	7103331	J20JJ40		1.01
lla	3b2	TR1	SWE	none	387252	237269	269171	333387	245040	196354	189867	190816	0.64	1.00
lla	3b2	TR2	BEL	none	343840	366940	298814	425374	506865	476033	435961	484371	1.44	1.11
lla	3b2	TR2	DEU	CPart13B	343040	300340	230014	423374	2420	39820	31240	14740	1,44	0.47
lla	3b2	TR2	DEU	none	704404	771597	680681	457259	470754	420345	408157	320809	0.45	0.79
lla	3b2	TR2	DNK	none	1916695	1405216	1080616	706247	569359	431399	370536	312765	0.43	0.84
lla	3b2	TR2	ENG	CPart13B	1310033	1405210	1000010	700247	260311	873808	721452	865045	0.21	1.20
lla	3b2	TR2	ENG	CPart13c					1376367	482080	524579	267661		0.51
lla	3b2	TR2	ENG	none	1937849	1707774	1621394	1794132	1370307	402000	524575	207001		0.51
lla	3b2	TR2	FRA	none	1713917	1558413	1727617	1930459	1924156	1089380	960559	725367	0.44	0.76
IIa	3b2	TR2	GBJ	none	660	2000 120	2121021	2000.00	202.200	200200			• • • • • • • • • • • • • • • • • • • •	
lla	3b2	TR2	IRL	NONE										
lla	3b2	TR2	NIR	CPart13A								90338		
lla	3b2	TR2	NIR	CPart13B					65544	161981	207697	109647		0.53
lla	3b2	TR2	NIR	CPart13c					320087	236516	70443	25672		0.36
lla	3b2	TR2	NIR	none	221904	532885	758972	409182	520007	250510	70115	25072		0.00
lla	3b2	TR2	NLD	none	1298918	1224916	1384658	1853682	1334665	1231860	1313554	1277297	0.98	0.97
lla	3b2	TR2	SCO	CPart13B	1230310	122.520	250 1550	2000002	4219929	7467356	5277096	287446	0.50	0.05
lla	3b2	TR2	sco	CPart13C					3796988	490013	1285425	4861297		3.78
lla	3b2	TR2	SCO	none	9108232	8561812	8678139	8855742			2200 120			
lla	3b2	TR2	SWE	none	1192	1298	2515	1059		0		3930	2.36	
lla	3b2	TR3	BEL	none				663		1899		1175		
IIa	3b2	TR3	DEU	none		772	884	4410	426	2000				
IIa	3b2	TR3	DNK	none	2373302	1761200	799803	916558	577813	1063007	336257	477168	0.29	1.42
lla	3b2	TR3	ENG	none	3315	6360	1220	492	82	718	621	246	0.07	0.40
IIa	3b2	TR3	FRA	none	7121	1319		2184	2184	13827	2210	1250	0.30	0.57
IIa	3b2	TR3	IRL	none	,,,,,	2020		2254	2254	_5527	2247			2.27
IIa	3b2	TR3	NLD	none	43261	20649	20589	4038	274	31973	23268	25897	0.92	1.11
IIa	3b2	TR3	sco	none	2356	116	11896		33117	27524		20706	4.32	
IIa	3b3	BT1	BEL	none				3578	/					
IIa	3b3	BT1	FRA	none								318		
IIa	3b3	BT2	BEL	none	2068612	2782454	3183635	2691356	2204585	1907807	1861455	1541411	0.58	0.83
IIa	3b3	BT2	ENG	CPart13B					108485	123228	101532	144684		1.43
IIa	3b3	BT2	ENG	none	423730	359264	324577	368882	295714	148793	99461	96917	0.26	0.97
IIa	3b3	BT2	FRA	none	919129	1258094	1135160	1106661	1106661	570711	542158	675860	0.61	1.25

Table 5.3.1.1 (ctd)

IIa	3b3	BT2	GBJ	none	10346									
IIa	3b3	BT2	NLD	none		4796			1471		663			
IIa	3b3	BT2	SCO	none		4750	9776	3055	6353		000			
IIa	3b3	GN1	BEL	none	19026	23556	906	10560	19527	10885				
IIa	3b3	GN1	DEU	none	15020	25550	500	10300	15527	10005				
IIa	3b3	GN1	ENG	CPart13B								309		
IIa	3b3	GN1	ENG	none	219	2529	1699	4957	12756	25620	25787	10339	6.97	0.40
IIa	3b3	GN1	FRA	none	243018	301125	386493	150995	150995	98661	45185	109662	0.35	2.43
IIa	3b3	GN1	NLD	none	243010	442	300433	150555	150555	50001	45105	105002	0.55	2.40
IIa	3b3	GT1	BEL	none		772	26676	16200	7416	21600	30600	34086	1.28	1.11
IIa	3b3	GT1	ENG	none	9183	6081	7708	9580	5968	8324	8075	8332	1.09	1.03
IIa	3b3	GT1	FRA	none	3308229	3681721	3588824	2611489	2607735	1796377	1839296	1771276	0.50	0.96
IIa	3b3	GT1	IRL	none	3300223	3001721	3300024	2011403	2007733	1/303//	1833230	220	0.50	0.50
IIa	3b3	LL1	ENG	CPart13B						30899	25183	24565		0.98
IIa	3b3	LL1	ENG	none	39988	40165	37923	39699	40081	15397	13022	11097	0.28	0.85
	3b3	LL1	ESP		37700	40103	3/323	35055	40061	13357	15022	672	0.20	0.65
lla				none	07211	114740	160570	116600	116600	110014	06510		0.56	0.01
lla	3b3	LL1	FRA	none	97311	114742	162573	116680	116680	118214	86512	69920	0.56	0.81
lla	3b3	TR1	BEL	none					4050	10219	1858	4645		2.50
IIa 	3b3	TR1	ENG	CPart13c	4005	700		***	4350	2226	11276	1229		0.11
IIa	3b3	TR1	ENG	none	1306		268	4154						
IIa	3b3	TR1	FRA	none	60402	49633	224000	73652	73652	91341	113909	53370	0.48	0.47
IIa	3b3	TR1	NLD	none					5888	4981	3472			
IIa	3b3	TR1	SCO	CPart13B								3750		
IIa	3b3	TR1	SCO	CPart13C							1292			
IIa	3b3	TR1	SCO	none										
IIa	3b3	TR2	BEL	none	10703	23328	13756	15816	46344	132308	189285	212691	13.35	1.12
lla	3b3	TR2	ENG	CPart13B					87339	281244	301325	404526		1.34
IIa	3b3	TR2	ENG	CPart13c					193078	89159	73206	82494		1.13
lla	3b3	TR2	ENG	none	249748	184677	148256	165497						
IIa	3b3	TR2	FRA	CPart13B								289041		
IIa	3b3	TR2	FRA	none	11713996	13485158	13060035	10070068	9834906	6980814	6766474	6300774	0.49	0.93
lla	3b3	TR2	GBJ	CPart13B					7480					
IIa	3b3	TR2	GBJ	none	23483	10560	13420	9680						
IIa	3b3	TR2	IRL	none								945		
IIa	3b3	TR2	NLD	none	344814	287224	434839	625656	602354	701538	608347	706896	1.99	1.16
IIa	3b3	TR2	SCO	CPart13B					66292	250268	158225	90437		0.57
IIa	3b3	TR2	sco	CPart13C					264567		67063	52632		0.78
IIa	3b3	TR2	sco	none		116011	209124	340147						
IIa	3b3	TR3	ENG	none			252							
IIa	3b3	TR3	FRA	none	99705	114293	138596	65643	64323	134347	122925	92978	0.79	0.76
IIa	3b3	TR3	NLD	none										
Sum					141507476	135618152	125521159	109444366	106456621	97088202	87575501	79077612	0.59	0.90

Table 5.3.1.2 Area 3b: Trend in nominal effort (Kw *days at sea) by Gear group and subarea. 2005-2012 (the extended time series is available on the STECF website). NB TR2 CPArt11 and SPECON IIA83b is accounted for in the *un*regulated gears

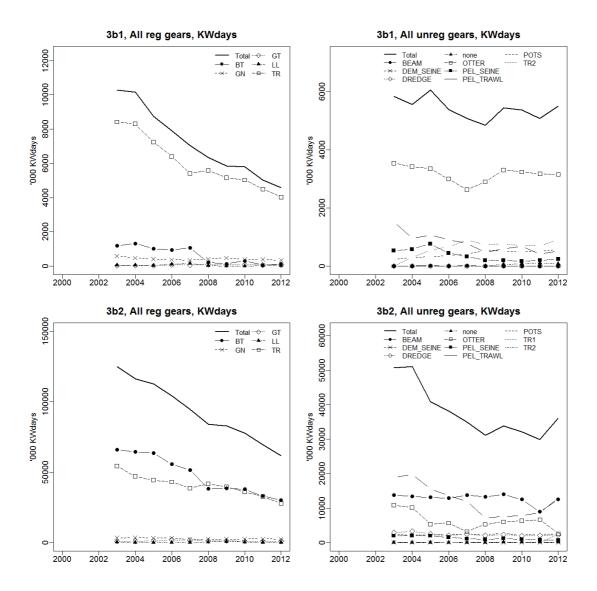

ANNEX	REG AREA	REG GEAR	SPECON	2005	2006	2007	2008	2009	2010	2011	2012	rel 05-07	rel 2011
lla	3b1	BT1	NONE	458162	352036	437780	101714	69750	161611	59747	123592	0.30	2.07
lla	3b1	BT2	NONE	561312	592584	622304	111451	60898	142429	884			
lla	3b1	GN1	none	414042	372197	348684	421919	474722	395744	377577	337238	0.89	0.89
lla	3b1	GT1	none	30274	66234	62545	88262	73141	65465	64058	63277	1.19	0.99
lla	3b1	LL1	none	41166	111585	155813	44708	1173	2481	33595	31114	0.30	0.93
IIa	3b1	TR1	CPart13B					119193	20700	30300	16063		0.53
IIa	3b1	TR1	none	1587641	1592741	1858955	1584945	1430409	1566561	1009983	1107220	0.66	1.10
lla	3b1	TR2	IIA83B	542007	664971	894575	735039						
lla	3b1	TR2	none	5426872	4741057	3517769	3980942	3599749	3427784	3458301	2904422	0.64	0.84
lla	3b1	TR3	none	234957	72498	38292	17405	18494	13387	1145	3621	0.03	3.16
Sum				9296433	8565903	7936717	7086385	5847529	5796162	5035590	4586547	0.53	0.91
IIa	3b2	BT1	CPart13B						202685	169873	384590		2.26
lla	3b2	BT1	none	4613201	5347148	3253567	2039300	1673392	1428372	1355176	2414496	0.55	1.78
lla	3b2	BT2	CPart13B					47771	2863860	2644958	2412375		0.91
lla	3b2	BT2	none	58960079	50361801	48376597	36065423	36826274	33377907	28925341	24974095	0.48	0.86
lla	3b2	GN1	CPart13B						111390	152556	102172		0.67
lla	3b2	GN1	none	3359430	3303982	2308528	2483556	2463179	2443244	2462647	2325151	0.78	0.94
lla	3b2	GT1	none	1056332	1973787	1821196	1142813	1228487	840426	925782	1017477	0.63	1.10
lla	3b2	LL1	CPart13B					143					
lla	3b2	LL1	none	188467	119701	44183	420707	765155	416271	234949	125494	1.07	0.53
lla	3b2	TR1	CPart13A								2672		
lla	3b2	TR1	CPart13B					2442488	2841347	2533703	1770306		0.70
lla	3b2	TR1	CPart13c					12809285	10637781	10440293	10200392		0.98
lla	3b2	TR1	none	24713620	25177922	21604077	24340696	8956577	8034257	7625745	5792942	0.24	0.76
lla	3b2	TR2	CPart13A								90338		
lla	3b2	TR2	CPart13B					4548204	8542965	6237485	1276878		0.20
lla	3b2	TR2	CPart13c					5493442	1208609	1880447	5154630		2.74
IIa	3b2	TR2	none	17247611	16130851	16233406	16433136	4805799	3649017	3488767	3124539	0.19	0.90
IIa	3b2	TR3	none	2429355	1790416	834392	928345	613896	1138948	364603	526442	0.31	1.44
Sum				112568095	104205608	94475946	83853976	82674092	77737079	69442325	61694989	0.59	0.89
IIa	3b3	BT1	none				3578				318		
IIa	3b3	BT2	CPart13B					108485	123228	101532	144684		1.43
IIa	3b3	BT2	none	3421817	4404608	4653148	4169954	3614784	2627311	2503737	2314188	0.56	0.92
IIa	3b3	GN1	CPart13B								309		
lla	3b3	GN1	none	262263	327652	389098	166512	183278	135166	70972	120001	0.37	1.69
IIa	3b3	GT1	none	3317412	3687802	3623208	2637269	2621119	1826301	1877971	1813914	0.51	0.97
IIa	3b3	LL1	CPart13B						30899	25183	24565		0.98
lla	3b3	LL1	none	137299	154907	200496	156379	156761	133611	99534	81689	0.50	0.82
lla	3b3	TR1	CPart13B								3750		
IIa	3b3	TR1	CPart13c					4350	2226	12568	1229		0.10
lla	3b3	TR1	none	61708	50421	224268	77806	79540	106541	119239	58015	0.52	0.49
lla	3b3	TR2	CPart13B					161111	531512	459550	784004		1.71
lla	3b3	TR2	CPart13c					457645	89159	140269	135126		0.96
lla	3b3	TR2	none	12342744	14106958	13879430	11226864	10483604	7814660	7564106	7221306	0.54	0.95
lla	3b3	TR3	none	99705	114293	138848	65643	64323	134347	122925	92978	0.79	0.76
Sum				19642948	22846641	23108496	18504005	17935000	13554961	13097586	12796076	0.59	0.98
Grand su	m			141507476	135618152	125521159	109444366	106456621	97088202	87575501	79077612	0.59	0.90

Table 5.3.1.3 Area 3b: Trend in nominal effort (Kw *days at sea) of unregulated gears by subarea. 2005-2012 (the extended time series is available on the STECF website). NB TR2 CPArt11 and SPECON IIA83b is accounted for in the *un*regulated gears. The last line gives the total effort of all gears in Area 3b.

REG AREA COD	non-REG GEAR	2005	2006	2007	2008	2009	2010	2011	2012	Rel 04-06	Rel 2011
3b1	all	6064813	5397317	5082719	4855283	5455095	5382084	5083047	5506112	0.97	1.08
3b2	all	40843512	38091923	34907032	31156761	33879763	32139321	29937738	36071640	0.83	1.20
3b3	all	10267830	6901208	7101292	5916597	6421808	6705668	5292201	5616550	0.68	1.06
Grand total (all	3b areas combined)	57176155	50390448	47091043	41928641	45756666	44227073	40312986	47194302	0.82	1.17
Grand total (reg	+ unreg gears)	198141624	185343629	171717627	150637968	152213287	141315275	127888487	126271914	0.64	0.99

Table 5.3.1.4 Area 3b: Share of regulated effort in total effort by subarea. 2005-2012 (the extended time series is available on the STECF website).

DEC ADEA COD	2005	2006	2007	2000	2000	2040	2044	2042
REG AREA COD	2005	2006	2007	2008	2009	2010	2011	2012
3b1	0.59	0.59	0.58	0.57	0.52	0.52	0.50	0.45
3b2	0.73	0.73	0.73	0.73	0.71	0.71	0.70	0.63
3b3	0.66	0.77	0.76	0.76	0.74	0.67	0.71	0.69
3b combined	0.71	0.73	0.73	0.72	0.70	0.69	0.68	0.63

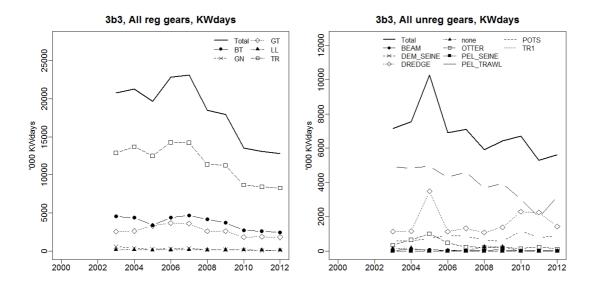
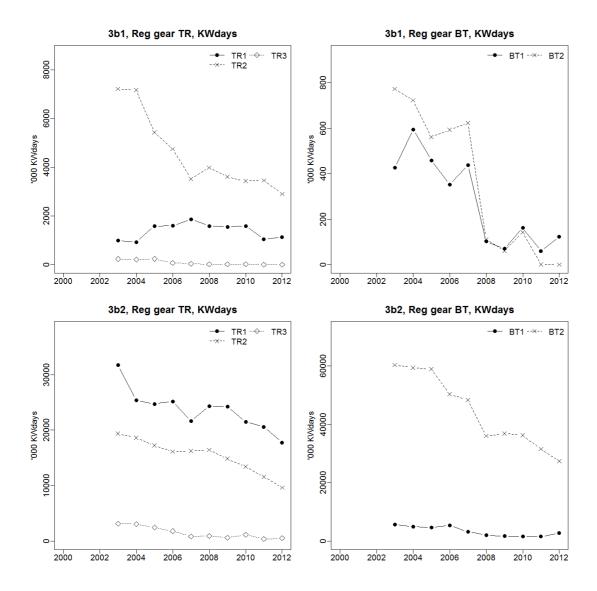



Figure 5.3.1.1. Management area 3b. Effort trends for regulated (left) and unregulated (right, TR regards CPArt11) gear types by subarea. TR = demersal otter trawl and demersal seine, BT = Beam trawl, GN = Gillnet, GT = Trammel net, LL = Longline. NB y-axis scale varies across plots.

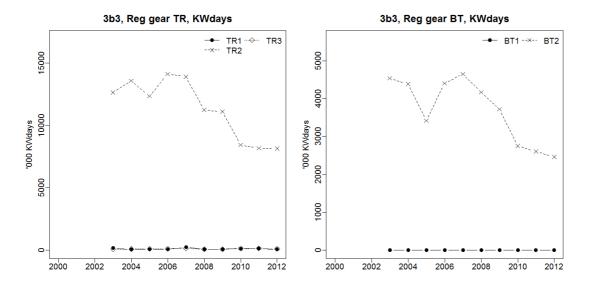


Figure 5.3.1.2. Management area 3b. Effort trends for regulated TR and BT gear by sub-area disaggregated by mesh size range. NB y-axis scale varies across plots.

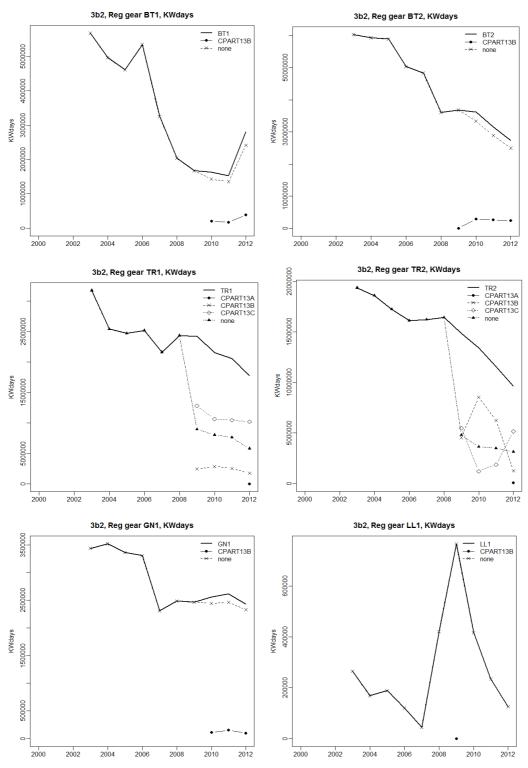


Figure 5.3.1.3. Management area 3b, subarea 3b2 (North Sea). Effort separated by each individual SPECON within regulated gear type when applied.

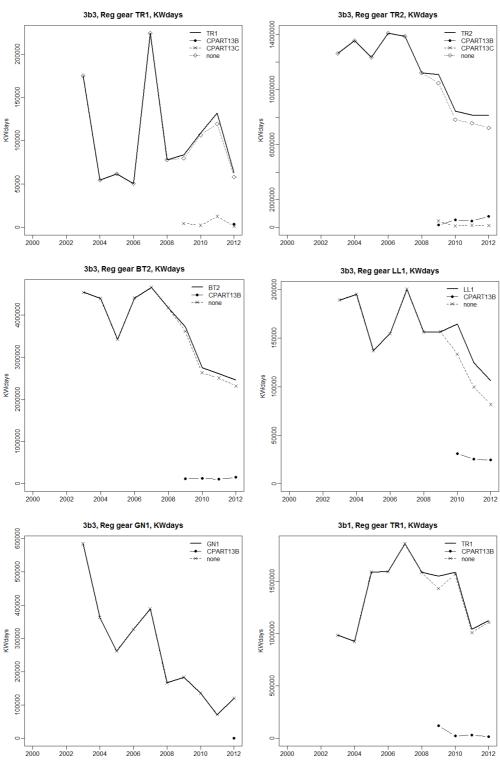


Figure 5.3.1.4. Management area 3b, subarea 3b3 (Eastern Channel) and 3b1 (Skagerrak). Effort separated by each individual SPECON within regulated gear type when applied.

Table. 5.3.1.5 Area 3b: Relative change in nominal effort 2013 data submission compared to 2012 submission (kW *days at sea) by subarea, country, gear, derogation and vessel length 2000-2011. Only the lines with non-zeros values are displayed

ANNEX	REG AR	EA REG GEAR COD	SPECON	COUNTRY	VESSEL_LE	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
lla	3b1	DEM_SEINE	none	DNK	O10T15M	-0.014		0	0			0					0
lla	3b1	DREDGE	none	DNK	O10T15M	0	-0.044	-0.039		0			0		0	0	0
lla	3b1	GN1	none	DNK	O10T15M	-0.001	-0.001	-0.001	0	0.001	-0.009	-0.006	-0.001	-0.013	-0.071	-0.102	0
lla	3b1	GN1	none	DNK	O15M	-0.003	0	-0.003	0	0	-0.041	-0.005	0.004	-0.004	-0.052	-0.007	0
lla	3b1	GT1	none	DNK	O10T15M		0	0	0	0	0	0	0	-0.003	-0.012	-0.054	0
lla	3b1	GT1	none	DNK	O15M		0		0	0					-0.073	0	0
lla	3b1	LL1	none	DNK	O10T15M	0	0.006	0	-0.016	0	0	-0.051	0	0	-0.138	-0.046	0
lla	3b1	LL1	none	DNK	O15M	0	0	-0.057	0	0		0	0			0	0
lla	3b1	none	none	DNK	O10T15M	0	-0.217	-0.199	-0.335	-0.871	-0.633	-0.966	-0.876	-0.985	-0.978		
lla	3b1	none	none	DNK	O15M	-0.516	-0.432	0	0			-0.977	-0.903	-0.999	-0.999	-0.976	-0.961
lla	3b1	OTTER	none	DNK	O10T15M	0	0	0	0	0	0	0	0	0	-0.018	-0.082	0
lla	3b1	OTTER	none	DNK	O15M	0.002	0.009	0.002	0.005	-0.007	0.005	0.006	0.004	0.002	0.003	-0.008	0
lla	3b1	PEL_SEINE	none	DNK	O15M	0.156	0.099	0.122	0.292	0.256	0.078	-0.104	0.134	-0.088	-0.128		0
IIa	3b1	PEL_TRAWL	none	DNK	O10T15M	0	0	0	0	0	0	0	0		0	-0.3	-0.127
lla	3b1	PEL_TRAWL	none	DNK	O15M	0.043	0.099	0.12	0.08	0.029	0.055	0.03	-0.023	-0.026	-0.157	-0.051	-0.005
lla	3b1	TR1	NONE	DEU	O15M	0	0	0	0	0	0	0	0	0	0	0	0.015
IIa	3b1	TR1	none	DNK	O10T15M	0	0	0	0	-0.006	-0.002	0	-0.001	-0.005	-0.025	-0.027	-0.002
lla	3b1	TR1	none	DNK	O15M	-0.001	-0.001	0	0	0.006	-0.019	0.006	-0.004	0	-0.014	-0.002	-0.001
lla	3b1	TR2	none	DNK	O10T15M	0	0	0	0.001	0	0	0	-0.001	-0.001	-0.008	-0.011	0
lla	3b1	TR2	none	DNK	O15M	-0.002	-0.001	0	0.001	0.001	0.001	0	0.002	0.003	-0.004	-0.002	-0.002
lla	3b1	TR3	none	DNK	O10T15M	0	0	0	0	-0.244	0	0	0		-0.114	-0.088	0
lla	3b1	TR3	none	DNK	O15M	-0.143	-0.007	-0.004	-0.004	-0.002	-0.006	0	-0.029	-0.023	-0.122	-0.162	0
IIa	3b2	BEAM	none	BEL	O10T15M	0	0	0	0	0	0	0	0	0		-0.203	
IIa	3b2	BEAM	none	BEL	O15M	0	0	0	0	0	0	0	0	0	0	-0.299	0.002
lla	3b2	BEAM	none	DNK	O15M	0	0	0	0	0	0	0	-0.001	0	-0.001	0	0
IIa	3b2	BEAM	none	ENG	O10T15M				0	0	0	0	0	0	0	0.015	0.011
IIa	3b2	BEAM	none	ENG	O15M				0	0	0	0	0	0	0	-0.056	0.038
IIa	3b2	BT1	none	BEL	O15M	0	0	0	0	0	0	0	0	0	0	0.101	0.041
IIa	3b2	BT1	none	DNK	O15M	0	0	0	0	0	0	0	0	0	-0.012	-0.009	0
lla	3b2	BT2	none	BEL	O10T15M	0	0	0	0	0	0	0				-0.434	
IIa	3b2	BT2	none	BEL	O15M	0	0	0	0	0	0	0	0	0	0	0.007	0.022
lla	3b2	BT2	NONE	DEU	O15M	0	0	0	0	0	0	0	0	0	0	0	0.001
IIa	3b2	BT2	NONE	ENG	O10T15M				0	0	0	0	0	0	-0.272	0	0
IIa	3b2	BT2	NONE	ENG	O15M				0	0	0	0	0	0	-0.018	-0.878	-0.966
IIa	3b2	DREDGE	none	BEL	O15M						-	-		0	0	-0.633	0
IIa	3b2	DREDGE	none	DNK	O10T15M	0	0	0	-0.002	0	0.002	0.001	0.001	0.002	-0.003	-0.01	0
IIa	3b2	DREDGE	none	DNK	O15M	0	0	0	0	0	0	0	0.007	-0.035	-0.03	-0.02	0
IIa	3b2	DREDGE	none	ENG	O10T15M				0	0	0	0	0	0	0	0.001	0.004
lla	3b2	DREDGE	none	IOM	O15M						0	0	0	0	-0.978	-0.797	0,00
lla	3b2	DREDGE	none	SCO	O10T15M	0	0	0	0	0	0	0	0	-0.002	0.570	0.757	0
lla	3b2	DREDGE	none	SCO	O15M	0	0	0	0	0	0.004	0	0	0.002	0	0	0.005
IIa	3b2	GN1	none	BEL	O10T15M	0	0	0	0	0	0.004	0	0	0.001	0	-0,504	0.005
lla	3b2	GN1	none	BEL	O15M	- 0	0	0	0	0	0	0	0	0	0	-0.005	
lla	3b2	GN1	none	DNK	O10T15M	0	-0.002	0	0.001	0.002	0	0	-0.001	0.001	-0.07	-0.048	0
lla	3b2	GN1	none	DNK	O10113W	0	-0.002	0	0.001	0.002	0.002	0.004	-0.001	0.001	-0.005	-0.002	0
lla	3b2	GN1	NONE	ENG	O10T15M	U	U	U	0.001	0.003	0.002	0.004	-0.002	0	-0.003	0.002	0
lla	3b2	GN1	NONE	ENG	O10113W				0	0	0	0	0	0	-0.005	-0.676	-0.803
lla	3b2	GT1	none	BEL	O10T15M				U	U	U	U	U	U	-0.003	-0.070	-0.003
	3b2	GT1		BEL	O10113M								0	0	0	-0.2	0
IIa IIa	3b2	GT1	none	DNK	O10T15M	0	-0.018	-0.014	-0.001	-0.004	-0.01	0	0	0	-0.024	-0.039	0
lia Ila	3b2	GT1		DNK	O10115M	0	-0.018	-0.014	-0.001	-0.004	-0.01	0	0.005	0	-0.024	-0.012	0
lla	3b2	LL1	none	BEL	O10T15M	U	U	U	U	U	U	U	0.003	0	-0.003	-0.458	0
lia Ila														0			U
	3b2	LL1	none	BEL	O15M	0.005	0.01	0.007	0.012	0.000		0.005	0.167	0.022	0.00	-0.421	_
lla	3b2	LL1	none	DNK	O10T15M	-0.005	0.01	0.007	0.012	0.002	0	0.005	-0.167	-0.033	-0.06	-0.005	0
lla 	3b2	LL1	none	DNK	O15M	0	0	0.007	-0.006	0	-0.043	0	0	0	-0.011	0	0
lla	3b2	LL1	none	ENG	O10T15M	-	-	_	0	0	0	0	0	0	-0.077	0	0
IIa 	3b2	LL1	none	SCO	O10T15M	0	0	0	0	0		0	0	1	0.302	0	
lla	3b2	LL1	none	SCO	O15M	0	0	0	0	0		0		0	0	0	0.173
lla	3b2	none	none	DNK	O10T15M	-0.062	-0.164	-0.181	-0.202	-0.21	-0.43	-0.581	-0.262	-0.412	-0.409	-0.179	-0.27

Table. 5.3.1.5 continued.

lla	3b2	none	none	DNK	O15M	-0.182	-0.34	-0.39	-0.778	-0.812	-0.909	-0.945	-0.974	-0.995	-0.708	-0.27	-0.347
IIa	3b2	none	none	SCO	O10T15M	0	0	0	0	0	0	0	0	-0.005	-0.006	0.101	0.076
lla	3b2	OTTER	none	DNK	O10T15M	-0.002	0	-0.008	0	0	0	0.003	-0.037	0	-0.027	-0.051	0
IIa	3b2	OTTER	none	DNK	O15M	-0.006	-0.008	-0.004	0.001	-0.002	-0.002	-0.004	-0.003	0.004	0.004	0.001	-0.009
IIa	3b2	OTTER	none	ENG	O10T15M				0	0	0	0	0	0		-0.963	-0.613
lla	3b2	OTTER	none	ENG	O15M				0	0	0	0	0	0	0	-0.029	0.017
IIa	3b2	OTTER	NONE	IRL	O15M	0	0	0			0			0			0.003
IIa	3b2	OTTER	none	NIR	O15M							0	0	0		-0.218	-0.215
IIa	3b2	PEL_SEINE	none	DNK	O15M	-0.008	-0.02	-0.067	-0.049	-0.073	-0.009	-0.01	-0.017	-0.007	0.003	0.028	-0.017
IIa	3b2	PEL_TRAWL	none	DNK	O10T15M	0	0	0	0.001	0	-0.012	0	0	0	-0.232	-0.186	0.005
IIa	3b2	PEL_TRAWL	none	DNK	O15M	-0.036	-0.037	-0.037	-0.02	0.014	-0.018	-0.028	-0.012	-0.04	-0.047	-0.004	0
IIa	3b2	PEL_TRAWL	NONE	IRL	O15M	0	0	0	0	0	0	0	0	0	0	0	0.005
IIa	3b2	PEL_TRAWL	none	SCO	O15M	0	0	0	0.004	0	0	0	0	0	0	0	0
IIa	3b2	POTS	none	DNK	O10T15M	0			0	0	0	0	0.001	0	-0.062	-0.05	0
IIa	3b2	POTS	none	ENG	O10T15M				0	0	0	0	0	0	0	0.006	0.001
IIa	3b2	POTS	none	ENG	O15M				0.001	0	0	0	0	0	0	0	0.008
IIa	3b2	POTS	NONE	IRL	O15M						0	0	0	0	0	0	0.089
IIa	3b2	POTS	none	SCO	O10T15M	0	0	0	0	0	0	0	0	0.001	0	0.001	0.001
IIa	3b2	POTS	none	sco	O15M	0	0	0	0	0	0	0	0	0	0	0	0.013
IIa	3b2	TR1	none	BEL	O10T15M											-0.239	
IIa	3b2	TR1	none	BEL	O15M					0			0	0	0	0.013	0
IIa	3b2	TR1	none	DNK	O10T15M	-0.001	0	0	0	0.002	-0.002	-0.003	-0.006	-0.004	-0.033	-0.014	0
IIa	3b2	TR1	none	DNK	O15M	-0.006	-0.02	-0.014	-0.034	-0.015	-0.02	-0.019	-0.034	-0.005	-0.004	-0.005	0
IIa	3b2	TR2	CPART11	SCO	O10T15M											0.075	0.008
IIa	3b2	TR2	none	BEL	O10T15M						0	0		0	0	-0.337	0
IIa	3b2	TR2	none	BEL	O15M					0	0	0	0	0	0	-0.051	0.034
IIa	3b2	TR2	none	DNK	O10T15M	0	0	0	0	0.001	0.02	-0.179	0	0	0		0
IIa	3b2	TR2	none	DNK	O15M	-0.026	0	0	0	0.001	-0.001	0.006	0.003	0.005	0.011	0	0
IIa	3b2	TR2	NONE	SCO	O10T15M	0	0	0	0	0.001	0	0	0	0			
IIa	3b2	TR3	none	BEL	O10T15M									0		-0.463	
IIa	3b2	TR3	none	DNK	O10T15M	0	-0.005	0.019	-0.004	0	-0.002	0.012	0	0	-0.25	-0.098	0
IIa	3b2	TR3	none	DNK	O15M	-0.194	0.03	0.009	0.014	0.003	0.01	0.006	-0.01	-0.006	-0.014	0	0.008
IIa	3b3	BEAM	none	BEL	O15M						0		0	0	0	0	0.415
IIa	3b3	BT2	none	BEL	O15M	0	0	0	0	0	0	0	0	0	0	0.002	0.054
IIa	3b3	BT2	NONE	ENG	O10T15M				0	0	0	0	0	0.003	-0.539	-0.554	-0.572
IIa	3b3	BT2	NONE	ENG	O15M				0	0	0	0	0	0	0.014	-0.224	-0.232
IIa	3b3	DREDGE	none	BEL	O15M						-		0	0	0	0	0.219
lla	3b3	DREDGE	none	ENG	O10T15M				0	0	0	0	0	0	-0.115	-0.25	-0.391
lla	3b3	DREDGE	none	ENG	O15M				0	0	0	0	0	0	0	-0.351	-0.017
IIa	3b3	DREDGE	none	SCO	O15M	0	0	0	0	0	0	0	0	-0.071	0	0.551	0.001
lla	3b3	GN1	NONE	ENG	O10T15M				0	0	0	0	0	0.071	0.079	0.004	0.001
IIa	3b3	GT1	none	BEL	O151131VI				J				0	0	0.075	0.004	0.092
lla	3b3	GT1	NONE	ENG	O10T15M				0	0	0	0	0	0	0.031	0.039	0.006
IIa	3b3	LL1	none	ENG	O10T15M				0	0	0	0	0	0	0.042	-0.663	-0.659
lla	3b3	POTS	none	ENG	O10T15M				0	0	0	0	0.01	0.002	0.042	0.028	-0.003
lla	3b3	TR1	none	BEL	O10113W				U	U	U	U	0.01	0.002	0.077	0.028	0.787
lla	3b3	TR2	none	BEL	O10T15M											U	0.787
IIa	3b3	TR2	none	BEL	O10115M					0	0	0	0	0	0	0	0.018
па	503	TKZ	none	BEL	OTOM					U	0	U	U	0	U	U	0.06

5.3.1.2 Fishing effort of unregulated gears, management area 3b

Effort trends by unregulated gears (including CPArt11 and SPECON IIA83b) are given in Table 5.3.1.6 and shown in Figure 5.3.1.1 together with the regulated effort in the previous section. Category 'none' represents unregulated gear types and mesh sizes in addition to unidentified mesh sizes, and this category represents 0.5% of the unregulated effort in 2012.

The unregulated effort has increased in all three sub-areas in 2012 compared to 2011. This, together with the decrease of regulated effort, make that unregulated effort represents now almost 40% of the total effort in area 3b. One of the most noticeable changes in 2012 is the switch of nearly all French TR1 effort to CPart11 exemption, which was also accompanied to an increase of effort of this fishery back to its 2009 level.

In Skagerrak (3b1), the main unregulated effort is performed with otter trawls with other mesh sizes (57%, including the major small meshed *Pandalus* trawling), and with unregulated TR2 fishing for *Nephrops* under CPArt11 exemption (17%). In the North Sea (3b2), most of the unregulated effort is performed by pelagic fisheries and unregulated beam trawls (mainly the small mesh-sized *Crangon* beam fishery), with 37% and 35% of the 2012 unregulated effort in the area respectively. In the Eastern Channel (3b3), nearly all unregulated effort is performed using pelagic trawls, dredges and pots (57%, 25% and 16% of 2012 unregulated effort respectively).

Table 5.3.1.6. Effort (kWdays) of unregulated gear by subarea in area 3b 2005-2012. The full time series is available on the STECF website.

REG AREA COD	REG GEAR COD	SPECON	2005	2006	2007	2008	2009	2010	2011	2012	Rel 04-06	Rel 2011
3b1	BEAM	none	9484		13085	442				4597	0.57	
	DEM_SEINE	none		439		368	177		104			
	DREDGE	none			94		94	484	390	128	0.24	0.33
	none	none	469	727	10119	217	58975	85324	100480	80578	179.19	0.80
	OTTER	none	3354592	3007470	2633605	2905565	3313077	3246259	3175442	3158753	0.97	0.99
	PEL_SEINE	none	771370	447103	329070	198654	196295	165770	201916	244262	0.41	1.21
	PEL_TRAWL	none	1064576	910470	785364	474195	600538	680827	404710	524294	0.54	1.30
	POTS	none	322315	366137	416807	540803	519185	504260	504191	573080	1.75	1.14
	TR2	CPart11					766754	699160	695814	920420		1.32
		IIA83B	542007	664971	894575	735039						
3b1 Total			6064813	5397317	5082719	4855283	5455095	5382084	5083047	5506112	0.97	1.08
3b2	BEAM	none	13150790	12887540	13735577	13288264	13977649	12502485	8988168	12511111	0.95	1.39
	DEM_SEINE	none	23138	2146	13017	4846	14128	17871		27144	2.33	
	DREDGE	none	2508437	2073566	2479674	2035480	2315671	1988726	2132577	2210516	0.84	1.04
	none	none	64797	50106	73483	63328	184191	117074	148230	174266	2.58	1.18
	OTTER	none	5377674	5659003	3209016	5298165	6004949	6339670	6630044	2587249	0.37	0.39
	PEL_SEINE	none	1962646	1522402	1087940	932519	1221321	971554	819015	662248	0.36	0.81
	PEL_TRAWL	none	15590942	13622148	11994660	7183610	7585415	7758977	8761269	12959556	0.79	1.48
	POTS	none	2165088	2275012	2313665	2350549	2576439	2343830	2419764	2447558	1.10	1.01
	TR1	CPart11								2469180		
	TR2	CPart11						99134	38671	22812		0.59
3b2 Total			40843512	38091923	34907032	31156761	33879763	32139321	29937738	36071640	0.83	1.20
3b3	BEAM	none	70108	51418	32339	48248	69118	26586	24517	21417	0.26	0.87
	DEM_SEINE	none						21500	1125			
	DREDGE	none	3483715	1144701	1323782	1080856	1391023	2291506	2241794	1426359	0.74	0.64
	none	none	2468	32944	19603	241609	241609		4141			
	OTTER	none	1016771	477940	242207	224612	199366	151753	240336	108974	0.15	0.45
	PEL_SEINE	none				7764	7764		1650			
	PEL_TRAWL	none	4939656	4312174	4599318	3687254	3942055	3048145	1966515	3177736	0.68	1.62
	POTS	none	755112	882031	884043	626254	570873	1166178	812123	872370	1.18	1.07
	TR1	CPart11								9694		
3b3 Total			10267830	6901208	7101292	5916597	6421808	6705668	5292201	5616550	0.68	1.06
Grand total (all 3	Bb areas combined	d)	57176155	50390448	47091043	41928641	45756666	44227073	40312986	47194302	0.82	1.17

Statistics on fishing capacity can be taken from the electronic appendixes to the present report, which can be downloaded from: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313

5.3.1.3 Uptake of effort baseline

The uptake of effort baselines is presented on Figure 5.3.1.5). Care must be taken in the interpretation of this figure, for a number of reasons, including e.g.: i) the baseline displayed here is extracted from the TAC and quotas regulations nr 43/2009, 53/2010, 57/2011, 44/2012 and 40/2013, and do not take into account the effort buyback performed by Member states as part of Article 13 and/or other agreements. This information is sometimes publicly available for some Member States, but not for all and STECF has not been provided with this information specifically; ii) as described in section 4, the effort information provided to STECF by a number of Member States is calculated in calendar days, whereas the actual regulation of effort uptake is based on 24h period, which can lead to some differences especially in

coastal fisheries; iii) STECF data are calculated by calendar year whereas the effort baselines apply from February to January.

The point i) above is particularly important for the demersal trawls/seines fishery, as 49% and 36% of the regulated effort (i.e. excluding article 11) by TR1 and TR2 respectively is operated under article 13, and the actual effort is therefore much higher than the official baseline.

For all other regulated gears, the actual overall effort is not constrained by the baseline, however a break down by individual member states would show that some national segments are more constrained than others.

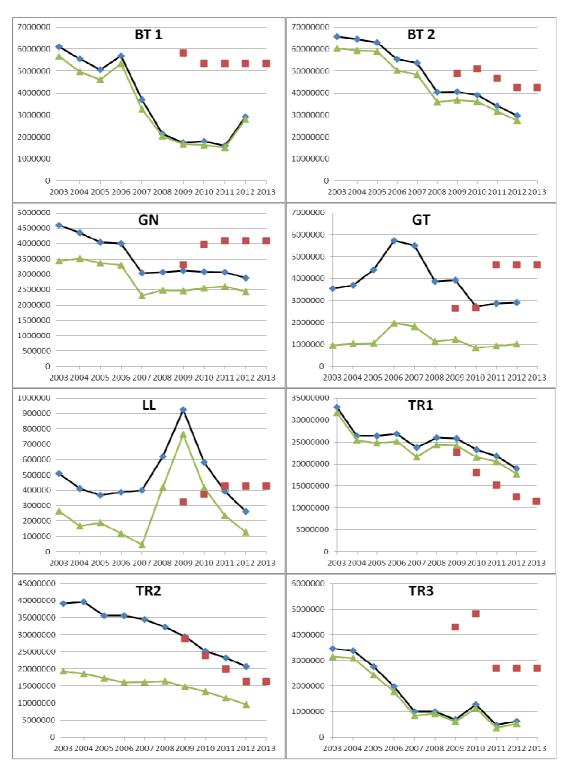


Figure 5.3.1.5 Management area 3b. Uptake of effort ceilings. Red squares: effort ceiling. Blue diamonds: regulated effort in whole area 3b (CPart 11 excluded). Green triangles: regulated effort in North Sea (subarea 3b2) alone.

5.3.2 ToR 1.b Catches (landings and discards) of cod in weight and numbers at age by fisheries

Estimated landings and discards of cod by cod plan gear category for the areas 3b1, 3b2 and 3b3 are given in Table 5.3.2.1. The same is displayed for unregulated gears (Table 5.3.2.3). Detailed data on age compositions of landings are not given here, but are available on the web site. The same applies to estimates by country. In addition, a discard coverage index is presented in tables 5.3.2.2 and 5.3.2.4. Especially discard rates classified with a C have to be treated with great care. In general, because of the limited availability and reliability of discard information for some species and from some countries contributing substantially to landings, care is required in the use of these data to draw firm conclusions about catch composition. In addition, the procedure used to raise discards as explained in section 4 may not be fully consistent with the procedures used in other contexts and therefore may not be directly comparable.

Information related to the Fully Documented Fishery (FDF) is dealt with specifically in section 5.3.8 further below.

As for the report of 2012, a number of figures are included in this report, displaying total landings (white) and discards (grey – when available) in weight for all regulated gears from 2005 to 2012 (Figures 5.3.2.1 - 5.3.2.3).

For the first time landings and discards of cod were analysed for the Skagerrak, the North Sea and the Eastern Channel separately (Table 5.3.2.1 and 5.3.2.3). Discard rates for TR1 (none and CPart13 b+c) and TR2 none categories are generally higher in the Skagerrak than in the North Sea in most of the years. Only TR2 CPart13c shows very high discard rates in the North Sea in 2012 and in the years before. TR2 CPart13b has a substantially lower discard rate in 2012 compared to previous years. In the Eastern Channel discard information is very scarce and not representative. Especially for the TR2 fisheries not enough discard information is available for area 3b3.

Overall, cod discard rates have decreased after 2008 especially for TR1. High discard rates can still be found for TR2 gears.

Catches from unregulated gears do not play a major role apart from one high discard estimate for unregulated otter trawls in 2005. This value appears as outlier in the time series.

Numbers of age by fisheries is not dealt with in this section, and can be found at the website http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313 in Appendix 3.

Table 5.3.2.1 Skagerrak (3b1), North Sea (incl. 2EU; 3b2)), and Eastern Channel (3b3): Landings (t), discards (t) and relative discard rates in weight for cod by regulated gear, 2005-2012.

REG_ARE	A REG_C	GE SPECON	2005_L	2005_D	2005_R	2006_L	2006_D	2006_R	2007_L	2007_D	2007_R	2008_L	2008_D	2008_R	2009_L	2009_D	2009_R	2010_L	2010_D	2010_R	2011_L	2011_D	2011_R	2012_L	2012_D	2012_R
3b1	BT1	none	20.42			3.30			12.03			2.19			1.10			17.12			7.67			10.82		
3b1	BT2	none	2.03			2.02			3.88			7.80			11.38			3.45								
3b1	GN1	none	643.76			432.95			559.54			589.90			672.51	25.23	0.04	760.69	15.53	0.02	668.89	13.81	0.02	640.07	11.76	0.02
3b1	GT1	none	6.99			8.67			6.73			47.39			86.80	4.73	0.05	67.41	1.62	0.02	74.18	2.30	0.03	92.92	2.05	0.02
3b1	LL1	none	27.12			30.08			88.70			62.73			5.59			9.36			22.81	0.06	0.00	22.66		
3b1	TR1	CPart13B													2.67	0.03	0.01	2.01	0.02	0.01	0.23			0.95		
3b1	TR1	none	446.92	898.15	0.67	443.43	1389.51	0.76	615.10	1648.54	0.73	756.50	348.74	0.32	1017.10	732.44	0.42	1158.28	548.85	0.32	1016.47	403.54	0.28	1375.27	346.73	0.20
3b1	TR2	none	1453.36	1956.88	0.57	1268.86	2405.54	0.66	892.70	1810.75	0.67	965.08	738.19	0.43	1224.34	1296.20	0.51	1196.67	1076.25	0.47	1234.09	1456.02	0.54	1253.66	1332.32	0.52
3b1	TR3	none	1.60	1.38	0.46	1.42	0.20	0.12	0.03						0.59			0.56	0.00	0.00	0.02					
3b1 Total			2602.21			2190.73			2178.71			2431.58			3022.08			3215.55			3024.34			3396.35		
3b2	BT1	CPart13B																1.25			3.24			4.28		
3b2	BT1	none	1107.87			1001.40	350.64	0.26	678.36			334.31	212.02	0.39	230.42			306.27			400.94			683.29		
3b2	BT2	CPart13B													1.77			50.81			46.26			31.86		
3b2	BT2	none	2128.74	828.87	0.28	2153.59	420.33	0.16	1980.30	194.35	0.09	2447.77	854.40	0.26	2233.00	441.01	0.17	1739.25	264.97	0.13	1257.52	97.70	0.07	979.95	137.63	0.12
3b2	GN1	none	3144.48	127.50	0.04	2755.03	97.14	0.03	1782.34			1928.85	1.56	0.00	2200.60			2605.27	13.98	0.01	2208.95	112.94	0.05	1763.75	59.00	0.03
3b2	GT1	none	195.54	0.66	0.00	169.99	6.18	0.04	132.12	0.07	0.00	187.78	0.17	0.00	249.01	2.41	0.01	195.51	0.06	0.00	135.37	13.26	0.09	194.34	10.35	0.05
3b2	LL1	none	105.02			197.36			90.95			141.76			119.45			280.68			157.23	1.46	0.01	141.67	0.14	0.00
3b2	TR1	CPart13A																						0.07		
3b2	TR1	CPart13B													511.72	278.09	0.35	671.70	164.87	0.20	323.93	70.41	0.18	194.51	3.38	0.02
3b2	TR1	CPart13c													9454.95	5737.69	0.38	11952.10	2848.70	0.19	10984.57	1371.64	0.11	11056.45	2227.26	0.17
3b2	TR1	none	11806.98	3421.03	0.23	11492.56	2567.86	0.18	10313.31	6501.76	0.39	12237.70	14394.35	0.54	6946.00	1286.87	0.16	6763.45	571.97	0.08	5809.77	239.52	0.04	6305.54	511.47	0.08
3b2	TR2	CPart13A																						0.00		
3b2	TR2	CPart13B													111.71	296.34	0.73	443.38	971.63	0.69	166.89	554.74	0.77	44.19	7.19	0.14
3b2	TR2	CPart13c													409.53	904.41	0.69	149.01	91.24	0.38	184.91	533.34	0.74	227.72	1027.63	0.82
3b2	TR2	none	1457.11	912.87	0.39	1236.82	1509.99	0.55	1309.70	4027.23	0.76	1383.23	2394.24	0.63	986.06	334.72	0.25	664.49	186.16	0.22	741.62	348.08	0.32	381.31	84.19	0.18
3b2	TR3	none	14.32	0.70	0.05	6.25			4.15			0.24			0.90			10.79			1.85			0.60		
3b2 Total			19960.07			19013.00			16291.22			18661.62			23455.12			25833.96			22423.03			22009.52		
3b3	BT1	none										1.04														
3b3	BT2	CPart13B													2.63			0.47	0.23	0.33	0.25	0.00	0.00	0.50	0.05	0.09
3b3	BT2	none	66.58	2.21	0.03	102.69	19.71	0.16	101.19	30.87	0.23	165.25	85.32	0.34	84.59	8.37	0.09	55.48	5.94	0.10	53.25	2.83	0.05	37.98	2.52	0.06
3b3	GN1	none	82.49			142.59			161.61			81.73			83.73			35.67	3.44	0.09	33.76			48.12		
3b3	GT1	none	144.40			169.95			206.21			142.46			139.83			152.33	4.23	0.03	139.34	395.79	0.74	134.38	19.33	0.13
3b3	LL1	CPart13B																						0.00		
3b3	LL1	none	3.90			4.14			3.94			3.76			4.08			2.05			3.76			3.82		
3b3	TR1	CPart13c													1.27			0.16			0.16			0.21		
3b3	TR1	none	3.31			10.48			114.65			46.81			46.21			10.03	0.31	0.03	29.05	0.10	0.00	8.64		
3b3	TR2	CPart13B													8.18	0.92	0.10	12.22	0.02	0.00	7.96	0.88	0.10	11.70		
3b3	TR2	CPart13c													8.33	8.81	0.51	5.96	0.02	0.00	6.64	2.14	0.24	7.68		
3b3	TR2	none	576.39			604.21	0.00	0.00	936.87			603.72	4.83	0.01	616.49			710.70			691.73			535.49		
3b3	TR3	none	0.02						0.00			0.60			0.60			6.57			2.22			1.94		
3b3 Total			877.10			1034.06			1524.45			1045.37			995.92			991.65			968.11			790.45		
Grand To			23439.37			22237.79			19994.38			22138.57			27473.11			30041.16			26415.48			26196.32		

Table 5.3.2.2 Skagerrak (3b1), North Sea (incl. 2EU; 3b2)), and Eastern Channel (3b3): Relative discard rates (R) in weight and Discard coverage index (DQI) for cod by regulated gear, 2005-2012. Empty cells indicate that no discard information was available.

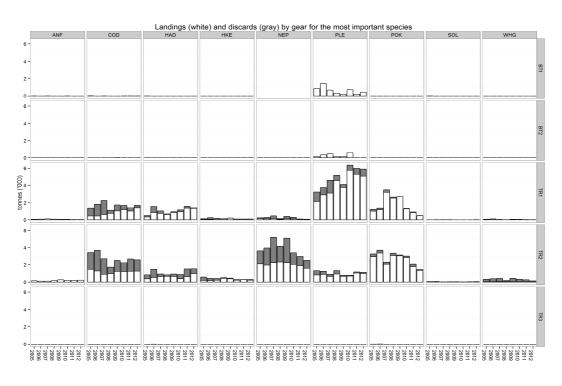

ANNEX	RFG ARF	A REG GEA	AR SPECON	SPECIES	2005 R	2005 DQI	2006 R	2006 DQI	2007 R	2007 DQI	2008 R	2008 DQI	2009 R	2009 DQI	2010 R	2010 DQI	2011 R	2011 DQI	2012 R	2012 DQI
lla	3b1	BT1	none	COD				• • • • • • • • • • • • • • • • • • • •		•		•		•				•		•
lla	3b1	BT2	none	COD																
lla	3b1	GN1	none	COD									0.036	Α	0.02	Α	0.02	Α	0.018	Α
lla	3b1	GT1	none	COD									0.052	Α	0.023	Α	0.03	В	0.022	В
lla	3b1	LL1	none	COD													0.003	С		
lla	3b1	TR1	CPart13B	COD									0.01	В	0.01	С				
lla	3b1	TR1	none	COD	0.668	Α	0.758	Α	0.728	Α	0.316	Α	0.419	Α	0.322	Α	0.284	Α	0.201	Α
lla	3b1	TR2	none	COD	0.574	Α	0.655	Α	0.67	Α	0.433	Α	0.514	Α	0.474	Α	0.541	Α	0.515	Α
lla	3b1	TR3	none	COD	0.462	С	0.122	С							0	С				
lla	3b2	BT1	CPart13B	COD																
lla	3b2	BT1	NONE	COD			0.259	Α			0.388	Α								
lla	3b2	BT2	CPart13B	COD																
lla	3b2	BT2	NONE	COD	0.28	С	0.163	Α	0.089	Α	0.259	Α	0.165	С	0.132	Α	0.072	Α	0.123	Α
lla	3b2	GN1	NONE	COD	0.039	С	0.034	С			0.001	Α			0.005	С	0.049	Α	0.032	Α
lla	3b2	GT1	NONE	COD	0.003	С	0.035	С	0.001	С	0.001	С	0.01	С	0	С	0.089	В	0.051	В
lla	3b2	LL1	NONE	COD													0.009	В	0.001	С
lla	3b2	TR1	CPart13A	COD																
lla	3b2	TR1	CPart13B	COD									0.352	Α	0.197	Α	0.179	Α	0.017	Α
lla	3b2	TR1	CPart13c	COD									0.378	Α	0.192	Α	0.111	Α	0.168	Α
lla	3b2	TR1	NONE	COD	0.225	Α	0.183	Α	0.387	Α	0.54	Α	0.156	В	0.078	В	0.04	В	0.075	В
lla	3b2	TR2	CPart13A	COD																
lla	3b2	TR2	CPart13B	COD									0.726	Α	0.687	Α	0.769	Α	0.14	Α
lla	3b2	TR2	CPart13c	COD									0.688	Α	0.38	Α	0.743	Α	0.819	Α
lla	3b2	TR2	NONE	COD	0.385	Α	0.55	В	0.755	В	0.634	В	0.253	С	0.219	С	0.319	С	0.181	С
lla	3b2	TR3	NONE	COD	0.046	С														
lla	3b3	BT1	NONE	COD																
lla	3b3	BT2	CPart13B	COD											0.331	Α	0	Α	0.089	Α
lla	3b3	BT2	NONE	COD	0.032	Α	0.161	Α	0.234	Α	0.341	Α	0.09	Α	0.097	Α	0.051	Α	0.062	Α
lla	3b3	GN1	NONE	COD											0.088	C				
lla	3b3	GT1	NONE	COD											0.027	С	0.74	С	0.126	С
lla	3b3	LL1	CPart13B	COD																
lla	3b3	LL1	none	COD																
lla	3b3	TR1																		
lla	3b3	TR1	NONE	COD											0.03	С	0.004	В		
lla	3b3	TR2											0.101	С	0.002	С	0.1	С		
lla	3b3	TR2	CPart13c	COD									0.514	С	0.003	В	0.243	В		
lla	3b3	TR2	NONE	COD			0	С			0.008	С								
lla	3b3	TR3	none	COD																

Table 5.3.2.3 Skagerrak (3b1), North Sea (incl. 2EU; 3b2)), and Eastern Channel (3b3): Landings (t), discards (t) and relative discard rates (R) in weight for cod by unregulated gear, 2005-2012.

REG AREA	A REG GEAR	SPECON	2005 L	2005 D	2005 R	2006 L	2006 D	2006 R	2007 L	2007 D	2007 R	2008 L	2008 D	2008 R	2009 L	2009 D	2009 R	2010 L	2010 D	2010 R	2011 L	2011 D	2011 R	2012 L	2012 D	2012 R
3b1	DEM_SEINE	none				0.24	1.36	0.85							0.00						1.00					
3b1	DREDGE	none							1.44						0.08			0.35			0.03			0.00		
3b1	none	none	6.52			5.46			2.68			7.21			20.45			23.80	0.00	0.00	36.86			53.80		
3b1	OTTER	none	233.36	4148.99	0.95	173.80			97.01	40.41	0.29	126.61	149.03	0.54	174.70	17.36	0.09	225.83	37.98	0.14	196.27	62.97	0.24	205.34	59.16	0.22
3b1	PEL_TRAWL	none	1.82	2.71	0.60	1.20	0.57	0.32	0.56	0.37	0.40	3.12	0.09	0.03	0.17			3.61			1.04			0.88		
3b1	POTS	none	0.01			0.02			0.03			0.13			0.22			1.41	0.00	0.00	2.75			1.24		
3b1	TR2	CPart11													0.07	4.14	0.98	0.51	12.66	0.96	0.12	1.03	0.90	0.05	10.73	1.00
3b1	TR2	IIA83b	0.82	2.31	0.74	0.57	4.47	0.89	0.72	13.70	0.95	0.03	6.32	1.00												
3b1 Total			242.53			181.29			102.44			137.11			195.69			255.50			238.07			261.32		
3b2	BEAM	none	19.83	0.29	0.01	14.12			23.49			31.43			113.05	10.27	0.08	51.24	17.02	0.25	14.46			48.33	0.41	0.01
3b2	DEM_SEINE	none	1.95	1.03	0.35	3.20			0.57	0.22	0.28				1.74			9.03						19.40		
3b2	DREDGE	none	0.11			1.02			1.31			0.52						2.35	0.00	0.00	1.45	0.00	0.00	1.72		
3b2	none	none	5.46	34.20	0.86	18.51			7.98			9.76			13.43			0.35			3.48			18.36		
3b2	OTTER	none	58.78	8.16	0.12	39.61	3.99	0.09	14.60	4.15	0.22	22.73	31.47	0.58	28.61			33.01			47.60	0.00	0.00	66.28	2.85	0.04
3b2	PEL_SEINE	none	8.48	5.14	0.38	0.70	0.27	0.28										1.52	0.51	0.25				0.45	0.17	0.27
3b2	PEL_TRAWL	none	1.89	0.67	0.26	1.73	0.09	0.05	2.28			0.44	0.07	0.13	37.02			23.80			14.51			3.64		
3b2	POTS	none	16.87			13.99			10.81			6.52			6.76			13.05	0.01	0.00	5.90			6.28		
3b2	TR1	CPart11																						85.80		
3b2	TR2	CPart11																2.22								
3b2 Total			113.36			92.86			61.05			71.40			200.61			136.57			87.39			250.25		
3b3	BEAM	none	0.06			0.08			0.44			0.19			0.18			0.02								
3b3	DEM_SEINE	none	0.20			0.00						0.40			0.20			1.00			0.07			0.45		
3b3 3b3	DREDGE	none	0.20			0.02			1.43			0.13 27.24			0.20			0.10			0.07			0.15		
	none	none	11.45			5.17			0.14						27.27 3.95			3.72			2.57			2 11		
3b3 3b3	OTTER	none	11.45			5.17			16.88			3.95 0.30			0.30			3.72			2.57			2.11		
3b3	PEL_SEINE PEL TRAWL	none	2.01			5.86			3.52			3.93			3.93			1.91			7.78			7.16		
3b3	POTS	none	0.24			1.41			0.64			0.00			3.33			2.85			1.99			5.17		
3b3 Total	FU13	none	13.96			12.54			23.05			35.74			35.82			9.60			12.41			14.59		
Grand Tot	al		369.86			286.70			186.54			244.25			432.12			401.67			337.87			526.16		

Table 5.3.2.4 Skagerrak (3b1), North Sea (incl. 2EU; 3b2)), and Eastern Channel (3b3): Relative discard rates (R) in weight and Discard coverage index (DQI) for cod by regulated gear, 2005-2012. Empty cells indicate that no discard information was available.

REG_ARE	A REG_GEAR	SPECON	SPECIES	2005 R	2005 DQI	2006 R	2006 DQI	2007 R	2007 DQI	2008 R	2008 DQI	2009 R	2009 DQI	2010 R	2010 DQI	2011 R	2011 DQI	2012 R	2012 DQI
3b1	DEM_SEINE	none	COD			0.848	Α												
3b1	DREDGE	none	COD																
3b1	none	none	COD											0	Α				
3b1	OTTER	none	COD	0.947	В			0.294	С	0.541	В	0.09	Α	0.144	Α	0.243	Α	0.224	Α
3b1	PEL_TRAWL	none	COD	0.598	В	0.321	В	0.401	С	0.026	С								
3b1	POTS	none	COD											0	Α				
3b1	TR2	CPART11	COD									0.983	Α	0.961	Α	0.898	Α	0.995	Α
3b1	TR2	IIA83b	COD	0.739	Α	0.886	Α	0.95	Α	0.995	Α								
3b2	BEAM	NONE	COD	0.014	С							0.083	С	0.249	С			0.008	С
3b2	DEM_SEINE	none	COD	0.346	Α			0.28	Α										
3b2	DREDGE	none	COD											0	С	0	С		
3b2		NONE	COD	0.862	C														
3b2	OTTER	NONE	COD	0.122	С	0.092	С	0.221	С	0.581	С					0	С	0.041	С
3b2	PEL_SEINE	none	COD	0.378	Α	0.28	Α							0.252	Α			0.27	Α
3b2	_	none	COD	0.262	Α	0.052	С			0.133	Α								
3b2		NONE	COD											0.001	В				
3b2		CPart11	COD																
3b2		CPart11	COD																
3b3	BEAM	NONE	COD																
3b3	_	none	COD																
3b3		NONE	COD																
3b3		NONE	COD																
3b3		NONE	COD																
3b3	PEL_SEINE	none	COD																
3b3	_	none	COD																
3b3	POTS	none	COD																

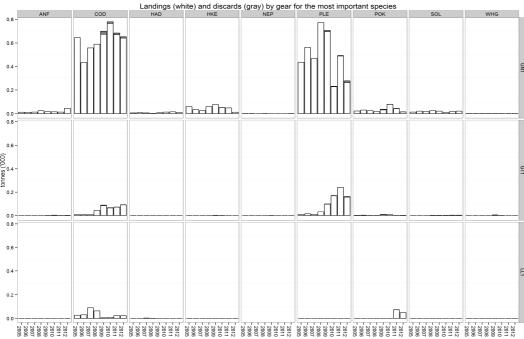


Figure 5.3.2.1; Estimated landings (white bars) and discards (grey bars) of targets species by cod plan gear categories in management area 3b1 (Skagerrak). The upper chart shows the most used gears, the lower chart the remaining gears.

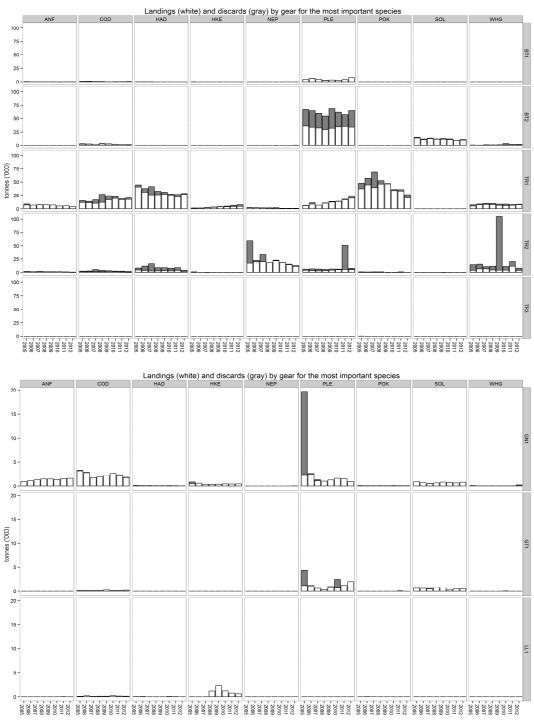


Figure 5.3.2.2; Estimated landings (white bars) and discards (grey bars) of targets species by cod plan gear categories in management area 3b2 (North Sea; 2EU). The upper chart shows the most used gears, the lower chart the remaining gears.

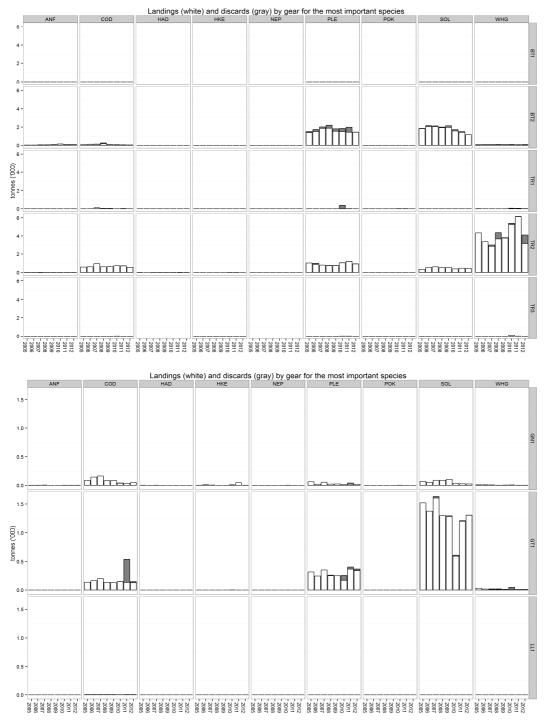


Figure 5.3.2.3; Estimated landings (white bars) and discards (grey bars) of targets species by cod plan gear categories in management area 3b3 (Eastern channel). The upper chart shows the most used gears, the lower chart the remaining gears.

5.3.3 ToR 1.c-d Catches (landings and discards) of non-cod species in weight and numbers at age by fisheries

Estimated landings and discards of haddock, whiting, anglerfish, saithe, hake, Nephrops, plaice and sole by cod plan gear category for the areas 3b1, 3b2 and 3b3 are given in Table 5.3.3.1. The same is given for the unregulated gears in table 5.3.3.2 but for sole and plaice only. Detailed data on age compositions of landings and discards are not given here, but are available on the web site. The same applies to other species. This includes some discard information for pelagic species. As discard information for pelagic species is rather scarce, great care is needed in interpreting the available information.

Information related to the Fully Documented Fishery (FDF) is dealt with specifically in section 5.3.8 further below.

Because of the limited availability and reliability of discard information for some species and from some countries contributing substantially to landings, care is required in the use of these data to draw firm conclusions about catch composition. A discard coverage index (DQI) is presented for the first time. The index values for all species in the data call can be found at the website

http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313 in Appendix 2.

In addition, the procedure used to raise discards and explained in section 4.4 may not be fully consistent with the procedures used in other contexts and therefore may not be directly comparable. In particular, some outliers are visible for the TR2 fisheries. For example, the very large whiting discards estimated for 2009 relates to averaged discard rates from other countries allocated to the large French landings in area IV rather than actual observations, which are missing from France. Also high discard estimates for plaice in the shrimp fishery with unregulated beam trawls (BEAM) in 2012 relate to average discard rates applied to the relatively large landings of the Dutch fleet. More examples can be found. These values may not be realistic because of missing discard information from some countries. Further investigations are needed during the second effort meeting in October.

A number of figures are included in this report, displaying total landings (white) and discards (grey – when available) in weight for all regulated gears from 2004 to 2012 (Figures 5.3.3.1 - 3).

Anglerfish, and saithe landings decreased since 2009. Discard rates for saithe are lower compared to former years. Plaice landings have increased and discards remain around the same proportion of the total catch (~40-45%) apart from outlier in 2011 for TR2. Whitefish landings in TR2 are globally low compared to TR1 landings but discard rates are higher. Nephrops landings have decreased in recent years.

Catches with unregulated gears of sole and plaice are very small compared with the total catch (Table 5.3.3.2).

Numbers at age by fisheries is not dealt with in this section, and can be found at the website (http://stecf.jrc.ec.europa.eu/web/stecf/ewg13) in Appendix 3.

Table 5.3.3.1 Skagerrak (3b1), North Sea (incl. 2EU; 3b2)), and Eastern Channel (3b3): Landings (t), discards (t) and relative discard rates (R) in weight by species and regulated gear, 2005-2012. DATA FOR OTHER SPECIES ARE AVAILABLE ON STECF WEBSITE.

SPECIES	REG A	R REG GEAR	SPECON	2005 L	2005 D	2005 R	2006 L	2006 D	2006 B	2007 1	2007 D	2007 R	2008 1	2008 D	2008 R	2009 1	2009 D	2009 B	2010 1	2010 D	2010 R	2011	2011 D	2011 R	2012 L	2012 D	2012 R
ANF	3b1	BT1	none	4.59	2003_D	2003_1	2.81	2000_D	2000_K	8.08	2007_D	2007_1	2.82	2000_D	2000_1	2.03	2003_D	2003_K	5.02	2010_D	2010_K	0.95	2011_D	2011_11	2.98	2012_D	ZUIZ_I
ANF	3b1	BT2	none	0.40			0.09			1.73			3.56			0.82			1.11			0.55			2.50		
ANF	3b1	GN1	none	11.16			9.87			12.66			23.31			16.95	0.00	0.00	14.62	0.00	0.00	12.69	0.00	0.00	44.20	0.00	0.00
ANF	3b1	GT1	none	0.00			0.05			12.00			0.27			0.90	0.00	0.00	3.65	0.00	0.00	1.69	0.00	0.00	1.97	0.00	0.00
ANF	3b1	LL1	none	0.00			0.03						0.27			0.50	0.00	0.00	0.01	0.00	0.00	0.04	0.00	0.00	1.57	0.00	0.00
ANF	3b1	TR1	CPart13B													0.02			0.01			0.04					
ANF	3b1	TR1	none	76.38	0.16	0.00	93.08	0.94	0.01	114.14	0.72	0.01	83.16	0.15	0.00	76.98	0.04	0.00	67.99	0.15	0.00	35.15	0.11	0.00	33.68	0.14	0.00
ANF	3b1	TR2	none	145.05	0.16	0.00	109.91	1.85	0.01	104.65	1.15	0.01	157.08	0.13	0.00	257.00	0.04	0.00	206.01	0.13	0.00	203.47	0.11	0.00	217.59	1.82	0.00
ANF	3b1	TR3	none	0.17	0.00	0.00	0.08	1.03	0.02	0.03	1.13	0.01	137.00	0.57	0.00	0.23	0.23	0.00	0.09	0.03	0.00	203.47	0.01	0.00	217.55	1.02	0.01
ANF	3b1 To		HOTIC	237.74	0.00	0.00	215.89			241.29			270.19			354.94			298.50			253.98			300.42		
ANF	3b2 10	BT1	CPart13B	237.74			213.03			241.23			270.13			334.54			1.64			1.48			1.75		
ANF	3b2	BT1	none	356.38			198.11	14.67	0.07	200.39			160.35	1.41	0.01	108.47			84.87			110.86	0.00	0.00	146.65		
ANF	3b2	BT2	CPart13B	330.30			130.11	14.07	0.07	200.55			100.33	1.41	0.01	0.06			8.51			17.01	0.00	0.00	7.81		
ANF	3b2	BT2	none	60.61	12.67	0.17	45.92	5.44	0.11	37.93	3.29	0.08	41.04	7.06	0.15		13.38	0.33	43.98	13.48	0.24	41.86	14.08	0.25	21.83		
ANF	3b2	GN1	CPart13B																211.01			241.94			189.41		
ANF	3b2	GN1	none	927.84	0.00	0.00	1083.42	0.00	0.00	1272.87			1441.11	0.00	0.00	1448.55			1129.58			1276.93	0.00	0.00	1424.97	0.00	0.00
ANF	3b2	GT1	none	1.04	0.00	0.00	3.37	0.00	0.00	0.49			0.56	0.00	0.00	5.36			1.34			4.41	0.00	0.00	16.61	0.00	0.00
ANF	3b2	LL1	none	0.22			0.59			0.01			0.05			0.07			0.24			32.44	0.00	0.00	0.10		
ANF	3b2	TR1	CPart13A																						0.05		
ANF	3b2	TR1	CPart13B													294.00			376.48			480.74			23.09		
ANF	3b2	TR1	CPart13c													5444.02			3652.75			3816.12			3103.73		
ANF	3b2	TR1	none	7073.77	1981.47	0.22	6895.56	71.25	0.01	7354.46	225.31	0.03	7626.19	21.92	0.00	1300.35	1.05	0.00	1366.24	6.58	0.01	1212.59	0.70	0.00	1249.21	9.14	0.01
ANF	3b2	TR2	CPart13A																						3.62		
ANF	3b2	TR2	CPart13B													535.95			1118.91			728.11			36.22		
ANF	3b2	TR2	CPart13c													690.05			103.72			220.32			581.17		
ANF	3b2	TR2	none	1793.56	316.19	0.15	1743.52			1611.32	423.64	0.21	1694.38			138.94	0.00	0.00	58.34	0.02	0.00	54.50	0.08	0.00	55.97	0.13	0.00
ANF	3b2	TR3	none	27.44	0.00	0.00	11.19			11.42			1.66			0.22									0.14	0.00	0.01
ANF	3b2 To	tal		10240.86			9981.68			10488.90			10965.34			9993.86			8157.60			8239.31			6862.33		
ANF	3b3	BT1	none										0.04														
ANF	3b3	BT2	CPart13B													0.22			1.67			2.18			2.61		
ANF	3b3	BT2	none	20.27	8.41	0.29	23.30	4.06	0.15	48.20	8.43	0.15	48.05	1.43	0.03	61.04	21.79	0.26	127.53	17.80	0.12	94.99	6.64	0.07	58.46	18.10	0.24
ANF	3b3	GN1	none	0.04			0.19			4.16						0.03			0.25			0.73			0.08		
ANF	3b3	GT1	none	1.54			0.01			0.55			0.11			0.11			0.02			0.51			0.02		
ANF	3b3	LL1	CPart13B																			0.08					
ANF	3b3	TR1	CPart13B																						0.03		
ANF	3b3	TR1	CPart13c													0.01			0.01			0.01					
ANF	3b3	TR1	none	1.59			1.60			4.44			0.92			0.91			1.52			6.11			3.22		
ANF	3b3	TR2	CPart13B													0.34			1.86			1.52			1.84		
ANF	3b3	TR2	CPart13c													0.95			0.42			0.94			0.59		
ANF	3b3	TR2	none	12.21			12.26			18.66			11.77			10.75			2.04			5.11			6.21		
ANF	3b3	TR3	none																								
ANF	3b3 To	tal		35.65			37.36			76.01			60.89			74.35			135.32			112.16			73.06		
ANF Total				10514.25	2319.35	0.84	10234.93	98.20	0.36	10806.19	662.53	0.48	11296.42	32.33	0.19	10423.15	36.48	0.59	8591.42	38.84	0.37	8605.45	22.44	0.33	7235.80	29.34	0.27

Table 5.3.3.1 continued

SPECIES	REG_A	AR REG_GEAR	SPECON	2005_L	2005_D	2005_R	2006_L	2006_D	2006_R	2007_L	2007_D	2007_R	2008_L	2008_D	2008_R	2009_L	2009_D	2009_R	2010_L	2010_D	2010_R	2011_L	2011_D	2011_R	2012_L	2012_D	2012_R
HAD	3b1	BT1	none	11.84			0.18			1.31			0.20			0.03			0.10			0.14			1.03		
HAD	3b1	BT2	none	3.72			0.01			0.03			0.03						0.05								
HAD	3b1	GN1	none	5.59			8.45			5.08			1.88			6.20	0.10	0.02	12.99	0.01	0.00	14.52	0.03	0.00	8.15	0.00	0.00
HAD	3b1	GT1	none	0.03			0.02			0.02			0.05			0.27	0.03	0.08	0.21	0.00	0.00	0.04	0.00	0.00	0.04	0.00	0.00
HAD	3b1	LL1	none	0.03						2.77			0.98						0.00			0.51	0.00	0.00	0.55		
HAD	3b1	TR1	CPart13B													5.34	0.15	0.03	0.90	0.01	0.01	0.10			0.26		
HAD	3b1	TR1	none	336.25	169.32	0.34	828.89	756.43	0.48	748.76	274.47	0.27	608.79	79.55	0.12	822.97	100.68	0.11	934.96	216.51	0.19	1349.77	249.85	0.16	1314.99	113.08	0.08
HAD	3b1	TR2	none	364.78	452.82	0.55	518.09	945.00	0.65	625.08	294.28	0.32	651.40	171.20	0.21	642.01	272.03	0.30	382.06	479.51	0.56	616.39	886.49	0.59	960.94	552.86	0.37
HAD	3b1	TR3	none	1.63	0.06	0.03	8.40	0.04	0.01	0.02						0.04			0.15	0.01	0.04				0.04		
HAD	3b1 To	otal		723.87			1364.03			1383.06			1263.32			1476.86			1331.42			1981.46			2285.99		
HAD	3b2	BT1	CPart13B																0.16			0.06			0.06		
HAD	3b2	BT1	none	115.64			81.08	1.67	0.02	116.21			54.41	0.26	0.01	34.50			32.69			51.49	1.06	0.02	59.80		
HAD	3b2	BT2	CPart13B																0.62			1.02			1.02		
HAD	3b2	BT2	none	54.20	16.11	0.23	14.06	3.94	0.22	15.46	2.84	0.16	20.13	9.07	0.31	10.39			16.28			55.12	13.14	0.19	19.47		
HAD	3b2	GN1	none	95.36	0.00	0.00	71.99	0.00	0.00	54.98			47.46	0.00	0.00	31.75			55.85			44.44	0.16	0.00	22.45	2.33	0.09
HAD	3b2	GT1	none	2.29			0.74	0.00	0.00	0.81			1.25	0.00	0.00	1.41			1.53			3.15	0.00	0.00	2.36	0.45	0.16
HAD	3b2	LL1	none	24.70			65.99			9.08			10.83			13.89			44.45			37.71	0.00	0.00	5.52	0.03	0.01
HAD	3b2	TR1	CPart13A																						0.04		
HAD	3b2	TR1	CPart13B													2862.83	408.87	0.13	1434.37	189.25	0.12	1747.88	366.88	0.17	694.31	7.41	0.01
HAD	3b2	TR1	CPart13c													22247.38	3251.61	0.13	20835.45	3343.67	0.14	19304.58	3405.59	0.15	24395.20	1225.34	0.05
HAD	3b2	TR1	none	40599.67	3917.38	0.09	30752.01	6928.07	0.18 2	5777.82	5412.43	0.37	25987.07	6666.13	0.20	1836.72	105.99	0.06	1406.40	128.34	0.08	1394.24	189.32	0.12	1654.73	322.53	0.16
HAD	3b2	TR2	CPart13A																						9.18		
HAD	3b2	TR2	CPart13B													1507.56	2592.85	0.63	2315.01	4600.95	0.67	1617.22	3812.35	0.70	173.31	5.52	0.03
HAD	3b2	TR2	CPart13c													1766.30	2883.76	0.62	308.21	410.01	0.57	536.45	1224.50	0.70	1742.26	1997.41	0.53
HAD	3b2	TR2	none	4466.46	3650.33	0.45	3455.99	8267.72	0.71	2631.53	13395.50	0.84	2778.54	6022.45	0.68	88.83	0.00	0.00	147.49	3.07	0.02	1552.34	3.03	0.00	96.33	7.99	0.08
HAD	3b2	TR3	none	16.14	1.13	0.07	15.12			5.07			0.59			0.72			2.04						0.64	0.21	0.24
HAD	3b2 To	otal		45374.47			34456.97		2	8610.95		- :	28900.28			30402.27			26600.56			26345.70		- :	28876.69		
HAD	3b3	BT2	CPart13B																						0.03		
HAD	3b3	BT2	none	0.33			1.00			0.96			0.39			0.72			1.85			1.38	0.00	0.00	2.41		
HAD	3b3	GN1	none	0.04						0.04						0.00			0.02			0.00					
HAD	3b3	GT1	none																			0.06			0.37		
HAD	3b3	LL1	none																0.00								
HAD	3b3	TR1	none	4.09			0.74			2.32			1.07			1.07			9.35			8.94			3.72		
HAD	3b3	TR2	CPart13B													0.04			0.63			1.70			0.27		
HAD	3b3	TR2	CPart13c													0.00						0.35			0.03		
HAD	3b3	TR2	none	5.35			0.59			14.55			3.74			3.73			2.56			23.65			10.41		
HAD	3b3 To	otal		9.80			2.34			17.87			5.20			5.56			14.41			36.08			17.24		
HAD Total				46108.14	8207.14	1.76	35823.34	16902.87	2.26 3	0011.88 2	9379.51	1.95	30168.79	12948.67	1.53	31884.69	9616.04	2.09	27946.38	9371.33	2.39	28363.24	10152.40	2.81	31179.92	4235.15	1.81

Table 5.3.3.1 continued

SPECIES	REG A	AR REG GEAR	SPECON	2005 L	2005 D	2005 R	2006 I	2006 D	2006 R	2007 1	2007 D	2007 R	2008 1	2008 D	2008 R	2009 1	2009 D	2009 R	2010 I	2010 D	2010 R	2011 I	2011 D	2011 R	2012 I	2012 D	2012 R
HKE	3b1	BT1	none	2.12	2003_5	2005_11	2.50	2000_2	2000_11	1.08	2007_2	2007_11	0.42	2000_2	2000_11	0.69	2003_2	2005_11	1.55	2010_5		0.04			0.44		
HKE	3b1	BT2	none	0.08			0.16			0.80			1.47			0.35			1.55			0.01			0.11		
HKE	3b1	GN1	none	58.62			33.86			25.15			58.80			75.58	0.08	0.00	50.71	0.69	0.01	47.50	0.05	0.00	11.19	0.02	0.00
HKE	3b1	GT1	none	0.14			0.04			0.04			0.33			2.29	0.04	0.02	1.41	0.02	0.01	0.34	0.00	0.00	0.48	0.00	0.00
HKE	3b1	LL1	none										0.00						0.01			0.00					
HKE	3b1	TR1	CPart13B													0.28	0.10	0.27	0.06			0.03			0.16		
HKE	3b1	TR1	none	69.10	60.41	0.47	58.88	191.60	0.77	103.46	52.80	0.34	108.32	23.16	0.18	197.16	19.51	0.09	90.66	16.83	0.16	93.08	2.36	0.03	81.85	20.62	0.20
HKE	3b1	TR2	none	186.60	373.78	0.67	159.54	251.78	0.61	211.75	149.17	0.41		87.62	0.17	368.15	86.55	0.19	217.45	73.86	0.25	281.34	20.19	0.07	216.34	79.59	0.27
HKE	3b1	TR3	none	0.26	0.04	0.14	0.42	0.14	0.25	0.06						0.06			0.15	0.00	0.00						
HKE	3b1 To	otal		316.93			255.39			342.34			585.81			644.55			362.00			422.33			310.47		
HKE	3b2	BT1	CPart13B																0.91			1.50			1.30		
HKE	3b2	BT1	none	68.30			57.97	0.00	0.00	59.53			39.50	0.00	0.00	23.55			35.16			30.79	0.00	0.00	21.43		
HKE	3b2	BT2	CPart13B																2.55			2.49			1.08		
HKE	3b2	BT2	none	19.65	5.31	0.21	9.53	9.53	0.50	7.69	0.09	0.01	8.67	0.00	0.00	6.07	0.00	0.00	8.20			6.25	0.21	0.03	6.91		
HKE	3b2	GN1	none	496.53	334.14	0.40	578.49	0.00	0.00	328.42			339.08	0.00	0.00	366.78			406.58			379.95	0.00	0.00	424.17	0.18	0.00
HKE	3b2	GT1	none	1.79	0.44	0.20	1.45	0.00	0.00	0.56			17.70	0.00	0.00	3.71			14.50			3.26	0.00	0.00	4.35	0.01	0.00
HKE	3b2	LL1	none	0.05			0.06						1181.89			2311.75			1223.88			766.52	0.00	0.00	605.89	0.00	0.00
HKE	3b2	TR1	CPart13B													105.17	18.97	0.15	131.71	2.66	0.02	121.72	4.34	0.03	153.70	6.41	0.04
HKE	3b2	TR1	CPart13c													1953.75	61.79	0.03	1787.32	620.87	0.26	2268.75	77.79	0.03	2761.47	2278.52	0.45
HKE	3b2	TR1	none	1113.06	574.02	0.34	1420.06	230.15	0.14	1992.49	344.42	0.15	3105.87	338.41	0.10	1634.30	343.72	0.17	1908.27	602.40	0.24	2039.31	2129.79	0.51	1992.92	321.76	0.14
HKE	3b2	TR2	CPart13A																						0.99		
HKE	3b2	TR2	CPart13B													42.14	1.66	0.04	90.20	1.37	0.02	65.30	0.39	0.01	7.42	5.38	0.42
HKE	3b2	TR2	CPart13c													65.83	1.73	0.03	12.61	0.27	0.02	25.73	0.22	0.01	33.35	61.28	0.65
HKE	3b2	TR2	none	137.68	887.94	0.87	138.18	17.76	0.11	145.55	198.78	0.58	177.41	0.00	0.00	81.22	0.00	0.00	95.05	18.42	0.16	63.91	1.51	0.02	102.02	0.01	0.00
HKE	3b2	TR3	none	2.02	0.08	0.04	0.60			0.41						0.04									0.25		
HKE	3b2 To			1839.09			2206.33			2534.65			4870.12			6594.31			5716.94			5775.47			6117.24		
HKE	3b3	BT2	none	0.29			0.21			0.50			0.50			0.21			0.36	0.00	0.00	0.12			0.26		
HKE	3b3	GN1	none	0.66			12.52			2.32									7.95			43.54			0.03		
HKE	3b3	GT1	none	0.63						0.23			0.34			0.34			2.33			0.84			0.70		
HKE	3b3	LL1	none										0.02			0.02						0.06					
HKE	3b3	TR1	CPart13c													0.00											
HKE	3b3	TR1	none	0.33			0.09			7.78			0.11			0.11			2.45			2.22			0.83		
HKE	3b3	TR2	CPart13B													0.01			0.03			0.04			0.51		
HKE	3b3	TR2	CPart13c													0.01			0.00								
HKE	3b3	TR2	none	2.16			0.81			0.32			1.72			1.70			12.00			8.62			1.67		
HKE	3b3	TR3	none																			0.02					
HKE	3b3 To	otal		4.07			13.62			11.15			2.69			2.40			25.12			55.45			4.01		
HKE Total				2160.08	2236.15	3.32	2475.35	700.95	2.38	2888.14	745.26	1.49	5458.61	449.20	0.45	7241.26	534.15	0.99	6104.06	1337.39	1.15	6253.25	2236.83	0.74	6431.71	2773.78	2.17

Table 5.3.3.1 continued

SPECIES	REG_A	AR REG_GEAR	SPECON	2005_L	2005_D	2005_R	2006_L	2006_D	2006_R	2007_L	2007_D	2007_R	2008_L	2008_D	2008_R	2009_L	2009_D	2009_R	2010_L	2010_D	2010_R	2011_L	2011_D	2011_R	2012_L	2012_D	2012_R
NEP	3b1	BT2	none																								
NEP	3b1	GN1	none	0.05			0.04			0.01			0.07												0.02	0.00	0.00
NEP	3b1	GT1	none	0.05			0.37			0.01			0.04			1.06						0.01			0.02		
NEP	3b1	TR1	none	136.82	108.79	0.44	116.74	162.42	0.58	136.80	323.03	0.70	56.18	107.85	0.66	109.04	301.89	0.74	103.63	197.66	0.66	17.77	79.37	0.82	10.54	66.25	0.86
NEP	3b1	TR2	none	1761.00	1055.13	0.38	1576.87	1508.63	0.49	1805.52	2101.45	0.54	2024.65	1311.94	0.39	2200.12	2863.59	0.57	2021.28	1368.91	0.40	1874.24	1095.69	0.37	1586.05	954.64	0.38
NEP	3b1	TR3	none	0.47	0.01	0.01	0.11			1.62						0.01			2.07	0.00	0.00						
NEP	3b1 To	otal		1898.40			1694.12			1943.96			2080.93			2310.23			2126.97			1892.03			1596.63		
NEP	3b2	BT1	CPart13B																						0.00		
NEP	3b2	BT1	none	0.12			0.47			0.24			0.08			0.56						1.00			2.00		
NEP	3b2	BT2	CPart13B																3.21			1.65			0.95		
NEP	3b2	BT2	none	76.36	8.11	0.10	59.46			93.34			30.91			85.75			78.87			93.95			80.19	150.50	0.65
NEP	3b2	GN1	none	0.08	0.13	0.63	0.09			0.02			0.11	0.00	0.00	0.08			0.15			0.26	0.00	0.00	0.76	0.00	0.00
NEP	3b2	GT1	none																0.01			0.00	0.00	0.00			
NEP	3b2	LL1	none																								
NEP	3b2	TR1	CPart13A																						1.89		
NEP	3b2	TR1	CPart13B													204.64	230.02	0.53	285.80	11.01	0.04	273.01	0.00	0.00	8.06		
NEP	3b2	TR1	CPart13c													745.49	285.31	0.28	307.02	10.00	0.03	447.13	0.00	0.00	690.66		
NEP	3b2	TR1	none	1949.22	383.96	0.17	1907.59	277.04	0.13	1707.32	239.33	0.12	1551.74	454.49	0.23	426.47	226.64	0.35	324.76	100.43	0.24	365.85	0.82	0.00	274.23	93.03	0.25
NEP	3b2	TR2	CPart13A																						98.40		
NEP	3b2	TR2	CPart13B													10006.93	0.00		15432.83	0.00	0.00	9865.21			1646.20		
NEP	3b2	TR2	CPart13c													9647.10	0.00	0.00	1665.30	0.00	0.00	2382.54			7375.19		
NEP	3b2	TR2	none	17250.22			19400.72	2770.66	0.13	19701.86	13766.27	0.41	18262.78			1894.91		0.35	1342.98	163.49	0.11	2213.47	856.77	0.28	2159.91	1708.55	0.44
NEP	3b2	TR3	none	4.80	0.04	0.01				8.03						7.50									0.01		
NEP	3b2 To			19280.80			21371.83		- 2	21510.80			19845.62			23019.43			19440.93			15644.08			12338.45		
NEP	3b3	BT2	none	0.03			0.00			0.00						0.00			0.00						0.00		
NEP	3b3	GN1	none																0.15								
NEP	3b3	GT1	none																						0.08		
NEP	3b3	TR1	none	4.10			1.46			0.22									3.79			1.68			0.48		
NEP	3b3	TR2	none				0.03						0.06			0.06			0.29			0.30			0.11		
NEP	3b3 To	otal		4.13			1.49			0.22			0.06			0.06			4.23			1.98			0.67		
NEP Total				21183.32	43755.17	2.44	23067.44	4718.75	1.32 2	23454.98	16430.08	1.77	21926.61	1874.28	1.28	25329.72	4933.77	2.81	21572.13	1851.49	1.47	17538.08	2032.64	1.47	13935.76	2972.97	2.59

Table 5.3.3.1 continued

PLE PLE	3b1	BT1	none		2005_D			2006 D							2008 R			2009 R					2011 D				2012 R
PLE		0.1		843.89			1448.00			677.36	2007_D	2007_11	316.37	2000_B		158.97	2003_2	2005_11	713.91	2010_D	2020_11	204.77			2012_L 432.19		
	302	BT2	none	119.92			329.87			461.63			144.66			136.61			575.09			4.00					
	3b1	GN1	none	435.60			563.42			465.84			768.34			694.04	9.46	0.01	226.81	3.27	0.01	487.51	3.91	0.01	261.23	14.72	0.05
PLE		GT1	none	8.11			14.14			8.95			34.53			98.83	2.32	0.02	169.32	1.51	0.01	240.94	0.28	0.00	158.23	5.27	0.03
		LL1	none	0.00			0.29			0.00						0.01			0.00			0.00	0.00	0.00	0.00		
		TR1	CPart13B													0.03			0.00								
		TR1	none	2158.95	1077.86	0.33	2897.28	849.58	0.23	3105.85	1467 01	0.32	4533.51	654.85	0.13	3757.44	326.73	0.08	5771.62	580.80	0.09	5315.67	668.62	0.11	5093.09	810.14	0.14
		TR2	none	800.96	469.61	0.37	876.96	348.39	0.28	647.55	180.88		924.89	311.01	0.25		122.56	0.16	686.76	95.45		1032.43	117.70	0.10	975.65	143.29	0.13
		TR3	none	0.11	0.06	0.36	0.99	0.28	0.22	0.74	100.00	U.LL	32 1.03	311.01	0.25	0.03	122.50	0.10	0.28	33.13	0.12	2.20	117.70	0.10	0.00	115.25	0.15
	3b1 Tota			4367.54			6130.95			5367.93			6722.30			5502.53			8143.80			7287.53			6920.39		
		BT1	CPart13B																538.77			561.38			1199.60		
		BT1	none	4374.21			6359.90	138.36	0.02	4631.95			2723.87	72.40	0.03	3438.22			2449.69			3383.66			6675.32		
		BT2	CPart13B	1371121			0333.30	130.30	0.02	1032.33			2723.07	72.10	0.05	42.56			6616.71	1247.73	0.16	7350.16			7404.30		
		BT2	none	36257.77	31011.12	0.46	34007.22	30771.51	0.48 3	2510.81	26680.93	0.45	29617.31	24677.33	0.46	32125.51	36549.33	0.53	28011.12			28118.23	21149.46		26733.62	1070.46	0.54
		GN1	none	2335.65			2430.79	170.31		1057.20	252.38	0.19	994.74	10.06		1239.75			1607.46	0.00		1493.24	2.68	0.00	928.76	3.48	0.00
		GT1	none	1176.11			1109.67	75.56	0.06	645.43			383.08	0.00	0.00		111.83	0.12	697.27			1189.05	4.78		1992.99	7.65	0.00
		LL1	none	0.88			0.81			0.00			0.05			0.01			0.61			0.12	0.00	0.00	0.03		
		TR1	CPart13A																						0.04		
PLE	3b2	TR1	CPart13B													1814.53	579.08	0.24	3417.16	272.15	0.07	3394.94	356.44	0.10	3431.84	643.52	0.16
		TR1	CPart13c													3224.99	558.18		1669.07	209.01		2537.39	206.97		3186.93	645.43	0.17
		TR1	none	5999.81	575.07	0.09	8770.47	2498.88	0.22	6823.83	184.95	0.03	10472.65	500.44	0.05	7479.79	24.78		8669.10	10.28		11316.66	181.11		13179.02		0.18
		TR2	CPart13A																						2.10		
		TR2	CPart13B													123.30	124.76	0.50	1288.64	354.23	0.22	1194.62	1107.69	0.48	1179.26	531.23	0.31
		TR2	CPart13c													975.54	1434.56	0.60	216.80	64.87	0.23	443.01	165.84	0.27	218.54	107.85	0.33
		TR2	none	3949.34	2137.46	0.35	3251.47	3204.31	0.50	2978.47	3338.72	0.53	3051.68	2413.90	0.44	3108.53	445.27	0.13	3443.60	713.67	0.17	3650.10	44663.89	0.92		2109.91	0.37
PLE	3b2	TR3	none	5.62	13.05	0.70	22.72			4.76			0.03			0.80			1.05			0.25			4.74	0.02	0.00
	3b2 Tota			54099.39			55953.05		4	8652.46			17243.40			54423.95			8627.06		-	64632.79		(59700.69		
PLE	3b3	BT1	none										3.29												0.09		
PLE	3b3	BT2	CPart13B													78.06	0.53	0.01	96.93	4.47	0.04	82.87	0.45	0.01	128.38	5.23	0.04
PLE	3b3	BT2	none	1395.37	126.37	0.08	1516.66	230.57	0.13	1869.09	146.08	0.07	1880.82	316.54	0.14	1485.56	253.87	0.15	1418.84	334.47	0.19	1369.82	531.54	0.28	1320.29	14.14	0.01
PLE	3b3	GN1	none	61.21			17.59			53.39			20.66			21.56			14.77			18.07	20.91	0.54	18.08		
PLE	3b3	GT1	none	319.92			249.39			352.61	0.00	0.00	256.42	9.17	0.04	254.11			175.35	86.29	0.33	367.99	37.45	0.09	339.72	30.37	0.08
PLE	3b3	LL1	CPart13B																0.02			0.03			0.04		
PLE	3b3	LL1	none	0.21			0.60			0.24			0.09			0.58			0.39			0.65			0.20		
PLE	3b3	TR1	CPart13c													2.94			0.66	0.01	0.01	0.47			0.77		
PLE	3b3	TR1	none	1.69			2.44			4.33			5.92			3.77			3.87	374.62	0.99	9.73	3.57	0.27	4.96		
		TR2	CPart13B													4.28	0.12	0.03	26.68	5.33	0.17	14.18	6.20	0.30	61.61	14.05	0.19
PLE	3b3	TR2	CPart13c													29.75	1.22	0.04	14.07	3.61	0.20	20.31	7.11	0.26	19.15	3.45	0.15
PLE	3b3	TR2	none	1016.30			881.63	120.28	0.12	798.46	0.00	0.00	722.65	28.92	0.04	700.80			999.68			1153.16			832.25		
PLE	3b3	TR3	none	1.37			0.24			1.06			0.51			0.51			10.28			8.05			4.29		
	3b3 Tota	al		2796.06			2668.54			3079.17			2890.36			2581.92			2761.54			3045.34			2729.83		
PLE Total				61262.98	56203.92	4.36	64752.54	38408.03	2.33 5	7099.55	32250.95	1.81	56856.06	28994.62	1.57	62508.39	40544.61	2.76	9532.41	31590.90	4.33	74965.65	69236.59	4.27	79350.90	8954.45	2.88

Table 5.3.3.1 continued

SPECIES	REG_A	AR REG_GEAR	SPECON	2005_L	2005_D	2005_R	2006_L	2006_D	2006_R	2007_L	2007_D	2007_R	2008_L	2008_D	2008_R	2009_L	2009_D	2009_R	2010_L	2010_D	2010_R	2011_L	2011_D	2011_R	2012_L	2012_D	2012_R
РОК	3b1	BT1	none	0.15			0.08			0.35			0.09									0.00			0.14		
РОК	3b1	BT2	none	0.01						0.04						0.02											
РОК	3b1	GN1	none	21.78			29.89			24.98			16.39			30.05	6.88	0.19	77.43	0.82	0.01	40.30	2.12	0.05	13.76	0.95	0.06
POK	3b1	GT1	none	2.10			3.31			1.64			1.73			8.12	1.98	0.20	7.15	0.25	0.03	0.97	0.39	0.29	1.32	0.87	0.40
POK	3b1	LL1	none	0.24			0.05			0.51			0.35									72.02	1.05	0.01	49.47		
POK	3b1	TR1	CPart13B													1396.35	0.00	0.00	112.52	0.00	0.00	344.36			128.54	0.00	0.00
РОК	3b1	TR1	none	1000.60	210.98	0.17	1175.88	167.42	0.13	3202.68	282.89	0.08	2538.29	120.44	0.05	1324.26	6.89	0.01	1152.35	31.50	0.03	492.31	65.43	0.12	350.36	12.58	0.04
РОК	3b1	TR2	none	2953.12	311.82	0.10	3356.09	337.16	0.09	2039.93	293.46	0.13	3069.29	273.61	0.08	3043.88	103.41	0.03	2849.38	173.59	0.06	1755.01	290.28	0.14	1331.15	98.88	0.07
POK	3b1	TR3	none	7.39	0.88	0.11	20.88			0.09						1.41			0.34	0.13	0.27						
POK	3b1 To	otal		3985.38			4586.19			5270.22			5626.14			5804.08			4199.17			2704.97			1874.74		
POK	3b2	BT1	CPart13B																0.00			0.03			0.00		
POK	3b2	BT1	none	9.17			10.96	0.00	0.00	9.66			4.57	1.79	0.28	1.47			1.28			2.27	0.24	0.10	1.95		
POK	3b2	BT2	CPart13B																0.01			0.06			0.06		
POK	3b2	BT2	none	1.05			0.94			0.60	0.01	0.02	0.16			0.09			0.02			0.08			0.05		
POK	3b2	GN1	none	67.42	0.00	0.00	44.84	0.00	0.00	25.69			29.19	3.23	0.10	44.56			54.99			47.86	0.01	0.00	47.96	0.23	0.01
POK	3b2	GT1	none	0.69			0.53	0.00	0.00	0.11			0.63	0.01	0.02	2.36			15.76			74.52	0.00	0.00	1.06	0.02	0.02
POK	3b2	LL1	none	3.74			19.15			2.25			3.11			7.28			4.85			3.60	0.00	0.00	4.18	0.01	0.00
POK	3b2	TR1	CPart13B													10837.79	269.33		9488.09	438.12		7359.96	358.54		5932.42	0.19	0.00
POK	3b2	TR1	CPart13c													9742.11	276.51			1558.16			2162.51			5432.16	0.42
POK	3b2	TR1	none	37218.48	10426.00	0.22	44464.27	12427.23	0.22	39271.58	29301.84	0.43	46058.72	6342.58	0.12	25797.31	40.16	0.00	13723.11	48.09	0.00	16513.89	8.92	0.00	7095.64	67.68	0.01
POK	3b2	TR2	CPart13A																						0.70		
POK	3b2	TR2	CPart13B													99.94			192.73	102.68	0.35	137.31	515.37	0.79	2.05		
POK	3b2	TR2	CPart13c													263.13			24.21	7.69	0.24	94.31	353.89	0.79	140.60	32.84	0.19
POK	3b2	TR2	none	596.78	513.25	0.46		492.41	0.57	664.60	382.16	0.37	547.15	447.07	0.45	51.55	0.00	0.00	4.93	0.01	0.00	29.44	0.00	0.00	6.17	0.02	0.00
POK	3b2	TR3	none	154.33			61.71			47.79			17.78			0.14									0.00	0.00	0.00
POK	3b2 To			38051.65			44974.29			40022.27			46661.30			46847.72			34025.18			33429.06			20787.44		
POK	3b3	BT2	none	0.02			0.06			0.15			0.01			0.08			0.02			0.10			0.21		
POK	3b3	GN1	none							0.02									0.06								
POK	3b3	GT1	none	0.00																		0.02					
POK	3b3	LL1	none										0.04			0.04											
POK	3b3	TR1	none	0.00			0.01			0.00			0.00			0.00			15.25			12.20					
POK	3b3	TR2	CPart13B																0.05			0.12			0.10		
POK	3b3	TR2	CPart13c										0.00			0.09						0.01					
POK	3b3	TR2	none	1.16			0.26			0.24			0.76			0.58			1.47			1.20			0.78		
POK	3b3	TR3	none	4.40			0.22			0.42			0.04			0.70			16.85			0.06			4.00		
POK Tetal	3b3 To	rai		1.18 42038.20	11462.02	1.06	0.33 49560.81	12424 22	1.00	0.42 45292.90	20260 27	1.02	0.81 52288.24	7100 72	1 10	0.78 52652.58	705.18	0.47	16.85 38241.20	2261.02	1 16	13.71 36147.74	2750 76	2.52.5	1.08	FCAC AA	1 21
POK Tota				42038.20	11462.92	1.06	49560.81	13424.22	1.00	45292.90	30260.37	1.02	52288.24	/188./3	1.10	52652.58	/05.18	0.47	38241.20	2361.03	1.16	3614/./4	3/58./6	2.53	22003.26	5646.44	1.21

Table 5.3.3.1 continued

SPECIES	REG A	R REG GEAR	SPECON	2005 1	2005 D	2005 R	2006 1	2006 D	2006 R	2007 1	2007 D	2007 R	2008 1	2008 D	2008 R	2009 1	2009 D	2009 R	2010 I	2010 D	2010 R	2011 I	2011 D	2011 R	2012 L	2012 D	2012 R
SOL	3b1	BT1	none	6.01	2005_5		3.56	2000_B	2000_11	3.84	2007_5	2007_11	2.94	2000_2	2000_11	0.66	2003_D	2005_11	1.18	2010_5	2020_11	0.16			0.67		
SOL	3b1	BT2	none	0.87			0.16			2.24			0.26			0.14			3.00			0.10			0.07		
SOL	3b1	GN1	none	12.66			20.10			17.65			25,41			20.88	0.00	0.00	8.51	0.01	0.00	17.02	0.00	0.00	20.55	0.04	0.00
SOL	3b1	GT1	none	0.02			0.41			0.36			1.91			2.57	0.00	0.00	2.31	0.00	0.00	3.54	0.00	0.00	3.27	0.00	0.00
SOL	3b1	LL1	none	0.06			0.00																				
SOL	3b1	TR1	none	6.87	0.30	0.04	13.13	1.69	0.11	13.46	0.00	0.00	15.31	0.00	0.00	9.45	0.01	0.00	11.44	0.00	0.00	7.18	0.01	0.00	12.09	0.07	0.01
SOL	3b1	TR2	none	80.71	2.54	0.03	54.98	4.24	0.07	22.08	0.53	0.02	29.27	0.18	0.01	31.22	0.42	0.01	23.18	0.00	0.00	30.66	0.09	0.00	52.71	0.25	0.01
SOL	3b1	TR3	none	0.02	2.54	0.03	51.50		0.07	0.00	0.55	0.02	23.27	0.10	0.01	JILL	0.12	0.01	25.10	0.00	0.00	30.00	0.05	0.00	32.71	0.23	0.01
SOL	3b1 To			107.22			92.34			59.64			75.10			64.93			49.62			58.57			89.28		
SOL	3b2 10	BT1	CPart13B	10/122			32134			33104			75120			04133			2.11			1.03			0.86		
SOL	3b2	BT1	none	37.11			48.42	0.65	0.01	26.50			18.11	0.04	0.00	25.24			11.99			14.23	0.00	0.00	21.38		
SOL	3b2	BT2	CPart13B	37.111			10.12	0.05	0.01	20.50			10.11	0.01	0.00	48.00			440.72	5.53	0.01	327.53	0.00	0.00	247.15		
SOL	3b2	BT2	none	14392.85	1305.17	0.08	10871.34	1355.63	0.11	13311.31	782.75	0.06	12050.28	539.63	0.04	12020.64	1440.62	0.11	10511.97			8719.78	1222.04	0.12	9372.28	1915.45	0.17
SOL	3b2	GN1	CPart13B																						0.04		
SOL	3b2	GN1	none	898.04	0.00	0.00	650,40	0.00	0.00	443.26	38.24	0.08	608,43	0.67	0.00	795.18			720.33			608.66	0.00	0.00	776.17	0.00	0.00
SOL	3b2	GT1	none	657.75	0.00	0.00	633.76	0.00	0.00	551.37	61.37	0.10	754.13	7.30	0.01	779.90	11.91	0.02	265.62	9.91	0.04	486.14	0.51	0.00	568.36	4.04	0.01
SOL	3b2	LL1	none	0.00			0.00												0.08						0.00		
SOL	3b2	TR1	CPart13B													1.35			1.46	0.00	0.00	1.07			0.83		
SOL	3b2	TR1	CPart13c													8.17	0.01	0.00	4.01	0.00	0.00	4.67			3.10	0.01	0.00
SOL	3b2	TR1	none	12.29	0.00	0.00	15.48	0.00	0.00	15.96	0.03	0.00	18.10	0.00	0.00	11.85	0.09	0.01	8.50	0.00	0.00	3.40	0.00	0.00	3.42	0.03	0.01
SOL	3b2	TR2	CPart13A																						0.38		
SOL	3b2	TR2	CPart13B													6.91	0.21	0.03	14.90	0.37	0.02	43.72	0.45	0.01	29.14	0.45	0.02
SOL	3b2	TR2	CPart13c													93.13	2.51	0.03	38.06	0.99	0.03	24.17	0.16	0.01	16.60	0.32	0.02
SOL	3b2	TR2	none	151.89	0.22	0.00	129.37	0.00	0.00	147.19	86.49	0.37	247.69	13.81	0.05	173.42	0.00	0.00	163.24	0.00	0.00	143.24	0.00	0.00	81.18	23.97	0.23
SOL	3b2	TR3	none	0.02	0.00	0.00	0.42			0.03			0.01			0.02			0.05						0.09		
SOL	3b2 To	tal		16149.95			12349.20			14495.62			13696.74			13963.80			12183.02			10377.63			11120.97		
SOL	3b3	BT1	none										3.67												0.02		
SOL	3b3	BT2	CPart13B													48.97	0.10	0.00	68.63	0.94	0.01	51.92	0.03	0.00	69.53	0.07	0.00
SOL	3b3	BT2	none	1831.16	27.54	0.02	2048.83	93.17	0.04	2052.60	73.35	0.04	1933.62	69.22	0.04	1921.96	168.71	0.08	1517.61	137.63	0.08	1392.38	78.66	0.05	1124.25	0.35	0.00
SOL	3b3	GN1	none	69.12			52.62			87.29			86.26			102.54			32.94	0.11	0.00	24.10	0.57	0.02	21.29		
SOL	3b3	GT1	none	1518.48			1377.31			1610.74	30.08	0.02	1299.16	0.00	0.00	1287.37	11.16	0.01	597.91	17.04	0.03	1204.78	13.88	0.01	1308.13	1.81	0.00
SOL	3b3	LL1	CPart13B																						0.01		
SOL	3b3	LL1	none				0.01						0.01			0.52			0.20			0.96			0.52		
SOL	3b3	TR1	CPart13c													0.10			0.05			0.04			0.06		
SOL	3b3	TR1	none	0.23			2.40			0.32			2.36			2.16			1.14			5.64	0.99	0.15	0.32		
SOL	3b3	TR2	CPart13B													2.08	0.00	0.00	0.34	0.00	0.01	1.93	0.03	0.01	56.48	0.00	0.00
SOL	3b3	TR2	CPart13c													5.49	0.03	0.01	3.20	0.01	0.00	4.72	0.03	0.01	3.61	0.00	0.00
SOL	3b3	TR2	none	338.66			544.43	0.00	0.00	606.51	8.17	0.01	524.61			536.62			381.38			452.07			373.18		
SOL	3b3	TR3	none	1.85			0.36			0.88			5.57			5.57			2.96			4.05			1.69		
SOL	3b3 To	tal		3759.49			4025.95			4358.34			3855.26			3913.39			2606.35			3142.58			2959.08		
SOL Total				20016.66	1335.76	0.17	16467.49	1455.39	0.35	18913.60	1081.01	0.70	17627.10	630.86	0.15	17942.12	1635.78	0.30	14839.00	1646.45	0.36	13578.77	1317.43	0.40	14169.32	1946.86	0.47

Table 5.3.3.1 continued

SPECIES	REG A	AR REG GEAR	SPECON	2005 L	2005 D	2005 R	2006 1	2006 D	2006 R	2007 1	2007 D	2007 R	2008 1	2008 D	2008 B	2009 1	2009 D	2009 B	2010 1	2010 D	2010 R	2011	2011 D	2011 R	2012 1	2012 D	2012 R
WHG	3b1	BT1	none	0.00	2003_D	2003_1	2000_L	2000_D	2000_1	0.01	2007_D	2007_1	2000_E	2000_D	2000_1	2005_E	2003_D	2005_1	2010_L	2010_D	2010_1	2011_L	2011_D	2011_1	2012_6	2012_D	
WHG	3b1	BT2	none	0.00						0.01																	
WHG	3b1	GN1	none	0.07			0.17			0.20			0.05			0.01	0.23	0.96	0.02	0.47	0.96	0.01	0.18	0.95	0.07	0.32	0.82
WHG	3b1	GT1	none	0.07			0.17			0.20			0.03			0.01	5.77	0.97	0.02	0.64	0.97	0.01	0.18	0.50	0.00	0.00	0.50
WHG	3b1	LL1	none	0.00			0.00			0.31			0.41			0.17	3.77	0.57	0.02	0.04	0.57	0.02	0.02	0.50	0.00	0.00	0.50
WHG	3b1	TR1	CPart13B				0.00									0.00			0.00								
WHG	3b1	TR1	none	4.43	64.98	0.94	7.95	102.58	0.93	10.56	40.35	0.79	6.25	19.65	0.76	6.55	63.84	0.91	8.22	49.02	0.86	4.90	21.70	0.82	3.99	18.48	0.82
WHG	3b1	TR2	none	35.95	288.06	0.89	37.19		0.90	50.62	344.49	0.73	43.31	122.89	0.74	58.62	375.57	0.91	41.10	287.90	0.88	35.34	224.70	0.82	27.35	111.22	0.82
WHG	3b1	TR3	none	0.00	0.00	1.00	0.01	332.07	0.50	30.02	344.43	0.67	43.31	122.05	0.74	36.02	3/3.3/	0.67	0.00	0.01	0.73	33.34	224.70	0.00	0.37	111.22	0.80
WHG	3b1 To		Horic	40.53	0.00	1.00	45.46			61.70			50.01			65.34			49.37	0.01	0.73	40.28			31.77		
WHG	3b2 10	BT1	CPart13B	40.55			45140			02170			50102			03104			0.07			0.03			0.01		
WHG	3b2	BT1	none	3.13			6.34	1.14	0.15	2.94			0.75	0.23	0.23	0.87			1.02			0.33	1.59	0.83	0.74		
WHG	3b2	BT2	CPart13B	5.15			0.54	2.2.	0.13	2.5			0.75	0.23	0.23	1.45			14.51	4.61	0.24	9.96	1.55	0.03	6.21		
WHG	3b2	BT2	none	171.44	345.39	0.67	137.71	194.29	0.59	55.91	870.72	0.94	81.53	719.89	0.90	436.77	481.76	0.52		2700.31	0.87	404.73	916.89	0.69	274.01	1657.13	0.86
WHG	3b2	GN1	none	1.26	58.68	0.98	3.87	0.00	0.00	10.19			1.27	0.00	0.00	2.30			4.82	0.57	0.11	2.72	6.60	0.71	1.66	207.66	0.99
WHG	3b2	GT1	none	1.85	0.00	0.00	3.85	0.55	0.12	2.47			1.18	0.00	0.00	3.17	13.07	0.81	9.89	40.33	0.80	7.01	0.03	0.00	1.38	10.05	0.88
WHG	3b2	LL1	CPart13B													0.00											
WHG	3b2	LL1	none	0.28			0.12			0.17			0.32			0.10			0.17			0.07	0.00	0.00	0.04		
WHG	3b2	TR1	CPart13A																						0.30		
WHG	3b2	TR1	CPart13B													446.76	145.82	0.25	444.00	206.16	0.32	427.00	71.81	0.14	129.57	37.32	0.22
WHG	3b2	TR1	CPart13c													6094.85	1762.20	0.22	5282.22	2320.99		6094.24	892.33	0.13		592.42	0.07
WHG	3b2	TR1	none	5367.18	1999.36	0.27	7499.27	1528.89	0.17	8247.88	1897.24	0.19	7743.82	2100.45	0.21		68.48	0.28				247.24	61.52	0.20	163.80	84.17	0.34
WHG	3b2	TR2	CPart13A																						15.37		
WHG	3b2	TR2	CPart13B													735.52	384.13	0.34	1293.62	2741.34	0.68	1303.70	2103.91	0.62	194.07	163.54	0.46
WHG	3b2	TR2	CPart13c													1174.06	587.08	0.33	419.04	298.35	0.42	700.55	1005.99	0.59	1622.04	1498.07	0.48
WHG	3b2	TR2	none	3896.66	10392.79	0.73	6457.17	8890.05	0.58	6437.62	4149.84	0.39	4525.45	7127.41	0.61	2353.49	99627.29	0.98	2506.08	3733.96	0.60	9418.08	5626.71	0.37	1642.52	2794.25	0.63
WHG	3b2	TR3	none	0.03	0.28	0.91	5.64			10.87			0.86			0.28			48.89			3.90			74.05		
WHG	3b2 To	otal		9441.82			14113.96			14768.05			12355.18			11426.54			10666.23			18619.56			11601.95		
WHG	3b3	BT1	none										0.10														
WHG	3b3	BT2	CPart13B													0.41	0.02	0.04	0.35	0.12	0.26	0.19	0.03	0.15	0.17	0.05	0.23
WHG	3b3	BT2	none	50.42	13.86	0.22	76.68	24.58	0.24	78.50	9.60	0.11	70.26	22.11	0.24	70.67	8.68	0.11	69.31	22.74	0.25	58.52	12.04	0.17	47.61	28.56	0.38
WHG	3b3	GN1	none	7.14			6.38			4.26			2.00			2.37			4.33			0.88			0.98		
WHG	3b3	GT1	none	31.62			16.64			10.40	10.57	0.50	8.26	11.87	0.59	8.22	4.54	0.36	5.78	43.96	0.88	12.95	2.20	0.15	13.00		
WHG	3b3	LL1	none	0.04			0.00			0.02			0.03			0.04			0.19			0.14			0.10		
WHG	3b3	TR1	CPart13B																						0.43		
WHG	3b3	TR1	CPart13c													0.47			0.79			0.05			0.21		
WHG	3b3	TR1	none	14.22			3.02			10.70			5.52			5.01			8.16	61.15	0.88	36.87	25.49	0.41	11.78		
WHG	3b3	TR2	CPart13B													52.47	15.46	0.23	209.43	187.74	0.47	227.19	17.04	0.07	219.44	896.82	0.80
WHG	3b3	TR2	CPart13c													43.17	15.88	0.27	12.28	3.60	0.23	20.29	4.07	0.17	30.62	20.49	0.40
WHG	3b3	TR2	none	4323.30			3374.47	0.00	0.00	2888.04	141.98	0.05	3676.06	685.88	0.16	3677.77			5005.57			5869.29			2931.17		
WHG	3b3	TR3	none	3.79			0.02			0.33			1.91			1.91			110.86			18.64			5.84		
WHG	3b3 To	otal		4430.54			3477.21			2992.24			3764.14			3862.50			5427.04			6245.01			3261.34		
WHG Tota	al			13912.89	13163.39	6.59	17636.63	11074.75	3.68	17821.99	7464.78	3.84	16169.33	10810.38	4.44	15354.38	#######	8.44	16142.64	12997.25	12.24	24904.85	10994.84	8.52	14895.06	8120.54	9.69

Table 5.3.3.2 Skagerrak (3b1), North Sea (incl. 2EU; 3b2)), and Eastern Channel (3b3): Landings (t), discards (t) and relative discard rates (R) in weight by species and unregulated gear, 2005-2012. DATA FOR OTHER SPECIES ARE AVAILABLE ON STECF WEBSITE.

SPECIES	REG_AREA	REG_GEAR	SPECON	2005_L	2005_D	2005_R	2006_L	2006_D	2006_R	2007_L	2007_D	2007_R	2008_L	2008_D	2008_R	2009_L	2009_D	2009_R	2010_L	2010_D	2010_R	2011_L	2011_D	2011_R	2012_L	2012_D	2012_R
PLE	3b1	BEAM	none																						10.00		
PLE	3b1	DEM_SEINE	none				0.87	0.23	0.21							0.87						0.32					
PLE	3b1	DREDGE	none													0.08			0.15			3.72			0.03		
PLE	3b1	none	none	2.09			4.12			9.90			1.93			0.11			0.12			13.66			5.63		
PLE	3b1	OTTER	none	7.01	4.35	0.38	5.46			5.88	180.55	0.97	8.83	0.27	0.03	3.31	0.53	0.14	17.52	5.20	0.23	1.67	2.58	0.61	5.00	2.35	0.32
PLE	3b1	PEL_TRAWL	none	0.80	0.40	0.33	0.06	0.01	0.13	0.05	0.01	0.18	1.02	0.08	0.08	0.09			0.01			0.91			0.00		
PLE	3b1	TR2	CPart11													1.98	31.55	0.94	0.68	35.28	0.98	0.97	45.85	0.98	0.80	19.51	0.96
PLE	3b1	TR2	IIA83b	7.73	18.55	0.71	6.15	11.69	0.66	2.70	69.18	0.96	1.87	72.86	0.98												
PLE	3b1 Total			17.63			16.66			18.52			13.65			6.45			18.47			21.25			21.47		
PLE	3b2	BEAM	none	54.38	45.95	0.46	43.13			34.68			3.60			21.15	163.86	0.89	85.06	21.58	0.20	58.43	134.53	0.70	47.47	9381.79	1.00
PLE	3b2	DEM_SEINE	none	0.17			4.67									2.01			10.00						8.94		
PLE	3b2	DREDGE	none				0.52			0.52			3.75			0.03			10.55	1.29	0.11	1.09			0.51		
PLE	3b2	none	none	20.56	298.01	0.94	20.13			54.40			11.56			16.10			1.42			5.64			11.50		
PLE	3b2	OTTER	none	17.79	64.50	0.78	3.87			14.89			3.01			6.41			226.54			8.42	0.43	0.05	94.59	0.10	0.00
PLE	3b2	PEL_TRAWL	none	0.38	0.01	0.02	1.02	0.00	0.00	0.01			2.65	0.03	0.01	4.05			0.38			0.47			4.21		
PLE	3b2	POTS	none	0.15			0.22			0.06			0.02			0.13			0.70	0.00	0.00	0.53			0.17		
PLE	3b2	TR2	CPart11																0.53			0.08					
PLE	3b2 Total			93.44			73.56			104.55			24.58			49.88			335.17			74.66			167.38		
PLE	3b3	BEAM	none	19.92			1.89			5.82			8.02			5.04			4.61			1.62			3.97		
PLE	3b3	DEM_SEINE	none																2.00								
PLE	3b3	DREDGE	none	32.98			6.20			2.15			3.31			8.04			10.60			7.23			4.99		
PLE	3b3	none	none	0.39			0.23			0.43			4.34			4.62						0.07					
PLE	3b3	OTTER	none	94.92			32.03			6.01			3.05			3.05			8.44			10.51			13.89		
PLE	3b3	PEL_TRAWL	none	12.86			5.97			2.20			9.90			9.90			9.07			12.98			27.66		
PLE	3b3	POTS	none	0.20			0.50			0.51									8.19			4.61			10.17		
PLE	3b3 Total	•		161.28	•		46.82	•		17.12	•		28.62			30.65			42.91		•	37.01			60.68		
PLE Total				272.34	431.76	3.62	137.04	11.93	0.99	140.19	249.74	2.11	66.85	73.25	1.09	86.98	195.94	1.97	396.55	63.35	1.53	132.92	183.38	2.33	249.53	9403.75	2.28

Table 5.3.3.2 continued

SPECIES	REG_AREA	REG_GEAR	SPECON	2005_L	2005_D	2005_R	2006_L	2006_D	2006_R	2007_L	2007_D	2007_R	2008_L	2008_D	2008_R	2009_L	2009_D	2009_R	2010_L	2010_D	2010_R	2011_L	2011_D	2011_R	2012_L	2012_D	2012_R
SOL	3b1	DEM_SEINE	none																								
SOL	3b1	DREDGE	none													0.00											
SOL	3b1	none	none	0.04			0.05			0.15			0.01			0.00			0.01			0.16			1.58		
SOL	3b1	OTTER	none	0.27	0.00	0.00	0.21			0.21			0.22	0.00	0.00	0.02	0.00	0.00	0.04	0.00	0.07	0.05	0.00	0.00	0.01	0.00	0.00
SOL	3b1	PEL_TRAWL	none	0.09	0.00	0.02							0.01	0.00	0.00	0.00						0.00					
SOL	3b1	POTS	none										0.02									0.00					
SOL	3b1	TR2	CPart11													0.56	0.47	0.46	0.40	0.14	0.26	0.63	2.79	0.82	0.49	0.26	0.35
SOL	3b1	TR2	IIA83b	1.46	0.29	0.17	1.08	0.17	0.13	2.43	2.06	0.46	0.62	1.86	0.75												
SOL	3b1 Total			1.85			1.33			2.79			0.87			0.58			0.45			0.84			2.08		
SOL	3b2	BEAM	none	18.48	0.00	0.00	11.43			19.94			9.24			16.45			25.50	23.07	0.48	15.77	0.38	0.02	20.07	483.81	0.96
SOL	3b2	DEM_SEINE	none																								
SOL	3b2	DREDGE	none	0.00			0.03			0.01			0.01						0.21			0.05			0.01		
SOL	3b2	none	none	0.39	0.00	0.00	0.51			1.00			1.21			1.31			0.01			0.01			0.05		
SOL	3b2	OTTER	none	0.15	0.00	0.00	0.06			0.04			0.01			0.00			0.05			0.11			0.03	0.00	0.00
SOL	3b2	PEL_TRAWL	none				0.00						0.13	0.00	0.00				0.05			0.05			0.50		
SOL	3b2	POTS	none	0.02			0.01			0.44			0.01			0.14			0.07	0.00	0.00	0.01			0.65		
SOL	3b2 Total			19.05			12.03			21.43			10.61			17.91			25.89			16.00			21.32		
SOL	3b3	BEAM	none	21.95			6.50			6.81			7.80			8.04			4.65			1.19			2.47		
SOL	3b3	DREDGE	none	42.60			5.33			3.96			3.74			6.70			14.35			8.65			6.62		
SOL	3b3	none	none	0.51			1.89			0.64			9.50			9.54						0.28					
SOL	3b3	OTTER	none	115.00			47.34			19.37			20.06			20.06			13.90			9.20			16.63		
SOL	3b3	PEL_TRAWL	none	14.65			14.09			4.89			16.62			16.62			12.38			14.80			27.49		
SOL	3b3	POTS	none	0.00			0.36			1.26			0.05			0.00			5.29			3.15			16.95		
SOL	3b3 Total			194.72			75.51			36.92			57.77			60.96			50.58			37.26			70.15		
SOI Total				215 61	0.30	0.19	88 87	0.17	0.13	61 13	2.06	0.46	69 25	1.86	0.75	79 45	0.47	0.46	76 91	23 21	0.81	54 10	3 17	0.84	93 55	484 07	1 31

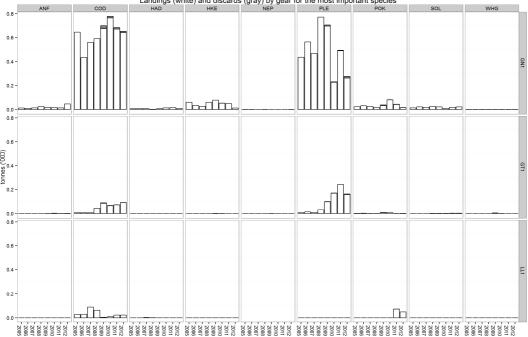


Figure 5.3.3.1; Estimated landings (white bars) and discards (grey bars) of targets species by cod plan gear categories in management area 3b1 (Skagerrak). The upper chart shows the most used gears, the lower chart the remaining gears.

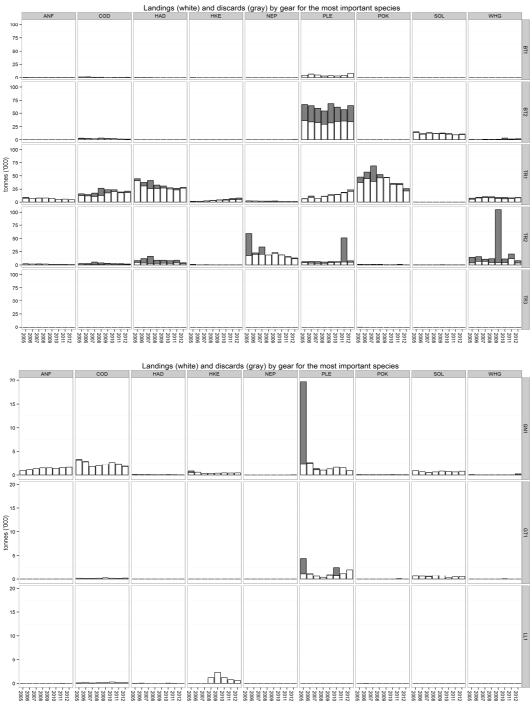


Figure 5.3.3.2; Estimated landings (white bars) and discards (grey bars) of targets species by cod plan gear categories in management area 3b2 (North Sea; 2EU). The upper chart shows the most used gears, the lower chart the remaining gears.

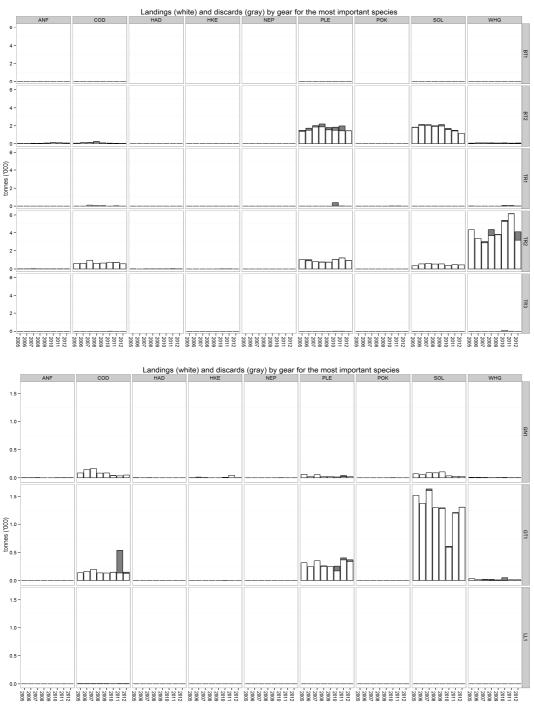


Figure 5.3.3.3; Estimated landings (white bars) and discards (grey bars) of targets species by cod plan gear categories in management area 3b3 (Eastern channel). The upper chart shows the most used gears, the lower chart the remaining gears.

5.3.4 ToR 1.e CPUE and LPUE of cod, plaice, and sole by fisheries and by Member States

Catch rates for cod, plaice and sole in g/KW-day for the regulated cod categories are given in tables 5.3.4.1 - 5.3.4.3. In some cases the data refer to landings only, depending on whether discard data were available. In the context of possible effort management measures, it is useful to summarise the impact of each gear category in terms of the relative quantity removed per unit of effort. Using this approach, the CPUE for a given gear, when compared with the CPUE of another gear for the same period, can be used as a proxy for the relative fishing power of the gear. In addition, CPUE and LPUE by year are plotted (Figure 5.3.4.1 - 5.3.4.3) by species for the first four gear categories (when ranked by 2010-2012 average) for areas 3b1, 3b2 and 3b3 separately.

For cod (Table 5.3.4.1), CPUE for most gears has increased in the Skagerrak (area 3b1) in 2012 when compared to 2009 (when the cod management plan was implemented). Only LL1 shows a strong decrease, however, the absolute landings from this gear category are small. GN1 has the highest CPUE followed by TR1, GT1 and TR2.

In area 3b2 (North Sea; 2EU) TR1 CPart13c shows the highest CPUE for cod of all gear categories, including the TR1 none category. This appears counter-intuitive but may reflect the fact that the major cod catching fleets under SPECON 13c (primarily Scotland) are operating in more northerly waters where cod is more abundant, while the TR1 none and TR1 CPart13b fleets are operating in more southerly waters or target other species (e.g., saithe). The CPUE for TR1 CPart13c and LL1 is substantially higher in 2012 compared to 2009. Many other gear categories show a stable or decreasing trend (e.g, TR1 none and CPart13b, TR2 none and TR2 CPart13b+c, BT2, GN1). This is somehow unexpected as increasing cod abundance would suggest increased catch rates also for these categories. However, it may show improved cod avoidance and again differences in stock trends between the northern and southern part of the North Sea.

In area 3b3 (eastern channel) GN1 and TR1 show by far the highest CPUE for cod compared to other gear categories. Both categories have a substantially lower CPUE in 2012 compared to 2009. However, the CPUE for TR2, the gear category with the highest cod catches, is higher in 2012 than in 2009.

With regards to flatfish, it should be noted that plaice and sole in the Skagerrak (3b1) are considered as part of the same stocks as plaice and sole in the Kattegat (management area 3a). Both stocks are considered as being distinct from the North Sea stocks, as are plaice and sole in the Eastern Channel (3b3). Notwithstanding this, large increases in catch rates for plaice have been observed in 2012 compared to 2009 for the main gears (BT1, BT2, TR1, TR2; Table 5.3.4.2) which reflects a general increasing trend over the time series which is also supported by a rapidly increasing stock biomass from the assessment (ICES, 2013). Outliers in CPUE can be linked to outliers in discard estimates. For example, the high estimate of CPUE in 2011 for 'TR2 none' arises because of a very high discard estimate of 22,000t of plaice in the Dutch TR2 fishery, some 22 times higher than other estimates in recent years and unlikely to be a representative value.

CPUE for sole (Table 5.3.4.3) is highest for passive gears (GT1 and GN1) and small mesh beam trawls (BT2) in 2012. CPUE for the dominant gear in terms of absolute landings (BT2) has decreased slightly in area 3b3 in 2012 compared to 2011, but has increased in area 3b2.

Tables showing LPUE and CPUE by gear groups (regulated and unregulated), area and nation are not presented in this report but are available on the JRC website: http://stecf.irc.ec.europa.eu/web/stecf/ewg1313.

Table 5.3.4.1 Skagerrak, North Sea (incl. 2EU) and Eastern Channel. Cod CPUE (g/(kW*days)) by regulated gear category and year, 2003-2012, presented for the wider North Sea (3b) and by area (3b1, 3b2, 3b3) in descending order with regards to CPUE 2012.

ANNEX	SPECIES	REG AR	EA REG GEA	R SPECON	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2010-12
IIa	COD	3b	TR1	CPart13A	0	0	0	0	0	0	0	0	0	0	0
IIa	COD	3b	TR2	CPart13A	0	0	0	0	0	0	0	0	0	0	0
IIa	COD	3b	LL1	CPart13B	0	0	0	0	0	0		0	0	0	0
IIa	COD	3b	TR3	none	11	5	7	4	4	1	3	14	8	5	10
IIa 	COD	3b	BT1	CPart13B	0	0	0	0	0	0	0	5	18	10	11
IIa IIa	COD	3b 3b	BT2 BT2	CPart13B NONE	0 54	0 60	0 48	0 49	0 43	0 88	32 69	17 57	17 45	13 42	16 49
IIa	COD	3b	TR2	CPart13B	0	0	48	49	43	0	89	157	109	30	124
IIa	COD	3b	GT1	none	142	93	79	62	62	97	124	154	265	156	192
IIa	COD	3b	TR1	CPart13B	0	0	0	0	0	0	310	293	154	111	198
IIa	COD	3b	BT1	NONE	120	214	222	238	187	256	133	203	288	273	257
IIa	COD	3b	TR2	CPart13c	0	0	0	0	0	0	224	190	359	239	260
IIa	COD	3b	TR2	none	171	154	182	201	267	192	236	258	308	271	279
IIa	COD	3b	LL1	none	429	315	371	603	459	335	140	529	500	709	557
IIa	COD	3b	TR1	none	402	470	629	593	810	1069	958	933	857	1229	987
IIa IIa	COD	3b 3b	GN1 TR1	none CPart13c	770 0	961 0	990	855 0	822 0	848	955 1186	1154 1391	1043 1182	906 1302	1037 1292
110	COD	30	11112	Crantisc				-			1100	1331	1102	1302	1232
ANNEX	SPECIES	REG ARE	A REG GEAR	SPECON	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2010-12
IIa	COD	3b1	BT2	NONE	6	1	4	3	6	72	181	21	0	0	21
IIa	COD	3b1	TR1	CPart13B	0	0	0	0	0	0	25	97	0	62	45
IIa	COD	3b1	TR3	none	69	24	13	14	0		54	75	0	0	55
lla	COD	3b1	BT1	NONE	59	45	44	9	27	20	14	105	134	89	104
lla	COD	3b1	TR2	none	387	491	628	775	768	428	700	663	778	890	771
lla	COD	3b1	LL1	none	663	348	656	269	565	1409	5115	4031	655	739	819
IIa	COD	3b1	GT1	none	216	547	231	121	112	544	1258	1054	1202	1501	1250
IIa	COD	3b1	TR1	none	478	654	848	1151	1217	698	1223	1089	1406	1556	1316
lla	COD	3b1	GN1	none	1384	1165	1553	1161	1606	1401	1470	1961	1806	1930	1899
lla	COD	3b2	TR1	CPart13A	0	0	0	0	0	0	0	0	0	0	0
IIa	COD	3b2	TR2	CPart13A	0	0	0	0	0	0	0	0	0	0	0
lla	COD	3b2	TR3	none	7	4	6	3	5	0	0	10	5	2	7
lla	COD	3b2	BT1	CPart13B	0	0	0	0	0	0	0	5	18	10	11
lla	COD	3b2	BT2	CPart13B	0	0	0	0	0	0	42	18	17	13	16
lla	COD	3b2	BT2	none	58	64	50	51	45	92	73	60	47	45	51
IIa	COD	3b2	TR2	CPart13B	0	0	0	0	0	0	90	166	115	40	136
IIa	COD	3b2	GT1	none	228	217	186	89	72	164	207	233	160	201	197
IIa	COD	3b2	TR1	CPart13B	0	0	0	0	0	0	323	295	156	112	200
IIa	COD	3b2	TR2	none	159	110	137	170	329	230	275	233	312	149	235
IIa	COD	3b2	BT1		125	234	240	253	209	268	137	214	295	283	267
		3b2		none Chart13a	0	0	0	0	0	0		199			
IIa	COD		TR2	CPart13c							239		382	244	269
IIa 	COD	3b2	LL1	none	664	624	557	1662	2082	338	157	673	672	1132	747
IIa	COD	3b2	GN1	none	727	1007	974	863	772	778	894	1072	942	784	935
IIa 	COD	3b2	TR1	none	401	464	616	558	778	1094	919	913	793	1177	942
IIa	COD	3b2	TR1	CPart13c	0	0	0	0	0	0	1186	1391	1183	1302	1293
IIa	COD	3b3	BT1	none	0	0	0	0	0	279	0	0	0	0	0
IIa	COD	3b3	LL1	CPart13B	0	0	0	0	0	0	0	0	0	0	0
IIa	COD	3b3	TR1	CPart13c	0	0	0	0	0	0	230	0	0	0	0
IIa	COD	3b3	BT2	CPart13B	0	0	0	0	0	0	28	8	0	7	5
IIa	COD	3b3	TR2	CPart13B	0	0	0	0	0	0	56	23	17	14	17
IIa	COD	3b3	BT2	none	15	15	20	28	28	60	26	23	22	17	21
IIa	COD	3b3	TR3	none	0	0	0		0	15	16	45	16	22	29
IIa	COD	3b3	LL1	none	32	41	29	26	20	19	19	15	40	49	32
IIa	COD	3b3	TR2	CPart13c	0	0	0	0	0	0	37	67	57	59	60
IIa	COD	3b3	TR2	none	67	36	47	43	68	54	59	91	91	74	86
IIa	COD	3b3	GT1	none	108	42	44	46	57	54	53	86	285	84	153
IIa	COD	3b3	TR1	none	234	37	49	198	513	604	578	94	252	155	173
IIa	COD	3b3	GN1	none	407	245	313	433	414	492	453	289	465	392	365
	200	220	SIVE	onc	407	240	515	455	724	752	400	200	400	332	303

Table 5.3.4.2 Skagerrak, North Sea (incl. 2EU) and Eastern Channel. Plaice CPUE (g/(kW*days)) by regulated gear category and year, 2003-2012, presented for the wider North Sea (3b) and by area (3b1, 3b2, 3b3) in descending order with regards to CPUE 2012.

ANNEX	SPECIES	REG ARE	A REG GEAR	R SPECON	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2010-12
IIa	PLE	3b	TR1	CPart13A	0	0	0	0	0	0	0	0	0	0	0
IIa	PLE	3b	LL1	CPart13B	0	0	0	0	0	0		0	0	0	0
IIa	PLE	3b	LL1	none	0	32	3	5	0	0	1	0	0	0	0
IIa	PLE	3b	TR3	none	9	5	7	12	6	0	1	9	20	14	13
IIa	PLE	3b	TR2	CPart13A	0	0	0	0	0	0	0	0	0	22	22
IIa	PLE	3b	TR2	CPart13c	0	0	0	0	0	0	410	230	315	66	149
IIa	PLE	3b	TR1	CPart13c	0	0	0	0	0	0	296	177	263	376	270
IIa	PLE	3b	TR2	CPart13B	0	0	0	0	0	0	54	185	347	866	324
IIa	PLE	3b	GN1	none	1074	747	5042	794	600	584	629	623	696	441	589
IIa	PLE	3b	GT1	none	289	354	1086	253	183	176	336	1080	642	876	863
IIa	PLE	3b	TR2	none	395	397	239	248	236	236	266	399	3488	575	1505
IIa	PLE	3b	TR1	CPart13B	0	0	0	0	0	0	935	1289	1463	2277	1596
IIa	PLE	3b	BT2	NONE	1341	1246	1095	1208	1149	1404	1742	1542	1628	2167	1750
IIa	PLE	3b	TR1	none	232	340	372	560	489	622	1108	1588	1998	3145	2155
IIa	PLE	3b	BT1	NONE	1237	1132	1029	1394	1438	1452	2064	1990	2537	2800	2500
IIa	PLE	3b	BT2	CPart13B	0	0	0	0	0	0	774	2666	2706	2948	2766
IIa	PLE	3b	BT1	CPart13B	0	0	0	0	0	0	0	2659	3302	3120	3038
ANNEX	SPECIES	REG AREA	DEG GEAR	SDECON	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2010-12
Ila	PLE	3b1	LL1	none	0	41	0	0	0	2000	0	0	0	0	0
IIa	PLE		TR1	CPart13B	0	0	0	0	0	0	0	0	0	0	0
lla	PLE		TR3	none	47	19	0	14	0	- 0	0	0	1747	0	110
lla	PLE		TR2	none	443	518	234	258	235	310	216	228	333	385	312
IIa	PLE	3b1	GN1	none	969	1007	1053	1513	1334	1820	1481	581	1303	821	900
lla	PLE	3b1	GT1		54	164	264	211	144	397	1367	2612	3778	2576	2988
				none				4113		3107	2280	4418			
lla	PLE	3b1	BT1	NONE	2255	2026	1842		1546				3431	3495	3917
lla 	PLE	3b1	BT2	NONE	51	244	214	557	742	1301	2250	4037	4525	0	4040
IIa 	PLE		TR1	none	512	1888	2038	2353	2460	3273	2854	4055	5925	5331	4951
lla 	PLE		TR1	CPart13A	0	0	0	0	0	0	0	0	0	0	0
IIa	PLE		LL1	none	0	65	5	8	0	0	0	0	0	0	0
IIa	PLE		TR3	none	6	3	8	13	6	0	2	1	0	9	3
IIa	PLE		TR2	CPart13A	0	0	0	0	0	0	0	0	0	22	22
IIa	PLE		TR2	CPart13c	0	0	0	0	0	0	439	232	324	63	148
IIa	PLE	3b2	TR1	CPart13c	0	0	0	0	0	0	295	177	263	376	270
IIa	PLE	3b2	TR2	CPart13B	0	0	0	0	0	0	55	192	369	1339	352
IIa	PLE	3b2	GN1	none	1254	776	5909	787	567	405	503	658	607	400	558
IIa	PLE	3b2	TR1	CPart13B	0	0	0	0	0	0	980	1299	1480	2302	1612
IIa	PLE	3b2	TR1	none	224	284	266	448	324	451	838	1080	1508	2757	1685
IIa	PLE	3b2	BT2	none	1426	1312	1141	1286	1224	1505	1865	1600	1703	2315	1839
IIa	PLE	3b2	GT1	none	678	801	4216	600	354	334	784	2995	1290	1968	2052
lla	PLE	3b2	BT1	none	1161	1024	948	1215	1423	1371	2055	1715	2497	2765	2407
lla	PLE	3b2	BT2	CPart13B	0	0	0	0	0	0	879	2746	2779	3069	2855
IIa	PLE	3b2	BT1	CPart13B	0	0	0	0	0	0	0	2659	3302	3120	3038
lla	PLE	3b2	TR2	none	550	470	353	400	389	332	739	1139	13848	1816	5666
IIa	PLE	3b3	BT1	none	0	0	0	0	0	838	0	0	0	0	0
lla	PLE	3b3	LL1	CPart13B	0	0	0	0	0	0	0	0	0	0	0
lla	PLE		LL1	none	0	0	0	6	0	0	6	0	0	0	0
IIa	PLE		TR3	none	13	48	10	0	7	0	0	82	65	43	66
IIa	PLE	3b3	TR2	CPart13B	0	0	0	0	0	0	31	60	44	96	72
lla	PLE		TR1	CPart13c	0	0	0	0	0	0	690	449	0	814	125
lla	PLE		TR2	none	129	233	82	71	57	67	67	128	152	115	132
IIa	PLE		TR2	CPart13c	0	0	0	0	0	0	68	191	192	170	184
IIa	PLE		GT1	none	143	179	96	68	97	100	97	143	216	205	188
IIa	PLE	3b3	GN1	none	120	127	233	52	139	120	115	111	550	150	221
lla	PLE	3b3	BT2	none	427	516	445	397	433	527	481	667	759	577	670
lla	PLE	3b3	BT2	CPart13B	0	0	0	0	455	0	728	820	817	926	861
lla	PLE	3b3	TR1	none	40	18	16	59	22	77	50	3557	109	86	1399

Table 5.3.4.3 Skagerrak, North Sea (incl. 2EU) and Eastern Channel. Sole CPUE (g/(kW*days)) by regulated gear category and year, 2003-2012, presented for the wider North Sea (3b) and by area (3b1, 3b2, 3b3) in descending order with regards to CPUE 2012.

ANNEX	SPECIES	REG ARE	A REG GEA	R SPECON	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2010-12
IIa	SOL	3b	LL1	CPart13B	0	0	0	0	0	0		0	0	0	0
IIa	SOL	3b	GN1	CPart13B	0	0	0	0	0	0	0	0	0	0	0
IIa	SOL	3b	TR1	CPart13c	0	0	0	0	0	0	1	0	0	0	0
IIa	SOL	3b	TR2	CPart13A	0	0	0	0	0	0	0	0	0	0	0
IIa IIa	SOL	3b 3b	TR1 TR1	CPart13B none	0	0	0	0	0	0	0	2	2	2	2
IIa	SOL	3b	LL1	none	0	0	0	0		0	1	0	3	4	2
IIa	SOL	3b	TR3	none	1	0	1	0	1	5	7	2	8	3	4
IIa	SOL	3b	BT1	CPart13B	0	0	0	0	0	0	0	10	6	3	5
IIa	SOL	3b	TR2	CPart13B	0	0	0	0	0	0	2	2	7	41	8
IIa	SOL	3b	BT1	NONE CDaut12a	17	14	8	9	8	12	15	8	10	9	9
IIa IIa	SOL	3b 3b	TR2 TR2	CPart13c none	0 23	0 22	0 16	0 21	0 26	0 26	17 39	32 38	14 43	4 40	11 40
IIa	SOL	3b	BT2	CPart13B	0	0	0	0	0	0	621	173	138	124	146
IIa	SOL	3b	GN1	none	205	222	243	180	193	234	295	256	224	294	258
IIa	SOL	3b	BT2	NONE	315	339	279	260	302	362	384	377	363	455	395
IIa	SOL	3b	GT1	none	598	528	494	351	409	533	534	326	596	651	528
ANNEX	SPECIES	REG AREA	REG GEAR	SPECON	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2010-12
IIa	SOL	3b1	LL1	none	0	0	0	0				0	0	0	0
IIa	SOL	3b1	TR3	none	4	0	0		0			0	0	0	0
IIa	SOL	3b1	BT1	NONE	9	7	13	11	9	29	14	6	0	8	6
IIa	SOL	3b1	TR1	none	4	3	4	9	8	9	7	7	7	11	8
IIa	SOL	3b1	TR2	none	5	10	15	13	6	8	9	7	9	18	11
IIa	SOL	3b1	BT2	NONE	4	0	2	0	3	0	0	21	0	0	21
IIa	SOL	3b1	GN1	none	24	23	31	54	52	59	44	23	45	62	42
IIa	SOL	3b1	GT1	none		0	0	0	0	23	41	31	62	47	47
IIa	SOL	3b2	TR2	CPart13A	0	0	0	0	0	0	0	0	0	0	0
IIa	SOL	3b2	GN1	CPart13B	0	0	0	0	0	0	0	0	0	0	0
IIa	SOL	3b2	LL1	none	0	0	0	0				0	0	0	0
IIa	SOL	3b2	TR1	CPart13c	0	0	0	0	0	0	1	0	0	0	0
IIa	SOL	3b2	TR3	none	0	0	0	0	0	0	0	0	0	0	0
IIa	SOL	3b2	TR1	none	1	1	0	1	1	1	1	1	0	1	1
IIa	SOL	3b2	TR1	CPart13B	0	0	0	0	0	0	0	1	0	1	1
	SOL	3b2	TR2	CPart13B	0	0	0	0	0	0	2	2	7	23	5
lla	SOL						0	0	0	0	0	10	6	3	5
lla		3b2	BT1	CPart13B	0	0									
lla	SOL	3b2	BT1	none	18	14	8	9	8	9	15	8	10	9	9
lla	SOL	3b2	TR2	CPart13c	0	0	0	0	0	0	17	31	13	3	10
lla	SOL	3b2	TR2	none	8	15	9	8	14	16	36	45	41	34	40
lla	SOL	3b2	BT2	CPart13B	0	0	0	0	0	0	1005	156	124	102	129
lla	SOL	3b2	GN1	none	204	231	268	197	209	245	323	295	248	334	292
lla	SOL	3b2	BT2	none	296	322	266	243	291	349	366	359	344	452	381
IIa 	SOL	3b2	GT1	none	624	568	622	321	337	666	646	326	526	562	479
lla	SOL	3b3	BT1	none	0	0	0	0	0	1118	0	0	0	0	0
lla	SOL	3b3	LL1	CPart13B	0	0	0	0	0	0	0	0	0	0	0
IIa 	SOL	3b3	TR1	CPart13c	0	0	0	0	0	0	0	0	0	0	0
IIa	SOL	3b3	LL1	none	0			0		0	6	0	10	12	6
IIa 	SOL	3b3	TR1	none	0	0	0	40	0	26	25	9	50	0	25
IIa	SOL	3b3	TR3	none	13	12	20	0	7	76	78	22	33	22	26
IIa	SOL	3b3	TR2	CPart13B	0	0	0	0	0	0	12	0	4	71	33
IIa	SOL	3b3	TR2	CPart13c	0	0	0	0	0	0	11	34	36	30	33
IIa	SOL	3b3	TR2	none	56	40	27	38	44	47	51	49	60	52	53
IIa	SOL	3b3	GN1	none	391	391	259	159	226	522	567	237	338	175	236
IIa	SOL	3b3	BT2	CPart13B	0	0	0	0	0	0	452	568	512	477	517
IIa	SOL	3b3	GT1	none	593	516	458	373	453	493	496	337	649	722	570
IIa	SOL	3b3	BT2	none	628	621	543	486	457	480	578	630	588	486	571

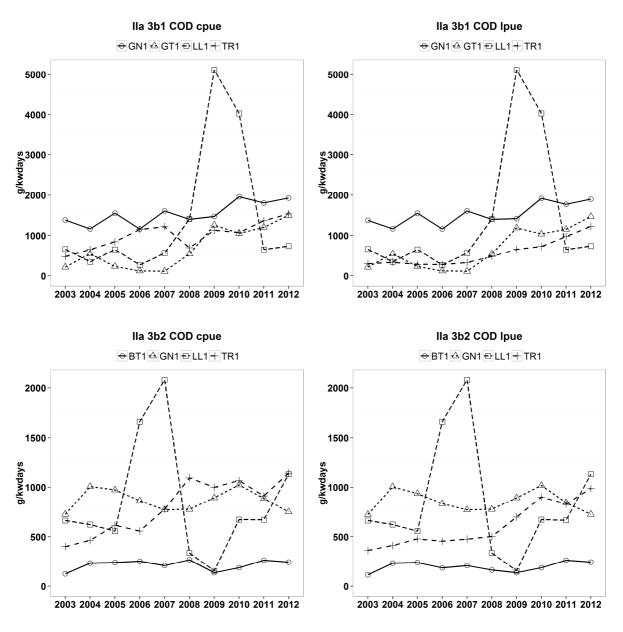


Figure 5.3.4.1 Area 3b1, 3b2 and 3b3. CPUE and LPUE (g/(kW*days)) of cod for the four main cod plan categories.

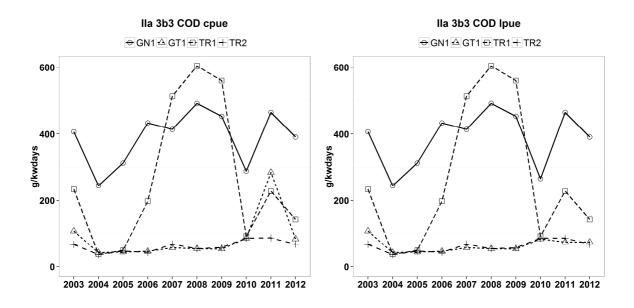


Figure 5.3.4.1 continued

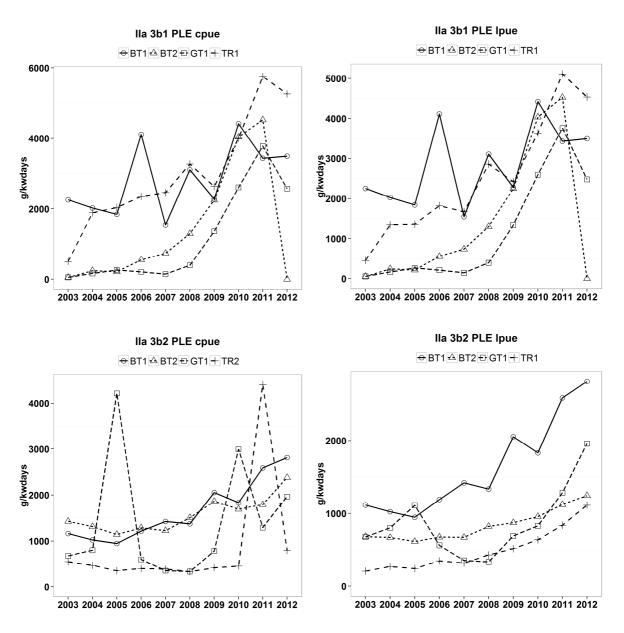


Figure 5.3.4.2 Area 3b1, 3b2 and 3b3. CPUE and LPUE (g/(kW*days) of plaice for the four main cod plan categories.

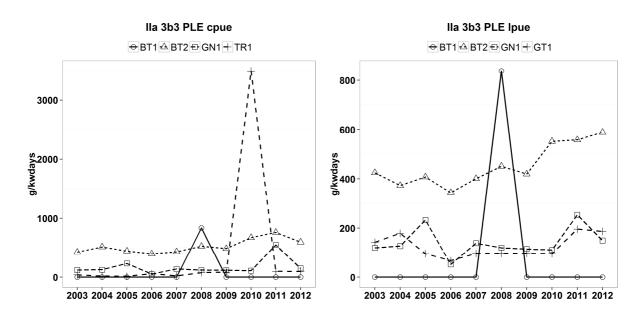


Figure 5.3.4.2 continued

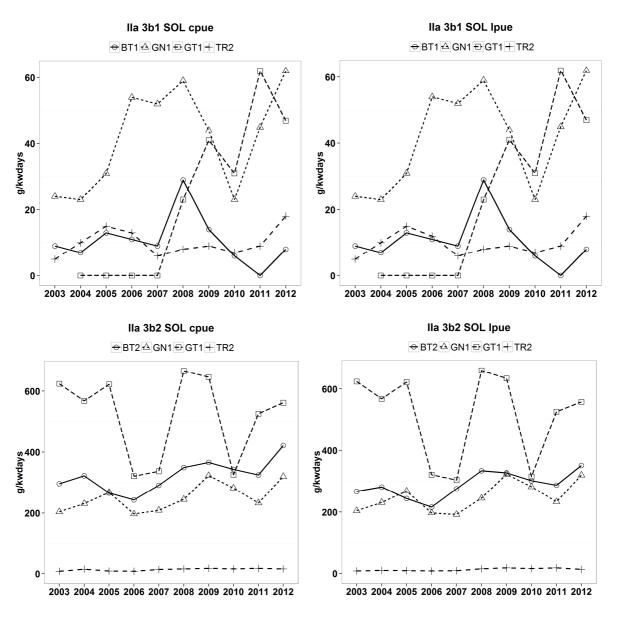


Figure 5.3.4.3 Area 3b1, 3b2 and 3b3: CPUE and LPUE (g/(kW*days)) of sole for the four main cod plan categories.

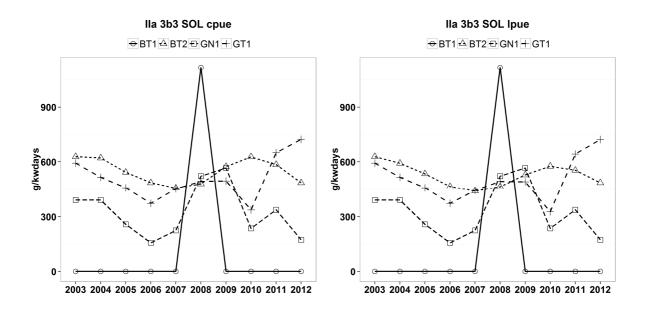


Figure 5.3.4.3 continued

5.3.5 ToR 2 Rank regulated gear groups on the basis of catches expressed both in weight and in number of cod, sole and plaice

Rankings of gears in terms of catches and landings are shown in Tables 5.3.5.1 to 5.3.5.4 for area 3b combined and for areas 3b1, 3b2 and 3b3 separated.

(Table 5.3.5.1). The most important gears for plaice are BT2 and TR1, while for sole BT2 and GT1 contribute to more than 80% of the catches. The ranking based on landings is quite similar, only for plaice now BT2, TR1 and BT1 contribute to more than 80% of the landings.

With regards to cod, the ranking of gear types is different between sub-areas 3b1, 3b2 and 3b3. In the Skagerrak TR1 and TR2 accumulate to more than 80% of the catches in 2012 while TR1 and GN1 are the most important gears in the North Sea and 2 EU. Differences can be also observed for plaice and sole between areas 3b1, 3b2 and 3b3.

Due to time constraints STECF EWG 13-13 dealt with ranking according to weight only, while the ranking according to catch in numbers has not been accomplished.

Table 5.3.5.1. Skagerrak (3b1), North Sea including 2 EU (3b2) and Eastern Channel (3b3) combined: Ranked categories according to relative cod, plaice and sole **catches** in weight in area 3b combined, 2003-2012. Ranking is according to the year 2012.

SPECIES	REG_GEAR	2003 rel	2004 rel	2005 rel	2006 rel	2007 rel	2008 rel	2009 rel	2010 rel	2011 rel	2012 rel	Cumul 2012
COD	TR1	0.464	0.440	0.525	0.513	0.561	0.675	0.670	0.671	0.632	0.689	1.000
COD	TR2	0.235	0.214	0.201	0.227	0.262	0.148	0.160	0.150	0.185	0.154	0.311
COD	GN1	0.124	0.148	0.126	0.110	0.073	0.063	0.077	0.093	0.095	0.079	0.157
COD	BT2	0.125	0.138	0.096	0.087	0.067	0.086	0.071	0.058	0.045	0.037	0.079
COD	BT1	0.026	0.042	0.036	0.044	0.020	0.013	0.006	0.009	0.013	0.022	0.041
COD	GT1	0.018	0.012	0.011	0.011	0.010	0.009	0.012	0.011	0.024	0.014	0.019
COD	LL1	0.008	0.005	0.004	0.007	0.005	0.005	0.003	0.008	0.006	0.005	0.005
COD	TR3	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000
PLE	BT2	0.706	0.694	0.588	0.648	0.690	0.660	0.686	0.630	0.406	0.564	1.000
PLE	TR1	0.061	0.077	0.084	0.146	0.130	0.188	0.172	0.207	0.166	0.252	0.436
PLE	TR2	0.124	0.135	0.071	0.084	0.089	0.087	0.075	0.078	0.371	0.082	0.185
PLE	BT1	0.061	0.054	0.045	0.077	0.059	0.036	0.035	0.037	0.029	0.070	0.102
PLE	GT1	0.008	0.011	0.040	0.014	0.011	0.008	0.013	0.029	0.013	0.021	0.032
PLE	GN1	0.040	0.028	0.172	0.031	0.020	0.021	0.019	0.018	0.014	0.010	0.010
PLE	TR3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
PLE	LL1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
SOL	BT2	0.834	0.849	0.822	0.802	0.812	0.799	0.799	0.859	0.792	0.790	1.000
SOL	GT1	0.086	0.076	0.102	0.112	0.113	0.113	0.107	0.054	0.115	0.117	0.210
SOL	GN1	0.038	0.038	0.046	0.040	0.029	0.039	0.047	0.046	0.044	0.051	0.093
SOL	TR2	0.036	0.034	0.027	0.041	0.043	0.045	0.044	0.038	0.047	0.040	0.042
SOL	BT1	0.004	0.003	0.002	0.003	0.002	0.001	0.001	0.001	0.001	0.001	0.003
SOL	TR1	0.001	0.001	0.001	0.002	0.001	0.002	0.002	0.002	0.002	0.001	0.001
SOL	TR3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
SOL	LL1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Table 5.3.5.2. Skagerrak (3b1), North Sea including 2 EU (3b2) and Eastern Channel (3b3) combined: Ranked categories according to relative cod, plaice and sole **landings** in weight in area 3b combined, 2003-2012. Ranking is according to the year 2012.

SPECIES	REG_GEAR	2003 Rel	2004 Rel	2005 Rel	2006 Rel	2007 Rel	2008 Rel	2009 Rel	2010 Rel	2011 Rel	2012 Rel	Cumul 2102
COD	TR1	0.479	0.471	0.523	0.537	0.552	0.589	0.654	0.684	0.688	0.723	1.000
COD	TR2	0.183	0.167	0.149	0.140	0.157	0.133	0.122	0.106	0.115	0.0940	0.277
COD	GN1	0.143	0.182	0.165	0.150	0.125	0.117	0.108	0.113	0.110	0.0936	0.183
COD	BT2	0.137	0.105	0.094	0.102	0.104	0.118	0.085	0.062	0.051	0.040	0.089
COD	BT1	0.028	0.052	0.048	0.045	0.035	0.015	0.008	0.011	0.016	0.027	0.049
COD	GT1	0.020	0.015	0.015	0.016	0.017	0.017	0.017	0.014	0.013	0.016	0.023
COD	LL1	0.009	0.006	0.006	0.010	0.009	0.009	0.005	0.010	0.007	0.006	0.007
COD	TR3	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000
PLE	BT2	0.593	0.599	0.617	0.554	0.610	0.557	0.542	0.528	0.493	0.448	1.000
PLE	TR1	0.096	0.117	0.133	0.180	0.174	0.264	0.260	0.281	0.301	0.314	0.552
PLE	BT1	0.100	0.091	0.085	0.121	0.093	0.054	0.058	0.053	0.055	0.105	0.238
PLE	TR2	0.131	0.130	0.094	0.077	0.077	0.083	0.090	0.096	0.100	0.086	0.133
PLE	GT1	0.014	0.019	0.025	0.021	0.018	0.012	0.019	0.015	0.024	0.031	0.047
PLE	GN1	0.066	0.044	0.046	0.047	0.028	0.031	0.031	0.027	0.027	0.015	0.015
PLE	TR3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
PLE	LL1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
SOL	BT2	0.822	0.835	0.811	0.785	0.812	0.793	0.783	0.845	0.773	0.763	1.000
SOL	GT1	0.092	0.085	0.109	0.122	0.114	0.117	0.115	0.058	0.125	0.133	0.237
SOL	GN1	0.041	0.042	0.049	0.044	0.029	0.041	0.051	0.051	0.048	0.058	0.104
SOL	TR2	0.039	0.035	0.029	0.044	0.041	0.046	0.047	0.042	0.052	0.043	0.046
SOL	BT1	0.005	0.003	0.002	0.003	0.002	0.001	0.001	0.001	0.001	0.002	0.003
SOL	TR1	0.001	0.001	0.001	0.002	0.002	0.002	0.002	0.002	0.002	0.001	0.002
SOL	TR3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
SOL	LL1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Table 5.3.5.3. Skagerrak (3b1), North Sea including 2 EU (3b2) and Eastern Channel (3b3) separated: Ranked categories according to relative cod, plaice and sole **catches** in weight, 2003-2012. Ranking is according to the year 2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	2003 Rel	2004 Rel	2005 Rel	2006 Rel	2007 Rel	2008 Rel	2009 Rel	2010 Rel	2011 Rel	2012 Rel	Cumul 2012
lla	3b1	COD	TR2	0.672	0.744	0.625	0.614	0.479	0.484	0.496	0.468	0.549	0.508	1.000
lla	3b1	COD	TR1	0.113	0.127	0.247	0.306	0.402	0.314	0.345	0.352	0.290	0.338	0.492
lla	3b1	COD	GN1	0.194	0.117	0.118	0.072	0.099	0.168	0.137	0.160	0.139	0.128	0.153
lla	3b1	COD	GT1	0.001	0.002	0.001	0.002	0.001	0.013	0.018	0.014	0.016	0.018	0.025
lla	3b1	COD	LL1	0.009	0.004	0.005	0.005	0.016	0.018	0.001	0.002	0.005	0.005	0.007
lla	3b1	COD	BT1	0.006	0.006	0.004	0.001	0.002	0.001	0.000	0.004	0.002	0.002	0.002
lla	3b1	COD	TR3	0.004	0.001	0.001	0.000	0.000		0.000	0.000	0.000		0.000
lla	3b1	COD	BT2	0.001	0.000	0.000	0.000	0.001	0.002	0.002	0.001	0.000		0.000
lla	3b2	COD	TR1	0.555	0.520	0.603	0.587	0.623	0.729	0.740	0.742	0.730	0.779	1.000
lla	3b2	COD	GN1	0.109	0.156	0.129	0.119	0.066	0.053	0.067	0.085	0.090	0.070	0.221
lla	3b2	COD	TR2	0.134	0.090	0.094	0.115	0.197	0.103	0.093	0.081	0.098	0.068	0.152
lla	3b2	COD	BT2	0.152	0.168	0.117	0.107	0.080	0.090	0.082	0.066	0.054	0.044	0.084
lla	3b2	COD	BT1	0.031	0.051	0.044	0.056	0.025	0.015	0.007	0.010	0.016	0.026	0.040
lla	3b2	COD	GT1	0.010	0.010	0.008	0.007	0.005	0.005	0.008	0.006	0.006	0.008	0.013
lla	3b2	COD	LL1	0.008	0.005	0.004	0.008	0.003	0.004	0.004	0.009	0.006	0.005	0.005
lla	3b2	COD	TR3	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
lla	3b3	COD	TR2	0.575	0.639	0.657	0.574	0.603	0.535	0.634	0.727	0.517	0.683	1.000
lla	3b3	COD	GT1	0.187	0.145	0.164	0.161	0.133	0.125	0.138	0.155	0.392	0.189	0.317
lla	3b3	COD	GN1	0.160	0.116	0.094	0.136	0.104	0.072	0.083	0.038	0.025	0.059	0.128
lla	3b3	COD	BT2	0.047	0.087	0.078	0.116	0.084	0.221	0.093	0.062	0.041	0.050	0.069
lla	3b3	COD	TR1	0.028	0.003	0.003	0.010	0.074	0.041	0.046	0.010	0.021	0.011	0.018
lla	3b3	COD	LL1	0.003	0.012	0.005	0.004	0.003	0.004	0.004	0.002	0.003	0.005	0.007
lla	3b3	COD	TR3	0.000	0.000	0.000		0.000	0.001	0.001	0.007	0.001	0.002	0.002
lla	3b3	COD	BT1						0.001					0.000

ANNEX	REG_AREA	SPECIES	REG_GEAR	2003 Rel	2004 Rel	2005 Rel	2006 Rel	2007 Rel	2008 Rel	2009 Rel	2010 Rel	2011 Rel	2012 Rel	Cumul 2012
lla	3b1	PLE	TR1	0.095	0.238	0.547	0.511	0.652	0.675	0.685	0.720	0.741	0.748	1.000
IIa	3b1	PLE	TR2	0.606	0.507	0.215	0.167	0.118	0.160	0.131	0.089	0.142	0.142	0.252
lla	3b1	PLE	BT1	0.182	0.164	0.143	0.198	0.097	0.041	0.027	0.081	0.025	0.055	0.110
lla	3b1	PLE	GN1	0.107	0.065	0.074	0.077	0.066	0.100	0.118	0.026	0.061	0.035	0.056
lla	3b1	PLE	GT1	0.000	0.000	0.001	0.002	0.001	0.005	0.017	0.019	0.030	0.021	0.021
lla	3b1	PLE	LL1	0.000	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000
lla	3b1	PLE	TR3	0.002	0.001	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000
lla	3b1	PLE	BT2	0.007	0.024	0.020	0.045	0.066	0.019	0.023	0.065	0.001		0.000
lla	3b2	PLE	BT2	0.746	0.760	0.621	0.698	0.748	0.725	0.729	0.691	0.427	0.606	1.000
lla	3b2	PLE	TR1	0.062	0.070	0.061	0.121	0.088	0.146	0.145	0.161	0.136	0.222	0.394
lla	3b2	PLE	BT1	0.057	0.050	0.040	0.070	0.059	0.037	0.036	0.034	0.030	0.073	0.172
lla	3b2	PLE	TR2	0.092	0.085	0.056	0.069	0.080	0.073	0.066	0.069	0.387	0.072	0.099
lla	3b2	PLE	GT1	0.006	0.008	0.040	0.013	0.008	0.005	0.010	0.028	0.009	0.019	0.027
lla	3b2	PLE	GN1	0.037	0.027	0.181	0.028	0.017	0.013	0.013	0.018	0.011	0.009	0.009
lla	3b2	PLE	TR3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
lla	3b2	PLE	LL1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
lla	3b3	PLE	BT2	0.483	0.382	0.521	0.579	0.625	0.678	0.640	0.520	0.544	0.525	1.000
lla	3b3	PLE	TR2	0.405	0.530	0.348	0.332	0.248	0.231	0.259	0.294	0.329	0.332	0.475
lla	3b3	PLE	GT1	0.092	0.080	0.110	0.083	0.109	0.081	0.090	0.073	0.111	0.132	0.142
lla	3b3	PLE	GN1	0.018	0.008	0.021	0.006	0.016	0.006	0.008	0.004	0.011	0.006	0.010
lla	3b3	PLE	TR1	0.002	0.000	0.001	0.001	0.001	0.002	0.002	0.106	0.004	0.002	0.004
lla	3b3	PLE	TR3	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.003	0.002	0.001	0.001
lla	3b3	PLE	BT1						0.001				0.000	0.000
lla	3b3	PLE	LL1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0	0.000

ANNEX	REG_AREA	SPECIES	REG_GEAR	2003 Rel	2004 Rel	2005 Rel	2006 Rel	2007 Rel	2008 Rel	2009 Rel	2010 Rel	2011 Rel	2012 Rel	Cumul 2012
lla	3b1	SOL	TR2	0.578	0.802	0.755	0.608	0.383	0.392	0.485	0.469	0.525	0.589	1.000
lla	3b1	SOL	GN1	0.234	0.121	0.118	0.206	0.300	0.338	0.318	0.184	0.288	0.233	0.411
lla	3b1	SOL	TR1	0.063	0.033	0.064	0.144	0.217	0.203	0.136	0.224	0.119	0.133	0.178
lla	3b1	SOL	GT1		0.000	0.000	0.000	0.000	0.027	0.045	0.041	0.068	0.033	0.044
lla	3b1	SOL	BT1	0.063	0.044	0.055	0.041	0.067	0.041	0.015	0.020	0.000	0.011	0.011
lla	3b1	SOL	LL1	0.000	0.000	0.000	0.000							0.000
lla	3b1	SOL	BT2	0.047	0.000	0.009	0.000	0.033	0.000	0.000	0.061			0.000
lla	3b1	SOL	TR3	0.016	0.000	0.000		0.000			0.000			0.000
lla	3b2	SOL	BT2	0.918	0.916	0.899	0.892	0.912	0.883	0.876	0.910	0.885	0.883	1.000
lla	3b2	SOL	GN1	0.036	0.039	0.051	0.047	0.031	0.043	0.052	0.053	0.053	0.059	0.117
lla	3b2	SOL	GT1	0.031	0.028	0.038	0.046	0.040	0.053	0.051	0.020	0.042	0.044	0.057
lla	3b2	SOL	TR2	0.008	0.013	0.009	0.009	0.015	0.018	0.018	0.016	0.018	0.012	0.014
lla	3b2	SOL	BT1	0.005	0.003	0.002	0.004	0.002	0.001	0.002	0.001	0.001	0.002	0.002
lla	3b2	SOL	TR1	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
lla	3b2	SOL	LL1	0.000	0.000	0.000	0.000			0.000	0.000		0.000	0.000
lla	3b2	SOL	TR3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.000
lla	3b3	SOL	GT1	0.286	0.286	0.401	0.334	0.367	0.331	0.317	0.222	0.376	0.442	1.000
lla	3b3	SOL	BT2	0.537	0.571	0.490	0.520	0.476	0.510	0.523	0.625	0.471	0.403	0.558
lla	3b3	SOL	TR2	0.133	0.113	0.090	0.132	0.138	0.134	0.133	0.139	0.142	0.146	0.154
lla	3b3	SOL	GN1	0.043	0.030	0.018	0.013	0.019	0.022	0.025	0.012	0.007	0.007	0.008
lla	3b3	SOL	TR3	0.000	0.000	0.001	0.000	0.000	0.002	0.001	0.001	0.001	0.001	0.001
lla	3b3	SOL	LL1	0.000			0.000		0.000	0.000	0.000	0.000	0.000	0.000
lla	3b3	SOL	BT1						0.001				0.000	0.000
lla	3b3	SOL	TR1	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.002	0.000	0.000

Table 5.3.5.4. Skagerrak (3b1), North Sea including 2 EU (3b2) and Eastern Channel (3b3) separated: Ranked categories according to relative cod, plaice and sole **landings** in weight in area 3b, 2003-2012. Ranking is according to the year 2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	2003 Rel	2004 Rel	2005 Rel	2006 Rel	2007 Rel	2008 Rel	2009 Rel	2010 Rel	2011 Rel	2012 Rel	Cumul 2012
lla	3b1	COD	TR1	0.099	0.112	0.172	0.202	0.282	0.311	0.337	0.361	0.336	0.405	1.000
lla	3b1	COD	TR2	0.598	0.669	0.558	0.579	0.410	0.397	0.405	0.372	0.408	0.369	0.595
lla	3b1	COD	GN1	0.275	0.198	0.248	0.198	0.257	0.243	0.223	0.237	0.221	0.188	0.226
lla	3b1	COD	GT1	0.001	0.004	0.003	0.004	0.003	0.019	0.029	0.021	0.024	0.027	0.037
lla	3b1	COD	LL1	0.013	0.006	0.010	0.014	0.041	0.026	0.002	0.003	0.008	0.007	0.010
lla	3b1	COD	BT1	0.009	0.010	0.008	0.001	0.006	0.001	0.000	0.005	0.003	0.003	0.003
lla	3b1	COD	TR3	0.004	0.001	0.001	0.000	0.000		0.000	0.000	0.000		0.000
IIa	3b1	COD	BT2	0.002	0.000	0.001	0.001	0.002	0.003	0.004	0.001	0.000		0.000
lla	3b2	COD	TR1	0.566	0.541	0.592	0.604	0.633	0.656	0.721	0.750	0.763	0.798	1.000
lla	3b2	COD	GN1	0.122	0.183	0.158	0.145	0.109	0.103	0.094	0.101	0.099	0.080	0.202
lla	3b2	COD	BT2	0.163	0.122	0.107	0.113	0.122	0.131	0.095	0.069	0.058	0.046	0.122
IIa	3b2	COD	BT1	0.032	0.060	0.056	0.053	0.042	0.018	0.010	0.012	0.018	0.031	0.076
lla	3b2	COD	TR2	0.095	0.077	0.073	0.065	0.080	0.074	0.064	0.049	0.049	0.030	0.045
IIa	3b2	COD	GT1	0.011	0.012	0.010	0.009	0.008	0.010	0.011	0.008	0.006	0.009	0.015
lla	3b2	COD	LL1	0.009	0.005	0.005	0.010	0.006	0.008	0.005	0.011	0.007	0.006	0.007
lla	3b2	COD	TR3	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
lla	3b3	COD	TR2	0.575	0.647	0.658	0.584	0.614	0.577	0.636	0.735	0.730	0.703	1.000
lla	3b3	COD	GT1	0.187	0.146	0.164	0.164	0.135	0.136	0.141	0.153	0.144	0.170	0.297
IIa	3b3	COD	GN1	0.160	0.117	0.094	0.138	0.106	0.078	0.084	0.036	0.035	0.061	0.128
lla	3b3	COD	BT2	0.047	0.075	0.076	0.100	0.066	0.158	0.087	0.056	0.055	0.048	0.067
IIa	3b3	COD	TR1	0.028	0.003	0.003	0.010	0.075	0.045	0.047	0.010	0.030	0.011	0.019
IIa	3b3	COD	LL1	0.003	0.012	0.005	0.004	0.003	0.004	0.004	0.002	0.004	0.005	0.008
lla	3b3	COD	TR3	0.000	0.000	0.000		0.000	0.001	0.001	0.007	0.002	0.003	0.003
lla	3b3	COD	BT1						0.001					0.000
														•
ANNEX	REG_AREA	SPECIES	REG_GEAR	2003 Rel	2004 Rel	2005 Rel	2006 Rel	2007 Rel	2008 Rel	2009 Rel	2010 Rel	2011 Rel	2012 Rel	Cumul 2012
lla	3b1	PLE	TR1	0.094	0.214	0.494	0.473	0.579	0.674	0.683	0.709	0.729	0.736	1.000
lla	3b1	PLE	TR2	0.577	0.466	0.183	0.143	0.121	0.138	0.119	0.084	0.142	0.141	0.264
IIa	3b1	PLE	BT1	0.201	0.207	0.193	0.236	0.126	0.047	0.029	0.088	0.028	0.062	0.123
IIa	3b1	PLE	GN1	0.118	0.082	0.100	0.092	0.087	0.114	0.126	0.028	0.067	0.038	0.061
IIa	3b1	PLE	GT1	0.000	0.001	0.002	0.002	0.002	0.005	0.018	0.021	0.033	0.023	0.023
lla	3b1	PLE	LL1	0.000	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000

ANNEX	REG_AREA	SPECIES	REG_GEAR	2003 Rel	2004 Rel	2005 Rel	2006 Rel	2007 Rel	2008 Rel	2009 Rel	2010 Rel	2011 Rel	2012 Rel	Cumul 2012
IIa	3b1	PLE	TR1	0.094	0.214	0.494	0.473	0.579	0.674	0.683	0.709	0.729	0.736	1.000
lla	3b1	PLE	TR2	0.577	0.466	0.183	0.143	0.121	0.138	0.119	0.084	0.142	0.141	0.264
IIa	3b1	PLE	BT1	0.201	0.207	0.193	0.236	0.126	0.047	0.029	0.088	0.028	0.062	0.123
IIa	3b1	PLE	GN1	0.118	0.082	0.100	0.092	0.087	0.114	0.126	0.028	0.067	0.038	0.061
lla	3b1	PLE	GT1	0.000	0.001	0.002	0.002	0.002	0.005	0.018	0.021	0.033	0.023	0.023
lla	3b1	PLE	LL1	0.000	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000
lla	3b1	PLE	TR3	0.002	0.001	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000
lla	3b1	PLE	BT2	0.008	0.030	0.027	0.054	0.086	0.022	0.025	0.071	0.001		0.000
IIa	3b2	PLE	BT2	0.641	0.661	0.670	0.608	0.668	0.627	0.591	0.591	0.549	0.490	1.000
IIa	3b2	PLE	TR1	0.102	0.114	0.111	0.157	0.140	0.222	0.230	0.235	0.267	0.284	0.510
IIa	3b2	PLE	BT1	0.098	0.085	0.081	0.114	0.095	0.058	0.063	0.051	0.061	0.113	0.226
lla	3b2	PLE	TR2	0.084	0.084	0.073	0.058	0.061	0.065	0.077	0.084	0.082	0.071	0.113
lla	3b2	PLE	GT1	0.010	0.014	0.022	0.020	0.013	0.008	0.016	0.012	0.018	0.029	0.042
lla	3b2	PLE	GN1	0.065	0.042	0.043	0.043	0.022	0.021	0.023	0.027	0.023	0.013	0.013
lla	3b2	PLE	TR3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
lla	3b2	PLE	LL1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
IIa	3b3	PLE	BT2	0.515	0.479	0.499	0.568	0.607	0.651	0.605	0.549	0.477	0.531	1.000
IIa	3b3	PLE	TR2	0.366	0.367	0.364	0.330	0.259	0.250	0.284	0.377	0.390	0.334	0.469
lla	3b3	PLE	GT1	0.098	0.139	0.114	0.093	0.115	0.089	0.098	0.063	0.121	0.125	0.135
lla	3b3	PLE	GN1	0.019	0.013	0.022	0.007	0.017	0.007	0.009	0.005	0.006	0.007	0.010
lla	3b3	PLE	TR1	0.002	0.000	0.001	0.001	0.001	0.002	0.003	0.002	0.003	0.002	0.004
lla	3b3	PLE	TR3	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.004	0.003	0.001	0.001
lla	3b3	PLE	BT1						0.001				0.000	0.000
IIa	3b3	PLE	LL1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

ANNEX	REG_AREA	SPECIES	REG_GEAR	2003 Rel	2004 Rel	2005 Rel	2006 Rel	2007 Rel	2008 Rel	2009 Rel	2010 Rel	2011 Rel	2012 Rel	Cumul 2012
lla	3b1	SOL	TR2	0.578	0.800	0.750	0.598	0.373	0.392	0.477	0.469	0.525	0.589	1.000
lla	3b1	SOL	GN1	0.234	0.122	0.120	0.217	0.305	0.338	0.323	0.184	0.288	0.233	0.411
lla	3b1	SOL	TR1	0.063	0.033	0.065	0.141	0.220	0.203	0.138	0.224	0.119	0.133	0.178
lla	3b1	SOL	GT1		0.000	0.000	0.000	0.000	0.027	0.046	0.041	0.068	0.033	0.044
lla	3b1	SOL	BT1	0.063	0.044	0.056	0.043	0.068	0.041	0.015	0.020	0.000	0.011	0.011
lla	3b1	SOL	LL1	0.000	0.000	0.000	0.000							0.000
lla	3b1	SOL	BT2	0.047	0.000	0.009	0.000	0.034	0.000	0.000	0.061			0.000
lla	3b1	SOL	TR3	0.016	0.000	0.000		0.000			0.000			0.000
lla	3b2	SOL	BT2	0.910	0.908	0.891	0.880	0.918	0.880	0.864	0.899	0.872	0.865	1.000
lla	3b2	SOL	GN1	0.040	0.044	0.056	0.053	0.031	0.044	0.057	0.059	0.059	0.070	0.135
lla	3b2	SOL	GT1	0.034	0.032	0.041	0.051	0.038	0.055	0.056	0.022	0.047	0.051	0.065
lla	3b2	SOL	TR2	0.009	0.010	0.009	0.010	0.010	0.018	0.020	0.018	0.020	0.011	0.014
lla	3b2	SOL	BT1	0.006	0.004	0.002	0.004	0.002	0.001	0.002	0.001	0.001	0.002	0.003
lla	3b2	SOL	TR1	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.001
lla	3b2	SOL	LL1	0.000	0.000	0.000	0.000			0.000	0.000		0.000	0.000
lla	3b2	SOL	TR3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.000
lla	3b3	SOL	GT1	0.287	0.294	0.404	0.342	0.370	0.337	0.329	0.229	0.383	0.442	1.000
lla	3b3	SOL	BT2	0.537	0.560	0.487	0.509	0.471	0.502	0.504	0.609	0.459	0.404	0.558
lla	3b3	SOL	TR2	0.133	0.116	0.090	0.135	0.139	0.136	0.139	0.148	0.146	0.146	0.154
lla	3b3	SOL	GN1	0.043	0.031	0.018	0.013	0.020	0.022	0.026	0.013	0.008	0.007	0.008
lla	3b3	SOL	TR3	0.000	0.000	0.001	0.000	0.000	0.002	0.002	0.001	0.001	0.001	0.001
lla	3b3	SOL	LL1	0.000			0.000		0.000	0.000	0.000	0.000	0.000	0.000
lla	3b3	SOL	BT1						0.001				0.000	0.000
lla	3b3	SOL	TR1	0.000	0.000	0.000	0.001	0.000	0.001	0.001	0.000	0.002	0.000	0.000

5.3.6 ToR 3 Information on small boats (<10m)

5.3.6.1 Fishing effort of small boats by Member State

Effort (Table 5.3.6.1.1) is provided for the vessels under 10m (including Article 11 vessels!) in area 3b, for all countries except Belgium. German data are incomplete as logbook information is not mandatory for vessels under 10m in Germany. UK data are poor until the introduction of registration of buyers and sellers legislation in 2006 after which recording of effort has improved. Danish data are incomplete till 2010. Therefore, up to 2010 data have to be regarded as not representative and should not be interpreted. Especially the increase in effort around 2006 and 2010 does most likely not mean an increase in effort in reality. Between 2010 and 2011 effort was stable. In 2011 around half of the effort is operated with Pots (47%), and secondly GN1 (13%) and TR2 (12%). Unregulated gears account for 60% of total effort from vessels <10m. The highest effort in 2011 was recorded by England, Scotland and France (Table 5.3.6.1.2.)

For the whole area 3b in 2012, the effort from vessels <10m was 9% of the total effort in this area.

 $Table\ 5.3.6.1.1\ Skagerrak,\ North\ Sea\ and\ Eastern\ Channel.\ Fishing\ effort\ (kWdays)\ by\ vessels\ <10m.$ Data include Art. 11 vessels!

ANNEX	REG AREA	REG GEAR CC	2005	2006	2007	2008	2009	2010	2011	2012
lla	3b1	DEM_SEINE	301	503	457	679	6052	4971	197	8768
lla	3b1	DREDGE					3437	10003	771	2177
lla	3b1	GN1	100597	143850	85267	117597	210526	196336	180466	213300
lla	3b1	GT1	7199	7542	4145	2361	49133	17339	17034	21252
lla	3b1	LL1	12773	11632	8460	13611	809	7527	2926	1215
lla	3b1	none	279834	228367	196976	238944	348910	359647	374678	346954
lla	3b1	OTTER	5809	10608	6512	6815	7430	19478	23751	34663
lla	3b1	PEL_SEINE	441	315	252	1148	1125	442	3466	252
lla	3b1	PEL_TRAWL	53	106	17		53			
lla	3b1	POTS	84747	163269	105493	106041	781512	859133	408138	477168
lla	3b1	TR1	13405	19028	22638	21597	15800	18684	4932	18856
lla	3b1	TR2	14372	14888	19943	19755	34859	75774	98526	123061
lla	3b1	TR3	162	956	1052	603	1619	3119	1544	507
lla	3b2	BEAM	20795	45923	73273	111576	81068	38237	49726	63895
lla	3b2	BT1	4	4				4	4	
lla	3b2	BT2	637	574	676	58	3466	14376	3650	802
lla	3b2	DREDGE	103978	106632	125628	164279	183741	170258	167121	174140
lla	3b2	GN1	310649	473886	639122	641390	565616	555102	592653	481877
lla	3b2	GT1	141442	243251	51469	123419	132229	121147	230749	162722
lla	3b2	LL1	185215	121158	223379	256904	193040	273637	251392	269549
lla	3b2	none	319791	265304	241312	247650	269798	294912	315079	296765
lla	3b2	OTTER	121290	53281	81701	68334	110265	75189	45469	32884
lla	3b2	PEL_SEINE	5020	5225	3924	14327	18095	27139		
lla	3b2	PEL_TRAWL	7226	316	3058	1196	13625	13159	19964	17865
lla	3b2	POTS	1977969	3855408	4019404	4129470	4128191	4067548	4275794	4205901
lla	3b2	TR1	74027	106819	172073	165212	145161	174062	200265	211144
lla	3b2	TR2	966629	1032910	1191938	1064981	959253	941263	1075229	882548
lla	3b2	TR3	7434	6465	1983	164	1344	2769	4725	3360
lla	3b3	BEAM	15887	745		149	149	347	62	
lla	3b3	BT2	44073	35255	61328	65598	55374	37649	26407	33732
lla	3b3	DREDGE	170967	165851	164335	227297	189076	178185	197563	183166
lla	3b3	GN1	242581	581413	1233830	1173083	1222671	1073271	934576	696090
lla	3b3	GT1	469766	630019	465130	353821	384219	503202	777802	861366
lla	3b3	LL1	69475	87057	149972	68164	84464	239074	316428	376729
lla	3b3	none	28060	7750	24289	13867	13867		5794	
lla	3b3	OTTER	109479	8086	3660	2817	1693	51027	31562	48307
lla	3b3	PEL_SEINE								
lla	3b3	PEL_TRAWL	4593	4694	8355	17874	17874	16249	7788	3636
lla	3b3	POTS	544348	1221805	1260523	935385	792216	1657083	1213275	1382224
lla	3b3	TR1	6450	6447	26518	172434	125897	99165	80878	136035
lla	3b3	TR2	102348	262295	375394	180269	201305	267964	381672	301177
lla	3b3	TR3	120992	163184	125478	52603	52128	52326	63039	42104
Sum				10092821						

Table 5.3.6.1.2 Skagerrak, North Sea and Eastern Channel. Fishing effort (kWdays) by vessels <10m by country.

ANNEX	REG AREA	COUNTRY	2005	2006	2007	2008	2009	2010	2011	2012
lla	3b1	DNK	376922	379678	303712	375610	381497	377669	388810	367146
lla	3b1	SWE	142771	221386	147500	153541	1079768	1194784	727619	881027
lla	3b2	DEU	8359	33326	48357	31085	38899	26849	41101	34498
lla	3b2	DNK	388486	367508	321918	382763	361730	317980	368395	341352
lla	3b2	ENG	1365227	2938590	3270361	3218856	2731080	2597354	3089443	2798937
lla	3b2	FRA	87111	57751	52761	59281	59281	44940	64959	44761
lla	3b2	GBC								
lla	3b2	NIR	209	14136	1672		371		112	1121
lla	3b2	NLD	155640	176535	174381	197396	215075	237672	185390	174048
lla	3b2	SCO	2237074	2729310	2959490	3099579	3398456	3544007	3482420	3408709
lla	3b2	SWE								26
lla	3b3	ENG	422216	1566408	2452694	2429908	2299272	2318911	2447658	2533846
lla	3b3	FRA	1506803	1607091	1445793	832742	829871	1849140	1586097	1530504
lla	3b3	GBG		1074		224				
lla	3b3	NIR		0		112				
lla	3b3	SCO		28	325	375	11790	7491	3091	216
SUM			6690818	10092821	11178964	10781472	11407090	12516797	12385095	12116191

5.3.6.2 Catches (landings and discards) of cod and associated species by small boats by Member State

Landings are provided for the vessels under 10m in area 3b, for all countries except Belgium, for the top 10 species ranked according to landings in 2011 (Table 5.3.6.2.1). The main fishery is for edible crab, and secondly for cod, Nephrops and plaice. For the whole area 3b in 2011, the landings from vessels <10m represent around 5, 7, 9 and 2% of the total landings of cod, Nephrops, sole and plaice, respectively. Information by country is available from the STECF website.

The details by gear for cod, plaice and sole is given in Table 5.3.6.2.2. From the regulated gears passive gears are most important. However, substantial landings are reported under none for vessels <10m.

Table 5.3.6.2.1 Skagerrak (3b1), North Sea and 2 EU (3b2), Eastern Channel (3b3). Landings (t) by vessels <10m. Only top 10 species according to landings in 2012 are shown. Information for other species is available from the STECF website.

IIIa	ANNEX	REG_AREA	No	SPECIES	2005	2006	2007	2008	2009	2010	2011	2012
III	lla	3b1	1	PLE	453.645	609.059	447.486	662.896	476.25	599.661	625.174	564.331
III	lla	3b1	2	COD	844.856	663.919	483.497	496.602	435.834	476.972	552.52	527.721
III	lla	3b1	3	NEP	128.885	117.662	134.017	144.15	152.83	182.633	141.108	203.146
III	lla	3b1	4	CRE	65.936	52.117	57.792	71.622	107.777	109.979	118.472	126.86
III	lla	3b1	5	MAC	48.23	65.753	42.343	54.688	52.488	109.264	98.053	114.464
III	lla	3b1	6	HER	36.004	42.098	50.61	45.73	63.637	32.112	26.732	66.637
III	lla	3b1	7	DAB	23.389	15.58	17.721	23.027	25.773	23.735	41.897	59.233
III	lla	3b1	8	SOL	30.974	28.567	29.668	35.326	42.215	19.784	41.921	50.428
IIIa	lla	3b1	9	POL	39.494	22.099	20.317	18.41	42.011	36.722	42.693	36.561
IIa	lla	3b1	10	LEM	62.85	62.158	24.579	20.496	23.561	27.023	13.003	28.948
IIa 3b2 3 NEP 1521.185 2185.853 1873.955 1315.745 1404.149 1108.502 1158.314 1153.555 116 3b2 4 COD 883.818 950.955 731.504 927.226 1017.377 939.519 811.295 801.955 116 3b2 5 MAC 371.712 431.289 380.413 442.497 480.899 668.888 685.027 580.675 116 3b2 7 PLE 468.518 495.44 325.386 327.966 677.154 307.923 411.769 4131.255 116 3b2 8 WHG 241.516 691.317 652.04 233.33 390.606 394.981 345.344 365.175 116 3b2 9 SOL 304.134 291.537 299.693 402.291 772.375 354.407 478.123 361.885 116 3b3 1 SOL 457.644 613.706 777.901 594.113 701.638 662.448 768.83 726.665 116 3b3 3 PLE 415.208 542.453 480.063 363.269 435.658 397.676 445.367 449.05 116 3b3 4 BSS 191.077 170.677 197.324 199.896 199.941 250.078 333.441 383.835 145.928 123.945 116 3b3 8 MAC 20.251 27.715 30.395 28.885 37.735 42.54 69.098 71.225 116 3b3 8 MAC 20.251 27.715 30.395 28.885 37.735 42.54 69.098 71.225 116 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.885 116 30.35 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.885 116 30.35 30.355 30.355 30.355 30.355 30.416 69.039 94.39 65.885 116 30.355	lla	3b2	1	CRE	1775.545	3736.901	3738.228	3454.741	3118.615	3438.854	3539.057	4150.852
IIa 3b2	lla	3b2	2	OTH	1678.817	1795.21	2337.166	2135.991	2610.568	2292.56	2259.521	2119.366
IIa 3b2 5 MAC 371.712 431.289 380.413 442.497 480.899 668.888 685.027 580.67 IIa 3b2 6 SCE 341.49 249.474 285.786 321.091 263.792 459.74 416.764 553.90 IIa 3b2 7 PLE 468.518 495.44 325.386 327.966 677.154 307.923 411.769 413.15 IIa 3b2 8 WHG 241.516 691.317 652.04 233.33 390.606 394.981 345.344 365.17 IIa 3b2 9 SOL 304.134 291.537 299.693 402.291 772.375 354.407 478.123 361.88 IIa 3b3 1 SOL 457.644 613.706 777.901 594.113 701.638 662.448 768.83 726.66 IIa 3b3 2 CRE 341.731 420.449 403.56 388.395 346.043 417.112 445.687 517.91 IIa 3b3 3 PLE 415.208 542.453 480.063 363.269 435.658 397.676 445.367 449.0 IIa 3b3 4 BSS 191.077 170.677 197.324 199.896 199.941 250.078 333.441 383.83 IIa 3b3 6 COD 193.18 276.738 217.358 163.102 153.658 146.683 145.928 123.94 IIa 3b3 7 POL 15.333 24.976 25.955 32.528 29.6 79.038 100.914 91.48 IIa 3b3 8 MAC 20.251 27.715 30.395 28.885 37.735 42.54 69.098 71.22 IIa 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.88 IIa 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.88 IIa 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.88 IIa 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.88 IIa 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.88 IIa 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.88 IIa 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.88 IIa 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.88 IIa 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39	lla	3b2	3	NEP	1521.185	2185.853	1873.955	1315.745	1404.149	1108.502	1158.314	1153.599
Ha	lla	3b2	4	COD	883.818	950.955	731.504	927.226	1017.377	939.519	811.295	801.995
Ha	lla	3b2	5	MAC	371.712	431.289	380.413	442.497	480.899	668.888	685.027	580.679
IIa 3b2 8 WHG 241.516 691.317 652.04 233.33 390.606 394.981 345.344 365.17 IIa 3b2 9 SOL 304.134 291.537 299.693 402.291 772.375 354.407 478.123 361.88 IIa 3b2 10 SPR 197.73 49.149 244.673 19.95 46.767 89.499 246.958 340.5 IIa 3b3 1 SOL 457.644 613.706 777.901 594.113 701.638 662.448 768.83 726.66 IIa 3b3 2 CRE 341.731 420.449 403.56 388.395 346.043 417.112 445.687 517.91 IIa 3b3 3 PLE 415.208 542.453 480.063 363.269 435.658 397.676 445.367 449.0 IIa 3b3 4 BSS 191.077 170.677 197.324 199.896 199.941 250.078 333.441 383.83 IIa 3b3 5 SCE 218.293 334.134 264.95 248.455 231.836 142.784 215.962 204.93 IIa 3b3 6 COD 193.18 276.738 217.358 163.102 153.658 146.683 145.928 123.94 IIa 3b3 8 MAC 20.251 27.715 30.395 28.885 37.735 42.54 69.098 71.22 IIa 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.88 IIa 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.88 IIa 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.88 IIa 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.88 IIa 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.88 IIa 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.88 IIa 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.88 IIa 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.88 IIa 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.88 IIa 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.88 IIa 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.88 II	lla	3b2	6	SCE	341.49	249.474	285.786	321.091	263.792	459.74	416.764	553.906
IIa 3b2 9 SOL 304.134 291.537 299.693 402.291 772.375 354.407 478.123 361.88 IIa 3b2 10 SPR 197.73 49.149 244.673 19.95 46.767 89.499 246.958 340.5 IIa 3b3 1 SOL 457.644 613.706 777.901 594.113 701.638 662.448 768.83 726.66 IIa 3b3 2 CRE 341.731 420.449 403.56 388.395 346.043 417.112 445.687 517.91 IIa 3b3 3 PLE 415.208 542.453 480.063 363.269 435.658 397.676 445.367 449.0 IIa 3b3 4 BSS 191.077 170.677 197.324 199.896 199.941 250.078 333.441 383.83 IIa 3b3 5 SCE 218.293 334.134 264.95 248.455 231.836 142.784 2	lla	3b2	7	PLE	468.518	495.44	325.386	327.966	677.154	307.923	411.769	413.152
IIa 3b2 10 SPR 197.73 49.149 244.673 19.95 46.767 89.499 246.958 340.5 IIa 3b3 1 SOL 457.644 613.706 777.901 594.113 701.638 662.448 768.83 726.66 IIa 3b3 2 CRE 341.731 420.449 403.56 388.395 346.043 417.112 445.687 517.91 IIa 3b3 3 PLE 415.208 542.453 480.063 363.269 435.658 397.676 445.367 449.0 IIa 3b3 4 BSS 191.077 170.677 197.324 199.896 199.941 250.078 333.441 383.83 IIa 3b3 5 SCE 218.293 334.134 264.95 248.455 231.836 142.784 215.962 204.93 IIa 3b3 7 POL 15.333 24.976 25.955 32.528 29.6 79.038 100.914 </td <td>lla</td> <td>3b2</td> <td>8</td> <td>WHG</td> <td>241.516</td> <td>691.317</td> <td>652.04</td> <td>233.33</td> <td>390.606</td> <td>394.981</td> <td>345.344</td> <td>365.172</td>	lla	3b2	8	WHG	241.516	691.317	652.04	233.33	390.606	394.981	345.344	365.172
IIa 3b3 1 SOL 457.644 613.706 777.901 594.113 701.638 662.448 768.83 726.66 IIa 3b3 2 CRE 341.731 420.449 403.56 388.395 346.043 417.112 445.687 517.91 IIa 3b3 3 PLE 415.208 542.453 480.063 363.269 435.658 397.676 445.367 449.0 IIa 3b3 4 BSS 191.077 170.677 197.324 199.896 199.941 250.078 333.441 383.83 IIa 3b3 5 SCE 218.293 334.134 264.95 248.455 231.836 142.784 215.962 204.93 IIa 3b3 6 COD 193.18 276.738 217.358 163.102 153.658 146.683 145.928 123.94 IIa 3b3 7 POL 15.333 24.976 25.955 32.528 29.6 79.038 100.	lla	3b2	9	SOL	304.134	291.537	299.693	402.291	772.375	354.407	478.123	361.883
IIa 3b3 2 CRE 341.731 420.449 403.56 388.395 346.043 417.112 445.687 517.91 IIa 3b3 3 PLE 415.208 542.453 480.063 363.269 435.658 397.676 445.367 449.0 IIa 3b3 4 BSS 191.077 170.677 197.324 199.896 199.941 250.078 333.441 383.83 IIa 3b3 5 SCE 218.293 334.134 264.95 248.455 231.836 142.784 215.962 204.93 IIa 3b3 6 COD 193.18 276.738 217.358 163.102 153.658 146.683 145.928 123.94 IIa 3b3 7 POL 15.333 24.976 25.955 32.528 29.6 79.038 100.914 91.48 IIa 3b3 8 MAC 20.251 27.715 30.395 28.885 37.735 42.54 69.098 71.22 IIa 3b3 9 CSH 109.28 139.338 </td <td>lla</td> <td>3b2</td> <td>10</td> <td>SPR</td> <td>197.73</td> <td>49.149</td> <td>244.673</td> <td>19.95</td> <td>46.767</td> <td>89.499</td> <td>246.958</td> <td>340.58</td>	lla	3b2	10	SPR	197.73	49.149	244.673	19.95	46.767	89.499	246.958	340.58
IIa 3b3 3 PLE 415.208 542.453 480.063 363.269 435.658 397.676 445.367 449.0 IIa 3b3 4 BSS 191.077 170.677 197.324 199.896 199.941 250.078 333.441 383.83 IIa 3b3 5 SCE 218.293 334.134 264.95 248.455 231.836 142.784 215.962 204.93 IIa 3b3 6 COD 193.18 276.738 217.358 163.102 153.658 146.683 145.928 123.94 IIa 3b3 7 POL 15.333 24.976 25.955 32.528 29.6 79.038 100.914 91.48 IIa 3b3 8 MAC 20.251 27.715 30.395 28.885 37.735 42.54 69.098 71.22 IIa 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.88	lla	3b3	1	SOL	457.644	613.706	777.901	594.113	701.638	662.448	768.83	726.664
IIa 3b3 4 BSS 191.077 170.677 197.324 199.896 199.941 250.078 333.441 383.83 IIa 3b3 5 SCE 218.293 334.134 264.95 248.455 231.836 142.784 215.962 204.93 IIa 3b3 6 COD 193.18 276.738 217.358 163.102 153.658 146.683 145.928 123.94 IIa 3b3 7 POL 15.333 24.976 25.955 32.528 29.6 79.038 100.914 91.48 IIa 3b3 8 MAC 20.251 27.715 30.395 28.885 37.735 42.54 69.098 71.22 IIa 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.88	lla	3b3	2	CRE	341.731	420.449	403.56	388.395	346.043	417.112	445.687	517.916
IIa 3b3 5 SCE 218.293 334.134 264.95 248.455 231.836 142.784 215.962 204.93 IIa 3b3 6 COD 193.18 276.738 217.358 163.102 153.658 146.683 145.928 123.94 IIa 3b3 7 POL 15.333 24.976 25.955 32.528 29.6 79.038 100.914 91.48 IIa 3b3 8 MAC 20.251 27.715 30.395 28.885 37.735 42.54 69.098 71.22 IIa 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.88	lla	3b3	3	PLE	415.208	542.453	480.063	363.269	435.658	397.676	445.367	449.03
IIa 3b3 6 COD 193.18 276.738 217.358 163.102 153.658 146.683 145.928 123.94 IIa 3b3 7 POL 15.333 24.976 25.955 32.528 29.6 79.038 100.914 91.48 IIa 3b3 8 MAC 20.251 27.715 30.395 28.885 37.735 42.54 69.098 71.22 IIa 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.88	lla	3b3	4	BSS	191.077	170.677	197.324	199.896	199.941	250.078	333.441	383.832
IIa 3b3 7 POL 15.333 24.976 25.955 32.528 29.6 79.038 100.914 91.48 IIa 3b3 8 MAC 20.251 27.715 30.395 28.885 37.735 42.54 69.098 71.22 IIa 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.88	lla	3b3	5	SCE	218.293	334.134	264.95	248.455	231.836	142.784	215.962	204.937
IIa 3b3 8 MAC 20.251 27.715 30.395 28.885 37.735 42.54 69.098 71.22 IIa 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.88	lla	3b3	6	COD	193.18	276.738	217.358	163.102	153.658	146.683	145.928	123.949
lla 3b3 9 CSH 109.28 139.338 71.664 35.22 35.416 69.039 94.39 65.88	lla	3b3	7	POL	15.333	24.976	25.955	32.528	29.6	79.038	100.914	91.489
	lla	3b3	8	MAC	20.251	27.715	30.395	28.885	37.735	42.54	69.098	71.221
IIa 3b3 10 TUR 35.039 40.633 36.216 47.35 38.986 50.806 58.038 56.75	lla	3b3	9	CSH	109.28	139.338	71.664	35.22	35.416	69.039	94.39	65.887
	lla	3b3	10	TUR	35.039	40.633	36.216	47.35	38.986	50.806	58.038	56.752

Table 5.3.6.2.2 Skagerrak, North Sea and Eastern Channel. Landings (t) of cod by vessels under 10m and major regulated and unregulated gears, 2005-2012.

ANNEX	REG_AREA	REG_GEAR	SPECIES	2005	2006	2007	2008	2009	2010	2011	2012
lla	3b1	GN1	COD	171.463	217.477	163.457	186.128	116.545	102.63	89.881	88.491
lla	3b1	GT1	COD	6.009	5.657	0.467	0.361	0.015	0.093	0.261	0.99
lla	3b1	LL1	COD	20.145	23.151	15.63	15.345	0.122	3.006	9.297	3.852
lla	3b1	none	COD	635.895	396.275	287.637	279.041	307.53	364.615	446.618	398.529
lla	3b1	OTTER	COD	0	0.048	0.334	0.113	0			0.005
lla	3b1	PEL_TRAWL	COD		0.612			0.294			
lla	3b1	POTS	COD	0.255	0.397	0.004		0.033	0.131	0.16	0.063
lla	3b1	TR1	COD	7.814	13.276	10.691	6.623	10.104	3.712	0.504	14.586
lla	3b1	TR2	COD	3.275	7.026	5.277	8.991	1.191	2.785	5.799	21.205
lla	3b2	BEAM	COD						0.504	0.198	
lla	3b2	BT1	COD							0	
lla	3b2	BT2	COD					36.081	0.023	2.024	
IIa	3b2	DREDGE	COD			0.344	0.184	1.005	0.048	3.896	0.007
lla	3b2	GN1	COD	355.808	463.09	306.829	394.612	387.766	293.014	221.903	219.358
lla	3b2	GT1	COD	27.544	40.061	10.093	29.364	77.404	45.375	50.825	45.224
IIa	3b2	LL1	COD	87.093	96.77	153.057	242.717	241.767	292.402	147.655	208.483
lla	3b2	none	COD	352.698	227.028	141.054	130.104	75.056	92.427	142.564	131.277
lla	3b2	OTTER	COD	3.365	1.723	0.521	0.134	0.165	0.524	0.176	0.623
IIa	3b2	PEL_SEINE	COD					0			
lla	3b2	PEL_TRAWL	COD	0.493						0.003	0.03
lla	3b2	POTS	COD	11.151	10.829	5.515	15.056	39.324	45.458	55.012	54.183
lla	3b2	TR1	COD	27.153	32.632	41.615	58.587	69.463	67.245	66.533	64.495
lla	3b2	TR2	COD	18.513	78.822	72.467	56.462	89.346	102.499	120.506	78.315
lla	3b2	TR3	COD			0.009	0.006				
lla	3b3	BEAM	COD	0.005						0.012	
lla	3b3	BT2	COD	0.004	0.043	0.368	0.147	0.152	0.772	0.02	0.267
lla	3b3	DREDGE	COD	0.008	0.029	0.235	0.035	0.013		0.208	0.006
lla	3b3	GN1	COD	131.235	224.468	123.375	96.203	79.319	76.266	66.421	44.962
lla	3b3	GT1	COD	33.128	21.739	51.388	37.172	50.993	49.14	50.69	52.869
lla	3b3	LL1	COD	1.553	5.156	3.859	3.794	1.741	2.744	6.506	3.587
lla	3b3	OTTER	COD	24.554	2.191	0.028			0.36	0.022	0.066
lla	3b3	PEL_TRAWL	COD	0.01	0.2	0.005	0.002	0.002		0.016	0.004
IIa	3b3	POTS	COD	0.02	0.084	2.134	2.746	3.655	4.039	3.15	0.773
IIa	3b3	TR1	COD		1.26	1.62	12.476	7.216	4.398	8.242	14.452
lla	3b3	TR2	COD	2.663	21.549	34.346	10.527	10.567	8.964	10.641	6.963
lla	3b3	TR3	COD		0.019						

5.3.7 ToR 4 Evaluation of fully documented fisheries FDF

The figures in this paragraph cover area 3b. In the electronic appendices, the information by subarea 3b1 (Skagerrak), 3b2 (North Sea) and 3b3 (Eastern Channel) are available.

5.3.7.1 Fishing effort of FDF by Member State and fisheries in comparison with fisheries not working under FDF provisions

Table 5.3.8.1.1 shows that during 2011 nominal fishing effort (KW*days) by vessels operating in Fully Documented Fisheries (FDF) trials in the Skagerrak, North Sea and Eastern Channel was a small proportion of the total effort (4.9%), but was significant for the main cod gear (27.2% of effort by otter trawls of \geq 120 mm mesh size (TR1)). Compared to last year's report, Germany is added as a FDF country.

In 2012 FDF is still a small proportion of the total effort (5.6%), but it's increasing. The significance for the main cod gear has increased further and is 28.9% in 2012. All FDF countries contributed to this increase.

With respect to the number of vessels that participate in FDF, EWG13-06 assumes that only vessels of the TR1 gear group target cod. The number of TR1 vessels participating in FDF increased from 44 in 2011 to 48 in 2012. These numbers must be used with care because some TR1 vessels also apply GN1 gears, so overlap can occur.

Table 5.3.7.1.1 Skagerrak, North Sea and Eastern Channel: (A part 1) total fishing effort for countries with Fully Documented Fisheries (FDF, REM/CCTV), (B) FDF (REM/CCTV) nominal fishing effort (kW days) and (A part 2, C) the percentage of total effort attributable to FDFs. The figures for 2011 are changed compared to the ones of last year's report, due to a revision of the Danish, English and Scottish effort data for 2011.

Table A, par	t 1			Table B	_			Table C	
COUNTRY	GEAR	2011	2012	COUNTRY	GEAR	2011	2012	2011	2012
DEU	BEAM	3901769	5365103	DEU	BEAM			0.0%	0.0%
	BT1	1535	2793		BT1			0.0%	0.0%
	BT2	1242171	1071896		BT2			0.0%	0.0%
	DEM_SEINE				DEM_SEINE			0.0%	0.0%
	DREDGE	122438	6426		DREDGE			0.0%	0.0%
	GN1	225797	287472		GN1			0.0%	0.0%
	GT1	924			GT1			0.0%	0.0%
	none	32656	30500		none			0.0%	0.0%
	OTTER	101740	16158		OTTER			0.0%	0.0%
	PEL_TRAWL	931868	1149843		PEL_TRAWL			0.0%	0.0%
	POTS				POTS			0.0%	0.0%
	TR1	1652164	1341333		TR1		335331	0.0%	25.0%
	TR2	441597	335549		TR2			0.0%	0.0%
	TR3				TR3			0.0%	0.0%
DEU Total		8654659	9607073	DEU Total			335331	0.0%	3.5%
DNK	BEAM	583866	851414	DNK	BEAM			0.0%	0.0%
	BT1	433062	440886		BT1			0.0%	0.0%
	BT2	440	242		BT2			0.0%	0.0%
	DEM_SEINE	104	1190		DEM_SEINE			0.0%	0.0%
	DREDGE	396732	385786		DREDGE			0.0%	0.0%
	GN1	1443013	1323145		GN1	12668	83232	0.9%	6.3%
	GT1	223000	358745		GT1		3249	0.0%	0.9%
	LL1	62587	51543		LL1	11445		18.3%	0.0%
	none	58471	69657		none	10560	9020	18.1%	12.9%
	OTTER	5841057	2905333		OTTER	660		0.0%	0.0%
	PEL_SEINE	337529	269988		PEL_TRAWL			0.0%	0.0%
	PEL_TRAWL	3613072	4619017		PEL_TRAWL			0.0%	0.0%
	POTS	6205	6970		POTS			0.0%	0.0%
	TR1	4583311	4592940		TR1	2178914	2180822	47.5%	47.5%
	TR2	3312188	2749364		TR2	22030	72463	0.7%	2.6%
	TR3	337402	480789		TR3			0.0%	0.0%
DNK Total		21232039	19107009	DNK Total		2236277	2348786	10.5%	12.3%
ENG	BEAM	156166	325638	ENG	BEAM			0.0%	0.0%
	BT1	169873	424874		BT1			0.0%	0.0%
	BT2	2942307	2733012		BT2			0.0%	0.0%
	DEM SEINE				DEM_SEINE			0.0%	0.0%
	DREDGE	711217	338768		DREDGE	2685		0.4%	0.0%
	GN1	252169	174777		GN1	31604	35681	12.5%	20.4%
	GT1	20078	14155		GT1			0.0%	0.0%
	LL1	44458	51111		LL1			0.0%	0.0%
	OTTER	182918	422		OTTER	3395		1.9%	0.0%
	PEL_TRAWL	896373	1417868		PEL_TRAWL			0.0%	0.0%
	POTS	1612911	1619790		POTS			0.0%	0.0%
	TR1	2140059	1872403		TR1	694484	656180	32.5%	35.0%
	TR2	1620562	1619726		TR2			0.0%	0.0%
	TR3	621	246		TR3			0.0%	0.0%
ENG Total			10592790	ENG Total		732168	691861	6.8%	6.5%

Table 5.3.7.1.1. (ctd.)

NLD	BEAM	4126270	5642413	NLD	BEAM	442	81897	0.0%	1.5%
	BT1	308958	1090258					0.0%	0.0%
	вт2	25777844	22428296		BT2		14586	0.0%	0.1%
	DEM SEINE		9500		DEM SEINE		4000	0.0%	42.1%
	DREDGE	497268	565191		DREDGE			0.0%	0.0%
	GN1	316070	295035		GN1	4862	4420	1.5%	1.5%
	GT1	21431	29054		GT1	663	884	3.1%	3.0%
	LL1				LL1			0.0%	0.0%
	OTTER	4111	53293		OTTER		442	0.0%	0.8%
	PEL_SEINE				PEL_SEINE			0.0%	0.0%
	PEL_TRAWL	2242925	4105752		PEL_TRAWL		1326	0.0%	0.0%
	POTS	6133	9397		POTS			0.0%	0.0%
	TR1	1176692	1329299		TR1	197344	411771	16.8%	31.0%
	TR2	1921901	1984193		TR2	211502	435725	11.0%	22.0%
	TR3	23268	25897		TR3		221	0.0%	0.9%
NLD Total		36422871	37567578	NLD Total		414813	955272	1.1%	2.5%
SCO	BEAM			sco	BEAM			0.0%	0.0%
	BT1				BT1			0.0%	0.0%
	BT2		68262		BT2			0.0%	0.0%
	DEM_SEINE	1125	16454		DEM_SEINE			0.0%	0.0%
	DREDGE	2209299	1959531		DREDGE			0.0%	0.0%
	GN1	607650	569749		GN1			0.0%	0.0%
	LL1	183352	68192		LL1			0.0%	0.0%
	none	59440	70360		none			0.0%	0.0%
	OTTER	668510	441398		OTTER			0.0%	0.0%
	PEL_SEINE	61300	21286		PEL_SEINE			0.0%	0.0%
	PEL_TRAWL	1283926	1685322		PEL_TRAWL			0.0%	0.0%
	POTS	1060237	1022054		POTS			0.0%	0.0%
	TR1	9997529	9306627		TR1	2871664	2585992	28.7%	27.8%
	TR2	6826480	5314452		TR2			0.0%	0.0%
	TR3		20706		TR3			0.0%	0.0%
SCO Total		22958848	20564393	SCO Total		2871664	2585992	12.5%	12.6%
Grand Total		100018129	97438843	Grand Total		6254922	6917242	6.3%	7.1%

Table A, part 2 Effort of all IIa countries by gear

ELLOLT OF ALL I	ia countries i	y gear
GEAR	2011	2012
BEAM	9006308	12528742
BT1	1558336	2057585
BT2	34043420	29052958
DEM_SEINE	1229	27144
DREDGE	4365846	3637860
GN1	3063752	2876383
GT1	2865241	2885834
LL1	393261	263018
none	252851	254844
OTTER	10045822	5854976
PEL_SEINE	1022581	906510
PEL_TRAWL	11132494	16661586
POTS	3736078	3893008
TR1	21771013	21367132
TR2	23939028	21328600
TR3	488673	622996
Grand Total	127685933	124219176

GEAR	2011	2012
BEAM	442	81897
BT1		
BT2		14586
DEM_SEINE		4000
DREDGE	2685	
GN1	49134	123333
GT1	663	4133
LL1	11445	
none	10560	9020
OTTER	4055	442
PEL_SEINE		
PEL_TRAWL		1326
POTS		
TR1	5942406	6170096
TR2	233532	508188
TR3		221
Grand Total	6254922	6917242

2011	2012
0.0%	0.7%
0.0%	0.0%
0.0%	0.1%
0.0%	14.7%
0.1%	0.0%
1.6%	4.3%
0.0%	0.1%
2.9%	0.0%
4.2%	3.5%
0.0%	0.0%
0.0%	0.0%
0.0%	0.0%
0.0%	0.0%
27.3%	28.9%
1.0%	2.4%
0.0%	0.0%
4.9%	5.6%

5.3.7.2 Catches (landings and discards) of cod and other species taken by FDF fisheries by Member State and fisheries in comparison with fisheries not working under FDF provisions

Cod catches were recorded in fisheries using TR1, TR2, GN1 and Pots (Table 5.3.7.2.1), but most catches (94.8% of total FDF catches) were from vessels using TR1 gears. In total, 36% of cod catches by EU vessels were taken during FDF trials; 52%, 38%, 62%, 36% and 31% of German, Danish, English, Dutch and Scottish cod catches respectively.

Table 5.3.7.2.1 Skagerrak, North Sea and Eastern Channel: (A part 1) total catches for cod for countries with Fully Documented Fisheries (FDF, REM/CCTV), (B) total catches (tonnes), and (A part 2, C) the percentage of catches attributed to FDFs. The figures for 2011 are changed compared to the ones of last year's report, due to a revision of the Danish, English and Scottish data for 2011.

Table A, par			Table B				Table C		
COUNTRY	GEAR	2011	2012	COUNTRY	GEAR	2011	2012	2011	2012
DEU	BEAM	0	0	DEU	BEAM	0	0	0.0%	0.0%
	BT1	0	0		BT1	0	0	0.0%	0.0%
	BT2	36	37		BT2	0	0	0.0%	0.0%
	DEM_SEINE	0	0		DEM_SEINE	0	0	0.0%	0.0%
	GN1	265	262		GN1	0	0	0.0%	0.0%
	GT1	0	0		GT1	0	0	0.0%	0.0%
	OTTER	6	0		OTTER	0	0	0.0%	0.0%
	PEL_TRAWL	4	0		PEL_TRAWL	0	0	0.0%	0.0%
	TR1	2097	2327		TR1	0	1385	0.0%	59.5%
	TR2	92	46		TR2	0	0	0.0%	0.0%
	TR3	0	0		TR3	0	0	0.0%	0.0%
DEU Total		2501	2671	DEU Total		0	1385	0.0%	51.9%
DNK	BEAM	0	0	DNK	BEAM	0	0	0.0%	0.0%
	BT1	34	56		BT1	0	0	0.0%	0.0%
	BT2	0	0		BT2	0	0	0.0%	0.0%
	DEM_SEINE	1	0		DEM_SEINE	0	0	0.0%	0.0%
	DREDGE	0	0		DREDGE	0	0	0.0%	0.0%
	GN1	2475	1960		GN1	56	242	2.3%	12.4%
	GT1	124	183		GT1	0	4	0.0%	2.1%
	LL1	77	14		LL1	57	0	73.4%	0.0%
	none	8	19		none	0	0	0.0%	0.0%
	OTTER	60	80		OTTER	0	0	0.0%	0.0%
	PEL_SEINE	0	0		PEL_SEINE	0	0	0.0%	0.0%
	PEL_TRAWL	1	1		PEL_TRAWL	0	0	0.0%	0.0%
	POTS	0	0		POTS	0	0	0.0%	0.0%
	TR1	4509	5114		TR1	2575	2967	57.1%	58.0%
	TR2	2383	2174		TR2	25	19	1.0%	0.9%
	TR3	0	0		TR3	0	0	0.0%	0.0%
DNK Total		9673	9601	DNK Total		2712	3232	28.0%	33.7%
ENG	BEAM	0	0	ENG	BEAM	0	0	0.0%	0.0%
	BT1	3	4		BT1	0	0	0.0%	0.0%
	BT2	55	39		BT2	0	0	0.0%	0.0%
	DREDGE	0	0		DREDGE	0	0	9.1%	0.0%
	GN1	210	208		GN1	151	185	71.8%	88.6%
	GT1	9	3		GT1	0	0	0.0%	0.0%
	LL1	7	4		LL1	0	0	0.0%	0.0%
	OTTER	8	0		OTTER	7	0	88.9%	0.0%
	PEL_TRAWL	0	0		PEL_TRAWL	0	0	0.0%	0.0%
	POTS	5	6		POTS	0	0	0.0%	0.0%
	TR1	1359	886		TR1	693	630	51.0%	71.1%
	TR2	284	154		TR2	0	0	0.0%	0.0%
	TR3	0	0		TR3	0	0	0.0%	0.0%
ENG Total		1940	1305	ENG Total		850	815	43.8%	62.4%

Table 5.3.7.2.1 (ctd.)

1	1	1 1	1	1	ı	1 1	i	1	.1
NLD	BEAM	6	36	NLD	BEAM	0	31	0.0%	
	BT1	18			BT1	0	0	0.0%	
	BT2	1126	931		BT2	0	0	0.0%	
	DEM_SEINE	0	4		DEM_SEINE	0	3	0.0%	
	GN1	27	23		GN1	14	11	51.9%	
	GT1	10	8		GT1	1	1	10.0%	
	LL1	0	0		LL1	0	0	0.0%	0.0%
	none	0	0		none	0	0	0.0%	0.0%
	OTTER	1	1		OTTER	0	0	0.0%	0.0%
	PEL_TRAWL	10	2		PEL_TRAWL	0	2	0.0%	100.0%
	TR1	643	875		TR1	350	673	54.4%	76.9%
	TR2	318	220		TR2	40	44	12.6%	20.0%
	TR3	1	0		TR3	0	0	0.0%	0.0%
NLD Total		2160	2117	NLD Total		405	765	18.8%	36.1%
SCO	BEAM	0	0	sco	BEAM	0	0	0.0%	0.0%
	BT1	0	0		BT1	0	0	0.0%	0.0%
	BT2	0	1		BT2	0	0	0.0%	0.0%
	DEM_SEINE	0	15		DEM_SEINE	0	0	0.0%	0.0%
	DREDGE	1	2		DREDGE	0	0	0.0%	0.0%
	GN1	1	1		GN1	0	0	0.0%	0.0%
	LL1	0	0		LL1	0	0	0.0%	0.0%
	none	0	0		none	0	0	0.0%	0.0%
	OTTER	13	47		OTTER	0	0	0.0%	0.0%
	PEL_SEINE	0	1		PEL_SEINE	0	0	0.0%	0.0%
	POTS	1	0		POTS	0	0	0.0%	0.0%
	TR1	11193	12450		TR1	4263	4289	38.1%	34.4%
	TR2	1149	1170		TR2	0	0	0.0%	0.0%
	TR3	0	1		TR3	0	0	0.0%	0.0%
SCO Total		12359	13687	SCO Total		4263	4289	34.5%	31.3%
Grand Total		28633	29381			8230	10486	28.7%	

Table A, part 2 Catches of all IIa countries by gear

GEAR	2011	2012
BEAM	14	49
BT1	412	698
BT2	1457	1190
DEM_SEINE	1	19
DREDGE	2	2
GN1	3033	2519
GT1	758	451
LL1	185	168
none	40	72
OTTER	309	335
PEL_SEINE	0	1
PEL_TRAWL	23	12
POTS	11	13
TR1	20248	22113
TR2	5926	4922
TR3	4	3
Grand Total	32422	32566

GEAR	2011	2012
BEAM	0	31
BT1		
BT2	0	0
DEM_SEINE	0	3
DREDGE	0	0
GN1	221	438
GT1	1	5
LL1	57	0
none		
OTTER	7	0
PEL_SEINE		
PEL_TRAWL	0	2
POTS	0	0
TR1	7880	9945
TR2	65	63
TR3		
Grand Total	8230	10486

	2011	2012	2011	2012
	0	31	0.0%	63.6%
			0.0%	0.0%
	0	0	0.0%	0.0%
EINE	0	3	0.0%	15.5%
E	0	0	0.1%	0.0%
	221	438	7.3%	17.4%
	1	5	0.1%	1.1%
	57	0	30.5%	0.0%
			0.0%	0.0%
	7	0	2.2%	0.0%
INE			0.0%	0.0%
AWL	0	2	0.0%	17.1%
	0	0	0.0%	0.0%
	7880	9945	38.9%	45.0%
	65	63	1.1%	1.3%
			0.0%	0.0%
Total	8230	10486	25.4%	32.2%

5.3.7.3 Comparative analysis of cod selectivity by FDF fisheries and non-FDF fisheries

The analysis is based on the comparison of the age composition for cod catches of non FDF fisheries (table 1.1.7.3.1) and cod catches of FDF fisheries (table 1.1.7.3.2). It is done only for area 3b2 (North Sea), TR1 in 2012 for countries that raise FDF data separately. These countries are Denmark, Scotland and Sweden. It should be noted that no information is available how gaps in the sampling data are treated (e.g., missing quarters). The other countries with FDF fisheries England, Germany, and The Netherlands do not raise them separately (because there are not enough trips to do this). The catches in numbers for a certain age are expressed as a percentage of the total catch numbers (TC). Note that Sweden has no FDF fisheries in area 3b2. Note also that non FDF also includes FDF as the data call do not ask for information for non FDF separately. Therefore the analysis is biased and cannot show the full difference between non FDF and FDF fisheries.

The current figures and plots do not show a large difference between FDF and non FDF fisheries

Table 5.3.7.3.1 Age composition non FDF catches for cod.

		Landings	Discards																
COUNTRY	SPECON	no	no	Age 1C	1%TC	Age 2C	2%TC	Age 3C	3%TC	Age 4C	4%TC	Age 5C	5%TC	Age 6C	6%TC	Age 7C	7%TC	Age 8C	8%TC
DNK	none	1286.51	475.042	112.10	6.36%	632.75	35.92%	695.21	39.47%	185.47	10.53%	95.03	5.39%	32.83	1.86%	5.56	0.32%	1.71	0.10%
sco	CPart13C	3172.98	1563.75	513.05	10.83%	880.15	18.58%	2206.41	46.58%	828.29	17.49%	155.62	3.29%	72.73	1.54%	75.54	1.59%	1.57	0.03%
SWE	none	117.746	36.617	8.79	5.69%	53.30	34.53%	62.84	40.71%	16.98	11.00%	8.70	5.63%	3.01	1.95%	0.51	0.33%	0.16	0.10%

Table 5.3.7.3.2 Age composition FDF catches for cod.

		Landings	Discards																
COUNTRY	SPECON	no	no	Age 1C	1%TC	Age 2C	2%TC	Age 3C	3%TC	Age 4C	4%TC	Age 5C	5%TC	Age 6C	6%TC	Age 7C	7%TC	Age 8C	8%TC
DNK	FDFIIA	921.324	126.593	62.97	6.01%	328.35	31.33%	446.61	42.62%	119.95	11.45%	63.24	6.03%	20.82	1.99%	4.01	0.38%	1.27	0.12%
SCO	FDFIIA	1711.6	124.252	90.87	4.95%	536.45	29.22%	818.41	44.58%	222.83	12.14%	117.48	6.40%	38.67	2.11%	7.45	0.41%	2.35	0.13%

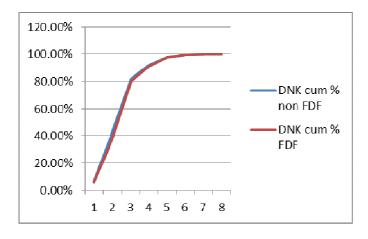


Figure 5.3.7.3.1 Cumulative percentage of catches over ages for Denmark.

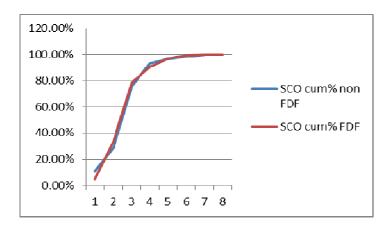


Figure 5.3.7.3.2 Cumulative percentage of catches over ages for Scotland.

5.3.8 ToR 5 Spatio-temporal patterns in effective effort by fisheries

Figures 5.3.8.1 - 5.3.8.8 show spatio-temporal patterns in fishing effort by regulated gears.

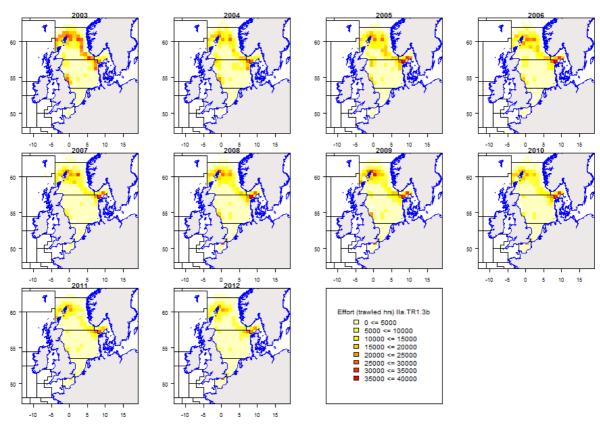


Figure 5.3.8.1. Patterns in spatio-temporal distribution for TR1 regulated gears.

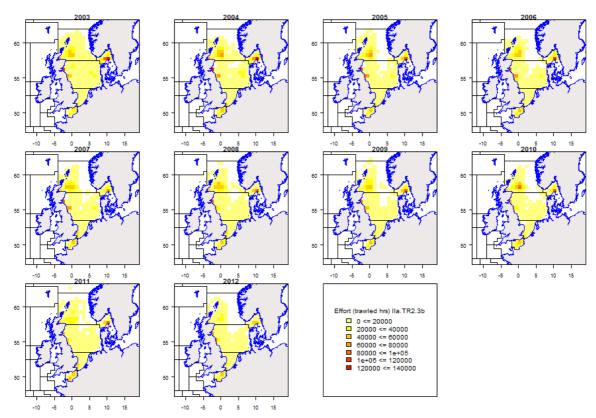


Figure 5.3.8.2. Patterns in spatio-temporal distribution for TR2 regulated gears.

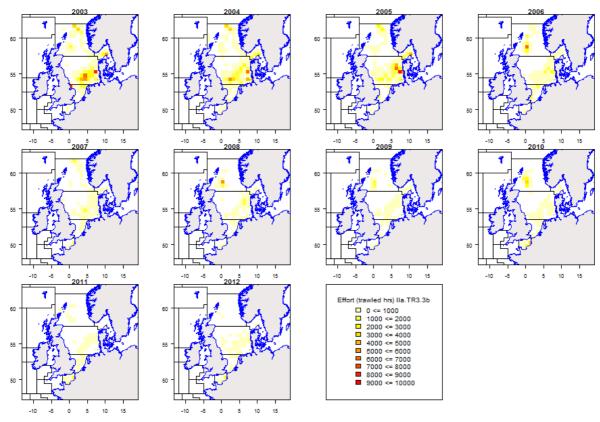


Figure 5.3.8.3. Patterns in spatio-temporal distribution for TR3 regulated gears.

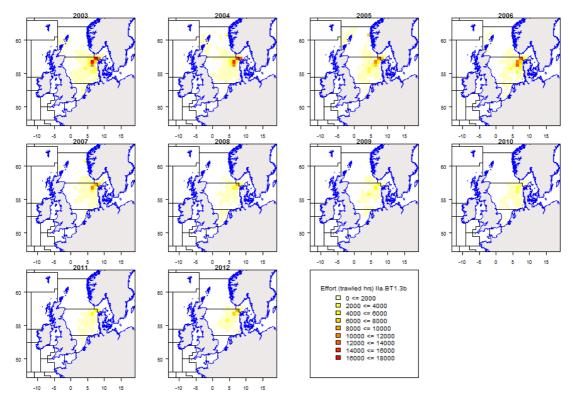
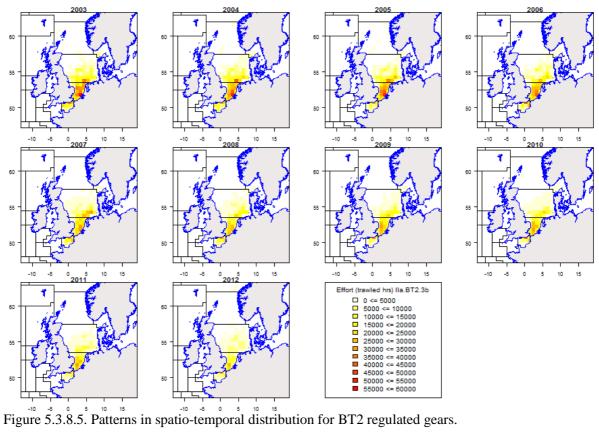



Figure 5.3.8.4. Patterns in spatio-temporal distribution for BT1 regulated gears.

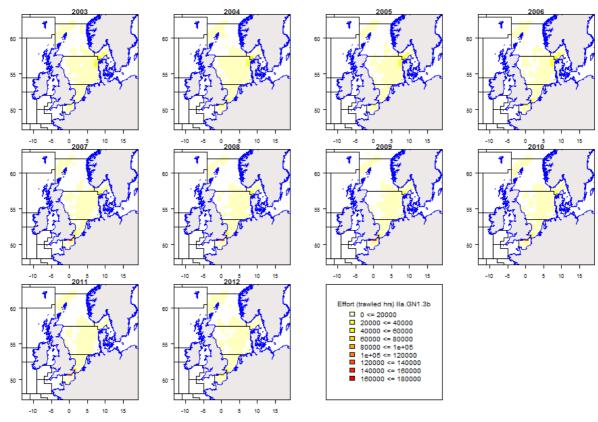


Figure 5.3.8.6. Patterns in spatio-temporal distribution for GN1 regulated gears.

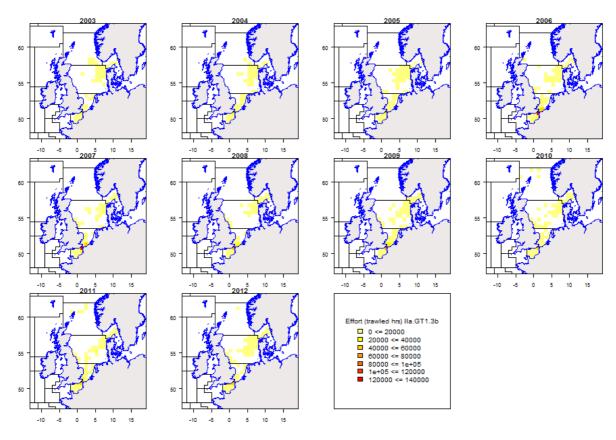


Figure 5.3.8.7. Patterns in spatio-temporal distribution for GT1 regulated gears.

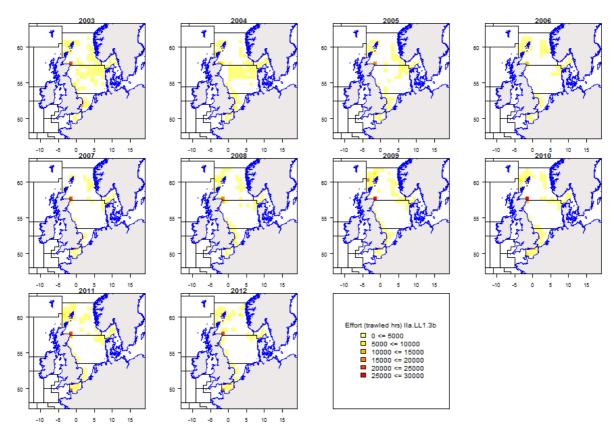


Figure 5.3.8.8. Patterns in spatio-temporal distribution for LL1 regulated gears.

ToR 6 Remarks on quality of catches and discard estimates

General comments on the quality of catch and discard estimates has been provided in section 4. A discard coverage index is presented for the first time and captures the overall uncertainties in different metiers.

In addition, the discard information for the North Sea (in 2012) was analyzed by distinguishing between landings for which discard data has been supplied ("data"), landings for which discards were filled in ("fill_in) and landings for which no discard information was available and for which no discard information could be filled in ("empty). This was generated from one of the intermediate steps in the database queries ("Catch 2012 Upload Catch Filter to Run", query: "032_discard_estimation_unsampled" by adding a fill-in indicator to the database).

Table 5.3.9.1 Overview of 2012 landing and discard data separated into "data", "fill-in" and "empty" (all countries, Annex IIa, area 3b, all gears).

	data					fill in					empty		Total LAND	Total DISC T	otal DR
Row	LAND	DISC	DR	%LAND	%DISC	LAND	DISC	DR	%LAND	%DISC	LAND	%LAND			
Labels															
COD	21044	5467	0.21	79%	93%	3837	390	0.09	14%	7%	1841	7%	26722	5856	0.18
DAB	3944	27069	0.87	52%	61%	1824	17651	0.91	24%	39%	1758	23%	7527	44719	0.86
HAD	29530	4037	0.12	93%	94%	1779	248	0.12	6%	6%	319	1%	31628	4285	0.12
HKE	2333	448	0.16	34%	16%	3581	2335	0.39	52%	84%	1034	15%	6948	2783	0.29
PLE	44790	27887	0.38	56%	58%	16219	20471	0.56	20%	42%	18591	23%	79600	48358	0.38
POK	19548	4285	0.18	55%	76%	3435	1369	0.28	10%	24%	12686	36%	35669	5654	0.14
SOL	9014	1814	0.17	63%	75%	3053	617	0.17	21%	25%	2196	15%	14263	2431	0.15
WHG	9723	4183	0.30	63%	44%	1961	5393	0.73	13%	56%	3774	24%	15459	9575	0.38
Total	139927	75190	0.35	64%	61%	35689	48473	0.58	16%	39%	42200	19%	217815	123663	0.36

The overview indicates that for the species considered, 64% of the landings were covered by discard estimates, 16% were addressed by fill-ins and 19% of the landings did not have discard estimates. Haddock had the highest landings covered by discard estimates (93%) and hake the lowest (34%). From table 5.3.9.1 it is also apparent that around 40% of the discard estimates are derived from fill-ins.

Table 5.3.9.2 shows the subdivision of the 2012 discard estimates by country based on data (submitted by member states) and fill-ins (using information from other member states) which indicates that for some countries most of the discard information is derived from fill-ins while others are derived from the information provided.

Table 5.3.9.2 Discard estimates for 2012 by country based on data (submitted by member states) and fillins (using information from other member states)

	BEL		DEU		DNK		ENG		FRA		NLD		sco		SWE		Total
Row																	
Labels	data	fill_in	data	fill_in	data	fill_in	data	fill_in									
COD	11	9	19	161	1762	51	15	38		41	166	61	3212	2	281	26	5856
DAB	390	3886	5317	1271	1254	250	381	675		1125	19658	9170		1272	70	1	44719
HAD		0	7	58	760	72	17	22		7		36	3193	34	60	16	4281
HKE		0	1	41	296	62	129	21		3	13	3		2197	9	5	2781
PLE	1184	8493	1240	906	1253	284	530	912		123	23635	9067		683	45	2	48357
POK		0	0	8	103	2	0	1344		0		0	4120	1	62	14	5654
SOL		286	28	3	1	0	1	3		20	1784	300		5	0	0	2431
WHG	195	23	20	13	163	1425	322	577		2504	1569	451	1893	370	21	1	9549
Total	1779	12698	6634	2462	5591	2148	1393	3592		3822	46825	19089	12419	4563	548	65	123628

The additional value of the fill-in indicator is that it can be used to identify specific issues with the overall data. For example, based on the indicator, it could be established that the Dutch data for 2011 missed discard information of which the experts assumed that it had been submitted, while in fact it had not been submitted. EWG 13-13 will further develop this indicator for standard usage in the expert group.

The discard coverage index values for all species, area and gear combinations can be found at the STECF website in Appendix 02_2: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313

5.3.9 ToR 7 Estimation of conversion factors to be applied for effort transfers between regulated gear groups

STECF EWG 13-13 presents the estimated cod CPUE and respective effort transfer factors between donor and receiving regulated gear groups. Red cells in Table 5.3.10.1 are indicated to be imprecise due to lack of adequate discard information. Yellow cells indicate sufficient sampling and green cells good sampling information.

Table 5.3.11.1 Cod CPUE (average 2010-2012) and respective effort transfer factors between donor and receiving regulated gear groups. Red cells are indicated to be imprecise due to lack of adequate discard information. Yellow cells are covered by adequate discard information while green cells are considered well representative.

Note: if the calculated factor > 1, then factor is set to 1. If the calculated CPUE or LPUE = 0, then the CPUE or the LPUE is set to 1. No values are presented for BT1 in the Eastern English Channel (3b3) as there was little effort and catch in this area in recent years, with CPUE values of below 1. As such, there was not adequate data on which to base conversion factors.

Skagerrak, North Sea an	d 2 EU, Eastern Channel
-------------------------	-------------------------

	donor gear	receivir	ıg gear								2010-2	012
		BT1	BT2	GN1	GT1	LL1	TR1	TR2	TR3		CPUE	LPUE
3b	BT1		1	0.228	1	0.437	0.217	0.962	1		227	227
3b	BT2	0.203		0.046	0.24	0.088	0.044	0.195	1		46	41
3b	GN1	1	1		1	1	0.949	1	1		995	970
3b	GT1	0.846	1	0.193		0.369	0.183	0.814	1		192	140
3b	LL1	1	1	0.523	1		0.496	1	1		520	520
3b	TR1	1	1	1	1	1		1	1		1048	902
3b	TR2	1	1	0.237	1	0.454	0.225		1		236	125
3b	TR3	0.044	0.217	0.01	0.052	0.019	0.01	0.042		•	10	10

c	1.~	ge		~ I -
`	ĸа	D P	rr	ак

	donor gear	receivir	ng gear	٢							2010-2	012
		BT1	BT2	(GN1	GT1	LL1	TR1	TR2	TR3	CPUE	LPUE
3b1	BT1			1	0.055	0.083	0.127	0.08	0.135	1	104	104
3b1	BT2	0.202			0.011	0.017	0.026	0.016	0.027	0.38	22	21
3b1	GN1	1		1		1	1	1	1	1	1899	1865
3b1	GT1	1		1	0.658		1	0.966	1	1	1250	1219
3b1	LL1	1		1	0.431	0.655		0.633	1	1	819	819
3b1	TR1	1		1	0.681	1	1		1	1	1294	947
3b1	TR2	1		1	0.406	0.617	0.941	0.596		1	772	376
3b1	TR3	0.529		1	0.029	0.044	0.067	0.043	0.071		55	5 55

North	n Sea and 2EU	_										
	donor gear	receivin	g gear								2010-2	012
		BT1	BT2	GN1	GT1	LL1	TR1	TR2	TR3		CPUE	LPUE
3b2	BT1		1	0.264	1	0.315	0.227	1	1		235	235
3b2	BT2	0.204		0.054	0.244	0.064	0.046	0.245	1		48	43
3b2	GN1	1	1		1	1	0.858	1	1		890	866
3b2	GT1	0.838	1	0.221		0.264	0.19	1	1		197	189
3b2	LL1	1	1	0.839	1		0.72	1	1		747	745
3b2	TR1	1	1	1	1	1		1	1		1037	903
3b2	TR2	0.834	1	0.22	0.995	0.262	0.189		1		196	87
3b2	TR3	0.03	0.146	0.008	0.036	0.009	0.007	0.036		•	7	7

Easte	ern Channel										
	donor gear	receiving	g gear							2010-20)12
		BT1	BT2	GN1	GT1	LL1	TR1	TR2	TR3	CPUE	LPUE
3b3	BT1		-	-	-	-	-	-	-	-	-
3b3	BT2	_		0.055	0.131	0.8	0.124	0.247	0.69	20	19
3b3	GN1	-	1		1	1	1	1	1	365	355
3b3	GT1	-	1	0.419		1	0.95	1	1	153	77
3b3	LL1	-	1	0.068	0.163		0.155	0.309	0.86	25	25
3b3	TR1	-	1	0.441	1	1		1	1	161	161
3b3	TR2	-	1	0.222	0.529	1	0.503		1	81	80
3b3	TR3	-	1	0.079	0.19	1	0.18	0.358		29	29

5.3.10 ToR 8 Estimation of partial fishing mortalities of cod, haddock, saithe, whiting, plaice and sole by area, Member State and fisheries and correlation between partial cod mortality and fishing effort by area, Member State and fisheries

Partial fishing mortalities and effort trends in areas 3b1, 3b2 and 3b3 are presented for regulated fisheries in relation to the estimated fishing mortality by ICES (2013) and the catches, landings and discards volumes in relation to the estimated total catch for the year available. The full list of all fisheries and species can be downloaded from the EWG's web page: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313. The anticipated trend in fishing mortality as derived from the cod plan is also presented in the following Tables 5.3.10.1-9. The presented parameters r (value of Pearson's coefficient of correlation), numbers of points considered, and a p value to quantify the statistical significance (≤0.05) allow conclusions about the quality of the correlation between the partial F and fisheries specific fishing effort. Those values are presented in the Tables 5.3.10.1-9 and resulting regressions are shown in Fig. 5.3.10.2-10 for regulated fisheries. It should be noted, however, that the figures may show statistical values that differ to those presented in the table, this is because i) the figures show effort and partial F relationships aggregated across special conditions for a nation and gear group (because the small number of data points for some

special conditions do not allow for correlation estimation) and, b) the N and p-values adjusted to account for auto-correlation providing a more robust conclusion on the correlation significance.

The partial F values compiled by STECF EWG 13-13 account for ~74% of the total F value in 2012 as assessed by ICES in 2013. It should be noted that for all years, the sum of the partial F values calculated by STECF EWG 13-13 has been below the total F as assessed by ICES, in part because of fleets not evaluated by the group (e.g. Norway), in part because of catches by unregulated gears, and prior to 2005 because of unallocated removals which were estimated by the ICES assessment working group as an additional source of mortality on the stock (Figure 5.3.10.1).

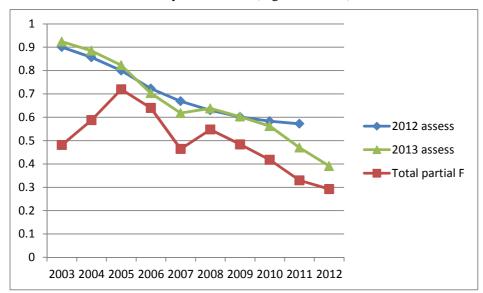


Figure 5.3.10.1. Comparison of F estimated over 2003-2012 by the ICES assessment in 2012 and in 2013, and the sum of the partial F values caculated by STECF EWG 13-13.

Notwithstanding the above, it can be concluded from the estimated F in 2012 (Table 5.3.10.1) that the annual F reductions stipulated by the cod management plan have been nearly reached. This is a major change to last year's perception of the stock. Unaccounted removals are no longer estimated for years after 2005 in the cod assessment. Discard mortality is generally high but has been reduced significantly since 2008. The regulated fisheries presented do contribute about 74% to the total fishing mortality for cod. The remainder is due to catches of non-EU states and differences in the discard raising procedures applied by ICES and STECF EWG 13-13.

STECF EWG 13-13 notes that the correlations between the partial Fs and effort are significant for some metiers catching cod but insignificant for others (Figure 5.3.10.2). The partial Fs resulting from catches of the major Scottish and Danish cod fishery using TR1 gears do not display a significant correlation between their partial F and fishing effort. For Danish gill nets, TR2 from Denmark and Scotland and TR1 from Germany in area 3b2 partial Fs are correlated significantly with fishing effort. Overall, summed regulated gears partial F for cod catches (including discard estimates) and effort are significantly correlated in all three management areas 3b1, 3,2 and 3b3 indicating that effective fisheries management by fishing effort in units of kWdays at sea may be possible, also as an auxiliary measure to catch constraints and technical measures.

STECF EWG 13-13 notes that there are indications of reductions in catchability coefficients for Scottish TR1 and English TR1 vessels operating under provisions of Article 13.2.c (Figure 5.3.10.3.1), and along with the lack of correlation between partial F and effort indicates that some cod avoidance is occurring in these fisheries. The German and French fisheries operating under the provision of article 13.2.b are either negligible or have reduced their contribution to cod fishing mortalities substantially.

The following tables 5.3.14.10-13 list the partial Fs of fisheries using effort regulated gears for plaice and sole in 4. The Figures 5.3.14.2-3 display the respective regressions between partial Fs and the fishing effort deployed for the major fisheries for plaice and sole. For plaice and sole, major gears and fisheries catching these species show a significant correlation between F and effort, indicating that effective fisheries management by fishing effort in units of kWdays at sea may be possible, also as an auxiliary measure to catch constraints and technical measures.

Information for other species is available from the STECF website.

Table 5.3.10.1 **Cod** in area **3b1**. The left part of the table lists estimated F trajectories from the management plan and the ICES 2012 cod assessment, as well as partial Fs for **catches** of fisheries using regulated gears. The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. Cod plan article 13 assignments apply since 2009 or 2010, as interpreted from the background documents of national declarations *). A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs of all effort regulated gears to the overall F estimate of the stock.

2008 f	ixed bas	eline anni	ual F redu	tions by 1) percent	as F<=0.4	, Fmsy=0.	19						Effort kW days	running pre	vious year l	baseline											
				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012				
plan	1								0.638	0.479	0.415	0.351	0.287	to be estimated	ł													
reduc	tion F pl	an								-0.25	-0.35	-0.45	-0.55															
F estir	mated			0.924	0.885	0.823	0.703	0.618	0.638	0.603	0.562	0.47	0.391	Effort estimate	10277575	10164162	8754426	7895881	7042142	6348404	5846797	5793220	5035590	4586547				
reduc	tion F es	timated								-0.05	-0.12	-0.26	-0.39								-0.08	-0.01	-0.13	-0.09				
														EFFORT												2003-20	12	
Fpar				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	r i	р і	n	
DEU	BT1	none	catches		0.00000				0.00000							1986				884								
DEU	BT2	none	catches		0.00000											20501												
DEU	GN1	none	catches			0.00009	0.00007	0.00017	0.00009	0.00003	0.00002		0.00101			202	1579	1158	6919	3174	1980	660		17636	0.972	0.000	8	10.13
DEU	TR1	CPart13E	3 catches							0.00003	0.00002	0.00000	0.00001								119193	20700	30300	16063				
DEU	TR1	none	catches	0.00109	0.00378	0.00511	0.00721	0.00226	0.00084	0.00091	0.00087	0.00072	0.00250		139645	193030	178369	260596	304370	189600	132585	82954	64169	82526	0.544	0.104	10	1.83
DEU	TR2	none	catches	0.00013	0.00009					0.00001	0.00001	0.00000			27339	11891					660	4180	2200					
DNK	BT1	none	catches	0.00042	0.00056	0.00041	0.00007	0.00016	0.00003	0.00001	0.00008	0.00008	0.00010		376722	478214	320631	277249	329335	78260	42335	52098	59305	123592	0.863	0.001	10	4.8
DNK	BT2	none	catches	0.00009	0.00002	0.00004	0.00004	0.00005	0.00010	0.00014	0.00001				27260	49611	38835	50351	103304	36836	29052	3678						
DNK	GN1	none	catches	0.01319	0.01110	0.01241	0.00848	0.00730	0.00762	0.00848	0.00855	0.00685	0.00474		480702	347090	322715	294630	283147	321868	371533	327758	306895	242996	0.768	0.009	10	3.39
DNK	GT1	none	catches	0.00000	0.00005	0.00004	0.00015	0.00001	0.00053	0.00088	0.00062	0.00050	0.00048		4759	2059	2450	9463	236	25240	36891	44205	40159	37525	0.912	0.000	10	6.28
DNK	LL1	none	catches	0.00045	0.00014	0.00016	0.00024	0.00011	0.00009	0.00007	0.00010	0.00020	0.00012		23479	5620	2501	3130	1814	2255	1173	2481	33199	30454				
DNK	TR1	none	catches	0.00557	0.00761	0.01936	0.02816	0.02690	0.01306	0.02055	0.01784	0.01338	0.01284		672442	637030	1299770	1276319	1449368	1290895	1285901	1351258	918690	999170	0.836	0.003	10	4.30
DNK	TR2	none	catches	0.03802	0.04239	0.05230	0.05988	0.02917	0.01685	0.02445	0.02178	0.02381	0.01920		5059017	5514510	3998032	3290591	2359541	2613146	2817250	2759331	2941652	2436599	0.562	0.091	10	1.92
DNK	TR3	none	catches	0.00026	0.00010	0.00006	0.00003	0.00000		0.00001	0.00001	0.00000			232745	206651	233393	71910	37373	17405	18494	11401	1145	3621				
NLD	BT1	none	catches								0.00011				49381	113976	137531	70311	108445	22570	27415	109513	442					
NLD	BT2	none	catches								0.00003				744932	651750	522477	542233	519000	74615	31846	138751	884					
NLD	TR1	none	catches								0.00017								16547	11576	1369	120821						
SWE	GN1	none	catches	0.00017	0.00026	0.00032	0.00029	0.00006	0.00005	0.00008	0.00011	0.00009	0.00010		102519	127286	89748	76409	58618	96877	101209	67326	70682	76606				
SWE	GT1	none	catches	0.00007	0.00017	0.00010	0.00003	0.00008	0.00009	0.00025	0.00015	0.00027	0.00037		13801	16206	27824	56771	62309	63022	36250	21260	23899	25752				
SWE	LL1	none	catches	0.00016	0.00021	0.00037	0.00037	0.00108	0.00074			0.00003	0.00008		32305	43165	38665	108455	153999	42453	0		396	660	0.800	0.010	9	3.52
SWE	TR1	none	catches	0.00111	0.00107	0.00230	0.00208	0.00133	0.00064	0.00008	0.00023	0.00033	0.00010		171636	95348	109502	55251	88670	92874	10554	11528	27124	25524	0.571	0.085	10	1.96
SWE	TR2	none	catches	0.00805	0.02996	0.01556	0.01520	0.00724	0.00556	0.00658	0.00365	0.00352	0.00398		2118891	1644706	1428840	1450466	1158228	1364854	781107	661331	514449	467823	0.562	0.091	10	1.92
SWE	TR3	none	catches		0.00000	0.00000					0.00000					3330	1564	588	919			1986						
Sum				0.06878	0.09751	0.10863	0.12230	0.07592	0.04629	0.06256	0.05436	0.04978	0.04563		10277575	10164162	8754426	7895881	7042142	6348404	5846797	5793220	5035590	4586547	0.664	0.036	10	2.51
check	sum Fpa	ar/F		0.07	0.11	0.13	0.17	0.12	0.07	0.10	0.10	0.11	0.12															

Table 5.3.10.2 **Cod** in area **3b1**. The left part of the table lists estimated F trajectories from the management plan and the ICES 2012 cod assessment, as well as partial Fs for **landings** of fisheries using regulated gears. The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. Cod plan article 13 assignments apply since 2009 or 2010, as interpreted from the background documents of national declarations *). A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs of all effort regulated gears to the overall F estimate of the stock.

2008 fixed baseli	ne annual F r	reductions b	y 10 perce	nt as F<=0).4, Fmsy=	0.19							Effort kW days ru	nning previ	ous year bas	eline											
			2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012				
Fplan								0.638	0.479	0.415	0.351	0.287	to be estimated														
eduction F plan									-0.25	-0.35	-0.45	-0.55															
estimated			0.924	0.885	0.823	0.703	0.618	0.638	0.603	0.562	0.47	0.391	Effort estimated	10277575	10164162	8754426	7895881	7042142	6348404	5846797	5793220	5035590	4586547				
eduction F estin	ated								-0.05	-0.12	-0.26	-0.39								-0.08	-0.01	-0.13	-0.09				
													EFFORT												2003-201	.2	
par			2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012 r		p n	n	
DEU BT1	none	landings		0.00000				0.00000							1986				884								
DEU BT2	none	landings		0.00000											20501												
DEU GN1	none	landings			0.00009	0.00007	0.00017	0.00009	0.00003	0.00002		0.00099			202	1579	1158	6919	3174	1980	660		17636	0.972	0.000	8	10.13
DEU TR1	CPart13B	landings							0.00003	0.00002	0.00000	0.00001								119193	20700	30300	16063				
DEU TR1	none	landings	0.00066	0.00181	0.00145	0.00145	0.00063	0.00057	0.00061	0.00059	0.00060	0.00221		139645	193030	178369	260596	304370	189600	132585	82954	64169	82526	0.015	0.968	10	0.04
DEU TR2	none	landings	0.00008	0.00004					0.00000	0.00001	0.00000			27339	11891					660	4180	2200					
ONK BT1	none	landings	0.00042	0.00056	0.00041	0.00007	0.00016	0.00003	0.00001	0.00008	0.00008	0.00010		376722	478214	320631	277249	329335	78260	42335	52098	59305	123592	0.863	0.001	10	4.83
ONK BT2	none	landings	0.00009	0.00002	0.00004	0.00004	0.00005	0.00010	0.00014	0.00001				27260	49611	38835	50351	103304	36836	29052	3678						
ONK GN1	none	landings	0.01311	0.01110	0.01241	0.00848	0.00730	0.00762	0.00818	0.00838	0.00671	0.00465		480702	347090	322715	294630	283147	321868	371533	327758	306895	242996	0.753	0.012	10	3.23
ONK GT1	none	landings	0.00000	0.00005	0.00004	0.00015	0.00001	0.00053	0.00084	0.00060	0.00049	0.00047		4759	2059	2450	9463	236	25240	36891	44205	40159	37525	0.915	0.000	10	6.41
ONK LL1	none	landings	0.00045	0.00014	0.00016	0.00024	0.00011	0.00009	0.00007	0.00010	0.00020	0.00012		23479	5620	2501	3130	1814	2255	1173	2481	33199	30454				
ONK TR1	none	landings	0.00321	0.00412	0.00681	0.00724	0.00736	0.00899	0.01186	0.01212	0.00952	0.01003		672442	637030	1299770	1276319	1449368	1290895	1285901	1351258	918690	999170	0.601	0.066	10	2.12
ONK TR2	none	landings	0.02244	0.03085	0.02322	0.02124	0.00951	0.01025	0.01176	0.01101	0.00989	0.00915		5059017	5514510	3998032	3290591	2359541	2613146	2817250	2759331	2941652	2436599	0.925	0.000	10	6.88
ONK TR3	none	landings	0.00018	0.00008	0.00003	0.00003	0.00000		0.00001	0.00001	0.00000			232745	206651	233393	71910	37373	17405	18494	11401	1145	3621				
NLD BT1	none	landings								0.00011				49381	113976	137531	70311	108445	22570	27415	109513	442					
NLD BT2	none	landings								0.00003				744932	651750	522477	542233	519000	74615	31846	138751	884					
NLD TR1	none	landings								0.00012								16547	11576	1369	120821						
SWE GN1	none	landings	0.00017	0.00026	0.00032	0.00029	0.00006	0.00005	0.00007	0.00011	0.00009	0.00010		102519	127286	89748	76409	58618	96877	101209	67326	70682	76606				
SWE GT1	none	landings	0.00007	0.00017	0.00010	0.00003	0.00008	0.00009	0.00023	0.00015	0.00027	0.00036		13801	16206	27824	56771	62309	63022	36250	21260	23899	25752				
SWE LL1	none	landings	0.00016	0.00021	0.00037	0.00037	0.00108	0.00074			0.00003	0.00008		32305	43165	38665	108455	153999	42453	0		396	660	0.800	0.010	9	3.52
SWE TR1	none	landings	0.00094	0.00052	0.00064	0.00037	0.00030	0.00039	0.00005	0.00013	0.00021	0.00008		171636	95348	109502	55251	88670	92874	10554	11528	27124	25524	0.955	0.000	10	9.10
SWE TR2	none	landings	0.00637	0.00746	0.00570	0.00469	0.00251	0.00245	0.00331	0.00238	0.00265	0.00209		2118891	1644706	1428840	1450466	1158228	1364854	781107	661331	514449	467823	0.796	0.006	10	3.72
SWE TR3	none	landings		0.00000						0.00000					3330	1564	588	919			1986						
Sum			0.04835	0.05739	0.05179	0.04476	0.02933	0.03199	0.03720	0.03598	0.03074	0.03044		10277575	10164162	8754426	7895881	7042142	6348404	5846797	5793220	5035590	4586547	0.878	0.001	10	5.18
heck sum Fpar/I			0.05	0.06	0.06	0.06	0.05	0.05	0.06	0.06	0.07	0.08															

Table 5.3.10.3 **Cod** in area **3b1**. The left part of the table lists estimated F trajectories from the management plan and the ICES 2012 cod assessment, as well as partial Fs for **discards** of fisheries using regulated gears. The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. Cod plan article 13 assignments apply since 2009 or 2010, as interpreted from the background documents of national declarations *). A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs of all effort regulated gears to the overall F estimate of the stock.

2008 fixed ba	seline annual F re	ductions by 1	0 percent	as F<=0.4,	Fmsy=0.1	9							Effort kW days ru	inning previ	ous year bas	eline											
			2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012				
- plan								0.638	0.479	0.415	0.351	0.287	to be estimated														
eduction F p	lan								-0.25	-0.35	-0.45	-0.55															
Festimated			0.924	0.885	0.823	0.703	0.618	0.638	0.603	0.562	0.47	0.391	Effort estimated	10277575	10164162	8754426	7895881	7042142	6348404	5846797	5793220	5035590	4586547				
reduction F e	stimated								-0.05	-0.12	-0.26	-0.39								-0.08	-0.01	-0.13	-0.09				
													EFFORT												2003-201	2	
par			2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	r /	р	n	
DEU BT1	none	discards		0.00000				0.00000							1986				884								
DEU BT2	none	discards		0.00000											20501												
DEU GN1	none	discards			0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		0.00002			202	1579	1158	6919	3174	1980	660		17636				
DEU TR1	CPart13B	discards							0.00000	0.00000	0.00000	0.00000								119193	20700	30300	16063				
DEU TR1	none	discards	0.00043	0.00197	0.00366	0.00576	0.00164	0.00026	0.00030	0.00028	0.00012	0.00028		139645	193030	178369	260596	304370	189600	132585	82954	64169	82526	0.633	0.049	10	2.31
DEU TR2	none	discards	0.00005	0.00005					0.00000	0.00001	0.00000			27339	11891					660	4180	2200					
DNK BT1	none	discards	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		376722	478214	320631	277249	329335	78260	42335	52098	59305	123592				
DNK BT2	none	discards	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000				27260	49611	38835	50351	103304	36836	29052	3678						
DNK GN1	none	discards	0.00008	0.00000	0.00000	0.00000	0.00000	0.00000	0.00031	0.00017	0.00014	0.00009		480702	347090	322715	294630	283147	321868	371533	327758	306895	242996				
DNK GT1	none	discards	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00004	0.00002	0.00001	0.00001		4759	2059	2450	9463	236	25240	36891	44205	40159	37525				
DNK LL1	none	discards	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		23479	5620	2501	3130	1814	2255	1173	2481	33199	30454				
DNK TR1	none	discards	0.00236	0.00349	0.01255	0.02091	0.01954	0.00408	0.00869	0.00572	0.00386	0.00280		672442	637030	1299770	1276319	1449368	1290895	1285901	1351258	918690	999170	0.642	0.045	10	2.36
DNK TR2	none	discards	0.01558	0.01154	0.02908	0.03864	0.01966	0.00660	0.01268	0.01077	0.01392	0.01005		5059017	5514510	3998032	3290591	2359541	2613146	2817250	2759331	2941652	2436599	0.111	0.760	10	0.31
DNK TR3	none	discards	0.00008	0.00002	0.00003	0.00000	0.00000		0.00000	0.00000	0.00000			232745	206651	233393	71910	37373	17405	18494	11401	1145	3621				
NLD BT1	none	discards								0.00000				49381	113976	137531	70311	108445	22570	27415	109513	442					
NLD BT2	none	discards								0.00000				744932	651750	522477	542233	519000	74615	31846	138751	884					
NLD TR1	none	discards								0.00005								16547	11576	1369	120821						
SWE GN1	none	discards	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		102519	127286	89748	76409	58618	96877	101209	67326	70682	76606				
SWE GT1	none	discards	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00002	0.00000	0.00001	0.00001		13801	16206	27824	56771	62309	63022	36250	21260	23899	25752				
SWE LL1	none	discards	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000			0.00000	0.00000		32305	43165	38665	108455	153999	42453	0		396	660				
SWE TR1	none	discards	0.00017	0.00055	0.00166	0.00172	0.00102	0.00025	0.00003	0.00010	0.00012	0.00002		171636	95348	109502	55251	88670	92874	10554	11528	27124	25524	0.286	0.423	10	0.84
SWE TR2	none	discards	0.00168	0.02249	0.00986	0.01051	0.00473	0.00312	0.00327	0.00127	0.00087	0.00190		2118891	1644706	1428840	1450466	1158228	1364854	781107	661331	514449	467823	0.461	0.180	10	1.46
SWE TR3	none	discards		0.00000	0.00000					0.00000					3330	1564	588	919			1986						
Sum			0.02043	0.04011	0.05684	0.07754	0.04659	0.01431	0.02534	0.01839	0.01905	0.01518		10277575	10164162	8754426	7895881	7042142	6348404	5846797	5793220	5035590	4586547	0.441	0.202	10	1.39
check sum Fp	ar/F		0.02	0.05	0.07	0.11	0.08	0.02	0.04	0.03	0.04	0.04															

Table 5.3.10.4 **Cod** in area **3b2**. The left part of the table lists estimated F trajectories from the management plan and the ICES 2012 cod assessment, as well as partial Fs for **catches** of fisheries using regulated gears. The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. Cod plan article 13 assignments apply since 2009 or 2010, as interpreted from the background documents of national declarations *). A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs of all effort regulated gears to the overall F estimate of the stock.

008 fixed	d baseline	e annual F reduction	is by 10 per	cent as F<	=0.4, Fms	y=0.19							Effort kW days ru	nning previo	us year basel	ine											
			2003				2007	2008	2009	2010	2011	2012	·	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012				
plan								0.638	0.479	0.415	0.351	0.287	to be estimated														
eduction	Fplan								-0.25	-0.35	-0.45	-0.55															
estimat	ed		0.924	0.885	0.823	0.703	0.618	0.638	0.603	0.562	0.47	0.391	Effort estimated	124944543	116172896	112567435	104205608	94475946	83754374	82574347	77576995	69279878	61577855				
eduction	F estimat	ited							-0.05	-0.12	-0.26	-0.39								-0.01	-0.06	-0.11	-0.11				
													EFFORT												2003-201	12	
par			2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012 r		p I	n	
EL BT	1 none	e catches	0.00883	0.01965	0.01813	0.02304	0.00792	0.00635	0.00216	0.00264	0.00362	0.00557	· ·	1036595	1439951	1509759	1333012	1320169	984056	575501	535636	671368	963867	0.859	0.001	10	4.7
EL BT	2 none	e catches	0.01125	0.00927	0.01093	0.00923	0.00471	0.00858	0.00743	0.00358	0.00191	0.00130		4241216	4294884	3884007	3418751	2707991	3536979	3327143	2480357	1742532	1269319	0.961	0.000	10	9.8
EL GN	11 none		0.00152					0.00039		0.00038				111613	152642	148827	127951	128626	158409	161734	97609	95383	45103		0.488	10	0.7
EL GT							0.00005		0.00002			0.00002						15402	18000	5014	19041	18155	25216				
EL LL1								0.00000		0.00000		0.00001							1768		1660	128	786				
EL TR				0.00010			0.00032	0.00025	0.00028						1989			161520	201379	220428	212429	128701	183682				
EL TR					0.00107	0.00142		0.00277							519343	343840	366940	298814	425374	506865	476033	435961	484371	-0.328	0.389	9	-0.9
EL TR				0100111	0100207	0100212	0100270	OICCETT	0100200	0.00000	0100200	0.00000			015010	0.00.0	5005.0	250021	663	500005	1899	155501	1175	0.020	0.000		0.5
EU BT			0.00006	0.00004	0.00000	0.00016	0.00004	0.00008		0.00000		0.00000		47736	29712	2128	53986	30297	16790		884	1535	2793				
EU BT								0.00040	0.00072	0.00000	0.00027	0.00022		1669870	2060092	2212397	1927398	1590823	1464163	1666322	1801775	1242171	1071896	0.527	0.110	10	1.8
EU GN								0.00196						191424	163463	271624	235427	145714	278008	233164	275364	225797	269836		0.919	10	-0.1
EU GT			0.00210	0.00302	0.00340	0.00555	0.00150	0.00150		0.00000		0.00153		151424	103403	2/1024	1547	143714	270000	15444	1188	924	209030	-0.057	0.515	10	-0.1
EU TR										0.00000		0.00126					1347			808679	898007	815730	747693	0.566	0,434		0.9
			0.02052	0.00000	0.05330	0.05543	0.00000	0.00060		0.00173				1756193	1526666	1988209	2176131	1736694	1585192	759368	829604	741965	495051		0.002	10	4.6
			0.02955	0.03929	0.05220	0.05542	0.02983	0.03262						1/30195	1520000	1988209	21/0131	1/30094	1585192					0.852	0.002	10	4.0
EU TR			0.00400	0.00000	0.00000	0.00040	0.00407	0.00470		0.00027				4043535	000400	704404	774507	500504	457050	2420	39820	31240	14740	0.004	0.000	40	
EU TR				0.00383	0.00388	0.00249	0.00187	0.00173	0.00114	0.00122	0.00083	0.00041		1013535	893439	704404	771597 772	680681	457259 4410	470754	420345	408157	320809	0.924	0.000	10	6.83
EU TR			0.00000	0.00040	0.00000	0.00004	0.00000	0.00074	0.00040	0.00050	0.00007	0.00044		1028	007000	000007		884		426	542055	272757	247204	0.700	0.000	- 10	
NK BT								0.00071		0.00058	0.00027	0.00041		1122195	887830	996227	511642	527282	370939	366679	513056	373757	317294	0.709	0.022	10	2.84
NK BT		catories	0.00011					0.00003						89457	38279	62036	42447	1390	2894	49163		440	242				
NK GN								0.01947						2077492	2164307	2031057	1795453	949658	1003603	1050057	1195617	1136118	1080149		0.001	10	5.58
NK GT			0.00209					0.00101						138641	244626	237800	175339	98614	100902	158205	130662	182841	321220	0.456		10	1.44
NK LL1								0.00028						105319	79773	41626	42159	15924	25347	28769	45576	29388	21089		0.000	10	5.74
NK TR								0.03216						7137074	6422756	6405176	6020308	3801069	4034203	3793148	3592389	3664621	3593770		0.133	10	1.6
NK TR								0.00112		0.00054	0.00040	0.00029		2597949	2580788	1916695	1405216	1080616	706247	569359	431399	370536	312765	0.923	0.000	10	6.7
NK TR			0.00034	0.00025	0.00030	0.00013	0.00006	0.00000	0.00001					3084554	3026636	2373302	1761200	799803	916558	577813	1063007	336257	477168				
NG BT		rt13B catches								0.00001	0.00003	0.00004									202685	169873	384590				
NG BT	1 none	e catches	0.00051	0.00049	0.00031	0.00106	0.00013	0.00003	0.00003			0.00000		1060809	671130	618160	1321240	305837	228530	265710			40284	0.953	0.000	8	7.70
NG BT	2 CPart	rt13B catches							0.00002	0.00057	0.00047	0.00029								47771	2863860	2644958	2412375	0.935	0.065	4	3.7
NG BT	2 none	e catches	0.00146	0.00262	0.00269	0.00169	0.00106	0.00084	0.00092	0.00036	0.00004	0.00004		2739407	3559560	4046341	2974409	3251512	1975399	2444807	401247	96356	79036	0.909	0.000	10	6.16
NG GN	11 none	e catches	0.00522	0.00722	0.00431	0.00469	0.00158	0.00311	0.00391	0.00288	0.00211	0.00186		337639	359134	308275	308517	180503	70981	175602	74835	73826	61957	0.834	0.003	10	4.2
NG GT	1 none	e catches	0.00000	0.00001	0.00005	0.00014	0.00005	0.00013	0.00009	0.00016	0.00008	0.00002		1092	1564	5342	11100	3291	12918	12654	17355	12003	5823				
NG LL1	l none	e catches	0.00043	0.00032	0.00028	0.00034	0.00010	0.00006	0.00008	0.00033	0.00007	0.00003		102465	83137	142602	54974	15752	6164	4318	12052	6253	15449				
NG TR	1 CPart	rt13B catches							0.00081	0.00066	0.00084	0.00048								898933	964206	874021	939503	-0.742	0.258	4	-1.5
NG TR	1 CPart	rt13c catches							0.01410	0.01518	0.01299	0.00747								1242445	1144923	1254762	931671	0.834	0.166	4	2.1
NG TR	1 none	e catches	0.02000	0.02312	0.01511	0.02161	0.01304	0.01623						2343719	1497618	1254880	1823891	1501499	1846925					0.355	0.490	6	0.7
NG TR	2 CPart	rt13B catches							0.00062	0.00099	0.00116	0.00045								260311	873808	721452	865045	0.221	0.779	4	0.3
NG TR	2 CPart	rt13c catches								0.00133										1376367	482080	524579	267661	0.999	0.001	4	31.5
NG TR	2 none	e catches	0.00428	0.00399	0.00399	0.00780	0.00302	0.00306						1853471	1705154	1937849	1707774	1621394	1794132					-0.090	0.865	6	-0.18
NG TR			0.00000											1988	7840	3315	6360	1220	492	82	718	621	246				

Table 5.3.10.4 continued

FRA BT2		catches							0.00005				96232	94514	75129	66203	103453	88053	88053	40118	67545	57044				
FRA GN1		catches							0.00039				58454	64809	46058	31231	61545	47746	46493	2149	7803	3322		0.012	10	3.247
FRA GT1		catches	0.00158	0.00054	0.00026	0.00111	0.00112	0.00124	0.00117	0.00047	0.00054		830136	793053	813190	1785801	1703889	1010253	1010253	634781	690428	636164	0.484	0.156	10	1.564
FRA TR1	CPart13B	catches										0.00003										29600				
FRA TR1	none	catches							0.02025				3347063	2299125	1901534	2675348	2418190	2714146	2622538	1913401	1727371	324		0.425	10	0.841
FRA TR2	none	catches	0.01119	0.00564	0.00640	0.01135	0.02307	0.01980	0.00915			0.00127	1961970	1911744	1713917	1558413	1727617	1930459	1924156	1089380	960559	725367	0.573	0.083	10	1.978
FRA TR3	none	catches								0.00006	0.00001			1753	7121	1319		2184	2184	13827	2210	1250				
IRL TR1	none	catches	0.00000										1847													
IRL TR2	none	catches		0.00000									54	884												
NIR BT1	none	catches	0.00026	0.00023	0.00003								965239	543305	36825											
NIR BT2	none	catches	0.00003	0.00006	0.00001								20350	47517	16785											
NIR TR1	CPart13A	catches										0.00000										2672				
NIR TR1	CPart13B	catches							0.00007	0.00002	0.00000	0.00000							41944	23326	33246	16573				
NIR TR1	CPart13c	catches							0.00001	0.00000									14196	6034		2781				
NIR TR1	none	catches		0.00003	0.00017	0.00005	0.00012	0.00022						16948	70710	51951	61460	49104								
NIR TR2	CPart13A	catches										0.00000										90338				
NIR TR2	CPart13B	catches							0.00012	0.00000	0.00001	0.00000							65544	161981	207697	109647				
NIR TR2	CPart13c	catches							0.00128	0.00033	0.00011								320087	236516	70443	25672	0.861	0.139	4	2.394
NIR TR2	none	catches	0.00002	0.00004	0.00074	0.00169	0.00256	0.00093					6784	12440	221904	532885	758972	409182					0.984	0.000	6	11.046
NLD BT1	none	catches							0.00025	0.00020	0.00018	0.00015	575801	700747	719292	1528652	720068	370417	412420	378796	308516	1090258				
NLD BT2	none	catches	0.04076	0.05502	0.04122	0.03801	0.02226	0.03285	0.02334	0.01740	0.01145	0.00834	47724234	44669317	44478122	38823660	37931313	27646215	28696410	28510104	25776297	22428296	0.847	0.002	10	4.507
NLD GN1	none	catches							0.00070	0.00047	0.00029	0.00021	460895	416025	387945	511580	521697	507733	419797	357091	316070	295035	0.999	0.000	10	63.198
NLD GT1	none	catches							0.00067	0.00037	0.00011	0.00008						740	26917	37399	21431	29054	0.229	0.711	5	0.407
NLD TR1	none	catches							0.01146	0.00991	0.00653	0.00784	684700	589170	547564	532260	631492	1400068	1316055	1290080	1173220	1329299	0.651	0.041	10	2.426
NLD TR2	none	catches							0.00408	0.00280	0.00269	0.00165	1932081	1496720	1298918	1224916	1384658	1853682	1334665	1231860	1313554	1277297	0.514	0.129	10	1.695
NLD TR3	none	catches								0.00006	0.00001		59360	42894	43261	20649	20589	4038	274	31973	23268	25897				
SCO BT1	none	catches	0.00069	0.00106	0.00069	0.00105	0.00042	0.00001	0.00000				866665	694716	730810	598616	349914	68568	53082				0.849	0.016	7	3.593
SCO BT2	none	catches	0.00293	0.00401	0.00245	0.00203	0.00077	0.00069	0.00037	0.00011		0.00001	3765518	4608817	4185262	3108933	2790115	1351720	554376	144306		68262	0.927	0.000	9	6.539
SCO GN1	none	catches							0.00000			0.00001	196852	197407	165644	293823	320785	417076	376332	440579	607650	569749				
SCO LL1	none	catches	0.00031			0.00001			0.00001				57163	4350		7542	1487	276898	621114	301689	183352	68192				
SCO TR1	CPart13B	catches								0.00696									692932	955808	810706	36937	0.042	0.958	4	0.059
SCO TR1	CPart13C	catches									0.11256	0.11163							11552644	9486824	9185531	9265940		0.141	4	2,373
SCO TR1		catches	0.11894	0.12981	0.12843	0.14268	0.13779	0.22698		5.25047	5.22250		16079389	12684328	12158295	11660764	11022982	12176292	22232044	2.30024		5235340	-0.300	0.563	6	-0.629
SCO TR2	CPart13B	catches	,			,			0.00427	0.01459	0.00605		222.5505		,				4219929	7467356	5277096	287446	0.987	0.013	4	8,685
SCO TR2	CPart13C	catches									0.00562	0.01049							3796988	490013	1285425	4861297		0.066	4	3,697
SCO TR2		catches	0.02614	0.02268	0.02557	0.02702	0.03675	0.02027		0.00103	0.00502	0.02043	9998937	9485974	9108232	8561812	8678139	8855742	3,30300	450013	2200420	4031237		0.541	6	-0.668
SCO TR3	none	catches	0.02014	0.00003	0.02337	0.02703	0.03073	0.02027	0.00001			0.00000	6377	5460	2356	116	11896	5555742	33117	27524		20706	0.317	0.541		0.000
SWE LL1	none	catches		5.00005	0.00047	0.00218	0.00095	0.00147	0.00001	0.00140	0.00096		0377	1056	4239	15026	11020	10928	11352	6600	8184	5016	0.683	0.043	9	2,474
SWE TR1		catches	0.00422	0.00494					0.00110				381696	375455	387252	237269	269171	333387	245040	196354	189867	190816		0.054	10	2,259
SWE TR2		catches		0.00006					0.00300	0.00271	0.00221	0.00230	4265	2055	1192	1298	2515	1059	243040	150334	103007	3930	0.024	0.034	10	2.235
Sum IR2	none	catories		0.46713					0.40307		0.26101	0.22200		116172896	112567435	104205608	94475946	83754374	82574347	77576995	69279878	61577855	0.696	0.028	10	2,667
check sum I			0.37905			0.48966							124944545	1101/5030	112307435	104203008	344/334b	03/343/4	023/434/	7/3/0395	032/35/8	013//032	0.086	0.026	10	2.007

Table 5.3.10.5 **Cod** in area **3b2**. The left part of the table lists estimated F trajectories from the management plan and the ICES 2012 cod assessment, as well as partial Fs for **landings** of fisheries using regulated gears. The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. Cod plan article 13 assignments apply since 2009 or 2010, as interpreted from the background documents of national declarations *). A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs of all effort regulated gears to the overall F estimate of the stock.

2008 fix	xed ba	ișeline annual	I F reductions	by 10 per	cent as F	<=0.4, Fms	y=0.19							Effort kW days ru	inning previo	us year base	eline											
				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012				
plan									0.638	0.479	0.415	0.351	0.287	to be estimated														
educti	ion F p	ilan								-0.25	-0.35	-0.45	-0.55															
estim	ated			0.924	0.885	0.823	0.703	0.618	0.638	0.603	0.562	0.47	0.391	Effort estimated	124944543	116172896	112567435	104205608	94475946	83754374	82574347	77576995	69279878	61577855				
educti	ion F e	stimated								-0.05	-0.12	-0.26	-0.39								-0.01	-0.06	-0.11	-0.11				
														EFFORT												2003-203	12	
				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012 r	r	p n	1	
BEL	BT1	none	landings	0.00817	0.01965	0.01813	0.01693	0.00792	0.00386	0.00216	0.00264	0.00362	0.00557		1036595	1439951	1509759	1333012	1320169	984056	575501	535636	671368	963867	0.887	0.001	10	5.4
BEL	BT2	none	landings	0.01089	0.00789	0.00771	0.00696	0.00349	0.00550	0.00621	0.00281	0.00181	0.00122		4241216	4294884	3884007	3418751	2707991	3536979	3327143	2480357	1742532	1269319	0.940	0.000	10	7.7
BEL	GN1	none	landings	0.00151	0.00071	0.00045	0.00049	0.00028	0.00039	0.00046	0.00038	0.00016	0.00006		111613	152642	148827	127951	128626	158409	161734	97609	95383	45103	0.253	0.480	10	0.74
BEL	GT1	none	landings					0.00005	0.00009	0.00002	0.00005	0.00001	0.00002						15402	18000	5014	19041	18155	25216				
BEL	LL1	none	landings						0.00000		0.00000	0.00000	0.00001							1768		1660	128	786				
	TR1	none	landings		0.00008			0.00018	0.00011	0.00024	0.00016	0.00023	0.00017			1989			161520	201379	220428	212429	128701	183682				
	TR2	none	landings			0.00064	0.00059		0.00087							519343	343840	366940	298814	425374	506865	476033	435961	484371	0.566	0.112	9	1.8
	TR3	none	landings								0.00000		0.00000							663		1899		1175			-1	
	BT1	none	landings	0.00006	0.00004	0.00000	0.00012	0.00004	0.00005						47736	29712	2128	53986	30297	16790		884	1535	2793				
	BT2	none	landings						0.00036	0.00060	0.00088	0.00036	0.00024		1669870	2060092	2212397	1927398	1590823	1464163	1666322	1801775	1242171	1071896	0.851	0.002	10	4.5
	GN1	none	landings						0.00195						191424	163463	271624	235427	145714	278008	233164	275364	225797	269836		0.882	10	-0.1
	GT1	none	landings	0.00203	0.00501	0.00525	0.00520	0.00130	0.00133		0.00000		0.00150		232424	205-105	272024	1547	245724	270000	15444	1188	924	203030	0.004	0.002		0.11
	TR1	CPart13B	landings								0.00166		0.00124					2547			808679	898007	815730	747693	0.850	0.150	4	2.2
	TR1	none	landings	0.02700	0.02611	0.04206	0.04614	0.02280	0.01986						1756193	1526666	1988209	2176131	1736694	1585192	759368	829604	741965	495051		0.011	10	3.28
	TR2	CPart13B	landings	0.02700	0.03011	0.04330	0.04014	0.02200	0.01380	0.00001					1750155	1320000	1300203	21/0131	1730034	1303132	2420	39820	31240	14740	0.756	0.011	10	5.20
	TR2		landings	0.00204	0.00200	0.00360	0.00140	0.00069	0.00068						1013535	893439	704404	771597	680681	457259	470754	420345	408157	320809	0.072	0.001	10	5.03
	TR3	none	landings	0.00000	0.00256	0.00200	0.00140	0.00000	0.00008	0.00000	0.00055	0.00045	0.00055		1013333	073437	/04404	771337	884	437233	426	420543	400137	320003	0.072	0.001	10	5.03
		none	_		0.00242	0.00000	0.00104	0.00063	0.00046	0.00040	0.00050	0.00027	0.00041		1122195	887830	996227	511642	527282	370939	366679	513056	373757	317294	0.755	0.012	10	3.25
	BT1	none	landings								0.00038	0.00027	0.00041			38279					49163	313030	440	242	0.755	0.012	10	5.23
	BT2		landings	0.00010					0.00002		0.00454	0.04700	0.01220		89457		62036	42447	1390	2894		4405547			0.004	0.000	- 10	5.64
	GN1	none	landings						0.01946						2077492	2164307	2031057	1795453	949658	1003603	1050057	1195617	1136118	1080149		0.000	10	
	GT1	none	landings						0.00101						138641	244626	237800	175339	98614	100902	158205	130662	182841	321220		0.199	10	1.40
	LL1	none	landings						0.00028						105319	79773	41626	42159	15924	25347	28769	45576	29388	21089		0.000	10	5.74
	TR1	none	landings						0.02473						7137074	6422756	6405176	6020308	3801069	4034203	3793148	3592389	3664621	3593770		0.143	10	1.62
	TR2	none	landings						0.00047		0.00042	0.00034	0.00026		2597949	2580788	1916695	1405216	1080616	706247	569359	431399	370536	312765	0.976	0.000	10	12.67
	TR3	none	landings	0.00033	U.00024	0.00028	0.00013	0.00006	0.00000	U.00001					3084554	3026636	2373302	1761200	799803	916558	577813	1063007	336257	477168				
	BT1	CPart13B	landings								0.00001	0.00003										202685	169873	384590			_	
	BT1	none	landings	0.00049	0.00049	0.00031	0.00079	0.00013	0.00002				0.00000		1060809	671130	618160	1321240	305837	228530	265710			40284		0.000	8	8.88
	BT2	CPart13B	landings								0.00057										47771	2863860	2644958	2412375		0.065	4	3.72
	BT2	none	landings						0.00060						2739407	3559560	4046341	2974409	3251512	1975399	2444807	401247	96356	79036		0.000	10	7.58
	GN1	none	landings						0.00311						337639	359134	308275	308517	180503	70981	175602	74835	73826	61957	0.821	0.004	10	4.06
	GT1	none	landings						0.00013			0.00008			1092	1564	5342	11100	3291	12918	12654	17355	12003	5823				
	LL1	none	landings	0.00043	0.00032	0.00028	0.00034	0.00010	0.00006						102465	83137	142602	54974	15752	6164	4318	12052	6253	15449				
		CPart13B	landings							0.00078	0.00063	0.00078	0.00047								898933	964206	874021	939503	-0.729	0.271	4	-1.50
NG	TR1	CPart13c	landings							0.01378	0.01459	0.01242	0.00737								1242445	1144923	1254762	931671	0.831	0.169	4	2.1
NG	TR1	none	landings	0.01777	0.02131	0.01311	0.01623	0.01111	0.01139						2343719	1497618	1254880	1823891	1501499	1846925					0.226	0.667	6	0.4
NG	TR2	CPart13B	landings							0.00021	0.00064	0.00042	0.00039								260311	873808	721452	865045	0.820	0.180	4	2.0
NG	TR2	CPart13c	landings							0.00170	0.00103	0.00069	0.00048								1376367	482080	524579	267661	0.948	0.052	4	4.2
NG	TR2	none	landings	0.00337	0.00285	0.00306	0.00350	0.00217	0.00209						1853471	1705154	1937849	1707774	1621394	1794132					0.353	0.492	6	0.75
NG	TR3	none	landings	0.00000											1988	7840	3315	6360	1220	492	82	718	621	246				

Table 5.3.10.5 continued

FRA BT2	none	landings	0.00009	0.00003	0.00002	0.00001	0.00012	0.00005	0.00004	0.00000	0.00000	0.00000	96232	94514	75129	66203	103453	88053	88053	40118	67545	57044			
FRA GN	1 none	landings	0.00047	0.00018	0.00006	0.00025	0.00062	0.00044	0.00039	0.00001	0.00000	0.00000	58454	64809	46058	31231	61545	47746	46493	2149	7803	3322	0.754 0.012	10	3.247
FRA GT1	none	landings	0.00157	0.00054	0.00026	0.00108	0.00112	0.00124	0.00116	0.00047	0.00049	0.00053	830136	793053	813190	1785801	1703889	1010253	1010253	634781	690428	636164	0.484 0.156	10	1.564
FRA TRI	CPart13B	landings										0.00003										29600			
FRA TRI	none	landings	0.00102	0.00126	0.00773	0.00979	0.00128	0.01729	0.01618	0.00034	0.00130		3347063	2299125	1901534	2675348	2418190	2714146	2622538	1913401	1727371	324	0.273 0.445	10	0.803
FRA TR2	none	landings	0.00664	0.00410	0.00414	0.00384	0.00515	0.00713	0.00664	0.00321	0.00429	0.00111	1961970	1911744	1713917	1558413	1727617	1930459	1924156	1089380	960559	725367	0.808 0.005	10	3.879
FRA TR3	none	landings								0.00006	0.00001			1753	7121	1319		2184	2184	13827	2210	1250			
IRL TRI	none	landings	0.00000										1847												
IRL TR2	none	landings		0.00000									54	884											
NIR BT1	none	landings	0.00024	0.00023	0.00003								965239	543305	36825										
NIR BT2	none	landings	0.00003	0.00005	0.00001								20350	47517	16785										
NIR TR1	CPart13A	landings										0.00000										2672			
NIR TRI	CPart13B	landings							0.00004	0.00001	0.00000	0.00000							41944	23326	33246	16573			
NIR TRI	CPart13c	landings							0.00001	0.00000									14196	6034		2781			
NIR TR1	none	landings		0.00003	0.00014	0.00004	0.00010	0.00010						16948	70710	51951	61460	49104							
NIR TR2	CPart13A	landings										0.00000										90338			
NIR TR2	CPart13B	landings							0.00003	0.00000	0.00000	0.00000							65544	161981	207697	109647			
NIR TR2	CPart13c	landings							0.00039	0.00022	0.00003								320087	236516	70443	25672			
NIR TR2	none	landings	0.00001	0.00003	0.00051	0.00063	0.00048	0.00027					6784	12440	221904	532885	758972	409182					0.766 0.076	6	2.383
NLD BT1	none	landings							0.00025	0.00020	0.00018	0.00015	575801	700747	719292	1528652	720068	370417	412420	378796	308516	1090258			
NLD BT2	none	landings	0.03858	0.03538	0.02967	0.03269	0.02106	0.02517	0.01949	0.01534	0.01058	0.00729	47724234	44669317	44478122	38823660	37931313	27646215	28696410	28510104	2577G297	22428296	0.900 0.000	10	5.840
NLD GN	1 none	landings							0.00070	0.00047	0.00027	0.00021	460895	416025	387945	511580	521697	507733	419797	357091	316070	295035	0.998 0.000	10	44.654
NLD GT1	none	landings							0.00067	0.00037	0.00010	0.00007						740	26917	37399	21431	29054	0.238 0.700	5	0.424
NLD TR1	none	landings							0.00963	0.00903	0.00632	0.00729	684700	589170	547564	532260	631492	1400068	1316055	1290080	1173220	1329299	0.656 0.039	10	2.458
NLD TR2	none	landings							0.00315	0.00222	0.00177	0.00124	1932081	1496720	1298918	1224916	1384658	1853682	1334665	1231860	1313554	1277297	0.394 0.260	10	1.212
NLD TR3	none	landings								0.00006	0.00001		59360	42894	43261	20649	20589	4038	274	31973	23268	25897			
SCO BT1	none	landings	0.00063	0.00106	0.00069	0.00079	0.00042	0.00001	0.00000				866665	694716	730810	598616	349914	68568	53082				0.871 0.011	7	3.964
SCO BT2	none	landings	0.00279	0.00252	0.00177	0.00176	0.00071	0.00051	0.00031	0.00010		0.00001	3765518	4608817	4185262	3108933	2790115	1351720	554376	144306		68262	0.916 0.001	9	6.041
SCO GN	1 none	landings	0.00021	0.00027	0.00011	0.00009	0.00003	0.00004	0.00000	0.00001	0.00001	0.00001	196852	197407	165644	293823	320785	417076	376332	440579	607650	569749			
SCO LL1	none	landings	0.00031	0.00001		0.00001		0.00005	0.00001	0.00002	0.00000		57163	4350		7542	1487	276898	621114	301689	183352	68192			
SCO TRI	CPart13B	landings							0.00420	0.00521	0.00095								692932	955808	810706	36937	0.285 0.715	4	0.420
SCO TRI	CPart13C	landings							0.10264	0.11918	0.09919	0.09176							11552644	9486824	9185531	9265940	0.066 0.934	4	0.094
SCO TRI	none		0.10854	0.11560	0.11341	0.12109	0.07837	0.08348					16079389	12684328	12158295	11660764	11022982	12176292					0.286 0.583	6	0.597
SCO TR2		landings							0.00113	0.00423	0.00125								4219929	7467356	5277096	287446	0.958 0.042	4	4.724
SCO TR2		landings								0.00042		0.00156							3796988	490013	1285425	4861297	0.700 0.300	4	1.386
SCO TR2			0.01562	0.01577	0.01550	0.01326	0.00802	0.00668					9998937	9485974	9108232	8561812	8678139	8855742					0.627 0.183	6	1.610
SCO TR3	none	landings		0.00002					0.00001			0.00000	6377	5460	2356	116	11896		33117	27524		20706			
SWE LL1	none	landings			0.00047	0.00218	0.00095	0.00147		0.00140	0.00095		3377	1056	4239	15026	11020	10928	11352	6600	8184	5016	0.683 0.043	9	2,474
SWE TRI		landings	0.00382	0.00445				0.00406					381696	375455	387252	237269	269171	333387	245040	196354	189867	190816	0.852 0.002	10	4.603
SWE TR2		landings				0.00001				0.00000			4265	2055	1192	1298	2515	1059	_ 100 10	0		3930			
		80		0.39877												104205608									

Table 5.3.10.6 **Cod** in area **3b2**. The left part of the table lists estimated F trajectories from the management plan and the ICES 2012 cod assessment, as well as partial Fs for **discards** of fisheries using regulated gears. The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. Cod plan article 13 assignments apply since 2009 or 2010, as interpreted from the background documents of national declarations *). A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs of all effort regulated gears to the overall F estimate of the stock.

2008	fixed b	aseline annua	I F reduction	s by 10 pen	cent as F<	=0.4, Fmsy	/=0.19							Effort kW days ru	unning previo	us year base	eline											
				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012				
pla	ın								0.638	0.479	0.415	0.351	0.287	to be estimated														
edu	ction F	plan								-0.25	-0.35	-0.45	-0.55															
est	timated			0.924	0.885	0.823	0.703	0.618	0.638	0.603	0.562	0.47	0.391	Effort estimated	124944543	116172896	112567435	104205608	94475946	83754374	82574347	77576995	69279878	61577855				
edu	ction F	estimated								-0.05	-0.12	-0.26	-0.39															
														EFFORT												2003-201	2	
				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	r	p r	1	
EL	BT1	none	discards	0.00066	0.00000	0.00000	0.00611	0.00000	0.00249	0.00000	0.00000	0.00000	0.00000		1036595	1439951	1509759	1333012	1320169	984056	575501	535636	671368	963867	0.262	0.465	10	(
EL	BT2	none	discards	0.00036	0.00139	0.00322	0.00228	0.00121	0.00308	0.00122	0.00077	0.00010	0.00008		4241216	4294884	3884007	3418751	2707991	3536979	3327143	2480357	1742532	1269319	0.553	0.097	10	- 1
EL	GN1		discards	0.00001			0.00002				0.00000	0.00001	0.00000		111613	152642	148827	127951	128626	158409	161734	97609	95383	45103				
EL	GT1	none	discards					0.00000			0.00000	0.00000	0.00000						15402	18000	5014	19041	18155	25216				
EL	LL1	none	discards						0.00000		0.00000	0.00000								1768		1660	128	786				
EL	TR1	none	discards		0.00002			0.00014	0.00014	0.00004		0.00001	0.00001			1989			161520	201379	220428	212429	128701	183682				
EL	TR2	none	discards		0.00030		0.00084					0.00040				519343	343840	366940	298814	425374	506865	476033	435961	484371	-0.528	0.144	9	-
EL	TR3	none	discards								0.00000		0.00000							663		1899		1175				
EU	BT1	none	discards	0.00000	0.00000	0.00000	0,00004	0.00000	0.00003		2.00000		2,00000		47736	29712	2128	53986	30297	16790		884	1535	2793				
EU	BT2	none	discards	0.00005	0.00630					0.00012	0.00011	0.00002	0.00009		1669870	2060092	2212397	1927398	1590823	1464163	1666322	1801775	1242171	1071896	0.429	0.216	10	
EU	GN1	none	discards	0.00001			0.00015				0.00002	0.00009			191424	163463	271624	235427	145714	278008	233164	275364	225797	269836	0.423	0.210	10	
EU	GT1	none	discards	0.00001	0.00001	0.00018	0.00013	0.00000	0.00000	0.00000	0.00002	0.00000	0.00003		131424	103403	2/1024	1547	143714	270000	15444	1188	924	203030				
EU	TR1	CPart13B	discards							0.00049	0.00006	0.00043	0.00002					1547			808679	898007	815730	747693				
EU	TR1	none	discards	0.00165	0.00210	0.00024	0.00927	0.00702	0.01276		0.00157	0.00045	0.00002		1756193	1526666	1988209	2176131	1736694	1585192	759368	829604	741965	495051	0.602	0.029	10	
EU	TR2	CPart13B	discards	0.00103	0.00318	0.00024	0.00327	0.00703	0.01270	0.00001	0.00137	0.000113	0.00000		1750195	1320000	1900209	21/0131	1730034	1303132	2420	39820	31240	14740	0.003	0.025	10	
EU	TR2	none	discards	0.00123	0.00085	0.00128	0.00109	0.00119	0.00106			0.00034			1013535	893439	704404	771597	680681	457259	470754	420345	408157	320809	0.755	0.012	10	
DEU	TR3	none	discards	0.00000	0.00003	0.00120	0.00103	0.00113	0.00100	0.00027	0.00027	0.00034	0.00007		1028	655455	704404	772	884	4410	426	420343	400137	320003	0.755	0.012	10	
NK		none	discards	0.00010	0.00000	0.00000	0.00048	0.00000	0.00026	0.00000	0.00000	0,00000	0.00000		1122195	887830	996227	511642	527282	370939	366679	513056	373757	317294				
NK		none	discards	0.00010	0.00005						0.00000	0.00000	0.00000		89457	38279	62036	42447	1390	2894	49163	313030	440	242				
NK		none	discards	0.00017	0.00013						0.00011	0.00099	0.00046		2077492	2164307	2031057	1795453	949658	1003603	1050057	1195617	1136118	1080149	0.410	0.228	10	
NK		none	discards	0.00017	0.00000						0.00001	0.00007	0.00046		138641	244626	237800	175339	98614	1003003	158205	130662	182841	321220	0.415	0.220	10	
NK		none	discards	0.00002	0.00000						0.00000	0.00007	0.00000		105319	79773	41626	42159	15924	25347	28769	45576	29388	21089				
NK		none	discards	0.00519		0.03919			0.00743						7137074	6422756	6405176	6020308	3801069	4034203	3793148	3592389	3664621	3593770	0.424	0.222	10	
																2580788	1916695		1080616	706247	569359	431399	370536	312765			10	
NK		none	discards	0.00162		0.00296			0.00065		0.00013	0.00000	0.00004		2597949			1405216							0.570	0.085	10	1
NK		none	discards	0.00001	0.00000	0.00001	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		3084554	3026636	2373302	1761200	799803	916558	577813	1063007	336257	477168				
NG		CPart13B	discards	0.00000	0.00000	0.00000	0.00007	0.00000	0.00004	0.00000	0.00000	0.00000			4050000	674400	510150	4004040	205027	220520	200740	202685	169873	384590				
NG		none	discards	0.00003	0.00000	0.00000	0.00027	0.00000	0.00001		0.0000	0.0005	0.00000		1060809	671130	618160	1321240	305837	228530	265710	205225	0544055	40284				
NG		CPart13B	discards	0.000	0.004	0.000=:	0.000::	0.000	0.0005	0.00000	0.00000				2720467	25505	40.450	207446	005454	4075000	47771	2863860	2644958	2412375	0.055	0.046	- 40	
NG		none	discards	0.00007			0.00014					0.00000	0.00000		2739407	3559560	4046341	2974409	3251512	1975399	2444807	401247	96356	79036	0.652	0.041	10	
NG		none	discards	0.00003	0.00000							0.00004	0.00001		337639	359134	308275	308517	180503	70981	175602	74835	73826	61957				
NG		none	discards	0.00000	0.00000				0.00000		0.00000	0.00001	0.00000		1092	1564	5342	11100	3291	12918	12654	17355	12003	5823				
NG		none	discards	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		0.00000	0.00000	0.00000		102465	83137	142602	54974	15752	6164	4318	12052	6253	15449				
NG		CPart13B	discards							0.00003	0.00003	0.00006	0.00001								898933	964206	874021	939503				
NG		CPart13c	discards							0.00033	0.00059	0.00057	0.00010								1242445	1144923	1254762	931671	0.732		4	
NG		none	discards	0.00224	0.00181	0.00200	0.00538	0.00193	0.00483						2343719	1497618	1254880	1823891	1501499	1846925					0.314		6	
NG	TR2	CPart13B	discards							0.00041	0.00034	0.00074	0.00006								260311	873808	721452	865045	-0.267	0.733	4	-
NG	TR2	CPart13c	discards							0.00204	0.00030	0.00088	0.00028								1376367	482080	524579	267661	0.967	0.033	4	
NG	TR2	none	discards	0.00091	0.00114	0.00093	0.00430	0.00085	0.00096						1853471	1705154	1937849	1707774	1621394	1794132					-0.270	0.605	6	-(
NIG	TR3	none	discards	0.00000											1988	7840	3315	6360	1220	492	82	718	621	246				

Table 5.3.10.6 continued

FRA BT2	none	discards	0.00001			0.00000				0.00000			96232	94514	75129	66203	103453	88053	88053	40118	67545	57044				
FRA GN1		discards	0.00000			0.00000						0.00000	58454	64809	46058	31231	61545	47746	46493	2149	7803	3322				
FRA GT1	none	discards	0.00001	0.00000	0.00000	0.00003	0.00000	0.00000	0.00001	0.00000	0.00005		830136	793053	813190	1785801	1703889	1010253	1010253	634781	690428	636164				
FRA TR1	CPart13B	discards										0.00000										29600				
FRA TR1	none	discards				0.00222							3347063	2299125	1901534	2675348	2418190	2714146	2622538	1913401	1727371	324		0.454	10	0.787
FRA TR2	none	discards	0.00455	0.00154	0.00226	0.00750	0.01791	0.01267	0.00251	0.00094	0.00181	0.00016	1961970	1911744	1713917	1558413	1727617	1930459	1924156	1089380	960559	725367	0.422	0.224	10	1.317
FRA TR3	none	discards								0.00000	0.00000			1753	7121	1319		2184	2184	13827	2210	1250				
IRL TR1	none	discards	0.00000										1847													
IRL TR2	none	discards		0.00000									54	884												
NIR BT1	none	discards	0.00002	0.00000	0.00000								965239	543305	36825											
NIR BT2	none	discards	0.00000	0.00001	0.00000								20350	47517	16785											
NIR TR1	CPart13A	discards										0.00000										2672				
NIR TR1	CPart13B	discards							0.00003	0.00000	0.00000	0.00000							41944	23326	33246	16573				
NIR TR1	CPart13c	discards							0.00000	0.00000									14196	6034		2781				
NIR TR1	none	discards		0.00000	0.00003	0.00001	0.00003	0.00011						16948	70710	51951	61460	49104								
NIR TR2	CPart13A	discards										0.00000										90338				
NIR TR2	CPart13B	discards							0.00009	0.00000	0.00001	0.00000							65544	161981	207697	109647				
NIR TR2	CPart13c	discards							0.00089	0.00011	0.00008								320087	236516	70443	25672	0.778	0.222	4	1.751
NIR TR2	none	discards	0.00001	0.00001	0.00023	0.00106	0.00208	0.00065					6784	12440	221904	532885	758972	409182					0.962	0.002	6	7.046
NLD BT1	none	discards							0.00000	0.00000	0.00000	0.00000	575801	700747	719292	1528652	720068	370417	412420	378796	308516	1090258				
NLD BT2	none	discards	0.00218	0.01964	0.01155	0.00532	0.00120	0.00767	0.00385	0.00205	0.00087	0.00106	47724234	44669317	44478122	38823660	37931313	27646215	28696410	28510104	25776297	22428296	0.515	0.128	10	1.699
NLD GN1	none	discards							0.00000	0.00000	0.00002	0.00001	460895	416025	387945	511580	521697	507733	419797	357091	316070	295035				
NLD GT1	none	discards							0.00000	0.00000	0.00001	0.00000						740	26917	37399	21431	29054				
NLD TR1	none	discards							0.00183	0.00088	0.00021	0.00055	684700	589170	547564	532260	631492	1400068	1316055	1290080	1173220	1329299	0.600	0.067	10	2.121
NLD TR2	none	discards							0.00093	0.00058	0.00092	0.00042	1932081	1496720	1298918	1224916	1384658	1853682	1334665	1231860	1313554	1277297	0.758	0.011	10	3.287
NLD TR3	none	discards								0.00000	0.00000		59360	42894	43261	20649	20589	4038	274	31973	23268	25897				
SCO BT1	none	discards	0.00006	0.00000	0.00000	0.00026	0.00000	0.00000	0.00000				866665	694716	730810	598616	349914	68568	53082							
SCO BT2	none	discards	0.00014			0.00027			0.00006	0.00001		0.00000	3765518	4608817	4185262	3108933	2790115	1351720	554376	144306		68262	0.710	0.032	9	2,668
SCO GN1	none	discards	0.00000			0.00000					0.00000	0.00000	196852	197407	165644	293823	320785	417076	376332	440579	607650	569749				
SCO LL1	none	discards	0.00000			0.00000			0.00000		0.00000		57163	4350		7542	1487	276898	621114	301689	183352	68192				
SCO TR1	CPart13B	discards								0.00175						, , , ,	2.07	270000	692932	955808	810706	36937	-0.370	0.630	4	-0.563
SCO TR1	CPart13C	discards								0.03129		0.01987							11552644	9486824	9185531	9265940		0.017	4	7.572
SCO TR1	none	discards	0.01040	0.01421	0.01502	0.02159	0.05942	0.14350	3107032	2,00223	3,02337	3102307	16079389	12684328	12158295	11660764	11022982	12176292	22002014	3400024	3100001	32003 10		0.524	6	-0.697
SCO TR2	CPart13B	discards	31020-40	3101-121	3,01302	5.02255	3,03342	5124550	0.00314	0.01035	0.00480		20075305		12130233		11022302		4219929	7467356	5277096	287446	0.995	0.005	4	14.089
SCO TR2	CPart13C	discards								0.00061		0.00892							3796988	490013	1285425	4861297		0.042	4	4.724
SCO TR2	none	discards	0.01052	0.00691	0.01000	0.01377	0.02874	0.01360	0.00021	0.00001	0.00440	0.00000	9998937	9485974	9108232	8561812	8678139	8855742	3,30300	-50013	1203423	4001237		0.240	6	-1.380
SCO TR3	none	discards	0.01032	0.00000	0.01008	0.013//	0.02074	0.01300	0.00000			0.00000	6377	5460	2356	116	11896	0000742	33117	27524		20706	0.500	0.240	- 0	1.300
		discards		0.00000	0.00000	0.00000	0.00000	0.00000		0.00000	0.00001		05//	1056	4239	15026	11020	10928	11352	6600	8184	5016				
SWE LL1 SWE TR1	none		0.00044	0.00040		0.00000							381696	375455	387252			333387	245040	196354	189867	190816	0.350	0.321	10	1.057
SWE TRI		discards			0.00174				0.00052	0.00000	0.00007	0.00021	4265			237269	269171	1059	243040	190354	109807	3930	0.330	0.521	10	1.057
	none	discards	0.00001	0.00001					0.44455		0.00005	0.00545		2055	1192	1298	2515		00574047	· ·	50070077		0.005	0.004	10	0.100
Sum			0.04280	0.06833	0.10530			0.23493					124944543	1161/2896	11256/435	104205608	944/5946	83/54374	825/4347	//5/6995	69279878	61577855	0.036	0.921	10	0.102
check sum F	par/F		0.05	0.08	0.13	0.14	0.23	0.37	0.19	0.10	0.07	0.09														

Table 5.3.10.7 **Cod** in area **3b3**. The left part of the table lists estimated F trajectories from the management plan and the ICES 2012 cod assessment, as well as partial Fs for **catches** of fisheries using regulated gears. The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. Cod plan article 13 assignments apply since 2009 or 2010, as interpreted from the background documents of national declarations *). A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs of all effort regulated gears to the overall F estimate of the stock.

008 fixe	ed ba	seline annual	l F reduction	s by 10 per	cent as F	<=0.4, Fms	y=0.19							Effort kW days ru	inning previ	ous year ba	seline											
				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012				
olan									0.638	0.479	0.415			to be estimated														
ductio	n F n	lan								-0.25	-0.35	-0.45	-0.55															
estima				0.924	0.885	0.823	0.703	0.618	0.638	0.603	0.562			Effort estimated	20756583	21281648	19642948	22841403	23108496	18504005	17927641	13549980	13092159	12789862				
		stimated		0.324	0.005	0.023	0.703	0.010	0.030	-0.05	-0.12			Litoit estimated	20730303	21201040	13042340	22041403	23100430	10304003	-0.03	-0.24	-0.03	-0.02				
Eductio	nii e	stillateu								-0.03	-0.12	-0.20	-0.33								-0.03	-0.24	-0.03	-0.02				
																											_	
														EFFORT												2003-2012		
par				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		p n		
EL B	T1	none	catches						0.00001											3578								
EL B	T2	none	catches	0.00082	0.00106	0.00101	0.00195	0.00145	0.00292	0.00096	0.00063	0.00051	0.00033		2583050	2422541	2068612	2782454	3183635	2691356	2204585	1907807	1861455	1541411	0.689	0.028	10	
EL G	iN1	none	catches	0.00005	0.00001	0.00002	0.00003	0.00000	0.00001	0.00001	0.00000				16607	18591	19026	23556	906	10560	19527	10885						
EL G	T1	none	catches					0.00002	0.00001	0.00000	0.00001	0.00003	0.00001						26676	16200	7416	21600	30600	34086				
EL T	R1	none	catches								0.00000											10219	1858	4645				
EL T	R2	none	catches		0.00002	0.00000	0.00004	0.00001	0.00006	0.00003	0.00007	0.00008	0.00004			27043	10703	23328	13756	15816	46344	132308	189285	212691				
NG B	T2	CPart13B	catches							0.00003	0.00001	0.00000	0.00000								108485	123228	101532	144684				
	T2	none	catches	0.00022	0.00021	0.00033	0.00042	0.00019	0.00029	0.00012	0.00005	0.00005	0.00003		833384	671323	423730	359264	324577	368882	295714	148793	99461	96917				
	N1	none	catches	0.00001	0.00000	0.00001			0.00001			0.00003	0.00001		4498	3373	219	2529	1699	4957	12756	25620	25787	10339				
	T1	none	catches						0.00001		0.00001				11295	8742	9183	6081	7708	9580	5968	8324	8075	8332				
	L1	CPart13B	catches	0100002	0100000	OIGGGGE	0100001	0100002	0100002	0100001	0100001	0100002	0.00000		11250	0712	5200	0001	,,,,,	3000	0300	30899	25183	24565				
	L1	none	catches	0.00000	0.00000	0.00001	0.00000	0.00000	0.00000	0.00000			0.00000		44603	31882	39988	40165	37923	39699	40081	15397	13022	11097				
	R1	CPart13c		0.00000	0.00000	0.00001	0.00000	0.00000	0.00000		0.00000	0.00000	0.00000		44003	31002	33300	40103	3/323	33033	4350	2226	11276	1229				
			catches	0.00007		0.00001				0.00002	0.00000	0.00000	0.00000		04700	473	4005	700	050		4530	2220	112/0	1225				
	R1	none	catches	0.00007	0.00000	0.00001		0.00000	0.00001	0.00000	0.00040	0.00000	0.00000		31738	4/3	1306	788	268	4154	07000	204244	204225	404505				
	R2	CPart13B	catches								0.00013										87339	281244	301325	404526				
	R2	CPart13c	catches							0.00016	0.00007	0.00009	0.00007								193078	89159	73206	82494				
	R2	none	catches		0.00033	0.00044	0.00028		0.00014						245225	271549	249748	184677	148256	165497								
	R3	none	catches	0.00000				0.00000							87				252									
RA B	T2	none	catches	0.00011	0.00011	0.00003	0.00012	0.00011	0.00009	0.00006	0.00001	0.00001	0.00001		1118375	1278065	919129	1258094	1135160	1106661	1106661	570711	542158	675860				
RA G	N1	none	catches	0.00388	0.00180	0.00161	0.00287	0.00217	0.00106	0.00099	0.00041	0.00031	0.00043		563990	341495	243018	301125	386493	150995	150995	98661	45185	109662	0.947	0.000	10	8
RA G	T1	none	catches	0.00459	0.00224	0.00286	0.00346	0.00275	0.00186	0.00171	0.00174	0.00540	0.00137		2553851	2632950	3308229	3681721	3588824	2611489	2607735	1796377	1839296	1771276	0.076	0.834	10	C
RA L	L1	none	catches	0.00009	0.00018	0.00007	0.00008	0.00005	0.00005	0.00005	0.00002	0.00004	0.00003		144804	163370	97311	114742	162573	116680	116680	118214	86512	69920				
RA T	R1	none	catches	0.00061	0.00005	0.00006	0.00021	0.00154	0.00061	0.00057	0.00011	0.00030	0.00008		138153	49849	60402	49633	224000	73652	73652	91341	113909	53370	0.877	0.001	10	5
RA T	R2	CPart13B	catches										0.00001											289041				
RA T	R2	none	catches	0.01395	0.00965	0.01102	0.01199	0.01229	0.00769	0.00714	0.00743	0.00641	0.00444		12192837	12929692	11713996	13485158	13060035	10070068	9834906	6980814	6766474	6300774	0.866	0.001	10	4
	R3	none	catches	0.00000	0.00000	0.00000			0.00001	0.00001	0.00007	0.00002	0.00002		76197	79758	99705	114293	138596	65643	64323	134347	122925	92978				
	T2	none	catches			0.00000									5180	14375	10346											
		CPart13B	catches	2.00000	5.55500	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				0.00000					5200	2.075	20040				7480							
	R2	none	catches	0.00002	0.00000	0.00000	0.00001	0.00001	0.00003	0.00000					27897	20201	23483	10560	13420	9680	7400							
	R2	none	catches	0.00002	0.00000	0.00000	0.00001	0.00001	0.00002	0.00043	0.00046	0.00054	0.00032		152407	316376	344814	287224	434839	625656	602354	701538	608347	706896				
								0.00000		0.00042	0.00046	0.00054	0.00032		132407	5103/0	544814	287224				/01538	008347	/00890				
	T2	none	catches					0.00003											9776	3055	6353						-	
	R2	CPart13B	catches								0.00000										66292	250268	158225	90437	-0.866	0.134	4	-
	R2	CPart13C	catches							0.00005		0.00000									264567		67063	52632				
CO T	R2	none	catches	0.00000			0.00003		0.00010						12405		,	116011	209124	340147				,				
um				0.02459	0.01569	0.01750	0.02151	0.02093	0.01496	0.01249	0.01126	0.01392	0.00729		20756583	21281648	19642948	22841403	23108496	18504005	17927641	13549980	13092159	12789862	0.823	0.003	10	4

Table 5.3.10.8 **Cod** in area **3b3**. The left part of the table lists estimated F trajectories from the management plan and the ICES 2012 cod assessment, as well as partial Fs for **landings** of fisheries using regulated gears. The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. Cod plan article 13 assignments apply since 2009 or 2010, as interpreted from the background documents of national declarations *). A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs of all effort regulated gears to the overall F estimate of the stock.

008 fi	xed ba	iseline annual	F reduction:	s by 10 pei	rcent as F	<=0.4, Fm	sy=0.19							Effort kW days ru	inning previo	ous year bas	seline											
				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012				
plan									0.638	0.479	0.415	0.351	0.287	to be estimated														
	ion F p	lan								-0.25	-0.35	-0.45	-0.55															
	nated			0.924	0.885	0.823	0.703	0.618	0.638	0.603	0.562	0.47	0.391	Effort estimated	20756592	21281648	19642948	22841403	23108496	18504005	17927641	13549980	13092159	12789862				
		stimated		0.524	0.005	0.023	0.703	0.010	0.038	-0.05	-0.12	-0.26	-0.39	Litori estimated	20730363	21201040	13042340	22041403	23100470	10304003	-0.03	-0.24	-0.03	-0.02				
euuci	IOIIFE	stillateu								-0.03	-0.12	-0.20	-0.55								-0.03	-0.24	-0.03	-0.02				
																											_	
														EFFORT												2003-201		
par				2003	2004	2005	2006	2007		2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		p r	1	
EL	BT1	none	landings						0.00001											3578								
EL	BT2	none	landings	0.00082	0.00089	0.00097	0.00160	0.00109	0.00189	0.00088	0.00057	0.00049	0.00031		2583050	2422541	2068612	2782454	3183635	2691356	2204585	1907807	1861455	1541411	0.734	0.016	10	
EL	GN1	none	landings	0.00005	0.00001	0.00002	0.00003	0.00000	0.00001	0.00001	0.00000				16607	18591	19026	23556	906	10560	19527	10885						
EL	GT1	none	landings					0.00002	0.00001	0.00000	0.00001	0.00000	0.00001						26676	16200	7416	21600	30600	34086				
EL	TR1	none	landings								0.00000											10219	1858	4645				
EL	TR2	none	landings		0.00002	0.00000	0.00004	0.00001	0.00006	0.00003	0.00007	0.00008	0.00004			27043	10703	23328	13756	15816	46344	132308	189285	212691				
	BT2	CPart13B	landings									0.00000									108485	123228	101532	144684				
	BT2	none	landings	0.00022	0.00016	0.00053	0.00040	0.00017	0.00022			0.00005			833384	671323	423730	359264	324577	368882	295714	148793	99461	96917				
	GN1	none	landings						0.00022				0.00003		4498	3373	219	2529	1699	4957	12756	25620	25787	10339				
	GT1	none	landings	0.00002	0.00003	0.00002	0.00001	0.00001	0.00001	0.00001	0.00001		0.00000		11295	8742	9183	6081	7708	9580	5968	8324	8075	8332				
	LL1	CPart13B	landings										0.00000									30899	25183	24565				
	LL1	none	landings	0.00000	0.00000	0.00001	0.00000	0.00000	0.00000						44603	31882	39988	40165	37923	39699	40081	15397	13022	11097				
NG	TR1	CPart13c	landings							0.00002	0.00000	0.00000	0.00000								4350	2226	11276	1229				
NG	TR1	none	landings	0.00007	0.00000	0.00001		0.00000	0.00001						31738	473	130G	788	268	4154								
NG	TR2	CPart13B	landings							0.00009	0.00013	0.00008	0.00009								87339	281244	301325	404526				
NG	TR2	CPart13c	landings							0.00008	0.00007	0.00006	0.00007								193078	89159	73206	82494				
NG	TR2	none	landings	0.00015	0.00033	0.00044	0.00028	0.00016	0.00014						245225	271549	249748	184677	148256	165497								
NG	TR3	none	landings	0.00000				0.00000							87				252									
RA	BT2	none	landings	0.00011	0.00009	0.00003	0.00010	0.00008	0.00006	0.00006	0.00001	0.00001	0.00001		1118375	1278065	919129	1258094	1135160	1106661	1106661	570711	542158	675860				
RA	GN1	none	landings	0.00388	0.00180	0.00161	0.00287	0.00217	0.00106	0.00099	0.00037	0.00031	0.00043		563990	341495	243018	301125	386493	150995	150995	98661	45185	109662	0.946	0.000	10	
	GT1	none	landings									0.00141			2553851	2632950	3308229	3681721	3588824	2611489	2607735	1796377	1839296	1771276	0.598		10	
	LL1	none	landings									0.00004			144804	163370	97311	114742	162573	116680	116680	118214	86512	69920	0.550	0.000	- 10	
RA																	60402								0.077	0.001	10	
	TR1	none	landings	0.00001	0.00005	0.00006	0.00021	0.00154	0.00061	0.00057	0.00011	0.00030			138153	49849	00402	49633	224000	73652	73652	91341	113909	53370	0.877	0.001	10	
	TR2	CPart13B	landings										0.00001											289041				
	TR2	none	landings				U.01199	U.01229				0.00641			12192837	12929692	11713996	13485158	13060035	10070068	9834906	6980814	6766474	6300774	0.866	0.001	10	
	TR3	none	landings		0.00000				0.00001	0.00001	0.00007	0.00002	0.00002		76197	79758	99705	114293	138596	65643	64323	134347	122925	92978				
BJ	BT2	none	landings	0.00000	0.00000	0.00000									5180	14375	10346											
BJ	TR2	CPart13B	landings							0.00000											7480							
BJ	TR2	none	landings	0.00002	0.00000	0.00000	0.00001	0.00001	0.00002						27897	20201	23483	10560	13420	9680								
LD	TR2	none	landings							0.00042	0.00046	0.00054	0.00032		152407	316376	344814	287224	434839	625656	602354	701538	608347	706896				
co	BT2	none	landings					0.00002											9776	3055	6353							
co	TR2	CPart13B	landings							0.00001	0.00000	0.00000									66292	250268	158225	90437	-0.866	0.134	4	
	TR2	CPart13C	landings							0.00002		0.00000									264567		67063	52632				
	TR2	none	landings	0.00000			0.00003	0.00014	0.00010	-100002		2,00000			12405			116011	209124	340147	20.007		5,505	52032				
um	IIIZ	HOHE	iuiiuiiigs	0.00000	0.01545	0.01745				0.01220	0.01111	0.00983	0.00710		20756583	21281648	19642948	22841403	23108496	18504005	17927641	13549980	13092159	12789862	0.870	0.001	10	
um neck s				0.02459	0.01545	0.01745	0.02112	0.02051	0.013//	0.01228	0.01111	0.00983	0.00/10		20730383	21201048	15042948	22041403	25108490	10004000	1/52/041	15549980	12032123	12/69802	0.870	0.001	10	_ '

Table 5.3.10.9 **Cod** in area **3b3**. The left part of the table lists estimated F trajectories from the management plan and the ICES 2012 cod assessment, as well as partial Fs for **discards** of fisheries using regulated gears. The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. Cod plan article 13 assignments apply since 2009 or 2010, as interpreted from the background documents of national declarations *). A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs of all effort regulated gears to the overall F estimate of the stock.

2008	fixed ba	seline annua	I F reduction	s by 10 per	cent as F	<=0.4, Fms	y=0.19							Effort kW days re	unning previ	ous year ba	seline											
				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012				
olar	n								0.638	0.479	0.415	0.351	0.287	to be estimated														
duc	tion F p	olan								-0.25	-0.35	-0.45	-0.55															
esti	mated			0.924	0.885	0.823	0.703	0.618	0.638	0.603	0.562	0.47	0.391	Effort estimated	20756583	21281648	19642948	22841403	23108496	18504005	17927641	13549980	13092159	12789862				
duc	tion F e	stimated								-0.05	-0.12	-0.26	-0.39								-0.03	-0.24	-0.03	-0.02				
														EFFORT												2003-2012		
par				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		p n		
EL	BT1	none	discards	2000		2000			0.00000	2002				days at sau	2000	2001			2001	3578		2020						
EL	BT2	none	discards	0.00000	0.00017	0.00004	0.00036	0.00026	0.00103	0.00009	0.00006	0.00003	0.00002		2583050	2422541	2068612	2782454	3183635	2691356	2204585	1907807	1861455	1541411	0.550	0.093	10	
EL	GN1	none	discards					0.00000				0.00003	0.00002		16607	18591	19026	23556	906	10560	19527	10885	1001433	1341411	0.555	0.055	10	
EL	GT1		discards	0.00000	0.00000	0.00000	0.00000		0.00000			0.00003	0.00000		10007	10351	15020	25550	26676		7416	21600	30600	34086				
		none						0.00000	0.00000	0.00000		0.00002	0.00000						20076	16200	/416							
EL	TR1	none	discards								0.00000											10219	1858	4645				
EL	TR2	none	discards		0.00000	0.00000	0.00000	0.00000	0.00000							27043	10703	23328	13756	15816	46344	132308	189285	212691				
NG	BT2	CPart13B	discards							0.00000			0.00000								108485	123228	101532	144684				
NG	BT2	none	discards	0.00000	0.00005	0.00001	0.00003	0.00003	0.00006	0.00001	0.00001	0.00000	0.00000		833384	671323	423730	359264	324577	368882	295714	148793	99461	96917				
NG	GN1	none	discards	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		4498	3373	219	2529	1699	4957	12756	25620	25787	10339				
NG	GT1	none	discards	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00001	0.00000		11295	8742	9183	6081	7708	9580	5968	8324	8075	8332				
٧G	LL1	CPart13B	discards										0.00000									30899	25183	24565				
٧G	LL1	none	discards	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000					44603	31882	39988	40165	37923	39699	40081	15397	13022	11097				
NG	TR1	CPart13c	discards							0.00000	0.00000	0.00000	0.00000								4350	2226	11276	1229				
NG	TR1	none	discards	0.00000	0.00000	0.00000		0.00000	0.00000						31738	473	1306	788	268	4154								
NG	TR2	CPart13B	discards							0.00000	0.00000	0.00001	0.00000								87339	281244	301325	404526				
NG	TR2	CPart13c	discards							0.00008	0.00000	0.00002	0.00000								193078	89159	73206	82494				
NG	TR2	none	discards	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000						245225	271549	249748	184677	148256	165497								
NG	TR3	none	discards	0.00000				0.00000							87				252									
RA	BT2	none	discards		0.00002	0.00000	0.00002	0.00003	0.00003	0.00001	0.00000	0.00000	0.00000		1118375	1278065	919129	1258094	1135160	1106661	1106661	570711	542158	675860				
RA	GN1	none	discards			0.00000			0.00000				0.00000		563990	341495	243018	301125	386493	150995	150995	98661	45185	109662				
RA	GT1	none	discards		0.00000				0.00000				0.00017		2553851	2632950	3308229	3681721	3588824	2611489	2607735	1796377	1839296	1771276	0.421	0.226	10	
	LL1	none	discards		0.00000					0.00000					144804	163370	97311	114742	162573	116680	116680	118214	86512	69920	-0.421	0.220	10	-
RA																												
RA	TR1	none	discards	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000			138153	49849	60402	49633	224000	73652	73652	91341	113909	53370				
RA	TR2	CPart13B	discards										0.00000											289041				
RA	TR2	none	discards				0.00000	0.00000							12192837	12929692	11713996	13485158	13060035	10070068	9834906	6980814	6766474	6300774				
RA	TR3	none	discards		0.00000				0.00000	0.00000	0.00000	0.00000	0.00000		76197	79758	99705	114293	138596	65643	64323	134347	122925	92978				
BJ	BT2	none	discards	0.00000	0.00000	0.00000									5180	14375	10346											
BJ	TR2	CPart13B	discards							0.00000											7480							
BJ	TR2	none	discards	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000						27897	20201	23483	10560	13420	9680								
LD	TR2	none	discards							0.00000	0.00000	0.00000	0.00000		152407	316376	344814	287224	434839	625656	602354	701538	608347	706896				
CO	BT2	none	discards					0.00001											9776	3055	6353							
СО	TR2	CPart13B	discards							0.00001	0.00000	0.00000									66292	250268	158225	90437				
СО	TR2	CPart13C	discards							0.00003		0.00000									264567		67063	52632				
СО	TR2	none	discards	0.00000			0.00000	0.00000	0.00000						12405			116011	209124	340147								
um				0.00000	0.00024	0.00005	0.00041	0.00043	0.00118	0.00023	0.00016	0.00408	0.00019		20756583	21281648	19642948	22841403	23108496		17927641	13549980	13092159	12789862	-0.422	0.224	10	-
	sum Fr			0.00	0.00	0.00				0.00		0.01															÷	

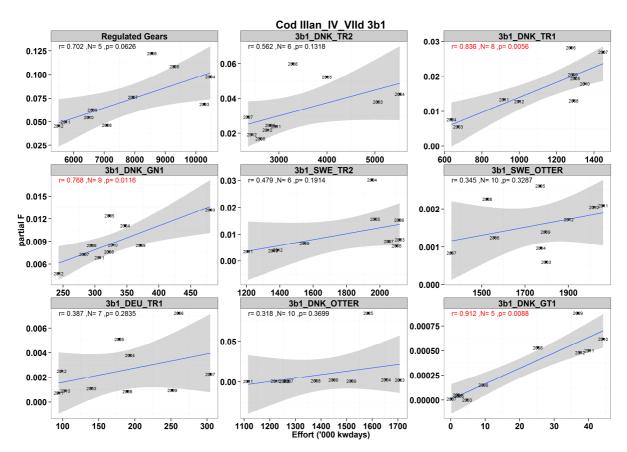


Fig. 5.3.10.2. Cod. Partial fishing mortality (based on harvest rate estimates) against effort (kWd) in area 3b1 (Skagerrak) for all regulated gears combined, and the major fisheries individually. Ten metiers with highest catch are shown where catch >1% of total for the regulated area, ranked top left to bottom right. Data 2003-2012 aggregated across special conditions. r value shows linear model fit (grey 95% confidence interval), with p-value (significant relationships at 0.05 level shown in red; N and p values adjusted

autocorrelation).

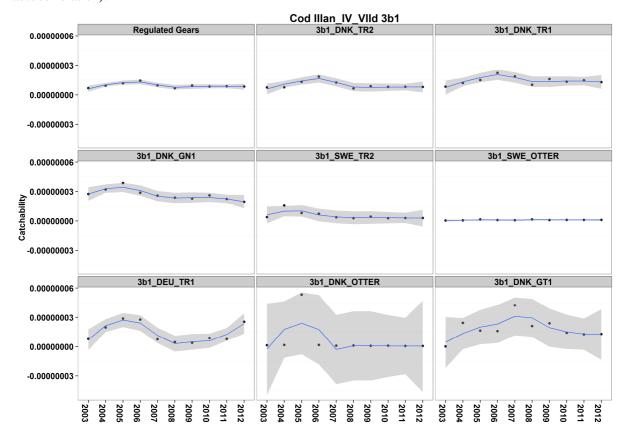


Figure 5.3.10.2.1. Cod catchability estimates in 3b1 for all regulated gears and the major fisheries individually. Catchability estimated as (pF/kw days) with the blue line indicating a local regression smoother, the grey area 95% confidence limits.

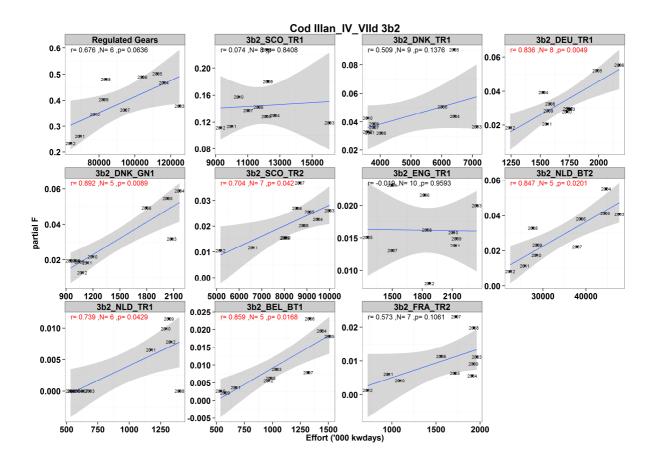


Fig. 5.3.10.3 Cod. Partial fishing mortality (based on harvest rate estimates) against effort (kWd) in area 3b2 (North Sea, 2EU) for all regulated gears combined, and the major fisheries individually. Ten metiers with highest catch are shown where catch >1% of total for the regulated area, ranked top left to bottom right. Data 2003-2012 aggregated across special conditions. r value shows linear model fit (grey 95% confidence interval), with p-value (significant relationships at 0.05 level shown in red; N and p values adjusted for autocorrelation).

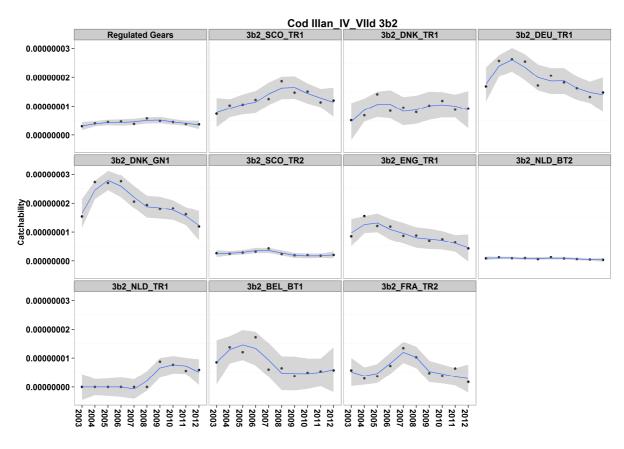


Figure 5.3.10.3.1 cod catchability estimates in 3b2 for all regulated gears and the major fisheries individually. Catchability estimated as (pF/kw days) with the blue line indicating a local regression smoother, the grey area 95% confidence limits.

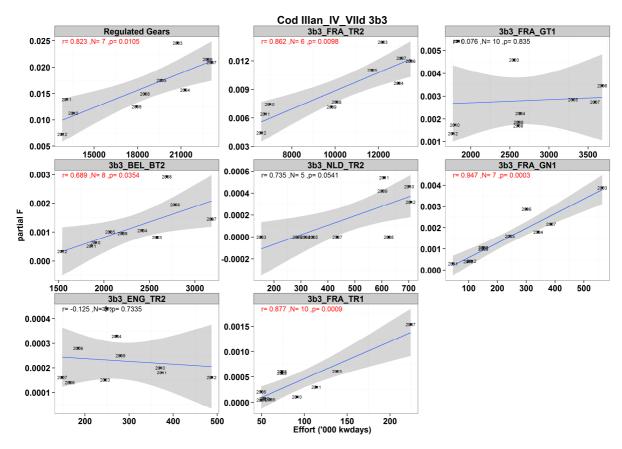


Fig. 5.3.10.4: Cod. Partial fishing mortality (based on harvest rate estimates) against effort (kWd) in area 3b3 (Eastern English Channel) for all regulated gears combined, and the major fisheries individually. Ten metiers with highest catch are shown where catch >1% of total for the regulated area, ranked top left to bottom right. Data 2003-2012 aggregated across special conditions. r value shows linear model fit (grey 95% confidence interval), with p-value (significant relationships at 0.05 level shown in red; N and p values adjusted for autocorrelation).

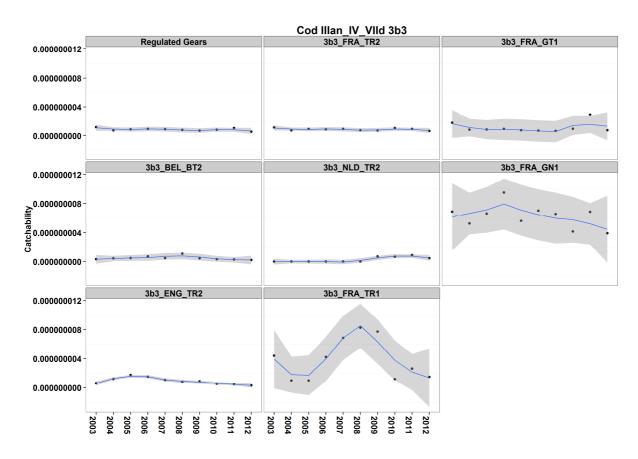


Figure 5.3.10.4.1. Cod catchability estimates in 3b3 for all regulated gears and the major fisheries individually. Catchability estimated as (pF/kw days) with the blue line indicating a local regression smoother, the grey area 95% confidence limits.

Table 5.3.10.10 **Plaice** in area **3b2**. The left part of the table lists estimated F trajectories from the management plan and the ICES 2012 plaice assessment, as well as partial Fs for **catches** of fisheries using regulated gears (in the North Sea). The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. Cod plan article 13 assignments apply since 2009 or 2010, as interpreted from the background documents of national declarations *). A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs of all effort regulated gears to the overall F estimate of the stock.

006 ru	nning	base line ann	nual F reducti	ions by 10	percent a	s F<=0.3,	Fmsy=0.2	25						Effort kW days ru	inning previou	ıs year baselir	ne .											
				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012				
plan							0.372	0.335	0.302	0.300	0.300	0.300	0.300															
educti	on F p	lan						-0.10	-0.10	-0.01	0.00	0.00	0.00															
estim	ated			0.602	0.47	0.394	0.372	0.314	0.239	0.22	0.207	0.2	0.232	Effort estimated	124826173	116125652	112524834	104177417	94453870	83473438	81952959	77243333	69073258	61454166				
educti	on F e	stimated						-0.16	-0.24	-0.08	-0.06	-0.03	0.16								-0.02	-0.06	-0.11	-0.11				
														FFFORT												2003-201	2	
par				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012 r		n r		
	BT1	none	catches	0.00434				7 0.00717							1036595	1439951	1509759	1333012	1320169	984056	575501	535636	671368	963867	0.771	0.009	10	
		none	catches		0.01365				0.00540						4241216	4294884	3884007	3418751	2707991	3536979	3327143	2480357	1742532	1269319		0.081		
		none	catches					0.00003							111613	152642	148827	127951	128626	158409	161734	97609	95383	45103				
		none	catches	0,00000	0100002	0100025	0100003		0.00000						111010	152012	210027	12/301	15402	18000	5014	19041	18155	25216				
	LL1	none	catches					0.00001	0.00000	0.00000	0.00000	0.00000	0.00000						25402	1768	3014	1660	128	786				
	TR1	none	catches					0.00055	0.00047	0.00043		0.00048				1989			161520	201379	220428	212429	128701	183682	0.200	0.375	7	
	TR2	none	catches		0.00153	0.00103	0.00133	0.00033								519343	343840	366940	298814	425374	506865	476033	435961	484371		0.929	9	
					0.00153	0.00103	0.00133	0.00099	0.00060	0.00056		0.00589	0.00155			519343	343840	300940	298814	425374	506865	1899	435901		0.035	0.929	9	
	TR3	none	catches	0.00047	0.00040	0.00004	0.0000		0.00044		0.00000				4770.0	2074.0	24.00	50005	20207				4505	1175	0.740	0.004	_	
	BT1	none	catches					0.00041							47736	29712	2128	53986	30297	16790		884	1535	2793		0.031	9	
		none	catches					0.00605							1669870	2060092	2212397	1927398	1590823	1464163	1666322	1801775	1242171	1071896	0.768	0.009	10	
		none	catches	0.00010	0.00008	0.00050	0.00005	0.00015	0.00003				0.00003		191424	163463	271624	235427	145714	278008	233164	275364	225797	269836				
		none	catches								0.00000							1547			15444	1188	924					
	TR1	CPart13B	catches								0.00004										808679	898007	815730	747693				
	TR1	none	catches	0.00152	0.00086	0.00092	0.00443	0.00210	0.00367	0.00115	0.00149	0.00150	0.00200		1756193	1526666	1988209	2176131	1736694	1585192	759368	829604	741965	495051	0.381	0.277	10	
	TR2	CPart13B	catches								0.00044										2420	39820	31240	14740				
	TR2	none	catches		0.01164	0.00801		0.00769	0.00353	0.00268	0.00283	0.03557	0.00337		1013535	893439	704404	771597	680681	457259	470754	420345	408157	320809	0.148	0.683	10	
EU .	TR3	none	catches	0.00000			0.00003	3							1028			772	884	4410	426							
NK I	BT1	none	catches	0.00834	0.00643	0.00672	0.00450	0.00427	0.00159	0.00150	0.00178	0.00207	0.00165		1122195	887830	996227	511642	527282	370939	366679	513056	373757	317294	0.953	0.000	10	
NK I	BT2	none	catches	0.00091	0.00006	0.00080	0.00044	1 0.00010	0.00004	0.00050					89457	38279	62036	42447	1390	2894	49163		440	242	0.901	0.001	9	
NK (GN1	none	catches	0.01773	0.01078	0.06988	0.00798	0.00438	0.00248	0.00264	0.00303	0.00262	0.00159		2077492	2164307	2031057	1795453	949658	1003603	1050057	1195617	1136118	1080149	0.593	0.071	10	
NK (GT1	none	catches	0.00235	0.00306	0.01418	0.00334	0.00199	0.00077	0.00188	0.00409	0.00186	0.00330		138641	244626	237800	175339	98614	100902	158205	130662	182841	321220	0.392	0.263	10	
NK I	LL1	none	catches	0.00000	0.00004	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000			105319	79773	41626	42159	15924	25347	28769	45576	29388	21089				
NK	TR1	none	catches	0.01994	0.02149	0.01824	0.02252	0.01550	0.01485	0.01116	0.01172	0.01479	0.01507		7137074	6422756	6405176	6020308	3801069	4034203	3793148	3592389	3664621	3593770	0.854	0.002	10	
NK .	TR2	none	catches	0.01666	0.01551	0.00763	0.00689	0.00674	0.00248	0.00088	0.00081	0.00136	0.00058		2597949	2580788	1916695	1405216	1080616	706247	569359	431399	370536	312765	0.975	0.000	10	- 1
NK .	TR3	none	catches	0.00009	0.00003	0.00007	0.00004	0.00002	0.00000	0.00000			0.00001		3084554	3026636	2373302	1761200	799803	916558	577813	1063007	336257	477168				
NG I	BT1	CPart13B	catches								0.00104	0.00103	0.00209									202685	169873	384590	0.991	0.085	3	
NG I	BT1	none	catches	0.00604	0.00367	0.00292	0.00621	0.00236	0.00155	0.00170			0.00021		1060809	671130	618160	1321240	305837	228530	265710			40284		0.000	8	1
	BT2	CPart13B	catches								0.01521	0.01355									47771	2863860	2644958	2412375				
	BT2	none	catches	0.02683	0.03275	0.03023	0.01693	0.02716	0.01662						2739407	3559560	4046341	2974409	3251512	1975399	2444807	401247	96356	79036	0.963	0.000	10	1
		none	catches					0.00000							337639	359134	308275	308517	180503	70981	175602	74835	73826	61957	0.505	5,000		_
	GT1	none	catches	0.00000	2.00000			0.00000							1092	1564	5342	11100	3291	12918	12654	17355	12003	5823				
	LL1	none	catches	0.00000		0.00000		0.00000	3.00000	3.00000	5.00002	5.00000	5.00000		102465	83137	142602	54974	15752	6164	4318	12052	6253	15449				
	TR1	CPart13B	catches	0.00000		0.00000				0.00407	0.00428	0.00454	0.00700		102403	0010/	142002	J42/4	13/32	0104	898933	964206	874021	939503	0.380	0.711	4	
			catches																								4	
	TR1	CPart13c		0.00044	0.00005	0.00000	0.00000	0.00001	0.00220	0.00210	0.00072	0.00140	0.00139		2242710	1407610	1254000	1022001	1501400	1045025	1242445	1144923	1254762	931671		0.721		
	TR1	none	catches	0.00344	0.00285	0.00090	0.00325	0.00281	0.00339	0.000:5	0.0007	0.0004=	0.00074		2343719	1497618	1254880	1823891	1501499	1846925	00004	07005	704.451	005045		0.078	6	
	TR2	CPart13B	catches								0.00245										260311	873808	721452	865045	0.898		4	
	TR2	CPart13c	catches							0.00301	0.00028	U.00102	0.00012								1376367	482080	524579	267661		0.019	4	
NG .	TR2	none	catches	0.00531	0.00416	0.00337	0.00295	0.00382	0.00447						1853471	1705154	1937849	1707774	1621394	1794132					0.201	0.703	6	

Table 5.3.10.6 continued.

RA BT2	none	catches	0.00072	0.00032	0.00013	0.00008	0.00021	0.00016	0.00015	0.00009	0.00017	0.00017	96232	94514	75129	66203	103453	88053	88053	40118	67545	57044	0.521	0.123	10	1.72
RA GNI		catches		0.00013									58454	64809	46058	31231	61545	47746	46493	2149	7803	3322	0.011	0.220		
RA GT1		catches		0.00030									830136	793053	813190	1785801	1703889	1010253	1010253	634781	690428	636164	-0.214	0.553	10	-0.62
RA TR1		catches		0.00000	0.00170	0.00032			0.00000			0.00015	3347063	2299125	1901534	2675348	2418190	2714146	2622538	1913401	1727371	324	-0.214	0.555	10	-0.02
RA TR2		catches		0.00058	0.00030	0.00017						0.00013	1961970	1911744	1713917	1558413	1727617	1930459	1924156	1089380	960559	725367	-0.124	0.733	10	-0.35
RA TR3		catches									0.00000			1753	7121	1319		2184	2184	13827	2210	1250				
BJ TR2	none	catches			0.00000										660											
RL TR2	none	catches	0.00000	0.00000									54	884												
VIR BT1	none	catches	0.00430	0.00259	0.00010								965239	543305	36825								0.999	0.028	3	22.34
NIR BT2	none	catches		0.00048									20350	47517	16785											
VIR TR1	CPart13A	catches										0.00000										2672				
VIR TR1	CPart13B	catches							0.00001	0.00000	0.00000	0.00000							41944	23326	33246	16573				
VIR TR1		catches								0.00000									14196	6034		2781				
VIR TR1	none	catches		0.00000	0.00001	0.00000	0.00001	0.00001						16948	70710	51951	61460	49104								
VIR TR2	CPart13A	catches										0.00000										90338				
VIR TR2	CPart13B	catches							0.00000	0.00001	0.00002	0.00001							65544	161981	207697	109647				
NIR TR2	CPart13c	catches								0.00001									320087	236516	70443	25672				
VIR TR2		catches	0.00000	0.00000	0.00002	0.00008	0.00013	0.00005					6784	12440	221904	532885	758972	409182								
NLD BT1		catches							0.00177	0.00112	0.00116	0.00544	575801	700747	719292	1528652	720068	370417	412420	378796	308516	1090258	0.995	0.000	10	28.17
NLD BT2	none	catches	0.24940	0.20122	0.15692	0.14549	0.14553	0.09829					47724234	44669317	44478122	38823660	37931313	27646215	28696410	28510104	25776297	22428296		0.000	10	6.88
NLD GN:	l none	catches							0.00000	0.00000	0.00001		460895	416025	387945	511580	521697	507733	419797	357091	316070	295035				
NLD GT1	none	catches							0.00001	0.00004	0.00006	0.00000						740	26917	37399	21431	29054				
NLD TR1	none	catches							0.00366	0.00324	0.00442	0.01014	684700	589170	547564	532260	631492	1400068	1316055	1290080	1173220	1329299	0.368	0.296	10	1.11
NLD TR2	none	catches							0.00351	0.00365	0.04481	0.00427	1932081	1496720	1298918	1224916	1384658	1853682	1334665	1231860	1313554	1277297	0,355	0.314	10	1.07
CO BT1	none	catches	0.00415	0.00242	0.00209	0.00347	0.00199	0.00043	0.00042				866665	694716	730810	598616	349914	68568	53082							
со вт2	none	catches	0.03829	0.04665	0.03059	0.02128	0.02225	0.01197	0.00706	0.00183		0.00028	3765518	4608817	4185262	3108933	2790115	1351720	554376	144306		68262	0.964	0.000	9	9.59
CO GN	l none	catches	0.00000			0.00000							196852	197407	165644	293823	320785	417076	376332	440579	607650	569749				
CO TR1	CPart13B	catches							0.00115	0.00282	0.00229	0.00008							692932	955808	810706	36937				
CO TR1	CPart13C	catches							0.00616	0.00291	0.00366	0.00530							11552644	9486824	9185531	9265940	0.695	0.305	4	1.36
CO TR1	none	catches	0.00461	0.00392	0.00347	0.00464	0.00352	0.00507					16079389	12684328	12158295	11660764	11022982	12176292					0.342	0.507	6	0.72
CO TR2	CPart13B	catches							0.00039	0.00027	0.00062	0.00003							4219929	7467356	5277096	287446	0.583	0.417	4	1.01
CO TR2	CPart13C	catches							0.00215	0.00025	0.00009	0.00045							3796988	490013	1285425	4861297	0.495	0.505	4	0.80
CO TR2	none	catches	0.00305	0.00187	0.00142	0.00136	0.00211	0.00232					9998937	9485974	9108232	8561812	8678139	8855742					0.646	0.166	6	1.69
CO TR3	none	catches			0.00000							0.00000	6377	5460	2356	116	11896		33117	27524		20706				
WE LL1	none	catches						0.00000	0.00000	0.00000	0.00000	0.00000		1056	4239	15026	11020	10928	11352	6600	8184	5016				
WE TR1	none	catches	0.00001	0.00001	0.00000	0.00000	0.00001	0.00005	0.00000	0.00001	0.00000	0.00001	381696	375455	387252	237269	269171	333387	245040	196354	189867	190816				
WE TR2		catches					0.00000			0.00000			4265	2055	1192	1298	2515	1059		0		3930				
ium			0.47912	0.41362	0.38875	0.28696	0.27664	0.18788	0.20591	0.17162	0.24418	0.18787	124826173	116125652	112524834	104177417	94453870	83473438	81952959	77243333	69073258	61454166	0.910	0.000	10	6.20
heck sum	Enar/E		0.80		0.99	0.77																				

Table 5.3.10.11 **Plaice** in area **3b2**. The left part of the table lists estimated F trajectories from the management plan and the ICES 2012 plaice assessment, as well as partial Fs for **landings** of fisheries using regulated gears (in the North Sea). The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. Cod plan article 13 assignments apply since 2009 or 2010, as interpreted from the background documents of national declarations *). A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs of all effort regulated gears to the overall F estimate of the stock.

2006 r	unning	g base line ann	iual F reducti	ons by 10	percent a	as F<=0.3,	rmsy=0.	.25						Effort kW days ru	inning previou	is year baseiii	ie											
				2003	2004	2005	200	6 2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012				
plan	1						0.37	2 0.335	0.302	0.300	0.300	0.300	0.300															
educ	tion F p	plan						-0.10	-0.10	-0.01	0.00	0.00	0.00															
esti	mated			0.602	0.47	0.394	0.37	2 0.314	0.239	0.22	0.207	0.2	0.232	Effort estimated	124826173	116125652	112524834	104177417	94453870	83473438	81952959	77243333	69073258	61454166				
educ	tion F e	estimated						-0.16	-0.24	-0.08	-0.06	-0.03	0.16															
														EFFORT												2003-201	12	
par				2003	2004	2005	200	6 2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012 r		p 1		
EL	BT1	none	landings	0.00425				5 0.00717					0.00435		1036595	1439951	1509759	1333012	1320169	984056	575501	535636	671368	963867	0.767	0.010	10	
EL	BT2	none	landings	0.01268	0.01052	0.00682	0.0048	3 0.00489	0.00416	0.00431	0.00428	0.00418	0.00280		4241216	4294884	3884007	3418751	2707991	3536979	3327143	2480357	1742532	1269319	0.749	0.013		
EL	GN1	none	landings					1 0.00001							111613	152642	148827	127951	128626	158409	161734	97609	95383	45103	0.743	0.015		
EL	GT1	none	landings	0100000	0100001	0100002	010000		0.00000						222020	202012	210027	12,551	15402	18000	5014	19041	18155	25216				
EL	LL1	none	landings					0.0000	0.00000	0.00000	0.00000	0.00000	0.00000						15402	1768	3014	1660	128	786				
EL	TR1	none	landings					0.00053	0.00046	0.00043		0.00049				1989			161520	201379	220428	212429	128701	183682	0.554	0.197	7	- 4
EL	TR2	none	_		0.00001	0.00065	0.0007	2 0.00045								519343	343840	366940	298814	425374	506865	476033	435961	484371		0.444	9	
	TR3		landings		0.00091	0.00003	0.0007.	2 0.00043	0.00033	0.00047		0.00059	0.00102			319343	343640	300940	290014		300803		455901		0.293	0.444		
EL		none	landings	0.00015	0.00013	0.00001	0.0000	2 0 00041	0.00014		0.00000				47706	20712	2120	52005	20207	663		1899 884	1525	1175	0.700	0.005	9	
EU	BT1	none	landings										0.00050		47736	29712	2128	53986	30297	16790			1535	2793		0.036	-	
EU	BT2	none	landings					7 0.00284							1669870	2060092	2212397	1927398	1590823	1464163	1666322	1801775	1242171	1071896	0.709	0.022	10	
EU	GN1	none	landings	0.00009	0.00006	0.00005	0.0000	4 0.00004	0.00002				0.00003		191424	163463	271624	235427	145714	278008	233164	275364	225797	269836				
EU	GT1	none	landings								0.00000							1547			15444	1188	924					
EU	TR1	CPart13B	landings								0.00004										808679	898007	815730	747693				
EU	TR1	none	landings	0.00141	0.00082	0.00082	0.0028	4 0.00203	0.00342	0.00114	0.00149	0.00137	0.00173		1756193	1526666	1988209	2176131	1736694	1585192	759368	829604	741965	495051	0.275	0.442	10	
EU	TR2	CPart13B	landings							0.00002	0.00035	0.00026	0.00018								2420	39820	31240	14740				
EU	TR2	none	landings	0.00857	0.00672	0.00539	0.0037	3 0.00368	0.00207	0.00230	0.00234	0.00256	0.00221		1013535	893439	704404	771597	680681	457259	470754	420345	408157	320809	0.927	0.000	10	
EU	TR3	none	landings	0.00000			0.0000	3							1028			772	884	4410	426							
NK	BT1	none	landings	0.00834	0.00643	0.00672	0.0044	3 0.00427	0.00155	0.00150	0.00178	0.00207	0.00165		1122195	887830	996227	511642	527282	370939	366679	513056	373757	317294	0.955	0.000	10	
NK	BT2	none	landings	0.00091	0.00003	0.00037	0.0002	2 0.00004	0.00003	0.00026					89457	38279	62036	42447	1390	2894	49163		440	242	0.880	0.002	9	
NK	GN1	none	landings	0.01712	0.01014	0.00829	0.0074	5 0.00362	0.00246	0.00264	0.00303	0.00262	0.00158		2077492	2164307	2031057	1795453	949658	1003603	1050057	1195617	1136118	1080149	0.870	0.001	10	
NK	GT1	none	landings	0.00235	0.00306	0.00394	0.0031	3 0.00199	0.00077	0.00168	0.00120	0.00186	0.00329		138641	244626	237800	175339	98614	100902	158205	130662	182841	321220	0.765	0.010	10	
NK	LL1	none	landings	0.00000	0.00004	0.00000	0.0000	0.00000	0.00000	0.00000	0.00000	0.00000			105319	79773	41626	42159	15924	25347	28769	45576	29388	21089				
NK	TR1	none	landings	0.01954	0.02070	0.01672	0.0180	8 0.01537	0.01455	0.01113	0.01171	0.01465	0.01456		7137074	6422756	6405176	6020308	3801069	4034203	3793148	3592389	3664621	3593770	0.858	0.001	10	
NK	TR2	none	landings	0.00913	0.00892	0.00464	0.0033	6 0.00301	0.00135	0.00084	0.00069	0.00057	0.00038		2597949	2580788	1916695	1405216	1080616	706247	569359	431399	370536	312765	0.984	0.000	10	1
NK	TR3	none	landings	0.00008	0.00003	0.00002	0.0000	4 0.00002	0.00000	0.00000			0.00001		3084554	3026636	2373302	1761200	799803	916558	577813	1063007	336257	477168				
NG	BT1	CPart13B	landings	0100000	0,00000	0100002	010000		. 0100000	0100000	0.00104	0.00103			500 155 1	5020050	2575552	1,01200	,,,,,,,,	310000	0,,010	202685	169873	384590	0.991	0.085	3	
NG	BT1	none		0.00546	0.00367	0.00292	0.0060	8 0.00236	0.00151	0.00170	0.00204	0.00100	0.00021		1060809	671130	618160	1321240	305837	228530	265710	232003	233073	40284	0.986		8	14
NG	BT2	CPart13B	landings	3.00340	3.00307	3.00232	0.0000	0.00230	5.00151		0.01280	0.01355			200000	0,1130	020200	1321240	505037	220000	47771	2863860	2644958	2412375	0.988		4	-
NG	BT2	none		0.01421	0.01908	0.01620	0.0095	1 0.01475	0.00889						2739407	3559560	4046341	2974409	3251512	1975399	2444807	401247	96356	79036		0.012	10	
NG	GN1	none	landings					0.00000							337639	359134	308275	308517	180503	70981	175602	74835	73826	61957	0.500	3,000	10	
NG	GT1	none	landings	0.00000	0.00000			0.00000							1092	1564	5342	11100	3291	12918	12654	17355	12003	5823				
			-					0.00000	0.00000	0.00000	0.00000	0.00000	0.00000															
VG	LL1	none	landings	0.00000		0.00000									102465	83137	142602	54974	15752	6164	4318	12052	6253	15449	0.050	0.647		
NG	TR1	CPart13B	landings								0.00395										898933	964206	874021	939503		0.647	4	
	TR1	CPart13c	landings							0.00185	0.00065	0.00129	0.00116								1242445	1144923	1254762	931671		0.629	4	
VG	TR1	none	landings	0.00199	0.00244	0.00081	0.0026	2 0.00248	0.00299						2343719	1497618	1254880	1823891	1501499	1846925						0.464	6	
VG	TR2	CPart13B	landings								0.00192										260311	873808	721452	865045	0.999		4	
NG	TR2	CPart13c	landings							0.00116	0.00020	0.00076	0.00007								1376367	482080	524579	267661	0.888		4	
	TR2	none	landings	0.00270	0.00246	0.00231	0.0014	2 0.00195	0.00238						1853471	1705154	1937849	1707774	1621394	1794132					0.511	0.300	6	
	TR3	none	landings	0.00000											1988	7840	3315	6360	1220	492	82	718	621	246				

Table 5.3.10.11 continued

FRA BT2	none	landings	0.00033	0.00015	0.00007	0.00004	0.00012	0.00008	0.00007	0.00004	0.00010	0.00007	96232	94514	75129	66203	103453	88053	88053	40118	67545	57044				
FRA GN1	none	landings											58454	64809	46058	31231	61545	47746	46493	2149	7803	3322				
FRA GT1	none	landings											830136	793053	813190	1785801	1703889	1010253	1010253	634781	690428	636164				
FRA TR1	none	landings							0.00000				3347063	2299125	1901534	2675348	2418190	2714146	2622538	1913401	1727371	324				
FRA TR2	none	landings				0.00009						0.00008	1961970	1911744	1713917	1558413	1727617	1930459	1924156	1089380	960559	725367				
FRA TR3	none	landings									0.00000			1753	7121	1319		2184	2184	13827	2210	1250				
GBJ TR2	none	landings			0.00000					0100000	0100000			2,55	660	2025		2201	2101	25027	LLIO	2200				
IRL TR2	none	landings	0.00000	0.00000									54	884												
NIR BT1	none	landings			0.00010								965239	543305	36825								0.997	0.049	3	12.881
NIR BT2	none	landings											20350	47517	16785											
NIR TR1	CPart13A	landings										0.00000										2672				
NIR TR1	CPart13B	landings							0.00001	0.00000	0.00000								41944	23326	33246	16573				
NIR TR1	CPart13c	landings								0.00000		0.00000							14196	6034	552.15	2781				
NIR TR1	none	landings		0.00000	0.00001	0.00000	0.00001	0.00000						16948	70710	51951	61460	49104	2.250			2.02				
NIR TR2	CPart13A	landings										0.00000										90338				
NIR TR2	CPart13B	landings							0.00000	0.00001	0.00001								65544	161981	207697	109647				
NIR TR2	CPart13c	landings									0.00000								320087	236516	70443	25672				
NIR TR2	none	landings	0.00000	0.00000	0.00002	0.00003	0.00006	0.00003		0100001	0100000	0.00000	6784	12440	221904	532885	758972	409182	525557	255525	70115	25072				
NLD BT1	none	landings		0.00000	OICCOCL			0.00000		0.00112	0.00116	0.00544	575801	700747	719292	1528652	720068	370417	412420	378796	308516	1090258	0.995	0.000	10	28.178
NLD BT2	none	landings	0.11853	0.09981	0.08376	0.07625	0.07890	0.05297					47724234	44669317	44478122	38823660	37931313	27646215	28696410	28510104	25776297	22428296		0.000		10,107
NLD GN1	none	landings									0.00001		460895	416025	387945	511580	521697	507733	419797	357091	316070	295035				
NLD GT1	none	landings							0.00001	0.00004	0.00006	0.00000						740	26917	37399	21431	29054				
NLD TR1	none	landings							0.00364	0.00323	0.00435	0.00615	684700	589170	547564	532260	631492	1400068	1316055	1290080	1173220	1329299	0.188	0.603	10	0.541
NLD TR2	none	landings							0.00307	0.00301	0.00280	0.00253	1932081	1496720	1298918	1224916	1384658	1853682	1334665	1231860	1313554	1277297				
SCO BT1	none	landings	0.00394	0.00242	0.00209	0.00339	0.00199	0.00042	0.00042				866665	694716	730810	598616	349914	68568	53082							
SCO BT2	none	landings								0.00083		0.00014	3765518	4608817	4185262	3108933	2790115	1351720	554376	144306		68262	0.975	0.000	9	11,609
SCO GN1	none	landings				0.00000							196852	197407	165644	293823	320785	417076	376332	440579	607650	569749				
SCO TR1	CPart13B	landings							0.00088	0.00262	0.00208	0.00007							692932	955808	810706	36937				
SCO TR1	CPart13C	landings							0.00519	0.00258	0.00339	0.00441							11552644	9486824	9185531	9265940	0.702	0.298	4	1.394
SCO TR1	none	landings	0.00426	0.00371	0.00311	0.00358	0.00343	0.00480					16079389	12684328	12158295	11660764	11022982	12176292					0.414	0.414	6	0.910
SCO TR2	CPart13B	landings								0.00022	0.00042	0.00002							4219929	7467356	5277096	287446	0.673	0.327	4	1.287
SCO TR2	CPart13C	landings							0.00094	0.00021	0.00005	0.00031							3796988	490013	1285425	4861297				
SCO TR2	none	landings	0.00154	0.00106	0.00093	0.00071	0.00096	0.00134					9998937	9485974	9108232	8561812	8678139	8855742					0.720	0.107	6	2.075
SCO TR3	none	landings			0.00000							0.00000	6377	5460	2356	116	11896		33117	27524		20706				
SWE LL1	none	landings						0.00000	0.00000	0.00000	0.00000	0.00000		1056	4239	15026	11020	10928	11352	6600	8184	5016				
SWE TR1	none	landings	0.00001	0.00001	0.00000	0.00000	0.00001						381696	375455	387252	237269	269171	333387	245040	196354	189867	190816				
SWE TR2	none	landings					0.00000			0.00000			4265	2055	1192	1298	2515	1059		0		3930				
Sum			0.26684	0.24279	0.19361	0.17302	0.17012	0.11848	0.11889	0.11341	0.11911	0.12169	124826173	116125652	112524834	104177417	94453870	83473438	81952959	77243333	69073258	61454166	0.924	0.000	10	6.835
check sum	nar/F		0.44				0.54																			

Table 5.3.10.12 **Plaice** in area **3b2**. The left part of the table lists estimated F trajectories from the management plan and the ICES 2012 plaice assessment, as well as partial Fs for **discards** of fisheries using regulated gears (in the North Sea). The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. Cod plan article 13 assignments apply since 2009 or 2010, as interpreted from the background documents of national declarations *). A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs of all effort regulated gears to the overall F estimate of the stock.

006 runn	ing ba	ase line annu	ial F reducti	ons by 10	percent as	F<=0.3, F	msy=0.25							Effort kW days ru	inning previou	s year baselin	ie											
				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012				
plan							0.372	0.335	0.302	0.300	0.300	0.300	0.300															
duction	Fpla	in						-0.10	-0.10	-0.01	0.00	0.00	0.00															
estimate	ed			0.602	0.47	0.394	0.372	0.314	0.239	0.22	0.207	0.2	0.232	Effort estimated	124826173	116125652	112524834	104177417	94453870	83473438	81952959	77243333	69073258	61454166				
duction	Fest	timated						-0.16	-0.24	-0.08	-0.06	-0.03	0.16								-0.02	-0.06	-0.11	-0.11				
														EFFORT											- 2	2003-201	2	
oar				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012 r		o n		
EL BT	1 n	none	discards	0.00009	0.00000	0.00000	0.00012	0.00000	0.00009	0.00000	0.00000	0.00000	0.00000	,	1036595	1439951	1509759	1333012	1320169	984056	575501	535636	671368	963867				
EL BT.		none	discards	0.01467			0.00106		0.00124						4241216	4294884	3884007	3418751	2707991	3536979	3327143	2480357	1742532	1269319	0.391	0.264	10	
EL GN		none	discards	0.00000					0.00000			0.00000	0.00000		111613	152642	148827	127951	128626	158409	161734	97609	95383	45103				
EL GT		none	discards	0.00000	0.00002	0100025	0100000		0.00000			0.00000	0.00000		111015	202012	210027	12/351	15402	18000	5014	19041	18155	25216				
EL LL1		none	discards					0.00000	0.00000	0.00000	0.00000	0.00000	0.00000						15402	1768	3014	1660	128	786				
EL TR		none	discards					0.00001	0.00002	0.00000		0.00001				1989			161520	201379	220428	212429	128701	183682				
		none			0.00063	0.00030	0.00063		0.00002							519343	343840	366940	298814	425374	506865	476033	435961	484371	-0,006	0.000	9	
EL TR			discards		0.00002	0.00038	0.00002	0.00054	0.00025	0.00009		0.00530	0.00033			519343	543840	500940	238814		300803		455901		-0.000	0.588	-	
EL TR		none	discards	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		0.00000				47726	20712	2420	52005	20207	663		1899	4505	1175				
EU BT		none	discards					0.00000				0.0045-			47736	29712	2128	53986	30297	16790	400000	884	1535	2793	0.700	0.005	- 10	
EU BT:		none	discards	0.00810					0.00164						1669870	2060092	2212397	1927398	1590823	1464163	1666322	1801775	1242171	1071896	0.788	0.007	10	
EU GN		none	discards	0.00001	0.00001	0.00046	0.00000	0.00010	0.00000				0.00000		191424	163463	271624	235427	145714	278008	233164	275364	225797	269836				
EU GT		none	discards							0.00000	0.00000	0.00000						1547			15444	1188	924					
U TR	1 0	CPart13B	discards							0.00000	0.00000	0.00001	0.00001								808679	898007	815730	747693				
EU TR	1 n	none	discards	0.00012	0.00004	0.00010	0.00159	0.00007	0.00026	0.00000	0.00000	0.00012	0.00027		1756193	1526666	1988209	2176131	1736694	1585192	759368	829604	741965	495051	0.465	0.176	10	
EU TR	2 C	CPart13B	discards							0.00001	0.00009	0.00017	0.00003								2420	39820	31240	14740				
EU TR	2 n	none	discards	0.00982	0.00492	0.00262	0.00345	0.00401	0.00146	0.00038	0.00048	0.03301	0.00116		1013535	893439	704404	771597	680681	457259	470754	420345	408157	320809	-0.057	0.876	10	
EU TR	3 n	none	discards	0.00000			0.00000								1028			772	884	4410	426							
NK BT:	1 n	none	discards	0.00000	0.00000	0.00000	0.00008	0.00000	0.00003	0.00000	0.00000	0.00000	0.00000		1122195	887830	996227	511642	527282	370939	366679	513056	373757	317294				
NK BT.	2 n	none	discards	0.00000	0.00003	0.00042	0.00023	0.00005	0.00001	0.00024					89457	38279	62036	42447	1390	2894	49163		440	242				
NK GN	11 n	none	discards	0.00062	0.00064	0.06160	0.00052	0.00076	0.00002	0.00000	0.00000	0.00000	0.00001		2077492	2164307	2031057	1795453	949658	1003603	1050057	1195617	1136118	1080149	0.417	0.230	10	
NK GT	1 n	none	discards	0.00000	0.00000	0.01024	0.00021	0.00000	0.00000	0.00020	0.00289	0.00000	0.00001		138641	244626	237800	175339	98614	100902	158205	130662	182841	321220	0.223	0.536	10	
NK LL1	1 n	none	discards	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000			105319	79773	41626	42159	15924	25347	28769	45576	29388	21089				
NK TR		none	discards	0.00040	0.00080	0.00152	0.00444	0.00013	0.00030	0.00004	0.00001	0.00013	0.00051		7137074	6422756	6405176	6020308	3801069	4034203	3793148	3592389	3664621	3593770	0.485	0.155	10	
NK TR		none	discards	0.00753					0.00113						2597949	2580788	1916695	1405216	1080616	706247	569359	431399	370536	312765		0.000	10	
NK TR		none	discards	0.00000					0.00000		0100022	0.00070	0.00000		3084554	3026636	2373302	1761200	799803	916558	577813	1063007	336257	477168	0.5.1	0.000		
NG BT		CPart13B	discards	0.00000	0.00000	0.00005	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000			5004554	5020050	2575502	1701200	733003	510550	577025	202685	169873	384590				
NG BT		none	discards	0.00050	0.00000	0.00000	0.00014	0.00000	0.00004	0.00000	5.00000	5.00000	0.00000		1060809	671130	618160	1321240	305837	228530	265710	202003	103073	40284	0.607	0.111	8	
NG BT		CPart13B	discards	5.00036	0.00000	0.00000	3.00014	3.00000	3.00004	0.00000	0.00241	0.00000			1000003	0/1150	010100	1321240	303037	220530	47771	2863860	2644958	2412375		0.556	4	
NG BT.		none	discards	0.01252	0.01266	0.01402	0.00741	0.01240	0.00773						2739407	3559560	4046341	2974409	3251512	1975399	2444807	401247	96356	79036		0.000	10	
																									0.548	0.000	10	
		none	discards		0.00000				0.00000						337639	359134	308275	308517	180503	70981	175602	74835	73826	61957				
NG GT		none	discards	0.00000		0.00000	0.00000	0.00000	0.00000	0.00000	0.00002	0.00000	0.00000		1092	1564	5342	11100	3291	12918	12654	17355	12003	5823				
NG LL1		none	discards	0.00000		0.00000									102465	83137	142602	54974	15752	6164	4318	12052	6253	15449			_	
NG TR		CPart13B	discards								0.00033										898933	964206	874021	939503	-0.051	0.949	4	
NG TR		CPart13c	discards							0.00025	0.00008	0.00011	0.00023								1242445	1144923	1254762	931671				
NG TR		none	discards	0.00145	0.00041	0.00008	0.00063	0.00033	0.00040						2343719	1497618	1254880	1823891	1501499	1846925					0.936	0.006	6	
NG TR	2 C	CPart13B	discards							0.00005	0.00054	0.00166	0.00089								260311	873808	721452	865045	0.540	0.460	4	
NG TR	2 C	CPart13c	discards							0.00185	0.00008	0.00026	0.00004								1376367	482080	524579	267661	0.986	0.014	4	
NG TR	2 n	none	discards	0.00261	0.00170	0.00106	0.00153	0.00187	0.00208						1853471	1705154	1937849	1707774	1621394	1794132					-0.123	0.816	6	
															1988													

Table 5.3.10.12 continued

FRA B	T2	none	discards	0.00039	0.00017	0.00006	0.00004	0.00008	0.00007	0.00008	0.00005	0.00007	0.00009	96232	94514	75129	66203	103453	88053	88053	40118	67545	57044				
FRA G	N1	none	discards	0.00000	0.00007	0.00036	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	58454	64809	46058	31231	61545	47746	46493	2149	7803	3322				
FRA G	5T1	none	discards	0.00000	0.00000	0.00149	0.00002	0.00000	0.00000	0.00004	0.00061	0.00001	0.00000	830136	793053	813190	1785801	1703889	1010253	1010253	634781	690428	636164	-0.256	0.475	10	-0.749
FRA T	R1	none	discards	0.00000	0.00000			0.00000	0.00000	0.00000	0.00000	0.00000		3347063	2299125	1901534	2675348	2418190	2714146	2622538	1913401	1727371	324				
FRA T	R2	none	discards	0.00041	0.00024	0.00010	0.00009	0.00030	0.00012	0.00002	0.00005	0.00123	0.00005	1961970	1911744	1713917	1558413	1727617	1930459	1924156	1089380	960559	725367	-0.275	0.442	10	-0.809
FRA T	R3	none	discards								0.00000	0.00000			1753	7121	1319		2184	2184	13827	2210	1250				
GBJ T	R2	none	discards			0.00000										660											
IRL T	R2	none	discards	0.00000	0.00000									54	884												
NIR B	T1	none	discards	0.00017	0.00000	0.00000								965239	543305	36825											
NIR B	3T2	none	discards	0.00011	0.00015	0.00011								20350	47517	16785											
NIR T	R1	CPart13A	discards										0.00000										2672				
NIR T	R1	CPart13B	discards							0.00000	0.00000	0.00000	0.00000							41944	23326	33246	16573				
NIR T	R1	CPart13c	discards							0.00000	0.00000									14196	6034		2781				
NIR T	R1	none	discards		0.00000	0.00000	0.00000	0.00000	0.00000						16948	70710	51951	61460	49104								
NIR T	R2	CPart13A	discards										0.00000										90338				
NIR T	R2	CPart13B	discards							0.00000	0.00000	0.00000	0.00000							65544	161981	207697	109647				
NIR T	R2	CPart13c	discards							0.00008	0.00000	0.00000	0.00000							320087	236516	70443	25672				
NIR T	R2	none	discards	0.00000	0.00000	0.00001	0.00004	0.00007	0.00002					6784	12440	221904	532885	758972	409182								
NLD B	T1	none	discards							0.00000	0.00000	0.00000	0.00000	575801	700747	719292	1528652	720068	370417	412420	378796	308516	1090258				
NLD B	3T2	none	discards	0.13087	0.10140	0.07316	0.06924	0.06663	0.04533	0.05929	0.04064	0.03546	0.04961	47724234	44669317	44478122	38823660	37931313	27646215	28696410	28510104	25776297	22428296	0.869	0.001	10	4.967
NLD G	SN1	none	discards							0.00000	0.00000	0.00000		460895	416025	387945	511580	521697	507733	419797	357091	316070	295035				
NLD G	3T1	none	discards							0.00000	0.00000	0.00000	0.00000						740	26917	37399	21431	29054				
NLD T	R1	none	discards							0.00001	0.00000	0.00007	0.00399	684700	589170	547564	532260	631492	1400068	1316055	1290080	1173220	1329299	0.475	0.165	10	1.527
NLD T	R2	none	discards							0.00045	0.00064	0.04201	0.00174	1932081	1496720	1298918	1224916	1384658	1853682	1334665	1231860	1313554	1277297		0.317		1.067
SCO B	T1	none	discards	0.00021	0.00000	0.00000	0.00008	0.00000	0.00001	0.00000				866665	694716	730810	598616	349914	68568	53082							
SCO B	3T2	none	discards	0.01975	0.02311	0.01399	0.01053	0.01012	0.00586	0.00381	0.00101		0.00014	3765518	4608817	4185262	3108933	2790115	1351720	554376	144306		68262				
		none	discards	0.00000			0.00000							196852	197407	165644	293823	320785	417076	376332	440579	607650	569749				
SCO T	R1	CPart13B	discards							0.00026	0.00019	0.00021	0.00001							692932	955808	810706	36937				
		CPart13C	discards									0.00027								11552644	9486824	9185531	9265940				
		none	discards	0.00034	0.00021	0.00036	0.00106	0.00009		0100037	0100000	0100027	0.00005	16079389	12684328	12158295	11660764	11022982	12176292	11002011	3100021	3205502	3200310	-0.094	0.859	6	-0.189
		CPart13B	discards	5.55054	5.55022	5.55050	5.50200	5.50005		0.00022	0.00006	0.00020	0.00000	10073303	22034520	22230233	2200704	11012502	22270232	4219929	7467356	5277096	287446		0.625	4	0.572
		CPart13C	discards									0.00020								3796988	490013	1285425	4861297	0.575	3.023	-	0.071
		none	discards	0.00151	0.00081	0.00048	0.00065	0.00116		0.00121	0.00004	0.00004	0.00027	9998937	9485974	9108232	8561812	8678139	8855742	3.30300	.50015	2200420	1001277	0.508	0.303	6	1.180
		none	discards	0.00131	0.00001	0.00000	0.00003	0.00110	0.00038				0.00000	6377	5460	2356	116	11896	5555742	33117	27524		20706	0.300	0.303	- 0	1.100
SWE LI		none	discards			5.00000			0.00000	0.00000	0.00000	0.00000		05//	1056	4239	15026	11020	10928	11352	6600	8184	5016				
SWE T		none	discards	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000					381696	375455	387252	237269	269171	333387	245040	196354	189867	190816				
SWE T		none	discards	0.00000	0.00000			0.00000			0.00000	0.00000	0.00000	4265	2055	1192	1298	2515	1059	243040	190534	103007	3930				
	NZ.	none	uiscards	0.21220	0.17001							0.12502	0.06616		116125652		104177417	94453870	83473438	01052050	77242222	60073350		0.042	0.000	10	4.415
Sum				0.21230	0.1/081	0.19513	0.11398	0.10647	0.06937	0.08/02	0.05821	0.12503	0.00010	124826173	110125052	112524834	1041//41/	94453870	834/3438	81952959	77243333	69073258	61454166	0.842	0.002	10	4.415

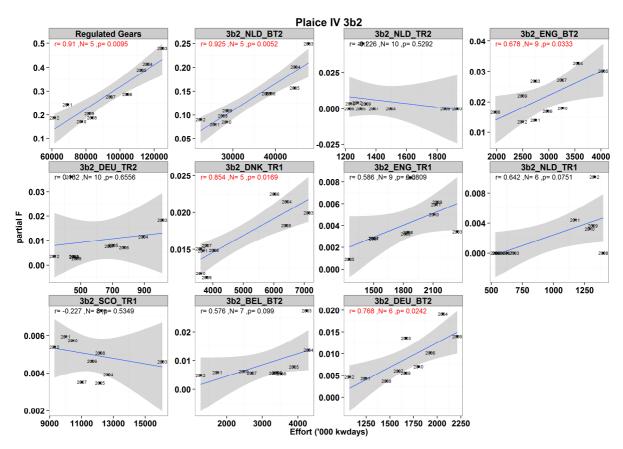


Fig. 5.3.10.5 Plaice. Partial fishing mortality (based on harvest rate estimates) against effort (kWd) in area 3b2 (North Sea) for all regulated gears combined, and the major fisheries individually. Ten metiers with highest catch are shown where catch >1% of total for the regulated area, ranked top left to bottom right. Data 2003-2012 aggregated across special conditions. r value shows linear model fit (grey 95% confidence interval), with p-value (significant relationships at 0.05 level shown in red; N and p values adjusted for autocorrelation).

Table 5.3.10.13 **Sole** in area **3b2**. The left part of the table lists estimated F trajectories from the management plan and the ICES 2012 sole assessment, as well as partial Fs for **landings** of fisheries using regulated gears (in the North Sea). The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. Cod plan article 13 assignments apply since 2009 or 2010, as interpreted from the background documents of national declarations *). A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs of all effort regulated gears to the overall F estimate of the stock.

JUO FL	unning	base line ann	nual F reducti	ons by 10	percent as	s F<=0.2, F	Fmsy=0.2	2						Effort kW days ru	ınning previou	ıs year baselir	ie											
				2003	2004	2005	2006	5 2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012				
olan							0.47	7 0.423	0.381	0.343	0.309	0.278	0.25															
duct	ion F p	lan						-0.10	-0.10	-0.10	-0.10	-0.10	-0.10															
estin	nated			0.593	0.518	0.573	0.47	7 0.47	0.387	0.389	0.375	0.322	0.238	Effort estimated	124618679	115919674	112350743	103867154	94107654	83044375	81532158	76880020	68609980	60954265				
duct	ion F e	stimated						0.00	-0.18	0.01	-0.04	-0.14	-0.26								-0.02	-0.06	-0.11	-0.11				
														EFFORT												2003-201	2	
oar				2003	2004	2005	2006	5 2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012 r		p n		
EL	BT1	none	landings	0.00071		0.00047			0.00018			0.00035	0.00035	KW days at sea	1036595	1439951	1509759	1333012	1320169	984056	575501	535636	671368	963867		0.045	10	
			_										0.01026		4241216	4294884	3884007	3418751	2707991		3327143		1742532	1269319				
L	BT2	none	landings				0.03384			0.03304		0.02049								3536979		2480357			0.923	0.000	10	
		none	landings	0.00079	0.00085	0.00115	0.00076		0.00123						111613	152642	148827	127951	128626	158409	161734	97609	95383	45103	0.797	0.006	10	
	GT1	none	landings					0.00041	0.00032	0.00002		0.00033							15402	18000	5014	19041	18155	25216				
	LL1	none	landings								0.00000		0.00000							1768		1660	128	786				
	TR1	none	landings						0.00000							1989			161520	201379	220428	212429	128701	183682				
L	TR2	none	landings		0.00168	0.00202	0.00168	0.00145	0.00319	0.00296	0.00352	0.00247	0.00113			519343	343840	366940	298814	425374	506865	476033	435961	484371	0.306	0.423	9	
L	TR3	none	landings								0.00000		0.00000							663		1899		1175				
U	BT1	none	landings	0.00033	0.00001	0.00000	0.00009	0.00000	0.00002						47736	29712	2128	53986	30297	16790		884	1535	2793				
U	BT2	none	landings	0.01930	0.02250	0.02145	0.01352	0.01096	0.00885	0.00940	0.01040	0.00497	0.00530		1669870	2060092	2212397	1927398	1590823	1464163	1666322	1801775	1242171	1071896	0.848	0.002	10	
U	GN1	none	landings	0.00246	0.00248	0.00421	0.00360	0.00232	0.00398	0.00397	0.00448	0.00353	0.00328		191424	163463	271624	235427	145714	278008	233164	275364	225797	269836	0.884	0.001	10	
U	GT1	none	landings							0.00074	0.00010	0.00007						1547			15444	1188	924					
U	TR1	CPart13B	landings								0.00000	0.00000	0.00000								808679	898007	815730	747693				
U	TR1	none	landings	0.00002	0.00001	0.00003	0.00005	0.00001	0.00003	0.00002	0.00002	0.00000	0.00000		1756193	1526666	1988209	2176131	1736694	1585192	759368	829604	741965	495051				
		CPart13B	landings								0.00003	0.00001	0.00000								2420	39820	31240	14740				
	TR2	none	landings	0.00235	0.00116	0.00091	0.00050	0.00065	0.00071						1013535	893439	704404	771597	680681	457259	470754	420345	408157	320809	0.788	0.007	10	
		none	landings	0.00000			0.00001								1028			772	884	4410	426							
		none	landings		0.00058	0.00040		0.00041	0.00023	0.00009	0.00016	0.00002	0.00005		1122195	887830	996227	511642	527282	370939	366679	513056	373757	317294	0.709	0.022	10	
		none	landings	0.00006				0.00003			0.00010	0.00002	0.00003		89457	38279	62036	42447	1390	2894	49163	313030	440	242	0.703	0.022	10	
		none	landings					0.01093			0.01000	0.00061	0.00704		2077492	2164307	2031057	1795453	949658	1003603	1050057	1195617	1136118	1080149	0.000	0.001	10	
			_					0.01055							138641	244626	237800	175339	98614	1003003	158205	130662	182841	321220			10	
		none	landings						0.00064	0.00089	0.00058	0.00082	0.00072												0.427	0.218	10	
VK	LL1	none	landings		0.00000			-							105319	79773	41626	42159	15924	25347	28769	45576	29388	21089				
		none	landings		0.00037			0.00032							7137074	6422756	6405176	6020308	3801069	4034203	3793148	3592389	3664621	3593770		0.007	10	
		none	landings					0.00022	0.00022		0.00003	0.00006	0.00001		2597949	2580788	1916695	1405216	1080616	706247	569359	431399	370536	312765	0.973	0.000	10	
VK	TR3	none	landings	0.00001	0.00000	0.00000	0.00000	0.00000		0.00000					3084554	3026636	2373302	1761200	799803	916558	577813	1063007	336257	477168				
IG	BT1	CPart13B	landings								0.00006	0.00003	0.00002									202685	169873	384590				
IG	BT1	none	landings	0.00027	0.00008	0.00013	0.00025	0.00003	0.00006	0.00004			0.00000		1060809	671130	618160	1321240	305837	228530	265710			40284				
١G	BT2	CPart13B	landings							0.00134	0.01311	0.00918	0.00507								47771	2863860	2644958	2412375	0.847	0.153	4	
٧G	BT2	none	landings	0.00740	0.00774	0.01086	0.00958	0.01146	0.00514	0.01029	0.00357	0.00073	0.00031		2739407	3559560	4046341	2974409	3251512	1975399	2444807	401247	96356	79036	0.914	0.000	10	
IG	GN1	CPart13B	landings										0.00000									111390	152556	102172				
IG	GN1	none	landings	0.00004	0.00003	0.00003	0.00005	0.00014	0.00007	0.00005	0.00004	0.00007	0.00003		337639	359134	308275	308517	180503	70981	175602	74835	73826	61957				
IG	GT1	none	landings	0.00000	0.00000	0.00008	0.00015	0.00002	0.00005	0.00007	0.00007	0.00007	0.00003		1092	1564	5342	11100	3291	12918	12654	17355	12003	5823				
G	LL1	none	landings	0.00000	0.00000		0.00000)							102465	83137	142602	54974	15752	6164	4318	12052	6253	15449				
		CPart13B	landings							0.00003	0.00003	0.00002	0.00002					2.271			898933	964206	874021	939503				
	TR1	CPart13c	landings								0.00010										1242445	1144923	1254762	931671				
	TR1	none		0.00020	0.00010	0.00000	0.00013	0.00015	0.00016	5.00021	5.00010	5.00000	5.00005		2343719	1497618	1254880	1823891	1501499	1846925	1272773	1177723	1254/02	3310/1				
			_	0.00020	0.00010	0.00008	0.00013	0.00013	0.00010	0.00010	0.00038	0.00116	0.00060		2343713	145/010	1234000	1023031	1301499	1040923	260311	873808	721452	865045	0.428	0.572	4	
		CPart13B	landings																								4	
	TR2	CPart13c	landings	0.00122	0.00005	0.001.0	0.00000	0.00122	0.00000	0.00248	0.00103	0.00067	0.00029		1053477	170515	1027010	170777	150105	1704100	1376367	482080	524579	267661	0.981		- 1	
VG VG	TR2	none	landings landings		0.00086	0.00149	0.00202	0.00188	0.00236						1853471 1988	1705154 7840	1937849 3315	1707774 6360	1621394 1220	1794132 492	82	718	621	246	-0.160	0.762	6	

Table 5.3.10.13 continued.

FRA E	BT2	none	landings	0.00168	0.00117	0.00109	0.00071	0.00096	0.00067	0.00068	0.00051	0.00052	0.00043	96232	94514	75129	66203	103453	88053	88053	40118	67545	57044	0.660	0.038	10	2.485
FRA (GN1	none	landings	0.00102	0.00120	0.00125	0.00021	0.00014	0.00032	0.00032	0.00003	0.00002	0.00000	58454	64809	46058	31231	61545	47746	46493	2149	7803	3322	0.668	0.035	10	2.539
FRA (GT1	none	landings	0.01907	0.01499	0.02114	0.02301	0.01658	0.01973	0.02000	0.00664	0.01234	0.01043	830136	793053	813190	1785801	1703889	1010253	1010253	634781	690428	636164	0.574	0.083	10	1.983
FRA 1	TR1	none	landings			0.00000		0.00003			0.00000	0.00000	0.00000	3347063	2299125	1901534	2675348	2418190	2714146	2622538	1913401	1727371	324				
FRA T	TR2	none	landings	0.00046	0.00033	0.00012	0.00012	0.00033	0.00011	0.00010	0.00011	0.00006	0.00004	1961970	1911744	1713917	1558413	1727617	1930459	1924156	1089380	960559	725367				
FRA 1	TR3	none	landings			0.00000			0.00000	0.00000			0.00000		1753	7121	1319		2184	2184	13827	2210	1250				
IRL 1	TR2	none	landings		0.00000									54	884												
NIR E	BT1	none	landings	0.00118	0.00048	0.00012								965239	543305	36825								0.972	0.151	3	4.137
NIR E	BT2	none	landings	0.00006	0.00006	0.00004								20350	47517	16785											
NIR T	TR1	CPart13B	landings										0.00000							41944	23326	33246	16573				
NIR 1	TR1	CPart13c	landings							0.00000	0.00000		0.00000							14196	6034		2781				
NIR T	TR1	none	landings			0.00000	0.00000	0.00000							16948	70710	51951	61460	49104								
NIR 1	TR2	CPart13A	landings										0.00001										90338				
NIR 1	TR2	CPart13B	landings								0.00001	0.00001	0.00000							65544	161981	207697	109647				
NIR 1	TR2	CPart13c	landings							0.00001	0.00001	0.00000	0.00000							320087	236516	70443	25672				
NIR 1	TR2	none	landings		0.00000	0.00001	0.00003	0.00001	0.00000					6784	12440	221904	532885	758972	409182								
NLD E	BT1	none	landings							0.00048	0.00009	0.00003	0.00004	575801	700747	719292	1528652	720068	370417	412420	378796	308516	1090258				
NLD E	BT2	none	landings	0.44789	0.38298	0.41443	0.33569	0.35978	0.27734	0.27896	0.26538	0.21776	0.17548	47724234	44669317	44478122	38823660	37931313	27646215	28696410	28510104	25776297	22428296	0.975	0.000	10	12.411
NLD (GN1	none	landings							0.00553	0.00491	0.00429	0.00451	460895	416025	387945	511580	521697	507733	419797	357091	316070	295035	0.948	0.000	10	8.425
NLD (GT1	none	landings							0.00002	0.00018		0.00025						740	26917	37399	21431	29054				
NLD 1	TR1	none	landings							0.00001	0.00006			684700	589170	547564	532260	631492	1400068	1316055	1290080	1173220	1329299				
NLD 1	TR2	none	landings							0.00090	0.00068	0.00084	0.00033	1932081	1496720	1298918	1224916	1384658	1853682	1334665	1231860	1313554	1277297				
SCO E	BT1	none	landings	0.00038	0.00014	0.00018	0.00030	0.00018	0.00000	0.00001				866665	694716	730810	598616	349914	68568	53082				0.840	0.018	7	3.462
SCO E	BT2	none	landings	0.00788	0.00970	0.01265	0.01237	0.01641	0.00635	0.00272	0.00096		0.00034	3765518	4608817	4185262	3108933	2790115	1351720	554376	144306		68262				
SCO 1	TR1	CPart13B	landings							0.00001	0.00002	0.00001								692932	955808	810706	36937	0.894	0.106	4	2.822
SCO 1	TR1	CPart13C	landings							0.00002	0.00002	0.00006	0.00002							11552644	9486824	9185531	9265940				
SCO 1	TR1	none	landings	0.00004	0.00002	0.00003	0.00002	0.00001	0.00005					16079389	12684328	12158295	11660764	11022982	12176292								
SCO 1	TR2	CPart13B	landings							0.00001	0.00003	0.00004								4219929	7467356	5277096	287446				
SCO 1	TR2	CPart13C	landings							0.00010	0.00010	0.00000	0.00005							3796988	490013	1285425	4861297				
SCO 1	TR2	none	landings	0.00008	0.00004	0.00004	0.00017	0.00018	0.00021					9998937	9485974	9108232	8561812	8678139	8855742								
SWE 1	TR1	none	landings	0.00000								0.00000		381696	375455	387252	237269	269171	333387	245040	196354	189867	190816				
Sum				0.50406	0.50755	0.56582	0.46006	0.46540	0.27660	0.20021	0.26252	0.20004	0.22700	124618679	115919674	112350743	103867154	94107654	83044375	81532158	76880020	68609980	60954265	0.073	0.000	10	11,700

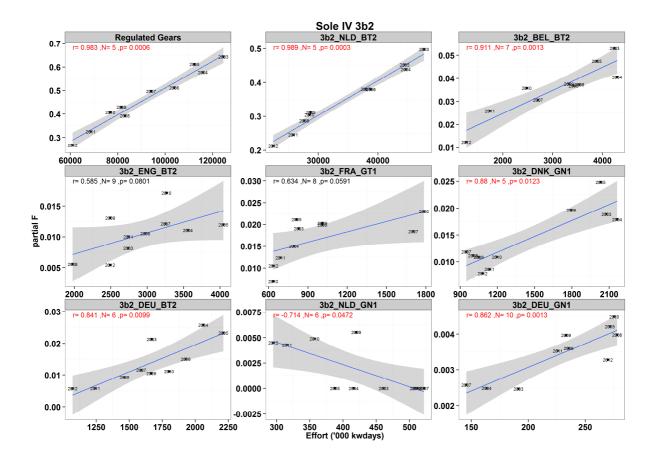


Fig. 5.3.10.6 Sole. Partial fishing mortality (based on harvest rate estimates) against effort (kWd) in area 3b2 (North Sea) for all regulated gears combined, and the major fisheries individually. Ten metiers with highest catch are shown where catch >1% of total for the regulated area, ranked top left to bottom right. Data 2003-2012 aggregated across special conditions. r value shows linear model fit (grey 95% confidence interval), with p-value (significant relationships at 0.05 level shown in red; N and p values adjusted for autocorrelation).

5.3.11 ToR 9 Trends in fishing mortality and fishing effort by Member State and fisheries with regards to the cod plan (R (EC) No 1342/2008) provisions, in particular with regard to Article 13

The detailed ToR for this task were:

"To quantitatively assess the annual trend in cod mortality that would have resulted from the fishing mortality adjustments in Article 8 and the trends in fishing effort that would have resulted from Article 12 of Council Reg. 1342/2008, for the period 2008 to 2012. STECF is then requested to quantitatively assess the partial cod fishing mortality and fishing effort trends of the regulated gears that were observed during 2008 to 2012. STECF is requested to comment on the questions if and to which extent the Member States application of Article 13, Paragraph 2, points a, b, and c have supported the reduction of cod fishing

mortality as defined in Articles 8 and 9 and whether the increased fishing effort deployed by Member States was commensurate with the fishing mortality level to be achieved in 2012. The group is requested to quantify for each Member State and effort group (Annex I to Council Reg. 1342/2008) the partial target fishing mortality of cod, and partial fishing mortality of cod generated in excess of the cod plan, and, if a significant correlation between cod fishing mortality and fishing effort exists, the corresponding amounts of target fishing effort and of the excessive fishing effort in units of kW.days at sea"

In order to address this terms of reference, STECF EWG 13-13 has divided the question into three parts;

1. To quantitatively assess the annual trend in cod mortality that would have resulted from the fishing mortality adjustments in Article 8 and the trends in fishing effort that would have resulted from Article 12 of Council Reg. 1342/2008, for the period 2008 to 2012. STECF is then requested to quantitatively assess the partial cod fishing mortality and fishing effort trends of the regulated gears that were observed during 2008 to 2012.

This ToR was addressed by ToR 8 and the 'partial F' tables produced in 'App 07 partial F evaluation by fishery stocks'. As such, no further comment is made in this section.

2. STECF is requested to comment on the questions if and to which extent the Member States application of Article 13, Paragraph 2, points a, b, and c have supported the reduction of cod fishing mortality as defined in Articles 8 and 9 and whether the increased fishing effort deployed by Member States was commensurate with the fishing mortality level to be achieved in 2012.

Figure 5.3.11.1 shows the trends in partial F and effort by Member State for regulated gears, standardised to their 2008 level. It should be noted that effort reductions have not been stipulated under the plan for all gears, and so effort levels should necessarily not have been expected to reduce to 0.45*2008 levels under implementation of the management plan. However, STECF EWG 13-13 notes that the estimated trends in partial fishing mortality are dependent on the changed perception of the exploitation status in 2011 and 2012 derived from the 2013 ICES assessment of the North Sea cod stock. It can be seen that partial F for all Member States has reduced since 2008, though such reductions have not always been consistent (i.e. linearly proportional) with changes in effort by regulated gears. In the UK, partial F appears to have reduced consistent with the overall F reductions required under the plan, though effort has not. This suggests that there has been some decoupling of cod from fishing effort, consistent with cod avoidance.

Figure 5.3.11.1. Trends in partial fishing mortality as estimated by STECG EWG 13-13 and fishing effort for Member States regulated gears, standardised to 2008 levels. Red lines indicate trends in partial F and blue lines trends in kW days fishing effort by regulated gears. Dotted red vertical line indicates 2008 level, and solid red horizontal line indicates 0.45*2008 values.

Figure 5.3.11.2 shows the catchability trends in the major cod fisheries in the North Sea with the linear trend since 2008 highlighted. It can be seen that, in general, there has been a downward trend in catchability indicating that some cod avoidance or discard reduction is occurring, and this can be seen also for the UK TR1 and TR2 fisheries, which are exclusively operating under Article 13.2c if not subject to Article 13.2b or exempted under Article 11.

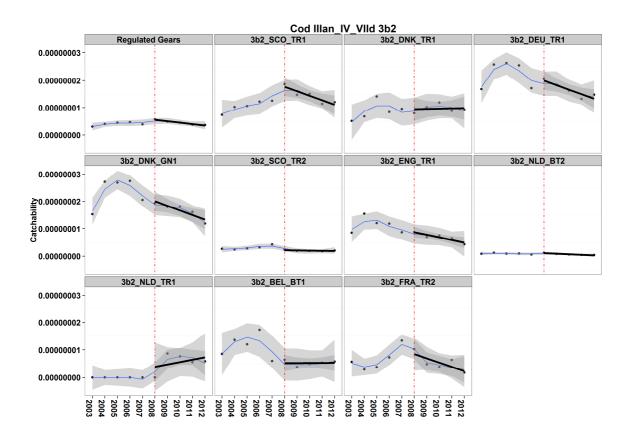


Figure 5.3.11.2 Trends in catchability (partial F/kw days fishing effort) for all regulated gears and the major fisheries in 3b2. Blue lines indicate a local regression smoother, while solid black lines indicate the linear trend since 2008 to indicate changes in catchability since the introduction of the cod plan. Grey outlines indicate 95% confidence limits, while red dotted line delinates pre- and post- 2008.

STECF EWG 13-13 notes that Article 13.2a has not been adopted by any Member State, and so there was no detailed discussion of this provision in this section.

Article 13.2b is for 'effort groups in which the fishing activity of one or more vessels results in a catch composition of less than 5% cod per fishing trip'. STECF has already stated that a catch composition special condition was not necessarily consistent with reductions in cod mortality as it does not control the overall amount of cod caught. STECF went on to further note that Article 13.2b:

"(i) may result in significant cod catches where large volume fisheries catch cod as a bycatch and this results in significant removals, particularly where the cod stock is depleted; (ii) it offers a perverse incentive to catch more of other species in order to reduce the percentage catch of cod. If this derogation is to contribute to a reduction in exploitation of cod it is important that the total amount of cod caught by vessels under this does not contribute significantly to mortality. Therefore there is a need to have an overall cap on the catch of cod as a % of the TAC for cod taken by all vessels covered by this derogation. Such an approach would require monitoring of total catch, as with fully documented fisheries (STECF 12-13).

STECF EWG 13-13 reiterates these comments. However, STECF EWG 13-13 concludes that the contribution of all fisheries operating under Article 13.2b to the estimated fishing mortality of cod remains low and did not exceed 5% during 2009-2012.

STECF EWG 13-13 notes that Article 13.2c has only been adopted by the UK in areas 3b1, 3b2 or 3b3 and is applied to the entire fleet using regulated gears when not subject to Article 13.2b or exempted under Article 11. STECF EWG 13-13 notes that the respective UK (ENG, SCO, NIR) gear types TR1 have reduced their fishing effort in kWdays at sea by 20 % since 2009, which coincides with an estimated reduction in fishing mortality of cod by 36%. During 2009-2012, the fishing effort of TR2 gears operating under Article 13.2.c declined by 11%, with a reduction in fishing mortality by 31% over the same period. The respective fisheries by Northern Ireland are negligible and were not operative in 2012.

3. The group is requested to quantify for each Member State and effort group (Annex I to Council Reg. 1342/2008) the partial target fishing mortality of cod, and partial fishing mortality of cod generated in excess of the cod plan, and, if a significant correlation between cod fishing mortality and fishing effort exists, the corresponding amounts of target fishing effort and of the excessive fishing effort in units of kW.days at sea

STECF EWG 13-13 notes that the estimation of partial target fishing mortalities for cod by Member State and effort group requires the definition of proportions of overall F to be allocated to each effort group. STECF EWG 13-13 notes that these proportions have not remained stable in recent years as vessels are re-classified to a different special condition – as such, any assumption of target partial F for fleets based on recent years does not seem appropriate. Given a lack of knowledge on shares of partial F values among fisheries the estimation of partial target fishing mortalities is considered impossible.

The point of Article 13.2c is to allow greater effort by reducing catchability on cod (buying back of effort). Figure 5.3.11.1 shows the evolution of catchability for major gear groups. Since 2009, all English (ENG) and Scottish (SCO) TR1 gear groups fall under Article 13.2c, if not subject to Article 13.2b or exempted under Article 11, and display clear negative trends in catchability. However, the SCO TR2 gear group does not display a trend in cod catchability. Table 5.3.10.4 lists the correlation between cod fishing mortality and fishing effort for the regulated gear types. For SCO gear groups TR1 and TR2 and ENG gear group TR1 falling under Article 13.2c the correlations are insignificant. Only the rather small ENG gear group TR2 operating under Article 13.2c displays a significant relationship between fishing mortality and fishing effort.

STECF EWG 13-13 is unable to estimate any excessive effort for fisheries operating under the provisions of Article 13.2c as there are hardly significant correlations between partial fishing mortality and fishing effort of the relevant fisheries.

5.3.12 ToR 10 Considerations in order to accomplish spatio-temporal patterns in standardized catchability indices for cod

5.3.12.1 Introduction

Catchability (q) is defined as the relationship between the catch rate (CPUE) and the true population size. Consequently, the unit of catchability is fish caught per fish available per effort unit and per time unit, or, in easier words, catchability can conceptually be considered as the probability of any single fish being caught (Jul-Larsen *et al.*, 2003).

Many factors are related to catchability, e.g. mainly fish abundance at a certain time in a certain area and gear efficiency (fishing power) including use of the gear and fishers' experience (Marchal *et al.*, 2001). A standard solution to evaluate changes in catchability is therefore to compare catch rates from commercial and research fishing where the catchability of the research fishing is holding constant from year to year (Neis *et al.*,1999):

CPUE (fishery)/CPUE (survey) = q (fishery)/q (survey)

This catchability index has no units. STECF EWG 13-13 interprets the resulting ratio as an index of fishing mortality per individual fish independent of stock size, which allows spatio-temporal analyses. The calculation of catchability indices for cod per ICES statistical square (rectangle) and year from standardized and averaged ratios between CPUE by fishery /NS IBTS Q1 indices are therefore believed to provide indications of spatio-temporal patterns.

5.3.12.2 Data

NS IBTS Q1 data were downloaded from ICES DATRAS server, i.e. station data and catch data for the years 2003-2012. Only hauls assigned valid and with haul duration equal or longer the 20 min. were considered. Stations with cod catches were selected using the codes 164712 (TSN from the Integrated Taxonomic Information System ITIS) and 126436 (WoRMS, Word Register of Marine Species), as appropriate. The two data sets were linked and CatCatchWg (grams) was standardized to kg/hour.

Annual average Q1 CPUE indices (kg/hours) per rectangle were calculated for cod and averaged for the period 2006-2012.

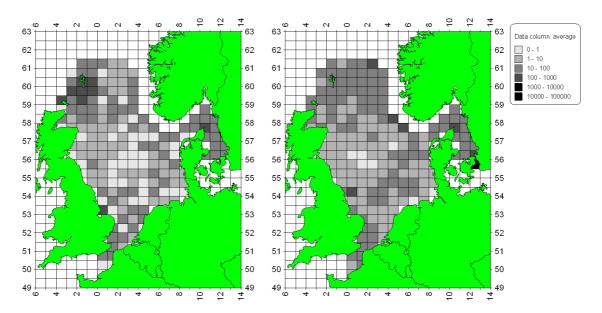


Fig. 5.3.12.2.1. Average annual NS IBTS Q1 CPUE indices (kg/hours) per rectangle for cod in 2012 (left panel) and averaged over 2006-2011 (right panel).

In 2012, cod appears widely distributed and quite scattered over the entire North Sea, Skagerrak and in the Eastern Channel (Fig. 5.3.12.2.1). Distinctly higher concentrations are recorded around the Shetland Islands, at the northern slope towards the Norwegian trench into the Skagerrak and in the southern bight into the Eastern Channel. Cod abundance in the central North Sea appears low. These patterns are more pronounced and smoother when averaged over the years 2006-2011.

DCF data on annual landings per rectangle data (Table E, landings in tons) were summed for all effort regulated gear groups by rectangle and year (2006-2012), excluding the recorded landing of small vessels (<10m). The landings per rectangle and fishery (métier) were raised to catches based on discard rates estimated by year, management area, gear, mesh size, special condition (derogation, where applicable for effort regulated gears), and nation. The additional consideration of the nation (additional to the defined management areas of the DCF) during the process of catch estimation by rectangle (landings plus raised estimates of discards by rectangles) is assumed to improve the calculation of specific geographical fisheries effects. The estimated cod catches per rectangle are shown in Fig. 5.3.12.2.2. Average geographical distribution of estimated catches resembles the stock distribution as perceived from the IBTS Q1 survey indices (Fig. 1 and 2). Highest landings are seen along the northern slopes into the Norwegian trench and the Skagerrak. Higher landings are also common in the southern bight, while the central western North Sea is the area with lowest cod landings on average.

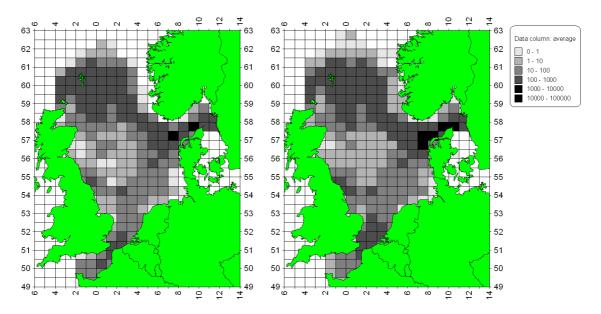


Fig. 5.3.12.2.2. Annual cod catches (t) of effort regulated gear groups per rectangle in 2012 (left panel) and averaged for the period 2006-2011 (right panel).

Fisheries specific DCF data on annual fishing effort per rectangle (Table C, fished hours per rectangle) were summed across all effort regulated gear groups and years, excluding the under 10m boats. The resulting annual fishing effort estimates per rectangle and year were averaged for the period 2006-2011 and the geographical distribution patterns are shown in Fig. 5.3.12.2.3. Again, the effort patterns reveal a picture where most of it is distributed along the northern slopes into the Norwegian trench and the Skagerrak. Higher effort amounts are also common in the southern bight, while the central western North Sea is the area with lowest fishing effort on average. Few lighter grey shaded rectangles of the most recent patterns in 2012 indicate a similar geographical structure, but the fisheries recently appear to tend to avoid central areas in 2012 and to fish closer to the coasts, as the central area of low fishing effort appears enlarged in 2012 in comparison with the average patterns in 2006-2011.

Fig. 5.3.12.2.3. Annual fishing effort (hours fished) of effort regulated gear groups per rectangle in 2012 (left panel) and averaged for the period 2006-2011 (right panel).

The annual effective effort data of effort regulated gears by rectangle (Table C, in units of hours fished) and estimated annual cod catches of effort regulated gears per rectangle data (Table E, in units of tons) were linked and for each fishery the annual CPUE (kg/hours) was calculated.

Annual catchability coefficients by fishery and rectangle are determined from the log-transformed CPUE per fishery divided by the log-transformed BITS survey indices for cod. Log-transformation was done like $f(x) = \ln(x+1)$ to decrease the variation and to avoid negative values. Such standardised catchability indices were then averaged over each of the rectangles and over period 2006-2011 and compared with the 2012 estimates.

5.3.12.3 Results

The resulting geographical patterns in catchability values are quite scattered, also as an effect of the standardisation using the highly variable indices from the NS IBTS Q1 survey, despite the applied log-transformation to the commercial LPUE and to the survey indices. The data basis to estimate catchability indices is considered biased as no cod discards are considered in the analyses due to lack of precise data. Discards of cod of the major TR1 gear ranged between 10-20 % in weight of the catch in 2010 and 2011 but higher levels were observed in earlier periods.

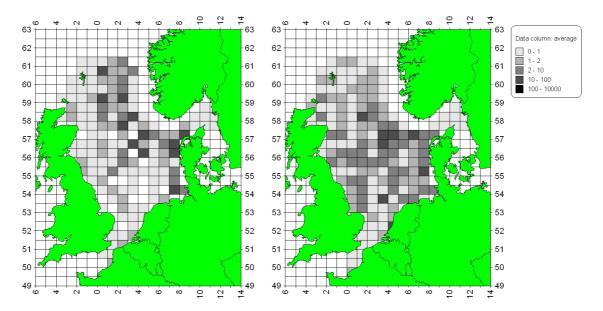


Fig. 5.3.12.3.1. Average cod catchability (ln(LPUE)/(ln(NS IBTS Q1 index)) of all regulated gear groups per rectangle in 2012 (left panel) and averaged for the period 2006-2011 (right panel).

Despite the scattered patterns it appears that cod catchability is not evenly distributed over the North Sea. The area of lowest cod catchability is generally found where cod abundance is highest, i.e. around the Shetlands in the northern North Sea, the Skagerrak and the Eastern Channel. On average, higher cod catchability is indicated in the central North Sea characterized with low cod abundance (Fig. 5.3.12.3.1). An inverse correlation between catchability of North Sea cod and abundance has also been found by Houghton and Flatman (1981).

5.4 West of Scotland effort regime evaluation in the context of Annex IIA to Council Regulation (EC) No 57/2011)

5.4.1 ToR 1.a Fishing effort in kWdays, GTdays, kW and number of vessels by Member State and fisheries

According to the data provided by Member States in 2013 aggregated by categories in Coun. Reg. (EC) 1342/2008 (cod plan) the fishery West of Scotland is primarily an otter trawl fishery; beam trawls and static gears are hardly used. Longline gears are the second most important gear category; but still much less important in terms of effort than trawl gears. Spanish data has been provided but for 2012 only. The Spanish effort represents 3.6% of large mesh trawl (TR1) effort and 47% of longline effort in 2012. Table 5.4.1.2 shows the percentage change in effort totals supplied by Member States compared to data submitted in 2012 (and as available on the STECF website).

In terms of kWdays the overall nominal effort in ICES division VIa displays a decrease of 41% since 2003. The majority of that reduction took place between 2003-2006 and 2009-2011. Effort within regulated gears is 56% less in 2012 compared to 2003. Regulated effort by trawl and seine gears (TR gears under Coun. Reg. (EC) 1342/2008) shows a long term decrease in effort and fell to its lowest level in the time series in 2011, but was stable between 2011 and 2012 for those nations reporting in both years, (Table 5.4.1.3 and Figure 5.4.1.1). With Spanish data only available for 2012 for this area, the trend in long line (LL1) effort is uncertain.

Within the trawl gear categories it can be seen from Figure 5.4.1.2 that effort is only significant in categories TR1 and TR2. TR3 effort is very low (with no effort recorded in 2010; Table 5.4.1.3). There is a clear contrast in effort trend between the TR1 and TR2 categories; effort using TR1 gears declined markedly between 2003 and 2006, was relatively stable from 2006 to 2009 before falling again. Up to 2010 patterns of effort decline or stability was similar between the TR1 and TR2 gears, but effort by TR2 gears stabilised in 2011 and there has been an increase from 2011 to 2012. As a consequence effort by regulated TR2 gear is now higher than that for TR1 gear.

Four years of data are now available regarding TR effort under articles 11 and 13 of Coun. Reg. (EC) 1342/2008. Effort under article 11 is classified as unregulated (exempt) so Figure 5.4.1.3 does not include effort with CPART11. The figure shows a sharp decline in TR1 'none' effort in 2009, but this was more than compensated for by effort now categorised under CPART13 leading to a small increase in overall TR1 effort. Effort under TR1, CPART13 increased again in 2010 but the fall in 'none' effort was bigger. Effort in the 'none' category has continued to decrease and an increase in effort under CPART13 in 2012 has not prevented overall TR1 declining to its lowest value in 2012. Effort under CPART13B is chiefly from the French saithe fishery in 2012. Effort under this category rose to equal that of category CPART13D (fishing conducted west of a line known as the West of Scotland line).

Figure 5.4.1.4 shows a very large decline in TR2 'none' effort in 2009 which was bigger than the effort recorded for TR2, CPART13 in 2009. Effort by vessels not qualifying for special condition has remained stable since. Vessels transferred from CPART13 to CPART11 in 2010 but there was also an overall reduction in effort. There was a considerable increase in effort assigned to CPART13C in 2012 leading to an overall increase in regulated TR2 effort.

Unregulated effort comprises: a) effort not assigned to a regulated gear type; b) effort where a special condition allows a vessel to be exempted from effort control (west of Scotland only special condition

CPART11 applies to date). Effort not assigned to a regulated gear type comprises 1) mesh size groups 32-54mm and 55-69mm targeting pelagic resources, 2) effort where mesh size was not identified in the data provided, 3) unregulated gear types such as pots and dredges. Figure 5.4.1.5 illustrates the importance of unregulated gear effort within the area. Between 2004 and 2010 total effort recorded for unregulated gears has been close to that for regulated gears (slightly greater between 2004 and 2006) while following a similar trend. Unregulated effort is increasing since 2010, exceeded that of regulated effort since 2011 and the difference has increased in 2012. However, effort of unregulated gears has fallen by 22% in 2012 compared to 2003 (Table 5.4.1.3). Table 5.4.1.4 and Figure 5.4.1.6 show trends in unregulated effort by gear type. Very small quantities of effort under TR1, CPART11 are recorded except in 2012 (doubling of Irish effort and addition of French effort under this category). In 2010-2012 approximately 1m kWdays was recorded under TR2, CPART11. Pelagic trawl is the most significant unregulated category but has also contributed most to the long term decline in unregulated effort.

Tables showing effort in terms of gross tonnage days at sea (GT*days at sea), number of vessels by derogation and capacity in kW are not presented in this report but are available on the JRC website: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313

It should be noted that to record an annual number of vessels the maximum number from any of the four quarters within the year is chosen. Because vessels are not necessarily assigned exclusively to a single derogation, some multiple counting may occur if summing across derogations.

Table 5.4.1.1 West of Scotland. Trend in nominal effort (kW*days at sea) by derogations existing in Appendix 1 of Annex IIA of Coun. Reg. 39/2013 and Member State, 2003-2012. Derogations are sorted by gear type and country.

REG GEAR	SPECON	COUNTRY	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
BT1	none	FRA	1519	15327								
		SCO	60295	151480	119958	81194	1803					
BT2	none	BEL	19005	18103	8566	4415	2356					
		ENG	1274	12067	1810							
		FRA	25827	34218	F060	6225						
		IRL		28827	5068	6335						
GN1	none	SCO DEU	113084	79545	26780			37334	29088	36132	21816	21446
ONI	Hone	ENG	471808	309423	201100	23028	36174	37334	13832	2540	21810	765
		FRA	130216	169758	145478	129344	230271	572425	572425	294925	241877	206263
		IRL	19967	20763	192	3554	13346	9949	3275	551	2075	75
		NIR						3564				
		SCO	47095	66913	38855	1044	553	6155			11972	6628
GT1	none	FRA										
		IRL			12000	448					359	
		SCO	636	435								
LL1		ESP	370933	459841	317428	284497	325325	28103				4415
		FRA										460307
		IRL	7200	40400	2000	163130	445344	277750	277750	189072	172250	2474
		NIR SCO	7200	18400	3000		9750			1397	7470	3471
TR1	CPart13B	DEU	124695	148430	1574 306947	371404	518888	378736	703396	723065	694992	518307
INI	Crait13B	SCO	124095	140430	300547	3/1404	310000	3/0/30	703390	4530	054592	1103
	CPart13c	IRL								4330		1734176
	0. 0. 1.	SCO							113760	102762	443735	4566
	CPart13d	IRL							117484	108034	17295	12888
		SCO							217928	358116	519551	707987
	FDFIIA	SCO							253879	347386	206350	38636
	none	DEU							1897026	1855833	1116540	1383078
		ENG								126775	402802	424177
		ESP	19191	12530	35586	27897	23652	3060	4854	2427		
		FRA	319445	145914	85851	48469	8711	17020	24446	14062	12979	5327
		IOM										162834
		IRL	6010785	5807538	6038254	5193815	5058616	4486887	4482329	3469228	2149300	16870
		NIR	406430	246477	200004	225507	F20740	425664	470504	200206	426426	284
TDO	CDowt 13D	SCO	496439	316477	308681	325597	530740 33609	435661	179594	298286	126436	20852
TR2	CPart13B CPart13c	SCO SCO	338394 5722625	162967 4502156	87191 2635380	29352 2099673	1986483	38029 1990144	45378	23860	3160	
	none	BEL	3722023	4302130	2033380	2099073	1980483	1990144	3733406	2494409	2462700	1905142
	none	ENG							792028	237022	174669	1517753
		FRA				1766	795			1176		
		IOM	106861	66311	57345	63616	58724	87267	15721	14802	21642	64875
		IRL	43098	12350			883	269645	274203			
		NIR	181	1172	181	894		649				
		NLD	1130195	977557	767211	712325	388727	205082	17989	9135	17461	18797
		SCO	281887	353511	350269	454128	757758	654124	524483	878592	948262	806188
TR3	none	DNK									5464	884
		IRL	5760703	5334038	4586665	4381098	4693561	4808599				
		NIR	156570	98707	242	11520	247	44224	4222		5045	2502
Total rog co	arc	SCO	2198 21812003	19331955	342 16182914	160 14418703	317 15126642	11321 14321504	1323 14295597	11594117	5915 9787072	2503 10057132
Total reg gea	none	DEU	729409	767344	720815	1066842	1057879	700908	490212	430923	1094346	739578
	none	DNK	66029	289874	172142	636193	132815	99889	490212	430923	119982	94838
		ENG	763289	597101	528405	1101891	1187425	746498	870027	632396	454937	251527
		FRA	434384	453248	215280	361858	354281	275460	275460	233392	235080	240408
		GBJ	0	0	0	0	0	0	321	0	1043	0
		IOM	8144	13229	2722	9133	11285	35882	15424	7850	17371	40103
			3254759	3603506	2137558	2210269	2153596	2188949	2084171	1874504	2094240	2439617
		IRL			0	0	0	0	29520	0	150400	0
		LTU	0	0	U							
		LTU NIR	454206	708614	496663	477364	583955	420274	285040	388615	709247	660801
		LTU NIR NLD	454206 2170705	708614 6497392	496663 5592136	4295071	4118663	3873076	2839787	1564318	1258498	1651394
		NIR NLD SCO	454206	708614	496663						1258498	1651394 5001460
LL1	CPart11	NIR NLD SCO FRA	454206 2170705	708614 6497392	496663 5592136	4295071	4118663	3873076	2839787	1564318	1258498	1651394 5001460 205044
LL1 TR1	CPart11 CPart11	NIR NLD SCO FRA FRA	454206 2170705	708614 6497392	496663 5592136	4295071	4118663	3873076	2839787	1564318	1258498 4939660	1651394 5001460 205044 319400
		NIR NLD SCO FRA FRA IRL	454206 2170705	708614 6497392	496663 5592136	4295071	4118663	3873076	2839787	1564318 5046456	1258498 4939660 213774	1651394 5001460 205044 319400 415736
TR1	CPart11	NIR NLD SCO FRA FRA IRL SCO	454206 2170705	708614 6497392	496663 5592136	4295071	4118663	3873076	2839787	1564318 5046456 44284	1258498 4939660 213774 20755	1651394 5001460 205044 319400 415736 6192
TR1 TR2	CPart11 CPart11	NIR NLD SCO FRA FRA IRL	454206 2170705 8904500	708614 6497392 9410186	496663 5592136 8208090	4295071 5548713	4118663 4990951	3873076 4673720	2839787 5194309	1564318 5046456 44284 1055383	1258498 4939660 213774 20755 933604	1651394 5001460 205044 319400 415736 6192 960648
TR1	CPart11 CPart11	NIR NLD SCO FRA FRA IRL SCO	454206 2170705 8904500	708614 6497392	496663 5592136 8208090 18073811	4295071 5548713 15707334	4118663 4990951 14590850	3873076 4673720 13014656	2839787 5194309 12084271	1564318 5046456 44284 1055383 11278121	1258498 4939660 213774 20755 933604 12242937	1651394 5001460 205044 319400 415736 6192 960648

Table 5.4.1.2 West of Scotland. Relative change in nominal effort (kW*days at sea) reported by Member State compared to the data submitted in 2012; by derogations existing in Appendix 1 of Annex IIA of Coun. Reg. 39/2013.

COUNTRY	REG GEAR COD	VESSEL_LENGTH	2003	2004	2005	2006	2007	2008	2009	2010	2011
BEL	BT2	O15M	0.0%	0.0%	0.0%	0.0%	0.0%				
	TR2	O15M				0.0%	0.0%			0.0%	
DEU	GN1	O15M	0.0%	0.0%	0.0%			0.0%	0.0%	0.0%	0.0%
	PEL_TRAWL	O15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.2%
	POTS	O15M			0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	TR1	O15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
DNK	OTTER	O15M									
	PEL_SEINE	O15M	50.0%								
	PEL_TRAWL	O15M	1.6%	9.4%	9.3%	14.4%	-2.1%	6.3%			0.0%
	TR3	015M	-0.2%	8.4%		0.0%					
ENG	BT2	O10T15M	0.0%	0.00/	0.007						
	DDEDGE	O15M	0.0%	0.0%	0.0%	0.004	0.004	0.004	0.00/		0.00/
	DREDGE	O10T15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.00/	0.0%
	CNIA	015M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	GN1	O15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.00/	0.0%	0.0%	
	LL1	O15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%			
	OTTER	O10T15M	0.00/	0.00/	0.00/	0.0%	0.00/	0.00/	0.00/		
	DEL TRAVAL	O15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.00/	0.00/
	PEL_TRAWL	O15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	POTS	O10T15M	0.0%	0.00/	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	TD1	O15M	0.0%	0.0%	-0.4%	0.0%	0.0%	0.0%	0.0%	0.0%	2.5%
	TR1	O15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	TR2	O10T15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
EDA	DT1	O15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
FRA	BT1 BT2	O15M O15M	0.0%	0.0%							
			0.0%	0.0%							
	DREDGE	O10T15M	0.0%	0.0%	0.00/	0.00/	0.00/	0.00/	0.00/	0.00/	0.00/
	GN1 GT1	O15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	GII	O10T15M									
	LL1	O15M O15M				0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	OTTER	O10T15M	0.0%			0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	OTTER	O10113W	0.0%								0.0%
	DEL CEINE		0.0%								0.0%
	PEL_SEINE PEL_TRAWL	O15M O15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	TR1	O15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	TR2	O10T15M	0.0%	0.078	0.076	0.078	0.078	0.078	0.078	0.078	0.078
	TIVE	015/15W	0.0%	0.0%			0.0%	0.0%	0.0%		
GBJ	POTS	O15M	0.070	0.070			0.070	0.070	0.0%		0.0%
IOM	DREDGE	O10T15M				0.0%	0.0%	0.0%	-9.3%	-15.3%	-15.3%
10.11	DILEBGE	O15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	TR1	O15M	0.070	0.070		0.070	0.070				
	TR2								0.0%	0.0%	0.070
								0.0%	0.0%	0.0%	0.070
	TRZ	O10T15M	0.0%	0.0%	0.0%	0.0%		0.0%	0.0%	0.0%	0.070
IRL		O10T15M O15M	0.0%	0.0%	0.0%	0.0%		0.0%	0.0%	0.0%	0.070
IRL	BEAM	O10T15M O15M O15M	0.0%	0.0%				0.0%	0.0%	0.0%	0.070
IRL	BEAM BT2	O10T15M O15M O15M O15M	0.0%		0.0%	0.0%		0.0%	0.0%	0.0%	0.070
IRL	BEAM	O10T15M O15M O15M O15M O15M O10T15M	0.0%	0.0%				0.0%	0.0%	0.0%	0.070
IRL	BEAM BT2 DEM_SEINE	010T15M 015M 015M 015M 010T15M 010T15M		0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
IRL	BEAM BT2	010T15M 015M 015M 015M 015M 010T15M 015M	0.0%	0.0%			0.0%		0.0%	0.0%	0.0%
IRL	BEAM BT2 DEM_SEINE	010T15M 015M 015M 015M 010T15M 010T15M		0.0% 0.0% 0.0% 0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	
IRL	BEAM BT2 DEM_SEINE	010T15M 015M 015M 015M 010T15M 010T15M 010T15M 010T15M	0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0%	0.0%	0.0%	0.0%	0.0% 0.0%	0.0%		0.0%
IRL	BEAM BT2 DEM_SEINE DREDGE GN1	O10T15M O15M O15M O15M O10T15M O15M O10T15M O10T15M O10T15M O10T15M O15M	0.0% 0.0%	0.0% 0.0% 0.0% 0.0%	0.0%	0.0% 0.0% 0.0% 0.0%	0.0%	0.0%			0.0%
IRL	BEAM BT2 DEM_SEINE	010T15M 015M 015M 015M 010T15M 010T15M 010T15M 015M 010T15M 015M	0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0%	0.0%	0.0%	0.0%	0.0% 0.0%	0.0%		0.0%
IRL	BEAM BT2 DEM_SEINE DREDGE GN1 GT1	010T15M 015M 015M 015M 010T15M 010T15M 010T15M 010T15M 010T15M 010T15M 015M	0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0%	0.0%	0.0% 0.0% 0.0% 0.0%	0.0%	0.0% 0.0%	0.0%	0.0%	0.0% 0.0% 0.0%
IRL	BEAM BT2 DEM_SEINE DREDGE GN1	010T15M 015M 015M 015M 010T15M 010T15M 010T15M 010T15M 010T15M 010T15M 010T15M	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0%	0.0% 0.0%	0.0%		0.0%
IRL	BEAM BT2 DEM_SEINE DREDGE GN1 GT1 LL1	O10T15M O15M O15M O15M O10T15M O10T15M O10T15M O10T15M O10T15M O10T15M O15M O10T15M O15M O10T15M O15M O10T15M O15M O10T15M	0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0%	0.0%	0.0% 0.0% 0.0% 0.0%	0.0%	0.0% 0.0% 0.0%	0.0%	0.0%	0.0% 0.0% 0.0%
IRL	BEAM BT2 DEM_SEINE DREDGE GN1 GT1 LL1 none	010T15M 015M 015M 015M 010T15M 010T15M 010T15M 010T15M 010T15M 010T15M 010T15M 010T15M 010T15M	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0%	0.0% 0.0%	0.0%	0.0%	0.0% 0.0% 0.0%
IRL	BEAM BT2 DEM_SEINE DREDGE GN1 GT1 LL1	010T15M 015M 015M 015M 010T15M 010T15M 010T15M 010T15M 010T15M 015M 010T15M 015M 015M 015M 015M	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0%	0.0% 0.0% 0.0%	0.0%	0.0%	0.0% 0.0% 0.0% 2.9%
IRL	BEAM BT2 DEM_SEINE DREDGE GN1 GT1 LL1 none	O10T15M O15M O15M O15M O10T15M	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0%	0.0%	0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 2.9%
IRL	BEAM BT2 DEM_SEINE DREDGE GN1 GT1 LL1 none OTTER	O10T15M O15M O15M O15M O10T15M	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0%	0.0% 0.0% 0.0%	0.0%	0.0%	0.0% 0.0% 0.0% 2.9%
IRL	BEAM BT2 DEM_SEINE DREDGE GN1 GT1 LL1 none	010T15M 015M 015M 015M 010T15M 010T15M 010T15M 010T15M 010T15M 010T15M 015M 010T15M 015M 010T15M 010T15M 010T15M 010T15M 010T15M	0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0%	0.0%	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 2.9% 0.0% 0.2%
IRL	BEAM BT2 DEM_SEINE DREDGE GN1 GT1 LL1 none OTTER	010T15M 015M 015M 015M 015M 010T15M 010T15M 010T15M 010T15M 010T15M 015M 010T15M 015M 010T15M 015M 010T15M 015M 015M 010T15M 015M 010T15M 015M 010T15M 015M 010T15M 015M 010T15M 015M 010T15M 010T15M 010T15M 010T15M 010T15M	0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0%	0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 2.9% 0.0% 0.2%
IRL	BEAM BT2 DEM_SEINE DREDGE GN1 GT1 LL1 none OTTER	O10T15M O15M O15M O15M O10T15M O15M	0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 2.9% 0.0% 0.2% 0.6% 3.6%
IRL	BEAM BT2 DEM_SEINE DREDGE GN1 GT1 LL1 none OTTER	O10T15M O15M O15M O15M O10T15M NONE O10T15M O10T15M O15M NONE O10T15M O15M NONE O10T15M O15M NONE O10T15M O15M O15M O15M O15M O15M O15M O15M O	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 2.9% 0.0% 0.2% 0.6% 3.6% 11.2%
IRL	BEAM BT2 DEM_SEINE DREDGE GN1 GT1 LL1 none OTTER PEL_TRAWL	010T15M 015M 015M 015M 010T15M 010T15M 010T15M 010T15M 010T15M 010T15M 010T15M 010T15M 015M 010T15M 015M 010T15M 015M 010T15M 015M	0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 2.9% 0.0% 0.2% 0.6% 3.6%
IRL	BEAM BT2 DEM_SEINE DREDGE GN1 GT1 LL1 none OTTER	010T15M 015M 015M 015M 015M 010T15M 010T15M 010T15M 010T15M 010T15M 010T15M 010T15M 010T15M 010T15M 015M 010T15M 015M 010T15M 015M 010T15M 015M 010T15M 015M 010T15M 010T15M 015M 010T15M 015M 010T15M 015M 010T15M 015M 010T15M 015M	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 2.9% 0.2% 0.6% 3.6% 0.5%
IRL	BEAM BT2 DEM_SEINE DREDGE GN1 GT1 LL1 none OTTER PEL_TRAWL POTS	O10T15M O15M O15M O15M O10T15M O15M O10T15M O15M O10T15M O15M O10T15M O15M O10T15M O15M O10T15M O15M	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0%	0.0% 0.0% 0.0% 2.9% 0.2% 0.6% 3.6% 11.2% 0.5%
IRL	BEAM BT2 DEM_SEINE DREDGE GN1 GT1 LL1 none OTTER PEL_TRAWL	010T15M 015M 015M 015M 015M 010T15M NONE 010T15M NONE 010T15M NONE 010T15M NONE 010T15M 015M 015M 010T15M 015M 015M 015M 015M 015M 015M 015M 0	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 2.9% 0.6% 3.6% 11.2% 0.5%
IRL	BEAM BT2 DEM_SEINE DREDGE GN1 GT1 LL1 none OTTER PEL_TRAWL POTS	O10T15M O15M O15M O15M O10T15M O15M O10T15M O15M O10T15M O15M O10T15M O15M O10T15M O15M O10T15M O15M	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0%	0.0% 0.0% 0.0% 2.9% 0.2% 0.6% 3.6% 11.2% 0.5%

Table 5.4.1.2 (cont) West of Scotland. Relative change in nominal effort (kW*days at sea) reported by Member State compared to the data submitted in 2012; by derogations existing in Appendix 1 of Annex IIA of Coun. Reg. 39/2013.

LTU	PEL_TRAWL	O40M							0.0%		0.0%
NIR	DREDGE	O10T15M	0.0%	0.0%	0.0%	0.0%	-16.7%	0.0%	0.0%	0.0%	0.0%
		O15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.7%	0.0%	0.0%
	GN1	O10T15M						0.0%			
	LL1	O10T15M			0.0%						
	OTTER	O15M	0.0%	0.0%		0.0%	0.0%		0.0%	0.0%	
	PEL_SEINE	O15M	0.0%	0.0%	0.0%	0.0%	0.0%			0.0%	0.0%
	PEL_TRAWL	O15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	POTS	O10T15M	0.0%	0.0%	0.0%	-0.2%	0.0%	0.0%	0.0%	1.2%	0.0%
		O15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	TR1	O10T15M				0.0%					
		O15M	0.0%	0.0%	0.0%	0.0%	0.0%	-0.8%	0.0%	0.0%	0.0%
	TR2	O10T15M	11.8%	1.6%	0.0%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%
		O15M	0.0%	0.0%	0.0%	0.1%	-0.1%	0.3%	0.1%	0.6%	0.5%
	TR3	O15M		0.0%							
NLD	OTTER	O15M	0.0%								
	PEL_TRAWL	O15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	TR2	O15M									0.0%
SCO	BT1	O15M	0.0%	0.0%	0.0%	0.0%	0.0%				
	BT2	O15M									
	DEM_SEINE	O15M	0.0%								
	DREDGE	O10T15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	-0.1%	0.0%
		O15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	GN1	O10T15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%			
		O15M	0.0%	0.0%	0.0%			0.0%			0.0%
	GT1	O10T15M	0.0%	0.0%							
	LL1	O10T15M									
		O15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	none	O10T15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		O15M		0.0%	0.0%		0.0%	0.0%	0.0%	0.0%	0.0%
	OTTER	O10T15M	0.0%	0.0%	0.0%	0.0%	0.0%	22.3%	0.0%	0.0%	0.0%
		O15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.8%
	PEL_SEINE	O15M	0.0%							0.0%	
	PEL_TRAWL	O10T15M		0.0%							
		O15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	POTS	O10T15M	0.0%	0.0%	0.0%	0.0%	0.0%	-0.2%	0.0%	0.2%	0.2%
		O15M	0.0%	0.0%	-0.2%	0.0%	-0.3%	-0.2%	-0.1%	0.2%	0.1%
	TR1	O10T15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%			0.0%
		O15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%		0.0%	0.0%
	TR2	O10T15M	0.0%	-0.1%	0.0%	0.0%	0.0%	0.1%		0.1%	0.2%
		O15M	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%		0.0%	0.0%
	TR3	O10T15M		0.0%							
		O15M	0.0%	0.0%	0.0%		0.0%				

Table 5.4.1.3 West of Scotland. Trend in nominal effort (kW*days at sea) by derogation as defined by Coun. Reg. 1342/2008, 2003-2012.

REG GEAR	SPECON	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012 r	el chng	rel chng	rel chng
											0	3	04-06	11
BT1	none	61814	166807	119958	81194	1803						-100%	-100%	
BT2	none	46106	93215	15444	10750	2356						-100%	-100%	
GN1	none	782170	646402	412405	156970	280344	629427	618620	334148	277740	235177	-70%	-42%	-15%
GT1	none	636	435	12000	448					359		-100%	-100%	-100%
LL1	none	502828	626671	628949	819031	1299307	684589	981146	913534	874712	986500	96%	43%	13%
TR1	CPart13B							113760	107292	443735	1739845			292%
	CPart13C							335412	466150	536846	720875			34%
	CPart13D							2150905	2203219	1322890	1421714			7%
	none	12906879	10947582	9190943	7724803	7641811	6970801	4736601	3807863	2291875	206167	-98%	-98%	-91%
TR2	CPart13B							3733406	2494409	2462700	1905142			-23%
	CPart13C							792028	237022	174669	1517753			769%
	none	7322925	6744939	5761671	5613827	5900448	6025366	832396	903705	992829	890744	-88%	-85%	-10%
TR3	none	188645	105904	41544	11680	573	11321	1323		5915	9038	-95%	-83%	53%
Total regulat	ted gears	21812003	19331955	16182914	14418703	15126642	14321504	14295597	11467342	9384270	9632955	-56%	-42%	3%
Total unreg	gear	16785425	22340494	18073811	15707334	14590850	13014656	12084271	11278121	12242937	13026746	-22%	-30%	6%
Total		38597428	41672449	34256725	30126037	29717492	27336160	26379868	22745463	21627207	22659701	-41%	-36%	5%

Table 5.4.1.4 West of Scotland. Trend in nominal effort (kW*days at sea) by unregulated gear, 2003-2012.

GEAR	SPECON	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	rel chng	rel chng	rel chng
												03	04-06	11
BEAM	none		10136										-100%)
DEM_SEIN	NI none	644										-100%		
DREDGE	none	1956375	1698346	1510557	1161671	910993	1075527	1071111	1002819	912292	1373789	-30%	-6%	51%
none	none	52102	26858	42249	50920	63504	68847	99379	99562	98890	118429	127%	196%	20%
OTTER	none	188521	514624	654988	290706	41340	151972	171586	95489	345660	313347	66%	-36%	-9%
PEL_SEINE	E none	251947	266254	157776	186486	113645			53255	128000		-100%	-100%	-100%
PEL_TRAV	Vinone	11673697	17106281	12924636	11287883	10022299	8781704	7785023	5592818	6726463	6732635	-42%	-51%	0%
POTS	none	2662139	2717995	2783605	2729668	3439069	2936606	2957172	3334511	2863499	2581526	-3%	-6%	-10%
LL1	CPart11										205044			
TR1	CPart11								44284	234529	741328			216%
TR2	CPart11								1055383	933604	960648			3%
Grand Tot	:al	16785425	22340494	18073811	15707334	14590850	13014656	12084271	11278121	12242937	13026746	-22%	-30%	6%

3d, All reg gears, KWdays

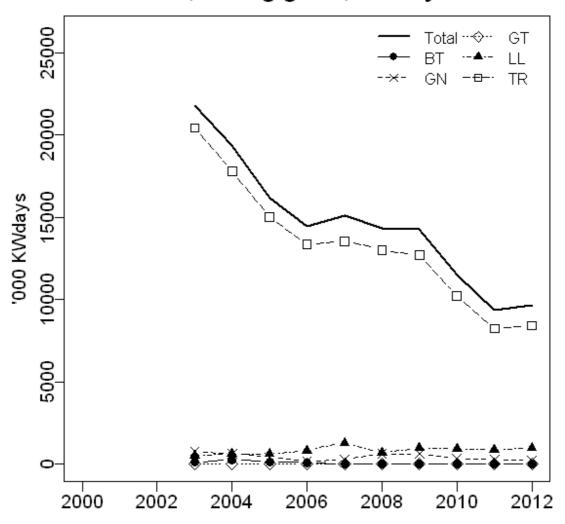


Figure 5.4.1.1 West of Scotland. Trend in nominal effort (kW*days at sea) by gear types as defined by Coun. Reg. 1342/2008, 2003-2012. Values exclude effort in categories exempted from effort control (CPart11).

3d, Reg gear TR, KWdays

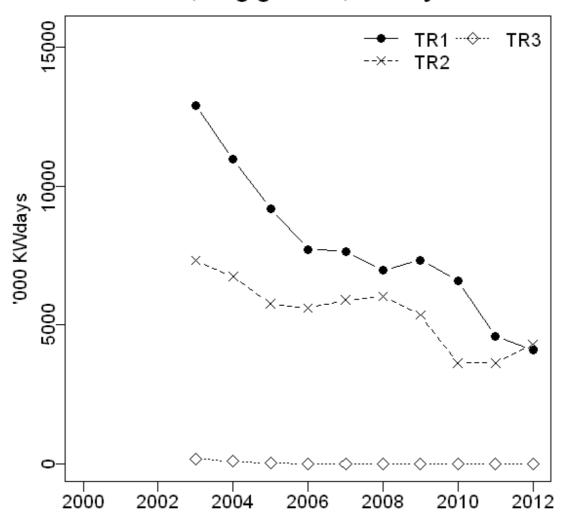


Figure 5.4.1.2 West of Scotland. Trend in nominal effort (kW*days at sea) by TR gear groups as defined by Coun. Reg. 1342/2008, 2003-2012. Values exclude effort in categories exempted from effort control (CPart11).

Figure 5.4.1.3 West of Scotland. Trend in nominal effort (kW*days at sea) by specon for regulated gear TR1. Line labelled TR1 represents the sum of the other lines. Categories exempted from effort control (CPart11) excluded.

3d, Reg gear TR2, KWdays

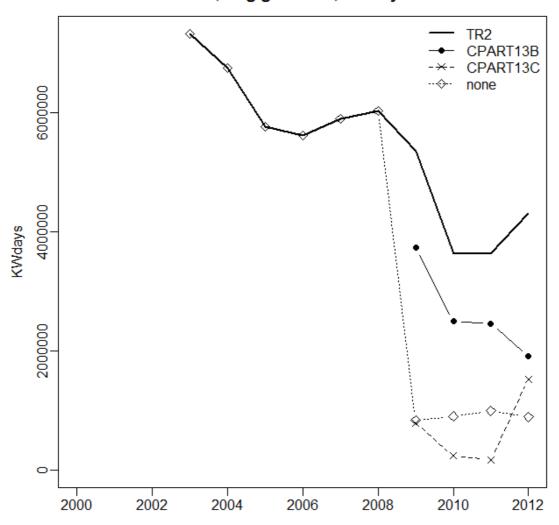


Figure 5.4.1.4 West of Scotland. Trend in nominal effort (kW*days at sea) by specon for regulated gear TR2. Line labelled TR2 represents the sum of the other lines. Categories exempted from effort control (CPart11) excluded.

3d, Reg vs Unreg gears, KWdays

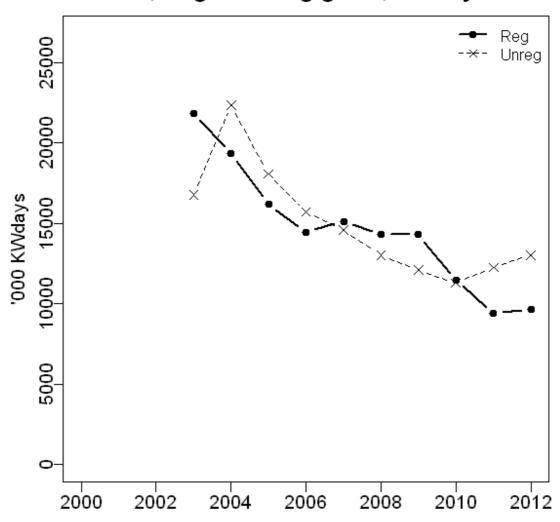


Figure 5.4.1.5 West of Scotland. Trend in nominal effort (kW*days at sea) by regulated gear groups (combined) as defined by Coun. Reg. 1342/2008 compared to unregulated gear groups (combined), 2003-2012. Unregulated effort includes gears with special conditions that exempt them from effort control (TR1 and TR2 with specon CPART11).

3d, All unreg gears, KWdays

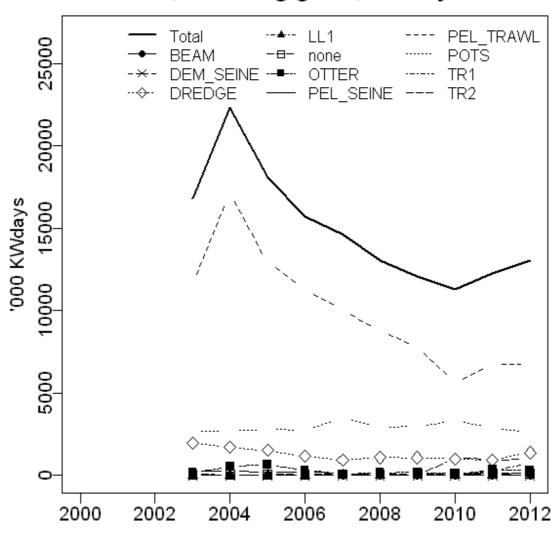


Figure 5.4.1.6 West of Scotland. Trend in nominal effort (kW*days at sea) by unregulated gear groups (combined), 2003-2012. Unregulated effort includes gears with special conditions that exempt them from effort control (TR1 and TR2 with specon CPART11).

5.4.2 ToR 1.b and c Catches (landings and discards) of cod and non-cod species in weight and numbers at age by fisheries

Table 5.4.2.1 lists the landings and discards for cod for gears defined according to Coun. Reg. (EC) 1342/2008 and table 5.4.2.2 shows the discard rate and associated quality index for the same gears.

Table 5.4.2.3 lists landings and discards for other demersal species considered of importance, anglerfish (ANF), haddock (HAD), hake, (HKE), Nephrops (NEP), plaice (PLE), saithe (POK), sole (SOL), and whiting (WHG) for gears defined according to Coun. Reg. (EC) 1342/2008. Table 5.4.2.4 shows the discard rate and associated quality index for these species and gears.

Table 5.4.2.5 lists landings and discards for pelagic species (caught in the largest quantities west of Scotland) for gears defined according to Coun. Reg. (EC) 1342/2008. Table 5.4.2.6 shows the discard rate and associated quality index for these species and gears.

Tables 5.4.2.7 and 5.4.2.8 show the landings and discards and quality indices respectively for cod as caught by unregulated gears. Tables 5.4.2.9 and 5.4.2.10 show the landings and discards and quality indices respectively for the other demersal species selected as caught by unregulated gears. Tables 5.4.2.11 and 5.4.2.12 show the landings and discards and quality indices respectively for the pelagic species selected as caught by unregulated gears.

The data given in Tables 5.4.2.1 and 5.4.2.3 form the basis of Figure 5.4.2.1 displaying the relative catch compositions by derogations for the years 2003-2012. Discard information on Nephrops for any gear and for all other species for non-trawl gears was not available for this report. Therefore the lack of the dark bars representing discards in these figures indicates a lack of observations for non-trawl gears and a lack of information for Nephrops rather than an absence of discards.

A description of the catch compositions of the derogations relevant to the area follows:-

TR1 -- The main species caught are haddock, saithe and anglerfish. The catches of hake have been steadily rising. The landings of both hake and anglerfish now well exceed those of cod; the landings of the latter reflect the steady reduction in the cod TAC followed by the introduction in 2012 of a zero TAC but 1.5% landings by-catch allowance. Catches of cod have remained much higher than landings because of increased discards.

TR2 – Landings are dominated by Nephrops. Considering landings across all gear categories this species contributes the greatest contribution to landings among the demersal species. By-catch of the finfish occur with historically high discard rates of haddock and whiting, however whiting catches are recorded as low in recent years.

TR3 – Landings for this gear category are negligible for this region.

GN1 – This category lands anglerfish, hake and saithe. The landings of hake and saithe increased rapidly to 2008 but the overall quantities are still small.

LL1 – The longline fishery lands hake almost exclusively. Landings of hake are up to 6 times that from the gillnet fishery. The large increase in hake landings by this gear category between 2011 and 2012 is

because of the addition of Spanish data for 2012 (landings by nations other than Spain decreased by approx 500 tonnes). Spanish landings are unknown for earlier years.

Unregulated (POTS) – Of those gears not regulated under Coun. Reg. (EC) 1342/2008 the most significant landings of the species considered come from pots – in this case Nephrops (although the gear takes numerous other species).

The overall discard rate of cod (by weight) has increased in years subsequent to 2003 (Table 5.4.2.1). This was due initially to higher discard rates in the smaller meshed category (TR2) but in 2006 the recorded discard rate for the TR1 gear group leapt from 1% to 49% (reflecting legislation successfully curtailing illegal landings). The rate of discarding in the TR1 gears has been between 70 and a little over 90% in 2008-2012. Catches of cod by TR2 'none' have been negligible since 2009 but the discard rates recorded for TR2 CPART13 and CPART11 are still very high (although low sampling coverage of TR2 vessels lead to high annual variation). It is believed the present high discard rates result from a combination of restrictive quotas, fishing opportunities for other species and year classes of cod (2005 and 2008 year classes) large enough to allow catches over and above the cod quota.

Data on age specific landings are not presented in this report but are available on the JRC website: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313

It can be seen from the tables and figures presented that landings of plaice and sole are negligible across all gear categories and in west of Scotland it is only relevant to consider age specific data for cod for this region. Also, only trawl gears catch enough cod to merit a catch at age analysis.

Table 5.4.2.1 West of Scotland. Landings (t), discards (t) and relative discard rates for cod by derogation existing in Table 1 of Annex IIA of Coun. Reg. (EU) 39/2013 2003-2012.

SPECIES	REG_GEAR	SPECON	2003 L	2003 D	2003 R	2004 L	2004 D	2004 R	2005 L	2005 D	2005 R	2006 L	2006 D	2006 R	2007 L	2007 D	2007 R
COD	GN1	none	5.959			0.875			6.29)		8.557			13.501		
COD	LL1	none	8.222			4.872			5.172			13.698			8.182		
COD	TR1	CPart13B															
COD	TR1	CPart13c															
COD	TR1	CPart13d															
COD	TR1	none	987.684	14.009	1.4%	478.948	11.005	2.2%	435.963	5.911	1.3%	386.787	380.25	49.6%	357.698	763.99	68.1%
COD	TR2	CPart13B															
COD	TR2	CPart13C															
COD	TR2	none	245.145	39.697	13.9%	88.55	40.115	31.2%	46.279	34.211	42.5%	34.87	233.287	87.0%	65.068	153.714	70.3%
COD	TR3	none	0	0.013	100.0%				0	0.001	100.0%				0	0.001	100.0%
SPECIES	REG_GEAR	SPECON	2008 L	2008 D	2008 R	2009 L	2009 D	2009 R	2010 L	2010 D	2010 R	2011 L	2011 D	2011 R	2012 L	2012 D	2012 R
COD	GN1	none	9.658			6.038			2.99)		3.472					
COD	LL1	none	0.1			0.1			0.04	ļ							
COD	TR1	CPart13B				3.861	24.355	86.3%	4.053	19.094	82.5%	10.781	156.444	93.6%	2.982		
COD	TR1	CPart13c				9.781	43.035	81.5%	14.475	58.737	80.2%	6.935	90.702	92.9%	11.872	87.619	88.1%
COD	TR1	CPart13d				99.019	541.95	84.6%	122.615	478.551	79.6%	106.478	1164.177	91.6%	115.833	864.194	88.2%
COD	TR1	none	331.429	821.864	71.3%	98.838	0.181	0.2%	67.196	406.952	85.8%	46.873	1.542	3.2%	1.215	4.737	79.6%
COD	TR2	CPart13B				5.4	34.064	86.3%	3.944			5.708			1.722		
COD	TR2	CPart13C				2.013	12.701	86.3%	0.685	;		1.658			5.973		
COD	TR2	none	47.303	19.402	29.1%	3.58	0.001	0.0%	1.324	0	0.0%	1.694	0.018	1.1%	1.886	5.464	74.3%
COD	TR3	none	0	0.119	100.0%							0	0.002	100.0%	0	0.136	100.0%

Table 5.4.2.2 West of Scotland. Relative discard rate and associated measure of reliability for cod by derogation existing in Table 1 of Annex IIA of Coun. Reg. (EU) $39/2013\ 2003-2012$. A = sampling of > 66% of landings; B = sampling of 33 to 66% of landings; C = sampling of < 33% of landings.

SPECIES	REG_GEAR	SPECON	2003 R	2003 DQI	2004 R	2004 DQI	2005 R	2005 DQI	2006 R	2006 DQI	2007 R	2007 DQI
COD	GN1	none										
COD	LL1	none										
COD	TR1	CPart13B										
COD	TR1	CPart13c										
COD	TR1	CPart13d										
COD	TR1	none	1.4%	Α	2.2%	Α	1.3%	Α	49.6%	Α	68.1%	Α
COD	TR2	CPart13B										
COD	TR2	CPart13C										
COD	TR2	none	13.9%	Α	31.2%	Α	42.5%	Α	87.0%	В	70.3%	Α
COD	TR3	none	100.0%	Α			100.0%	Α			100.0%	Α
SPECIES	REG_GEAR	SPECON	2008 R	2008 DQI	2009 R	2009 DQI	2010 R	2010 DQI	2011 R	2011 DQI	2012 R	2012 DQI
COD	GN1	none										
COD	LL1	none										
COD	TR1	CPart13B			86.3%	Α	82.5%	Α	93.6%	Α		
COD	TR1	CPart13c			81.5%	Α	80.2%	Α	92.9%	Α	88.1%	Α
COD	TR1	CPart13d			84.6%	Α	79.6%	Α	91.6%	Α	88.2%	Α
COD	TR1	none	71.3%	Α	0.2%	С	85.8%	Α	3.2%	С	79.6%	С
COD	TR2	CPart13B			86.3%	Α						
COD	TR2	CPart13C			86.3%	Α						
COD	TR2	none	29.1%	Α	0.0%	Α	0.0%	С	1.1%	Α	74.3%	Α
COD	TR3	none	100.0%	Α					100.0%	Α	100.0%	Α

Table 5.4.2.3 West of Scotland. Landings (t), discards (t) and relative discard rates by species (ANF, HAD, HKE, NEP, PLE, POK, SOL, WHG) and derogation existing in Table 1 of Annex IIA of Coun. Reg. (EU) 39/2013, 2003-2012.

SPECIES	REG GEAR	SPECON	2003 L 2	2003 D	2003 R	2004 L	2004 D	2004 R	2005 L	2005 D	2005 R 2	006 L :	2006 D	2006 R	2007 L	2007 D	2007 R	2008 L	2008 D	2008 R	2009 L	2009 D	2009 R	2010 L	2010 D 2	010 R 2011 L	2011 D	2011 R	2012 L	2012 D 2	2012 R
ANF	BT1	none	0.817			14.197	(0.0%	3.275			0.585																			
ANF	BT2	NONE	0.529			0.902						0.1																			
ANF	GN1	none	131.722	0	0.0%	298.479	(0.0%	357.654	0	0.0%	242.732	0	0.0%	210.291	Ċ	0	455.04	4 0	0.0%	483.727			87.205		68.4	87		66.391		
ANF	GT1	NONE										0.64																			
ANF	LL1	none	0.026			0.002			0.015			0.163			0.081																
ANF	TR1	CPart13B																			25.283			58.784		197.3	65		732.507		
ANF	TR1	CPart13c																			55.617	0	0.0%	81.294	1.585	1.9% 49.0	11 0.37	8 0.8%	52.048	2.181	4.0%
ANF	TR1	CPart13d																			938.926	2.138	0.2%	1193.871	12.508	1.0% 1009	97 4.03	7 0.4%	1147.909	13.21	1.1%
ANF	TR1	NONE	1753.242	965.234	35.5%	1888.809	610.002	24.4%	2439.556	60.5	2.4%	2199.355	0	0.0%	2868.162	363.305	0.112	3007.10	5 78.137	2.5%	1911.647	10.438	0.5%	473.538	3.621	0.8% 1017.4	88 3.9	4 0.4%	41.079	0.811	1.9%
ANF	TR2	CPart13B																			38.824			36.268		37.7	51		8.967		
ANF	TR2	CPart13C																			27.732			3.893		13.6	54		107.879		
ANF	TR2	NONE	426.249	478.565	52.9%	343.19	275.265	44.5%	329.26	25.003	7.1%	413.941			453.26	88.088	0.163	215.73	8 13.908	6.1%	19.109	0.021	0.1%	2.446	0.085	3.4% 10.9	31 0.02	3 0.2%	21.859	0.548	2.4%
ANF	TR3	none	0.02	0.069	77.5%	0.016			0	0.002	100.0%				0	0.01	. 1	1.3	3 0.099	6.9%	. 0	0.004	100.0%				0 0.14	1 100.0%	0	0.052	100.0%
HAD	BT1	none	1.38			6.82			0.65			1.199			0.16																
HAD	BT2	NONE	0.077			0.178			0.096																						
HAD	GN1	none	2.256			0.45			3.22			5.754			9.808			16.14	4		16.674			7.76		8.6	86 0.18	4 2.1%	4.465		
HAD	LL1	none	0.737			0.795			4.521			5.241			4.83			0.44			0.441					0.1					
HAD	TR1	CPart13B																			161.408	114.584	41.5%	36.031	3,651	9.2% 99.8	73 15.90	8 13.7%	20.366	0.073	0.4%
HAD	TR1	CPart13c																			228.465			221.912	21.995	9.0% 166.2				11.945	2.5%
HAD	TR1	CPart13d																			2115.513	1403.357		2331.96		8.4% 1095.7			3142.358	33.141	1.0%
HAD	TR1	none	4524.221	3597.532	44.3%	2791.7	2454.728	46.8%	2963.095	1353.789	31.4%	5516.001	4895.72	47.0%	3418.362	2624.918	0.434	2528.28	1 660.278	20.7%				255.499	2.665	1.0% 87.8				4.797	21.9%
HAD	TR2	CPart13B																			26.628				2203.058	99.2% 47				36.974	41.2%
HAD	TR2	CPart13C																			16.386					99.2% 22.7					41.2%
HAD	TR2	none	826,554	2196.954	72.7%	503.386	2336.734	82.3%	239,499	1306.851	84.5%	207.438	963,804	82.3%	270.193	484.374	0.642	235.21	2 331.556	58.5%					0.02	0.4% 7.4				37.376	42.9%
HAD	TR3	none	0.016		97.0%			32.9%			100.0%				0	0.03											0 0.67			0.002	100.0%
HKE	BT2	NONE				0.008						0.08																			
HKE	GN1	none	11.271			13.703			31.895			114.943			338.291			1122.74	5		1122.495			1016.85		1246.7	31 15.82	6 1.3%	887.28		
HKE	LL1	none	144.346			307.303			699.241			1126.813			1938.882			929.15	5		2049.961			2368.099		3367.3	41		4835.232		
HKE	TR1	CPart13B																			88.214			2.918		79.9			1244.087		
HKE	TR1	CPart13c																			53.56		0.0%		0	0.0% 17.9		0 0.0%		0	0.0%
HKE	TR1	CPart13d																			378.027				0	0.0% 524.5		0 0.0%		0	0.0%
HKE	TR1	NONE	338.805	2274.726	87.0%	644.569	1252.642	66.0%	1129,933	1805.787	61.5%	919.851	0	0.0%	1093.859	957.716	46.7%	1664.61	6 936.615	36.0%	1206.858			1857.047	0.016	0.0% 1183.1				0	0.0%
HKE	TR2	CPart13B																			25.396			15.613		19.5			4.925		
HKE	TR2	CPart13C																			17.978			6.939		5.7			28.538		
HKE	TR2	none	118.698	546.022	82.1%	180.542	977.391	84.4%	149.414	372.704	71.4%	167.562			108.701	360.796	76.8%	100.29	7 205.289	67.2%			0.0%		0	0.0% 10.7		0 0.0%		4.275	32.1%
HKE	TR3	NONE	0		100.0%				0		100.0%				0		100.0%														
NEP	BT1	none	1.873																												
NEP	GN1	NONE	0.18			1.03																									
NEP	LL1	none				0.28																				0	17				
NEP	TR1	CPart13B				1.20															3,519			25.167		320.4			3,474		
NEP	TR1	CPart13c																			321.925			210.918		1.2			339.671		
NEP	TR1	CPart13d																			21.032			5.985		5.6			45.291		
NEP	TR1	none	406.948			196.227			367.57			520.689			514.214			470.37	1		49.676			20.81			83		0.503		
NEP	TR2	CPart13B							2257												7321.068			5265.617		5725.0			4435.026		
NEP	TR2	CPart13C																			1225.083			333.969		249			2791.981		
NEP	TR2	none	8064.796			7825.123			7731.932			10333.204			12897.904			11993.6	9		1185.837			1910.573		2459.6			2411.805		
NEP	TR3	NONE	200 30			0.7			0.413						1.15			1.1			1105.057					2100.0			11.003		
HLF	1113	HUNL				U./			0.413						1.13			1	4												

Table 5.4.2.3 (cont) West of Scotland. Landings (t), discards (t) and relative discard rates by species (ANF, HAD, HKE, NEP, PLE, POK, SOL, WHG) and derogation existing in Table 1 of Annex IIA of Coun. Reg. (EU) 39/2013, 2003-2012.

SPECIES	REG_GEAR	SPECON 2	2003 L 2	003 D	2003 R	2004 L	2004 D	2004 R	2005 L	2005 D	2005 R	2006 L	2006 D	2006 R 2	007 L	2007 D	2007 R	2008 L 2	2008 D	2008 R	2009 L	2009 D	2009 R	2010 L	2010 D	2010 R	2011 L	2011 D	2011 R	2012 L	2012 D 2	2012 R
PLE	BT1	none	42.113			10.421			9.386			0.396																				
PLE	BT2	none	0.717			2.844			0.28			0.31																				
PLE	GN1	NONE	0.4			0.09			0.07			0.03			0.01																	
PLE	TR1	CPart13B																			3.208			4.617			1.278			1.024		
PLE	TR1	CPart13c																			8.775	0.267	3.0%	12.671	0.203	1.6%	5.018	0.105	2.0%	13.419	0.469	3.4%
PLE	TR1	CPart13d																			25.1	6.147	19.7%	21.214	1.487	6.6%	19.716	18.321	48.2%	20.291	7.466	26.9%
PLE	TR1	none	198.402	1536.67	88.6%	107.103	1120.196	91.3%	36	140.809	79.6%	36.066			45.72	164.524	78.3%	32.87	17.061	34.2%	4.221	0.767	15.4%	12.068	0.012	0.1%	6.045	2.748	31.3%	1.025	0.367	26.4%
PLE	TR2	CPart13B																			0.615			3.98			4.928			0.367		
PLE	TR2	CPart13C																			1.154			0.428			1.223			7.229		
PLE	TR2	none	156.448	220.071	58.4%	68.174	524.928	88.5%	53.434	34.867	7 39.5%	33.527			31.578	41.896	57.0%	13.164	7.219	35.4%	0.257	0.117	31.3%	1.101	0.001	0.1%	1.309	0.045	3.3%	4.607	12.189	72.6%
PLE	TR3	none	0.007	0.093	93.0%				0	0.002	2 100.0%				0	0.005	100.0%	0.05	0.036	41.9%	0	0.008	100.0%				0	0.068	100.0%			
	BT1	none	0.039			6.302	0	0.0%				1.581			1.029																	
	GN1	none	22.146			0.124			2.726			67.063			279.438			370.098			370.148			289.62			251,218	16.894	6.3%	555.42		
	LL1	none	1.836			2.058			3.657			6.729			16.951			5.998			4.234			1.99			6,905			1.07		
	TR1	CPart13B																			44.665			5.323	0.959	15.3%	375.366	103.771	21.7%	1601.729		
POK	TR1	CPart13c																			131.709	0	0.0%	74.287	12.844	14.7%	190.163	50.333	20.9%	187.051	101.284	35.1%
	TR1	CPart13d																			2910.475	0		2973.359	487.887					4116.996		36.2%
	TR1		4940.719	9965 057	66 9%	4476.88	908 44	16 9%	6222 28	6603 528	8 515%	9230.513	5070 175	35.5%	6076.851	1654 189	21.4%	5652 47	2188 912	27 9%	3264.619	0		1832.503	0.004		1581.501	2.486		15.617	0	0.0%
	TR2	CPart13B	15 1017 25	3303.037	001370	117 0100	300111	20,570	0222.20	0005.520	3 32,570	3230.313	50701275	33.370	0070.001	100 11100	22.170	5052117	22001322	27.570	1.316	٠	0.070	0.336	0.181	35.0%		5.909		1.759	·	0.070
	TR2	CPart13C																			0.371			0.759	0.407	34.9%		0.349		8.338		
	TR2	none	86 143	111.687	56 5%	39 202	50 387	56.2%	30.069	278 020	90.2%	11 255	281.529	96.2%	7 234	87.792	92.4%	19 176	161.265	89.4%		0	0.0%		0	0.0%		0.5.15		0.362	0	0.0%
	TR3	NONE	0		100.0%	33.202	50.507	50.270	0		5 100.0%	11.200	201.525	301270	0		100.0%	0	0.037	100.0%	20,005	·	0.070	0.1.12	·	0.074	1,005	·	0.070	0.502	·	0.070
	BT1	none	0.033						-									_														
	BT2	none	4.609			1.501			0.08			0.44																				
	GN1	NONE	0.5			0.11			0.00			0																				
	TR1	CPart13B	0.5			0.11															0.131			0.005								
	TR1	CPart13c																			0.89	0	0.0%		0	0.0%	2.36	0	0.0%	3.238	0	0.0%
	TR1	CPart13d																			0.839	0			0	0.0%		0		2.165	0	0.0%
	TR1	none	1.436	1 918	57.2%	2.827	1 005	26.2%	1.457			0.479			2.204	4 584	67.5%	2.129			0.631	0			0	0.0%		0		1.47	0	0.0%
	TR2	CPart13B																			0.687			0.416			2.18		****	0.4	-	
	TR2	CPart13C																			0.506			0.021			0.217			2.629		
	TR2	none	29.166	2 948	9.2%	18.412	3 353	15.4%	15.843			12.255			20.244	5 181	20.4%	12.394			0.215	0	0.0%		0	0.0%		0	0.0%	1.123	0.052	4.4%
	TR3	NONE	0		100.0%	201122	5.555	251170	25.0.15			12.255			0		100.0%	0.15			0.215	·	0.070	0.500	·	0.074	2,700	·	0.070	1,125	0.032	,
	BT1	none	0.147									0.102			·																	
	BT2	NONE	0.003			0.006						0.202																				
WHG		none	0.003			0.55			0.09			0.109			0.161			1.919			1.919			0.08			0.04			0.02		
	LL1	none	0.004			0.55			0.114			0.105			0.101			1.515			1.515			0.00			0.04			0.02		
	TR1	CPart13B	0.004						0.114												23.928	54.373	69.4%	0.77	3.238	80.8%	5.388	3.143	36.8%	0.134		
	TR1	CPart13c																			105.467	89.083	45.8%			74.7%		7.133		16.817	4.34	20.5%
	TR1	CPart13d																			290.415	605.727	67.6%		856.746	78.9%		32.633		130.969		74.3%
WHG		none	689 032	507 14	42 4%	436 407	1523 614	77 7%	132 685	243 02/	1 647%	184.955	65 444	26.1%	Δ1Δ ΔΛΛ	109 352	20 9%	354 569	37.006	9.5%		3.017	7.9%		1.808	3.1%		8.705		1.78	3.358	65.4%
	TR2	CPart13B	003.032	307.14	44.4/0	100.437	1343.014	//.//0	132.003	243.024	· U*1.7/0	104.333	UJ.444	20.1/0	414.444	103.332	20.3/0	JJ4.JU0	37.000	J.J/0	16.775		69.4%		12.182	80.8%		150.923		3.991	44.172	91.7%
WHG		CPart13C																			8.094	18.392	69.4%	4.099	14.102	00.070	4.585	89.436			554.959	91.7%
WHG			660 572	2000 102	75 20/	368.281	1022 000	02.20/	20/1107	605 223	27720/	106 706	7100 004	07.29/	60 612	228.208	76.09/	84.994	194.226	69.6%		0.086	19.5%	2.259	0.027	1.2%		0.859			31.079	81.3%
		none						25.0%				190.700	7109.894	31.376	08.013									2.259	0.027	1.276	1.507			7.131	31.079	01.3%
WHG	in3	none	0.025	0.347	95.5%	U.39/	0.132	25.0%	0	U.U.	1 100.0%				U	0.01	100.0%	0	0.165	100.0%	U	0.013	100.0%				U	0.191	100.0%			

Table 5.4.2.4 West of Scotland. Relative discard rate and associated measure of reliability by species (ANF, HAD, HKE, NEP, PLE, POK, SOL, WHG) and derogation existing in Table 1 of Annex IIA of Coun. Reg. (EU) 39/2013 2003-2012. A = sampling of > 66% of landings; B = sampling of 33 to 66% of landings; C = sampling of < 33% of landings.

SPECIES	REG_GEA	R SPECON	2003 R 2003 DQI	2004 R 2004 DQI	2005 R 2005 DQI	2006 R 2006 DQI	2007 R 2007 DQI	2008 R 2008 DQI	2009 R 2009 DQI	2010 R 2010 DQI	2011 R 2011 DQI	2012 R 2012 DQI
ANF	BT1	none		0.0% C								
ANF	BT2	NONE										
ANF	GN1	none	0.0% C	0.0% A	0.0% A	0.0% A	0.0% A	0.0% B				
ANF	GT1	NONE										
ANF	LL1	none										
ANF	TR1	CPart13B										
ANF	TR1	CPart13c							0.0% A	1.9% A	0.8% B	4.0% C
ANF	TR1	CPart13d							0.2% C	1.0% C	0.4% C	1.1% C
ANF	TR1	NONE	35.5% C	24.4% C	2.4% C	0.0% C	11.2% C	2.5% C	0.5% C	0.8% A	0.4% C	1.9% C
ANF	TR2	CPart13B										
ANF	TR2	CPart13C										
ANF	TR2	NONE	52.9% B	44.5% B	7.1% B		16.3% B	6.1% B	0.1% A	3.4% C	0.2% A	2.4% A
ANF	TR3	none	77.5% C		100.0% A		100.0% A	6.9% A	100.0% A		100.0% A	100.0% A
HAD	BT1	none										
HAD	BT2	NONE										
HAD	GN1	none									2.1% C	
HAD	LL1	none										
HAD	TR1	CPart13B							41.5% A	9.2% A	13.7% A	0.4% C
HAD	TR1	CPart13c							36.8% A	9.0% A	14.0% A	2.5% B
HAD	TR1	CPart13d							39.9% A	8.4% A	12.6% A	1.0% A
HAD	TR1	none	44.3% A	46.8% A	31.4% A	47.0% A	43.4% A	20.7% A	2.7% B	1.0% C	19.9% A	21.9% B
HAD	TR2	CPart13B							41.5% A	99.2% A	93.9% A	41.2% A
HAD	TR2	CPart13C							41.5% A	99.2% A	93.9% A	41.2% A
HAD	TR2	none	72.7% A	82.3% A	84.5% A	82.3% B	64.2% A	58.5% A	1.2% B	0.4% C	17.1% A	42.9% A
HAD	TR3	none	97.0% C	32.9% A	100.0% A		100.0% A	70.3% A	100.0% A		100.0% A	100.0% A
HKE	BT1	none										
HKE	BT2	NONE										
HKE	GN1	none									1.3% B	
HKE	LL1	none										
HKE	TR1	CPart13B										
HKE	TR1	CPart13c							0.0% A	0.0% C	0.0% C	0.0% C
HKE	TR1	CPart13d							0.0% B	0.0% C	0.0% C	0.0% C
HKE	TR1	NONE	87.0% C	66.0% C	61.5% C	0.0% C	46.7% C	36.0% C	0.0% C	0.0% A	10.9% B	0.0% C
HKE	TR2	CPart13B										
HKE	TR2	CPart13C										
HKE	TR2	none	82.1% B	84.4% B	71.4% B		76.8% B	67.2% B	0.0% B	0.0% C	0.0% A	32.1% A
HKE	TR3	NONE	100.0% A		100.0% A		100.0% A	61.9% A				
NEP	BT1	none										
NEP	GN1	NONE										
NEP	LL1	none										
NEP	TR1	CPart13B										
NEP	TR1	CPart13c										
NEP	TR1	CPart13d										
NEP	TR1	none										
NEP	TR2	CPart13B										
NEP	TR2	CPart13C										
NEP	TR2	none										
NEP	TR3	NONE										

Table 5.4.2.4 (cont) West of Scotland. Relative discard rate and associated measure of reliability by species (ANF, HAD, HKE, NEP, PLE, POK, SOL, WHG) and derogation existing in Table 1 of Annex IIA of Coun. Reg. (EU) 39/2013 2003-2012. A = sampling of > 66% of landings; B = sampling of 33 to 66% of landings; C = sampling of < 33% of landings.

CDECIEC	DEC CEAD	CDECON	2002 B 2002 BOL	2004 B. 2004 BOL	2005 B 2005 BOL	2006 B 2006 BOL	2007 P. 2007 P.O.	2000 B 2000 DOI	2000 B 2000 BOL	2010 P. 2010 POL	2011 D. 2011 DOL	2012 B. 2012 BOL
SPECIES PLE	REG_GEAR BT1	none	2003 K 2003 DQI	2004 K 2004 DQI	2005 K 2005 DQI	ZUUB K ZUUB DQI	2007 K 2007 DQI	ZUUS K ZUUS DQI	ZUUS K ZUUS DQI	ZUIUK ZUIU DQI	2011 R 2011 DQI	2012 K 2012 DQI
PLE	BT2	none										
PLE	GN1	NONE										
PLE	TR1	CPart13B										
PLE	TR1	CPart13c							3.0% C	1.6% B	2.0% C	3.4% C
PLE	TR1	CPart13d							19.7% C	6.6% C	48.2% C	26.9% C
PLE	TR1	none	88.6% C	91.3% C	79.6% C		78.3% C	34.2% C	15.4% A	0.1% B	31.3% A	26.4% A
PLE	TR2	CPart13B										
PLE	TR2	CPart13C										
PLE	TR2	none	58.4% A	88.5% B	39.5% A		57.0% A	35.4% B	31.3% B	0.1% C	3.3% A	72.6% C
PLE	TR3	none	93.0% C		100.0% A		100.0% A	41.9% A	100.0% A		100.0% A	
POK	BT1	none		0.0% C								
POK	GN1	none									6.3% A	
POK	LL1	none										
POK	TR1	CPart13B								15.3% B	21.7% A	
POK	TR1	CPart13c							0.0% B	14.7% A	20.9% A	35.1% A
POK	TR1	CPart13d							0.0% C	14.1% A	20.8% A	36.2% A
POK	TR1	none	66.9% C	16.9% C	51.5% C	35.5% C	21.4% C	27.9% B	0.0% C	0.0% B	0.2% C	0.0% C
POK	TR2	CPart13B								35.0% A	79.0% A	
POK	TR2	CPart13C	56.50/ 4	56.20/ 4	00.20/ 4	05 20/ 5	00.40/.4	00.40/ 5	0.00/.0	34.9% A	79.0% A	0.00/ 5
POK	TR2	none	56.5% A	56.2% A	90.2% A	96.2% C	92.4% A	89.4% B	0.0% C	0.0% C	0.0% A	0.0% B
POK SOL	TR3 BT1	NONE	100.0% A		100.0% A		100.0% A	100.0% A				
SOL	BT2	none none										
SOL	GN1	NONE										
SOL	TR1	CPart13B										
SOL	TR1	CPart13c							0.0% A	0.0% A	0.0% A	0.0% A
SOL	TR1	CPart13d							0.0% A	0.0% B	0.0% A	0.0% A
SOL	TR1	none	57.2% C	26.2% B			67.5% A		0.0% A	0.0% B	0.0% A	0.0% A
SOL	TR2	CPart13B										
SOL	TR2	CPart13C										
SOL	TR2	none	9.2% A	15.4% A			20.4% A		0.0% C	0.0% C	0.0% A	4.4% B
SOL	TR3	NONE	100.0% A				100.0% A					
WHG	BT1	none										
WHG	BT2	NONE										
WHG	GN1	none										
WHG	LL1	none										
WHG	TR1	CPart13B							69.4% A	80.8% A	36.8% A	
WHG	TR1	CPart13c							45.8% A	74.7% A	36.4% A	20.5% A
WHG	TR1	CPart13d							67.6% A	78.9% A	35.6% B	74.3% A
WHG	TR1	none	42.4% A	77.7% A	64.7% A	26.1% A	20.9% A	9.5% A	7.9% A	3.1% B	14.8% A	65.4% A
WHG	TR2	CPart13B							69.4% A	80.8% A	95.1% A	91.7% A
WHG	TR2	CPart13C	75 20/ 4	02.20/ 4	77.20/ 4	07.20/.6	76.00/ 4	CO CO/ A	69.4% A	1 20/ 6	95.1% A	91.7% A
WHG	TR2	none	75.2% A	83.2% A	77.3% A	97.3% C	76.9% A	69.6% A	19.5% C	1.2% C	35.4% A	81.3% A
WHG	TR3	none	93.3% C	25.0% A	100.0% A		100.0% A	100.0% A	100.0% A		100.0% A	

Table 5.4.2.5 West of Scotland. Landings (t), discards (t) and relative discard rates by pelagic species (HER, JAX, MAC, SPR, WHB) and derogation existing in Table 1 of Annex IIA of Coun. Reg. (EU) 39/2013, 2003-2012.

SPECIES	REG_GEA	R SPECON	2003 L	2003 D	2003 R	2004 L	2004 D	2004 R	2005 L	2005 D	2005 R	2006 L	2006 D	2006 R	2007 L	2007 D	2007 R 2	.008 L	2008 D	2008 R	2009 L 2009	D 20	109 R 2	010 L 2010	D 2	2010 R	2011 L	2011 D	2011 R	2012 L	2012 D	201	2 R
HER	GN1	none																						16.42									
HER	LL1	none																						60							9		
HER	TR1	CPart13c																			62.78	0	0.0%				0.07		0 0.	0% 0	312	0	0.0%
HER	TR1	CPart13d																			16.04	0	0.0%				0.27		0 0.	0%			
HER	TR1	NONE	4.13	106.583	96.3%	0.206	48.172	99.6%	0	37.797	100.0%	19.5			0.86	7.244	89.4%	0.36	1.653	82.1%	3.19	0	0.0%	6	0	0.0%							
HER	TR2	CPart13B																			13.504									0	068		
HER	TR2	NONE	136.205			505.023	263.676	34.3%				92.442			39.498	11.767	23.0%	0.321	1.591	83.2%	0.027	0	0.0%	8.346	0	0.0%							
HER	TR3	none	0	0.195	100.0%				36.4	0.014	0.0%				0	0.002	100.0%	0	0.029	100.0%	14.71	0	0.0%				14.37		0 0.	0%			
JAX	GT1	NONE							115.56																								
JAX	TR1	CPart13c																			3.14	0	0.0%								2.56	0	0.0%
JAX	TR1	CPart13d																			3.97	0	0.0%	2.5	0	0.0%	6.2		0 0.	0% 45	024	0	0.0%
JAX	TR1	NONE	2.48	56.559	95.8%	0.618		97.6%	0.3		99.5%	2.433			0.13	53.413	99.8%	1.72	15.79	90.2%	2.24	0	0.0%										
JAX	TR2	NONE		250.955	98.1%		141.448	95.0%		251.602	100.0%	1.93			0.49		99.6%	1.41	15.215	91.5%	0.05	0	0.0%										
JAX	TR3	NONE	0	0.14	100.0%				0	0.025	100.0%				0	0.017	100.0%	0	0.275	100.0%													
MAC	GN1	NONE																0.51															
MAC	GT1	NONE							65.52															F 00			22.50						
MAC	LL1	NONE																0.04			2.55		0.00/	5.98		0.00/	23.68				7.59		0.00/
MAC	TR1	CPart13c																			2.65	0	0.0%	0.25	0	0.0%	0.01		0 0.		835	0	0.0%
MAC	TR1	CPart13d	4.043	CO 103	0.4.40/	1.027	22.045	07.10/	2.027	42.20	02.70/	2.025			244	0.700	10.00/	0.433	7.454	45.00/	3.55	0	0.0%	1.01	0	0.0%					608	0	0.0%
MAC	TR1	none	4.043	68.102	94.4%	1.027	33.845	97.1%	2.837	42.39	93.7%	2.025			3.11	0.766	19.8%	8.133	7.154	46.8%	6.923	0	0.0%	1.35	U	0.0%			0 0.	J%			
MAC	TR2 TR2	CPart13B none	65.212	341.01	92.00/	539.332	166.022	23.5%	1.457	186.951	99.2%	6.626			4.819	2.143	30.8%	3.695	3.35	47.6%	0.304	0	0.0%	6.708	0	0.0%	0.705		0 0	0% 0	064 3	.59	98.2%
MAC	TR3	NONE	03.212	0.108		339.332	100.022	23.376	438.593	0.015	0.0%	0.020			4.019	2.145	30.6%	0.093		100.0%	0.504	U	0.076	0.706	U	0.076	57.71				uu4 3 3.84	0	0.0%
SPR	GN1	NONE	5	0.106	100.0%				430.393	0.015	0.0%							U	0.032	100.076							37.71		0 0.	J76 Z	0.04	U	0.076
SPR	TR1	CPart13C	,																											95	007	0	0.0%
SPR	TR1	CPart13D																			0.018	0	0.0%							33	007	٠	0.070
SPR	TR1	NONE				0	0.015	100.0%	0	0.044	100.0%							0.1			0.010	٠	0.070										
SPR	TR2	NONE	21.48			0			0		100.0%				17			0.1						10.92	0	0.0%							
SPR	TR3	none	944.913			154.3		220.070	·	3.27	220.070	0.35			13											0.070	1.8		0 0.	0% 13	243	0	0.0%
WHB	TR1	NONE		27.716	100.0%		33.863	100.0%	0	8.599	100.0%	0.33			0	2.563	100.0%	0	8.679	100.0%							1.0		- 0.			-	2.270
WHB	TR2	NONE		120.327	100.0%		165.969		0	32.908	100.0%				0	4.13	100.0%	0	8.363	100.0%													
WHB	TR3	NONE	0	0.069		-			1475.04	0.003	0.0%				0	0.001	100.0%	415.22	0.151	0.0%													

Table 5.4.2.6 West of Scotland. Relative discard rate and associated measure of reliability by species (HER, JAX, MAC, SPR, WHB) and derogation existing in Table 1 of Annex IIA of Coun. Reg. (EU) 39/2013 2003-2012. A = sampling of > 66% of landings; B = sampling of 33 to 66% of landings; C = sampling of < 33% of landings.

SPECIES	REG_GEAR	SPECON	2003 R 2003 DQI	2004 R 2004 DQ	2005 R 2005 D	QI 2006 R 2006 DC	QI 2007 R 2007	DQI 2008 R 20	08 DQI 2009 R 2009	DQI 2010 R 2010 D	QI 2011 R 2011 I	OQI 2012 R 2012 DQI
HER	GN1	none										
HER	LL1	none										
HER	TR1	CPart13c							0.0% A		0.0% A	0.0% C
HER	TR1	CPart13d							0.0% A		0.0% A	
HER	TR1	NONE	96.3% A	99.6% A	100.0% A		89.4% A	82.1% A	0.0% A	0.0% A		
HER	TR2	CPart13B										
HER	TR2	NONE	72.0% A	34.3% A	60.1% A		23.0% A	83.2% A	0.0% C	0.0% A		
HER	TR3	none	100.0% A		0.0% A		100.0% A	100.0% A	0.0% A		0.0% A	
JAX	GT1	NONE										
JAX	TR1	CPart13c							0.0% A			0.0% A
JAX	TR1	CPart13d							0.0% A	0.0% C	0.0% C	0.0% A
JAX	TR1	NONE	95.8% A	97.6% C	99.5% C		99.8% A	90.2% A	0.0% A			
JAX	TR2	NONE	98.1% A	95.0% A	100.0% A		99.6% C	91.5% A	0.0% A			
JAX	TR3	NONE	100.0% A		100.0% A		100.0% A	100.0% A				
MAC	GN1	NONE										
MAC	GT1	NONE										
MAC	LL1	NONE										
MAC	TR1	CPart13c							0.0% A	0.0% C	0.0% C	0.0% C
MAC	TR1	CPart13d							0.0% A	0.0% C	0.0% B	0.0% C
MAC	TR1	none	94.4% A	97.1% A	93.7% B		19.8% A	46.8% A	0.0% A	0.0% C	0.0% A	
MAC	TR2	CPart13B										
MAC	TR2	none	83.9% A	23.5% A	99.2% A		30.8% B	47.6% A	0.0% A	0.0% A	0.0% A	98.2% A
MAC	TR3	NONE	100.0% A		0.0% C			100.0% A			0.0% A	0.0% A
SPR	GN1	NONE										
SPR	TR1	CPart13C										0.0% C
SPR	TR1	CPart13D							0.0% C			
SPR	TR1	NONE		100.0% A	100.0% A							
SPR	TR2	NONE		100.0% A	100.0% A					0.0% A		
SPR	TR3	none									0.0% A	0.0% C
WHG	BT1	none										
WHG	BT2	NONE										
WHG	GN1	none										
WHG	LL1	none										
WHG	TR1	CPart13B							69.4% A	80.8% A	36.8% A	
WHG	TR1	CPart13c							45.8% A	74.7% A	36.4% A	20.5% A
WHG	TR1	CPart13d							67.6% A	78.9% A	35.6% B	74.3% A
WHG	TR1	none	42.4% A	77.7% A	64.7% A	26.1% A	20.9% A	9.5% A	7.9% A	3.1% B	14.8% A	65.4% A
WHG	TR2	CPart13B							69.4% A	80.8% A	95.1% A	91.7% A
WHG	TR2	CPart13C							69.4% A		95.1% A	91.7% A
WHG	TR2	none	75.2% A	83.2% A	77.3% A	97.3% C	76.9% A	69.6% A	19.5% C	1.2% C	35.4% A	81.3% A
WHG	TR3	none	93.3% C	25.0% A	100.0% A		100.0% A	100.0% A	100.0% A		100.0% A	

Table 5.4.2.7 West of Scotland. Landings (t), discards (t) and relative discard rates for cod by unregulated gears, 2003-2012.

SPECIES	REG_GEAR	SPECON	2003 L 2	.003 D 2	.003 R 2	2004 L 2	004 D 2	.004 R 20	05 L 20	005 D 2	2005 R 2006	L 2006 D	2006 R 2007	L 2007 D	2007 R	2008 L 2	2008 D 2	2008 R	2009 L 2	2009 D	2009 R	2010 L 20	10 D 2010	R 2011 L	2011 D	2011 R	2012 L	2012 D	2012 R
COD	DEM_SEINE	none	0.356	0.063	15.0%																								
COD	DREDGE	none	0.092			0.506																					0.073		
COD	none	none																				0.16					0.46		
COD	OTTER	none	0.794	0.068	7.9%	0.55	0.021	3.7% 0	0.072	0.003	4.0% 10.0	51	0.0	49		0.038	0.002	5.0%	0.053	0	0.0%			(0.028	100.0%	0.124	0.101	44.9%
COD	PEL_SEINE	none	5.194																										
COD	PEL_TRAWL	none																				0.8		0.38	}		0.04		
COD	POTS	NONE	0.48			0.282					0.0	01				0.07			0.14			0.02							
COD	TR1	CPart11																						6.17	0.538	8.0%	16.495	8.291	33.5%
COD	TR2	CPart11																				0.134		0.043	}		0.008		

Table 5.4.2.8 West of Scotland. Relative discard rate and associated measure of reliability for cod by unregulated gears, 2003-2012. A = sampling of > 66% of landings; B = sampling of 33 to 66% of landings; C = sampling of < 33% of landings.

SPECIES	REG_GEAR	SPECON	2003 R 2003 DQI	2004 R 2004 DQI	2005 R 2005 DQI	2006 R 2006 DQI	2007 R 2007 DQ	2008 R 2008 DQI	2009 R 2009 DQI	2010 R 2010 DQI 2	2011 R 2011	DQI 2012 R 2012 DQI
COD	DEM_SEINE	none	15.0% A									
COD	DREDGE	none										
COD	none	none										
COD	OTTER	none	7.9% B	3.7% C	4.0% C			5.0% C	0.0% C		100.0% A	44.9% C
COD	PEL_SEINE	none										
COD	PEL_TRAWL	none										
COD	POTS	NONE										
COD	TR1	CPart11									8.0% A	33.5% A
COD	TR2	CPart11										

Table 5.4.2.9 West of Scotland. Landings (t), discards (t) and relative discard rates by species (ANF, HAD, HKE, NEP, PLE, POK, SOL, WHG) by unregulated gears, 2003-2012.

SPECIES	REG_GEAR	SPECON	2003 L 2	003 D 2	003 R 2	2004 L 2	004 D 2	1004 R 2	005 L 20	005 D 2	005 R 2	006 L 2006	D 2006 R	2007 L 2	007 D 2	2007 R	2008 L 2	.008 D	2008 R	2009 L 2	009 D 2	009 R 2	010 L 2	010 D 2	1010 R 2	2011 L 2	011 D 2	011 R 2	2012 L 2	012 D 2	012 R
ANF	BEAM	NONE				0.1																									
ANF	DEM_SEINE	none	0.165																												
ANF	DREDGE	none	1.25			1.205			0.138			0.051														0.05			0.024		
ANF	none	NONE															0.2												61.3		
ANF	OTTER	none	4.036	0.164	3.9%	3.15	0.632	16.7%	0.096	0.01	9.4%	0.015		3.121	0.007	0.2%	0.691	0.002	0.3%	0.489	0.017	3.4%	0.246	0.323	56.8%	29.23	2.034	6.5%	171.886	0.037	0.000
ANF	PEL_SEINE	none	0.3																												
ANF	PEL_TRAWL	none																		0.21			0.16			3.98			0.04		
ANF	POTS	NONE	0.242			1.868			0.01			0.016					0.052						0.038						0.007		
ANF	TR1	CPart11																					0.183			59.183	5.405	8.4%	110.769	11.811	9.6%
ANF	TR2	CPart11																					0.008			0.267			0.27		
HAD	BEAM	NONE				0.09																									
HAD	DEM_SEINE	none	6.519	13.764	67.9%																										
HAD	DREDGE	none				0.046																							0.017	0.002	0.105
HAD	none	none																											2.35		
HAD	OTTER	none	4.278	2.118	33.1%	28.966	20.427	41.4%	0.049	0.172	77.8%	12.18		8.845	6.53	42.5%	0.569	0.083	12.7%	0.115	0.115	50.0%	0.697	0.228	24.6%	1.727	9.425	84.5%	14.091	0.002	0.000
HAD	PEL_SEINE	none	2.67																												
HAD	PEL_TRAWL	none	14.57									0.08														4.07					
HAD	POTS	NONE	17.509			8.677			0.11			0.001					0.083										** ***	45.00/	0.079	c= 10¢	
HAD	TR1	CPart11																								155.95	29.623	16.0%	784.649	67.496	0.079
HAD	TR2	CPart11				0.04																				0.868			1.869		
HKE	BEAM SEINE	NONE	0.000			0.04																									
HKE	DEM_SEINE	none	0.009			0.001			0.001																						
HKE	DREDGE LL1	none Cpart11				0.001			0.001																				644.123		
HKE	none	NONE												0.15															1.36		
HKE	OTTER	none	0.18	0.33	64.7%	2.141	1.817	45.9%	0.028	0.114	80.3%	0.093		0.213	0.026	10.9%	٥	0.020	100.0%							54.964	0	0.0%	190.014	0	0.000
HKE	PEL_SEINE	none	17.089	0.33	04.770	2.141	1.017	43.370	0.020	0.114	00.370	0.033		0.213	0.020	10.5/0	U	0.030	100.070							34.304	U	0.070	130.014	U	0.000
HKE	PEL TRAWL	none	17.005						0.23			2.35								282			81			0.3			46.61		
HKE	POTS	NONE	0.044			0.08			0.23			0.002								202			01			0.5			0.114		
HKE	TR1	CPart11	0.011			0,00						0.002														40.74	0	0.0%	243.33	0	0.000
HKE	TR2	CPart11																					0.057			0.134	·	0.070	0.09	·	0.000
NEP	DREDGE	none	1.046			3.083			5.088			3.15											01007			0125			1.54		
NEP	none	none	0.018			0.129			0.024																	0.011			1.13		
NEP	OTTER	none	6.755			10.874			7.433			22.133		12.978			1.815			8.514			6.918			6.962			18.582		
NEP	PEL TRAWL	none																		0.09						0.18			0.04		
NEP	POTS	none	455.925			519.866			583.454			583.1		562.367			576.842			596.389			643.182			553.592			579.766		
NEP	TR1	CPart11																					83.946			55.816			26.601		
NEP	TR2	CPart11																					1679.765			1748.919			1753.401		

Table 5.4.2.9 (cont) West of Scotland. Landings (t), discards (t) and relative discard rates by species (ANF, HAD, HKE, NEP, PLE, POK, SOL, WHG) by unregulated gears, 2003-2012.

SPECIES	REG_GEAR	SPECON	2003 L 2	003 D	2003 R 2	004 L 2	004 D 2	004 R 2	005 L 2	005 D	2005 R	2006 L	2006 D	2006 R	2007 L	2007 D	2007 R	2008 L 2	008 D 2	2008 R	2009 L 2	009 D 2	009 R 20	010 L	2010 D	2010 R	2011 L 2	2011 D 2	011 R 2	2012 L 2	012 D 2	1012 R
PLE	BEAM	NONE				3.67																										
PLE	DEM_SEINE	none	0.3																													
PLE	DREDGE	none	0.073			0.428			0.012																							
PLE	OTTER	none	1.936	0.222	10.3%	3.103	1.778	36.4%	0	0.013	100.0%				0.014	0.004	22.2%	0.012	0.001	7.7%	0.025	0.039	60.9%	0	0.037	100.0%	0	0.657	100.0%	0.15	0	0.000
PLE	PEL_TRAWL	none																			0.16						0.64			0.12		
PLE	POTS	NONE	0.33			0.732			0.068			0.013																		0.015		
PLE	TR1	CPart11																									2.38	7.982	77.0%	8.43	5.953	41.4%
PLE	TR2	CPart11																												0.013		
POK	DREDGE	none																												8.354		
POK	LL1	Cpart11																												0.916		
POK	OTTER	none	0	0.088	100.0%	0.223	0.172	43.5%	0	0.151	100.0%				0.28	0.451	61.7%	0	0.001	100.0%	2.45	0	0.0%				88.447	0	0.0%	203.771	0	0.000
POK	PEL_SEINE	none	19.228																													
POK	PEL_TRAWL	none	0.5			0.4	0	0.0%	6.2			5.34		0.09	6 4.31	0	0.0%							0.11			0.35					
POK	POTS	NONE				0.201												0.05									0.08					
POK	TR1	CPart11																									186.8	0	0.0%	367.709	0	0.000
SOL	BEAM	NONE				1.08																										
SOL	DEM_SEINE	none	0.02																													
SOL	DREDGE	none	0.475			0.327			0.057									0.016			0.017						0.049			0.197	0	0.000
SOL	none	NONE																1.05												0.03		
SOL	OTTER	none	0.633	0.003	0.5%	1.22	0.016	1.3%							0	0.001	100.0%															
SOL	PEL_TRAWL	none																			0.48						0.35			0.11		
SOL	POTS	NONE	0.01			0.09												0.02									0.006					
SOL	TR1	CPart11																						0.026			0.26	0	0.0%	2.06	0	0.000
SOL	TR2	CPart11																									0.01					
WHG	DREDGE	none				0.08																										
WHG	none	none																												0.06		
WHG	OTTER	NONE	3.713	0.824	18.2%	1.344	2.924	68.5%	0	0.061	100.0%	0.1			0.056	0.017	23.3%	0.038	0.045	54.2%	0.023	0.065	73.9%	0	0.326	100.0%	0	2.717	100.0%	0.002	0	0.000
WHG	PEL_TRAWL	none																									0.14			0.04		
WHG	POTS	NONE	0.51			1.172			0.02			0.016						0.03														
WHG	TR1	CPart11																									85.36	7.62	8.2%		55.244	0.383
WHG	TR2	CPart11																												0.02		

Table 5.4.2.10 West of Scotland. Relative discard rate and associated measure of reliability by species (ANF, HAD, HKE, NEP, PLE, POK, SOL, WHG) by unregulated gears, 2003-2012. A = sampling of > 66% of landings; B = sampling of 33 to 66% of landings; C = sampling of < 33% of landings.

SPECIES	REG_GEAR	SPECON	2003 R	2003 DQI	2004 R 2004	DQI 2005	R 2005 DQI	2006 R	2006 DQI	2007 R	2007 DQI	2008 R 2	2008 DQI	2009 R 2009 D	QI 2010 R	2010 DQI	2011 R	2011 DQI	2012 R 2012	DQI
ANF	BEAM	NONE																		
ANF	DEM_SEINE	none																		
ANF	DREDGE	none																		
ANF	none	NONE																		
ANF	OTTER	none	3.9%	С	16.7% C	9.4	ŀ% C			0.2%	С	0.3% (С	3.4% C	56.8%	С	6.5%	С	0.0% C	
ANF	PEL_SEINE	none																		
ANF	PEL_TRAWL	none																		
ANF	POTS	NONE																		
ANF	TR1	CPart11															8.4%	Α	9.6% A	
ANF	TR2	CPart11																		
HAD	BEAM	NONE																		
HAD	DEM_SEINE	none	67.9%	Α																
HAD	DREDGE	none																	10.5% A	
HAD	none	none																		
HAD	OTTER	none	33.1%	С	41.4% A	77.8	8% C			42.5%	С	12.7% A	Ą	50.0% C	24.6%	С	84.5%	С	0.0% C	
HAD	PEL_SEINE	none																		
HAD	PEL_TRAWL	none																		
HAD	POTS	NONE																		
HAD	TR1	CPart11															16.0%	Α	7.9% A	
HAD	TR2	CPart11																		
HKE	BEAM	NONE																		
HKE	DEM_SEINE	none																		
HKE	DREDGE	none																		
HKE	LL1	Cpart11																		
HKE	none	NONE																		
HKE	OTTER	none	64.7%	С	45.9% C	80.3	3% C			10.9%	С	100.0% A	Ą				0.0%	С	0.0% C	
HKE	PEL_SEINE	none																		
HKE	PEL_TRAWL	none																		
HKE	POTS	NONE																		
HKE	TR1	CPart11															0.0%	Α	0.0% A	
HKE	TR2	CPart11																		
NEP	DREDGE	none																		
NEP	none	none																		
NEP	OTTER	none																		
NEP	PEL_TRAWL	none																		
NEP	POTS	none																		
NEP	TR1	CPart11																		
NEP	TR2	CPart11																		

Table 5.4.2.10 (cont) West of Scotland. Relative discard rate and associated measure of reliability by species (ANF, HAD, HKE, NEP, PLE, POK, SOL, WHG) by unregulated gears, 2003-2012. A = sampling of > 66% of landings; B = sampling of 33 to 66% of landings; C = sampling of < 33% of landings.

SPECIES	REG_GEAR	SPECON	2003 R 2003 DQI	2004 R 2004 DQI	2005 R 20	005 DQI	2006 R 2006 D	QI 2007 R 2	2007 DQI	2008 R	2008 DQI 2009 R 2009 D	QI 2010 R 201	10 DQI 2011 R 2011	DQI 2012 R 2012 DQI
PLE	BEAM	NONE												
PLE	DEM_SEINE	none												
PLE	DREDGE	none												
PLE	OTTER	none	10.3% C	36.4% C	100.0% A			22.2% (3	7.7%	C 60.9% C	100.0% A	100.0% A	0.0% C
PLE	PEL_TRAWL	none												
PLE	POTS	NONE												
PLE	TR1	CPart11											77.0% A	41.4% A
PLE	TR2	CPart11												
POK	DREDGE	none												
POK	LL1	Cpart11												
POK	OTTER	none	100.0% A	43.5% A	100.0% A			61.7% (2	100.0%	A 0.0% C		0.0% C	0.0% C
POK	PEL_SEINE	none												
POK	PEL_TRAWL	none		0.0% A			0.0% C	0.0% (2					
POK	POTS	NONE												
POK	TR1	CPart11											0.0% A	0.0% A
SOL	BEAM	NONE												
SOL	DEM_SEINE	none												
SOL	DREDGE	none												0.0% B
SOL	none	NONE												
SOL	OTTER	none	0.5% C	1.3% C				100.0% A	A					
SOL	-	none												
SOL	POTS	NONE												
SOL	TR1	CPart11											0.0% A	0.0% A
SOL	TR2	CPart11												
WHG	DREDGE	none												
WHG	none	none												
WHG	OTTER	NONE	18.2% C	68.5% C	100.0% A			23.3% A	Ą	54.2%	A 73.9% C	100.0% A	100.0% A	0.0% C
WHG	_	none												
WHG	POTS	NONE												
WHG	TR1	CPart11											8.2% A	38.3% A
WHG	TR2	CPart11												

Table 5.4.2.11 West of Scotland. Landings (t), discards (t) and relative discard rates by species (HER, JAX, MAC, SPR, WHB) by unregulated gears, 2003-2012.

SPECIES	REG GEAR	SPECON	2003 L 2	2003 D 2	.003 R 2	1004 L	2004 D 2	2004 R 2	2005 L	2005 D 2	2005 R 2	.006 L	2006 D 2006 R 2007 L	2007 D 2	2007 R 2	.008 L	2008 D	2008 R	2009 L	2009 D	2009 R	2010 L	2010 D	2010 R	2011 L	2011 D	2011 R	2012 L	2012 D	2012 R
HER	none	none																				3.99								
HER	OTTER	NONE	268.1	0.47	0.2%	128.14	1.241	1.0%	1492.413	0.085	0.0%	37.128	236.8	0.002	0.0%	1205.292	0.001	0.0%	140.801	0	0.0%	977.399	0	0.0%	804.767		0.09	6 0.	1	0 0.0%
HER	PEL_SEINE	none				1540.367			1073.05			768.61	2045.558									5								
HER	PEL_TRAWL	none	35405.122			30062.644			33702.598			39061.703	33939.177			29571.644			29807.956			28357.664	68.095	0.2%	22962.466	190.78	3 0.89	6 25313.73	8 66.9	83 0.3%
HER	POTS	NONE				0.11																								
HER	TR2	CPart11																				9.201						0.04	4	
JAX	none	none																										438.17	8	
JAX	OTTER	NONE	198.32	0.333	0.2%	333.25	3.759	1.1%	0	0.148	100.0%		0	0.012	100.0%	550.039	0.006	0.0%	17	0	0.0%	2.37	0	0.0%	1199.45		0.09	6		
JAX	PEL_SEINE	none	344.3									58.536													198.131					
JAX	PEL_TRAWL	none	21932.136			17403.463			14180.536			11104.874	22580.819			24512.899			19008.155	0	0.0%	23542.495	904.277	3.7%	38601.45	247.22	4 0.69	6 44594.45	3 109.7	34 0.2%
JAX	TR1	CPart11																							0.8		0.09	6		
MAC	none	none											136									0.29								
MAC		none	1927.122	1.598	0.1%	2579.893	24.119	0.9%	5411.303	1.525	0.0%	1338.675			0.0%	166.557	0.001	0.0%	3099.679	0	0.0%	535.64		0.0%	5518.074		0.09	6 221.18	7	0 0.0%
MAC	-	none	6909.2			5352.32			4874.653			4689.372										1560.667			4941.078					
MAC	PEL_TRAWL		146874.818			120424.351			104302.275			92356.027	98349.309			86520.855			136329.37			105216.522		0.8%	148631.206		2 9.39	6 119517.77		07 5.0%
MAC	POTS	none	77.62			7.68			0.67										0.01			0.92			1.85			0.2		
SPR		NONE	6.23																18	0	0.0%				30.97		0.09	6 19.10	5	0 0.0%
SPR	PEL_SEINE								12.5																				_	
SPR	PEL_TRAWL		3397.085			1358.72			1788.25			350.12	316.07			222.39			156.15			858.15			1189.96		0.09			
SPR	POTS	none		0.450				0.00/	*****		0.00/				400.00/			400.00/	20= 45		0.00/							0.0		
WHB	OTTER	NONE		0.163	100.0%	10003.14	4.743	0.0%	11486.99	0.019	0.0%	9024.253	0	0.001	100.0%	0	0.003	100.0%	285.46	0	0.0%							548.7	2	0 0.0%
WHB	-	none	43.242		0.00/	400202 275		0.00/	22.43		0.00/	422450.007	0 00/ 45200 424	•	0.00/	20507.042		0.00/	24402.00			20572.045	264 527	0.70/	3.8		3 35 50	/ 25470.6	40450	05 200/
WHB	PEL TRAWL	none	24957.376	0	0.0%	109292.375	0	0.0%	93384.913	0	0.0%	122450.807	0 0.0% 46289.424	. 0	0.0%	29587.012	0	0.0%	34492.86			39573.945	264.527	0.7%	8174.955	2794.85	2 25.59	6 25470.6	/ 1045.9	95 3.9%

Table 5.4.2.12 West of Scotland. Relative discard rate and associated measure of reliability by species (HER, JAX, MAC, SPR, WHB) by unregulated gears, 2003-2012. A = sampling of > 66% of landings; B = sampling of 33 to 66% of landings; C = sampling of < 33% of landings.

SPECIES	REG GEAR	SPECON	2003 R 2003 DQI	2004 R 2004 DQI	2005 R 2005 DQI	2006 R 2006 DQI	2007 R 2007 DQI	2008 R 2008 DQI	2009 R 2009 DQI	2010 R 2010 DQI	2011 R 2011 DQI	2012 R 2012 DQI
HER	none	none			•							
HER	OTTER	NONE	0.2% A	1.0% A	0.0% C		0.0% C	0.0% C	0.0% A	0.0% C	0.0% C	0.0% C
HER	PEL_SEINE	none										
HER	PEL_TRAWL	none								0.2% C	0.8% C	0.3% C
HER	POTS	NONE										
HER	TR2	CPart11										
JAX	none	none										
JAX	OTTER	NONE	0.2% A	1.1% A	100.0% A		100.0% A	0.0% B	0.0% C	0.0% A	0.0% A	
JAX	PEL_SEINE	none										
JAX	PEL_TRAWL	none							0.0% C	3.7% C	0.6% C	0.2% C
JAX	TR1	CPart11									0.0% A	
MAC	none	none										
MAC	OTTER	none	0.1% C	0.9% C	0.0% C		0.0% A	0.0% A	0.0% C	0.0% B	0.0% C	0.0% C
MAC	PEL_SEINE	none										
MAC	_	none								0.8% C	9.3% C	5.0% C
MAC	POTS	none										
SPR	OTTER	NONE							0.0% C		0.0% A	0.0% C
SPR	PEL_SEINE	none										
SPR	PEL_TRAWL										0.0% C	
SPR	POTS	none										
WHB	OTTER	NONE	100.0% A	0.0% C	0.0% C		100.0% A	100.0% A	0.0% A			0.0% C
WHB	PEL_SEINE	none	0.00/.0	0.00/.0	0.00/.0	0.00/.0	0.00/.0	0.00/.0		0.70/.0	25 50/ 5	2.00/ 5
WHB	PEL_TRAWL	none	0.0% C		0.7% B	25.5% B	3.9% B					

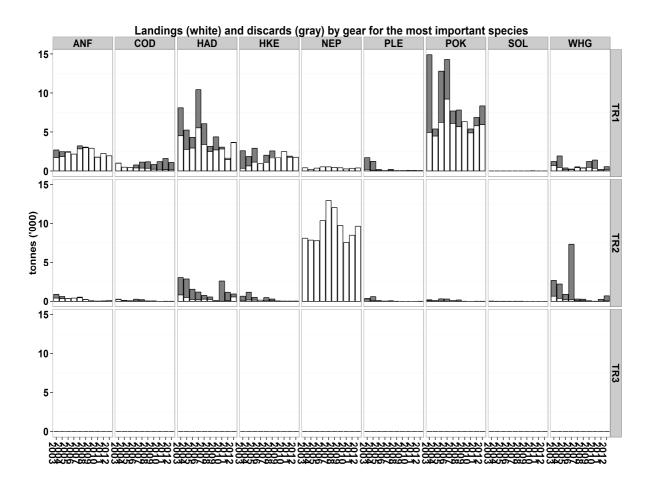


Figure 5.4.2.1 West of Scotland. Landings (t) and discards (t) by derogations in Coun. Reg. (EC) 1342/2008 and species, 2003-2012 (from left to right). White bars represent landings, grey bars discards. Note that discard data are only available for some species and gears. The lack of discard information for a given species/gear in this figure represents no information rather than zero discards.

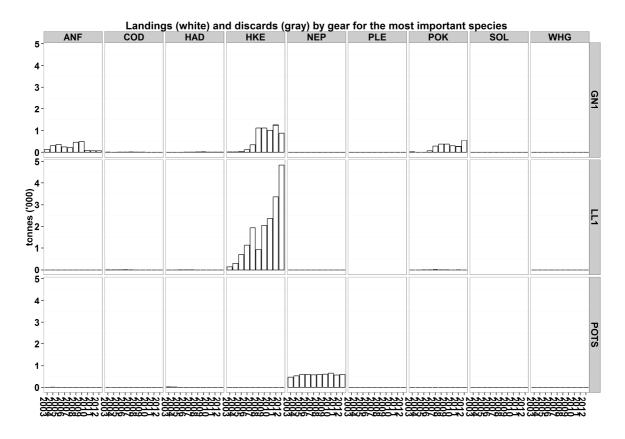


Figure 5.4.2.1 (cont) West of Scotland. Landings (t) and discards (t) by derogations in Coun. Reg. (EC) 1342/2008 and species, 2003-2012 (from left to right). White bars represent landings, grey bars discards. Note that discard data are only available for some species and gears. The lack of discard information for a given species/gear in this figure represents no information rather than zero discards.

5.4.3 ToR 1.d CPUE and LPUE of cod by fisheries and by Member States

Tables showing LPUE and CPUE by gear groups (regulated and unregulated), area and nation are not presented in this report but are available on the JRC website: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313

Results aggregated across countries are presented below.

Table 5.4.3.1 shows cod catch per unit effort (CPUE), recorded in g/kWdays for all derogations within Coun. Reg (EC) 1342/2008 while table 5.4.3.2 shows landings per unit effort (LPUE) for the same derogations. Section 5.4.1 showed longlines to be the most significant gear category after trawl and seine gears in terms of kWdays effort west of Scotland but the tables show CPUE of cod for this gear type (LL1) to be low with no catch of cod recorded from 2008 onward. The tables clearly show TR1 gears have the highest CPUE and LPUE for cod and that TR1 with special condition CPart13D (fishing west of the 'French Line') having the highest CPUE among the TR1 categories.

Figures 5.4.3.1 and 5.4.3.2 show cod CPUE and LPUE respectively for the top four gear types under Coun. Reg (EC) 1342/2008, ranked in terms of average value over the most recent five years. It should be

noted no discard information is available for gill nets (GN1) or the beam trawl categories (BT1 and BT2) such that results for these gear types are effectively LPUE in each table and/or figure. It is clear from Figure 5.4.3.1 that CPUE values have increased considerably for the TR1 gear type since 2005. ICES assessments have estimated the 2005 – and to a lesser extent the 2008 - year classes of cod to be large compared to the norm since 2000, and also a slow increase in SSB since 2006. The pattern of CPUE is consistent with the catchability of fish in the stronger year classes increasing as the fish grow in size (and possibly redistribute from nursery areas) and an increase in overall stock abundance. TACs for cod have declined over the same period and from Figure 5.4.3.2 it can be seen LPUE for the TR1 gears remained constant between 2004, 2008 and has fallen again to a new lower level for 2009-2012.

To illustrate the point further Figure 5.4.3.3 shows the ratio of catch to landings for cod for the gear type TR1. Up to 2005 very few discards of cod were recorded for the TR1 gear resulting in a catch/landings value close to 1. Since then this ratio has increased so that in 2012 catch is approximately 8 times landings. Figure 5.4.3.2 suggests the increase in CPUE to be due to the 2005 and 2008 year classes. This result is consistent with results from the ICES division VIa cod assessment. The uncertainty of discard observation data for the TR2 gear means results for the TR2 gear have not been included in Figure 5.4.3.3.

Table 5.4.3.1 West of Scotland. Cod CPUE (g/(kW*days)) by derogation in Coun. Reg. (EU) 1342/2008 and year, 2003-2012.

SPECIES	REG GEAR COD	SPECON	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012	CPUE 2010-2012
COD	BT1	none	32	36	8	0		0	0	0	0	0	0
COD	BT2	none	0					0	0	0	0	0	0
COD	GN1	none	8	2	15	57	50	14	10	9	11	0	7
COD	LL1	none	18	8	8	17	6	0	0	0	0	0	0
COD	TR1	CPart13B	0	0	0	0	0	0	246	214	379	2	85
COD	TR1	CPart13c	0	0	0	0	0	0	158	157	181	137	156
COD	TR1	CPart13d	0	0	0	0	0	0	298	273	960	689	576
COD	TR1	none	78	45	48	99	147	165	21	124	21	24	84
COD	TR2	CPart13B	0	0	0	0	0	0	11	2	2	1	2
COD	TR2	CPart13C	0	0	0	0	0	0	18	4	11	4	5
COD	TR2	none	39	19	14	48	37	11	4	1	2	2	2
COD	TR3	none	0		0		0	0		0	0	0	0

Table 5.4.3.2 West of Scotland. Cod LPUE (g/(kW*days)) by derogation in Coun. Reg. (EC) 1342/2008 and year, 2003-2012.

SPECIES	REG GEAR COD	SPECON	LPUE 2003	LPUE 2004	LPUE 2005	LPUE 2006	LPUE 2007	LPUE 2008	LPUE 2009	LPUE 2010	LPUE 2011	LPUE 2012	LPUE 2010-2012
COD	BT1	none	32	36	8	0		0	0	0	0	0	0
COD	BT2	none	0					0	0	0	0	0	0
COD	GN1	none	8	2	15	57	50	14	10	9	11	0	7
COD	LL1	none	18	8	8	17	6	0	0	0	0	0	0
COD	TR1	CPart13B	0	0	0	0	C	0	35	37	25	2	. 8
COD	TR1	CPart13c	0	0	0	0	C	0	30	30	11	17	19
COD	TR1	CPart13d	0	0	0	0	C	0	46	56	80	81	70
COD	TR1	none	77	44	47	50	47	48	21	17	21	5	18
COD	TR2	CPart13B	0	0	0	0	0	0	1	2	2	1	2
COD	TR2	CPart13C	0	0	0	0	0	0	3	4	11	4	. 5
COD	TR2	none	33	13	8	6	11	. 8	4	1	2	1	1
COD	TR3	none	0		0		C	0		0	0	0	0

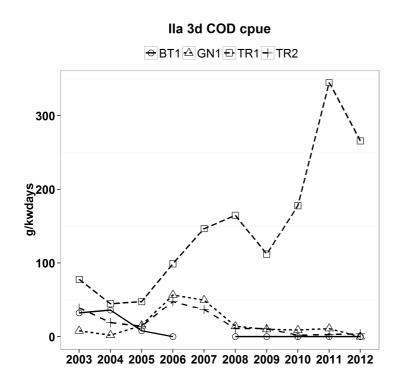


Figure 5.4.3.1 West of Scotland. Cod CPUE for the four gear categories with highest CPUE.

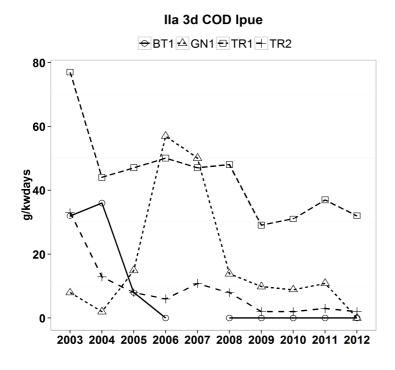


Figure 5.4.3.2 West of Scotland. Cod LPUE for the four gear categories with highest LPUE

Figure 5.4.3.3 West of Scotland. Ratio of Cod catch to landings for the gear group TR1 under Coun. Reg. 1342/2008.

5.4.4 ToR 2 Rank regulated gear groups on the basis of catches expressed both in weight and in number of cod

Tables 5.4.4.1 and 5.4.4.2 show, respectively, cod catch and cod landings (tonnes) by gear types as specified in Coun. Reg. (EC) 1342/2008, ranked according to their 2012 values. From these Tables the most important category in terms of cod catch and landings is TR1 with a three year average of 94-99% of the VIa cod catch – and landings - total by weight. The second most important gear category is TR2, which from section 5.4.2 can be seen to be a gear category with Nephrops as the primary landed species. The ranking of these two gear types is consistent whether the 2012 values or a three year average is used but the contribution of TR2 gear to catches has noticeably declined starting in 2008 and to landings from 2009. The contribution to catch from all other gear types is less than 1%, but for landings gill nets contribute between 1 and 3%.

Ranking in terms of numbers of fish are available on the JRC website: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313

EWG-13-06 notes that the estimation of ranking by numbers of fish uses only categories for which age information is available. Categories without any information about age compositions are disregarded.

Table 5.4.4.1 West of Scotland. Gear derogations (Coun. Reg. 1342/2008) ranked according to relative cod catch in tonnes, 2003-2012. Ranking is according to the year 2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	2003 Rel	2004 Rel	2005 Rel	2006 Rel	2007 Rel	2008 Rel	2009 Rel	2010 Rel	2011 Rel	2012 Rel	Avg 10-12
lla	3d	COD	TR1	0.76899	0.77655	0.82772	0.72495	0.82318	0.9374	0.92768	0.99238	0.99248	0.99089	0.99
lla	3d	COD	TR2	0.21873	0.20444	0.14981	0.25331	0.16067	0.05447	0.06554	0.00508	0.00564	0.00911	0.01
lla	3d	COD	GN1	0.0046	0.00158	0.01124	0.00851	0.01027	0.00813	0.00678	0.00254	0.00188		0.00
lla	3d	COD	LL1	0.00614	0.00792	0.00936	0.01323	0.00587	0	0	0			0.00
lla	3d	COD	TR3	0		0		0	0			0	0	0.00
lla	3d	COD	BT2	0										
lla	3d	COD	BT1	0.00153	0.00951	0.00187	0							

Table 5.4.4.2 West of Scotland. Gear derogations (Coun. Reg. 1342/2008) ranked according to relative cod landings in tonnes, 2003-2012. Ranking is according to the year 2012.

ANNEX	REG_AR	EA SPECIES	REG_GE	AR 2003 Rel	2004 Rel	2005 Rel	2006 Rel	2007 Rel	2008 Rel	2009 Rel	2010 Rel	2011 Rel	2012 Rel	Avg 10-12
lla	3d	COD	TR1	0.79103	0.82586	0.88259	0.86966	0.80449	0.85309	0.92544	0.95853	0.93443	0.92958	0.94
lla	3d	COD	TR2	0.19616	0.15345	0.09312	0.07865	0.14607	0.12113	0.04825	0.02765	0.04918	0.07042	0.05
lla	3d	COD	GN1	0.0048	0.00172	0.01215	0.02022	0.03146	0.02577	0.02632	0.01382	0.01639		0.02
lla	3d	COD	LL1	0.00641	0.00862	0.01012	0.03146	0.01798	0	0	0			0.00
lla	3d	COD	TR3	0		0		0	0			0	0	0.00
lla	3d	COD	BT2	0										
lla	3d	COD	BT1	0.0016	0.01034	0.00202	0							

5.4.5 ToR 3 Information on small boats (<10m)

Activity by vessels <10m in area 3d (west of Scotland) was recorded by France, IOM, UK(EWNI) and UK(Scotland). Ireland supplied landings data. Descriptions of the type and quality of data available for assessing effort and landings of vessels <10m can be found in section 4.

5.4.5.1 Fishing effort of small boats by Member State

Effort by nation and gear type is shown in Table 5.4.6.1.

Overall effort is 10% higher in 2012 compared to 2003 although it has been relatively stable since 2006. Greatest effort comes from Scottish vessels deploying pots. The effort employed in this category to a certain extent dictates the perception of overall effort changes in this region. The second largest effort total is for Scottish vessels employing TR2 gear. Effort in this category is roughly one eighth that in pots and has declined from a high in 2006. Although small in absolute terms compared to Scottish effort there have been large increases in Northern Irish effort in pots in recent years, although a 15% drop in effort was recorded 2011-2012. Northern Irish dredging effort has also increased significantly recently and is now comparable to Scottish dredging effort.

Table 5.4.6.1 West of Scotland. Effort (kW*days) of vessels under 10 metres by gear type and Member State, 2000-2012.

REG AREA	REG GEAR	SPECON	COUNTRY	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	rel chng	rel chng	rel chng
COD	COD													03	04-06	11
3d	DREDGE	none	ENG	536			2726				825	990	6920	1191.04%	153.85%	598.99%
3d	DREDGE	none	IOM	2728			774							-100.00%	-100.00%	#DIV/0!
3d	DREDGE	none	NIR	252		13886	14934	10218	10819	17595	19622	22454	42135	16620.24%	192.40%	87.65%
3d	DREDGE	none	SCO	84393	104545	66603	19995	31968	57077	34484	34256	41033	45207	-46.43%	-29.05%	10.17%
3d	GN1	none	SCO			56	468	1800	6493						-100.00%	
3d	GT1	none	SCO					368			610	342	225			-34.21%
3d	LL1	none	ENG									10				-100.00%
3d	LL1	none	FRA								1419					
3d	LL1	none	NIR							66						
3d	LL1	none	SCO	25			51	241	740	664	410	2205	1296	5084.00%	2441.18%	-41.22%
3d	none	none	SCO	110078	125306	120513	163399	124414	116648	164375	182992	210052	208226	89.16%	52.65%	-0.87%
3d	OTTER	none	ENG				783			75					-100.00%	
3d	OTTER	none	NIR								112					
3d	OTTER	none	SCO	9008	7717	18258	20563	5222	5669	2366	4390	5075	3833	-57.45%	-75.29%	-24.47%
3d	POTS	none	ENG	3380	194	7137	1682	8794	1500	11417	1219	7710	3014	-10.83%	0.32%	-60.91%
3d	POTS	none	NIR	7518	4191	2700	74328	92327	115948	90049	101479	117849	99252	1220.19%	266.61%	-15.78%
3d	POTS	none	SCO	2743791	2775120	3080793	3690442	3625560	3200012	3354454	3498490	3090422	2990277	8.98%	-6.03%	-3.24%
3d	TR1	none	SCO	1266	496	359	2789	2837	969	1991	5272	2685	3444	172.04%	183.53%	28.27%
3d	TR2	none	ENG	9260	3987	11052	6941	14620	12354	1343	217	5476	2279	-75.39%	-68.89%	-58.38%
3d	TR2	none	NIR	8934	5756	1379	8683	5427	6125	7857	15903	13696	19555	118.88%	270.87%	42.78%
3d	TR2	none	SCO	502576	484133	456538	532719	485139	479805	441125	398362	350432	396510		-19.27%	13.15%
3d	TR3	none	SCO	116										-100.00%		
Total				3483861	3511445	3779274	4541277	4408935	4014159	4127861	4265578	3870431	3822173	9.71%	-3.09%	-1.25%

5.4.5.2 Catches (landings and discards) of cod and associated species by small boats by Member State

Table 5.4.6.2.1 summarises landings by vessels under 10m west of Scotland. France, IOM, UK (EWNI) and UK (Scotland) recorded both effort and landings in area 3d West of Scotland.

Much of the Nephrops and crab catch comes from the creel fishery operating on the west coast while scallops are caught by dredges. Nephrops are also caught by trawls using TR2 mesh size. There are also significant landings of unidentified species (OTH) by Scottish vessels.

Table 5.4.6.2.1 Landings (t) by vessels under 10m west of Scotland by Member State and species (ANF, CRE, HAD, HKE, NEP, PLE, POK, SCE, SOL, WHG and OTH (other species not specified in the data call)

COUNTRY	SPECIES	2003 L	2004 L	2005 L	2006 L	2007 L	2008 L	2009 L	2010 L	2011 L	2012 L
ENG	ANF	0.061		0.001							
	COD			0.001							
	CRE	0.311		0.122		166.765	0.062	3.12	0.08	7.286	2.598
	HAD	0.174									
	NEP	17.247	4.102	14.67	9.622	29.618	36.04	15.138	0.654	23.794	12.463
	PLE			0.002							
	SCE	2.918			2.551				11.998	9.619	29.869
IOM	SCE	21.163			3.683						
IRL	ANF		0.22				0.16		0.09	0.57	
	COD	0.02	0.35							0.07	
	CRE	2218.29	3527.92	2458.95	2025.8	618	833.87	478.9	579	816	
	HAD		0.98				0.06				
	HKE		0.29				0.17				
	NEP						2.34			6.89	
	PLE	0.4	0.69				1.85		2.05	2.94	
	POK	6.25	0.75						2.2	0.02	
	SOL		0.27				1.87		1.18	1.16	
	WHG	0.36	1.12				0.06			0.88	
NIR	ANF	0.013	0.023		0.312	0.09	0.014		0.068	0.135	0.229
	COD			0.053	0.012	0.018	0.011		0.037	0.023	0.037
	CRE	0.042	1.892		53.521	152.251	179.572	227.102	197.12	253.157	143.653
	HAD	0.064	0.067		0.019	0.025	0.026		0.017	0.054	0.037
	HKE	0.015	0.008		0.124	0.011	0.001		0.048	0.012	0.03
	NEP	19.737	16.057	3.137	22.095	14.694	12.735	5.083	41.221	32.051	61.373
	PLE			0.048					0.013	0.07	0.003
	POK			0.053							
	SCE	0.281		32.15	36.275	27.75	25.597		39.997	55.201	134.607
	SOL				0.128	0.024	0.006		0.002	0.006	0.017
	WHG			1.08							
SCO	ANF	8.072	11.236	1.275	3.637	0.771					0.04
	COD	2.8	1.063	0.375	0.833		0.788		0.101		0.158
	CRE	786.51	822.03			2250.718			1419.607		1633.443
	HAD	24.553	12.017	2.075	2.841	1.321	0.626			0.194	0.13
	HKE	0.591	0.737	0.388	0.471	0.05	0.478				0.225
	NEP	1793.43		1745.79					2014.7		
	ОТН	1483.682		1206.627					1495.905	1416.866	
	PLE	0.059	0.05	0.054	0.509	0.071	0.075		0.063		0.076
	РОК		0.012	0.06							
	SCE	567.493	483.078	331.03	263.404	231.12	933.895	312.054	327.069	337.695	444.499
	SOL		0.001	0.032	0.002	0.024		0.072			0.004
	WHG	14.314	6.023	2.057	0.812	0.034	0.895	0.534			0.072
Grand Total		6968.85	8466.37	6819.106	8008.082	7393.82	7122.035	6039.538	6133.314	6272.414	5803.033

5.4.6 ToR 4 Spatio-temporal patterns in effective effort by fisheries

Spatial figures of effort for area 3d concentrate on those categories identified as significant in terms of recorded effort (see previous section 5.4.1) and in terms of catches of cod (section 5.4.2). From section 5.4.2 catches of plaice and sole are shown to be small for all gear categories in the west of Scotland area and these species were not considered when deciding on categories to present here. Figures use a common scale across years for a given category (e.g. TR1) but scales are unique to each category therefore the colours assigned to statistical rectangles for category TR1 can not be compared directly to those assigned for category TR2. Figures are based on absolute values. This is after data values across all years have been combined for that category. Zero values are removed first.

TR1 (Figure 5.4.8.1) – Effort is greatest in the north of the area with a distinct line of high effort in statistical rectangles straddling or close to the shelf edge. At the start of the time series a rectangle in the far south east of the area (mouth of the Clyde) had one of the highest recorded levels of effort. This area was the location for a specific cod fishery now subject to seasonal closures. The reduction in overall effort within this gear category is clear.

TR2 (Figure 5.4.8.2) – It can be seen that vessels using gear in the TR2 category primarily belong to coastal fisheries. These vessels target Nephrops on well defined fishing grounds with muddy substrate. Highest effort is consistently just north of the boundary between management areas 3d and 3c (mouth of the Clyde). Remaining important rectangles are adjacent to the Scottish mainland, in particular between the Scottish mainland and the Outer Hebrides (known as the north and south Minches). The time series shows a contraction of effort in towards these areas of greatest activity.

LL1 (Figure 5.4.8.3) – There is a concentration of effort along the continental shelf edge throughout the time series.

GN1 (Figure 5.4.8.4) – Overall effort recorded for this category is low but LPUE of cod is currently the highest behind the TR gears. Until 2005 effort generally took place offshore and was split between an area in the north west of ICES division VIa and an area to the west of Ireland. Subsequently effort shifted until in 2008 there appeared to be a new concentration of effort in the north of area VIa but now located on the continental shelf edge.

The following are unregulated gear types but given the importance of unregulated gear effort relative to regulated gear effort (see Figure 5.4.8.5) they are shown to provide background information on the three unregulated gear types with highest effort.

PEL_TRAWL: (Figure 5.4.8.5) – Primarily an offshore fishery, (targeting herring), between 2003 and 2005 greatest effort was expended in the far north east corner of area VIa. Highest effort is at the shelf edge but overall effort has deceased before stabilizing from 2010.

POTS (Figure 5.4.8.6) – Vessels using pots target Nephrops and edible crabs west of Scotland and effort is concentrated in coastal waters of Scotland from the southern border of area VIa north as far as the North Minch. There is no indication of a spatial shift in effort or of a change in overall effort.

DREDGE (Figure 5.4.8.7) – West of Scotland dredge fishing is used to catch scallops. Greatest effort seems to have shifted from the South Minch area to coastal areas further south (including the Clyde) and there is an increase in effort in the south east area in 2012.

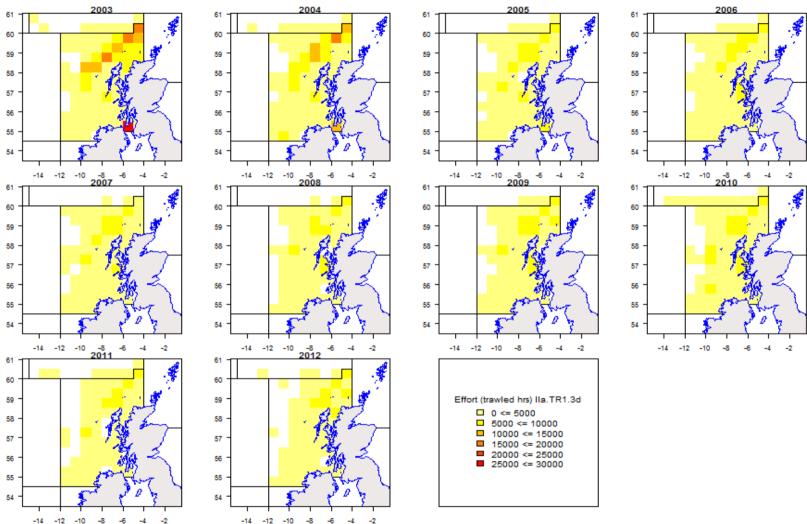


Figure 5.4.8.1 West of Scotland. Effort (trawled hours) by ICES statistical rectangle for TR1, 2003-2012 These figures include effort carried out under special condition CPart11.

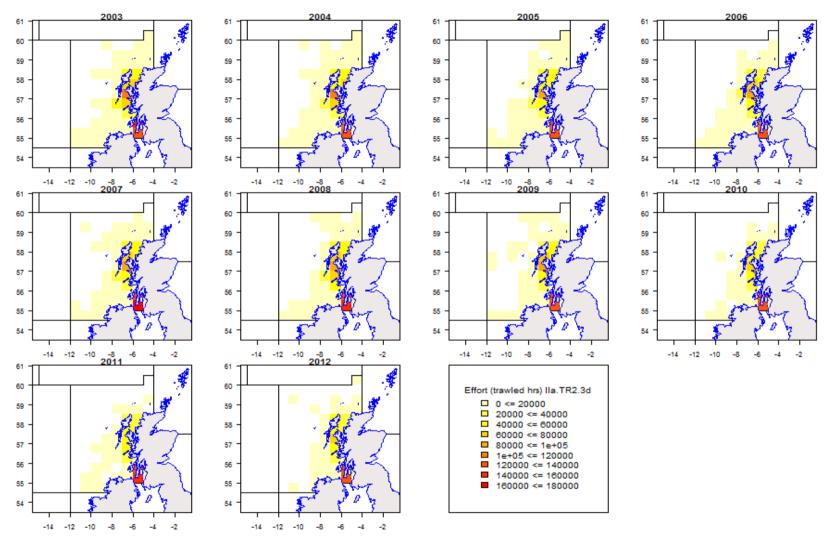


Figure 5.4.8.2 West of Scotland. Effort (trawled hours) by ICES statistical rectangle for TR2, 2003-2012 These figures include effort carried out under special condition CPart11.

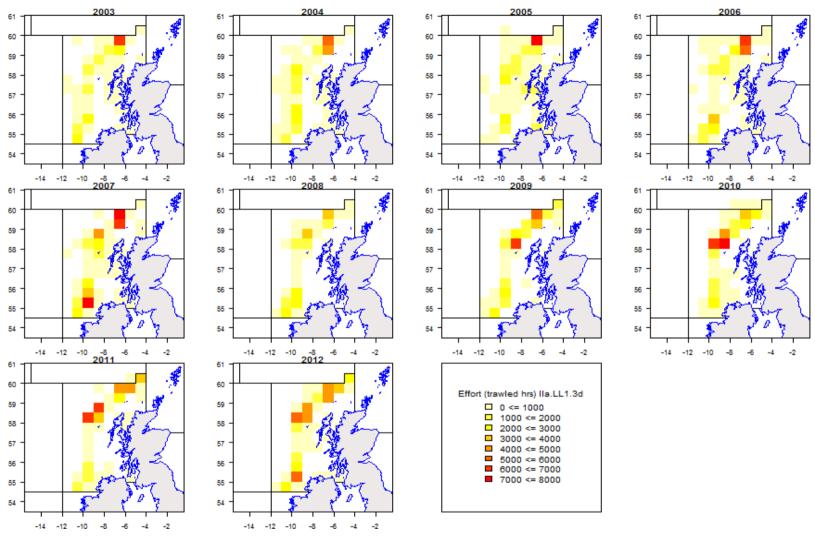


Figure 5.4.8.3 West of Scotland. Effort (trawled hours) by ICES statistical rectangle for LL1, 2003-2012.

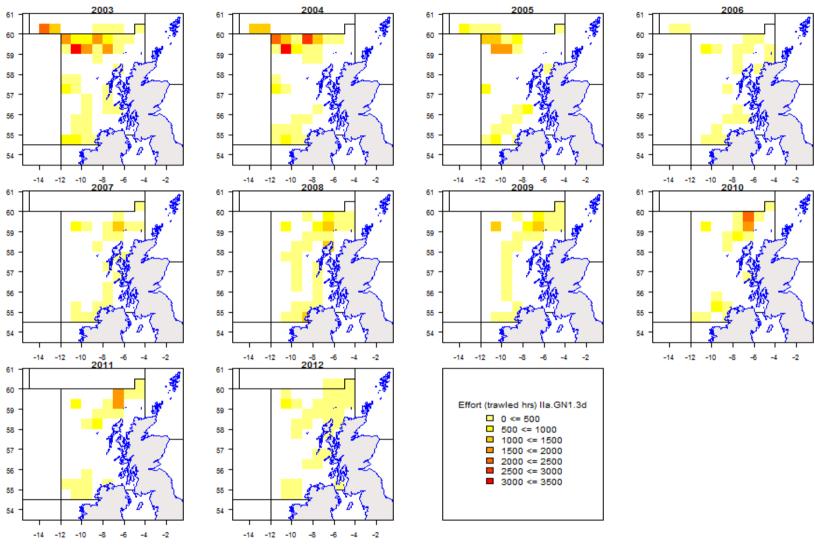


Figure 5.4.8.4 West of Scotland. Effort (hours) by ICES statistical rectangle for GN1, 2003-2012.

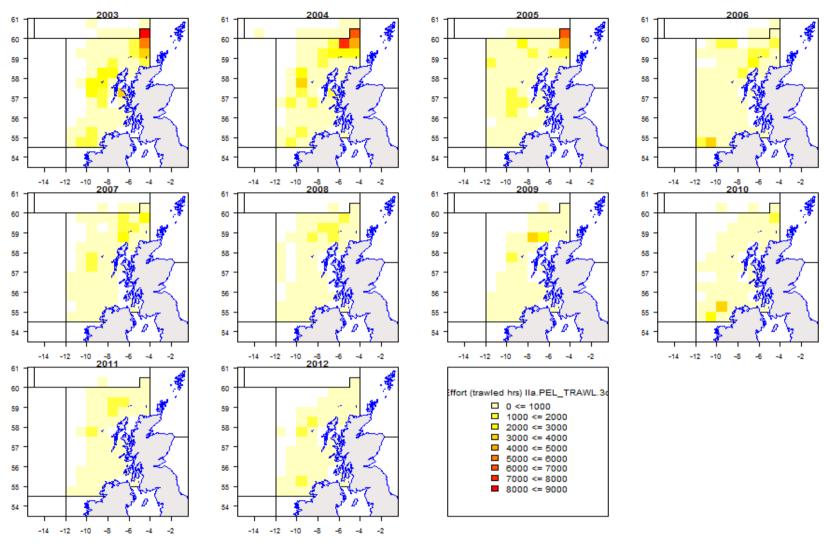


Figure 5.4.8.5 West of Scotland. Effort (hours) by ICES statistical rectangle for unregulated gear PELAGIC TRAWL, 2003-2012

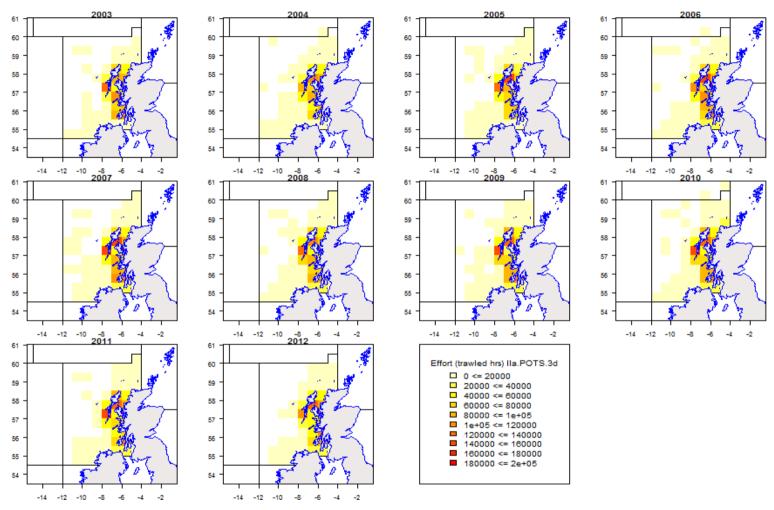


Figure 5.4.8.6 West of Scotland. Effort (hours) by ICES statistical rectangle for unregulated gear POTS, 2003-2012

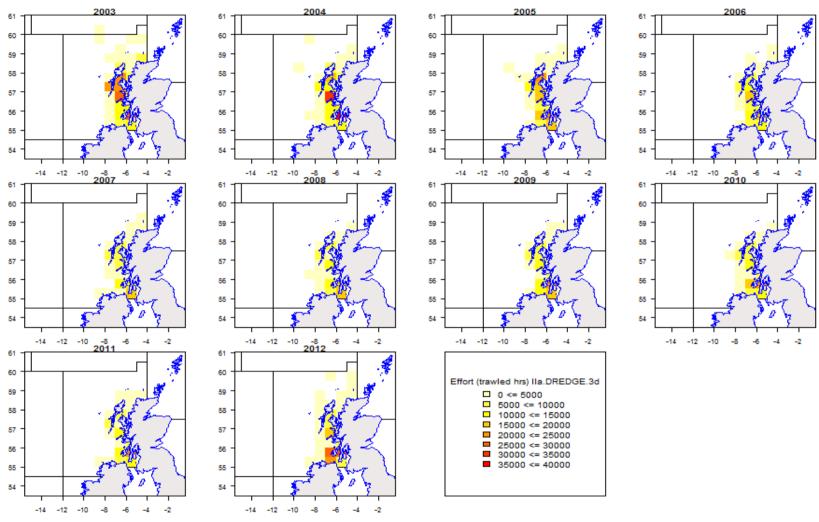


Figure 5.4.8.7 West of Scotland. Effort (hours) by ICES statistical rectangle for unregulated gear DREDGE, 2003-2012

5.4.7 ToR 5 Remarks on quality of catches and discard estimates

See tables in section 5.4.2 for values of the discard data quality index and section 4.5 for an explanation of the calculation of the index. A good proportion of the landings submitted to STECF also have discard data for the main gadoid stocks and the two important gears for gadoids west of Scotland. In contrast very little discard sampling is conducted in relation to pelagic fleets.

Discard data for Nephrops has not been supplied to STECF but discard data is supplied to ICES for the purpose of stock assessment. A technical issue exists in supplying to STECF in that Nephrops discards are estimated for sub-areas (Functional Units) and the best way to supply discards for the full management unit area needs to be considered.

Irish vessels contribute to the effort total in management area 3d. According to the international data supplied this constitutes approximately 7-13% of overall effort in the region depending on year (see Table 5.4.1.1).

5.4.8 ToR 6 Estimation of conversion factors to be applied for effort transfers between regulated gear groups

The table of international conversion factors (Table 5.4.8.1) is based on average CPUE (2010-2012). Discard data are scarce for many regulated gear groups but have been interpreted as well representative for TR1 and TR2.

Table 5.4.8.1 West of Scotland. Conversion factors for exchange of effort between gears based on average CPUE 2010-2012. Red cells indicate no discard data included and values are estimated based on LPUE; green cells indicate representative discard information available.

Wes	t of Scotland									
	donor gear	receivi	ng gear					2010-2	012	
		BT1	BT2	GN1	LL1	TR1	TR2	CPUE	LPUE	factor =
3d	BT1		1	0.143	3	1 0.004	4 0.5	1	1	if factor > 1 then
3d	BT2	1	L	0.143	3	1 0.004	4 0.5	1	1	factor = 1
3d	GN1	1	L 1	L		1 0.028	3 1	7	7	
3d	LL1	1	L 1	0.143	3	0.004	4 0.5	1	1	if CPUE=0 or LPUE = 0 then
3d	TR1	1	L 1	L 1	1 :	1	1	252	33	CPUE=1 or LPUE=1
3d	TR2	1	L 1	0.286	5	0.008	3	2	2	

5.4.9 ToR 7 Correlation between partial cod mortality and fishing effort by Member State and fisheries

The STECF EWG 13-13 presents partial fishing mortalities of cod by major fisheries and Member States using the estimated fishing mortality by ICES (2013) and the catches (Table 5.4.9.1), landings (Table 5.4.9.2) and discards volumes (Table 5.4.9.3) in relation to the catch totals supplied to STECF for the year available. The full list of all fisheries can be downloaded from the JRC website: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313

The anticipated trend in fishing mortality as derived from the cod plan is also presented in Tables 5.4.9.1-3. In the case of the west of Scotland the spawning stock biomass (SSB) was evaluated as well below the limit reference point (Blim) in 2008 and predicted to remain below that reference point by 2010 (the forecast year). Under such circumstances the plan calls for a 25% reduction in F. Without simulations including assumptions on recruitment it is not possible to make quantitative predictions of the response of the SSB to the assumed reductions if F. Therefore in the tables presented it is simply assumed that even with 25% reductions in F the SSB remains below Blim through 2012. The sustainable exploitation target is defined as F_{MSY} =0.19.

The trends in fishing effort in units of kWdays at sea of the relevant fisheries are also presented in Tables 5.4.9.1-3. The presented parameters r (absolute value of Pearson's coefficient of correlation), numbers of points considered as well as a p value to quantify the statistical significance (≤0.05) allow conclusions about the quality of the correlation between the partial F and fisheries specific fishing effort. Those values are presented in the Tables 5.4.9.1-3 and resulting regressions are shown in Fig. 5.4.9.1 for major fisheries.

It can be concluded from the estimated F of the stock assessment (Table 5.4.9.1) that the stock is unsustainably exploited with an F more than 2 times higher than the target. Prior to 2006 the fisheries listed contributed a small fraction to the total estimated fishing mortality because of inclusion of unaccounted mortality in the stock assessment. Since then the proportion of total estimated fishing mortality has been much higher. The remainder is due to catch from unregulated gears and differences in the applied methods to estimate discards between ICES and STECF EWG 13-13. The contribution of unregulated gears in 2012 is small and is mainly from those exempt under CPart11.

The metier contributing most to partial F of cod is the Scottish TR1 gear operating under special condition CPart13D (fishing west of the French line). The partial F from this category has increased from 2011. The high partial Fs are mainly due to discarding (Table 5.4.9.3).

Table 5.4.9.1 Cod west of Scotland (catches). The left part of the table lists estimated F trajectories from the management plan and the ICES 2013 cod assessment, as well as partial Fs for catches of fisheries using regulated gears. The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. Cod plan article 13 assignments apply since 2009 or 2010, as interpreted from the background documents of national declarations. A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs from total catches of all effort regulated gears to the overall F estimate of the stock.

unnig previous	year annual F re	ductions by 2	25 percent a	s SSB rem	nains belov	w Blim, Fn	nsy=0.19						Effort kW days ru	unning previ	ous year bas	seline									
			2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		
plan								1.009	0.760	0.570	0.430	0.320	Effort plan						9465852	7099389	5324542	3993407	2995055		
eduction F plan									-0.25	-0.25	-0.25	-0.26								-0.25	-0.25	-0.25	-0.25		
estimated			1.036	0.984	1.072	0.935	1.026	1.009	0.898	0.877	1.022	0.920	Effort estimated	21418390	18982683	16048869	14393175	15122682	14274451	14266509	11430034	9344659	8974037		
eduction F esti	mated								-0.11	-0.02	0.17	-0.10								0.00	-0.20	-0.18	-0.04		
													EFFORT											2003-2012	
par			2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	r s)
EU TR1	CPart13B	catches								0.00002		0.00003	· ·								4530		1103		
EU TR1	none	catches	0.00001		0.00004	0.00286	0.00587	0.00152	0.00004	0.00004				19191	12530	35586	27897	23652	3060	4854	2427			0.294	0.480
NG BT2	none	catches	0.00000											1274	12067	1810									
NG GN1	none	catches				0.00004								471808	309423	201100	23028	36174		13832	2540		765		
NG LL1	none	catches	0.00148	0.00089	0.00212		0.00346							370933	459841	317428	284497	325325	28103	_50052	25.0		4415	-0.856	0.014
NG TR1	none	catches	0.00882	0.00830				0.00876	0.00257	0.00126	0.00100	0.00037		319445	145914	85851	48469	8711	17020	24446	14062	12979	5327	0.469	0.171
NG TR2	none	catches	0.00055	0.00035					0.00237		0.00006	0.00063		106861	66311	57345	63616	58724	87267	15721	14802	21642	64875	0.587	0.074
RA GN1	none	catches	0.00149		0.00401				0.00313	0.00146		0.00003		130216	169758	145478	129344	230271	572425	572425	294925	241877	206263	-0.038	0.917
RA LL1	none	catches	0.00245	0.00003	0.00402	0.00389			0.00006	0.00140	0.00207			150210	203750	145476	163130	445344	277750	277750	189072	172250	200200	-0.740	0.093
RA TR1	CPart13B	catches				0.00303	0.00002	0.00000	0.00000			0.00218					103130	440044	2///30	2///30	103072	172250	1734176	-0.740	0.055
RA TR1	none	catches	0.04275	0.03711	0.06502	0.12079	0.13355	0.17394	0.05058	0.10128	0.02510			6010785	5807538	6038254	5193815	5058616	4486887	4482329	3469228	2149300	16870	0.382	0.276
RA TR2	none	catches	0.00020	0.00006	0.00302	0.12075	0.13333	0.17334	0.03030	0.10120	0.02310	0.00373		43098	12350	0030234	3133013	883	269645	274203	3403220	2145500	10070	0.302	0.270
OM TR2	none	catches	0.00020	0.00000		0.00082								181	1172	181	894	003	649	274203					
RL GN1	none	catches	0.00006	0.00027		0.00002	0.00206	0.00265	0.00061	0.00023	0.00032			19967	20763	192	3554	13346	9949	3275	551	2075	75	0.029	0.937
RL LL1	none	catches	0.00000	0.00027			0.00200	0.00203	0.00001	0.00023	0.00032			7200	18400	3000	3334	9750	3343	32/3	1397	7470	3471	0.023	0.557
RL TR1	CPart13c	catches							0.00183	0.00002	0.00031	0.00002		7200	10400	3000		3730		117484	108034	17295	12888	0.955	0.045
RL TR1	CPart13d	catches							0.00183	0.05001	0.00031	0.00002								253879	347386	206350	38636	0.818	0.182
RL TR1	none	catches	0.00885	0.00175	0.00716	0.01302	0.02242	0.02548	0.00295		0.01333	0.00033		496439	316477	308681	325597	530740	435661	179594	298286	126436	20852	0.740	0.102
RL TR2	none	catches	0.00883		0.00716				0.00233		0.00053	0.00051		1130195	977557	767211	712325	388727	205082	179394	9135	17461	18797	0.453	0.014
RL TR3	none	catches	0.00000	0.01370	0.00000	0.11323	0.00000		0.00143	0.00007	0.00000	0.00007		2198	377337	342	160	317	11321	1323	3133	5915	2503	0.433	0.103
IR TR1	none	catches	0.00000	0.01398		0.00852			0.00515	0.15220	0.00000	0.00010		338394	162967	87191	29352	33609	38029	45378	23860	3160	2303	-0.247	0.522
IR TR2	none	catches	0.01140	0.01338					0.00053		0.00049	0.00414		281887	353511	350269	454128	757758	654124	524483	878592	948262	806188	0.005	0.989
	none		0.00172				0.01034	0.00590	0.00055	0.00000	0.00049	0.00414				119958	81194	1803	034124	324403	0/0392	940202	000100	0.005	0.565
CO BT1	none	catches	0.00040	0.00267			0.00093							60295 124695	151480 148430	306947	371404	518888	378736	703396	723065	694992	518307		
			0.00006	0.00115	0.00118	0.00126	0.00093		0.01746	0.01300	0.10550			124095	148430	500947	3/1404	219999	3/8/30	113760	102762	443735	4566		
	CPart13B CPart13C	catches							0.01746		0.10550	0.07362								217928	358116	519551	707987	0.986	0.014
		catches							0.03086																
CO TR1	CPart13D	catches	0.10001	0.14363	0.10125	0.0000	0.42700	0.44535	0.38850	0.28817	0.78622	0.72441		F700605	4500455	2625262	2000577	1000403	1000165	1897026	1855833	1116540	1383078	-0.960	0.040
CO TR1	none	catches	0.18831	0.14383	0.19125	0.36886	0.42/10	0.44535	0.00440	0.00000	0.00000	0.004.07		5722625	4502156	2635380	2099673	1986483	1990144	2722405	2404400	2452700	4005440	-0.781	0.067
CO TR2	CPart13B	catches							0.02442		0.00360	0.00127								3733406	2494409	2462700	1905142	0.957	0.043
CO TR2	CPart13C	catches							0.00911	0.00039	0.00105	0.00442								792028	237022	174669	1517753	0.538	0.462
CO TR2	none	catches	0.04211	0.03524				0.01856		,	,			5760703	5334038	4586665	4381098	4693561	4808599	,	,			-0.228	0.664
um heck sum Fpar/			0.33821	0.26387	0.34042			0.70749	0.54767	0.66417	1.00716 0.99	0.81685		21418390	18982683	16048869	14393175	15122682	14274451	14266509	11430034	9344659	8974037	-0.852	0.002

Table 5.4.9.2 Cod west of Scotland (landings). The left part of the table lists estimated F trajectories from the management plan and the ICES 2013 cod assessment, as well as partial Fs for landings of fisheries using regulated gears. The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. Cod plan article 13 assignments apply since 2009 or 2010, as interpreted from the background documents of national declarations. A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs from landings of all effort regulated gears to the overall F estimate of the stock.

Runnig	previous ye	ear annual F red	ductions by 2	25 percent	as SSB rei	mains be	low Blim,	Fmsy=0.19	9					Effort kW days re	unning previo	us year ba	seline											
				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012				
plan									1.009	0.760	0.570	0.430	0.320	Effort plan						9465852	7099389	5324542	3993407	2995055				
educt	ion F plan									-0.25	-0.25	-0.25	-0.26								-0.25	-0.25	-0.25	-0.25				
estin	nated			1.036	0.984	1.072	0.935	1.026	1.009	0.898	0.877	1.022	0.920	Effort estimated	21418390	18982683	16048869	14393175	15122682	14274451	14266509	11430034	9344659	8974037				
educt	ion F estima	ited								-0.11	-0.02	0.17	-0.10								0.00	-0.20	-0.18	-0.04				
														EFFORT										2	03-2012			
par				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012 r	P)	n	
EU	TR1	CPart13B	landings								0.00000		0.00003									4530		1103				
DEU	TR1	none	landings	0.00001		0.00004	0.00147	0.00120	0.00037	0.00004	0.00003				19191	12530	35586	27897	23652	3060	4854	2427			0.397	0.330	8	1.
NG	BT2	none	landings	0.00000											1274	12067	1810											
NG	GN1	none	landings				0.00004								471808	309423	201100	23028	36174		13832	2540		765				
NG	LL1	none	landings	0.00148	0.00089	0.00212	0.00427	0.00346							370933	459841	317428	284497	325325	28103				4415	-0.856	0.014	7	-3.
NG	TR1	none	landings		0.00806	0.00463	0.00586	0.00030	0.00215	0.00257	0.00084	0.00097	0.00037		319445	145914	85851	48469	8711	17020	24446	14062	12979	5327	0.855	0.002	10	4.
NG	TR2	none	landings	0.00051	0.00082	0.00069	0.00092	0.00036	0.00099	0.00019	0.00002	0.00006	0.00031		106861	66311	57345	63616	58724	87267	15721	14802	21642	64875	0.700	0.024	10	2.
RA	GN1	none	landings	0.00149	0.00009	0.00401	0.00585	0.00522	0.00291	0.00313	0.00146	0.00187			130216	169758	145478	129344	230271	572425	572425	294925	241877	206263	-0.038	0.917	10	-0.
RA	LL1	none	landings				0.00389	0.00002	0.00006	0.00006								163130	445344	277750	277750	189072	172250		-0.740	0.093	6	-2.
RA	TR1	CPart13B	landings										0.00218											1734176				
RA	TR1	none	landings	0.04207	0.03624	0.06406	0.06085	0.04506	0.04699	0.05056	0.02651	0.02429	0.00050		6010785	5807538	6038254	5193815	5058616	4486887	4482329	3469228	2149300	16870	0.855	0.002	10	4.0
	TR2	none	landings		0.00002										43098	12350			883	269645	274203							
	TR2	none	landings				0.00002								181	1172	181	894		649								
RL	GN1	none	landings	0.00006	0.00027			0.00206	0.00265	0.00061	0.00023	0.00032			19967	20763	192	3554	13346	9949	3275	551	2075	75	0.029	0.937	10	0.0
RL	LL1	none	landings								0.00002				7200	18400	3000		9750			1397	7470	3471				
	TR1	CPart13c	landings							0.00183	0.00137	0.00030	0.00000								117484	108034	17295	12888	0.982	0.018	4	7.
	TR1	CPart13d	landings							0.00813	0.01636	0.01517	0.00026								253879	347386	206350	38636	0.847	0.153	4	2.2
	TR1	none	landings	0.00752	0.00138	0.00631	0.00515	0.02130	0.02156						496439	316477	308681	325597	530740	435661	179594	298286	126436	20852	0.733	0.016	10	3.0
	TR2	none	landings						0.00976						1130195	977557	767211	712325	388727	205082	17989	9135	17461	18797	0.843	0.002		4.4
RL	TR3	none	landings	0.00000		0.00000			0.00000				0.00000		2198		342	160	317	11321	1323		5915	2503				
	TR1	none	landings						0.00272	0.00515	0.00081				338394	162967	87191	29352	33609	38029	45378	23860	3160		0.677	0.045	9	2.4
	TR2	none	landings						0.00191			0.00049	0.00062		281887	353511	350269	454128	757758	654124	524483	878592	948262	806188	-0.235		10	-0.0
	BT1	none	landings				0.00019								60295	151480	119958	81194	1803									
	LL1	none	landings				0.00126								124695	148430	306947	371404	518888	378736	703396	723065	694992	518307				
	TR1	CPart13B	landings	250000				2.20030		0.00239	0.00228	0.00680			221000	0 100	230317	272101		270700	113760	102762	443735	4566				
	TR1	CPart13C	landings									0.00407	0.00879								217928	358116	519551	707987	0.649	0.351	4	1.3
	TR1	CPart13D	landings									0.05201									1897026	1855833	1116540	1383078	-0.293	0.707	4	-0.4
	TR1	none	landings	0.18692	0.14109	0.18954	0.18824	0.12180	0.11686	0.00010	0.00202	0.05201	0.00047		5722625	4502156	2635380	2099673	1986483	1990144	2037020	200000	2220540	2555076	0.340	0.510	6	0.
	TR2	CPart13B	landings	5.10032	3.1-1203	3.1033	0.20024	5.22200	3,11000	0.00334	0.00222	0.00360	0.00127		5,22525	.552156	2000000	2033073	1500-05	1550144	3733406	2494409	2462700	1905142	0.669	0.331	4	1.
	TR2	CPart13C	landings									0.00105									792028	237022	174669	1517753	0.932	0.068	4	3.
	TR2	none	landings	0.02705	0.02101	0.01603	0.01224	0.01619	0.01455	0.00123	0.00033	0.00103	0.00442		5760703	5334038	4586665	4381098	4693561	4808599	, 32020	237022	174003	1317733	0.932	0.008	6	4.
um	1114	none	ianumgs					0.01013		0.14150	0.12227	0.11584	0.10472		21418390	18982683					14266509	11430034	9344659	8974037	0.807	0.005	10	
	sum Fpar/F			0.32428						0.14150		0.11584	0.10472		21418390	16982083	10048869	143931/5	10122082	142/4451	14200009	11430034	9344009	6974037	0.807	0.005	10	3.8

Table 5.4.9.3 Cod west of Scotland (discards). The left part of the table lists estimated F trajectories from the management plan and the ICES 2013 cod assessment, as well as partial Fs for discards of fisheries using regulated gears. The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. Cod plan article 13 assignments apply since 2009 or 2010, as interpreted from the background documents of national declarations. A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs from discards of all effort regulated gears to the overall F estimate of the stock.

Runnig	g previous y	ear annual F red	luctions by 2	5 percent	as SSB rer	mains be	low Blim, I	Fmsy=0.1	9					Effort kW days ru	nning previ	ous year ba	seline											
				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012				
F plan									1.009	0.760	0.570	0.430	0.320	Effort plan						9465852	7099389	5324542	3993407	2995055				
reduct	ion F plan									-0.25	-0.25	-0.25	-0.26								-0.25	-0.25	-0.25	-0.25				
Festin				1.036	0.984	1.072	0.935	1.026	1.009	0.898	0.877	1.022	0.920	Effort estimated	21418390	18982683	16048869	14393175	15122682	14274451	14266509	11430034	9344659	8974037				
reduct	ion F estima	ated								-0.11	-0.02	0.17	-0.10								0.00	-0.20	-0.18	-0.04				
														EFFORT										2	003-2012			
Fpar				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012 r		р	n	
DEU	TR1	CPart13B	discards								0.00001		0.00000									4530		1103				
DEU	TR1	none	discards	0.00000		0.00000	0.00139	0.00467	0.00115	0.00000	0.00001				19191	12530	35586	27897	23652	3060	4854	2427			0.237	0.572	8	0.59
ENG	BT2	none	discards	0.00000											1274	12067	1810											
ENG	GN1	none	discards				0.00000								471808	309423	201100	23028	36174		13832	2540		765				
ENG		none	discards	0.00000	0.00000	0.00000	0.00000	0.00000							370933	459841	317428	284497	325325	28103				4415				
ENG	TR1	none	discards	0.00010	0.00025	0.00007	0.00782	0.00061	0.00661	0.00000	0.00042	0.00003	0.00000		319445	145914	85851	48469	8711	17020	24446	14062	12979	5327	-0.191	0.597	10	-0.55
ENG		none	discards	0.00004	0.00013	0.00032	0.00058	0.00117	0.00026	0.00000	0.00000	0.00000	0.00033		106861	66311	57345	63616	58724	87267	15721	14802	21642	64875	0.233	0.517	10	0.67
FRA	GN1	none	discards	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000			130216	169758	145478	129344	230271	572425	572425	294925	241877	206263				
FRA	LL1	none	discards				0.00000	0.00000	0.00000	0.00000								163130	445344	277750	277750	189072	172250					
	TR1	CPart13B	discards										0.00000											1734176				
FRA	TR1	none	discards	0.00069	0.00087	0.00096	0.05994	0.08848	0.12695	0.00002	0.07477	0.00081	0.00322		6010785	5807538	6038254	5193815	5058616	4486887	4482329	3469228	2149300	16870	0.098	0.787	10	0.27
FRA	TR2	none	discards	0.00003	0.00003										43098	12350			883	269645	274203							
IOM		none	discards				0.00080								181	1172	181	894		649								
IRL	GN1	none	discards	0.00000	0.00000			0.00000	0.00000	0.00000	0.00000	0.00000			19967	20763	192	3554	13346	9949	3275	551	2075	75				
IRL	LL1	none	discards								0.00000				7200	18400	3000		9750			1397	7470	3471				
IRL	TR1	CPart13c	discards							0.00000	0.00111	0.00001	0.00002								117484	108034	17295	12888	0.509	0.491	4	0.83
IRL	TR1	CPart13d	discards							0.00006	0.03365	0.00022	0.00069								253879	347386	206350	38636	0.689	0.311	4	1.34
IRL	TR1	none	discards	0.00133	0.00037	0.00086	0.00786	0.00111	0.00392	0.00009	0.00234	0.00013	0.00028		496439	316477	308681	325597	530740	435661	179594	298286	126436	20852	0.306	0.390	10	0.90
IRL	TR2	none	discards	0.00581	0.00180	0.00333	0.10785	0.00181	0.00485	0.00000	0.00000	0.00001	0.00020		1130195	977557	767211	712325	388727	205082	17989	9135	17461	18797	0.273	0.445	10	0.80
IRL	TR3	none	discards	0.00000		0.00000)	0.00000	0.00007			0.00000	0.00010		2198		342	160	317	11321	1323		5915	2503				
NIR	TR1	none	discards	0.00013	0.00037	0.00017	0.00398	0.01216	0.00565	0.00000	0.15139				338394	162967	87191	29352	33609	38029	45378	23860	3160		-0.300	0.433	9	-0.83
NIR	TR2	none	discards	0.00027	0.00149	0.00076	0.01046	0.01258	0.00205	0.00000	0.00000	0.00000	0.00352		281887	353511	350269	454128	757758	654124	524483	878592	948262	806188	0.063	0.862	10	0.17
sco	BT1	none	discards	0.00000	0.00000	0.00000	0.00000								60295	151480	119958	81194	1803									
sco	LL1	none	discards	0.00000	0.00000	0.00000	0.00000	0.00000							124695	148430	306947	371404	518888	378736	703396	723065	694992	518307				
sco	TR1	CPart13B	discards							0.01507	0.01073	0.09869									113760	102762	443735	4566				
sco		CPart13C	discards							0.02663	0.03193	0.05721	0.06483								217928	358116	519551	707987	0.964	0.036	4	5.12
sco		CPart13D	discards									0.73422									1897026	1855833	1116540	1383078	-0.969	0.031	4	-5.54
sco		none	discards	0.00139	0.00274	0.00171	0.18062	0.30530	0.32849						5722625	4502156	2635380	2099673	1986483	1990144					-0.749	0.087		-2.26
	TR2	CPart13B	discards							0.02108	0.00000	0.00000	0.00000								3733406	2494409	2462700	1905142	0.937	0.063		3.79
sco		CPart13C	discards									0.00000									792028	237022	174669	1517753	0.119	0.881		0.16
	TR2	none	discards	0.00416	0.01333	0.01738	0.04081	0.06741	0.00400						5760703	5334038	4586665	4381098	4693561	4808599					-0.550	0.258		-1.31
Sum				0.01395					0.48400	0.40616	0.54191	0.89133	0.71213		21418390	18982683	16048869		15122682	14274451	14266509	11430034	9344659	8974037	-0.912	0.000		-6.28
	sum Fpar/F			0.01							0.62		0.77			_0002000					200000		,	501.007		0.000		

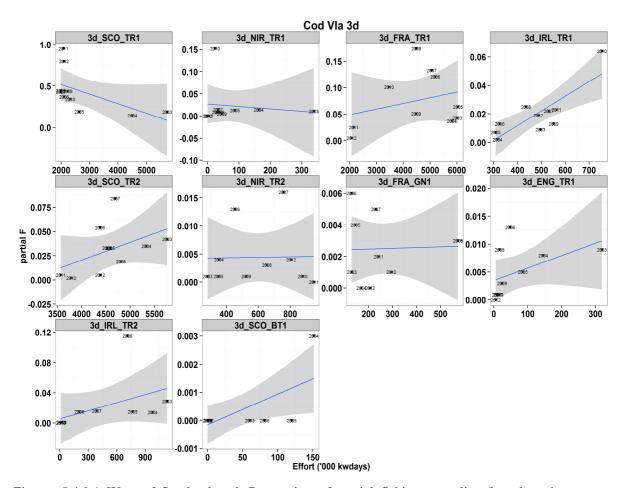


Figure. 5.4.9.1 West of Scotland cod. Regression of partial fishing mortality (based on harvest rate estimates) over effort (kWd) in area 3d for major fisheries, 2003-2012. Frames are listed in order of size of cod catches.

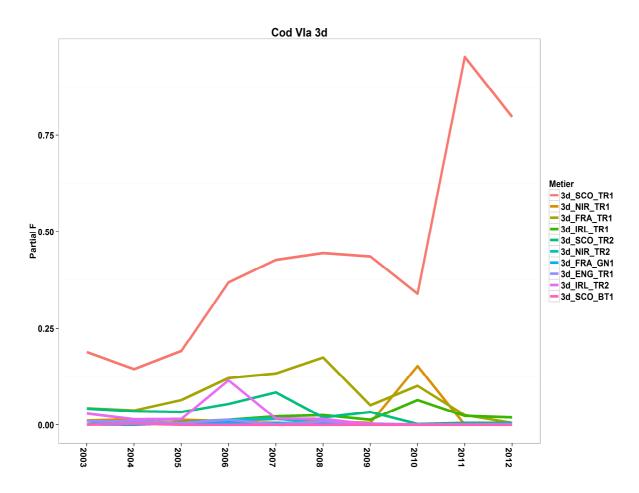


Fig. 5.4.9.2 West of Scotland cod. Time series of partial fishing mortality (based on harvest rate estimates) in area 3d of major fisheries, 2003-2012.

5.4.10 ToR 8 Comparative analyses between trends in fishing mortality and fishing effort by Member State and fisheries and the cod plan (R (EC) No 1342/2008) provisions, in particular with regard to Article 13

The detailed ToR for this task were;

"To quantitatively assess the annual trend in cod mortality that would have resulted from the fishing mortality adjustments in Article 7 and the trends in fishing effort that would have resulted from Article 12 of Council Reg. 1342/2008, for the period 2008 to 2012. STECF is then requested to quantitatively assess the partial cod fishing mortality and fishing effort trends of the regulated gears that were observed during 2008 to 2012. STECF is requested to comment on the questions if and to which extent the Member States application of Article 13, Paragraph 2, points a, b, c and d have supported the

reduction of cod fishing mortality as defined in Articles 7 and 9 and whether the increased fishing effort deployed by Member States was commensurate with the fishing mortality level to be achieved in 2012. The group is requested to quantify for each Member State and effort group (Annex I to Council Reg. 1342/2008) the partial target fishing mortality of cod, and partial fishing mortality of cod generated in excess of the cod plan, and, if a significant correlation between cod fishing mortality and fishing effort exists, the corresponding amounts of target fishing effort and of the excessive fishing effort in units of kW.days at sea."

In order to address this terms of reference, STECF EWG 13-13 has divided the question into three parts;

1. To quantitatively assess the annual trend in cod mortality that would have resulted from the fishing mortality adjustments in Article 7 and the trends in fishing effort that would have resulted from Article 12 of Council Reg. 1342/2008, for the period 2008 to 2012. STECF is then requested to quantitatively assess the partial cod fishing mortality and fishing effort trends of the regulated gears that were observed during 2008 to 2012.

This part of the ToR is considered covered by section 5.4.9 and the 'partial F' tables produced in 'App 07 partial F evaluation by fishery stocks'. As such, no further comment is made in this section.

2. STECF is requested to comment on the questions if and to which extent the Member States application of Article 13, Paragraph 2, points a, b, c and d have supported the reduction of cod fishing mortality as defined in Articles 7 and 9 and whether the increased fishing effort deployed by Member States was commensurate with the fishing mortality level to be achieved in 2012.

Figure 5.4.10.1 shows the trends in partial F and effort by Member State for regulated gears, standardised to their 2008 level. It should be noted that effort reductions have not been stipulated under the plan for all gears, and so effort levels should necessarily not have been expected to reduce to 0.32*2008 levels under implementation of the management plan. It can be seen that for Member States other than the UK partial F has reduced since 2008, though such reductions have not always been consistent (i.e. linearly proportional) with changes in effort by regulated gears. In the UK, a reduction in effort is recorded (but less than that to bring effort to 0.32 of effort in 2008) but partial F is recorded as increased in 2011 and 2012 compared to 2008. STECF EWG 13-13 notes that use of estimated trends in partial fishing mortality are dependent on consistent quota shares between member states and on the consistency of perception of the exploitation status derived from ICES assessments of the west of Scotland cod stock. A comparison of the assessed F trends between the 2012 and 2013 ICES assessments revealed a consistent perception of F trend.

Figure 5.4.10.2 shows the catchability trends in the major cod fisheries west of Scotland. In section 5.4.9 it was noted that Scottish TR1 gear is responsible for the majority of cod partial F and from Figure 5.4.10.3 it can be seen catchability has risen significantly in 2011 and 2012 for the TR1 gear group.

STECF EWG 13-13 notes that Article 13.2a has not been adopted by any Member State, and so there was no detailed discussion of this provision in this section.

Article 13b is for 'effort groups in which the fishing activity of one or more vessels results in a catch composition of less than 5% cod per fishing trips'. STECF has already stated that a catch composition special condition was not necessarily consistent with reductions in cod mortality as it does not control the overall amount of cod caught. STECF went on to further note that Article 13.2b:

"(i) may result in significant cod catches where large volume fisheries catch cod as a bycatch and this results in significant removals, particularly where the cod stock is depleted; (ii) it offers a perverse

incentive to catch more of other species in order to reduce the percentage catch of cod. If this derogation is to contribute to a reduction in exploitation of cod it is important that the total amount of cod caught by vessels under this does not contribute significantly to mortality. Therefore there is a need to have an overall cap on the catch of cod as a % of the TAC for cod taken by all vessels covered by this derogation. Such an approach would require monitoring of total catch, as with fully documented fisheries."_STECF 12-13)

STECF EWG 13-13 reiterates these comments. West of Scotland article 13.2b is estimated to have accounted for 10% of regulated gear partial F in 2011 but less than 1% in 2012.

STECF EWG 13-13 notes that Article 13c has only been adopted by IRL and the UK in area 3d. From Table 5.4.9.1 it can be seen catches from vessels operating under article 13c form a minor part of the cod catch. The Irish TR1 sector operating under articles 13.2.c has reduced partial cod F and effort drastically in 2011 and 2012 (s. Table 5.4.9.1).

Table 5.4.9.1 also shows that vessels operating under article 13d contribute the majority of cod fishing mortality over all gear types. The partial F for this one category is between 0.7 and 0.8. This is true for landings and discards with discards making a much greater contribution to fishing mortality in recent years. (see Tables 5.4.9.2 to 5.4.9.3). This is mainly a Scottish fishery as the Irish TR1 sector operating under articles 13.2.d has reduced partial cod F and effort drastically in 2012 (s. Table 5.4.9.1).

There are no indications that the Scottish TR1 fishery working under any of articles 13.2.b, c or d have contributed to a reduction in fishing mortality of cod west of Scotland. The contribution to fishing mortality of vessels operating under articles 13.2.b and 13.2.c (TR1 and TR2) is, however, low.

3. The group is requested to quantify for each Member State and effort group (Annex I to Council Reg. 1342/2008) the partial target fishing mortality of cod, and partial fishing mortality of cod generated in excess of the cod plan, and, if a significant correlation between cod fishing mortality and fishing effort exists, the corresponding amounts of target fishing effort and of the excessive fishing effort in units of kW.days at sea

STECF EWG 13-13 notes that the estimation of partial target fishing mortalities for cod by Member State and effort group requires the definition of proportions of overall F to be allocated to each effort group. STECF EWG 13-13 notes that these proportions have not remained stable in recent years as vessels are re-classified to a different special condition. As such, any assumption of target partial F for fleets based on recent years does not seem appropriate. Given a lack of knowledge on shares of partial F values among fisheries the estimation of partial target fishing mortalities is not considered possible.

In addition this analysis requires a significant – and positive – correlation between cod fishing mortality and fishing effort. There is a negative correlation between F and effort for the Scottish TR1 fleet (Figure. 5.4.9.1) which is already seen to take the great majority of cod catch in this area. It is therefore not considered possible to estimate excessive effort.

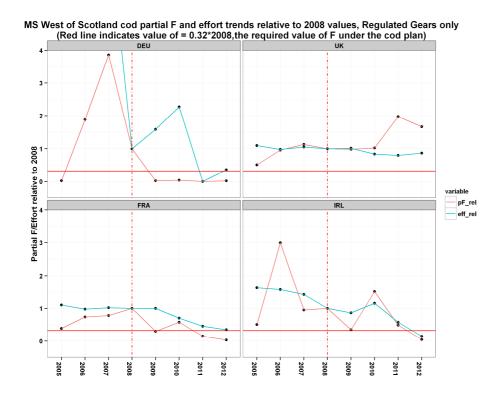


Figure. 5.4.10.1 – West of Scotland cod. Trends in partial fishing mortality as estimated by STECF EWG 13-13 and fishing effort for Member States regulated gears, standardised to 2008 levels. Red lines indicate trends in partial F and blue lines trends in kW days fishing effort by regulated gears. Dotted red vertical line indicates 2008, and solid red horizontal line indicates 0.32*2008 values.

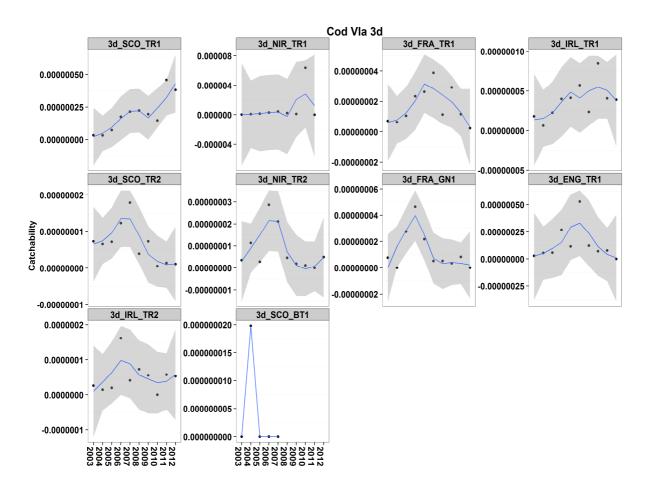


Fig. 5.4.10.2 West of Scotland cod. Trends in catchability (partial F/kw days fishing effort) for all regulated gears and the major fisheries in area 3d. Blue lines indicate a local regression smoother. Grey outlines indicate 95% confidence limits (\pm 2 standard errors).

5.4.11 ToR 9 Considerations in order to accomplish spatio-temoral pattern in standardized catchability indices for cod

It should also be noted that estimating catchabilities using landings information can only be meaningful if discarding is low. This is not the case for cod west of Scotland.

5.5 Irish Sea effort regime evaluation in the context of Annex IIA to Council Regulation (EC) No 57/2011)

5.5.1 ToR 1.a Fishing effort in kWdays, GTdays, kW and number of vessels by Member State and fisheries

Effort within the Irish Sea has been compiled for kW*days-at-sea, GT*days-at-sea, capacity in kWs and numbers of vessels. Within the report focus is on kW*Days at sea and brief discussion of the newly available capacity. Information on GT*days at sea and numbers of vessels is available via the website: Http://stecf.jrc.ec.europa.eu/web/stecf/ewg06

Data submissions covered a variety of data ranges, some nations going back to 2000, others to 2009 and some 2012 only. However, much of the data remains relativity consistent with last year, those with changes are detailed in Tables 5.5.1.1 many of the variations are the result of improvements within national databases.

Tables 5.5.1.2 and 5.5.1.3 detail nominal effort, in kW*days-at-sea, by nation and then aggregated by gear and special condition according to Annex I of Coun. Reg. 1342/2008 (new cod plan). These tables show a 37% decline in Irish Sea nominal effort since 2000, the majority of which occurred between 2003 and 2009, since 2009 effort has declined by 3%. In relation to effort by gear, discussions are primarily focused on data from 2003 onwards. This is due to the unavailability of Irish mesh size information prior to 2003 resulting in Irish effort occurring within the 'none' category which encompasses unidentified effort and effort by gears and mesh sizes not regulated under the cod plan. See below for further description of this category.

Irish Sea fisheries are predominantly demersal trawling and seining (TR group). Combined, TR effort mirrors the overall effort trend (Figure 5.5.1.1) representing 55-60% of total Irish Sea effort. This includes the small (2-5%) of effort excluded from effort regulation in the last three years. As part of regulated gears, the TR group accounted for over >70% from 2003 and >80% from 2008. Within the TR group, the TR2 category (70-99mm mesh sizes) dominates (Table 5.5.1.3 and Figure 5.5.1.2), and effort had been relatively stable between 2003 and 2008. An effort reduction occurred in 2009, coinciding with the introduction of the current cod plan, since then effort has remained at the reduced level. The majority of TR2 effort is now carried out under Article 13 of Coun. Reg. 1342/2008 (CPart13; Figure 5.5.1.3). CPart13 was submitted in 2013 broken down into its constitute parts (Figure 5.5.1.4), much of the effort began as category c (avoidance) but this looks to have switched to category b (<5% cod). In addition an amount is under category a (technical changes) relating to the use of the Swedish grid by the Nephrops fishery. A small amount of effort previously incorporated in CPart13 became exempt from the cod plan effort restrictions under Article 11 of the regulation (CPart11) since 2010, 2-5%. Effort within TR1 (≥100mm mesh sizes) is currently at a very low level. This group underwent a large decline in effort between 2003 and 2007, since then effort has continued to decline at a slower rate. The majority of TR1 was assigned to CPart13 categories in 2009-2011 (~80%), while in 2012 effort exited CPart13 into the no special condition category.

Beam trawling, solely BT2 in the Irish Sea, declined greatly between 2003 and 2008. The gear has continued at a low level over the last three years (accounting for 10% of Irish Sea effort), and is currently indicating a slight decrease (Table 5.5.1.3). Note, Belgium beam trawl effort within the Irish Sea contains assumed mesh sizes, as described in Section 4. Of the remaining regulated gears, gillnetting occurs at

very low levels <0.5% (Figure 5.5.1.1) while GT1 and LL1 show negligible effort accounting for less than 0.5% of total effort.

Category 'none none' represents gear types and mesh sizes not regulated by Coun. Reg. 1342/2008 effort restrictions. This category includes effort assigned to special condition CPart11 which is exempt from effort restrictions through the use of cod avoidance measures (discussed above). A large proportion of the 'none none' group prior to 2003 was due to Irish effort reported without mesh size information. Once Irish mesh size information became available in 2003, the 'none' category decreased substantially. Effort within this category has increased over the last seven years and currently accounts for 37% of Irish Sea effort. these increases primarily result from dredge and pot activity (Figure 5.5.5.1), in addition to the appearance of CPart11 effort within this category. Low levels of effort also occur within the pelagic trawl category.

Capacity was submitted at the highest level of aggregation and summations across certain groups are misleading due to double counting of vessels active within the area over multiple metiers, years or quarters. The annual values presented here and available on the website are the maximum capacity of a quarter. Data was only available for all those active within the Irish Sea for 2012, therefore it is not possible to make comment on area trends. However, regulated gears (Table 5.5.1.5) and unregulated gear capacity (Table 5.5.1.6) can be observed for those nations submitting a time series.

Table 5.5.1.1. Irish Sea relative differences in nominal effort (kW*days at sea) to 2012 submissions by Member State by Annex I, Coun. Reg. 1342/2008. Only those differing combinations are displayed. Sorted by gear, derogation (SPECON), and country.

ANNEX	REG AREA	REG GEAR	SPECON	COUNT	RY VESSEL_LEI	2003	2004	2005	2006	2007	2008	2009	2010	2011
lla	3с	TR1	none	NIR	O10T15M	1.217	0.227	0	1.543					
lla	3c	PEL_TRAW	/ NONE	IRL	O15M	0	0	0	0	0	0	1.66	0.07	0
lla	3c	TR2	none	NIR	O10T15M	0.097	0.061	0.064	0.029	0.056	0.025			
lla	3c	PEL_TRAW	/ NONE	IRL	O10T15M	0	0	0	0	0	0	0.212	0.015	0
lla	3c	DREDGE	none	BEL	015M						0		0	0.096
lla	3c	DREDGE	none	SCO	O10T15M	0	0	0	0	0	0	0	0.072	0.011
lla	3c	POTS	none	ENG	O10T15M	0	0	0	0	0	0	0.003	0.056	0.009
lla	3c	DREDGE	none	IOM	O10T15M	0		0	0	0.055	0			
lla	3c	BT2	none	BEL	O15M	0	0	0	0	0	0	0	0	0.046
lla	3c	BEAM	none	ENG	O10T15M	0	0	0	0	0	0	0.042	0	0
lla	3c	TR2	none	BEL	015M		0	0	0	0	0	0	0	0.026
lla	3c	LL1	NONE	IRL	O10T15M						0		0.015	0
lla	3c	DREDGE	none	SCO	O15M	0	0	0	0	0	0	0	0.012	0.001
lla	3c	BT2	NONE	IRL	015M	0	0	0	0	0	0	0	0	0.004
lla	3c	GN1	NONE	IRL	O10T15M	0	0	0	0	0	0	0.001	0.001	0.002
lla	3c	POTS	NONE	IRL	O10T15M	0	0	0	0	0	0	0	0	0.002
lla	3c	TR2	NONE	ENG	O15M	0	0	0	0	-0.005	0			
lla	3c	POTS	none	ENG	O15M	0	0	0	-0.017	0	0	0	0.002	0.01
lla	3c	POTS	none	GBJ	O15M	0	0	0	0	0	-0.008	0	0	0
lla	3c	TR1	NONE	NIR	015M	0	0	0	0	0.008	-0.023			
lla	3c	TR2	none	NIR	O15M	0	0	0	-0.002	-0.002	-0.011			
lla	3c	TR2	NONE	IRL	O10T15M	0	0	0	0	0	0	-0.013	-0.006	
lla	3c	DREDGE	NONE	IRL	O10T15M				0	0	0	-0.009	-0.011	-0.021
lla	3c	DREDGE	none	ENG	O15M	0	0	0	0	0	0	0	-0.042	0
lla	3c	TR1	NONE	IRL	O15M	0	0	0	0	0	0	0	-0.062	0
lla	3c	DREDGE	none	ENG	O10T15M	0	0	-0.004	0	-0.014	-0.025	-0.012	0.063	-0.094
lla	3c	TR2	NONE	IRL	O15M	0	0	0	0	0	0	-0.097	0	
lla	3c	OTTER	none	NIR	O15M	0		0	-0.304					
lla	3с	BT2	none	ENG	O15M	0	0	0	0	0	0	0	-0.449	0
lla	3c	POTS	none	NIR	O10T15M	0	0	0	0	0	0.001	-0.348	-0.076	-0.225
lla	3c	TR2	none	ENG	O10T15M	0	0	0	-0.19	-0.224	-0.249			
lla	3c	DREDGE	none	NIR	015M	0	0	0	0	0	0	-0.082	-0.092	-0.602
lla	3c	TR1	NONE	ENG	O10T15M	0	0	0	-0.513	-0.666	0			
lla	3c	DREDGE	none	IOM	O15M	0	0	0	0	0	0	-0.819	-0.623	
lla	3с	POTS	none	NIR	O15M		0		0	0	0	0	-0.569	-0.875
lla	3c	DREDGE	none	NIR	O10T15M	0	0	0	0	-0.222	-0.012	-0.282	-0.414	-0.554

Table 5.5.1.2. Irish Sea trends in nominal effort (kW*days at sea) by gear groups of Annex I, Coun. Reg. 1342/2008 and Member State, 2000-2012. Sorted by gear, derogation (SPECON), and country. Data qualities are summarised in Section 4.

18	ANNEX	AREA	GEAR	SPECON	COUNTRY	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Math		_	_			2005	2001	2003	2000	2007	2000	2003		2011	
	IIa					1884843	1482831	1694567	1153947	956953	554841	624989		690853	
18	IIa		_			172354		161500							13240
Mail	IIa	3c	BT2	none	GBJ	40878	42260	3542							
No. Section Property Prop	IIa					860849	414446		481404	550975	374494	173927	218054	212313	179498
Math	IIa							5884							
										1074	1378				705
Mail												2140			765
Mathematical Math						1/1972	12226	10011	9279	2020	//297		2260	2602	1097
No. No.						14072	12520		0370	3330	4237	004	2200	3002	
Mail	IIa					92103	63069		29531	47941	40957	22219	22172	20333	
In S	IIa	3c	GN1	none	NIR		222								
Mail	IIa	3c	GN1	none	NLD				161						
Mail	IIa							895							
	IIa								475	656	1066	2788	984	1476	
18											4007	4007			180
18			_			44120	50414	02772	FOCEC	12220				1540	F001
Table Sc						44138	38414	93773	39030	12238	840	924		1543	
															3/2
	IIa						800				24199		620	146	3625
	IIa	3c	LL1	none	sco	3247									
	IIa	3c	TR1	CPart11	IOM										687
18	IIa	3c	TR1	CPart13B	ENG				2541	2310		5544	5319		10416
	IIa	_		CPart13B	NIR							29532		25968	
The color of the	IIa														
Name												364594			
Name			_			200006	197251	9/1201	66264	1/1526	5022		12/3	407	13504
The color of the												19701	6668	6138	18034
Name	IIa														
Name	IIa		TR1		IRL	381119	157955	87263	84550	141442	73625	60348	73585	56161	122215
Italia Sc	IIa	3c	TR1	none	NIR	2055358	1162035	872476	785815	343025	498488				
Ilia 3c TR2	IIa			none							442				
Bila 3c TR2 CPart11 RL SCO S	IIa					92514	32104	3889	3104						
III		_										21982			
Bia Sc TR2 CPart13a RIL Sc Sc Sc Sc Sc Sc Sc S														231/06	206698
18												98/192		392685	1003338
Italia 3c TR2 CPart138 ENG ST715	IIa											30432	115551	332003	
Italia 3c TR2 CPart138 SCO SCO	IIa								12243	17787	15246	11319	116327	46765	
Italia 3c TR2 CPart13c NIR NIR NIR NIR SCO STATE CPart13c NIR NIR SCO STATE NIR NIR	IIa	3c	TR2	CPart13B	NIR							235743	1450621	1820787	2225228
III	IIa	3c	TR2	CPart13B	SCO							23350	17981	42035	82657
Italia 3c TR2 CPart13c SCO	IIa	_		CPart13c	ENG								65836	109946	66348
III	IIa												1336192		
III	IIa														
III						244774						29980	14283	29125	20947
III							347848		235204		204211				205
III							10826		5427		14592				393
IIIa 3c TR2 none NIR 3395323 3138292 3213416 2959511 3143032 3326397	IIa											733216	673091	445123	12056
III	IIa							3213416		3143032					
III	IIa	3c	TR2	none	SCO	44656	93770	34415	7435	16808	21995				
IIIa 3c TR3 none IRL 900 90 3305 960 436 436 548622 5286196 5359290 5352931 IIIa 3c none none BEL 528 53686 41044 65538 16550 IIIa 3c none none ENG 648435 546205 596195 688014 589585 506163 442687 490590 459843 527265 IIIa 3c none none ESP 735 IIIa 3c none none GBG 74180 76378 17726 11996 35952 53500 78825 62274 52172 68016 IIIa 3c none none GBJ 774180 76378 17726 11996 35952 53500 78825 62274 52172 68016 IIIa 3c none none IRL 611981 830250 417215 436077 445217 396694 437256 630794 670709 720078 IIIIa 3c none none NIR 303426 256628 249139 273483 289130 352026 270031 307264 291270 303954 IIIa 3c none none NID 14520 12797 525 4725 54075 17118 3960 663817 940554 1260522 1371630 1028690 1087235 949306 Total of unregulated gears 2551992 2455868 2105322 2024227 2320239 2727815 2635415 2577868 2668914 2625161	IIa	3c	TR3	none	DNK	992									
Total of regulated gears 11231442	IIa	3c	TR3	none	ENG	134									
III	IIa			none	IRL										
III							8851257	8837935	7551961	7268756		5548622			
IIa 3c none none ESP		_					F 4 5 0 0 F	505405	500044	500505		******			
Ha 3c none none FRA 1694 906 2844 2844 1180 4982 1296 1180 350 11116 1119						648435	546205	596195	688014	589585	506163	442687	490590	459843	
IIa 3c none none GBG 74180 76378 17726 11996 35952 53500 78825 62274 52172 68016 IIa 3c none none IOM 10154 6782 5194 10315 14170 47908 3908 10953 37165 37298 IIa 3c none none IRL 611981 830250 417215 436077 445217 396694 437256 630794 670709 720078 IIa 3c none none NIR 303426 256628 249139 273483 289130 352026 270031 307264 291270 303954 IIa 3c none none NLD 14520 12797 525 4725 54075 17118 3960 66381 IIa 3c none none SCO 901594 725105 807056 603817 940554 1260522 1371630 1028690 1087235 949306 Total of unregulated gears 2551992 2455868 2105322 2024227 2320239 2727815 2635415 2577868 2668914 2625161						1694				906	2844	2844	1180	4982	
III						1034				500				4302	1230
IIa 3c none none IOM 10154 6782 5194 10315 14170 47908 3908 10953 37165 37298 37298 37298 37298 37298 37298 37298 37298 37298 37298 37298 37298 37298	IIa					74180	76378	17726	11996	35952				52172	68016
IIa 3c none none IRL 611981 830250 417215 436077 445217 396694 437256 630794 670709 720078 IIa 3c none none NIR 303426 256628 249139 273483 289130 352026 270031 307264 291270 303954 IIa 3c none none NLD 14520 12797 525 4725 54075 17118 3960 66331 IIa 3c none none SCO 901594 725105 807056 603817 940554 1260522 1371630 1028690 1087235 949306 Total of unregulated gears 2551992 2455868 2105322 2024227 2320239 2727815 2635415 2577868 2668914 2625161	IIa														
IIa 3c none none NIR 303426 256628 249139 273483 289130 352026 270031 307264 291270 303954 IIa 3c none none NLD 14520 12797 525 4725 54075 17118 3960 663 IIa 3c none none SCO 901594 725105 807056 603817 940554 1260522 1371630 1028690 1087235 949306 Total of unregulated gears 2551992 2455868 2105322 2024227 2320239 2727815 2635415 2577868 2668914 2625161	IIa														
Ila 3c none SCO 901594 725105 807056 603817 940554 1260522 1371630 1028690 1087235 949306 Total of unregulated gears 2551992 2455868 2105322 2024227 2320239 2727815 2635415 2577868 2668914 2625161	IIa														
Total of unregulated gears 2551992 2455868 2105322 2024227 2320239 2727815 2635415 2577868 2668914 2625161	IIa			none	NLD				525		54075				663
	IIa			none	SCO										
Overall total 13783434 11307125 10943257 9576188 9588995 9298753 8184037 7864064 8028204 7978092			ed gears												
	Overall t	otal				13783434	11307125	10943257	9576188	9588995	9298753	8184037	7864064	8028204	7978092

Table 5.5.1.3 Trend in nominal effort (kW*days at sea) by effort group (Coun. Reg. 1342/2008), 2000-2012.

														Relative	Relative
Annex	REG ARE	A REG GEA	R SPECON	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	change	change
														to 2004	to 2009
IIa	3c	TR1	CPart13B				2541	2310		35076	53115	25968	39212		0.12
IIa	3c	TR1	CPart13c							380910	327889	162118	33583		-0.91
IIa	3c	TR1	none	3202394	1717060	1238516	1049007	567139	599083	80049	80253	62299	140249	-0.92	0.75
lla	3c	TR1 Tota	l	3202394	1717060	1238516	1051548	569449	599083	496035	461257	250385	213044	-0.88	-0.57
IIa	3c	TR2	CPart13a							98492	115391	392685	1243586		11.63
lla	3c	TR2	CPart13B				12243	17787	15246	270412	1584929	1909587	2395600		7.86
lla	3c	TR2	CPart13c							3063789	1402028	975187	308270		-0.90
lla	3c	TR2	none	4913738	4991160	5083779	4694459	5076641	4935425	763196	687374	474248	33398	-0.99	-0.96
IIa	3c	TR2 Tota	l	4913738	4991160	5083779	4706702	5094428	4950671	4195889	3789722	3751707	3980854	-0.20	-0.05
lla	3c	TR3	none	2026	90	3305	960		436			179	634	6.04	
lla	3c	TR3 Tota	l	2026	90	3305	960		436			179	634	6.04	
lla	3c	BT2	CPart13B								718		8619		
IIa	3c	BT2	none	2958924	2008116	2380146	1694550	1540114	948062	804724	869089	944388	809513	-0.60	0.01
lla	3c	BT2 Tota	l	2958924	2008116	2380146	1694550	1540114	948062	804724	869807	944388	818132	-0.59	0.02
lla	3c		CPart13B							2140			765		-0.64
lla	3c	GN1	none	106975	75617	38416	38070	51871	45254	22903	24432	23935	14511	-0.81	-0.37
lla	3c	GN1 Tota	al	106975	75617	38416	38070	51871	45254	25043	24432	23935	15276	-0.80	-0.39
lla	3c	GT1	none				475	656	2393	4025	984	1476	180		-0.96
lla	3c	GT1 Tota	l .				475	656	2393	4025	984	1476	180		-0.96
IIa	3c	LL1	none	47385	59214	93773	59656	12238	25039	924	620	1689	8998	-0.85	8.74
lla	3c	LL1 Total		47385	59214	93773	59656	12238	25039	924	620	1689	8998	-0.85	8.74
lla	3c	none	none	2551992	2455868	2105322	2024227	2320239	2727815	2635415	2577868	2668914	2625161	0.07	0.00
lla	3c	TR1	CPART11										687		
lla	3c	TR2	CPART11							21982	139374	385531	315126		13.34
lla	3c	None To	tal	2551992	2455868	2105322	2024227	2320239	2727815	2657397	2717242	3054445	2940974	0.20	0.11
Grand To	otal			13783434	11307125	10943257	9576188	9588995	9298753	8184037	7864064	8028204	7978092	-0.29	-0.03

Table 5.5.1.4. Irish Sea trends in unregulated effort (kW*days at sea), according to Annex 1 of Con. Reg. 1342/2008, by major gear type, 2000-2012.

Annex	Area	REG GEA	R COUNTRY	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
IIa	3c	BEAM	ENG	7360	1966	25324	8221	8992	26350	9508	1788	988	186
IIa	3c	BEAM	IRL	23853	159015								
IIa	3c	BEAM	NIR				145		3639	370			
IIa	3c	BEAM	NLD										663
IIa	3c	DEM SEI	NENG				142						
IIa	3c	DEM SEI			759								
IIa	3c	DREDGE	BEL						53686		41044	65538	16550
IIa	3c	DREDGE	ENG	225232	197412	196065	313285	238677	265214	212467	261604	303072	382980
IIa	3c	DREDGE	FRA								251	4401	
IIa	3c	DREDGE	GBJ	2968									
IIa	3c	DREDGE	IOM	8573	5387	5194	9987	14170	17732	3908	10953		
IIa	3c	DREDGE	IRL	413698	342029	170130	151968	223441	176175	197039	281497	353159	346711
IIa	3c	DREDGE	NIR	135202	137511	111692	99662	106536	145080	100503	113048	77853	121370
IIa	3c	DREDGE	NLD				525	4725	54075	17118			
lla	3c	DREDGE	SCO	894237	724139	777599	572146	905364	1226238	1276319	943377	1013183	872719
IIa	3c	none	FRA					906					
lla	3c	none	IRL						96				
IIa	3c	none	SCO			2130							
lla	3c	OTTER	BEL	528									
IIa	3c	OTTER	ENG	62	76	1416	112	820				188	95
IIa	3c	OTTER	FRA										736
IIa	3c	OTTER	IRL	24648	99895	4109	3940			455	2380	291	4007
lla	3c	OTTER	NIR	696		179	2560				3120		9550
IIa	3c	OTTER	NLD										
lla	3c	OTTER	SCO	5792	966		414				828		290
IIa	3c	PEL SEIN	IE ESP										735
lla	3c	PEL SEIN	IE FRA	1694								285	560
IIa	3c	PEL SEIN	IE IRL	560	5872								
lla	3c	PEL SEIN	IE NIR	45458	22042	61552	34310		1131				
IIa	3c	PEL_TRA	WENG	12729		7200					13440		
IIa	3c	PEL_TRA	W FRA								792		
IIa	3c	PEL_TRA	W IRL	48375	146806	127361	59473	24970	13968	10980	74946	38999	81914
IIa	3c	PEL_TRA	WNIR	87890	65982	49486	93380	140424	104430	92084	108198	167634	117316
IIa	3c	PEL_TRA	W NLD		14520	12797					3960		
IIa	3c	PEL_TRA	w sco			14700							
IIa	3c	POTS	ENG	403052	346751	366190	366254	341096	214599	220712	213758	155595	144004
IIa	3c	POTS	FRA						2844	2844	137	296	
IIa	3c	POTS	GBG						397	11116	1119		
IIa	3c	POTS	GBJ	71212	76378	17726	11996	35952	53500	78825	62274	52172	68016
IIa	3c	POTS	IOM	1581	1395		328		30176			37165	37298
IIa	3c	POTS	IRL	100847	75874	115615	220696	196806	206455	228782	271971	278260	287446
IIa	3c	POTS	NIR	34180	31093	26230	43426	42170	97746	77074	82898	45783	55718
IIa	3c	POTS	SCO	1565		12627	31257	35190	34284	95311	84485	74052	76297
IIa	3c	TR1	IOM										687
IIa	3c	TR2	IOM							21982	22808	153825	108428
IIa	3c	TR2	IRL								107511	231706	206698
IIa	3c	TR2	SCO								9055		
Grand To	otal			2551992	2455868	2105322	2024227	2320239	2727815	2657397	2717242	3054445	2940974

Table 5.5.1.5. Irish Sea trends in maximum capacity (kW) of regulated gears, according to Annex 1 of Con. Reg. 1342/2008, by major gear type, 2000-2012.

ANNEX	AREA	GEAR	SPECON	COUNTRY	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
IIa	3c	BT2	CPart13B	ENG								221		221
IIa	3c	BT2	none	BEL	10533	10901	10176	8008	7614	5403	5251	5590	4958	4432
IIa	3c	BT2	none	ENG	9400	3317	4452	2444	880	881	663	406	914	628
IIa	3c	BT2	none	GBJ	1216	1357	738							
lla	3c	BT2	none	IRL							1578	1798	2240	1798
IIa	3c	BT2	none	NLD										
lla	3c	BT2	none	SCO					537	106				
IIa	3c	GN1	CPart13B											741
IIa	3c	GN1	CPart13B								428			
IIa	3c	GN1	none	ENG	851	678	478	205	396	205	89	473	205	205
IIa	3c	GN1	none	FRA	551	0,0	.,,	200	550	200	03	.,,	200	1177
IIa	3c	GN1	none	IRL							1492	1620	1388	1402
Ila	3c	GN1	none	NIR		111					1152	1020	1500	1101
IIa	3c	GN1	none	NLD		111								
IIa	3c	GN1	none	SCO			551							
IIa	3c	GT1	none	ENG			331	95	82	82	82	82	82	
lla	3c	GT1	none	FRA				33	02	02	02	02	02	180
lla	3c	GT1	none	IRL							96			100
lla	3c	LL1		ENG	498	1238	1634	1100	492	84	84		294	294
			none		438	1236	1034	1100	492	04	04		294	
IIa	3c	LL1	none	ESP										186
IIa	3c	LL1	none	FRA								252	2.25	cra
IIa 	3c	LL1	none	IRL	400							263	146	657
IIa 	3c	LL1	none	SCO	492									
IIa	3c	TR1	CPart11	IOM										545
IIa	3c	TR1	CPart13B					231	231		231	231		541
IIa	3c	TR1	CPart13B								428	428	428	1249
IIa	3c	TR1	CPart13B									195		134
lla	3c	TR1	CPart13c								509	509	447	648
IIa	3c	TR1	CPart13c								4484	2915	2567	783
IIa	3c	TR1	CPart13c									413	356	585
IIa	3c	TR1	none	ENG	4129	1997	1698	841	569	767				
lla	3c	TR1	none	FRA										3700
lla	3c	TR1	none	IOM	632	181	172		216	336				
lla	3c	TR1	none	IRL							3110	4459	4566	3594
lla	3c	TR1	none	NIR	16673	10864	9460	7669	5162	6183				
lla	3c	TR1	none	NLD										
lla	3c	TR1	none	SCO	1637	1829	373	537						
lla	3c	TR2	CPart13a	IRL							1131	1131	4070	12147
lla	3c	TR2	CPart13a	NIR										15777
IIa	3c	TR2	CPart13B	ENG				231	231	231	231	1178	956	1680
IIa	3c	TR2	CPart13B	NIR							1997	10847	14370	20771
IIa	3c	TR2	CPart13B	SCO							1104	1170	1783	1642
IIa	3c	TR2	CPart13c	ENG							2643	1286	1943	1335
IIa	3c	TR2	CPart13c	NIR							19207	14114	8036	6816
IIa	3c	TR2	CPart13c								652		566	1000
IIa	3c	TR2	none	BEL		336	553	1180	1149	1724	1138	1188	982	495
lla	3c	TR2	none	ENG	3724	3290	3336	3395	2533	2794				
IIa	3c	TR2	none	FRA										395
IIa	3c	TR2	none	IOM	826	453	952	592	966	680				
IIa	3c	TR2	none	IRL	525	.55	302	332	300	500	7953	8420	7333	2214
lla	3c	TR2	none	NIR	21072	17375	19539	18722	17946	18373	, 555	0420	, 555	2214
lla	3c	TR2	none	SCO	1499	1797	1275	492	797	596				
lla	3c	TR3		DNK	534	1/3/	12/3	432	131	330				
	3c	TR3	none		134									
lla			none	ENG	154								170	624
lla	3c	TR3	none	IRL									179	634

Table 5.5.1.6. Irish Sea trends in maximum effort (kW) of unregulated gears, according to Annex 1 of Con. Reg. 1342/2008, by major gear type, 2000-2012.

ANNEX	AREA	GEAR	SPECON	COUNTRY	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
lla	3c	TR2	CPart11	IOM							846	884	2430	2512
lla	3c	TR2	CPart11	IRL								1131	1131	1131
lla	3c	TR2	CPart11	SCO								292		
lla	3c	none	none	FRA										
lla	3c	none	none	IRL										
lla	3c	none	none	SCO			213							
lla	3c	OTTER	none	BEL	207									
lla	3c	OTTER	none	ENG	62	76	354	112	466				94	95
lla	3c	OTTER	none	FRA										736
lla	3c	OTTER	none	IRL							309	408	221	547
lla	3c	OTTER	none	NIR	309		179	1280				240		1469
lla	3c	OTTER	none	NLD										
lla	3c	OTTER	none	SCO	585	276		207				276		193
lla	3c	PEL_SEINE	none	ESP										368
lla	3c	PEL_SEINE	none	FRA										280
lla	3c	PEL_SEINE	none	IRL										
lla	3c	PEL_SEINE	none	NIR	6494	6494	6494	6494		809				
lla	3c	PEL_TRAWL	none	ENG	4320		4320					4320		
lla	3c	PEL_TRAWL	none	FRA										
lla	3c	PEL_TRAWL	none	IRL							1096	1090	2415	3560
lla	3c	PEL_TRAWL	none	NIR	3558	2749	2749	2749	3128	3128	3128	3128	11128	11128
lla	3c	PEL_TRAWL	none	NLD										
lla	3c	PEL_TRAWL	none	SCO			2940							
lla	3c	POTS	none	ENG	2996	2588	2510	2505	2432	1900	2096	2041	1520	2006
lla	3c	POTS	none	FRA										
lla	3c	POTS	none	GBG						170	298	298		
lla	3c	POTS	none	GBJ	542	675	179	179	214	214	393	214	214	214
lla	3c	POTS	none	IOM	93	93		328		328			198	198
lla	3c	POTS	none	IRL							2924	2449	2247	2554
lla	3c	POTS	none	NIR	575	553	245	638	954	1308	1066	1183	707	745
lla	3c	POTS	none	SCO	239		207	207	207	1102	1102	643	436	570
lla	3c	DEM_SEINE	none	ENG				142						
lla	3c	DEM_SEINE	none	IRL										
lla	3c	DREDGE	none	BEL						494		210	210	210
lla	3c	DREDGE	none	ENG	2215	3041	2589	3622	3131	4022	3324	4815	5659	6448
lla	3c	DREDGE	none	FRA										
lla	3c	DREDGE	none	GBJ	212									
lla	3c	DREDGE	none	IOM	714	181	577	739	1256	1356	193	193		
lla	3c	DREDGE	none	IRL							3912	5899	4004	3872
lla	3c	DREDGE	none	NIR	1899	1551	2123	1947	2040	2562	2325	2037	2076	3592
lla	3c	DREDGE	none	NLD										
Ila	3c	DREDGE	none	SCO	11796	11479	11002	10875	13545	15893	15297	13424	11514	13577
lla	3c	BEAM	none	ENG	354	134	210	142	218	313	267	172	76	186
lla	3c	BEAM	none	IRL										
lla	3c	BEAM	none	NIR				145		417	226			
lla	3c	BEAM	none	NLD										
		um capacity												56191

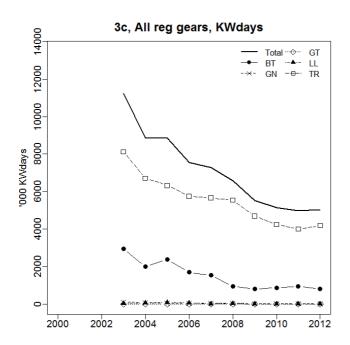


Figure 5.5.1.1. Irish Sea. Trend in regulated gear nominal effort (kW*days-at-sea) by Coun. Reg. 1342/2008, 2003-2012. N.B. CPart11 effort is excluded from this plot.

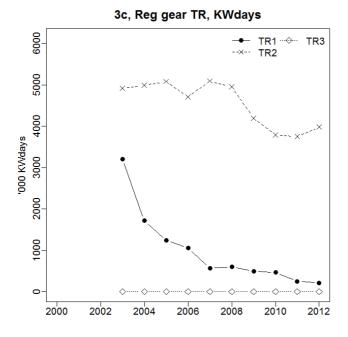


Figure 5.5.1.2. Irish Sea. Trend in regulated gear TR (demersal trawl and Danish seine) nominal effort (kW*days-at-sea) by Coun. Reg. 1342/2008, 2003-2012. N.B. CPart11 effort is excluded from this plot.

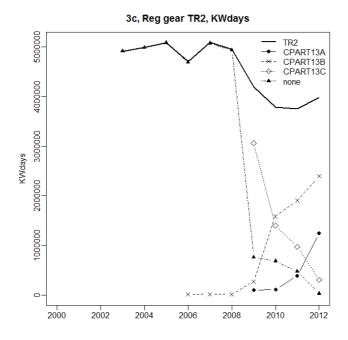


Figure 5.5.1.3. Irish Sea. Trend in special conditions of regulated TR (demersal trawl and Danish seine) gear nominal effort (kW*days-at-sea) by Coun. Reg. 1342/2008, 2003-2012.

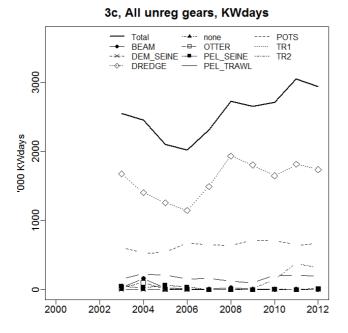


Figure 5.5.1.4. Irish Sea. Effort composition in kW*Days at sea for unregulated gears according to Coun. Reg. 1342/2008 (category none), 2000-2012. N.B. this plot contains TR2 CPart11 effort as TR2.

5.5.2 ToR 1.b and c Catches (landings and discards) of cod and non-cod species in weight and numbers at age by fisheries

Table 5.5.2.1 lists the landings and available discards for the main species by gear groups relating to Coun. Reg. 1342/2008. For the reason of space limitation of this report, the following sections represent the landings in weight for monkfish (ANF), cod (COD), haddock (HAD), Nephrops (NEP), plaice (PLE), rays (RAJ), sole (SOL), and whiting (WHG). Additional data queries for other species may be provided depending on data provisions of the national catches by the experts or national institutes. The data given in the table forms the basis of Figure 5.5.2.1 displaying the relative landings compositions by gear groups for the years 2003-2012.

Discard information available within the Irish Sea is incomplete. Discard data is not available for all species and/or years within each gear grouping. TR2 and BT2 have the most complete data particularly in more recent years, for species such as cod, haddock, plaice, rays, and whiting. Some discard data is also available for the CPart13 and CPart11 categories, however, the method of raising used at the national level to generate these discard values tend not to be specific to these categories and thus not a true representation of the category discards. Availability of discard information is sporadic in TR1. No gillnet or longline discard information for the Irish Sea was provided to the group.

In relation to overall landings by species, Nephrops dominate Irish Sea landings and have been above 9kt since 2007, peaking in 2008 with over 10kt. Total landings have reached this level again in the last two years following increases. Plaice and anglerfish landings demonstrate a period of decline prior to 2011 when landings increased, this trend continued in 2012 while plaice did not. Haddock and sole have fluctuated in the last five years (~850t and 300t respectively). In addition, whiting landings declined in 2012. Cod landings have continued to follow the declining trend which began in 2009 and now total over all vessels 325t (-56% since 2009, -65% since 2003).

Below the primary gear categories with landings from the Irish Sea are discussed. As a first note, inaccurate area reporting of cod from ICES rectangles immediately north of the Irish Sea–Celtic Sea boundary (ICES rectangles 33E2 and 33E3) is known to be an issue for Ireland, with ICES division VIIg cod catches being reported into the southern Irish Sea. This primarily relates to gillnet and otter trawl gear types. WGCSE has reallocated cod from VIIa to the Celtic Sea for a number of years, ranging between ~50t and >500t annually since 2004. This inaccurate reporting has not been corrected for within the data provided to the EWG.

Nephrops are the primary focus of the TR2 category (Figure 5.5.2.1, note the figure excludes CPartII whose target species is Nephrops). Other components of the TR2 category occur at comparatively low levels, including cod, haddock, whiting, plaice, and anglerfish. This category has consistently accounted for around a third (26%-40%) of cod landings from \geq 10m vessels (less when considering <10m landings). Discarding of haddock, plaice and whiting occurs within this gear category and can be high in some years.

The species composition of TR1, the larger mesh size group, is very different to TR2, containing virtually no Nephrops. Landings primarily consist of cod and haddock, with lower quantities of hake. A variety of other species occur at low levels including, plaice and whiting (Figure 5.5.2.1). Cod landings by this category have been more variable than TR2, declining in recent years. Currently accounting for less than a third of cod landings in 2012 (25% including <10m landing). TR1 consistently accounts for the majority of both haddock and hake landings.

Beam trawls operating within the Irish Sea belong solely to the BT2 (80-119mm) category. Belgium (and the Netherlands) beam trawls are assumed to have used the minimum mesh size group 80-89mm (Sec. 4). No assumptions are made for the remaining nations. The species composition of this category is stable, dominated by sole, plaice, and rays. The proportion of the latter had increased over 2010 and 2011 yet declining in 2012. Plaice landings increased in 2011 and levelled out in 2012 whilst sole has been stable in most recent years (Figure 5.5.2.1). Low level landings of anglerfish, cod, and haddock (~5%, or less) are also landed. Beam trawling accounts for over 50% of plaice landings, as well as the majority of sole landings (~90%) from vessels ≥10m. Although plaice is a target of this gear category, in recent years discarding has increased from ~30% to nearing 50% (with reasonable submission of discard data), while <5% sole is thrown back (note, 2012 data quality was poor).

The primary target of Irish Sea gillnets is cod, which currently constitute ~50% of the low level landings (Figure 5.5.2.1). Although the main target of this gear category is cod, landings are low and in most years account for ≤15% of total Irish Sea cod landed. Landings from 2007 and 2008 were over double other years. Pollack are also landed in low levels along with a variety of other species.

Landings by unregulated gears within the Irish Sea (Table 5.5.2.2) are dominated by pelagic, dredge and pot species, specifically herring, scallops, and crab species. this group now also includes vessels operating under exclusion from the regulation (CPart11). Under this category there are high landings of Nephrops and little else (<4t of all other species), as would be expected. Unregulated gears show consistently low cod landings (<1.5t) since 2009.

Cod numbers by age are not described or presented within this section, however values for this within the Irish Sea are available from the website.

Table 5.5.2.1 Irish Sea. Landings (t), discards (t) and discard rate by species, gear and special condition according to Coun. Reg. 1342/2008, 2003-2012. For landings, discards and discard rates by Country refer to the website.

ANNEX	AREA	GEAR SPECON	SPECIES	2003 I	2003 D	2003 R	20041	2004 D	2004 R	2005 I	2005 D	2005 R	20061	2006 D	2006 R	20071	2007 D	2007 R	20081	2008 D	2008 R	20091	2009 D	2009 R	20101	2010 D	2010 R	2011	2011 D	2011 R	2012	2012 D	2012 R
lla	30	BT2 CPart13B	ANF	2005 L	2005 5	200011	20012	20010	200411	2000 E	2000 0	2005 11	2000 2	20000	200011	2007 2	2007 0	200711	2000 E	2000 D	200011	2005 2	2005 0	200511	0.00	2010 0	202011	LUIIL	20110	LULLIN	12.53	LUZED	LUZEN
lla	3c	BT2 NONE		234.73			174.91			184.34			123.08			114.51	1.77	0.02	55.44	0.55	0.01	42.83	0.07	0.00	35.39	0.25	0.01	53.23	2,55	0.05		15.13	0.16
lla	3c	GN1 CPart13B	ANF	234.73			1/4/51			104.54			125.00			114.01	2.77	0.02	33,44	0.55	0.01	0.04	0.07	0.00	55.55	0.25	0.01	33.23	2.00	0.00	70.71	15.15	0.10
lla	3c	GN1 none	ANF	4.85			4.92			3.98			4.07			0.23			1.44			0.04			5,95	0.00	0.00	0.09	0.00	0.00	0.23		
lla	3c	LL1 none	ANF	1105			0.00			0.05			0.03			0125			2			0.01			0130	0.00	0100	0.03	0.00	0.00	0.25		
lla	3c	TR1 CPart13B	ANF																			0.39			0.67			0.49			1.14	0.00	0.00
lla	3c	TR1 CPart13c	ANF																			1.23			2.28			1.05			1.88	0.00	0.00
lla	3c	TR1 none	ANF	123.59	108.59	0.47	122.24	0.74	0.01	52.46	0.26	0.01	36.13	0.02	0.00	22.26	0.02	0.00	9.90	8.62	0.47	6.27	0.00	0.00	6.56	0.05	0.01	6.13	0.03	0.00	14.95	0.29	0.02
lla	3c	TR2 CPart13a	ANF																			2.42	0.00	0.00	0.16	0.00	0.00	29.09	0.22	0.01	37.17	2.91	0.07
lla	3c	TR2 CPart13B	ANF																			4.61			25.55			46.88	0.16	0.00	112.57	6.08	0.05
lla	3с	TR2 CPart13c	ANF																			88.90			39.03			45.15	0.18	0.00	12.80	0.32	0.03
lla	3c	TR2 NONE	ANF	255.59	77.49	0.23	255.17	5.18	0.02	218.62	15.11	0.07	243.50	21.16	0.08	273.64	7.04	0.03	202.46	3.37	0.02	59.50	0.00	0.00	47.20	0.69	0.01	39.99	0.36	0.01	10.44	0.11	0.01
lla	3c	TR3 NONE	ANF	0.00	0.02	1.00				0.00	0.00	1.00							0.10														
lla	3c	BT2 NONE	COD	247.45			124.82			155.98	0.00	0.00	78.38			107.39	20.42	0.16	30.66	2.10	0.06	18.17	7.16	0.28	39.81	22.70	0.36	71.27	43.16	0.38	41.95	18.71	0.31
lla	3c	GN1 none	COD	93.19			116.66			54.81			130.94			329.43			391.71			78.36			77.60	0.00	0.00	70.49	0.00	0.00	43.95		
lla	3c	GT1 none	COD													0.61			0.57			1.25			1.61			1.46					
lla	3c	LL1 none	COD	1.48			1.08			1.78			3.36			1.12			11.80									0.01			0.06		
lla	3c	TR1 CPart13B	COD																			0.07			2.09			1.40			22.48	0.02	0.00
lla	3c	TR1 CPart13c	COD																			298.25			199.86			93.96	0.01	0.00	20.29	0.01	0.00
lla	3c	TR1 none	COD	568.41	0.00	0.00	445.35	13.56	0.03	374.03	1.41	0.00	415.85	0.01	0.00	339.24	0.02	0.00	467.53	0.01	0.00	73.59	1.36	0.02	41.72	1.20	0.03	66.09	0.37	0.01	37.87	2.57	0.06
lla	3c	TR2 CPart13a	COD																			1.25	4.04	0.76	0.30	4.88	0.94	44.05	2.61	0.06	47.82	20.35	0.30
lla	3c	TR2 CPart13B	COD																			3.45	20.17	0.85	17.72			18.12	0.39	0.02	47.00	354.56	0.88
lla	3c	TR2 CPart13c	COD																			94.44			70.21			41.31	0.37	0.01	11.72	29.81	0.72
lla	3c	TR2 NONE	COD	416.04	2.81	0.01	397.25	89.97	0.19	371.16	39.74	0.10	309.23	6.16	0.02	427.22	15.70	0.04	310.54	308.20	0.50	86.44	20.88	0.20	122.41	9.27	0.07	64.93	3.10	0.05	5.35	0.05	0.01
lla	3c	TR3 NONE	COD							0.00	0.00	1.00																					
lla	3c	BT2 NONE	HAD	37.03			25.23			34.47	5.67	0.14	27.91			32.40	14.50	0.31	9.34	2.91	0.24	7.94	3.93	0.33	9.01	6.61	0.42	15.80	31.70	0.67	12.21	121.77	0.91
lla	3c	GN1 CPart13B	HAD																			16.16											
lla	3c	GN1 none	HAD	11.86			9.08			3.30			6.96			11.24			3.66			0.50			5.70	0.00	0.00	7.28	0.01	0.00	3.11		
lla	3c	LL1 none	HAD				0.08			0.06			0.11																				
lla	3c	TR1 CPart13B	HAD																			210.14			240.73			167.74			141.49	2.95	0.02
lla	3c	TR1 CPart13c	HAD																			143.74			241.38			106.93	1.36	0.01		0.26	0.01
lla	3c	TR1 none	HAD	346.66	3466.04	0.91	366.29	825.26	0.69	305.56	68.55	0.18	449.01	1.35	0.00	588.13	3.69	0.01	471.52	264.02	0.36	220.83	104.72	0.32	200.37	6.28	0.03	358.79	15.59		457.64	34.12	0.07
lla	3c	TR2 CPart13a	HAD																			1.71	26.84	0.94	0.61	10.68	0.95	8.94	91.66	0.91	88.11		0.75
lla	3c	TR2 CPart13B	HAD																			8.04	5.28	0.40	41.75			32.28	38.34	0.54			0.61
lla	3c	TR2 CPart13c	HAD	246 77	4505.00	0.00	204.00	4070.00	0.00	400.53	CC4 0C	0.70	400.00	4004.01	0.00	444.00	467.06	0.53	007.01	675.07	0.01	100.00	4040.45	0.00	72.27	00.05	0.00	45.64	40.05	0.47	3.00	4.70	0.61
lla	3c	TR2 NONE	HAD		1535.83	0.86	261.86	1976.23	0.88	189.50	661.39	0.78		1284.21	0.88	441.32	467.84	0.52	387.34	675.37	0.64	145.08	1210.10	0.89	125.24	80.06	0.39	61.56		0.72	3.65	1.40	0.28
lla	3c	TR3 NONE	HAD	0.00	0.32	1.00	0.50			0.00	0.03	1.00	0.04			0.00			0.42			0.05			0.05			0.00	0.01	1.00	0.00		
lla	3c	BT2 NONE	NEP	6.84			0.54			0.38			2.45			0.88						0.03			0.05			0.18			0.29		
lla	3c	GN1 NONE	NEP							9.08															0.45			0.00					
lla	3c	TR1 CPart13B	NEP																			4.01			0.18			0.02			0.07		
lla	3c	TR1 CPart13c	NEP	50.75			40.45			20.02			25.22			22.55			22.00	0.00	0.00	4.94			2.68			0.67			2.37		
lla	3c	TR1 none	NEP	50.76			40.46			20.08			25.22			22.56			23.80	0.00	0.00	8.23			1.37			15.69			23.85		
lla lla	3c	TR2 CPart13a	NEP																			391.51			320.98			1489.50			3616.32		
	3c	TR2 CPart13B	NEP																			661.82			3596.94			4820.10			5780.87		
lla	3c	TR2 CPart13c	NEP	7160 50			7220 12			6025.02			7756 40			0277.20			10052.05			6593.52			3004.61			1976.44			485.77		
lla	3c	TR2 NONE		7168.58			7238.13			6935.82			7756.40			9377.30			10853.85			1993.37			1794.06			1153.63			16.85		
lla	3c	TR3 NONE	NEP							0.33			0.14																				

Table 5.5.2.1 Irish Sea. Continued.

ANNEX	AREA	GEAR SPECON	SPECIES	2003 L	2003 D	2003 R	2004 L	2004 D	2004 R	2005 L	2005 D	2005 R	2006 L	2006 D	2006 R	2007 L	2007 D	2007 R	2008 L	2008 D	2008 R	2009 L	2009 D	2009 R	2010 L	2010 D	2010 R	2011 L	2011 D	2011 R	2012 L	2012 D	2012 R
lla	3c	BT2 CPart13B	PLE																						0.11						5.54	$\overline{}$	_
lla	3c	BT2 NONE		838.91			549.20			688.73	0.00	0.00	412.72	0.00	0.00	262.83	109.44	0.29	181.57	99.28	0.35	211.93	111.51	0.35	174.61	114.25	0.40	384.94	261.32	0.40		240.14	0.48
lla	3c	GN1 none	PLE	0.02			0.03			1.67			0.05			0.01			0.08			0.09			0.10	0.01	0.08	0.05	0.03	0.33	0.01		
lla	3c	GT1 none	PLE													0.01			0.04			0.06			0.02			0.15					
lla	3c	TR1 CPart13B	PLE																			6.72			9.58			5.34			6.73	0.09	0.01
lla	3c	TR1 CPart13c	PLE																			1.44			1.28			0.95			4.23	0.00	0.00
lla	3c	TR1 none	PLE	380.78	9.80	0.03	125.14	27.00	0.18	75.71	4.36	0.05	112.21	11.10	0.09	57.42	0.96	0.02	42.50	17.16	0.29	12.87	15.89	0.55	12.20	4.84	0.28	10.89	13.67	0.56	36.74	12.19	0.25
lla	3c	TR2 CPart13a	PLE																			0.00	2.95	1.00	0.77	16.49	0.96	8.64	50.42	0.85	27.38	142.40	0.84
lla	3c	TR2 CPart13B	PLE																			7.22			38.41			43.89	47.02	0.52	66.44	467.98	0.88
lla	3c	TR2 CPart13c	PLE																			112.40			66.86			50.88	75.54	0.60	30.97	177.90	0.85
lla	3с	TR2 NONE	PLE	254.98	509.81	0.67	369.17	705.71	0.66	408.84	1084.40	0.73	332.63	1210.37	0.78	378.22	189.26	0.33	260.69	620.16	0.70	44.52	145.72	0.77	37.91	126.00	0.77	70.28	86.57	0.55	11.83	2.51	0.18
lla	3c	TR3 NONE	PLE	0.00	0.01	1.00				0.00	0.04	1.00	0.15						0.08									0.00	0.02	1.00	0.00	0.00	1.00
lla	3c	BT2 NONE	RAJ	483.12			125.38			371.52			259.39			349.26			288.59	236.24	0.45	219.38	0.00	0.00	370.01	84.78	0.19	363.19	70.97	0.16	213.02	0.00	0.00
lla	3c	GN1 NONE	RAJ	2.89			2.86			28.21			1.34			0.14			4.19			1.56			14.88	0.00	0.00	3.04	0.00	0.00	9.13		
lla	3c	GT1 NONE	RAJ																2.27			1.32											
lla	3c	LL1 NONE	RAJ				0.12																										
lla	3c	TR1 NONE	RAJ	394.71	1.41	0.00	160.28	0.20	0.00	120.36	0.05	0.00	97.67	0.00	0.00	72.69	0.02	0.00	51.09	752.35	0.94	47.01	0.00	0.00	102.60	0.00	0.00		0.00	0.00	192.76	0.00	0.00
lla	3c	TR2 CPart13a	RAJ																			0.29	0.00	0.00	2.01	0.00	0.00	15.62	0.00	0.00	47.45	0.00	0.00
lla	3c	TR2 NONE		143.75			339.54	5.66	0.02	347.97	16.03		296.72	0.66	0.00	306.86	7.22	0.02	156.47	1.58	0.01	97.80	0.00	0.00	130.05	0.00	0.00	144.23	0.00	0.00	5.80	0.00	0.00
lla	3c	TR3 NONE	RAJ	0.00	0.00	1.00				0.00	0.00	1.00							0.09														
lla	3c	BT2 CPart13B	SOL																						1.31						3.44		
lla 	3c	BT2 NONE		945.90			657.38			800.90	0.00	0.00	515.99	0.00	0.00	401.06	13.18	0.03	275.95	24.35	0.08		15.92	0.05	247.09	10.97	0.04	285.46	11.07	0.04	256.38	0.00	0.00
lla	3c	GN1 CPart13B	SOL																			0.00											
lla	3c	GN1 none	SOL	0.13			0.06			0.00			0.00			0.26			0.06			0.08			0.06	0.00	0.00	0.00			0.00	_	
lla lla	3c 3c	GT1 none TR1 CPart13B	SOL													0.00						0.08			0.08			0.00			0.08		
lla	3c	TR1 CPart136	SOL																			0.07			0.08			0.08	0.00	0.06	0.03	0.00	0.00
lla	3c	TR1 none	SOL	16.92	0.00	0.00	6.68	0.00	0.00	6.39	0.03	0.01	2.58	0.01	0.01	3.01	0.00	0.00	1.26	0.00	0.00	1.72	0.00	0.00	1.14	0.02	0.02	1.05	0.00	0.00	3.39	0.00	0.00
lla	3c	TR2 CPart13a	SOL	10.52	0.00	0.00	0.00	0.00	0.00	0.33	0.03	0.01	2,30	0.01	0.01	5.01	0.00	0.00	1.20	0.00	0.00	0.02	0.00	0.00	0.00	0.02	1.00	3.78	0.00	0.00	4.02	0.00	0.00
lla	3c	TR2 CPart13B	SOL																			0.72	0.00	0.00	4.13	0.13	1.00	7.23	0.71	0.00	8.24	0.33	0.04
lla	3c	TR2 CPart13c	SOL																			12.57			3.83			5.30	1.21	0.19	1.82	0.04	0.02
lla	3c	TR2 NONE	SOL	35.90	1.57	0.04	30.18	0.33	0.01	36.06	4.48	0.11	42.24	27.23	0.39	76.61	0.00	0.00	37.97	2.08	0.05	14.76	0.00	0.00	14.33	5.01	0.26	21.28	0.00	0.00	8.77	0.00	0.00
lla	3c	BT2 CPart13B	WHG																												0.02		
lla	3c	BT2 NONE	WHG	19.28			13.56			11.63	13.94	0.55	4.33	13.62	0.76	4.60	3.74	0.45	1.54	14.46	0.90	2.17	4.86	0.69	4.27	7.39	0.63	3,40	37.72	0.92	3,46	33.65	0.91
lla	3c	GN1 none	WHG	10.94			5.91			1.27			0.37			1.40			0.56			0.08			0.36	0.00	0.00	0.80	0.05	0.06	0.91		
lla	3c	LL1 none	WHG							0.04																							
lla	3c	TR1 CPart13B	WHG																			0.52			3.96			1.02			1.46		
lla	3c	TR1 CPart13c	WHG																			5.62			0.81			0.09	7.23	0.99	1.07	0.00	0.00
lla	3c	TR1 none	WHG	219.55	2268.97	0.91	72.33	1021.10	0.93	39.75	26.84	0.40	18.77	2.38	0.11	90.21	5.00	0.05	47.03	14.13	0.23	51.56	4539.82	0.99	47.79	17.75	0.27	84.97	22.83	0.21	41.72	88.57	0.68
lla	3c	TR2 CPart13a	WHG																			0.00	43.25	1.00	0.00	39.47	1.00		127.62	1.00		328.10	0.97
lla	3c	TR2 CPart13B	WHG																			0.41	0.63	0.60	5.13			2.70	120.74	0.98	1.33	375.61	1.00
lla	3c	TR2 CPart13c	WHG																			5.48			6.15			1.54	86.14	0.98	0.18	10.23	0.98
lla	3c	TR2 NONE	WHG	184.66	1559.02	0.89	81.98	2050.91	0.96	103.52	355.71	0.78	61.38	1977.86	0.97	98.78	822.37	0.89	28.26	1498.13	0.98	26.22	1038.47	0.98	51.08	137.91	0.73	12.12	159.67	0.93	2.14	6.42	0.75
lla	3c	TR3 NONE	WHG	0.00	0.28	1.00				0.00	0.03	1.00	0.06						0.18									0.00	0.07	1.00			

Table 5.5.2.2 Irish Sea. Discard rate and data quality index by species, gear and special condition according to Coun. Reg. 1342/2008, 2003-2012. A = acceptable, B = uncertain, C = poor.

18 3c 871 NONE ANF	ANNEX	AREA	GFAR	SPECON	SPECIES	2003 R	2003 DQI	2004 R	2004 DQI	2005 R	2005 DQI	2006 R	2006 DQI	2007 R	2007 DQI	2008 R	2008 DQI	2009 R	2009 DQI	2010 R	2010 DQI	2011 R 2	011 DOI	2012 R 20:	12 DOI
No. No.						200011	2000 0 Q.	200111	2001.04	200011	2000 0 4.	200011	2000 2 4.												
High Sc TRE COPHISE ANE														0.02		0.01		0.00						0.20	
His 3c TRI CPHISE ANF ANF C 0.01 C 0.01 C 0.02 C 0.00 C 0.47 C 0.00 B 0.00 A 0.00 A 0.02 B III																								0.00	С
He big 3c TR1 none AMF 0.47 C 0.01 C 0.01 C 0.00 C 0.00 C 0.00 C 0.00 C 0.00 B 0.01 B 0.00 A 0.02 B 1.00 A 0.02 B 1.00 A 0.07 A 1.00 A																									В
Ha	lla				ANF	0.47	С	0.01	С	0.01	С	0.00	С	0.00	С	0.47	С	0.00	В	0.01	В	0.00	Α	0.02	В
His 3c TR2 (CARTLS ANF 0.23 8 0.07 8 0.08 8 0.03 8 0.02 8 0.00 A 0.01 A 0.01 C	lla	3c	TR2 (CPart13a	ANF													0.00	Α	0.00	Α	0.01	Α	0.07	Α
His 3c TR2 NONE ANF 0.22 B 0.02 B 0.07 B 0.06 B 0.03 B 0.02 B 0.00 A 0.01 A 0.01 A 0.01 C	lla	3с	TR2 C	CPart13B	ANF																	0.00	Α	0.05	Α
He 3 First Nome Nome	lla	3с	TR2	CPart13c	ANF																	0.00	А	0.03	Α
III	lla	3c	TR2	NONE	ANF	0.23	В	0.02	В	0.07	В	0.08	В	0.03	В	0.02	В	0.00	А	0.01	Α	0.01	Α	0.01	С
No.	lla	3c	TR3	NONE	ANF	1.00	Α			1.00	Α														
II	lla	3с	BT2	NONE	COD					0.00	С			0.16	В	0.06	В	0.28	Α	0.36	Α	0.38	Α	0.31	Α
No	lla	3c	GN1	none	COD															0.00	Α	0.00	Α		
Ha	lla	3c	TR1 C	CPart13B	COD																			0.00	Α
Ha 3c TR2 CPart138 COD	lla	3c	TR1 (CPart13c	COD																	0.00	С	0.00	Α
II	lla	3c	TR1	none	COD	0.00	С	0.03	С	0.00	С	0.00	С	0.00	С	0.00	С	0.02	Α	0.03	Α	0.01	Α	0.06	В
III	lla	3c	TR2 (CPart13a	COD													0.76	Α	0.94	Α	0.06	Α	0.30	Α
II a 3c TR2 NONE COD COD B C.19 B C.10 B C.02 B C.04 B C.05 B C.20 A C.07 A C.05 A C.01 B	lla	3c	TR2 C	CPart13B	COD													0.85	С			0.02	Α	0.88	Α
IIa 3c TR3 NONE COD 1.00 A	lla	3с	TR2	CPart13c	COD																	0.01	Α	0.72	Α
III	lla	3с	TR2	NONE	COD	0.01	В	0.19	В	0.10	В	0.02	В	0.04	В	0.50	В	0.20	Α	0.07	Α	0.05	Α	0.01	В
III	lla	3c	TR3																						
III	lla	3с	BT2	NONE						0.14	С			0.31	В	0.24	Α	0.33	Α		Α		Α	0.91	Α
III																				0.00	Α	0.00	Α		
III 3c TR1 none																									С
III				CPart13c																					_
III 3c TR2 CPart13B HAD						0.91	С	0.69	С	0.18	С	0.00	С	0.01	С	0.36	С								
III																				0.95	Α				
III																		0.40	С						Α
IIa 3c TR3 NONE HAD 1.00 A 1							_		_		_		_		_		_								Α
III								0.88	В			0.88	В	0.52	В	0.64	В	0.89	Α	0.39	Α			0.28	В
III						1.00	Α			1.00	А					0.00	-					1.00	A		
III										0.00	_	0.00	0	0.20	P			0.25		0.40		0.40		0.40	
IIa 3c TR1 CPart13B PLE										0.00	C	0.00	С	0.29	В	0.35	A	0.35	А					0.48	A
III																				0.08	А	0.33	C	0.01	C
IIa 3c TR1 none PLE 0.03 B 0.18 C 0.05 C 0.09 C 0.02 C 0.29 C 0.55 A 0.28 B 0.56 A 0.25 A																									C
IIa 3c TR2 CPart13a PLE						0.03	р	0.10	_	0.05		0.00	C	0.03	C	0.20	C	0.55	A	0.20	P	0.56	٨		Λ.
IIa 3c TR2 CPart13B PLE 0.52 B 0.88 B						0.03	В	0.18	C	0.05	C	0.09	C	0.02	C	0.29	C								A
IIa 3c TR2 CPart13c PLE																		1.00	А	0.50	А				P
IIa 3c TR2 NONE PLE 0.67 B 0.66 B 0.73 C 0.78 B 0.33 A 0.70 B 0.77 A 0.77 B 0.55 B 0.18 C																							_		_
						0.67	P	0.66	R	Ŋ 7 3	C	0.78	R	0.33	Δ	0.70	R	0.77	Δ	0.77	P				_
IIa 3c TR3 NONE PIE 100 Δ 100 Δ 100 Λ 100 Λ	lla	3c	TR3	NONE	PLE	1.00	A	0.00	В	1.00	A	0.70		0.33	^	0.70		0.77	^	0.77	0	1.00	Δ	1.00	A

Table 5.5.2.2 Irish Sea. Continued.

ANNEX	AREA	GEAR	SPECON	SPECIES	2003 R	2003 DQI	2004 R	2004 DQI	2005 R	2005 DQI	2006 R	2006 DQI	2007 R	2007 DQI	2008 R	2008 DQI	2009 R	2009 DQI	2010 R	2010 DQI	2011 R	2011 DQI	2012 R 2	012 DQI
lla	3с	BT2	NONE	RAJ											0.45	Α	0.00	В	0.19	Α	0.16	Α	0.00	В
lla	3с	GN1	NONE	RAJ															0.00	С	0.00	С		
lla	3с	TR1	NONE	RAJ	0.00	А	0.00	Α	0.00	В	0.00	С	0.00	В	0.94	С	0.00	Α	0.00	В	0.00	Α	0.00	Α
lla	3c	TR2	CPart13a	RAJ													0.00	Α	0.00	Α	0.00	Α	0.00	Α
lla	3с	TR2	NONE	RAJ	0.01	Α	0.02	Α	0.04	Α	0.00	Α	0.02	Α	0.01	Α	0.00	Α	0.00	Α	0.00	Α	0.00	Α
lla	3с	TR3	NONE	RAJ	1.00	Α			1.00	Α														
lla	3с	BT2	NONE	SOL					0.00	С	0.00	С	0.03	Α	0.08	Α	0.05	Α	0.04	Α	0.04	Α	0.00	С
lla	3с	GN1	none	SOL															0.00	Α				
lla	3с		CPart13c	SOL																	0.06	С	0.00	Α
lla	3c	TR1	none	SOL	0.00	С	0.00	С	0.01	С	0.01	С	0.00	С	0.00	С	0.00	Α	0.02	В	0.00	Α	0.00	Α
lla	3c		CPart13a	SOL													0.00	А	1.00	Α	0.00	Α	0.00	Α
lla	3c		CPart13B	SOL																	0.09	Α	0.04	A
lla	3c		CPart13c	SOL		_														_	0.19	Α .	0.02	В
lla 	3c	TR2	NONE	SOL	0.04	В	0.01	В	0.11	С	0.39	С	0.00	C	0.05	C	0.00	A	0.26	В	0.00	В	0.00	C
lla	3c	BT2	NONE	WHG					0.55	С	0.76	С	0.45	В	0.90	Α	0.69	Α	0.63	Α	0.92	A	0.91	А
lla lla	3c 3c	GN1	none CPart13c	WHG WHG															0.00	Α	0.06	В	0.00	
112	3c	TR1	none	WHG	0.91	C	0.93	С	0.40	С	0.11	С	0.05	В	0.23	۸	0.99	В	0.27	C	0.99	В	0.00	C
lla lla	3c		CPart13a	WHG	0.51	C	0.55	C	0.40	C	0.11	C	0.03	В	0.25	Α	1.00	A	1.00	A	1.00	A	0.08	^
IIa	3c		CPart13B	WHG													0.60	C	1.00	A	0.98	A	1.00	Α Α
IIa	3c		CPart13b	WHG													3.00	C			0.98	A	0.98	Δ
IIa	3c	TR2	NONE	WHG	0.89	В	0.96	В	0.78	Α	0.97	В	0.89	Α	0.98	Α	0.98	Α	0.73	Α	0.93	A	0.75	B
IIa	3c	TR3	NONE	WHG	1.00		3.50		1.00	A	0.57		5.05		3.50		3.50		3.75		1.00	A	5175	

Table 5.5.2.3 Irish Sea. Landings (t), discards (t) and discard rate of unregulated gear (category none) associated with Coun. Reg. 1342/2008 by species and gear, 2003-2012, including special condition CPart11. For landings, discards and discard rates by Country refer to the website.

ANNEX	AREA	GEAR	SPECON	SPECIES	2003 L	2003 D	2003 R	2004 L	2004 D	2004 R	2005 L	2005 D	2005 R	2006 L	2006 D	2006 R	2007 L	2007 D	2007 R	2008 L	2008 D	2008 R	2009 L	2009 D	2009 R	2010 L	2010 D	2010 R	2011 L	2011 D	2011 R	2012 L	2012 D	2012 R
lla	3c	BEAM	NONE	ANF	3.48			12.10												0.00														
lla	3c	DREDGE	NONE	ANF	7.29			3.00			2.26			1.34			2.66			0.16						0.14			0.00	14.22	1.00	0.08	6.56	0.99
lla	3c	none	none	ANF													8.70																	
lla	3c	OTTER	none	ANF	1.21	0.29	0.19	6.38			0.02			0.11									0.05	0.00	0.00	0.01								
lla	3c	PEL_SEINE	NONE	ANF	0.52			0.48																										
lla	3c P	EL_TRAWL	NONE	ANF				8.51						0.04			0.11						0.17			0.13			0.10			0.58		
lla	3c	POTS	NONE	ANF	0.51			2.08	0.21	0.09							0.01			0.03			0.03			0.13								
lla	3c	TR1	CPart11	ANF																												0.00		
lla	3c	TR2	CPart11	ANF																			0.01			0.05	0.13	0.70	0.05	0.22	0.80	0.23	0.69	0.75
lla	3c	BEAM	NONE	COD	0.81			7.96												0.01														
lla	3c	DREDGE	NONE	COD	0.55			1.34			0.13			0.05									0.02									0.00		
lla	3c	OTTER	none	COD	5.03			9.13						0.18									0.04	0.00	0.05				0.01	0.00	0.11			
lla	3c	PEL_SEINE	NONE	COD	0.14			1.14																										
lla	3c P	EL_TRAWL	NONE	COD	2.32			1.82									0.09						1.07			1.46			0.06			0.67		
lla	3c	POTS	none	COD	0.81			3.53	0.49	0.12	0.26			0.28			0.13			0.03			0.12			0.03						0.02		
lla	3c	TR2	CPart11	COD																						0.04	0.23	0.85	0.03	1.65	0.98	0.06	2.95	0.98

Table 5.5.2.3 Irish Sea. Continued.

B	ANNEX	AREA GEA	R SPECON	SPECIES	2003 L	2003 D	2003 R	2004 L	2004 D	2004 R	2005 L	2005 D	2005 R	2006 L	2006 D	2006 R	2007 L	2007 D	2007 R	2008 L	2008 D	2008 R	2009 L	2009 D	2009 R	2010 L	2010 D	2010 R	2011 L	2011 D	2011 R	2012 L	2012 D	2012 R
No	lla	3c BEAN	M NONE	HAD	1.34			5.06																										
No	lla			HAD				2.20																										
Decompose Tenson Tenson	lla			HAD	0.17			0.19						0.09															0.00	13.37	1.00			
No. No.	lla			HAD													0.09																	
No. No.	lla	3c OTTE	R NONE	HAD	5.33	1.86	0.26	14.91						0.01									0.09	0.01	0.06				0.00	0.05	1.00	0.00	0.00	1.00
No. No.	lla																																	
The No. No.	lla				0.39												0.19						2.06			0.83						8.63		
No. No.									0.97	0.13										0.00									0.02					
No. No.								0.20									0.02			0.00												0.04		
No																										0.04	9 98	1.00	0.04	57.03	1.00		29.60	0.99
No.																				0.20			1 57			0.01	3130	2100	0101	57105	2100	OILD	25100	0.55
No								0.55						0.01						0.20														
Bo Re Fig. Section Property Section P					55.54						0.02						0.13									2 27			0.02					
No 26 Feet Table 10 10 10 10 10 10 10 1					33.34						0.02			4.73			0.13			2 71			0.02			2.37			0.02					
No														0.05			2 22			2.71			12 92			0.15			7.06			0.67		
No. 12 12 13 15 15 15 15 15 15 15					6.02						1 24									0.30						0.13								
No.					0.05			42,45			1.54			0.47			0.40			0.50						402.07								
Real 24 Post Po					0.45			20.06															5.01			432.07			544.03			121.12		
Fig. 28 ORIFORE ONUR PE 13 13 132 133 132 133 132 133 13					8,43																													
Fig. 3c conce NOME PLE		_			1.10						2.20			0.75			0.21			0.01			0.00			0.14			0.12	22.72	1.00	0.00	2.77	1.00
Fig. Section Fig.					1.10			4.13			3.20			0.75			0.21						0.00			0.14			0.12	22.12	1.00	0.00	3.//	1.00
Ris 3c PEL_SENNE NONE PLE 0.25 0.09 0.35 4.49			_																	0.03														
Bis 20 PUT TOUR Conce PLE					5.24	0.03	0.01				0.60			0.42			0.48						0.09	0.01	0.05				0.18	0.03	0.14	0.00	0.01	1.00
Name																																		
Na																	0.09																	
No. 18 3c TR2 CPart11 PLE					1.10			1.44	3.93	0.73	0.04									0.25			0.08						0.00					
Na																							0.16			0.08	6.42	0.99	0.51	31.48	0.98	0.31	29.59	0.99
III 3c																																		
II					0.45			9.43			6.95			1.20																				
II	lla			RAJ																0.40														
NA SC PEL KAWL NONE RAJ 1.47 20.77 20.18 0.15 0.12 0.50 0.19 2.85 NA SC POTT NONE RAJ 25.77 1.83 0.06 0.03 0.16 4.97 1.66 2.36 0.25 0.00 0.00 NA SC RAJ 25.77 25.78	lla	3c OTTE	R NONE	RAJ	7.13	0.03	0.00	17.75																									_	
II 3 c	lla			RAJ																														
Note Sol Sol	IIa	3c PEL_TRAW	L NONE	RAJ	1.47			20.77									0.15									0.50			0.19			2.85	بسط	
II a 3c BEAM NONE SOL 3.63 7.95 9 9 3.69 0.49 0.28 0.08 0.01 0.07	lla	3c POT	S NONE	RAJ	29.57			1.83	0.06	0.03				0.16						4.97			1.66			2.36								
II a 3c DREDGE NONE SOL 3.87 1.92 4.14 2.09 3.69 0.49 0.28 0.08 0.01 0.07	lla																									0.09						0.20	0.00	0.00
II a 3c none NONE SOL	lla	3c BEAN	NONE	SOL																														
II a 3c OTTER NONE SOL 0.59 0.24 0.04 0.00 0.02 0.03 0.	lla	3c DREDG	E NONE		3.87			1.92			4.14			2.09			3.69						0.28			0.08			0.01			0.07		
II a 3c POTS none SOL 0.05 0.05 0.00 0.0	lla	3c non	e NONE	SOL																0.01														
II a 3c POTS none SOL 0.15	lla	3c OTTE	R NONE	SOL	0.59			0.24			0.04			0.00			0.02									0.01			0.00					
II a 3c TR2 CPart11 SOL 0.05 0.00	lla	3c PEL_TRAW	L NONE	SOL				0.09									0.03						0.03											
II a 3c BEAM NONE WHG 0.11 0.08 0.00 0.0	lla	3c POT	S none	SOL	0.15												0.00			0.00			0.10			0.02								
IIa 3c DREDGE none WHG 0.04 0.00 0.00 0.34 1.00 1.	lla	3c TR	2 CPart11	SOL																			0.05			0.00			0.00			0.07	0.00	0.00
IIa 3c OTTER NONE WHG 2.46 1.60 0.39 11.22 0.00 0.18 1.00 0.00 0.11 1.00 IIa 3c PEL TRAWL NONE WHG 0.23 0.25 0.25 0.05 0.05 0.03 0.03 0.00 IIa 3c POTS NONE WHG 0.23 0.25 0.25 0.05 0.05 0.03 0.00 IIa 3c POTS NONE WHG 0.23 0.25 0.25 0.05 0.05 0.03 0.00 IIa 3c POTS NONE WHG 0.23 0.25 0.25 0.05 0.05 0.05 0.05 IIa 3c POTS NONE WHG 0.23 0.25 0.25 0.25 0.25 0.25 IIa 3c POTS NONE WHG 0.23 0.25 0.25 0.25 0.25 0.25 0.25 IIa 3c POTS NONE WHG 0.23 0.25 0.25 0.25 0.25 0.25 0.25 IIa 3c POTS NONE WHG 0.23 0.25 0.25 0.25 0.25 0.25 0.25 IIa 3c POTS NONE WHG 0.23 0.25 0.25 0.25 0.25 0.25 0.25 0.25 IIa 3c POTS NONE WHG 0.23 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 IIa 3c POTS NONE WHG 0.23 0.25	lla	3c BEAM	M NONE	WHG	0.11			0.08															0.02											
IIa 3c PEL_SEINE NONE WHG 0.25	lla	3c DREDG	E none	WHG	0.04			0.00																								0.00	0.34	1.00
IIa 3c PEL_SEINE NONE WHG 0.25	lla	3c OTTE	R NONE	WHG	2.46	1.60	0.39	11.22															0.00	0.18	1.00				0.00	0.11	1.00			
IIa 3c POTS NONE WHG 5.44 3.76 0.05 0.05 0.03 2.42	lla			WHG																														
IIa 3c POTS NONE WHG 0.23 1.24 23.76 0.95 0.05 0.05	lla				5.44																		0.18			0.20						2.42		
	lla			WHG	0.23				23.76	0.95				0.05									0.03											
																										0.00	9.08	1.00	0.02	74.27	1.00	0.01	50.34	1.00

Table 5.5.2.4 Irish Sea. Landings (t), discards (t) and discard rate of regulated and unregulated gear (category none) associated with Coun. Reg. 1342/2008 for pelagic species and by gear and special condition, 2003-2012. For landings, discards and discard rates by Country refer to the website.

ANNEX	AREA	GEAR	SPECON	SPECIES	2003 L	2003 D	2003 R	2004 L	2004 D	2004 R	2005 L	2005 D	2005 R	2006 L	2006 D	2006 R	2007 L	2007 D	2007 R	2008 L	2008 D	2008 R	2009 L	2009 D	2009 R	2010 L	2010 D	2010 R	2011 L	2011 D	2011 R	2012 L	2012 D	2012 R
lla	3c	BT2	none	MAC	0.00															0.00	0.24	1.00												
lla	3c	BT2	NONE	WHB	0.04																													
lla	3c	DREDGE	NONE	HER				0.03			6.50						27.50																	
lla	3c	DREDGE	NONE	MAC				0.06																										
lla	3c	GN1	NONE	HER	62.69			171.74			6.48																							
lla	3c	GN1	NONE	MAC	0.03									1.40									0.04											
lla	3c	GN1	NONE	SPR	308.50																													
lla	3c	U1	none	MAC							0.00			0.30			0.27			0.26						1.15			0.74			0.09		
lla	3c	OTTER	NONE	HER	12.00			128.89			172.79			143.33			0.01						5.20	0.00	0.00	4.00			13.94	0.00	0.00	65.79	0.00	0.00
lla	3c	OTTER	NONE	MAC	0.04			0.14																										
lla	3c	OTTER	NONE	SPR	86.15			6.53			39.80			6.00												174.09						496.62	0.00	0.00
lla		PEL_SEINE			436.00			700.00			1834.05			798.17																				
lla		PEL_SEINE		JAX										21.46																				
lla		PEL_SEINE		MAC																									0.26					
lla		PEL_SEINE		SPR	0.14			21.40			29.14																							
lla		EL_TRAWL			3685.94			6351.20			7276.25			5783.31			5534.24			5203.83			4722.63			5279.02			5543.55	0.00	0.00	6865.01	0.00	0.00
lla		EL_TRAWL			37.00			12.00			59.80						50.54						4.80			151.00								
lla		EL_TRAWL		MAC				2.72			173.50						0.20						19.47											
lla		EL_TRAWL			1203.00			370.00	40.00		827.06			659.23						55.06						149.69			1082.34			4385.52		
lla	3c		NONE	HER				0.00	13.33	1.00													0.00											
lla	3c	POTS		JAX	0.08						0.03						0.61			0.12			0.38			0.39						0.14		
lla	3c 3c	POTS						17.60	0.43	0.02	0.03						0.61			0.12						0.39						0.14		
lla Ila	3c		NONE	SPR HER	117.28 0.11	0.02	0.14		0.43	0.02	0.00	0.03	1.00	0.00	0.05	1.00	0.12	0.02	0.17	0.08	0.33	0.81				0.03	0.00	0.00						
lla	3c		NONE	JAX	2.51	0.02	0.14	0.25	0.30	0.78	0.00	0.03	1.00	0.00	0.03	1.00	0.12	0.02	0.17	0.08	0.55	0.01				0.03	0.00	0.00						
IIa	3c		none	MAC	0.25	0.00	0.00	0.73	0.04	0.05	0.10	0.00	0.10	0.20	0.01	0.23	1.31	0.02	0.01	0.00	0.01	1.00	0.49	0.00	0.00				0.13	0.00	0.00			
lla	3c		NONE	SPR	0.14			0.00	0.04	1.00	0.00	0.01	1.00	0.00	0.10	1.00	0.00	0.02	1.00	0.00	0.01	1.00	0.43	0.00	0.00	11.05			0.15	0.00	0.00	29.10	0.00	0.00
lla	3c		NONE	WHB	0.00	0.01	1.00		0.12	1.00	0.00	0.00	1.00	0.00	0.10	1.00	0.00	0.01	1.00	0.00	0.13	1.00				11.03						23.10	0.00	0.00
lla	3c		CPart13A	HER	0.00	0.01	1.00	0.00	0.13	1.00	0.00	0.00	1.00																			0.29	17.26	0.98
lla	3c		CPart13A	JAX																												0.04	17120	0.50
lla	3c		CPart13B	HER																						0.41			0.06	13.69	1.00	0.05	3.41	0.99
lla	3c		CPart13B	MAC																			0.03			0.25			0.05	0.05	0.53	0.19	2.19	0.92
lla	3c		CPart13c	HER																			0.95			0.08								
lla	3c		CPart13c	MAC																			0.43			0.09			0.00	0.00	0.00	0.00	0.02	0.83
lla	3c		none	HER	11.16	113.11	0.91	186.63	34.40	0.16	11.26	11.41	0.50	51.96	19.21	0.27	0.87	12.20	0.93	0.96	550.96	1.00				3.32			0.24	0.00	0.00			
lla	3c		NONE	JAX	0.00	3.05	1.00				0.00	0.62	1.00	0.00	2.05	1.00																		
lla	3c	TR2		MAC	0.19			1.77	7.99	0.82	0.83	4.19	0.84	0.39	44.44	0.99	1.47	35.19	0.96	1.73	36.83	0.96				0.82	0.00	0.00	0.05	0.00	0.00			
lla	3c		NONE	SPR	298.01	0.32	0.00		10.13	0.16		1.71	0.03	11.50		0.78	0.00	5.62	1.00		122.88	1.00				1.25								
lla	3c		NONE	WHB	0.00	6.06	1.00		0.55	1.00	0.00	0.56	1.00																					
lla	3c		NONE	HER							116.23	0.00	0.00	35.72															7.82	0.00	0.00	25.95	0.00	0.00
lla	3c		NONE	SPR	46.17			4.95			0.35																					19.90	0.00	0.00
lla	3c	TR3	NONE	SPR	46.17			4.95			0.35																					19.90	0.00	0.00

Table 5.5.2.5 Irish Sea. Discard rate and data quality index for pelagic species by regulated and unregulated gear and special condition according to Coun. Reg. 1342/2008, 2003-2012. A = acceptable, B = uncertain, C = poor.

ANNEX	AREA	GEAR	SPECON	SPECIES	2003 R	2003 DQI	2004 R	2004 DQI	2005 R	2005 DQI	2006 R	2006 DQI	2007 R	2007 DQI	2008 R	2008 DQI	2009 R	2009 DQI	2010 R	2010 DQI	2011 R	2011 DQI	2012 R	2012 DQI
lla	3с	TR1	NONE	HER	0.14	С	0.78	Α	1.00	Α	1.00	Α	0.17	Α	0.81	С			0.00	А				
lla	3c	TR2	none	HER	0.91	С	0.16	Α	0.50	Α	0.27	Α	0.93	С	1.00	С					0.00	В		
lla	3с	OTTER	NONE	HER													0.00	Α			0.00	Α	0.00	Α
lla	3c	TR3	NONE	HER					0.00	С											0.00	Α	0.00	Α
lla	3c Pi	L_TRAWL	none	HER																	0.00	Α	0.00	Α
lla	3c		CPart13B	HER																	1.00	Α	0.99	Α
lla	3с	POTS		HER			1.00	Α																
lla	3c		CPart13A	HER																			0.98	Α
lla	3с	TR1	NONE	JAX	0.00				1.00	Α	1.00	А												
lla	3с	TR2	NONE	JAX	1.00	Α			1.00	А	1.00	Α												
lla	3с	TR1	none	MAC			0.05	Α	0.10	С	0.23	С	0.01	С	1.00	Α	0.00	Α			0.00			
lla	3с	TR2	none	MAC			0.82	В	0.84	Α	0.99	В	0.96	С	0.96	С			0.00	Α	0.00	Α		
lla	3c		CPart13B	MAC																	0.53		0.92	Α
lla 	3c		CPart13c	MAC											4.00						0.00	Α	0.83	Α
lla	3c	BT2	none	MAC			4.00		4.00		4.00				1.00	Α								
lla	3c	TR1	NONE	SPR	0.00		1.00	A							0.00	Α								
lla	3c	TR2	NONE	SPR	0.00	Α	0.16	А	0.03	Α	0.78	А	1.00	Α	1.00	Α							0.00	
lla	3c	OTTER	NONE	SPR			0.00																0.00	А
lla	3c	POTS TR3	NONE	SPR SPR			0.02	С															0.00	
lla lla	3c	TR1	NONE NONE	WHB	1.00	А	1.00	А	1.00	А													0.00	A
	3c 3c	TR2		WHB			1.00		1.00															
lla	30	TK2	NONE	WHB	1.00	Α	1.00	Α	1.00	Α														

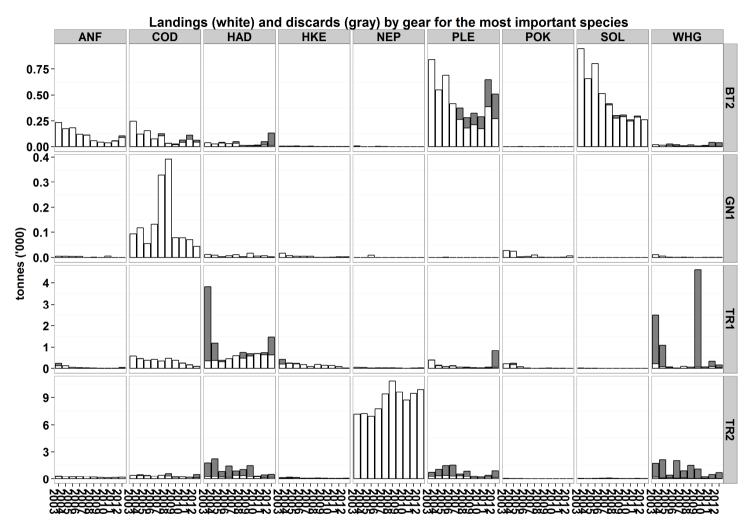


Figure 5.5.2.1 Irish Sea. Landings (t) by gear according to Coun. Reg. 1342/2008 and species, 2003-2012. N.B. CPart11 catch is excluded from this plot.

5.5.3 ToR 1.d CPUE and LPUE of cod by fisheries and by Member States

Only a LPUE (landings per unit effort) time series is presented for cod (Table 5.5.3.1) as discard data is not consistently available for all years or all categories, resulting in distorted CPUE trends. Catch per unit effort may be available for some years/gears on request. The units used are grams per kW days-at-sea (g/kW*days). Gear groups with little effort, and static gears where the use of kW*days-at-sea as an appropriate indication of effort is debatable, may have unrepresentative values and are not discussed.

Cod LPUE values are highest within the GN1 category, which peaked in 2007-2008 (Table 5.5.3.1 and Figure 5.5.3.1). Ireland is the primary nation influencing this trend. However, this category may have unrepresentative values given the effort uncertainty, which may also be the explanation for the large LL1 LPUE in 2008. Furthermore, in some years area misreporting by Irish cod gillnetters has been an issue in the Irish Sea, likely to result in false inflation of the LPUE for this gear grouping.

Gillnetting is a small fleet within the Irish Sea. The most significant cod landings and effort occur within demersal trawl and seine categories TR1 and TR2. Over the period TR1 LPUE increased over the earlier years to 2009. LPUE levels have since varied, being lower in 2012 for all of the sub categories. Note that the LPUEs are higher in the CPart13b and CPart13c categories than the no special condition. The TR2 LPUE are lower than the TR1 group. LPUE has been increasing for the no special condition category although now little to nominal effort is directed to this group. The majority of effort is under CPart13a, CPart13b, CPart13c, the LPUEs for each of these are far lower than the none category. CPart11 show zero LPUE of cod.

Tables showing LPUE and CPUE by gear groups (regulated and unregulated), area and nation are not presented in this report but are available on the JRC website:

http://stecf.jrc.ec.europa.eu/web/stecf/ewg1306

Table 5.5.3.1 Irish Sea. Cod LPUE (g/(kW*days)) by gear group according to Coun. Reg. 1342/2008 and year, 2003-2012. CPUE including discard estimates are limited and can be found at

http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313.

ANNEX	SPECIES	REG AREA	REG GEAR	SPECON	LPUE 2003	LPUE 2004	LPUE 2005	LPUE 2006	LPUE 2007	LPUE 2008	LPUE 2009	LPUE 2010	LPUE 2011	LPUE 2012	LPUE 2010-2012
IIa	COD	3c	TR1	CPart13B								38	39	561	211
IIa	COD	3c	TR1	CPart13c							785	610	580	596	600
IIa	COD	3c	TR1	none	177	259	302	396	600	781	912	511	1059	271	513
IIa	COD	3c	TR2	CPart13a							10	0	112	39	53
IIa	COD	3c	TR2	CPart13B							15	11	9	19	14
IIa	COD	3c	TR2	CPart13c							31	50	42	39	46
IIa	COD	3c	TR2	none	85	80	73	65	84	63	114	177	137	150	161
IIa	COD	3c	BT2	none	83	62	66	46	70	33	24	46	75	52	58
IIa	COD	3c	GN1	none	869	1547	1432	3441	6362	8640	3406	3193	2966	3032	3069
IIa	COD	3c	GT1	none					1524	418	248	2033	678		1136
IIa	COD	3c	LL1	none	21	17	21	50	82	479					
IIa	COD	3c	TR2	CPart11								0	0	0	0

7500-95000-2500-

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Ila 3c COD Ipue

Figure 5.5.3.1. Irish Sea. Trends in cod LPUE (g/kW*days) by the average top four gear groups associated with Coun. Reg. 1342/2008, 2003-2012.

5.5.4 ToR 2 Rank regulated gear groups on the basis of catches expressed both in weight and in number of cod

Ranked landings (Table 5.5.4.1) in weight for cod have been used. Catch rankings have not been presented as discard data are not consistently available for all years or all categories introducing bias into the ranking. Information on ranked catches may be available on request.

Over the majority of the period, TR1 land the greatest proportion of cod (\sim 40%), however this changed in 2011 when the continuing declining trend first fell below the proportions of TR2. This placed TR2 as the top ranked gear from 2012 which has shown only a small variation in proportions since 2010. The BT2 contribution increased in 2011 to 15% continuing in 2012. This proportion is slightly higher than those of gillnetting (\sim 15%).

In the average ranking (2010-2012), the previous order of TR1, TR2, GN1 and BT2 remains unchanged.

Table 5.5.4.1 Irish Sea. Ranked derogations according to relative cod landings in weight (t), 2003-2012. Ranking is according to the year 2012. N.B. CPart11 effort is excluded from this table.

ANNEX	REG_AREA	SPECIES	REG_GEAR	2003 Rel	2004 Rel	2005 Rel	2006 Rel	2007 Rel	2008 Rel	2009 Rel	2010 Rel	2011 Rel	2012 Rel	Average 2010-2012
IIa	3c	COD	TR2	0.31	0.37	0.39	0.33	0.35	0.26	0.28	0.37	0.36	0.40	0.38
IIa	3c	COD	TR1	0.43	0.41	0.39	0.44	0.28	0.39	0.57	0.42	0.34	0.29	0.35
IIa	3c	COD	GN1	0.07	0.11	0.06	0.14	0.27	0.32	0.12	0.14	0.15	0.16	0.15
IIa	3c	COD	BT2	0.186	0.115	0.163	0.083	0.089	0.026	0.027	0.070	0.151	0.151	0.12
IIa	3c	COD	LL1	0.001	0.001	0.002	0.003	0.001	0.010			0.000	0.000	0.00
IIa	3c	COD	GT1					0.001	0.001	0.002	0.003	0.002		0.00
IIa	3c	COD	TR3			0.000								

5.5.5 ToR 3 Information on small boats (<10m)

It should be noted that under 10m vessels are not required to report effort levels in the same way as larger vessels. As such not all nations operating within the Irish Sea have been able to provide this information. Presented is information from England (including Northern Ireland), France (last 3yrs) and Scotland. The methodology for production of this data may vary between nations. For details, refer to the national data descriptions in Section 4.

5.5.5.1 Fishing effort of small boats by Member State

The majority of effort by the under 10m vessels reported here is directed at pots and traps (Table 5.5.5.1.1). The effort levels increased greatly in 2006 due to the introduction of buyers and sellers notes into the UK who have used these to estimate effort. Under 10 effort dropped during 2009 and 2010, increasing again thereafter. Dredge effort has been increasing in recent years now occurring at similar levels as TR2 gear. The later utilised within the Irish Sea at fluctuating levels well below pots.

Table 5.5.5.1.1. Irish Sea trends in nominal effort (kW*days at sea) of under 10m vessels by gear groups of Annex I, Coun. Reg. 1342/2008 and unregulated gears, 2000-2012. National data qualities are summarised in Section 4.

ANNEX	AREA	GEAR	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
IIa	3c	BEAM	414	11750	327	2580	8779	6010	3164	7246	4228	2702
IIa	3c	BT2	1718	2354	9386	10855	2888	1884	627	623	178	89
IIa	3c	DEM_SEINE							662		75	
IIa	3c	DREDGE	18631	18654	11709	44601	60910	160354	109787	116792	161012	205495
lla	3c	GN1	12429	13342	10545	10940	34100	45173	35398	27087	28213	25948
IIa	3c	GT1				78	22	424	9	330	4301	134
lla	3c	LL1		0	3107	10348	6469	3656	5028	4811	22857	25531
IIa	3c	none					425	425			726	280
IIa	3c	OTTER	119			311	295	75		637		
IIa	3c	PEL_SEINE						142				
lla	3c	POTS	237544	293990	295377	1068497	1124087	1023622	720517	695537	864323	867746
IIa	3c	TR1	14080	2043	2747	1624	3313	6692	4523	2885	6423	8090
IIa	3c	TR2	167205	220378	240805	208490	234149	276620	284710	164095	214743	236466
Grand To	tal		452140	562511	574003	1358324	1475437	1525077	1164425	1020043	1307079	1372481

5.5.5.2 Catches (landings and discards) of cod and associated species by small boats by Member State

Table 5.5.5.2.1 provides landing, discard and discard rate data for vessels under 10m, including data from England (inc Northern Ireland), France, Ireland, and Scotland, for the main species landed. Irish under 10 meter vessel landings are not recorded by gear type, therefore fall into the "none" category. Under 10m vessels in the Irish Sea land edible crab (CRE) in the greatest quantity, previously over 1,000t per year having increased to over 2,000t in the last two years. This was substantially lower in 2009. Scallops, sprat, spider crab, Nephrops and herring dominate the remainder of landings reported to the group. Comparatively small, and variable quantities of cod are landed, ~30t in 2010 and 2011, ~46t in 2012. Where gear type is available, landings primarily originate from "none" (all Irish landings in this category), pots, and dredges. Irish under 10m vessels are likely to employ a similar gear distribution.

The under 10m vessels contribute only a small proportion to the total Irish Sea cod landings. Regulated gears typically account for >90% with the exception of 2012 where this fell to 85%. In recent years, <1% of landings come from unregulated ≥ 10 m vessels.

Table 5.5.5.2.1. Irish Sea. Landings (t), discards (t) and discard rate for the top 10 species landed in 2012 by gear according to Coun. Reg. 1342/2008 categories for under 10m vessels, 2003-2012. For landings, discards and discard rates by Country refer to the website. N.B. this table contains a select list of species.

ANNEX A	REA F	REG_GEAR S	PECIES 2	.003 L	2003 D	2003 R 2	2004 L	2004 D	2004 R	2005 L	2005 D	2005 R	2006 L :	2006 D	2006 R	2007 L :	2007 D 2	2007 R	2008 L	2008 D	2008 R	2009 L :	2009 D 2	2009 R 2	2010 L 2	010 D 2	2010 R	2011 L 2	011 D 2	2011 R	2012 L 2	2012 D	2012 R
lla	3c	BEAM	PLE							0.69	0.00	0.00	0.26	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.42	0.00	0.00	0.03	0.00	0.00	0.01	0.00	0.00
lla	3c	BEAM	MAC										0.11	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00				0.00	0.00	0.00				0.00	0.00	0.00
lla	3c	BEAM	SCE																												0.00	0.00	0.00
lla	3c	BEAM	SPR	0.32	0.00	0.00																											
lla	3c	BEAM	CRE																			0.26	0.00	0.00									
lla	3c	BEAM	COD							0.01	0.00	0.00	0.02	0.00	0.00	0.01	0.00	0.00							0.01	0.00	0.00	0.01	0.00	0.00			
lla	3c	BEAM	HER																						0.00	0.00					0.00	0.00	
lla	3c	BEAM	NEP																									0.33	0.00	0.00			
lla	3c	BT2	PLE	0.03	0.00	0.00	0.10	0.00	0.00	14.23	0.00	0.00	16.17	0.00	0.00	2.74	0.00	0.00	2.09	0.00	0.00										0.00	0.00	0.00
lla	3c	BT2	SCE				0.02	0.00	0.00																								
IIa	3c	BT2	COD	0.01	0.00	0.00	0.01	0.00	0.00	0.28	0.00	0.00	0.11	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00												
lla	3c	DREDGE	SCE	49.64	0.00	0.00	26.88	0.00	0.00	21.45	0.00	0.00	58.97	0.00	0.00	114.88	0.00	0.00	586.21	0.00	0.00	581.34	0.00	0.00 6	541.44	0.00	0.00	1144.38	0.00	0.00	1275.67	0.00	0.00
lla	3c	DREDGE	COD																						0.02	0.00	0.00				2.90	0.00	0.00
lla	3с	DREDGE	NEP										0.07	0.00	0.00										0.54	0.00	0.00				2.23	0.00	0.00
lla	3с	DREDGE	PLE																0.00	0.00	0.00	0.01	0.00	0.00	0.43	0.00	0.00	0.00	0.00		1.06	0.00	0.00
lla	3с	DREDGE	SCR										4.60	0.00	0.00	0.44	0.00	0.00	0.87	0.00	0.00	0.24	0.00	0.00							0.42	0.00	0.00
lla	3с	DREDGE	CRE																0.26	0.00	0.00				0.03	0.00	0.00	0.53	0.00	0.00	0.23	0.00	0.00
lla	3с	DREDGE	MAC																0.01	0.00	0.00	0.03	0.00	0.00									
lla	3с	GN1	HER							103.42	0.00	0.00	19.79	0.00	0.00	32.60	0.00	0.00	151.72	0.00	0.00	170.61	0.00	0.00 1	129.20	0.00	0.00	149.05	0.00	0.00	39.45	0.00	0.00
lla	3c	GN1	SCR										2.45	0.00	0.00	6.08	0.00	0.00	38.04	0.00	0.00	13.69	0.00	0.00	7.28	0.00	0.00	25.06	0.00	0.00	10.90	0.00	0.00
lla	3с	GN1	PLE	0.31	0.00	0.00	2.21	0.00	0.00	2.91	0.00	0.00	1.50	0.00	0.00	6.00	0.00	0.00	1.56	0.00	0.00	2.38	0.00	0.00	4.12	0.00	0.00	2.19	0.00	0.00	4.14	0.00	0.00
lla	3c	GN1	COD	0.00	0.00	0.00	0.02			2.24	0.00	0.00	2.33	0.00	0.00	1.53	0.00	0.00		0.00	0.00		0.00	0.00	0.36	0.00	0.00	0.80	0.00	0.00			0.00
lla	3c	GN1	MAC										0.00	0.00		0.36	0.00	0.00	0.41	0.00	0.00	0.60	0.00	0.00	0.43	0.00	0.00	0.84	0.00	0.00	0.57	0.00	0.00
lla	3c	GN1	CRE				0.00	0.00	0.00	0.01	0.00	0.00	0.29	0.00	0.00	13.41	0.00	0.00	8.59	0.00	0.00	5.41	0.00	0.00	0.82	0.00	0.00	1.62	0.00	0.00	0.49	0.00	0.00
lla	3с	GN1	SCE																			0.52	0.00	0.00							0.07	0.00	0.00
lla	3c	GN1	NEP													0.05	0.00	0.00				0.10	0.00	0.00									
lla	3с	GT1	CRE																1.34	0.00	0.00												
lla	3c	LL1	MAC										5.36	0.00	0.00	4.74	0.00	0.00	3.11	0.00	0.00	6.66	0.00	0.00	10.12	0.00	0.00	13.01	0.00	0.00	14.44	0.00	0.00
lla	3c	LL1	HER																									0.63	0.00	0.00	0.88	0.00	0.00
lla	3с	LL1	COD																0.01	0.00	0.00	0.02	0.00	0.00	0.06	0.00	0.00	1.02	0.00	0.00	0.31	0.00	0.00
lla	3c	LL1	CRE																			0.13	0.00	0.00				0.03	0.00	0.00	0.03	0.00	0.00
lla	3c	LL1	PLE																0.05	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00				0.01	0.00	0.00
lla	3c	LL1	SCR																			0.04	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00			
lla	3c	none	CRE	875.22	0.00	0.00	1028.61	0.00	0.00	1106.73	0.00	0.00	70.04	0.00	0.00	292.57	0.00	0.00	261.88	0.00	0.00	251.47	0.00	0.00	583.65	0.00	0.00	1116.77	0.00	0.00	1030.29	0.00	0.00
lla	3c	none	SPR 1	1702.00	0.00	0.00													30.52	0.00	0.00							160.54	0.00	0.00	687.00	0.00	0.00
lla	3c	none	SCR	50.72	0.00	0.00	54.58	0.00	0.00	19.94	0.00	0.00										118.79	0.00	0.00	179.28	0.00	0.00	84.74	0.00	0.00	573.32	0.00	0.00
lla	3c	none	HER				1.70	0.00	0.00							5.00	0.00	0.00	87.09	0.00	0.00	132.80	0.00	0.00	105.00	0.00	0.00	135.74	0.00	0.00	362.96	0.00	0.00
lla	3c	none	NEP				18.18	0.00	0.00							1.30	0.00	0.00				1.31	0.00	0.00	2.19	0.00	0.00	16.16	0.00	0.00	195.42	0.00	0.00
lla	3с	none	SCE	0.16	0.00	0.00	0.12	0.00	0.00										36.34	0.00	0.00	3.44	0.00	0.00	1.74	0.00	0.00	58.42	0.00	0.00	78.45	0.00	0.00
lla	3c	none	MAC	80.00	0.00	0.00	81.29	0.00	0.00				74.00	0.00	0.00							61.55	0.00	0.00	47.91	0.00	0.00	18.88	0.00	0.00	44.04	0.00	0.00
lla	3c	none	COD	92.00	0.00	0.00	62.35	0.00	0.00							3.54	0.00	0.00	0.66	0.00	0.00	74.73	0.00	0.00	27.61	0.00	0.00	28.14	0.00	0.00	39.84	0.00	0.00
lla	3c	none	RAJ	50.90	0.00	0.00	35.16	0.00	0.00							2.27	0.00	0.00	27.58	0.00	0.00	13.47	0.00	0.00	18.98	0.00	0.00	13.49	0.00	0.00	29.87	0.00	0.00
lla	3c	none	PLE	8.10	0.00	0.00	10.68	0.00	0.00							0.25	0.00	0.00	0.08	0.00	0.00	0.19	0.00	0.00	0.27	0.00	0.00	0.36	0.00	0.00	3.20	0.00	0.00

Table 5.5.5.2.1. Irish Sea. Continued.

ANNEX F	EG_A	REG_GEAR S	PECIES :	2003 L	2003 D	2003 R	2004 L	2004 D	2004 R	2005 L	2005 D	2005 R 20	06 L 2	2006 D 2	2006 R	2007 L	2007 D 2	2007 R	2008 L	2008 D 2	2008 R	2009 L	2009 D	2009 R	2010 L	2010 D	2010 R	2011 L	2011 D	2011 R	2012 L	2012 D	2012 R
lla	3с	OTTER	NEP										0.15	0.00	0.00																		
IIa	3с	OTTER	SPR										0.03	0.00	0.00																		
lla	3с	OTTER	PLE	0.25	0.00	0.00							0.07	0.00	0.00	0.20	0.00	0.00															
lla	3с	PEL_SEINE	NEP																0.28	0.00	0.00												
IIa	3с	POTS	CRE	348.05	0.00	0.00	174.14	0.00	0.00	165.90	0.00	0.00 98	7.53	0.00	0.00	1232.58	0.00	0.00	805.90	0.00	0.00	619.45	0.00	0.00	874.42	0.00	0.00	1047.38	0.00	0.00	1027.77	0.00	0.00
lla	3с	POTS		113.62	0.00	0.00						6	0.55	0.00	0.00	83.59	0.00	0.00	81.81	0.00	0.00	78.43	0.00	0.00	77.04	0.00	0.00	68.15	0.00	0.00	68.24	0.00	0.00
lla	3с		NEP	0.83	0.00	0.00	0.83	0.00	0.00	3.60	0.00	0.00 1	2.94	0.00	0.00	13.53	0.00	0.00		0.00	0.00	9.49	0.00	0.00		0.00	0.00	8.62		0.00	16.04		
lla	3с		MAC										2.84	0.00	0.00	10.66	0.00	0.00	5.30	0.00	0.00	5.99	0.00	0.00		0.00	0.00	19.50	0.00	0.00	5.73		
IIa	3с		SCE													2.05	0.00	0.00	3.20	0.00	0.00	0.29	0.00	0.00							0.58		
lla	3c		COD										0.02	0.00	0.00										0.12	0.00	0.00			0.00	0.05	0.00	0.00
IIa	3с		HER																			0.08		0.00				0.15	0.00	0.00			
lla 	3c		SPR																			0.01		0.00									
lla	3c		PLE	0.07	0.00	0.00	- 40	0.00	0.00	0.02		0.00	0.54	0.00	0.00	0.03		0.00	F 60	0.00	0.00	0.14		0.00			0.00	0.54				0.00	0.00
lla	3c	TR1	PLE	8.87	0.00	0.00	5.10	0.00	0.00	1.74 0.10	0.00		0.61	0.00	0.00	2.90	0.00	0.00	5.63	0.00	0.00	3.00	0.00	0.00		0.00	0.00	0.87		0.00	6.51	_	
lla	3c		COD	0.62	0.00	0.00				0.10	0.00	0.00	0.01	0.00	0.00	0.06			0.42	0.00	0.00	0.05	0.00	0.00	0.05	0.00	0.00	0.05	0.00	0.00	0.51	0.00	0.00
lla Ila	3c 3c		SCR NEP	0.02	0.00	0.00										0.02	0.00	0.00	0.01	0.00	0.00	0.19	0.00	0.00									
lla	3c		NEP	119.89	0.00	0.00	222.01	0.00	0.00	248.51	0.00	0.00 41	4.60	0.00	0.00	289.60	0.00	0.00	399.47	0.00		422.67	0.00		316.65	0.00	0.00	384.43	0.00	0.00	419.15	0.00	0.00
lla	3c		PLE	40.94	0.00	0.00	34.75			69.93	0.00		7.21	0.00	0.00	93.14	0.00	0.00		0.00	0.00	54.81	0.00	0.00		0.00	0.00		472.36	0.00		603.92	
IIa	3c		COD	3.42	0.00	0.00	5.09			3.52	0.00		6.37	0.00	0.00	6.18	0.00	0.00	4.04	0.00	0.00	4.68	0.00	0.00		0.00		0.59		0.05		18.39	0.93
IIa	3c		SCE	5142	0.00	0.00	5.05	0.00	0.00	5.52	0.00		0.00	0.00	0.00	0.22	0.00	0.00	0.15	0.00	0.00	4.42	0.00	0.00		0.00		0.67	0.00	0.00	1.02		
IIa	3c		CRE	1.92	0.00	0.00	0.02	0.00	0.00	0.28	0.00		0.48	0.00	0.00	0.08	0.00	0.00	0.28	0.00	0.00	0.11	0.00	0.00		0.00		0.09		0.00	0.52		
IIa	3c		MAC	2.02	-100		3102	,,,,,	2,100	,,,,,	2.00		0.51	1.13	0.69	0.26		0.00			0.12	0.22		0.00		3100	,,,,,	0.07		0.00	0.18		
IIa	3c		HER												_,	0.00		0.00				0.07		0.00		0.00	0.00			_,	0.09		
lla	3с		SPR																1.58	0.00	0.00												
lla	3с	TR2	SCR										0.15	0.00	0.00	0.05	0.00	0.00	0.03	0.00	0.00							0.00	0.00	0.00			

5.5.6 ToR 4 Spatio-temporal patterns in effective effort by fisheries

Spatial figures of effort for the Irish Sea concentrate on those categories identified as significant in recorded effort, and/or cod catches. Figures use a common scale across years for a given gear group, but scales are unique to each category such that the colours assigned to statistical rectangles for gear group TR1 can not be compared directly to those assigned for TR2 say.

TR1: At the beginning of the presented time series, TR1 effort was focused across the Northern boarder and western Irish Sea. Subsequently effort has declined to an overall low level. In 2011 this was limited to the northern and western areas, expanding across the whole area again in 2012 (Figure 5.5.6.1).

TR2: Clear TR2 effort focal points occur within the Irish Sea, coinciding with areas of mud based substrate, with most effort occurring in the Western Irish Sea across two rectangles. In addition, there is an additional secondary focus in the Eastern Irish Sea. Over the period there has been a reduction in effort, with indications of this in the contraction of both focus areas (Figure 5.5.6.2).

BT2: This gear has shown a marked contraction in fishing areas and effort reduction within the Irish Sea (Figure 5.5.6.3). Two of the three focus areas which were present in 2003 still occur in 2011. The southern most focus had reduced to background effort levels a number of years ago reappeared again in 2012.

GN1: The measure of spatial effort submitted in the data call is not considered appropriate for application to static gears. However, the figure for gillnet effort is provided here as an indication of spatial distribution as this gear category can contain relatively high cod catches. Gillnet effort distribution has been changeable over the period, although current focus is in the eastern Irish Sea above Wales (Figure 5.5.6.4). This focus increased in 2012.

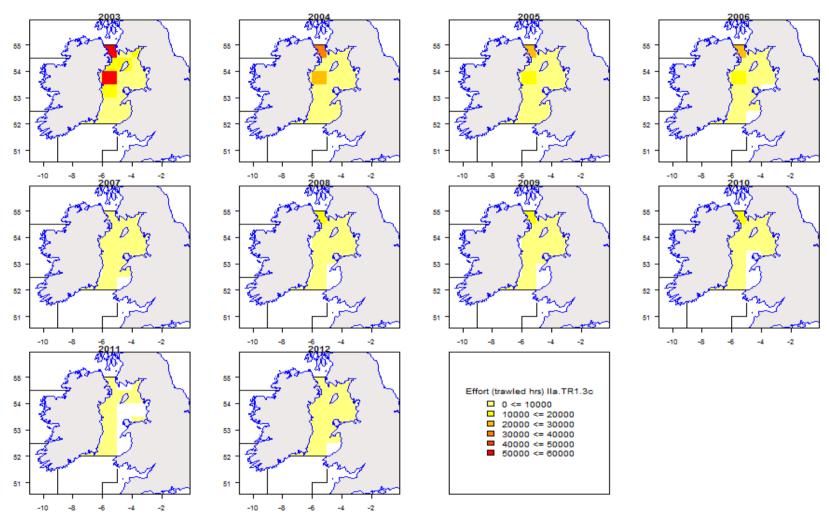


Figure 5.5.6.1. Irish Sea. Spatial distribution of effort (trawled hours) by ICES statistical rectangle for TR1, 2003-2012. N.B. These figures include effort carried out under special condition CPart11.

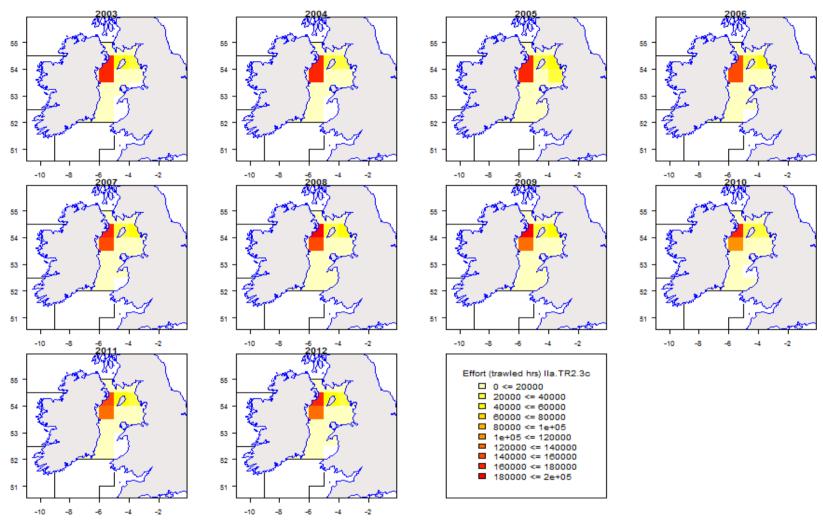


Figure 5.5.6.2. Irish Sea. Spatial distribution of effort (trawled hours) by ICES statistical rectangle for TR2, 2003-2012. N.B. These figures include effort carried out under special condition CPart11.

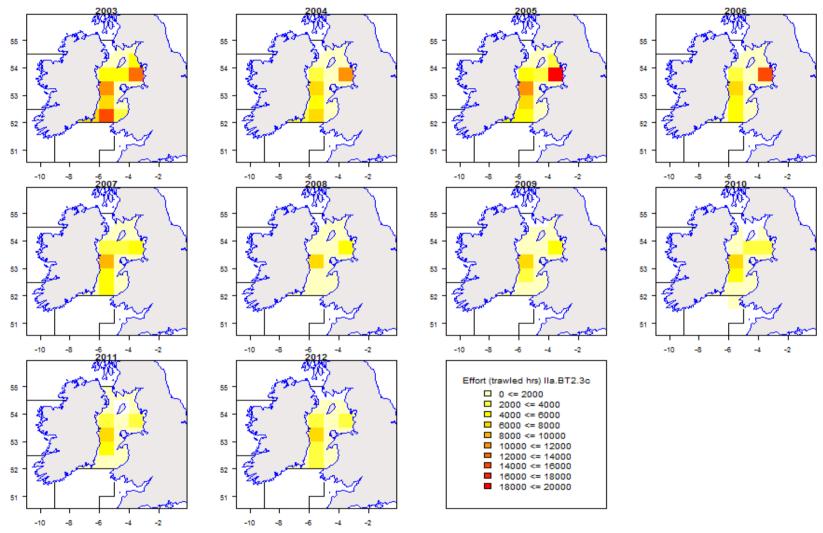


Figure 5.5.6.3. Irish Sea. Spatial distribution of effort (trawled hours) by ICES statistical rectangle for BT2, 2003-2012.

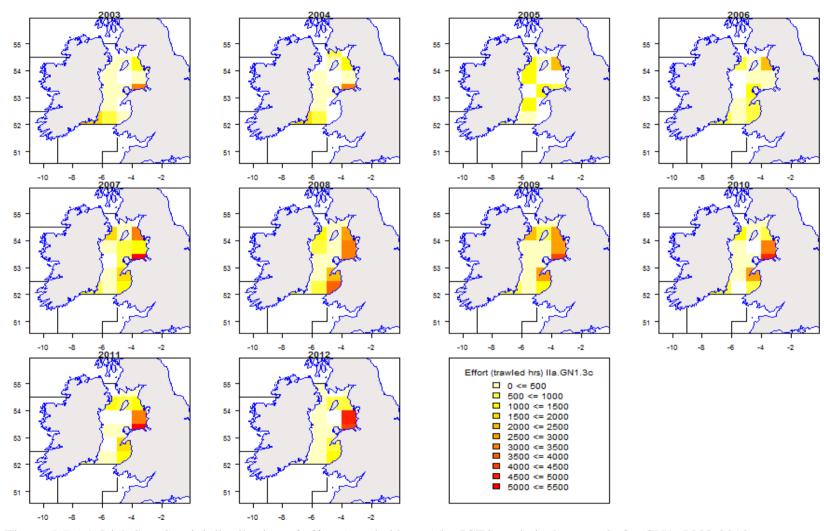


Figure 5.5.6.4. Irish Sea. Spatial distribution of effort (trawled hours) by ICES statistical rectangle for GN1, 2003-2012.

5.5.7 ToR 5 Remarks on quality of catches and discard estimates

Irich Coo

Discard information is scarce for a number of gear categories. Where discard data is available it is considered to be highly variable and inaccurate.

No unexpected evolutions in effort or catch trends by Member state or fishery were observed in the addition of 2012 data.

5.5.8 ToR 6 Estimation of conversion factors to be applied for effort transfers between regulated gear groups

The table of international conversion factors (Table 5.5.8.1) is based on average CPUE (2010-2012). LPUEs are used for GN1 and GT1 fisheries as time series of discard data were not available, while LL1 fisheries are negligible. A one to one ratio can be seen for BT2 to TR2, but the reverse exchange is lower.

Table 5.5.8.1 Irish Sea. Conversion factors for exchange of effort between gears based on average CPUE 2010-2012. Red cells indicate no discard data available; yellow cells indicate discard information available.

irisi	n Sea									
	donor gear	receiv	ing gea	r						
		BT2	GN1	GT1	LL1	TR1	TR2	CPUE I	LPUE	factor =
3c	BT2		0.03	0.079) :	0.17	1	90	58	if factor > 1 then
3c	GN1	1		1	L :	1 1	1	3033	3033	factor = 1
3c	GT1	1	0.375			1 1	1	1136	1136	
3c	LL1	0.011	. 0	0.001		0.002	0.013	1	1	if CPUE=0 or LPUE = 0 then
3c	TR1	1	0.174	0.465	5 :	L	1	528	523	CPUE=1 or LPUE=1
3c	TR2	0.878	0.026	0.07	7 :	0.15		79	42	

5.5.9 ToR 7 Estimation of partial fishing mortalities of cod by area, Member State and fisheries and correlation between partial cod mortality and fishing effort by area, Member State and fisheries

The STECF EWG 13-13 presents partial fishing mortalities of cod by major fisheries and Member States in relation to the estimated fishing mortality by ICES (2013) and landings (Table 5.5.9.1) in relation to the estimated total catch for the year available. The full list of all fisheries can be downloaded from the EWG's web page: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1306. The anticipated trend in fishing mortality as derived from the cod plan is also presented in the following Tables 5.5.9.1. The sustainable exploitation target is defined as F_{MSY} =0.4. The trends in fishing effort in units of kW days at sea of the relevant fisheries are also presented in Tables 5.5.9.1. The presented parameters r (value of Pearson's coefficient of correlation), numbers of points considered, as well as a p value to quantify the statistical significance (\leq 0.05) allow conclusions about the quality of the correlation between the partial F and

fisheries specific fishing effort. Those values are presented in the Tables 5.5.9.1 and resulting regressions are shown the Fig. 5.5.9.1 for major fisheries.

It can be concluded from the estimated F (Table 5.5.9.1) that the stock is unsustainably exploited with an F 3 times the Fmsy without considering discarding. The fisheries listed within the table contribute around 90% to the total estimated fishing mortality in 2008, which is based on landings only. The landings contribution then drops to only 14% in 2012, the remainder being due to ICES estimates of unallocated mortality.

STECF EWG 13-13 notes that the correlations between the summed partial Fs for landings of the regulated fisheries and their estimated fishing efforts are non-significant. The partial landings Fs of most Member State fisheries using regulated gears are not significantly correlated with their specific effort estimates.

Table 5.5.9.1 Cod Irish Sea (landings). The left part of the table lists estimated F trajectories from the management plan and the ICES 2013 cod assessment, as well as partial Fs for landings of fisheries using regulated gears. The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. Cod plan article 13 assignments apply since 2009 or 2010, as interpreted from the background documents of national declarations. A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs from landings of all effort regulated gears to the overall F estimate of the stock.

Runnig previo	us year annual F	reductions by 2	5 percent	as SSB re	mains be	low Blim	, Fmsy=0.	4					Effort kW days ru	unning previ	ous year bas	seline											
			2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012				
plan								1.260	0.950	0.710	0.530	0.400	Effort plan						6569118	4926839	3695129	2771347	2078510				
eduction F pl	an								-0.25	-0.25	-0.25	-0.25								-0.25	-0.25	-0.25	-0.25				
estimated			1.290	1.270	1.250	1.280	1.270	1.260	1.250	1.230	1.210	1.210	Effort estimated	11230316	8851257	8830318	7551800	7267682	6569118	5524500	5145714	4942399	5003078				
eduction F es	timated								-0.01	-0.02	-0.02	0.00								-0.16	-0.07	-0.04	0.01				
													EFFORT											2003-2012			
par			2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012 г		p n	1	
BEL BT2	none	landings	0.066	0.055	0.087	0.051	0.056	0.020	0.017	0.015	0.025	0.013	kw days at sea	1884843	1482831	1694567	1153947	956953	554841	624989	649225	660228	597621	0.912		10	6.28
SEL TR2	none	landings	0.000	0.001	0.001	0.004	0.012	0.011	0.009	0.007	0.002	0.001		1004043	13541	43486	34052	76789	67534	29980	14283	28390	20947	0.683	0.043	9	2.47
NG BT2	none	landings	0.002	0.000	0.005	0.001	0.001	0.000	0.000	0.007	0.002	0.001		172354	68579	161500	59199	31112	17349	5808	1810	41222	13240	0.803		10	3.81
NG GN1	none	landings	0.002	0.004	0.003	0.001	0.001	0.000	0.000	0.001	0.004	0.001		14872	12326	10011	8378	3930	4297	684	2260	3602	1097	0.578		10	2.00
	none		0.002	0.004	0.003	0.003				0.001		0.001		14072	12520	10011	475	656	1066	2788	984	1476	1057	-0.275	0.598	6	-0.57
		landings	0.004	0.004	0.001	0.003	0.001	0.001	0.001	0.002	0.001	0.000		44138	50444	00770					704		5004			9	
NG LL1	none	landings	0.001	0.001	0.001	0.003	0.001		0.000	0.000	0.000	0.000		44138	58414	93773	59656	12238	840	924	5040	1543	5001	0.546	0.128		1.72
NG TR1	CPart13B	landings							0.000	0.000		0.001					2541	2310		5544	5319		10416	0.999	0.000	5	38.70
NG TR1	CPart13c	landings							0.005	0.010	0.004	0.001								16316	19792	14364	7988	0.946	0.054	4	4.12
NG TR1	none	landings	0.027	0.039	0.018	0.012	0.003	0.001						399886	197351	94201	66364	14536	5932					0.742	0.091	6	2.21
NG TR2	CPart13B	landings								0.001	0.000	0.001					12243	17787	15246	11319	116327	46765	87715	0.912	0.004	7	4.97
NG TR2	CPart13c	landings							0.002	0.000	0.000	0.000								160679	65836	109946	66348	0.888	0.112	4	2.73
NG TR2	none	landings	0.004	0.010	0.013	0.003	0.005	0.006						211774	347848	287791	235204	225834	204211					0.738	0.094	6	2.18
RA TR1	none	landings	0.052	0.020	0.023	0.016	0.018	0.004	0.004	0.000	0.003	0.001		264447	167253	180515	109174	67487	19701	19701	6668	6138	18034	0.947	0.000	10	8.33
RA TR2	none	landings	0.000		0.001									588		2352		810					395				
GBJ BT2	none	landings	0.003	0.003	0.000									40878	42260	3542											
OM TR1	none	landings	0.000											9070	362	172		649	895								
OM TR2	none	landings		0.000	0.000	0.000	0.000	0.000						18628	10826	27205	5427	29763	14592								
RL BT2	none	landings	0.018	0.008	0.027	0.019	0.052	0.016	0.008	0.027	0.028	0.013		860849	414446	514653	481404	550975	374494	173927	218054	212313	179498	0.239	0.506	10	0.69
RL GN1	none	landings	0.031	0.059	0.039	0.117	0.333	0.452	0.106	0.081	0.048	0.026		92103	63069	26672	29531	47941	40957	22219	22172	20333	9000	0.080	0.826	10	0.22
RL GT1	none	landings						0.000	0.000										1327	1237							
RL LL1	none	landings					0.000	0.014							800				24199		620	146	3625				
RL TR1	none	landings	0.048	0.013	0.006	0.004	0.087	0.132	0.096	0.044	0.046	0.023		381119	157955	87263	84550	141442	73625	60348	73585	56161	122215	-0.111	0.760	10	-0.31
RL TR2	CPart13a	landings							0.002	0.000	0.033	0.029								98492	115391	392685	1003328	0.747	0.253	4	1.58
RL TR2	none	landings	0.080	0.076	0.094	0.112	0.241	0.128		0.121	0.046	0.002		1242769	1386883	1475114	1452830	1583605	1300696	733216	673091	445123	12056	0.663	0.037	10	2.50
RL TR3	none	landings			0.000						0.000	0.000		900	90	3305	960		436			179	634				
NIR GN1	none	landings		0.000											222												
NIR TR1	CPart13B	landings		5					0.000	0.002	0.001	0.013								29532	47406	25968	28260	-0.204	0.796	4	-0.29
VIR TR1	CPart13c	landings							0.400	0.200	0.066	0.013								364594	306824	147347	12091	0.923	0.077	4	3.39
VIR TR1	none	landings	0.073	0.166	0.236	0.350	0.236	0.404	0.400	0.200	0.000	0.011		2055358	1162035	872476	785815	343025	498488	304334	300024	141341	12031	-0.788	0.063	6	-2.56
VIR TR2	CPart13A	landings	0.073	0.100	0.230	0.550	0.230	0.404				0.001		2033336	1102033	072470	703013	343023	450400				240258	-0.700	0.003	-	-2.30
NIR TR2	CPart13A CPart13B	landings							0.004	0.017	0.012	0.001								235743	1450621	1820787	2225228	0.863	0.137	4	2.41
NIR TR2	CPart136								0.004	0.017	0.012	0.028								2895541	1336192	863528	213809	0.863	0.137	4	
		landings	0.065	0.124	0.170	0.165	0.175	0.212	0.127	0.073	0.030	0.007		2205222	2120202	2242446	2050544	2142022	2226267	2070041	1000192	003528	213809			-	7.81
VIR TR2	none	landings	0.065	0.124	0.170	0.165	0.175	0.213						3395323	3138292	3213416	2959511	3143032	3326397					-0.298	0.566	6	-0.62
CO LL1	none	landings	0.000											3247							405-		4000				
CO TR1	CPart13C	landings										0.000					***				1273	407	13504			-	
CO TR1	none	landings	0.005	0.001	0.000	0.000								92514	32104	3889	3104							0.992	0.008	4	11.11
CO TR2	CPart13B	landings							0.001	0.000	0.001	0.001								23350	17981	42035	82657	0.535	0.465	4	0.89
CO TR2	CPart13C	landings										0.000								7569		1713	28113				
CO TR2	none	landings	0.001	0.003	0.002	0.000	0.001	0.000						44656	93770	34415	7435	16808	21995					0.862	0.027	6	3.40
Sum			0.478	0.583	0.726	0.860	1.223	1.402	0.890	0.601	0.350	0.173		11230316	8851257	8830318	7551800	7267682	6569118	5524500	5145714	4942399	5003078	0.066	0.856	10	0.18
heck sum Fpa	r/F		0.37	0.46	0.58	0.67	0.96	1.11	0.71	0.49	0.29	0.14															

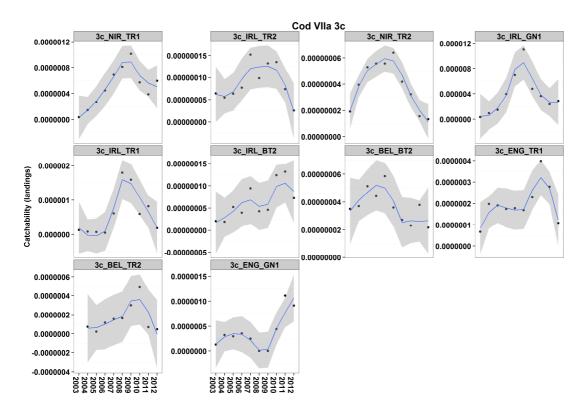


Fig. 5.5.9.1 Irish Sea cod. Partial fishing mortality (based on harvest rate estimates, landings only) over effort (kWd) in area 3c of major fisheries, 2003-2012. R = Pearson's coefficient of correlation, p value from two tailed to quantify the statistical significance (≤ 0.05). Note that the panel called combined fleets includes all regulated and unregulated fisheries and that the trends of the fisheries are not separated by special conditions.

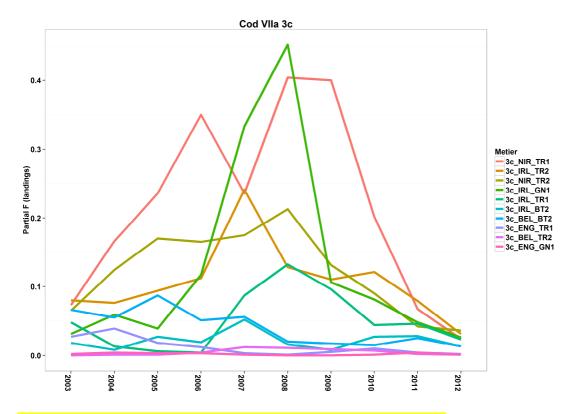


Fig. 5.5.9.2 Irish Sea cod. Partial F landings of major fisheries, 2003-2012.

5.5.10 ToR 8 Comparative analyses between trends in fishing mortality and fishing effort by Member State and fisheries and the cod plan (R (EC) No 1342/2008) provisions, in particular with regard to Article 13

STECF EWG 13-13 is unable to conduct the requested analyses due to data deficiencies, in particular the lack of discard data.

5.6 Celtic Sea effort regime evaluation for fisheries which would be affected by the extension of the cod management plan

5.6.1 ToR 1.a Fishing effort in kWdays, GTdays and number of vessels by area, Member state and fisheries

While there is no effort regulation in the Celtic Sea at present, the analyses below consider the same gear and mesh categories as used in the cod plan management plan (Council Regulation No. 1342/2008). Table 5.6.1 lists the trends in effort by gear and mesh categories by country in kW*days. Information on GT*days at sea and the number of vessels active in Celtic sea are not presented in this report but are available on the JRC website: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313

The following sections are subdivided into the whole Celtic Sea, the ICES sub-divisions 7bcefghjk (Cel1) and the subset of ICES subdivision 7gh (Cel2).

STECF EWG 13-13 notes that Spanish data has not been provided for periods before 2012; as such the time series of effort and catch is incomplete. The inclusion of Spanish data for 2012 mainly affects fisheries with Long-lines (LL1), otter trawl and seines (TR1, TR2) and to a lesser extent Gillnets (GN1), and predominately in the wider Celtic Sea (7bcefghjk (Cel1), with only small amounts of effort in the sub-set divisions 7fg (Cel2).

5.6.1.1 ICES sub-divisions 7bcefghjk (Cel1)

Table 5.6.1.1.1 show fishing effort (kw days at sea) by Country, Gear type and Special condition (as defined for the cod management plan) for ICES sub-divisions 7bcefghjk. In recent years fishing effort by the main gears/countries has been relatively stable, though in 2012 there was an increase in BT2 effort by Belgian fisheries, related to increased sole and anglerfish landings (Table 5.6.2.1.1).

 $Table \ 5.6.1.1.1 \ Trend \ in \ effort \ (kW*days \ at sea), according \ to \ cod \ plan \ gear \ definition \ and \ Member \ State, 2003-2012. \ Note, \ data \ for \ Celtic \ Sea \ 7bcefghjk \ (Cel1)$

ANNEX	REG AREA COD	REG GEAR COD	SPECON	COUNTRY	VESSEL_LENGTH	2003	2004 👱	2005	2006	2007	2008	2009	2010 🔼	2011	2012
Cel1	7bcefghjk	BT1	none	BEL	O15M						1766				
Cel1	7bcefghjk	BT1	none	ENG	o15m		52079								
Cel1	7bcefghjk	BT1	none	FRA	o10t15m										159
Cel1	7bcefghjk	BT1	NONE	IRL	015M	14428									
Cel1	7bcefghjk	BT2	none	BEL	015M	2914644	4568918	3996701	3246205	3351614	2285026	1932211	2392748	2698681	3206396
Cel1	7bcefghjk	BT2	none	ENG	o10t15m	168607	72927	57373	53413	68457	70383	39504	57209	50614	70693
Cel1	7bcefghjk	BT2	none	ENG	o15m	5871505	5623896	5626763	5225546	4943815	4253780	3822565	3678346	3831714	3657607
Cel1	7bcefghjk	BT2	none	FRA	O10T15M	7217	27252	19355	99790	130720	55970	48196	109999	117351	68844
Cel1	7bcefghjk	BT2	none	FRA	015M	37869	290521	244545	206042	189856	90473	90473	196958	87754	62709
Cel1	7bcefghjk	BT2	none	GBJ	o15m	284450	365302	202229							
Cel1	7bcefghjk	BT2	NONE	IRL	O10T15M					187					
Cel1	7bcefghjk	BT2	NONE	IRL	015M	3748872	2331454	2969538	2079409	1767309	1020052	916246	948287	879763	1085019
Cel1	7bcefghjk	BT2	none	NLD	O15M	22000							1467		2572
Cel1	7bcefghjk	BT2	none	SCO	o15m	22000				3666		1396	1107		2372
Cel1	7bcefghjk	GN1	none	BEL	015M	-				3000	2700				
Cel1	7bcefghjk	GN1	none	DEU	O15M	371138	452381	396914	32794	171880			114413	91953	105780
Cel1	7bcefghjk	GN1	none	ENG	o10t15m	368630		321651					263607	257877	
Cel1	7bcefghjk	GN1	none	ENG	015m		1801520	1361727		710075			458224	360084	
Cel1	7bcefghjk	GN1	none	ESP	015m	1703043	1801320	1301727	004322	710073	402730	307021	430224	300004	25441
Cel1	7bcefghjk	GN1	none	FRA	010T15M	740026	1015940	904288	951675	917344	704412	704349	442616	453543	
Cel1	7bcefghjk	GN1	none	FRA	015M		1069302	1240069				1535360			1834150
Cel1			_	GBJ		1042720	1005302	1240003	330131	1236337	1333067	1333300	716	1303303	1034130
Cel1	7bcefghjk	GN1	none		015m	66329	74856	63650	82996	92300	115527	146889	122657	88310	107552
Cel1	7bcefghjk	GN1 GN1	NONE	IRL	O10T15M O15M	995797	812092	615141					400345	362955	
	7bcefghjk		NONE			995797	812092	015141	448209	409433	41/322				
Cel1	7bcefghjk	GN1	none	NIR	o10t15m	467260	C4240F	400073	102066	102116	255740	2106	1701	1296	1539
Cel1	7bcefghjk	GN1	none	SCO	o15m	467260		498672					387259	463248	-
Cel1	7bcefghjk	GT1	none	ENG	o10t15m	373	243	11051	7204	13030	17085	14082	2188	14617	
Cel1	7bcefghjk	GT1	none	ENG	015m	17903	40645	16189		16867	20745		13969	72025	
Cel1	7bcefghjk	GT1	none	FRA	O10T15M	463009	613504	763828		1057950			493742	505116	
Cel1	7bcefghjk	GT1	none	FRA	O15M	299226	358319	438016		471663			498932	494870	
Cel1	7bcefghjk	GT1	NONE	IRL	O10T15M	802			6673	18759	21940	29379	30733	27980	27574
Cel1	7bcefghjk	GT1	NONE	IRL	O15M		172	16260	13550	6624	22125	7800	35672	23000	49028
Cel1	7bcefghjk	GT1	none	SCO	o15m	50501	13362			1		1			
Cel1	7bcefghjk	LL1	none	DNK	o15m										
Cel1	7bcefghjk	LL1	none	ENG	o10t15m	82631	64003	57687	69608	81526		44113	52964	51934	36152
Cel1	7bcefghjk	LL1	none	ENG	o15m	318021	276751	265897	405536	575325	138810	4194	6800	3781	
Cel1	7bcefghjk	LL1	none	ESP	o10t15m										574
Cel1	7bcefghjk	LL1	none	ESP	o15m										2554892
Cel1	7bcefghjk	LL1	none	FRA	O10T15M	111426	153667	198527	350334	313997			170925	133564	112422
Cel1	7bcefghjk	LL1	none	FRA	015M	123656	184636	206807	360284	410608	336703	336703	382978	363457	643074
Cel1	7bcefghjk	LL1	NONE	IRL	O10T15M			4074	1265	9962	16325	26309	21174	14444	20026
Cel1	7bcefghjk	LL1	NONE	IRL	015M	91311	3600	68722		46022	7281	2856	13030	3193	44764
Cel1	7bcefghjk	LL1	none	PRT	o15m	3302									
Cel1	7bcefghjk	LL1	none	SCO	o10t15m			221							
Cel1	7bcefghjk	LL1	none	SCO	o15m	136014	6160	50975	249936	257928	811319	194403	261208	147510	415740

Celtic Sea 7bcefghjk (Cel1) continued

ANNEX	REG AREA COD	REG GEAR COD	SPECON	COUNTRY	VESSEL LENGTH	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Cel1	7bcefghjk	TR1	none	ENG	o10t15m	51486	24379	12250	18271	30261	68970	105539	173102	439093	315786
Cel1	7bcefghjk	TR1	none	ENG	o15m	2383920		1791918		2274588				1641154	
Cel1	7bcefghik	TR1	none	ESP	o15m										2211273
Cel1	7bcefghjk	TR1	none	FRA	O10T15M	18668	21245	24258	28074	19271	2627	2627	6974	9027	2514
Cel1	7bcefghjk	TR1	none	FRA	O15M	7715939	7767596	7342415	7853011	7400986	6311661	6287869	9424263	10044412	9927729
Cel1	7bcefghjk	TR1	none	GBG	o10t15m					328	402				
Cel1	7bcefghjk	TR1	none	GBJ	o15m										660
Cel1	7bcefghjk	TR1	NONE	IRL	O10T15M	402		4595	32698	12161	18276	26323	67478	120505	141117
Cel1	7bcefghjk	TR1	NONE	IRL	O15M	5847510	5080624	4806489	3850598	4019448	3850262	4152808	4428522	4290102	3966463
Cel1	7bcefghjk	TR1	none	NIR	o15m	7641		716	5176		1141	1805	16616	24770	42944
Cel1	7bcefghjk	TR1	none	NLD	O15M								6044	221	4442
Cel1	7bcefghjk	TR1	none	SCO	o10t15m	600						36953	58669	6556	762
Cel1	7bcefghjk	TR1	none	SCO	o15m	802171	879428	1084677	779453	681392	835556	869444	939069	742392	764935
Cel1	7bcefghjk	TR2	none	BEL	O15M		119327	188914	424630	464699	467476	468989	422826	322422	468384
Cel1	7bcefghjk	TR2	none	ENG	o10t15m	1399554	1465978	1433817	1480541	1518102	1487671	1508410	1417313	1072092	1117170
Cel1	7bcefghjk	TR2	none	ENG	o15m	778265	793106	748269	545935	546165	188851	219920	270932	277086	199744
Cel1	7bcefghjk	TR2	none	ESP	o15m										1499154
Cel1	7bcefghjk	TR2	none	FRA	O10T15M	990647	1170583	934323	1811990	2322695	1359817	1332591	1377589	1450200	1377944
Cel1	7bcefghjk	TR2	none	FRA	O15M	9525729	9749701	10606401	9086047	8463099	5978693	5961053	5517774	4618154	4640702
Cel1	7bcefghjk	TR2	none	GBG	o10t15m			730	6042	11065	5203	3090	7854	2298	11868
Cel1	7bcefghjk	TR2	none	GBG	o15m				336						
Cel1	7bcefghjk	TR2	none	GBJ	o15m	3557		6745	19360	30580	25740	31020	37620	41195	12760
Cel1	7bcefghjk	TR2	NONE	IRL	O10T15M	306926	257022	350469	334422	459059	451136	535137	532232	412184	496804
Cel1	7bcefghjk	TR2	NONE	IRL	O15M	5209697	5224000	6198534	5446878	5597666	4158601	2949734	3573429	3347927	3532703
Cel1	7bcefghjk	TR2	none	NIR	o10t15m							1832	1832		
Cel1	7bcefghjk	TR2	none	NIR	o15m		53672	72432	42938	20658	128847	151565	144625	6852	31350
Cel1	7bcefghjk	TR2	none	NLD	O15M	36589	64393	108566	162551	113851	90839	216240	252472	259559	150099
Cel1	7bcefghjk	TR2	none	SCO	o10t15m	37584	76992	66156	5364	17582	162	9536	17322	20264	
Cel1	7bcefghjk	TR2	none	SCO	o15m	451909	367031	352869	382627	350470	506435	487733	439290	529514	322248
Cel1	7bcefghjk	TR3	none	DNK	o15m		15575								
Cel1	7bcefghjk	TR3	none	ENG	o10t15m	1157	559	220	1505	4986	7072	10318	2204	4242	13828
Cel1	7bcefghjk	TR3	none	ENG	o15m	5112	432	2984		660	880				
Cel1	7bcefghjk	TR3	none	ESP	o15m	,									1440
Cel1	7bcefghjk	TR3	none	FRA	O10T15M	5832	5840	14923	17955	2179	7931	7931	22410	21286	14772
Cel1	7bcefghjk	TR3	none	FRA	O15M		1146		3516	2304	1596	1596	32619	33180	7492
Cel1	7bcefghjk	TR3	NONE	IRL	O10T15M					403	906		1355	97	2126
Cel1	7bcefghjk	TR3	NONE	IRL	015M	8499	8964	340	10012	3573	11035	12724	8249	21567	18025
Cel1	7bcefghjk	TR3	none	NLD	O15M										
Cel1	7bcefghjk	TR3	none	SCO	o10t15m		1192	4917				894			
Cel1	7bcefghjk	TR3	none	SCO	o15m						5499				26807

Celtic Sea 7bcefghjk (Cel1) continued

ANNEX	REG AREA COD	REG GEAR COD		COUNTRY		2003	2004 💌	2005	2006 💌	2007 💌	2008 💌				2012 🔻
Cel1 Cel1	7bcefghjk	BEAM	none	BEL ENG	015M	537	232	654				38953	70493	68474 641	51436 820
Cel1	7bcefghjk 7bcefghjk	BEAM	none	ENG	o10t15m o15m	2215	1388	16341	12221	6031	884	2750	6993	5419	767
Cel1	7bcefghjk	BEAM	none	FRA	O10T15M	LLIS	1500	52646	12221	0031	004	2730	1461	441	221
Cel1	7bcefghjk	BEAM	none	FRA	O15M	2420	5940		1776						
Cel1	7bcefghjk	BEAM	none	GBJ	o15m		1476								
Cel1	7bcefghjk	BEAM	NONE	IRL	NONE	, , ,									
Cel1	7bcefghjk	BEAM	NONE	IRL	015M	251944	700722	5372							
Cel1	7bcefghjk	BEAM	none	NLD	O15M										
Cel1	7bcefghjk	DEM_SEINE	none	FRA	015m								19311		
Cel1 Cel1	7bcefghjk 7bcefghjk	DEM_SEINE DEM SEINE	NONE	IRL	O10T15M O15M	50721	92689	18279			20910				
Cel1	7bcefghjk	DREDGE	none	BEL	015M	30721	52005	102/5			23028	72828	68186	35748	91356
Cel1	7bcefghjk	DREDGE	none	ENG	o10t15m	309060	382001	553035	554194	492392	317471	450701	478773	572404	590166
Cel1	7bcefghjk	DREDGE	none	ENG	o15m	614408	764430	891393	921527	921550	595747	700967	869100	1091645	
Cel1	7bcefghjk	DREDGE	none	FRA	O10T15M	2320953	2954269	2755241	3279571	3330398	2518083	2478802	1680444		
Cel1	7bcefghjk	DREDGE	none	FRA	O15M	631654	904367	644169	719978	852839	788184	788405	664555	540029	488812
Cel1	7bcefghjk	DREDGE	none	GBJ	o15m	54327							440	440	
Cel1	7bcefghjk	DREDGE	none	IOM	o10t15m						1689				
Cel1	7bcefghjk	DREDGE	none	IOM	o15m				23622	1488					
Cel1	7bcefghjk	DREDGE	NONE	IRL	O10T15M	19763	16170	2686	5237	6625	19361	16193	23843	31788	16879
Cel1	7bcefghjk	DREDGE	NONE	IRL	015M	653522	775093	414693	55741	135371	117801	162441	167179	157570	168829
Cel1	7bcefghjk	DREDGE	none	NLD	O15M	153790	136772	198540	129990	174403	92329	196579	77210		
Cel1	7bcefghjk	DREDGE	none	SCO	o10t15m	E0F014	606533	20295	710040	E00430	E22007	EAFTT	8316	163100	420700
Cel1 Cel1	7bcefghjk 7bcefghjk	none	none	DNK	o15m	585814	606523	820152	716849	509439	532987	545777	495326	162180	439796
Cel1	7bcefghjk	none	none	ESP	015m										39856
Cel1	7bcefghjk	none	none	FRA	010T15M	10756	33746	76396	41748	6979	16784	16784		45498	33630
Cel1	7bcefghjk	none	none	FRA	015M	21008	33740	327	858	5495	5849	5849		8828	
Cel1	7bcefghjk	none	NONE	IRL	O10T15M					383	275		52		64
Cel1	7bcefghjk	none	NONE	IRL	O15M										841252
Cel1	7bcefghjk	OTTER	none	BEL	015M	21681									
Cel1	7bcefghjk	OTTER	none	DNK	o15m	110213	197431	77968	121909	77502	54619	161809			
Cel1	7bcefghjk	OTTER	none	ENG	o10t15m	12522	2308	39153	5023	39319	2922	24642	18573	26944	22177
Cel1	7bcefghjk	OTTER	none	ENG	o15m	40939	110395	224730	82807	35121	61169	41458	243826	78176	484890
Cel1	7bcefghjk	OTTER	none	ESP	o15m										35073
Cel1	7bcefghjk	OTTER	none	FRA	O10T15M	200558	245014	357035	187430	132530	72340 28194	71584 28194	66696	78561	44834
Cel1	7bcefghjk	OTTER	none	1	1	93623	120842	176987	64322	122042	28194	28194	136817	75075	58562
Cel1 Cel1	7bcefghjk 7bcefghjk	OTTER OTTER	NONE	GBJ IRL	o15m NONE										220
Cel1	7bcefghjk	OTTER	NONE	IRL	O10T15M	41678	103219	4119	2100		240	145		828	425
Cel1	7bcefghjk	OTTER	NONE	IRL	015M		1014106	158922	14130	8602	24074	3425	14674	51316	9147
Cel1	7bcefghjk	OTTER	none	NLD	O15M	219121									
Cel1	7bcefghjk	OTTER	none	sco	o10t15m	1341		1490				4470			
Cel1	7bcefghjk	OTTER	none	SCO	o15m	58819	106141	333853	25058	22830	64600	97476	453991	101950	202535
Cel1	7bcefghjk	PEL_SEINE	none	ENG	o10t15m									402	
Cel1	7bcefghjk	PEL_SEINE	none	ENG	o15m								6750		
Cel1	7bcefghjk	PEL_SEINE	none	ESP	o15m										7714
Cel1	7bcefghjk	PEL_SEINE	none	FRA	O10T15M	89864	87549	60693	69936	38525	50446	50446	58203	61033	85960
Cel1 Cel1	7bcefghjk	PEL_SEINE PEL_SEINE	none	FRA IRL	O15M O10T15M	128953	106304	126726	228685	169325	124836	124521	259720	281078	411804
Cel1	7bcefghjk 7bcefghjk	PEL_SEINE PEL_SEINE	NONE	IRL	010115M	5670 11896	37748	8338				85			
Cel1	7bcefghjk	PEL_SEINE	none	NIR	o15m	116892	123386	123386				- 65			
Cel1	7bcefghjk	PEL SEINE	none	NLD	015M										
Cel1	7bcefghjk	PEL_SEINE	none	sco	o15m	50043							36147	7695	
Cel1	7bcefghjk	PEL_TRAWL	none	DEU	015M	1163391	1236846	936424	856734	962635	1191573	1095622	1863980	1718554	1637554
Cel1	7bcefghjk	PEL_TRAWL	none	DNK	o15m	180216	285933	529574	461159	937210	350859	692215	2183860	615653	1188791
Cel1	7bcefghjk	PEL_TRAWL	none	ENG	o10t15m	7950	19022	13409	21430	55665	83542	76419	81105	65577	53907
Cel1	7bcefghjk	PEL_TRAWL	none	ENG	o15m	1107284	909490		1024722		1239855		1459339	1168163	983157
Cel1	7bcefghjk	PEL_TRAWL	none	FRA	O10T15M	21534	21456	12171	9745	73230	18571	18571	53128	35608	35744
Cel1	7bcefghjk	PEL_TRAWL	none	FRA	O15M	1637313	1539255	1496366	1487064	1660738	861162	857922	1827724	1426415	1/15054
Cel1	7bcefghjk	PEL_TRAWL	none	GBG	o10t15m					201		191		205	
Cel1 Cel1	7bcefghjk	PEL_TRAWL PEL TRAWL	none	GBJ IRL	o15m NONE									385	
Cel1	7bcefghjk 7bcefghjk	PEL_TRAWL	NONE	IRL	O10T15M		2370			1627	813	8803	2164	7323	28702
Cel1	7bcefghjk	PEL_TRAWL	NONE	IRL	015M	1505626		1459330	1311817	1987134				2312966	
Cel1	7bcefghjk	PEL TRAWL	none	LTU	O40M							246000		601600	60800
Cel1	7bcefghjk	PEL_TRAWL	none	NIR	o15m	45291	45931	52854	25667	51430	14170	34520	15640	14905	123142
Cel1	7bcefghjk	PEL_TRAWL	none	NLD	O15M	5079963	5212064	4726876	4683381	4252343	5963606	4646318	5976389	4137665	3749935
Cel1	7bcefghjk	PEL_TRAWL	none	sco	o10t15m	2086	5066	1341	596			894			
Cel1	7bcefghjk	PEL_TRAWL	none	sco	o15m		1092027	1092313	310332		1033393		1099186	105981	195698
Cel1	7bcefghjk	POTS	none	DEU	O15M	79821	22932	67473	37763	49735	33957	45423	41460	63464	23675
Cel1	7bcefghjk	POTS	none	ENG	o10t15m	828542	854630	944496	758847	781807	797875	829660	876436	892495	780062
Cel1	7bcefghjk	POTS	none	ENG	015m	406946	420885	363252	361554	395238	488690	522285	505893	483962	377727
Cel1	7bcefghjk	POTS	none	FRA	O10T15M		1768450		2194275	1912615	417846		1034732		
Cel1 Cel1	7bcefghjk	POTS	none	FRA GBG	O15M o10t15m	206908	310610	331470	383133	367272	147387 112	147387	372225	385966	414227 3805
Cel1	7bcefghjk 7bcefghjk	POTS	none	GBG	010t15m		75868	56398	39402	67026	39092	54645	53544	55728	46024
Cel1	7bcefghjk	POTS	none	GBJ	015m	984	3772	20228	19963	07020	34730	11426	44بردر	22/28	-10024
Cel1	7bcefghjk	POTS	none	IOM	015m	704	3112		13303		34730	9840		25256	82000
Cel1	7bcefghjk	POTS	NONE	IRL	NONE							30-10			
Cel1	7bcefghjk	POTS	NONE	IRL	O10T15M	40304	110768	147064	159380	353648	293311	291359	353204	297733	290227
Cel1	7bcefghjk	POTS	NONE	IRL	O15M	16269	10262	37509	31626	17494	9423	26437	33333	18642	8604
Cel1	7bcefghjk	POTS	none	NIR	o10t15m								7833		
Cel1	7bcefghjk	POTS	none	sco	o10t15m									3870	
Cel1	7bcefghjk	POTS	none	sco	o15m						15155				

Effort contributions by vessels operating in the entire Celtic Sea 7bcefghjk (Cel1) from different nations are shown in Figure 5.6.1.1.1. Values for 2012 only are shown, in order to include Spanish data in the analysis. In terms of kW*days, France contributed 36 %, Ireland 20%, England and Wales 16%, Spain 9%, the Netherlands 5%, Belgium 5%, Scotland 4%, Germany 2% and Denmark 2% (2012).

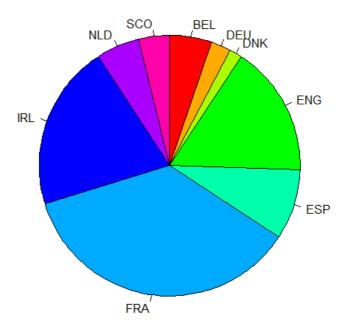


Figure 5.6.1.1.1. Contribution of each country (countries fishing less fishing less than 1% of the total catches were excluded from the figure) to the total effort (kW days at sea) in the Celtic Sea (7bcefghjk) in 2012 (Cel1).

Figure 5.6.1.1.2 shows the proportion contribution of defined gear groups to the total effort in 2012. It shows that the two main gear categories as regulated under the cod plan are TR1 and TR2. TR1 contributes 25% to the reported fishing effort in 2012, TR2 19% and BT2 11%.

The gear classed as "non-regulated" are dominated by pelagic trawls (18%) and in to a lesser extend dredges (6%) and pots (5%).

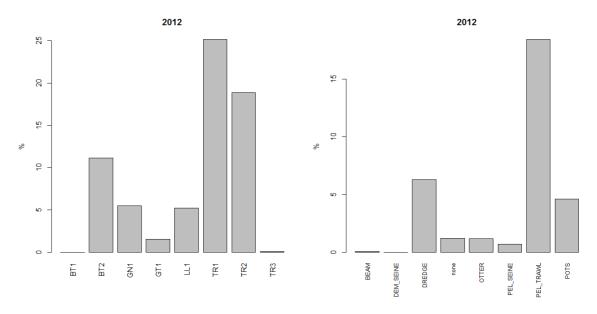


Figure 5.6.1.1.2. Contribution of each gear category to the total effort (kWdays) in the Celtic Sea (ICES Divisions VIIbc,e-k) in 2012.

The fishing effort in kW days at sea of "unregulated" gears accounts for about 32% of the total effort in the Celtic Sea. Figure 5.6.1.1.3 shows fishing effort by gear type for gear defined as unregulated under the cod management plan (left) and defined as regulated (right).

For "unregulated" gears most of the effort is Dutch, French, Danish and Irish pelagic trawl fisheries, with a recent (since 2009) increase of Danish and Irish pelagic boats fishing for boarfish in the Celtic Sea. There was a decrease in fishing effort by unregulated gears in 2011, with a slight increase again in 2012.

For "regulated" gears, over the period 2003-2012 there was a decline in overall effort, including the dominant otter trawl and seine gears. In recent years fishing effort has been relatively stable, with the increase in 2012 due to the inclusion of Spanish data for this year only, with total effort by countries excluding Spain stable overall.

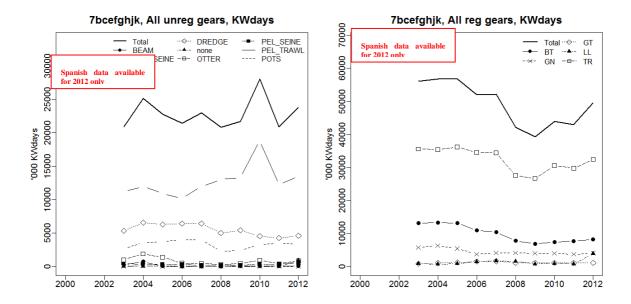


Fig. 5.6.1.1.3. Trend in nominal effort (kW days at sea) for unregulated gears in the Celtic Sea, 2003-2012 (left) and gears as defined as regulated by the cod management plan (right).

Figures 5.6.1.1.4-5 show the recent trends in nominal effort for the various gear categories and mesh size in the Celtic Sea.

Figure 5.6.1.1.5 (left) shows trends in effort by otter trawl and seine gears. The long term trend (since 2003) has seen a decline in effort by these gears. Since 2009 there has been an increase in the use of the larger mesh (TR1) and a decrease in the smaller mesh (TR2). For Beam trawl gears (Figure 5.6.1.1.5, right), only the smaller mesh BT2 has any significant effort and there has been a 38% decrease in effort by this gear over 2003-2012. In recent years (since 2009) effort by the gear has been increasing, with an increase in of 11% in 2012 compared to 2011. This increase of BT2 effort in the Celtic Sea is mostly due to a displacement of Belgium Beamers from the North Sea and Eastern Channel to the Celtic Sea to target Sole.

The overall increase of the effort in 2012 is mostly due to the inclusion of Spanish data only for this year.

Figure 5.6.1.1.5 shows trends in effort by Gillnet (GN1), Trammel Net (GT1) and Longline (LL1) fisheries. The increase in longline effort in 2012 is related to the inclusion of Spanish data only for this year.

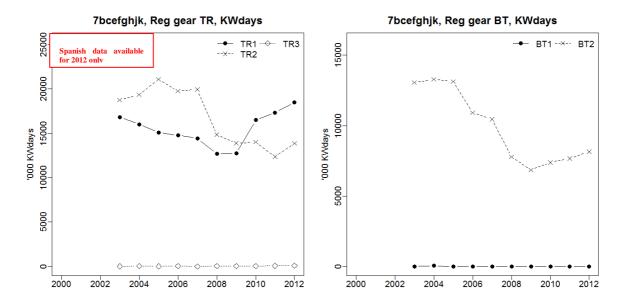


Fig. 5.6.1.1.4. Trend in nominal effort for demersal trawl (Regulated Gear TR1, TR2 and TR3; left) and beam trawl by mesh size range (Regulated Gear BT1, BT2; right) in the Celtic Sea (ICES Divisions VIIbc,e-k), 2003-2012.

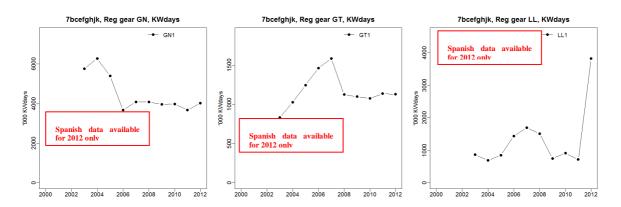


Fig. 5.6.1.1.5. Trend in nominal effort for Regulated Gear GT, GN1, LL1) in the Celtic Sea (ICES Divisions VIIbc,e-k), 2003-2012.

1.1.1.2 ICES sub-divisions 7fg (Cel2)

Table 5.6.1.2.1 shows trends in effort in ICES sub-divisons 7fg by gear type and Member State. Trends broadly reflect those from the wider Celtic Sea area (Section 1.1.1.1 above), with increases in BT2 effort by Belgian, Irish and also English fisheries in 2012.

Table 5.6.1.2.1 Trend in effort (kW*days at sea), according to cod plan gear definition and Member State, 2000-2012. Note, data are for Celtic Sea subdivisions 7fg (Cel2).

ANNEX	REG AREA COD	REG GEAR COD	SPECON E	COUNTRY	VESSEL_LENGTH	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012 💌
Cel2	7fg	BT1	none	ENG	o15m		8787								
Cel2	7fg	BT1	NONE	IRL	015M	10273									
Cel2	7fg	BT2	none	BEL	O15M	2419519	3744619	3121706	2534199	2448583	1651116	1570823	1987520	2163164	2636349
Cel2	7fg	BT2	none	ENG	o10t15m	60008	42075	9779		676	7691	7891	11403	13165	16911
Cel2	7fg	BT2	none	ENG	o15m	990442	970762	775553	645496	569682	403865	408146	392279	265057	472194
Cel2	7fg	BT2	none	FRA	O10T15M			2200					1665	4131	176
Cel2	7fg	BT2	none	FRA	O15M				15965				486		
Cel2	7fg	BT2	none	GBJ	o15m	151639	145409	46378							
Cel2	7fg	BT2	NONE	IRL	O10T15M					187					
Cel2	7fg	BT2	NONE	IRL	015M	2877794	1784027	2398012	1779651	1544366	960802	840028	910631	863511	1075069
Cel2	7fg	BT2	none	NLD	o15m										1105
Cel2	7fg	GN1	none	BEL	015M						1800				
Cel2	7fg	GN1	none	ENG	o10t15m	116140	166518	116219	127376	112183	85832	88748	101641	126513	127610
Cel2	7fg	GN1	none	ENG	o15m	310997	347111	323813	278118	265198	223518	171258	184084	194244	189204
Cel2	7fg	GN1	NONE	FRA	O10T15M									200	
Cel2	7fg	GN1	none	FRA	015M	29862	37833	18804		5908	441	441	4199	6096	5836
Cel2	7fg	GN1	none	GBJ	o15m								716		
Cel2	7fg	GN1	NONE	IRL	O10T15M	36518	54249	44009	54520	48775	62188	86151	68034	54882	63696
Cel2	7fg	GN1	NONE	IRL	O15M	290182	366145	271954	130182	184209	239806	159271	168595	138422	164940
Cel2	7fg	GN1	none	SCO	o15m	689	721	1337						2025	
Cel2	7fg	GT1	none	ENG	o10t15m	373	243	4630	5447	5497	4186	9217	1538	8979	10356
Cel2	7fg	GT1	none	ENG	o15m	1197	23676	4647	21344	12802	12273	2052	5572	33508	72324
Cel2	7fg	GT1	none	FRA	O10T15M		1458		7683				11645	8947	2892
Cel2	7fg	GT1	none	FRA	015M	8456	801	14256	20068	21032	19104	19104	7506	37761	11705
Cel2	7fg	GT1	NONE	IRL	O10T15M	802				4675	4720	7091	8434	10120	15515
Cel2	7fg	GT1	NONE	IRL	015M					4968	7649	1104	13840	6348	18768
Cel2	7fg	LL1	none	ENG	o10t15m	15155	3743	1093	703	2622	498	4673	3785	3719	610
Cel2	7fg	LL1	none	ENG	o15m	12907	29331	43411	32066	11479	5879	215	828	909	
Cel2	7fg	LL1	none	ESP	o15m										4592
Cel2	7fg	LL1	none	FRA	o10t15m										173
Cel2	7fg	LL1	none	FRA	O15M			4745		552	883	883			
Cel2	7fg	LL1	NONE	IRL	O10T15M					3583	4986	4137	2208	2935	1627
Cel2	7fg	LL1	NONE	IRL	O15M			2167					2240		
Cel2	7fg	LL1	none	SCO	o10t15m			221							
Cel2	7fg	LL1	none	SCO	o15m										

Celtic Sea 7fg (Cel2) Continued

ANNEX 🖹	REG AREA COD	REG GEAR COD	SPECON *	COUNTRY	VESSEL_LENGTH *	2003	2004 🔼	2005 Ϊ	2006	2007 🔼	2008	2009	2010 Ϊ	2011	2012
Cel2	7fg	TR1	none	ENG	o10t15m	23520	4919	3621	7115	3761	4872	7425	15376	9544	7846
Cel2	7fg	TR1	none	ENG	o15m	88239	117608	76471	79283	70737	96274	107589	147472	129164	212176
Cel2	7fg	TR1	none	ESP	o15m										127970
Cel2	7fg	TR1	none	FRA	o10t15m								330	1908	
Cel2	7fg	TR1	none	FRA	O15M	3460445	3326622	3113639	2740592	2475013	2303217	2295080	3282997	2630843	2956038
Cel2	7fg	TR1	NONE	IRL	O10T15M	402		1455	29926	11211	16349	13413	19267	36899	64237
Cel2	7fg	TR1	NONE	IRL	O15M	685730	832656	855906	1022284	1382543	1632837	1965350	1855287	2203318	2167809
Cel2	7fg	TR1	none	NIR	o15m	7641		716	5176		1141	1805	16028	23389	42944
Cel2	7fg	TR1	none	SCO	o10t15m							745	894		
Cel2	7fg	TR1	none	SCO	o15m	9622	7701		9616	4479	12835	12332	86805	44476	83618
Cel2	7fg	TR2	none	BEL	O15M		110564	168754	400049	443057	434936	449108	376867	276627	356164
Cel2	7fg	TR2	none	ENG	o10t15m	181115	154707	165360	257877	176637	225580	184298	201033	175504	172994
Cel2	7fg	TR2	none	ENG	o15m	96138	80260	86357	50874	55815	33883	40429	79839	29505	23851
Cel2	7fg	TR2	none	ESP	o15m										1030
Cel2	7fg	TR2	none	FRA	O10T15M						3250	3250	1302	489	732
Cel2	7fg	TR2	none	FRA	O15M	711296	593609	731407	287766	355358	227706	227706	72113	38972	34270
Cel2	7fg	TR2	NONE	IRL	O10T15M	141564	132522	157952	196727	230785	221421	197978	194811	159901	192167
Cel2	7fg	TR2	NONE	IRL	O15M	2312069	2227910	3152039	2603114	2625295	2081110	1655034	1838178	1272473	1580537
Cel2	7fg	TR2	none	NIR	o10t15m							1832	1832		
Cel2	7fg	TR2	none	NIR	o15m		52370	72432	42938	20658	124635	151079	144049	6852	31350
Cel2	7fg	TR2	none	SCO	o10t15m						162				
Cel2	7fg	TR2	none	SCO	o15m	4770	12285	4095	2828		2531	29426	3626	17933	9776
Cel2	7fg	TR3	none	ENG	o10t15m		373							1890	
Cel2	7fg	TR3	none	ENG	o15m			1119							
Cel2	7fg	TR3	none	FRA	o10t15m								212	1163	636
Cel2	7fg	TR3	none	FRA	O15M									1458	
Cel2	7fg	TR3	NONE	IRL	O10T15M						324				
Cel2	7fg	TR3	NONE	IRL	O15M				720			1500		1498	
Cel2	7fg	TR3	none	NLD	O15M										

Celtic Sea 7fg (Cel2) Continued

CHI TITLE SEAM None SEL OJSM 1000 1015 1014 1015 1																
Cet Tig	ANNEX	REG AREA COD	REG GEAR COD	SPECON N	COUNTRY	VESSEL_LENGTH	2003 🔻	2004	2005 💌	2006	2007 💌	2008 💌	2009 🔼	2010 💌	2011 💌	2012 🔼
Cell 2 Tig	Cel2	7fg	BEAM	none	BEL	015M							6709	9597	16023	8536
SEAM NONE RL NONE SEAM SEAM NONE RL OLSM SEAM SEAM	Cel2	7fg	BEAM	none	ENG	o10t15m			214							
Cell Tig	Cel2	7fg	BEAM	none	ENG	o15m	1967	330	3604	369		884				
Cell 2 Tig	Cel2	7fg	BEAM	NONE	IRL	NONE										
DREDGE None BFL DISM	Cel2	7fg	BEAM	NONE	IRL	015M	238874	625594	5372							
CHI Trig	Cel2	7fg	DEM_SEINE	NONE	IRL	015M	15758	76406	7498							
Cell 2 Tig	Cel2	7fg	DREDGE	none	BEL	O15M						10708	4429	5958	11254	10592
Cel 2 Tfg	Cel2	7fg	DREDGE	none	ENG	o10t15m	8101	1934	1740	592	2426	8788	3453	34465	51708	29627
Col	Cel2	7fg	DREDGE	none	ENG	o15m	1520	10671	16336	5658	1458	6034	884	1460	5704	38184
Cel 2 Tig	Cel2	7fg	DREDGE	none	FRA	o10t15m								1291	2083	1460
Cel 2 Tig	Cel2	7fg	DREDGE	none	FRA	O15M	4416		750					1112	1621	294
Cel 2 Tig	Cel2	7fg	DREDGE	none	IOM	o10t15m						911				
Cel 2 Tig	Cel2	7fg	DREDGE	none	IOM	o15m				3720	372					
Cel 2 Tig	Cel2	7fg	DREDGE	NONE	IRL	O10T15M						6200	179	1543		
Cel 2 Tig DREDGE none NLD O15M 19854 4307 3728 4725 1628	Cel2		DREDGE	NONE	IRL		355425	161117	162396	37161	111079	109674	157541	166199	156686	167257
Cel2 Tig DREDGE none SCO o10115m 6930 Cel2 Tig OREOGE none SCO o15m 2000 16246 39971 13036 21843 56181 90166 7184 Cel2 Tig none NONE IRL O15M 23 179 Cel2 Tig none NONE IRL O15M 21681 Cel2 Tig OTTER none BEL O15M 21681 Cel2 Tig OTTER none ENG o101015m 107911 642 36523 4432 36302 1860 12080 15590 26191 26 212 718 OTTER none ESP 015m 463 1850 1572 1715 6007 12232 4255 607 2232 4255 607 2232 4255 607 2232 425 607 2432 480 480 480 480 480	Cel2			none	NLD						3728					
Cel 2 7fg OREOGE none NONE IRL O10715M 233 179 1036 21843 56181 90166 7184 10612 7fg none NONE IRL O10715M 233 179 16012 7fg none NONE IRL O15M 21681 233 179 16012 7fg 07TER none BEL O15M 21681	Cel2				sco	o10t15m								6930		
Cel 2 Tig				_				2000	16246	39971	13036	21843	56181		7184	906
Cel 2 7fg																
Cel 2 7fg				_							255	1,5				169640
Cel 2 7fg							21681									105010
Cel 2 7fg OTTER none ENG o15m 463 1850 1572 17152 6007 12232 4255 Cel 2 7fg OTTER none ESP o15m 338 338 Cel 2 7fg OTTER none FRA o1015m 338 338 Cel 2 7fg OTTER none FRA o1015m 338 14272 1966 Cel 2 7fg OTTER none FRA O15M 14904 14272 1966 Cel 2 7fg OTTER NONE RL O10715M 2639 9912 894 2100 240 145 Cel 2 7fg OTTER NONE RL O10715M 24150 267713 615 619 1472 1500 8989 8214 Cel 2 7fg OTTER none SCO o1015m 24150 267713 615 619 1472 1500 8989 8214 Cel 2 7fg OTTER none SCO o1015m 798 4796 Cel 2 7fg OTTER none SCO o15m 798 4796 Cel 2 7fg PEL SEINE none ENG o1015m 798 4796 Cel 2 7fg PEL SEINE none ENG o1015m 798 4796 Cel 2 7fg PEL SEINE none ENG o15m 5700 Cel 2 7fg PEL SEINE none ENG o15m 5700 Cel 2 7fg PEL SEINE none ENG o15m 5700 Cel 2 7fg PEL SEINE none ENG o15m 5700 Cel 2 7fg PEL SEINE none SCO o15m 5700 Cel 2 7fg PEL SEINE none SCO o15m 5299 8589 Cel 2 7fg PEL SEINE none SCO o15m 5299 8589 Cel 2 7fg PEL SEINE none SCO o15m 5299 8589 Cel 2 7fg PEL SEINE none SCO o15m 5299 8589 Cel 2 7fg PEL SEINE none SCO o15m 5299 8589 Cel 2 7fg PEL TRAWL none DEU O15M 5299 8589 Cel 2 7fg PEL TRAWL none FRA o1015m 5230 16452 52565 13130 159572 263987 458621 330 4196 Cel 2 7fg PEL TRAWL none FRA o1015m 5230 16452 52565 13130 159572 263987 458621 330 4196 Cel 2 7fg PEL TRAWL none SCO o15m 5230 16452 52565 13130 159572 263987 458621 330 4196 Cel 2 7fg PEL TRAWL none SCO o15m 5230 16452 52565 13130 159572 263987 458621 330 4196 Cel 2 7fg PEL TRAWL none SCO o15m 5230 16452 52565 513565 731130 52597 2				-				642	36523	4432	36302	1860	21806	15590	26191	20890
Cel 2 7fg								072				1000				2220
Cel 2 7fg OTTER None FRA ODLISM 14904 14272 1966 14272 1967 14272 1966 14272 1966 14272 1967 14272 1966 14272 1967 14272 1							403		1050	15/2	17132		0007	12232	4233	4244
Cel2 7fg OTTER none FRA O15M 14904 14272 1966 Cel2 7fg OTTER NONE IRL NONE 1 14272 1966 1 14272 1966 1 20 7fg OTTER NONE IRL 01015M 20639 9912 894 2100 240 145 145 1 1472 1500 8989 8214 200 240 145 147 1500 8989 8214 2100 240 145 147 1500 8989 8214 2100 240 145 1470 240 145 147 1500 8989 8214 220 27fg OTTER none 800 15015M 3087 3087 3087 3087 3087 3087 3087 3087 3087 3087 3088 3088 3087 3088 3088 3088 3088 3088 3088 3088 3088 3088 3088<														338		4244
Ce 2 7fg OTTER NONE IRL NONE OTTER NONE IRL OTTES OTTER NONE IRL OTTES OTTER NONE IRL OTTES OTTER OTTER NONE IRL OTTES OTTES OTTER OTTER NONE IRL OTTES OT								1/100/							1066	3680
Ce 2 7fg								14304						14272	1300	3000
Ce 2 7fg				_			20620	0012	904	2100		240	1/15			
Ce 2 7fg OTTER none SCO o10t15m									894		610			9090	921/	2238
Cel2 7fg PEL SEINE none ENG O15m SO2 SO2					_		24130	20//13		013	013	14/2		0202	0214	2230
Ce 2 7fg					1									4706		
Cel2 7fg											1		798	4/96	470	
Ce 2 7fg														5050	1/9	
Ce 2 7fg PEL_SEINE NONE IRL O10T15M S670							2007							5062		04420
Cel2 7fg PEL_SEINE NONE IRL O15M 11896 37539 8338 Cel2 7fg PEL_SEINE none NLD O15M Cel2 7fg PEL_SEINE none SCO 015m Cel2 7fg PEL_TRAWL none DEU O15M S299 8589 Cel2 7fg PEL_TRAWL none FRA 010t15m 294 294 Cel2 7fg PEL_TRAWL none FRA 015M 10238 4097 4585 7331 1851 3310 4196 2 Cel2 7fg PEL_TRAWL none FRA 015M 10238 4097 4585 7331 1851 3310 4196 2 Cel2 7fg PEL_TRAWL NONE IRL 010T15M 2370 187 653 4301 336 5211 2 Cel2 7fg PEL_TRAWL none NONE 181																84429
Cel2 7fg PEL SEINE none NLD O15M Cel2 7fg PEL SEINE none SCO o15m 2430 Cel2 7fg PEL TRAWL none DEU O15M 5299 8589 Cel2 7fg PEL TRAWL none FRA o10f15m 294 1 Cel2 7fg PEL TRAWL none FRA 015M 10238 4097 4585 7331 1851 3310 4196 2 Cel2 7fg PEL TRAWL none FRA 015M 2370 187 653 4301 336 5211 2 Cel2 7fg PEL TRAWL NONE IRL 015M 262815 293567 19426 161226 152567 131130 195972 263987 458621 33 Cel2 7fg PEL TRAWL none NLD 015M 153230 115456 7210 4853 47101 3960 1				_												
Ce 2 7fg						_	11896	3/539	8338							
Cel2 7fg PEL_TRAWL none DEU O15M 5299 8589 Cel2 7fg PEL_TRAWL none FRA o10t15m 294 294 Cel2 7fg PEL_TRAWL none FRA O15M 10238 4097 4585 7331 1851 3310 4196 2 Cel2 7fg PEL_TRAWL NONE IRL O10T15M 262815 29367 119426 161226 152567 131130 195972 263987 458621 33 Cel2 7fg PEL_TRAWL NONE IRL O15M 262815 293567 119426 161226 152567 131130 195972 263987 458621 33 Cel2 7fg PEL_TRAWL none IRL O15M 153230 115456 7210 4853 47101 3960 20 20 20 157 20 4853 47101 3960 20 20 20 20																
Cel2 7fg PEL TRAWL none FRA O10t15m 10238 4097 4585 7331 1851 3310 4196 2 Cel2 7fg PEL TRAWL NONE IRL O10T15M 2370 187 653 4301 336 5211 2 Cel2 7fg PEL TRAWL NONE IRL 015M 262815 293567 119426 161226 152567 131130 195972 263987 458621 33 Cel2 7fg PEL TRAWL none NLD O15M 153230 115456 7210 4853 47101 3960 360															2430	
Cel2 7fg PEL_TRAWL none FRA O15M 10238 4097 4585 7331 1851 3310 4196 2 Cel2 7fg PEL_TRAWL NONE IRL O10715M 2370 187 653 4301 336 5211 2 Cel2 7fg PEL_TRAWL NONE IRL O15M 262815 293567 119426 161226 152567 31310 195972 263987 458621 33 Cel2 7fg PEL_TRAWL none NLD O15M 153230 115456 7210 4853 47101 3960 3980 3980 3980 3980 3980 398				-									5299			
Cel2 7fg PEL_TRAWL NONE IRL O10T15M 2370 187 653 4301 336 5211 22 Cel2 7fg PEL_TRAWL NONE IRL O15M 262815 293567 119426 161226 152567 131130 195972 263987 458621 33 Cel2 7fg PEL_TRAWL none NLD O15M 153230 115456 7210 4853 47101 3960 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																
Cel2 7fg PEL_TRAWL NONE IRL O15M 262815 293567 119426 161226 152567 131130 195972 263987 458621 33 Cel2 7fg PEL_TRAWL none NLD 015M 153230 115456 7210 4853 47101 3960 3980 3960 3960 3960 3960 3960 <							10238		4585	7331						27786
Cel2 7fg PEL_TRAWL none NLD O15M 153230 115456 7210 4853 47101 3960 Cel2 7fg PEL_TRAWL none SCO o15m Cel2 7fg POTS none ENG o10t15m 405230 406212 488422 319320 366223 404291 426106 451778 399558 41 Cel2 7fg POTS none ENG o15m 41217 98951 94391 82850 115136 160299 171922 212593 218830 11 Cel2 7fg POTS none FRA o10f15m 98951 94391 82850 115136 160299 171922 212593 218830 11 Cel2 7fg POTS none FRA o10f15m 98951 94391 82850 115136 160299 171922 212593 218830 11 Cel2 7fg POTS none																22795
Cel2 7fg PEL_TRAWL none SCO o15m Cel2 7fg POTS none ENG o10t15m 405230 406212 458422 319320 366223 404291 426106 451778 399558 41 Cel2 7fg POTS none ENG o15m 42177 98951 94391 82850 115136 160299 171922 212593 218830 11 Cel2 7fg POTS none FRA o10t15m 2010 18080 53838 38996 23492 23492 50447 62606 50 Cel2 7fg POTS none GBG o15m 20910 16433 20888 20910 16433 20888 20910 16433 20888 20910 16433 20888 20910 16433 20888 20910 16433 20888 20910 16433 20888 20910 16433 20888 20910 16433 20888				_								131130	195972		458621	330812
Cel2 7fg POTS none ENG 010t15m 405230 406212 458422 319320 366223 404291 426106 451778 399558 41 Cel2 7fg POTS none ENG 015m 42177 98951 94391 82850 115136 160299 171922 212593 218830 11 Cel2 7fg POTS none FRA 010t15m S883 38996 23492 23492 50447 62606 50 Cel2 7fg POTS none GBG 015m 25296 21435 30680 53838 38996 23492 23492 50447 62606 50 Cel2 7fg POTS none GBG 015m 20910 16433 20888 8 Cel2 7fg POTS none IDM 015m 34730 11426 34730 11426 Cel2 7fg POTS NONE IRL<							153230	115456	7210	4853	47101			3960		3960
Cel2 7fg POTS none ENG o15m 42177 98951 94391 82850 115136 160299 171922 212593 21830 11. Cel2 7fg POTS none FRA 010t15m 25296 21435 30680 53838 38996 23492 23492 50447 62606 56 Cel2 7fg POTS none GBG 015m 20910 16433 20888 20910 16433 20888 20910 16433 20888 20910 16433 20888 20910 16433 20888 20910 16433 20888 20910 16433 20888 20910 116433 20888 20910 16433 20888 20910 16433 20888 20910 16433 20888 20910 16433 20888 20910 16433 20884 20910 16433 20884 20910 16433 20884 20910 20910 16433 20884 20910	Cel2	7fg		none	SCO	o15m										
Cel2 7fg POTS none FRA o10t15m 558 1398 Cel2 7fg POTS none FRA O15M 25296 21435 30680 53838 38996 23492 23492 50447 62606 50 Cel2 7fg POTS none GBG o15m 984 3772 34730 11426 Cel2 7fg POTS none IOM o15m 984 3772 34730 11426 Cel2 7fg POTS none IOM o15m 984 3772 34730 11426 Cel2 7fg POTS NONE IRL O10T15M 143 733 9459 15246 28421 30421 28253 38506 39766 22 Cel2 7fg POTS NONE IRL O15M 1044 1568 15774 30114 18642 37 Cel2 7fg POTS none		7fg		none		o10t15m										418635
Cel2 7fg POTS none FRA O15M 25296 21435 30680 53838 38996 23492 23492 50447 62606 51 Cel2 7fg POTS none GBG o15m 984 3772 34730 11426 Cel2 7fg POTS none IOM o15m 984 3772 34730 11426 Cel2 7fg POTS none IOM o15m 984 3772 9840 25256 66 Cel2 7fg POTS NONE IRL O10T15M 143 733 9459 15246 28421 30421 28253 38506 39766 29 Cel2 7fg POTS NONE IRL O15M 1044 1568 15774 30114 18642 300 Cel2 7fg POTS none NIR o10t15m 1044 1568 15774 30114 18642 300	Cel2	7fg	POTS	none	ENG	o15m	42177	98951	94391	82850	115136	160299	171922	212593	218830	113590
Cel2 7fg POTS none GBG o15m 984 3772 34730 11426 Cel2 7fg POTS none IOM o15m 984 3772 34730 11426 Cel2 7fg POTS none IOM o15m 9840 25256 6. Cel2 7fg POTS NONE IRL O10715M 143 733 9459 15246 28421 30421 28253 38506 2976 2976 2976 2976 2977 30114 18642	Cel2	7fg	POTS	none	FRA	o10t15m								558	1398	453
Cel2 7fg POTS none GBJ o15m 984 3772 34730 11426 Cel2 7fg POTS none IOM o15m 9840 25256 6 Cel2 7fg POTS NONE IRL O10T15M 143 733 9459 15246 28421 30421 28253 38506 39766 28 Cel2 7fg POTS NONE IRL O15M 1044 1568 15774 30114 18642 3041 30414 18642 30414	Cel2	7fg		none	FRA	O15M	25296	21435	30680	53838		23492		50447	62606	50721
Cel2 7fg POTS none IOM o15m 9840 25256 6 Cel2 7fg POTS NONE IRL O10T15M 143 733 9459 15246 28421 30421 28253 38506 39766 28 Cel2 7fg POTS NONE IRL O15M 1044 1568 15774 30114 18642 Cel2 7fg POTS none NIR o10t15m 7833	Cel2	7fg	POTS	none	GBG	o15m					20910	16433	20888			
Cel2 7fg POTS NONE IRL O10T15M 143 733 9459 15246 28421 30421 28253 38506 39766 22 Cel2 7fg POTS NONE IRL O15M 1044 1568 15774 30114 18642 Cel2 7fg POTS none NIR o10t15m 7833	Cel2	7fg	POTS	none	GBJ	o15m	984	3772				34730	11426			
Cel2 7fg POTS NONE IRL O15M 1044 1568 15774 30114 18642 Cel2 7fg POTS none NIR o10t15m 7833	Cel2	7fg	POTS	none	IOM	o15m							9840		25256	63632
Cel2 7fg POTS NONE IRL O15M 1044 1568 15774 30114 18642 Cel2 7fg POTS none NIR o10t15m 7833	Cel2	7fg	POTS	NONE	IRL	O10T15M	143	733	9459	15246	28421	30421	28253	38506	39766	29017
	Cel2	_	POTS	NONE	IRL	O15M		1044	1568				15774	30114	18642	8604
	Cel2	7fg	POTS	none	NIR	o10t15m								7833		
	Cel2	7fg	POTS	none	sco	o10t15m									3870	

Figure 5.6.1.2.1 shows the contribution by different countries to overall effort in the smaller area, ICES sub-divisions VIIfg. Vessels from Belgium, France, Ireland and UK (E-W) operate in the Divisions VIIfg. In terms of kW*days, Ireland contributes to 42%, France 22%, Belgium 21%, England and Wales 13% and Spain 1% (2012).

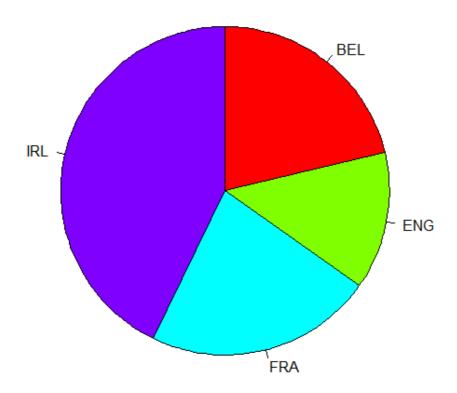


Figure 5.6.1.2.1. Contribution of each country (Countries fishing less fishing less than 1% of the total catches were excluded from the figure) to the total effort in the Divisions VIIfg (2012).

Figure 5.6.1.2.2 shows the proportion contribution of different gears to the total overall effort in 2012. The fisheries in this area are dominated by the TR1 (39%), BT2 (29%) and and TR2 (16%) fisheries. The majority of effort (89%) is undertaken by gears defined as "regulated" by the cod management plan.

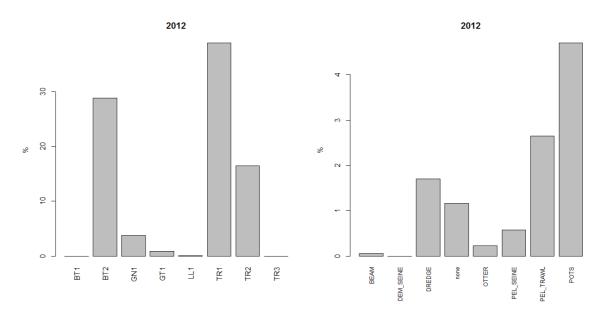


Figure 5.6.1.2.2. Contribution of each gear category to the total effort (kW*days) in the ICES Divisions VIIfg. Mean over 2003-2012.

Figure 5.5.1.2.3 shows trends in effort by gears grouped into the classification of regulated (left) and unregulated (right) under the cod management plan. The total effort in area VIIfg has decreased since 2003. This decrease is mostly due to reductions in effort by beam trawl gears (BT), with otter trawl and seine gears relatively stable over the 2003-2012 period. In 2010, most gear categories increased their effort, with a decline in 2011 before effort increasing again in 2012 to levels higher than seen in the last 4 years. Effort in unregulated gears has been increasing steadily since 2006.

Figure 5.6.1.2.4 (left) shows effort by otter trawl and seine gear by mesh size. Since 2007 there has been a shift in effort from the smaller mesh size in the demersal fishery (70-99 mm; TR2) to the larger mesh size in the demersal fishery (\geq 100 mm; TR1), with effort being relatively stable overall by the TR gear. Figure 5.6.1.2.4 (right) shows effort by the beam trawl gear by mesh size. There has been a large decline in effort in the smaller mesh beam trawl gear (80-120 mm; BT2, the only beam trawl mesh category used in the area) since 2003, but in 2012 there was a significant increase in effort on 2011 (39%). There has been a decline in gillnet and longline effort in the area since 2003, but an increase in trammel net effort (Figure 5.6.1.2.5).

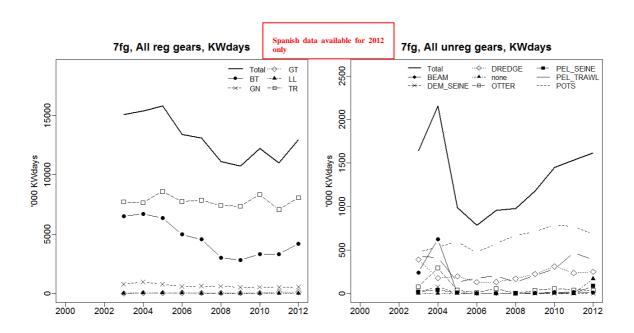


Fig. 5.6.1.2.3. Trend in nominal effort by gear types in the Celtic Sea (ICES Divisions VIIfg), 2003-2012.

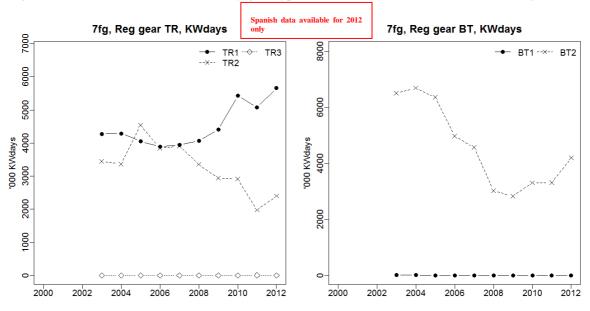


Fig. 5.6.1.2.4. Trend in nominal effort for demersal trawl (TR1, TR2 and TR3; left) and beam trawl by mesh size range (BT1, BT2; right) in the Celtic Sea (ICES Divisions VIIfg), 2003-2012.

7fg, Reg gear GN, KWdays 7fg, Reg gear GT, KWdays 7fg, Reg gear LL, KWdays GT1 90 LL1 20 000 9 800 300 9 400 2 200 2012 2012 2010 2012 2010

Fig. 5.6.1.2.5. Trend in nominal effort for static gears (Regulated Gear GT, GN1, LL1) in the Celtic Sea (ICES Divisions VIIfg), 2003-2012.

5.6.2 ToR 1.b Catches (landings and discards) of cod in weight and numbers at age by area, Member State and fisheries

5.6.2.1 ICES sub-divisions 7bcefghjk (Cel1)

STECF EWG 13-13 presents the requested cod in weight by fisheries. Age specific data are available on the internet page of the STECF EWG 13-13: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313.

STECF EWG 13-13 notes that discard information is scarce and presents only landing values; though figures have been provided on catch where some discard information is available (Figures 5.6.3.1.1 – 2), this should be interpreted with care due to some key fisheries not having discard information. Table 5.6.2.1.2 presents discard rates alongside a discard coverage index for what information is available for gears catching cod in the wider Celtic Sea. As can be seen, in most cases the discard coverage index is either C (<33% of landings having discard information) or B ($\ge 33\% < 66\%$); only the relatively low cod catching gears BT2 and TR3 have > 66% of landings with discard samples (category A). It should be noted that the discard coverage index is only an indication of where a minimum one sample has been provided; therefore it should not necessarily be interpreted an indication of discard information quality, just that some information was available for fisheries using the gear.

Table 5.6.2.1.3-4 presents the discards values and percentages issued from gears with discards information, raising procedures and the percentages of landings with no discards associated for 2011 and 2012.

Figures 5.6.3.1.1-2 show that landings and estimated discards of cod (where available) for the main gear in the Celtic Sea catching cod (TR1) have increased significantly since 2010, with 2012 landings double the landings in 2011. This reflects the particularly strong 2010 year class (the largest since 1987) entering the fishery (ICES, 2013).

Table 5.6.2.1.1 lists the cod landings by Member States and gears, 2003-2012. Cod landings by most countries and gears have increased in 2011 and 2012, reflecting the strong year class and increased quota available.

Table 5.6.2.1.1 Cod landings by Member States and gears, 2003-2012.

ANNEX	REG_AREA	COUNTRY	REG GEAR	SPECIES N	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Cel1	7bcefghjk	BEL	BEAM	COD		0.111	0.217		0.093		0.1	0.068	0.453	0.46
Cel1	7bcefghjk	BEL	BT1	COD					0.000	0.335				
Cel1	7bcefghjk	BEL	BT2	COD	124.07	147.502	179.323	91.836	92.296	55.547	34.832	37.585	86.957	226.596
Cel1	7bcefghjk	BEL	OTTER	COD	8.003									
Cel1	7bcefghjk	BEL	TR2	COD		2.725	4.699	9.77	14.57	8.967	14.188	14.014	35.434	61.463
Cel1	7bcefghjk	ENG	BEAM	COD	0.046		0.44	0.172		0.011	0.01	0.016	0.143	0.096
Cel1	7bcefghjk	ENG	BT1	COD		1.21								
Cel1	7bcefghjk	ENG	BT2	COD	103.027	85.24	99.455	91.818	111.669	71.749	67.307	65.636	98.895	165.86
Cel1	7bcefghjk	ENG	DREDGE	COD	0.035	0.062	0.067	0.091	0.099	0.04	0.096	0.224	0.269	0.086
Cel1	7bcefghjk	ENG	GN1	COD	86.212	88.136	96.699	126.721	123.851	71.273	82.488	54.897	72.29	134.108
Cel1	7bcefghjk	ENG	GT1	COD		0.003	1.146	1.545	2.293	1.53	0.691	0.699	2.311	9.63
Cel1	7bcefghjk	ENG	LL1	COD	6.021	0.042	2.677	2.978	0.72	0.062	0.04	0.117	0.418	0.093
Cel1	7bcefghjk	ENG	OTTER	COD	0.009	0.257	0.15	0.004	0.46	0.321	0.03	0.16	0.085	0.049
Cel1	7bcefghjk	ENG	PEL_SEINE	COD								0.126		
Cel1	7bcefghjk	ENG	PEL_TRAWL	COD	0.104	0.024			0.069	0.007	0.03	0.092	0.073	0.16
Cel1	7bcefghjk	ENG	POTS	COD	0.412	0.018	0.011	0.093	0.107	0.178	0.13	0.242	0.37	0.326
Cel1	7bcefghjk	ENG	TR1	COD	40.809	26.984	21.295	32.43	21.876	27.349	16.741	24.084	43.596	84.586
Cel1	7bcefghjk	ENG	TR2	COD	64.596	40.502	48.635	53.06	79.702	60.178	39.054	53.59	41.573	46.644
Cel1	7bcefghjk	ENG	TR3	COD	0.005		0.233			0.011	0.036			
Cel1	7bcefghjk	FRA	BEAM	COD			0.002							
Cel1	7bcefghjk	FRA	BT2	COD	0.002	0.885	0.028	2.974	0.102	0.021	0.021	0.544	0.312	0.029
Cel1	7bcefghjk	FRA	DREDGE	COD	0.288	0.034	0.037	0.06	1.075	1.752	1.752	5.327	0.329	0.125
Cel1	7bcefghjk	FRA	GN1	COD	11.279	8.45	4.912	5.478	3.997	5.107	5.107	5.971	32.643	34.258
Cel1	7bcefghjk	FRA	GT1	COD	13.603	9.215	11.227	5.866	8.448	10.63	10.63	21.304	35.753	52.842
Cel1	7bcefghjk	FRA	LL1	COD	8.756	4.655	0.633	16.829	2.01	1.818	1.818	2.658	8.261	5.087
Cel1	7bcefghjk	FRA	none	COD	0.006				0.012				1.604	
Cel1	7bcefghjk	FRA	OTTER	COD	0.7	2.072	0.375	0.031	0.532	0.077	0.077	5.931	6.812	0.771
Cel1	7bcefghjk	FRA	PEL_SEINE	COD	0.000	0.000	0.4	0.0	0.000	0.000	0.000	4.00	2.764	75.339
Cel1	7bcefghjk	FRA	PEL_TRAWL	COD	0.838	0.008	0.1	0.3	0.088	0.003	0.003	4.93	2.764	21.212
Cel1	7bcefghjk	FRA	POTS	COD	2206 257	0.002	. (22 014	(72 277	700 (22	CCE OF	CC4 403	0.401		1 0.225
Cel1 Cel1	7bcefghjk 7bcefghjk	FRA	TR1 TR2	COD	742.602	1118.188 288.158		379.731					383.646	3702.196 359.221
Cel1	7bcefgfjk 7bcefghjk	FRA	TR3	COD	742.002	200.130	333.333	0.004	439.729	339.223	330.703	3.353	4.687	559.221
Cel1	7bcefgfijk 7bcefghjk	GBG	TR2	COD				0.004	0.017	0.013		0.023	0.002	0.091
Cel1	7bcefghjk	GBJ	BEAM	COD		0.046		0.033	0.017	0.013		0.023	0.002	0.031
Cel1	7bcefghjk	GBJ	BT2	COD	6.487	10.573	4.43							
Cel1	7bcefghjk	GBJ	TR2	COD	0.004	10.373	4.43	0.011	0.104	0.08	0.028	0.092	0.17	0.025
Cel1	7bcefghjk	IRL	BEAM	COD	4.7	26.25	0.52	0.011	0.104	0.00	0.020	0.032	0.17	0.025
Cel1	7bcefghjk	IRL	BT2	COD	68.41	82.18	167.12	165	118	3 93.6	82.49	100.22	86.54	137.02
Cel1	7bcefghjk	IRL	DEM_SEINE	COD	0.6	5.04	1.35	100		33.0	02. 13	100.22	00.5	157102
Cel1	7bcefghjk	IRL	DREDGE	COD	0.91	1.2	12.00	0.14						
Cel1	7bcefghjk	IRL	GN1	COD	42.59	79.48	99.04	84.39	93.68	102.28	93.3	92.05	105.06	177.29
Cel1	7bcefghjk	IRL	GT1	COD	0.09		<u>'</u>	0.04	0.08	0.08	0.17	1.88	0.67	1.64
Cel1	7bcefghjk	IRL	LL1	COD			0.3	0.13	0.04	0.79	0.09			0.33
Cel1	7bcefghjk	IRL	none	COD										35.06
Cel1	7bcefghjk	IRL	OTTER	COD	6.65	36.82	0.05	0.13				0.03		
Cel1	7bcefghjk	IRL	PEL_SEINE	COD	4.52	4.96	0.53							
Cel1	7bcefghjk	IRL	PEL_TRAWL	COD	0.58	4.66	0.85	0.64	0.43		0.89	0.4		8 0.81
Cel1	7bcefghjk	IRL	POTS	COD	0.05	0.66	0.17	0.13	0.1		2.71	0.2	1.45	0.31
Cel1	7bcefghjk	IRL	TR1	COD	96.05	119.13	164.68	206.38	180.88	209.45	277.96	392.98	419.16	659.51
Cel1	7bcefghjk	IRL	TR2	COD	247.36	235.45	369.74	405.41	300.71	278.08	237.14	314.12	237.55	388.1
Cel1	7bcefghjk	IRL	TR3	COD	0.04	0.17		0.12					0.32	0.11
Cel1	7bcefghjk	NIR	TR1	COD	2.162			0.17			0.027	0.45	14.406	19.035
Cel1	7bcefghjk	NIR	TR2	COD		3.025	4.449	4.877	1.899	17.084	17.489	13.349	1.094	6.526
Cel1	7bcefghjk	NLD	TR1	COD										1
Cel1	7bcefghjk	NLD	TR2	COD							4	1	3	7 5
Cel1	7bcefghjk	SCO	BT2	COD					1.17					
Cel1	7bcefghjk	SCO	DREDGE	COD	0.057		0.002	0.008	0.001	0.026	0.017	0.009		
Cel1	7bcefghjk	SCO	GN1	COD			1.201	0.293			0.005			
Cel1	7bcefghjk	SCO	TR1	COD	8.038	10.901		3.481	1.647	6.03	4.715	8.972	28.811	44.917
Cel1	7bcefghjk	SCO	TR2	COD	1.368	2.456		1.903	1.329	2.591	2.043	1.39	8.175	2.564

Table 5.6.2.1.2. Discard rate and associated coverage index for Cod in Cel1 (7bcefghjk) by Gear and Special condition as defined under the cod management plan. $A, \geq 66\%$ of landings have associated discard sampling, $B, \geq 33\% < 66\%$ of landings have associated discard sampling, C < 33% of landings have associated discard sampling. 2003-2012. Gear/Special condition combinations without discard data omitted.

ANNEY 2	REG_AREA	REG GEAR	SPECON IN	SPECIES	T 2003 R	2004 R	¥ 2005 R	2006 R	2007 R	2008 R	2009 R	2010 R	2011 R V	2012 R	2003 DOI	¥ 2004 DQI	2005 001	2006 DOI	2007 001	2008 DOI	2009 001	2010 DOI	2011 001	2012 001
Cel1	7bcefghjk	BEAM	NONE	COD																				
Cel1		BT1	NONE	COD																				
Cel1	7bcefghjk	BT2	NONE	COD		0 0,0	19	0	0,14	6 0,20	0,11	3 0,3	5 0,711	0,095	С	С	С	С	A	Α	В	С	A	Α
Cel1	7bcefghjk	DEM SEINE	NONE	COD																				
Cel1	7bcefghjk	DREDGE	none	COD								0,07	2 () ()							С		
Cel1	7bcefghjk	GN1	none	COD		0	0	0	0,00	1 (0,07	0,11	0,24	0,248	c						В	В	В	В
Cel1	7bcefghjk	GT1	none	COD		0	0))	0 ()	0,79	8 0,383	0,7	C							C	В	C
Cel1	7bcefghjk	LL1	none	COD		0	0	0		0 ()				E				В	C				
Cel1	7bcefghjk	none	none	COD																				
Cel1	7bcefghjk	OTTER	NONE	COD		0,0	36 0,1	0,94	0,00	7 0,034	0,41	0,7	7 0,202	0,246		C								
Cel1	7bcefghjk	PEL_SEINE	none	COD																				
Cel1	7bcefghjk	PEL_TRAWL	none	COD		0	,2)							С		C						
Cel1	7bcefghjk	POTS	none	COD																				
Cel1	7bcefghjk	TR1	none	COD	0,00	5 0,00	0,17	7 0,05	0,09	0,02	0,51	0,19	0,219	0,386	Α	A	A	A	A	A	c	A	A	C
Cel1	7bcefghjk	TR2	NONE	COD	0,10	1 0,0	71 0,42	2 0,24	0,4	5 0,084	1 0,32	0,41	6 0,642	0,413	c	В	В	В	В	В	В	В	В	В
Cel1	7bcefghjk	TR3	none	COD	0,02	2 0,0:	12			0,68	5 1) (0 0	0	C	A				С	С	С	С	A

5.6.2.2 ICES sub-divisions 7fg (Cel2)

STECF EWG 13-13 presents the requested cod in weight by fisheries. Age specific data are available on the internet page of the STECF EWG 13-13: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313.

STECF EWG 13-13 notes that discard information is scarce and presents only landing values; though figures have been provided on catch where some discard information is available (Figures 5.6.3.2.1 –2), this should be interpreted with care due to some key fisheries not having discard information.

Table 5.6.2.2.2 presents discard rates alongside a discard coverage index for what information is available for gears catching cod in the Celtic Sea sub-divisions VIIfg (Cel2). Where no information is available, the gear has been excluded from the table. Discard coverage for landings from the sub-divisions 7fg is better than for the wider Celtic Sea, with the discard coverage index A (> 66% of landings with discard samples) for the main cod catching gears (TR1, TR2, GN1) for the last, excepting for TR1 in 2012 where discards are considered to have increased significantly but with the cautionary note that discard sampling is only available for a small proportion of the landings (category C, <33% of landings having discard information). It should be noted that the discard coverage index is only an indication of where a minimum one sample has been provided; therefore it should not necessarily be interpreted an indication of discard information quality, just that some information was available for fisheries using the gear.

Figure 5.6.3.2.1-2 show landings and estimated discards of cod (where available) for the main gear in the Celtic Sea subareas VIIfg catching cod. Landings by the main TR1 gear increased in 2012. This reflects the particularly strong 2010 year class (the largest since 1987) entering the fishery (ICES, 2013).

Table 5.6.2.2.1 lists the cod landings by Member States and gears from 7fg, 2003-2012. It can be seen that landings by most countries and gears has increase in 2012. The largest fishery (French TR1) has doubled its landings of cod in 2012 compared to 2011.

Figure 5.6.2.2.1 provides information on cod landings from the sub-area 7fg (Cel2) as a proportion of the total landings from the wider 7bcefghjk (Cel2). Landings of cod have generally been >60% over 2003-2012, with the one exception of 2011 when they dropped to 47%, before increasing again in 2012.

Table 5.6.2.2.1 Cod landings (t) by Member States and gears, 2003-2012.

				_	_	_	_	-	_	_	_	-	_	_
ANNEX	REG_AREA				2003	2004 🔻	_	2006	2007	2008	2009	2010	2011	2012
Cel2	7fg	BEL	BEAM	COD	400.000	0.111	0.217	00.044	0.093	50.500	0.1	0.068	0.453	0.46
Cel2	7fg	BEL	BT2	COD	120.328	141.632	171.674	86.044	86.225	50.632	27.826	32.115	80.394	219.346
Cel2	7fg	BEL	OTTER	COD	8.003	0		0.647	44.440	0.040	40.000	40.000	20.000	E 4 0E 0
Cel2	7fg	BEL	TR2	COD	0.007	2.725	4.547	9.617	14.449	8.948	13.088	13.386	29.809	54.259
Cel2	7fg	ENG	BEAM	COD	0.027	0.004	0.425	1		0.011			1	
Cel2	7fg	ENG	BT1	COD	44.405	0.221	22.440	07.547	22.422	45.400	0.077	10.170	16.10	50.050
Cel2	7fg	ENG	BT2	COD	44.105	35.084	32.418	27.547	33.199	15.183	8.977	12.172	16.12	50.059
Cel2	7fg	ENG	DREDGE	COD	42.700	F7.040	70 565	00.064	00.434	F4 402	40 522	20.024	0.002	62.627
Cel2	7fg	ENG	GN1	COD	42.768	57.018	70.565	98.964	89.124	51.483	49.533	29.824	33.646	62.637
Cel2	7fg	ENG	GT1	COD	4.000		0.231	1.213	1.97	0.934	0.652	0.324	0.596	7.219
Cel2	7fg	ENG	LL1	COD	1.033		2.496	1.867	0.133	0.012	0.008	0.009	0.188	0.003
Cel2	7fg	ENG	OTTER	COD	0.010		0.128		0.249	0.012	0.001	0.009	0.076	0.046
Cel2	7fg	ENG	POTS	COD	0.013	44.676	E 224	E 42	2.627	2.427	2.520	0.003	2 720	0.212
Cel2	7fg	ENG	TR1	COD	8.364	14.676	5.224	5.43	3.627	2.437	2.538	2.933	2.738	23.457
Cel2	7fg	ENG	TR2	COD	12.766	8.335	13.039	17.756	15.288	10.074	4.773	9.764	9.46	12.27
Cel2	7fg	ENG	TR3	COD			0.103	2.070				0.00	0.005	
Cel2	7fg	FRA	BT2	COD	4 700	4	0.446	2.079	0.000	0.050	0.050	0.02	0.025	2.250
Cel2	7fg	FRA	GN1	COD	1.722	1.775	0.116	0.42	0.228	0.058	0.058	0.28	0.95	2.258
Cel2	7fg	FRA	GT1	COD	0.539	0.023	0.533	0.43	0.687	0.612	0.612	0.6	2.73	0.87
Cel2	7fg	FRA	LL1	COD		1.50	0.025					4.75		0.05
Cel2	7fg	FRA	OTTER	COD		1.68		1				1.75	1.41	0.05
Cel2	7fg	FRA	PEL_SEINE	COD				0.110					4.075	55.742
Cel2	7fg	FRA	PEL_TRAWL	COD	2022.040	0.5.640	540.464	0.112	505.046	440.505		660.67	1.275	15.327
Cel2	7fg	FRA	TR1	COD	2023.918									2254.802
Cel2	7fg	FRA	TR2	COD	196.071	89.287	84.618	46.927	59.485	20.052	20.052	19.77	8.259	18.256
Cel2	7fg	FRA	TR3	COD	4.427	6.072	4.256					<u> </u>	0.763	
Cel2	7fg	GBJ	BT2	COD	4.137	6.072	1.256	T	1	1	_	1	1	
Cel2	7fg	IRL	BEAM	COD	4.51	23.74	0.52	452.46	405.45	00.25	77 77	06.02	04.42	126 70
Cel2	7fg	IRL	BT2	COD	54.03	65.9	141.89	153.16	105.15	88.35	77.77	96.93	84.43	136.79
Cel2	7fg	IRL	DEM_SEINE	COD	0.37	4.96	1.22	0.44						
Cel2	7fg	IRL	DREDGE	COD	0.55	1.03	02.27	0.14	05.45	02.42	02.2	77.44	02.02	142.60
Cel2	7fg	IRL	GN1	COD	31.92	71.59	92.27	71.34	85.45	92.43	83.2	77.44 1.42	82.82	142.69
Cel2	7fg	IRL	GT1	COD	0.09				0.04	0.04		1.42	0.47	1.32
Cel2	7fg	IRL	LL1	COD										0.29
Cel2	7fg 7fg	IRL	OTTER	COD	4.86	30.59	1	0.02				1		23.45
Cel2				1			0.53	0.02						
Cel2	7fg	IRL	PEL_SEINE	COD	4.52	4.81	0.53	0.56	0.27		0.80		7.07	0.71
Cel2	7fg	IRL	PEL_TRAWL	COD	0.58	4.47	0.02	0.56	0.27		0.89	0.16	7.97	0.71
Cel2 Cel2	7fg 7fg	IRL	POTS TR1	COD	43.18	0.66 62.68	0.03	150.08	143.5	174.31	0.02 227.31	0.16	1.45 306.67	529.39
					170.42	187.24	331.29	382.84		251.17	223.89	294.53		
Cel2	7fg	IRL	TR2	COD	170.42	187.24	331.29		272.33	251.1/	223.89	294.53	211.68	365.26
Cel2	7fg	IRL	TR3	COD	2 162			0.12			0.027	0.45	12.702	10.035
Cel2	7fg	NIR	TR1	COD	2.162	2.025	4.440	0.17	1.000	17.004	0.027	0.45	13.763	19.035
Cel2	7fg	NIR	TR2	COD		3.025	4.449	4.877	1.899	17.084	17.386	13.16	1.094	6.526
Cel2	7fg	SCO	DREDGE	COD			4 204	0.001						
Cel2	7fg	SCO	GN1	COD	1 525	0.475	1.201	0.140		0.035	0.104	4.000	2.075	12.00
Cel2	7fg	SCO	TR1	COD	1.525	0.475		0.148		0.035	0.104	4.006	3.875	12.68
Cel2	7fg	SCO	TR2	COD	1.362	2.358		0.034		0.077	1.033	0.318	1.456	0.964

Table 5.6.2.2.2. Discard rate and associated coverage index for Cod in Cel2 (7fg) by Gear and Special condition as defined under the cod management plan. $A_{\rm s} \ge 66\%$ of landings have associated discard sampling, $B_{\rm s} \ge 33\% < 66\%$ of landings have associated discard sampling, $C_{\rm s} < 33\%$ of landings have associated discard sampling. 2003-2012. Gear/Special condition combinations without discard data omitted.

_	_	_	_		_	_	_	_	_	_	_	_	_	_	_		_		_		_	_	_		_
ANNEX	T REG_AREA	REG_GEAR	SPECON	SPECIES	⇒ ¹ 2003 R	<u>™</u> 2004 R	<u></u> 2005 R	<u>×</u> 2006	R <u>×</u> 20	07 R 👱	2008 R 💌	2009 R 👱	2010 R	2011 R	2012 R	2003 DQI	2004 DQI	2005 DQI	2006 DQI	2007 DQI	2008 DQI	▼ 2009 DQI	2010 DQI	2011 DOI	2012 DO
Cel2	7fg	BEAM	NONE	COD																					
Cel2	7fg	BT1	none	COD																					
Cel2	7fg	BT2	NONE	COD		0 0,0	026		0	0,176	0,227	0,156	0,359	0,394	0,116				С	A	A	Α	С	A	Α
Cel2	7fg	DEM_SEINE	NONE	COD																					
Cel2	7fg	DREDGE	none	COD									1										A	c	
Cel2	7fg	GN1	none	COD		0	0	0		0,001	0	0,055	0,131	0,2	0,284					C		A	A	A	Α
Cel2	7fg	GT1	none	COD		0			0	0	0		0,777	0,528	0,742	В			С				С		
Cel2	7fg	LL1	none	COD																					
Cel2	7fg	none	none	COD																					
Cel2	7fg	OTTER	NONE	COD		0,0	0,	357	0,969	0,027	0,538	0,987	0,146	0,541	0,736		С		A	C					
Cel2	7fg	PEL_SEINE	none	COD																					
Cel2	7fg	PEL_TRAWL	none	COD		0,2	207										С								
Cel2	7fg	POTS	none	COD																					
Cel2	7fg	TR1	none	COD	0,00	0,0	007 0,	181	0,061	0,08	0,031	0,516	0,252	0,278	0,441	A	Α	Α	A	A	Α	C	A	Α	С
Cel2	7fg	TR2	NONE	COD	0,1	39 0,0	085 0,	457	0,276	0,576	0,093	0,247	7 0,442	0,596	0,353	В	A	Α	A	A	A	A	A	Α	Α
Cel2	7fg	TR3	none	COD							1										A			C	

Cod Catches : VIIfg contribution

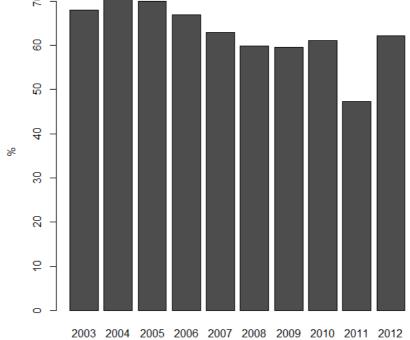


Figure 5.6.2.2.1 Cod: Contribution of the landings from ICES Divisions VIIfg to the total landings from the Celtic Sea (ICES Divisions VIIbc,e-k) over 2003-2012

5.6.3 ToR 1.c Catches (landings and discards) of non-cod species in weight and numbers at age by area, Member State and fisheries

5.6.3.1 ICES sub-divisions 7bcefghjk (Cel1)

STECF EWG 13-13 presents the requested cod in weight by fisheries. Age specific data are available on the internet page of the STECF EWG 13-13: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313.

STECF EWG 13-13 notes that discard information is scarce and presents only landing values; though figures have been provided on catch where some discard information is available (Figures 5.6.3.1.1-2), this should be interpreted with care due to some key fisheries not having discard information.

Table 5.6.3.1.8 presents discard rates alongside a discard coverage index for what information is available for gears catching anglerfish, haddock, hake, *Nephrops*, plaice, sole and whiting in the wider Celtic Sea. As can be seen, in most cases the discard coverage index is either C (<33% of landings having discard information) or B ($\geq 33\% < 66\%$), reflecting the poor discard coverage in the data. It should be noted that the discard coverage index is only an indication of where a minimum one sample has been provided; therefore it should not necessarily be interpreted an indication of discard information quality, just that some information was available for fisheries using the gear.

Figure 5.6.3.1.1-2 shows landings and discards estimates (where available) of anglerfish, haddock, hake, Nephrops, plaice, sole, and whiting by the main gears from the wider Celtic Sea 7bcefghjk (Cel1), 2003-2012. Landings of anglerfish have increased significantly in 2011 and 2012, while landings of haddock and whiting have also increased by the main gear (TR1). Discards estimates should be interpreted with care, especially for Haddock in 2012, where the discard coverage was classified in categoty C (<33% of landings covered by discard information)) (Table 5.6.3.1.9)

Table 5.6.3.1.1-7 lists the anglerfish, haddock, hake, Nephrops, plaice, sole, and whiting landings by Member States and gears, 2003-2012. Landings of anglerfish and haddock by the main French fishery (TR1) have increased significantly in 2012; while Irish TR1 whiting landings have also been increasing (landings in 2012 greater than double the landings in 2009). Large increases in Hake landings by longlines (LL1) in 2012 are due to the inclusion of Spanish data for this year only.

Table 5.6.3.1.9 shows the discard rate and discard coverage index for pelagic species which contribute to >1% of the landings of the main pelagic gears (PEL_TRAWL and PEL_SEINE). This includes, albacore tuna, boarfish, herring, horse mackerel, mackerel, sardine, sprat, and blue whiting. Discard information for *Nephrops* has also been presented. Where no discard information was available for a gear/species it was omitted from the table. As can be seen, discard information from the fisheries is scarce and where available considered to be of low coverage of the landings (in most cases classified as C, <33% of landings covered by discard information). It should be noted that the discard coverage index is only an indication of where a minimum one sample has been provided; therefore it should not necessarily be interpreted an indication of discard information quality, just that some information was available for fisheries using the gear.

Figures 5.6.3.2.1 – 3 show the landings composition of the main gears (TR1, TR2, BT2, GN1, PEL_TRAWL) 2003-2012 from the wider Celtic Sea (Cel1; 7bcefghjk). The main species caught in this area per gear category was defined as species representing more than 2% of the total landings on average, 2003-2012.

For TR1 gear, landings composition has remained relatively stable over the time series, with landings predominately being made up from anglerfish, cod, haddock, hake, megrim, *Nephrops*, whiting and witch flounder. There have been increasing haddock, cod and megrim landings in recent years.

For TR2 gear, landings composition is more mixed, being predominately made up of Anglerfish, cuttlefish, gurnard, haddock, megrim, *Nephrops*, queen scallops and whiting. Since 2009 there have been no reported landings of cuttlefish from the fishery, with a larger proportion of the landings being made up of *Nephrops*, megrim and haddock.

For BT2 gear, landings composition has been stable over the time series, consisting predominately of anglerfish, megrim, plaice and sole. For GN1 Hake has become a more prominent (and the predominant) component of landings since 2009 with Pollack, anglerfish and spider crab also being important.

The Pelagic trawl fishery mainly consisted of landings of horse mackerel, mackerel and blue whiting up until 2009, when landings of boarfish have also become an important component of the fishery.

Table 5.6.3.1.1 Anglerfish landings (t) by Member States and gears, 2003-2012.

Cell Thocshgik BEL DRAM ANF 1.86 69.384 0.714 0.339 1.725 0.596 37.08 0.596 1.706 0.517 0.517 0.577		
Cell Theofigh	2010 2011	2012
Cell Theoriphic Bell ORTH ANP 0.388	1.134 3.225	12.7
Cell Theologis Bill GM1 ANF	516 785.666 2.704 1.731	1129.676 5.473
Cell Thotelphik DEL TR2 AMF 0.888 17.75 17.925 27.411 157.462 59.675 76.845 69.156 57.611 75.645 DEL Cell Thotelphik DEL Cell AMF 130.092 106.75 149.172 38.373 220.44 248.113 168.485 26.115 16.11	2.704 1.751	3.473
Cell Theologis BPL TH2 AMF		
Cell Thereflyk DEU POTS ANF 190.032 196.79 142.173 35.373 226.44 248.113 168.485 21.113 Thereflyk POTS Cell Thereflyk POTS NAF 0.172 1.00.25 1.125 1.136	54.045 51.6	109.719
Cell Thotelphik ENG BEAM ANF 0.28 0.125 4.138 4.607 1.629 1.632 3.105 1.621 3.105	251.471 184.78	266.11
Cell Thocefghik ENG DT1 AMF 130.79 130.79 130.81 131.62 140.62		
Cell Therefight FING	3.058 2.295	1.414
Cell Theoretiphic ENG		
Cell Therefipik FING		
Cell Tocefghk ENG CT1 ANF 0.288 8.685 30.48 78.825 12.49 20.819 20.160 11.	70.403 92.91	84.041
Cell 7bcefghk RNG LI1 ANF 8.464 1.42 1.23 0.352 2.478 0.061 0.017 0.466 0.017 0.466 0.017 0.466 0.017 0.466 0.017 0.466 0.008 0.011 7bcefghk RNG PEL TRAWL ANF 0.461 0.39 0.322 0.074 0.462 0.157 0.546 0.008 0.001	397.277 198.958 15.011 73.592	309.16 95.703
Cell 7bcefghk RNG OTTER ANF 0.461 0.29 0.322 0.074 0.436 0.157 0.546 0.068 0.0611 7bcefghk RNG PELTRAWL ANF 2.955 0.347 0.042 0.115 0.662 0.551 0.106 0.068 0.0611 7bcefghk RNG RNG	0.057 0.031	0.097
Cell 7bcefghk FNG PEL TRAWL ANF Cell 7bcefghk FNG POTS ANF S88 24 S12.023 438.874 654.319 827.501 740.172 746.039 740.039 740.172 746.039 740.172 746.039 740.172 746.039 740.172 746.039 740.172 746.039 740.172 746.039 740.039 740.172 746.039 740.03	0.917 0.333	0.269
Cell Thocfghik ENG TR1 ANF S88.24 512.023 433.874 654.319 827.501 740.172 746.039 0.001	0.019 0.003	
Cell Tocefghik ENG TR2 ANF 363.065 277.261 345.145 286.182 434.38 295.299 314.563 34 Cell Tocefghik ESP GNT ANF 0.009 0.252 0.006	0.156 0.136	0.047
Cell 7bcefghk ENG TR3 ANF 0.009 0.252 0.006	975.924 1351.103	3 1084.581
Cell 7bcefghjk ESP	364.749 282.109	260.739
Cell Therefghk ESP OTTER ANF Cell Therefghk ESP OTTER ANF Cell Therefghk ESP OTTER ANF Cell Therefghk ESP TR1 ANF Cell Therefghk ESP TR2 ANF Cell Therefghk FRA BT2 ANF O.56 O.731 3.724 9.612 3.185 0.096 0.096 0.096 0.006 0.096		
Cell Theofghyk ESP OTTER ANF Cell Theofghyk ESP TR1 ANF Cell Theofghyk ESP TR2 ANF Cell Theofghyk ESP TR2 ANF Cell Theofghyk ESP TR2 ANF Cell Theofghyk FRA BEAM ANF Cell Theofghyk FRA BEAM ANF Cell Theofghyk FRA BEAM ANF Cell Theofghyk FRA DREDGE ANF T.947 13.77 7.571 5.813 9.913 5.428 5.409 0.001 Cell Theofghyk FRA DREDGE ANF T.947 13.77 7.571 5.813 9.913 5.428 5.409 0.001 Cell Theofghyk FRA GN1 ANF T.947 13.77 7.571 5.813 9.913 5.428 5.409 0.001 Cell Theofghyk FRA GN1 ANF T.947 13.77 7.571 5.813 9.913 5.428 5.409 0.001 Cell Theofghyk FRA GN1 ANF T.947 13.77 7.571 5.813 9.913 5.428 5.409 0.001 Cell Theofghyk FRA GN1 ANF T.95043 1273.253 1417.91 1014.027 1226.742 1218.735		0.792
Cell Theofglyk ESP TR1		0.05
Cell Therefghk ESP TR2 ANF Cell Therefghk ESP TR2 ANF Cell Therefghk FRA BEAM ANF Cell Therefghk FRA DREDGE ANF T.94T 13.77 7.571 S.813 9.13 S.428 S.409 O. Cell Therefghk FRA DREDGE ANF T.94T 13.77 7.571 S.813 9.13 S.428 S.409 O. Cell Therefghk FRA GRI ANF T.947 T.975 T.951 T.9		0.43 3.377
Cell Thorefigh k ESP TR2 ANF Cell Thorefigh k FRA BEAM ANF 0.56 0.731 3.724 9.612 3.185 0.996 0.096		777.065
Cell Thorefghik FRA BEAM ANF 0.099 0.001 0.096		463.409
Cell Thorefgh k FRA		403.403
Cell 7bcefghik FRA	0.037 0.01	
Cell 7bcefghik FRA GN1 ANF 1203.62 1590.054 1640.339 893.434 1146.897 1961.755 1961.75	0.24 1.267	0.831
Deefghik FRA	268.534 644.778	773.235
Cell 7b.cefghjk FRA	157.11 607.403	779.464
Cell 7bcefghjk FRA OTTER ANF 15.353 10.9 20.738 1.342 2.223 0.382 0.382 4.	0.16	
Cell 7bcefghjk FRA PEL SEINE ANF	2.043	
Cell 7bcefghjk FRA PEL TRAWL ANF 0.065 0.136 0.815 8.615 2.314 0.304 0.304 0.304 0.773 2.022 0.473 3.105 0.2 0.2 0.2 1.	4.22 18.031	8.613
Cell Theefghjk FRA POTS ANF 2.49 0.773 2.022 0.473 3.105 0.2 0.2 1.	1.5 1.564	68.207 13.425
Cell Theefghjk FRA	1.76 0.37	10.857
Cell 7bcefghjk FRA TR2 ANF 3382.162 3443.435 3415.986 2697.8 2909.464 2097.271 2094.891 48	1243.376 4975.547	
Cell 7bcefghjk FRA TR3 ANF 0.198 0.02 0.066 0.04 0.04		
Cel1	10.126	0.04
Cell	0.009	0.609
Cell 7bcefghjk GBJ DREDGE ANF 0.167		
Cel1		
Cel1		0.014
Cel1	0.116 0.058	0.014
Cel1	0.116 0.038	0.005
Cel1		
Cel1		
Cel1	485.2 468.79	495.98
Cel1		
Cel1		
Cel1	32.6 47.72	42.6
Cel1	24.28 17.94	17.08
Cel1	0.05	220.00
Cel1	4.75	230.68 1.33
Cel1	4.75	1.33
Cel1	14.19 9.26	1.55
Cel1	0.56 1.41	2.59
Cel1	2086.39 1657.9	1365.03
Cel1	828.54 836.45	944.09
Cel1 7bcefghjk NIR TR2 ANF 3.916 4.492 2.465 3.228 8.924 18.816 12.2461 7bcefghjk NLD DREDGE ANF	3.19 9.74	0.02
Cel1 7bcefghjk NLD DREDGE ANF	1.032 1.982	4.633
Cel1	12.486 0.819	6.026
Cel1 7bcefghjk SCO BT2 ANF 29.75 20.857 36.002 43.54 25.69 21.029 29.228 41 Cel1 7bcefghjk SCO GN1 ANF 199.931 120.252 383.753 293.457 325.924 574.798 672.811 66 Cel1 7bcefghjk SCO GT1 ANF 7.683 1.683 0.271 0.057 Cel1 7bcefghjk SCO OTTER ANF 3.381 0.056	4	2
Cel1 7bcefghjk SCO DREDGE ANF 29.75 20.857 36.002 43.54 25.69 21.029 29.228 41.029 Cel1 7bcefghjk SCO GN1 ANF 199.931 120.252 383.753 293.457 325.924 574.798 672.811 66 Cel1 7bcefghjk SCO GT1 ANF 7.683 1.683 0.271 0.057 Cel1 7bcefghjk SCO OTTER ANF 3.381 0.056 0.056	1	2
Cel1 7bcefghjk SCO GN1 ANF 199.931 120.252 383.753 293.457 325.924 574.798 672.811 66 Cel1 7bcefghjk SCO GT1 ANF 7.683 1.683 0.271 0.057 Cel1 7bcefghjk SCO UL1 ANF 0.271 0.056 Cel1 7bcefghjk SCO OTTER ANF 3.381 0.056	41.388 10.642	15.569
Cel1 7bcefghjk SCO GT1 ANF 7.683 1.683	662.074 772.61	721.2
Cel1 7bcefghjk SCO LL1 ANF 0.271 0.057 Cel1 7bcefghjk SCO OTTER ANF 3.381 0.056	772.01	,
Cel1 7bcefghjk SCO OTTER ANF 3.381 0.056		
		5.226
	545.671 591.34	576.503
Cel1 7bcefghjk SCO TR2 ANF 28.233 49.438 58.689 91.341 41.792 142.506 108.3 16	161.726 150.973	128.483

Table 5.6.3.1.2 Haddock landings (t) by Member States and gears, 2003-2012.

ANNEY	A DEC. ADEA	COLINTRY	A DEC. CEAD	CDECIEC N	1 2002	2004	2005	2005	2007	2008	2009	2010	2011	2012
Cel1	7bcefghjk	BEL	REG_GEAR BEAM	HAD	0.121	2004	0.157	2006 × 0.057	0.16	2008	2009 0.174	0.797	1.548	2012
Cel1	7bcefghjk	BEL	BT2	HAD	109.248	129.085	158.561	90.194	98.424	89.725	97.257		164.368	165.578
Cel1	7bcefghjk	BEL	OTTER	HAD	4.041	125.005	130.301	30.134	30.424	03.723	37.237	123.443	104.500	103.370
Cel1	7bcefghjk	BEL	TR2	HAD		1.693	7.203	8.111	17.643	18.138	34.248	42.307	44.734	64.625
Cel1	7bcefghjk	ENG	BEAM	HAD	0.019	'	0.794	0.071	0.009		0.01	0.052	0.398	0.076
Cel1	7bcefghjk	ENG	BT1	HAD		1.075								
Cel1	7bcefghjk	ENG	BT2	HAD	108.07	138.148	116.923	63.397	79.81	72.579	106.401	105.045	183.216	259.506
Cel1	7bcefghjk	ENG	DREDGE	HAD		0.001	0.002	0.008	0.001	0.003	0.01	0.003	0.05	0.162
Cel1	7bcefghjk	ENG	GN1	HAD	48.843	66.345	69.853	56.025	41.35	37.494	40.594	34.668	52.424	39.447
Cel1	7bcefghjk	ENG	GT1	HAD		0.009	0.226	0.41	1.152	0.449	0.082	0.051	0.597	0.347
Cel1	7bcefghjk	ENG	LL1	HAD	3.884	5.985	10.702	12.513	6.833	0.32		0.002	0.021	
Cel1	7bcefghjk	ENG	OTTER	HAD	0.012		0.046		0.243	0.001	0.229	0.183	0.824	0.019
Cel1	7bcefghjk	ENG	PEL_SEINE	HAD								2.585		
Cel1	7bcefghjk	ENG	PEL_TRAWL	HAD								0.005		
Cel1	7bcefghjk	ENG	POTS	HAD	0.001	1	1.017			0.213	1	0.001	0.036	0.019
Cel1	7bcefghjk	ENG	TR1	HAD	74.582	43.489	25.527	32.278	105.448	265.408	274.012	345.022		698.198
Cel1	7bcefghjk	ENG	TR2	HAD	115.33	36.129	47.86	71.174	103.399	116.477	99.045	182.716	191.619	159.907
Cel1	7bcefghjk	ENG	TR3	HAD			0.302							
Cel1	7bcefghjk	ESP	GN1	HAD	1								1	0.44
Cel1	7bcefghjk	ESP	none	HAD										0.396
Cel1	7bcefghjk	ESP	TR1	HAD										11.974
Cel1 Cel1	7bcefghjk	ESP FRA	TR2 BT2	HAD				3.246						21.494
Cel1	7bcefghjk 7bcefghjk	FRA	DREDGE	HAD	1	1	0.002	3.246	0.252	0.016	0.016	1	0.772	
Cel1	7bcefgfjk 7bcefghjk	FRA	GN1	HAD	25.784	5.125	12.029	4.478	6.979	3.205	3.205	7.513	6.176	9.12
Cel1	7bcefghjk	FRA	GT1	HAD	0.064	0.01	0.045	0.025	0.81	0.037	0.037	2.06	1.168	1.57
Cel1	7bcefghjk	FRA	LL1	HAD	3.65	2.684	2.142	1.32	1.027	0.244	0.244	2.4	3.624	2.509
Cel1	7bcefghjk	FRA	none	HAD	3.03	2.004	2.142	1.32	1.027	0.244	0.244	2.4	3.16	2.303
Cel1	7bcefghjk	FRA	OTTER	HAD	0.098	3.258	1.009	0.001	0.161			14.337	9.359	5.649
Cel1	7bcefghjk	FRA	PEL SEINE	HAD	0.030	5.250	1.005	0.001	0.101			1557	0.38	191.154
Cel1	7bcefghjk	FRA	PEL TRAWL	HAD		1		0.224	0.016		1	0.08	1.445	38.482
Cel1	7bcefghjk	FRA	POTS	HAD								0.18		0.001
Cel1	7bcefghjk	FRA	TR1	HAD	2926.505	3721.868	2148.483	1530.511	2110.358	2594.263	2583.607	4504.59	6463.159	8595.124
Cel1	7bcefghjk	FRA	TR2	HAD	584.152	519.198	384.499	317.941	472.782	501.991	501.861	705.385	900.832	856.921
Cel1	7bcefghjk	FRA	TR3	HAD								6.15	9.69	
Cel1	7bcefghjk	GBG	TR2	HAD										0.362
Cel1	7bcefghjk	GBJ	BEAM	HAD		0.003								
Cel1	7bcefghjk	GBJ	BT2	HAD	5.066	4.612	1.104							
Cel1	7bcefghjk	IRL	BEAM	HAD	15.62	47.37	0.65							
Cel1	7bcefghjk	IRL	BT1	HAD	0.47									
Cel1	7bcefghjk	IRL	BT2	HAD	144.02	137.13	208.32	188.26	166.47	139.88	168.91	170.3	152.63	268.19
Cel1	7bcefghjk	IRL	DEM_SEINE	HAD	14.26	33.03	4.81							
Cel1	7bcefghjk	IRL	DREDGE	HAD	0.67	4.11	0.12	0.09		1	1	_		
Cel1	7bcefghjk	IRL	GN1	HAD	67.57	62.65	60.2	41.99	66.59	49.41	58.4	63.48	118.12	118.67
Cel1	7bcefghjk	IRL	GT1	HAD	1	0.00		0.01	0.06	0.01	1.07	0.27	0.38	0.45
Cel1	7bcefghjk	IRL	LL1	HAD		0.09	2.3			0.05	0.08	0.46	0.16	100.00
Cel1	7bcefghjk	IRL	none	HAD	10.50	100.00	4.00	1.22	0.12	0.05	0.66	0.00	0.0	103.08
Cel1	7bcefghjk 7bcefghjk	IRL	OTTER	HAD	19.56 4.07	106.66 42.18	4.98	1.33	0.12		0.66	0.08	0.8	5.61
Cel1			PEL_SEINE	1			7.1	2.47	4.51	0.21	2.05	4.04	27.24	12.1
Cel1 Cel1	7bcefghjk 7bcefghjk	IRL IRL	PEL_TRAWL POTS	HAD	2.08 0.54	5.46 1.75	0.28	0.45	0.43	0.31	3.85 0.36	4.84 0.85	37.34	1.69
Cel1	7bcefgfjk 7bcefghjk	IRL	TR1	HAD	357.21	322.45	539.58	641.07	754.96	838.93	1584.33		2181.07	2598.53
Cel1	7bcefghjk	IRL	TR2	HAD	1035.56	951.54	1208.66	977.63	938.46	763.65	1151.17	944.13	815.2	1002.13
Cel1	7bcefghjk	IRL	TR3	HAD	2.76	0.77	0.72	2.8	3.06	1.63	3.54	2.81	1.2	2.99
Cel1	7bcefghjk	NIR	TR1	HAD	4.049	5.77	5.72	0	3.00	11.578	0.021	41.112	92.499	262.711
Cel1	7bcefghjk	NIR	TR2	HAD		2.972	3.969	3.562	0.188	0.655	7.363	7.267	0.625	4.907
Cel1	7bcefghjk	NLD	TR1	HAD								-		1
Cel1	7bcefghjk	NLD	TR2	HAD							1	L	35	5 62
Cel1	7bcefghjk	SCO	BT2	HAD							2.974			
Cel1	7bcefghjk	SCO	DREDGE	HAD			0.004				0.002			0.006
Cel1	7bcefghjk	SCO	GN1	HAD		0.133								
Cel1	7bcefghjk	sco	LL1	HAD						1.048				
Cel1	7bcefghjk	sco	TR1	HAD	5.157	2.436	1.013	4.977	0.808	4.187	144.706	64.439	192.36	297.298
Cel1	7bcefghjk	sco	TR2	HAD	0.802	2.393	0.883	4.344		1.185	7.72	1.621	61.076	21.443
		_				_		_	_	_	_	_	_	

Table 5.6.3.1.3 Hake landings (t) by Member States and gears, 2003-2012.

ANINEY	ADEC ADEA	COLINERY	Z DEC CEAD	CDECIEC S	2003	2004	2005	2006	2007	2000 =	2009	2010	2014	2012
ANNEX Cel1	REG_AREA 1 7bcefghjk	COUNTRY D	REG_GEAR BEAM	SPECIES N	0.019	0.6	2005	2006	0.073	2008 🔻	2009	2010	2011 • 0.022	0.1
Cel1	7bcefghjk	BEL	BT2	HKE	9.605	13.505	10.559	15.036	9.742	5.166	5.412	8.783	9.788	6.788
Cel1	7bcefghjk	BEL	OTTER	HKE	1.166	13.303	10.000	13.030	317 12	5.100	J. 112	0.703	31700	0.700
Cel1	7bcefghjk	BEL	TR2	HKE		0.356	0.464	2.129	1.467	2.213	1.764	3.152	0.469	1.461
Cel1	7bcefghjk	DEU	GN1	HKE								0.284		
Cel1	7bcefghjk	ENG	BEAM	HKE	0.001		0.038	0.014	0.001		0.017	0.018	0.02	0.001
Cel1	7bcefghjk	ENG	BT1	HKE		0.12								
Cel1	7bcefghjk	ENG	BT2	HKE	24.353	25.448	18.962	15.869	11.515	16.342	25.857	22.548	18.123	14.278
Cel1	7bcefghjk	ENG	DREDGE	HKE	0.001	0.004	0.031	0.01	0.001	0.005	0.005	0.006	0.011	0.004
Cel1	7bcefghjk 7bcefghjk	ENG	GN1 GT1	HKE	/25.543	555.687	0.108	379.932 3.819	2.594	2.354	0.146	208.712 0.163	290.183	501.672
Cel1 Cel1	7bcergnjk 7bcefghjk	ENG ENG	LL1	HKE	37.198	23.032	4.585	36.032	500.48	150.276	_	0.163	0.361	7.985
Cel1	7bcefghjk	ENG	OTTER	HKE	0.01	0.006	0.216	30.032	0.011	130.270	0.037	9.795	0.004	11.019
Cel1	7bcefghjk	ENG	PEL SEINE	HKE	0.01	0.000	0.210		0.011		0.037	0.012	0.00 .	11.013
Cel1	7bcefghjk	ENG	PEL TRAWL	HKE					1		1.029	16.294	131.798	173.043
Cel1	7bcefghjk	ENG	POTS	HKE	0.09				0.003	0.001				
Cel1	7bcefghjk	ENG	TR1	HKE	500.16	519.096	454.899	526.293	560.797	316.313	381.005	330.983	556.164	190.972
Cel1	7bcefghjk	ENG	TR2	HKE	61.182	38.249	50.393	28.712	43.707	27.772	35.152	17.229	9.824	11.53
Cel1	7bcefghjk	ENG	TR3	HKE			0.038							
Cel1	7bcefghjk	ESP	GN1	HKE										124.928
Cel1	7bcefghjk	ESP	LL1	HKE	_		_							4862.908
Cel1	7bcefghjk	ESP	none	HKE										145.438
Cel1	7bcefghjk	ESP	OTTER TD1	HKE			1		1	1			1	10.89
Cel1 Cel1	7bcefghjk 7bcefghjk	ESP ESP	TR1 TR2	HKE HKE										891.745 93.11
Cel1	7bcefghjk	FRA	BT2	HKE				0.19					1	55.11
Cel1	7bcefghjk	FRA	DREDGE	HKE	0.004	0.001			0.153	0.023	0.023	2.906	1.127	0.2
Cel1	7bcefghjk	FRA	GN1	HKE	_	-	1122.62	959.959	_				-	6288.155
Cel1	7bcefghjk	FRA	GT1	HKE	5.093	2.732	5.352	3.1	2.974	2.076	2.076	2.511	2.967	6.08
Cel1	7bcefghjk	FRA	LL1	HKE	0.499	0.813	24.829	213.576	352.977	278.113	278.113	584.36	605.747	1630.206
Cel1	7bcefghjk	FRA	none	HKE	_				0.292				22.921	
Cel1	7bcefghjk	FRA	OTTER	HKE	0.516	0.993	2.994	0.034	0.04			8.86	3.628	1.823
Cel1	7bcefghjk	FRA	PEL_SEINE	HKE	3.047	1	T	1	1	0.044	0.044		1	10.465
Cel1	7bcefghjk	FRA	PEL_TRAWL	HKE	0.402	0.02	0.297	0.699	0.199	0.001	0.001	1.23	9.009	10.233
Cel1 Cel1	7bcefghjk 7bcefghjk	FRA	POTS TR1	HKE	370 203	463.253	106 130	0.028	311 802	255.655	252 708	1.16	0.655	0.013
Cel1	7bcefghjk	FRA	TR2	HKE		224.656				126.708			184.026	252.647
Cel1	7bcefghjk	FRA	TR3	HKE	203.004	224.030	233.021	157.025	132.073	120.700	120.577	0.317	4.164	252.047
Cel1	7bcefghjk	GBJ	BT2	HKE	0.915	1.014	0.492					0.517	20	
Cel1	7bcefghjk	GBJ	TR2	HKE	0.004								0.164	
Cel1	7bcefghjk	IRL	BEAM	HKE	7.63	14.02								
Cel1	7bcefghjk	IRL	BT1	HKE	0.11									
Cel1	7bcefghjk	IRL	BT2	HKE	76.65	41.71	47.19	47.03	49.23	25.24	22.78	39.52	33.73	39.92
Cel1	7bcefghjk	IRL	DEM_SEINE	HKE	5.46	13.25	0.78							
Cel1	7bcefghjk	IRL	DREDGE	HKE	0.24	0.66			1					
Cel1	7bcefghjk	IRL	GN1	HKE	206.53	205.59	219.56	236.2	373.29	437.14	683.31	543.74	560.53	440.03
Cel1	7bcefghjk	IRL	GT1 LL1	HKE	0.02		1.38		0.02	0.01	0.06 1.05	7.03	0.98	40.17
Cel1 Cel1	7bcefghjk 7bcefghjk	IRL	none	HKE	0.02		1.78				1.05			61.52
Cel1	7bcefghjk	IRL	OTTER	HKE	6.3	33.96	1.19						0.9	01.32
Cel1	7bcefghjk	IRL	PEL_SEINE	HKE	1.92	4.91	0.48						, 5.5	3.07
Cel1	7bcefghjk	IRL	PEL_TRAWL	HKE	2.84	3.34	1.05	0.27	0.78	0.21	1.57	3.75	17.22	1.8
Cel1	7bcefghjk	IRL	POTS	HKE	0.6	0.34	0.08		0.27	0.01	0.03	0.14	1.72	0.2
Cel1	7bcefghjk	IRL	TR1	HKE	382.81	328.31	410.94	450.56	535.5	496.8	390.01	716.77	810.3	837.76
Cel1	7bcefghjk	IRL	TR2	HKE	232.76	269.19	220.65	232.02	229.46	194.18	137.94	211.63	194.77	180.76
Cel1	7bcefghjk	IRL	TR3	HKE	0.02	0.27		0.45			0.01	0.41	2.39	
Cel1	7bcefghjk	NIR	TR1	HKE	0.761	1		0.008	1		0.056	5.317	12.011	15.418
Cel1	7bcefghjk	NIR	TR2	HKE		1.795	1.335	0.379	0.153	0.559	0.66	1.797	0.01	0.377
Cel1	7bcefghjk	NLD	PEL_TRAWL	HKE					I		13			7 65
Cel1	7bcefghjk	NLD	TR2	HKE							0.022	1		
Cel1 Cel1	7bcefghjk 7bcefghjk	SCO SCO	DREDGE	HKE			0.007	0.002			0.033			
Cel1	7bcergnjk 7bcefghjk	SCO	GN1	HKE	148.13	152.658	14.769	2.48	0.191	1.262	251.547	88 214	0.119	0.802
Cel1	7bcefghjk	SCO	LL1	HKE	7.814	0.798	37.672					247.562	114.32	1029.592
Cel1	7bcefghjk	SCO	OTTER	HKE	7.014	330	3.462			,555.755	0.003	2.7.502	1152	1025.552
Cel1	7bcefghjk	sco	TR1	HKE	257.577	246.739		300.524	226.267	211.933		195.18	111.486	141.546
Cel1	7bcefghjk	SCO	TR2	HKE	16.806	22.903	26.139		16.726		33.881	36.235	20.442	29.212

Table 5.6.3.1.4 Nephrops landings (t) by Member States and gears, 2003-2012.

_	_	_	_	_	_	_	_	_	_	_	_	-	_	_
ANNEX X	REG_AREA	COUNTRY		SPECIES	2003 🔻	2004 🔻	2005 🔻	2006 🔻	2007 💌	2008	2009	2010 🔻	2011 🔻	2012
Cel1	7bcefghjk	BEL	BEAM	NEP	0.01	0.05	1	1	1			0.055		0.272
Cel1	7bcefghjk	BEL	BT2	NEP	0.12	0.572	1.076	0.721	1.46	0.388	2.645	4.285	4.349	5.002
Cel1	7bcefghjk	BEL	TR2	NEP	1	11.836	5.418	6.491	4.791	8.688	12.278	10.934	3.084	0.849
Cel1	7bcefghjk	ENG	BEAM	NEP			0.016							
Cel1	7bcefghjk	ENG	BT2	NEP	4.661	3.908	4.866	2.735	0.29	0.599	2.893	1.085	2.002	1.039
Cel1	7bcefghjk	ENG	GN1	NEP					0.003			0.014		
Cel1	7bcefghjk	ENG	GT1	NEP								0.002		
Cel1	7bcefghjk	ENG	POTS	NEP			0.081	0.069				0.002		
Cel1	7bcefghjk	ENG	TR1	NEP	102.376	111.307	181.931	171.328	131.329	42.978	28.986	20.962	28.899	7.506
Cel1	7bcefghjk	ENG	TR2	NEP	10.161	5.049	3.1	39.212	13.198	9.772	13.979	44.437	0.024	0.308
Cel1	7bcefghjk	ESP	OTTER	NEP										0.438
Cel1	7bcefghjk	ESP	TR1	NEP										94.467
Cel1	7bcefghjk	ESP	TR2	NEP										35.983
Cel1	7bcefghjk	FRA	GN1	NEP		0.435	0.481	0.008	0.493	0.022	0.022	0.387	0.368	0.063
Cel1	7bcefghjk	FRA	GT1	NEP	0.005		0.185	0.305	0.443	0.18	0.18	2.099	0.47	0.333
Cel1	7bcefghjk	FRA	none	NEP		0.003							0.031	
Cel1	7bcefghjk	FRA	OTTER	NEP			1.183					2.93	0.315	0.06
Cel1	7bcefghjk	FRA	PEL_TRAWL	NEP			2.081	0.95						0.23
Cel1	7bcefghjk	FRA	POTS	NEP								0.09	0.131	0.352
Cel1	7bcefghjk	FRA	TR1	NEP	705.854	592.193	659.89	427.422	282.523	295.75	295.75	826.8	489.962	369.423
Cel1	7bcefghjk	FRA	TR2	NEP	147.881	41.307	76.376	26.136	20.807	20.817	20.792	13.77	23.821	5.116
Cel1	7bcefghjk	FRA	TR3	NEP								0.19	0.145	
Cel1	7bcefghjk	IRL	BEAM	NEP	2.4	49.03	6.42						<u>'</u>	
Cel1	7bcefghjk	IRL	BT1	NEP	0.2									
Cel1	7bcefghjk	IRL	BT2	NEP	73.47	90.9	98.56	89.19	85.73	34.23	27.81	17.25	17.5	4.17
Cel1	7bcefghjk	IRL	DREDGE	NEP		4.13								
Cel1	7bcefghjk	IRL	GN1	NEP	0.7	16.18	14.52	5.05		4	2.31	0.09	0.05	3.12
Cel1	7bcefghjk	IRL	GT1	NEP	0.74								1.69	0.02
Cel1	7bcefghjk	IRL	LL1	NEP	0.87							0.22		
Cel1	7bcefghjk	IRL	none	NEP	1		5.08			0.03				381.87
Cel1	7bcefghjk	IRL	OTTER	NEP	57.4	259.82	12.39	12.73	1.44	0.1	0.32			0.68
Cel1	7bcefghjk	IRL	PEL SEINE	NEP	7.59	2.6	0.08							
Cel1	7bcefghjk	IRL	PEL TRAWL	NEP	3.88	49.48	35.52	1.61	8.77	2.1	18.89	2.99	43.29	36.05
Cel1	7bcefghjk	IRL	POTS	NEP	3.62	10.35	3.8	1.01	3.02	4.45	6.94	10.1	8.36	6.12
Cel1	7bcefghjk	IRL	TR1	NEP	438.31	536.04	761.08	727.6	990.33				1130.28	
Cel1	7bcefghjk	IRL	TR2	NEP		2625.31							2977.88	
Cel1	7bcefghjk	IRL	TR3	NEP	9.26	2025.51	3000.2	2.06	3027.02	7372.77	3000.33	1.15	2377.00	1403.43
Cel1	7bcefghjk	NIR	TR1	NEP	5.20		0.608	2.00				1.13		0.363
Cel1	7bcefghjk	NIR	TR2	NEP		34.58	65.012	58.484	46.887	3/15 3/15	228 427	328.044	7 597	32.976
Cel1	7bcefghjk	SCO	GN1	NEP		34.30	0.014	30.404	40.007	343.343	320.437	320.044	7.307	32.370
							0.014							26.252
Cel1	7bcefghjk	SCO SCO	OTTER TD1	NEP	27 504	24 524	04.073	60.202	27 107	01 402	4F F04	01.014	4F 49	26.352
Cel1	7bcefghjk	SCO	TR1	NEP	37.584	34.521	84.973	60.292	37.197	81.402	45.584	91.014	45.48	63.833
Cel1	7bcefghjk	SCO	TR2	NEP	17.738	23.593	121.514	135.467	168.553	102.687	181.398	82.982	131.772	104.406

Table 5.6.3.1.5 Plaice landings (t) by Member States and gears, 2003-2012.

	3.0.3.1.3 1													
ANNEX		COUNTRY		SPECIES	2003	2004 🔻	2005	2006	2007 🔻	2008	2009	2010 🔻	2011 🐣	2012 🔻
Cel1	7bcefghjk	BEL	BEAM	PLE	0.149	5.966	1.653	0.322	0.727		1.606	0.405	1.068	0.522
Cel1	7bcefghjk	BEL	BT1	PLE						22.773				
Cel1	7bcefghjk	BEL	BT2	PLE	264.672	303.689	209.683	189.647	227.791	172.734		175.545	292.816	289.916
Cel1	7bcefghjk	BEL	DREDGE	PLE							0.177			
Cel1	7bcefghjk	BEL	OTTER	PLE	5.456									
Cel1	7bcefghjk	BEL	TR2	PLE		6.188	35.054	54.046	54.71	79.742	79.736	62.428	58.25	47.275
Cel1	7bcefghjk	ENG	BEAM	PLE	0.79	1.177	1.867	1.321	1.667	0.201	0.032	0.457	0.687	0.457
Cel1	7bcefghjk	ENG	BT1	PLE		0.341								
Cel1	7bcefghjk	ENG	BT2	PLE	875.248	757.32	753.854	730.124	524.084	509.727	579.731	608.543	629.781	688.762
Cel1	7bcefghjk	ENG	DREDGE	PLE	3.078	5.706	9.803	6.059	2.392	1.581	2.165	3.509	6.822	4.3
Cel1	7bcefghjk	ENG	GN1	PLE	0.971	2.526	1.446	1.548	1.271	1.052	4.059	3.996	3.904	4.539
Cel1	7bcefghjk	ENG	GT1	PLE		0.005	0.081	0.078	0.12	0.165	0.015	0.103	0.14	0.218
Cel1	7bcefghjk	ENG	LL1	PLE	0.043	0.039	0.001	0.008	0.071	0.089	0.024	0.064	0.105	0.019
Cel1	7bcefghjk	ENG	OTTER	PLE	0.387	0.094	0.612	0.248	0.533	0.168	0.426	0.797	0.21	0.439
Cel1	7bcefghjk	ENG	PEL_SEINE	PLE								0.053		
Cel1	7bcefghjk	ENG	PEL_TRAWL	PLE	0.025		0.021		0.01	0.003	0.019	0.004	0.004	
Cel1	7bcefghjk	ENG	POTS	PLE	0.033	0.001	0.001	0.082	0.037	0.064	0.006	0.05	0.01	0.018
Cel1	7bcefghjk	ENG	TR1	PLE	13.057	10.469	5.013	2.544	3.301	6.439	14.271	21.692	65.906	52.223
Cel1	7bcefghjk	ENG	TR2	PLE	148.741	136.433	131.577	185.253	123.196	132.603	129.014	201.765	207.982	183.776
Cel1	7bcefghjk	ENG	TR3	PLE	0.034		0.255				0.021	0.027		
Cel1	7bcefghjk	FRA	BEAM	PLE	0.138	0.17	2.043	0.022				0.34	0.045	0.02
Cel1	7bcefghjk	FRA	BT1	PLE										0.1
Cel1	7bcefghjk	FRA	BT2	PLE	1.733	34.04	14.075	6.08	5.19	5.244	5.134	26.295	25.507	10.416
Cel1	7bcefghjk	FRA	DREDGE	PLE	4.178	3.374	4.026	3.407	5.103	5.284	5.278	1.21	2.05	2.165
Cel1	7bcefghjk	FRA	GN1	PLE	3.044	5.665	6.343	2.089	0.828	1.131	1.131	0.546	1.585	1.928
Cel1	7bcefghjk	FRA	GT1	PLE	9.335	16.117	22.067	12.325	7.549	3.202	3.202	7.164	8.903	6.451
Cel1	7bcefghjk	FRA	LL1	PLE	0.045	0.001	0.014	0.066	0.004	0.006	0.006	0.003	0.021	0.014
Cel1	7bcefghjk	FRA	none	PLE	0.313	0.614	0.385		0.02	0.007	0.007		0.033	1
Cel1	7bcefghjk	FRA	OTTER	PLE	4.56	4.569	12.95	3.446	2.279	0.617	0.595	3.107	1.924	1.849
Cel1	7bcefghjk	FRA	PEL_SEINE	PLE	0.008				0.022					4.604
Cel1	7bcefghjk	FRA	PEL TRAWL	PLE	0.022	0.012	0.081	0.109	0.069	0.046	0.046	0.753	1.831	1.601
Cel1	7bcefghjk	FRA	POTS	PLE	0.002	0.012	0.01	0.103	0.114	0.0.0	0.0.0	0.14	0.342	0.131
Cel1	7bcefghjk	FRA	TR1	PLE	141.514	112 51	76.909	74.62	63.791	88.882	88.428			132.162
Cel1	7bcefghjk	FRA	TR2	PLE					138.818			105.958		109.714
Cel1	7bcefghjk	FRA	TR3	PLE	0.038	0.032	127.023	0.098	0.002	131.340	131.12	0.56	1.483	0.272
Cel1	7bcefghjk	GBG	TR2	PLE	0.030	0.032		0.050	0.002	0.008	0.001	0.079	0.077	3.652
Cel1	7bcefghjk	GBJ	BEAM	PLE		0.2				0.000	0.001	0.073	0.077	3.032
Cel1	7bcefghjk	GBJ	BT2	PLE	27.602		9.946							
Cel1	7bcefghjk	GBJ	TR2	PLE	0.011	43.210	0.019	0.575	0.468	0.123	0.12	0.226	0.44	0.145
Cel1		IRL	BEAM	PLE	0.69	1.79	0.019	0.373	0.408	0.123	0.12	0.220	0.44	0.143
	7bcefghjk 7bcefghjk	IRL	BT2	PLE	17.51	10.47	13.1	19.39	26.79	15.54	9.95	7.77	7.5	11 OF
Cel1 Cel1		IRL		PLE	0.85			19.39	26.79	15.54	9.95	7.77	7.5	11.95
	7bcefghjk		DEM_SEINE			0.57	0.02	0.04	0.00					
Cel1	7bcefghjk	IRL	DREDGE	PLE	0.39	0.5	0.46	0.04	0.03	0.0	1 01	1.02	2.1	1 65
Cel1	7bcefghjk	IRL	GN1	PLE	0.28	0.72	0.27	0.35	0.57	0.9	1.81	1.93	2.1	1.65
Cel1	7bcefghjk	IRL	GT1	PLE	0.02				0.12	0.02	0.05	0.16	0.32	0.07
Cel1	7bcefghjk	IRL	none	PLE	4.13	10.63	0.50		0.01	0.02		0.07		3.05
Cel1	7bcefghjk	IRL	OTTER	PLE	4.12	10.63	0.58		0.01			0.07		0.42
Cel1	7bcefghjk	IRL	PEL_SEINE	PLE	0.1	1.26	0.04	0.00			0.03	0.50	1 77	0.22
Cel1	7bcefghjk	IRL	PEL_TRAWL	PLE	0.05	0.25	0.04	0.06	0.25	2.00	0.93	0.59	1.77	0.23
Cel1	7bcefghjk	IRL	POTS	PLE	0.05	0.08	24.4	0.15	0.25	2.98	12.52	1.77	0.68	5.09
Cel1	7bcefghjk	IRL	TR1	PLE	36.38	21.64	21.4	16.04	29.26	42.92	57.22	64.23	83.98	105.04
Cel1	7bcefghjk	IRL	TR2	PLE	169.28	125.29	123.4	96.36	95.05	92.79	90.04	76.55	58.02	61.1
Cel1	7bcefghjk	IRL	TR3	PLE	0.26	0.21	0.08	1.25	1.6	0.53	4.49	0.68	0.13	1.13
Cel1	7bcefghjk	NIR	TR1	PLE	0.164	0.55		0.45.5			0.05		0.001	0.354
Cel1	7bcefghjk	NIR	TR2	PLE		0.586	0.217	0.496		0.213	0.953	0.716	0.034	0.023
Cel1	7bcefghjk	NLD	BT2	PLE								2		
Cel1	7bcefghjk	NLD	TR2	PLE							2	! 1	. 3	3 3
	7bcefghjk	SCO	BT2	PLE					0.096		0.045			
Cel1														
Cel1	7bcefghjk	SCO	DREDGE	PLE	0.013	0.044	0.121	0.21	0.036	1.037	0.866	0.267	0.014	0.061
Cel1 Cel1	7bcefghjk 7bcefghjk	SCO SCO	OTTER	PLE		0.044	0.121	0.21		1.037	0.085			0.048
Cel1	7bcefghjk	SCO			0.013	0.044	0.121	0.21	0.036 0.433 0.128	0.027		0.267 0.555 1.023	0.014 6.073 1.989	

Table 5.6.3.1.6 Sole landings (t) by Member States and gears, 2003-2012.

Cell Theorems Sell DREDGE SOL	ANNEX 🖺	REG_AREA	COUNTRY	REG_GEAR	SPECIES Y	2003	2004	2005	2006	2007	2008	2009	2010	2011 🔻	2012 🔻
Cell Theorems Sell DREDGE SOL	Cel1	7bcefghjk	BEL	BEAM	SOL	11.75	1.334	2.138	5.351	21.223	2.563	5.186	12.156	4.709	6.293
Cell Therefight Bell	Cel1					845.563	856.256	733.225	590.316	570.521					
Cell Therefghik ENG ERAM SOL 2.138 John J. 2375 4.456 46.384 50.121 88.66 80.27 81.796 60.797 Cell Therefghik ENG BT1 SOL J. 30 John J. 576 G.871 J. 576 J							1	1		1	0.086	0.96	0.797	0.342	1.232
Cell Thocefight ENG BEAM SOL 2.139 0.104 2.245 1.044 0.323 0.356 0.257 0.458 0.458 0.245 0.458 0.245						0.649									
Cell Toerfghk ENG BT2 SOL S163 S1576 696-347 722.889 728.899 635-422 528.728 591.242 543.705 594.729 Cell Toerfghk ENG GN1 SOL 1.749 Cell Toerfghk ENG GN1 SOL Cell Toerfghk ENG FEL TRAWL SOL Cell Toerfghk ENG FNG FNG SOL Cell Toerfghk ENG FNG SOL Cell Toerfghk ENG FNG FNG SOL Cell Toerfghk ENG TNG Cell Toerfghk ENG Cell Cell Cell Toerfghk ENG Cell Toerfghk ENG Cell Cell Cell Cell Cell Cell Cell						2.420	1			1				7	
Cell Thocelphik ENG BTZ SOL SIS 31 15716 6963 347 732,869 736.942 532.87 250.1242 532.705 520.1						2.139		2.245	1.044	0.323	0.396	0.516	0.287	0.468	0.245
Cell Thorefighic NG GN1 SOL 1.749 2.972 2.973 2.988 1.9574 3.431 8.475				1		F1C 22		COC 247	722 000	720 000	C2F 422	F20 720	F01 242	F42 700	F04 730
Cell Theefighk ENG GN1 SOL L749 L979 L929 L908 60.38 69.98 10.557 4.318 5.811 8.475							_								
Cell					_										
Cell						1.743								3.011	
Cell Toerfighk ENG OTTER SOL O.073 O.070 O.070 O.020 O.091 O.032 O.033 O.032 O.003						0.005	1		0.022	1				0.001	
Cell Thoreflyik ENG PEL SENNE SOL									0.028						
Cell Theefpik ENG Pel TRAWL SOL															
Cell Theefghik ENG									0.001		0.003				
						0.022	0.004	0.001	0.043	0.157	0.099	0.017		0.012	0.165
Cell Theefghik FRA BEAM SOL 0.096 0.001 0.011 0.67 0.245 0.072	Cel1	7bcefghjk	ENG	TR1	SOL	4.184	3.008	3.097	0.94	1.248	4.01	5.573	8.778	9.643	9.827
	Cel1	7bcefghjk	ENG	TR2	SOL	22.184	22.818	33.967	45.305	39.947	34.615	25.297	24.598	24.76	30.878
Cell Theefphk FRA BT1 SOL Cell Theefphk FRA BT2 SOL G.017 43.071 32.089 30.695 32.739 33.296 31.846 63.28 62.192 36.23	Cel1	7bcefghjk	ENG	TR3	SOL			0.096			0.001	0.011			
	Cel1	7bcefghjk	FRA	BEAM	SOL	0.36	0.74	11.249	0.29				0.67	0.245	0.07
Celi	Cel1	7bcefghjk		BT1											0.023
Phoefghyk	Cel1	7bcefghjk	FRA	BT2		6.017	43.071	32.089	30.695	32.739	33.296	31.846	63.28	62.192	38.23
Cell Thotefghik FRA GT1 SOL 39.403 43.097 77.496 40.786 47.242 33.445 33.445 24.284 55.436 49.658							_			_		_			
Cell															
Celi															
Cell Thotefghik FRA OTTER SOL 16.075 12.092 39.663 14.883 12.406 3.558 3.558 6.262 5.261 4.134 Cell Thotefghik FRA PEL SRINE SOL SOL Cell Thotefghik FRA PEL SRINE SOL Cell Thotefghik FRA POTS SOL Cell Cell Thotefghik FRA TR1 SOL 104.063 72.748 62.076 62.621 57.529 6.207 56.195 62.455 79.139 81.782 Cell Thotefghik FRA TR2 SOL Cell Thotefghik GB BEAM SOL Cell Thotefghik GB BEAM SOL Cell Thotefghik GB BT2 SOL Cell Thotefghik GB BT2 SOL Cell Thotefghik Cell Thotefghik GB BT2 SOL Cell Thotefghik													0.029		0.021
Cel1						_				1					
Cell						16.075	12.092	39.663	14.883	12.406	3.558	3.558	6.262	5.261	
Cell 7bcefghjk FRA POTS SOL 0.244 0.442 2.7 0.206 1.078 0.002 0.002 10.45 4.697 3.008						0.110	0.277	0.240	0.205	0.001	0.200	0.200	0.020	1 024	
Cell 7bcefghjk FRA															
Cell Tokefghjk FRA TR2 SOL 238.117 171.595 211.161 216.443 222.952 179.952 178.252 152.449 175.436 133.248					_	_									
Cel1 7bcefghjk FRA TR3 SOL 0.322 0.17 0.23 0.056 0.041 0.041 1 1.35 0.76															
Cel1 7bcefghjk GBG				•	-				_						
Cel1															
Cel1							0.088								
Cel1	Cel1				SOL	68.489		43.182							
Cel1 7bcefghjk IOM DREDGE SOL	Cel1	7bcefghjk	GBJ	TR1	SOL										0.018
Cel1	Cel1	7bcefghjk	GBJ	TR2	SOL	0.056			0.453	0.3	0.235	0.173	0.235		
Cel1	Cel1	7bcefghjk	IOM	DREDGE	SOL					0.012					
Cel1	Cel1	7bcefghjk	IRL	BEAM	SOL	1.5	6.42	0.04							
Cel1 7bcefghjk IRL DEM_SEINE SOL 0.11	Cel1	7bcefghjk	IRL	BT1	SOL	0.04									
Cel1 7bcefghjk IRL DREDGE SOL 1.32 0.92 1.12 0.05 0.08	Cel1	7bcefghjk	IRL	BT2	SOL	38.39	40.13	45.49	38.83	21.37	16.42	12.84	11.25	7.38	11.01
Cel1															
Cel1 7bcefghjk IRL IRL SOL 0.04										1	1		1	1	
Cel1 7bcefghjk IRL ILL1 SOL 0.04 0.06 7.38						0.82	0.67	0.09			0.37	1.14			0.52
Cel1 7bcefghjk IRL none SOL 0.06 7.38 Cel1 7bcefghjk IRL OTTER SOL 3.13 16.36 1.74 0.07 0.04 0.04 0.81 Cel1 7bcefghjk IRL PEL_SEINE SOL 0.79 0.02 0.12 1.55 0.19 0.63 0.07 Cel1 7bcefghjk IRL PEL_TRAWL SOL 0.62 0.06 0.29 0.12 1.55 0.19 0.63 0.07 Cel1 7bcefghjk IRL POTS SOL 0.05 0.08 0.02 0.01 0.24 0.02 Cel1 7bcefghjk IRL TR1 SOL 18.86 16.51 21.34 10.45 14.35 21.31 16.83 31.62 37.58 45.45 Cel1 7bcefghjk IRL TR2 SOL 112.5 109.47 99.68 82.3 106.74 93.52 97.13 85.38 68.7 84.43				-	-				0.03	0.08			0.04	0.38	
Cel1 7bcefghjk IRL OTTER SOL 3.13 16.36 1.74 0.07 0.04 0.04 0.04 0.81 Cel1 7bcefghjk IRL PEL_SEINE SOL 0.79 0.06 0.29 0.12 1.55 0.19 0.63 0.07 Cel1 7bcefghjk IRL PEL_TRAWL SOL 0.05 0.08 0.02 0.01 0.24 0.02 Cel1 7bcefghjk IRL TR1 SOL 18.86 16.51 21.34 10.45 14.35 21.31 16.83 31.62 37.58 45.45 Cel1 7bcefghjk IRL TR2 SOL 112.5 109.47 99.68 82.3 106.74 93.52 97.13 85.38 68.7 84.43 Cel1 7bcefghjk IRL TR3 SOL 0.35 0.08 0.08 0.01 0.03 1.42 0.41 0.21 0.58 Cel1 7bcefghjk NIR TR1		_, ,,,,,				0.04					0.00				7.20
Cel1 7bcefghjk IRL PEL SEINE SOL 0.79 Cel1 7bcefghjk IRL PEL TRAWL SOL 0.62 0.06 0.29 0.12 1.55 0.19 0.63 0.07 Cel1 7bcefghjk IRL POTS SOL 0.05 0.08 0.02 0.01 0.24 0.02 Cel1 7bcefghjk IRL TR1 SOL 18.86 16.51 21.34 10.45 14.35 21.31 16.83 31.62 37.58 45.45 Cel1 7bcefghjk IRL TR2 SOL 112.5 109.47 99.68 82.3 106.74 93.52 97.13 85.38 68.7 84.43 Cel1 7bcefghjk IRL TR3 SOL 0.35 0.08 0.08 0.01 0.03 1.42 0.41 0.21 0.58 Cel1 7bcefghjk NIR TR1 SOL 0.593 0.616 0.285 0.151 1.11 2.021						2.12	16.26	1 74	0.07	0.04	0.06	0.04			
Cel1 7bcefghjk IRL PEL TRAWL SOL 0.62 0.06 0.29 0.12 1.55 0.19 0.63 0.07 Cel1 7bcefghjk IRL POTS SOL 0.05 0.08 0.02 0.01 0.24 0.02 Cel1 7bcefghjk IRL TR1 SOL 18.86 16.51 21.34 10.45 14.35 21.31 16.83 31.62 37.58 45.45 Cel1 7bcefghjk IRL TR2 SOL 112.5 109.47 99.68 82.3 106.74 93.52 97.13 85.38 68.7 84.43 Cel1 7bcefghjk IRL TR3 SOL 0.35 0.08 0.08 0.01 0.03 1.42 0.41 0.21 0.58 Cel1 7bcefghjk NIR TR1 SOL 0.593 0.616 0.285 0.151 1.11 2.021 1.681 0.058 0.283 Cel1 7bcefghjk NLD						3.13		1.74	0.07	0.04		0.04			0.81
Cel1 7bcefghjk IRL POTS SOL 0.05 0.08 0.02 0.01 0.24 0.02 Cel1 7bcefghjk IRL TR1 SOL 18.86 16.51 21.34 10.45 14.35 21.31 16.83 31.62 37.58 45.45 Cel1 7bcefghjk IRL TR2 SOL 112.5 109.47 99.68 82.3 106.74 93.52 97.13 85.38 68.7 84.43 Cel1 7bcefghjk IRL TR3 SOL 0.35 0.08 0.08 0.01 0.03 1.42 0.41 0.21 0.58 Cel1 7bcefghjk NIR TR1 SOL 0.593 0.616 0.285 0.151 1.11 2.021 1.681 0.058 0.283 Cel1 7bcefghjk NLD BT2 SOL 0.665 1.12 2.856 4.467 3.835 9.051 2.014 0.972 0.429 0.528 Cel1							_	0.06	0.20	0.12		1 55	0.10	0.62	0.07
Cel1 7bcefghjk IRL TR1 SOL 18.86 16.51 21.34 10.45 14.35 21.31 16.83 31.62 37.58 45.45 Cel1 7bcefghjk IRL TR2 SOL 112.5 109.47 99.68 82.3 106.74 93.52 97.13 85.38 68.7 84.43 Cel1 7bcefghjk IRL TR3 SOL 0.35 0.08 0.08 0.01 0.03 1.42 0.41 0.21 0.58 Cel1 7bcefghjk NIR TR1 SOL 0.593 0.616 0.285 0.151 1.11 2.021 1.681 0.058 0.283 Cel1 7bcefghjk NLD BT2 SOL 0.593 0.616 0.285 0.151 1.11 2.021 1.681 0.058 0.283 Cel1 7bcefghjk NLD BT2 SOL 0.665 1.12 2.856 4.467 3.835 9.051 2.014 0.972 0.4								0.00			0.01	1.33		0.03	
Cel1 7bcefghjk IRL TR2 SOL 112.5 109.47 99.68 82.3 106.74 93.52 97.13 85.38 68.7 84.43 Cel1 7bcefghjk IRL TR3 SOL 0.35 0.08 0.08 0.01 0.03 1.42 0.41 0.21 0.58 Cel1 7bcefghjk NIR TR1 SOL 0.593 0.616 0.285 0.151 1.11 2.021 1.681 0.058 0.283 Cel1 7bcefghjk NLD BT2 SOL 0.665 1.12 2.856 4.467 3.835 9.051 2.014 0.972 0.429 0.528 Cel1 7bcefghjk SCO DREDGE SOL 0.665 1.12 2.856 4.467 3.835 9.051 2.014 0.972 0.429 0.528 Cel1 7bcefghjk SCO OTTER SOL 0.065 1.12 2.856 4.467 3.835 9.051 2.014 <td< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td>18.86</td><td>,</td><td>21 34</td><td></td><td>,</td><td></td><td>16.83</td><td>,</td><td>37 58</td><td>_</td></td<>				-	-	18.86	,	21 34		,		16.83	,	37 58	_
Cel1 7bcefghjk IRL TR3 SOL 0.35 0.08 0.08 0.01 0.03 1.42 0.41 0.21 0.58 Cel1 7bcefghjk NIR TR1 SOL 0.593 0.616 0.285 0.151 1.11 2.021 1.681 0.058 0.283 Cel1 7bcefghjk NLD BT2 SOL 0.665 1.12 2.856 4.467 3.835 9.051 2.014 0.972 0.429 0.528 Cel1 7bcefghjk SCO OTTER SOL 0.05 8 4.467 3.835 9.051 2.014 0.972 0.429 0.528 Cel1 7bcefghjk SCO OTTER SOL 0.05 8 4.467 3.835 9.051 2.014 0.972 0.429 0.528 Cel1 7bcefghjk SCO OTTER SOL 0.05 8 1.196 0.53 2.087 2.896															
Cel1 7bcefghjk NIR TR1 SOL 0.093 0.616 0.285 0.151 1.11 2.021 1.681 0.058 0.283 Cel1 7bcefghjk NLD BT2 SOL 0.665 1.12 2.856 4.467 3.835 9.051 2.014 0.972 0.429 0.528 Cel1 7bcefghjk SCO OTTER SOL 0.065 1.12 2.856 4.467 3.835 9.051 2.014 0.972 0.429 0.528 Cel1 7bcefghjk SCO OTTER SOL 0.05 8 0.001 0.001 Cel1 7bcefghjk SCO TR1 SOL 0.05 8 1.196 0.53 2.087 2.896								33.30							
Cel1 7bcefghjk NIR TR2 SOL 0.593 0.616 0.285 0.151 1.11 2.021 1.681 0.058 0.283 Cel1 7bcefghjk NLD BT2 SOL 0.665 1.12 2.856 4.467 3.835 9.051 2.014 0.972 0.429 0.528 Cel1 7bcefghjk SCO OTTER SOL 0.05 8 0.001 0.001 0.53 2.087 2.896 Cel1 7bcefghjk SCO TR1 SOL 0.05 8 1.196 0.53 2.087 2.896									, ,,,,,,						
Cel1 7bcefghjk NLD BT2 SOL 1 Cel1 7bcefghjk SCO DREDGE SOL 0.665 1.12 2.856 4.467 3.835 9.051 2.014 0.972 0.429 0.528 Cel1 7bcefghjk SCO OTTER SOL 0.05 0.001 0.001 Cel1 7bcefghjk SCO TR1 SOL 0.05 1.196 0.53 2.087 2.896	Cel1						0.593	0.616	0.285	0.151	1.11	2.021	1.681		
Cel1 7bcefghjk SCO DREDGE SOL 0.665 1.12 2.856 4.467 3.835 9.051 2.014 0.972 0.429 0.528 Cel1 7bcefghjk SCO OTTER SOL 0.05 0.05 1.196 0.53 2.087 2.896 Cel1 7bcefghjk SCO TR1 SOL 0.05 0.05 1.196 0.53 2.087 2.896	Cel1														
Cel1 7bcefghjk SCO OTTER SOL 0.001 Cel1 7bcefghjk SCO TR1 SOL 0.05 1.196 0.53 2.087 2.896	Cel1					0.665	1.12	2.856	4.467	3.835	9.051	2.014	1	1	0.528
Cel1 7bcefghjk SCO TR1 SOL 0.05 1.196 0.53 2.087 2.896	Cel1														
	Cel1						0.05						0.53	2.087	2.896
	Cel1			TR2	SOL	0.162	0.151					0.074		0.103	0.207

Table 5.6.3.1.7 (t) Whiting landings by Member States and gears, 2003-2012.

	0.0.0.11.7	(6) 11116	ing randi	ngs o j	1,101110	or Bu	cos an	a goan	3, 200.	2012				
ANNEX	REG_AREA	COUNTRY	REG_GEAR Y	SPECIES **	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Cel1	7bcefghjk	BEL	BEAM	WHG	0.122	0.602	0.129	0.393	0.244	NA	0.073	NA	0.035	0.46
Cel1	7bcefghjk	BEL	BT2	WHG	115.541	139.545	180.594	57.864	71.047	75.203	42.184	66.059	68.715	97.093
Cel1	7bcefghjk	BEL	OTTER	WHG	8.389	NA	NA	NA so sos	NA SAZ	NA TOO	NA 45.040	NA 24.276	NA 20 F0F	NA Z44
Cel1	7bcefghjk	BEL	TR2	WHG	NA 0.074	35.829	36.866	69.696	54.817	44.728	45.048	34.376	30.505	70.741
Cel1	7bcefghjk	ENG	BEAM BT1	WHG	0.074 NA	0.004	0.085 NA	0.13 NA	0.207 NA	NA NA	0.022 NA	0.072 NA	0.164 NA	0.046 NA
Cel1 Cel1	7bcefghjk 7bcefghjk	ENG	BT2	WHG	95.887	72.66	66.993	49.449	52.117	58.583	46.798	40.275	41.46	47.172
Cel1	7bcefgfjk 7bcefghjk	ENG	DREDGE	WHG	0.019	0.018	0.004	0.023	0.032	NA	0.014	0.132	0.055	0.012
Cel1	7bcefghjk	ENG	GN1	WHG	22.724	18.99	25.149	23.321	15.319	8.072	5.707	6.18	20.374	17.359
Cel1	7bcefghjk	ENG	GT1	WHG	0.001	0.126	0.162	0.325	0.29	0.101	0.073	0.02	0.209	0.744
Cel1	7bcefghjk	ENG	LL1	WHG	1.689	3.131	1.276	1.999	0.823	0.254	0.007	1.513	1.529	1.353
Cel1	7bcefghjk	ENG	OTTER	WHG	0.103	0.734	0.117	0.159	1.345	0.164	1.372	0.865	0.172	0.902
Cel1	7bcefghjk	ENG	PEL_SEINE	WHG	NA	NA	NA	NA	NA	NA	NA	0.681	NA	NA
Cel1	7bcefghjk	ENG	PEL_TRAWL	WHG	6.552	3.805	1.985	3.432	4.157	9.706	3.96	12.237	13.65	51.618
Cel1	7bcefghjk	ENG	POTS	WHG	0.051	0.106	0.003	0.014	0.015	0.007	0.002	NA	0.004	0.456
Cel1	7bcefghjk	ENG	TR1	WHG	74.368	40.664	52.076	23.33	26.198	42.817	81.452	106.115	176.718	147.655
Cel1	7bcefghjk	ENG	TR2	WHG	450.785	337.564	268.205	210.906	337.838	344.46	467.26	393.697		257.244
Cel1	7bcefghjk	ENG	TR3	WHG	0.351	0.03	0.226	NA	0.054	0.001	1.512	0.749	NA	10.098
Cel1	7bcefghjk	ESP	TR1	WHG	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.642
Cel1	7bcefghjk	ESP	TR2	WHG	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.163
Cel1	7bcefghjk	FRA	BT2	WHG	NA	0.015	NA	0.665	0.019	0.003	0.003	0.001	0.025	NA
Cel1	7bcefghjk	FRA	DREDGE	WHG	1.834	3.209	2.13	1.914	7.12	3.09	3.087	0.64	2.636	1.31
Cel1	7bcefghjk	FRA	GN1	WHG	15.598	5.112	7.595	3.383	2.688	4.468	4.468	8.586	0.396	5.453
Cel1 Cel1	7bcefghjk	FRA FRA	GT1 LL1	WHG	1.459 0.52	0.062 2.192	1.088 3.526	0.625 8.959	3.869 6.452	0.287 1.164	0.287 1.164	2.39 1.541	5.541 6.356	4.241 3.322
Cel1	7bcefghjk 7bcefghjk	FRA	none	WHG	0.007	0.02	0.015	NA	NA	0.053	0.053	1.541 NA	0.509	NA
Cel1	7bcefgfjk 7bcefghjk	FRA	OTTER	WHG	3.063	20.238	14.246	2.58	2.281	0.525	0.525	8.093	5.972	0.239
Cel1	7bcefghjk	FRA	PEL SEINE	WHG	NA	NA	NA	NA	NA	NA	NA	NA	NA	31.79
Cel1	7bcefghjk	FRA	PEL TRAWL	WHG	7.841	2.523	0.141	1.701	1.011	1.624	1.624	2.615	12.424	11.79
Cel1	7bcefghjk	FRA	POTS	WHG	NA	NA	NA	0.001	NA	1.371	1.371	12.87	28.08	11.94
Cel1	7bcefghjk	FRA	TR1	WHG	3493.677	3078.445	4025.512	3032.151	2007.227	1327.353	1320.829	1731.81		1949.018
Cel1	7bcefghjk	FRA	TR2	WHG	1391.58	1137.358	1528.415	1006.229	1037.402	1076.409	1075.558	936.476	989.306	888.95
Cel1	7bcefghjk	FRA	TR3	WHG	NA	0.001	NA	0.004	NA	NA	NA	1.64	7.664	NA
Cel1	7bcefghjk	GBG	PEL_TRAWL	WHG	NA	NA	NA	NA	NA	NA	0.003	NA	NA	NA
Cel1	7bcefghjk	GBG	TR2	WHG	NA	NA	NA	NA	NA	0.004	0.008	0.007	0.005	2.741
Cel1	7bcefghjk	GBJ	BEAM	WHG	NA	0.005	NA	NA	NA	NA	NA	NA	NA	NA
Cel1	7bcefghjk	GBJ	BT2	WHG	2.341	4.506	1.685	NA	NA	NA	NA	NA	NA	NA
Cel1	7bcefghjk	GBJ	TR2	WHG	0.006	NA	NA	0.144	0.305	0.067	0.046	0.177	0.131	0.051
Cel1	7bcefghjk	IRL	BEAM	WHG	7.15	8.24	NA	NA	NA	NA	NA	NA	NA	NA
Cel1	7bcefghjk	IRL	BT1	WHG	0.21	NA 25.42	NA	NA 22.26	NA	NA	NA	NA	NA 15.12	NA 12.01
Cel1	7bcefghjk	IRL	BT2	WHG	62.21 40.5	35.12	30.08	22.26	24.24	4.01	2.87	4.5	15.12	12.01
Cel1 Cel1	7bcefghjk 7bcefghjk	IRL IRL	DEM_SEINE DREDGE	WHG	0.56	54.4 2.16	9.56 0.47	0.09	0.12	NA NA	NA NA	NA NA	NA NA	NA NA
Cel1	7bcefgfjk 7bcefghjk	IRL	GN1	WHG	96.9	107.67	60.45	16.07	19.22	23.55	20.43	22.28	35.19	82.16
Cel1	7bcefghjk	IRL	GT1	WHG	NA	NA	NA	NA	0.06	NA	0.02	0.08	0.19	0.3
Cel1	7bcefghjk	IRL	LL1	WHG	NA	NA	0.25	NA	NA	NA	NA	NA	0.16	NA
Cel1	7bcefghjk	IRL	none	WHG	NA	NA	4.77	NA	NA	NA	NA	NA	NA	111.97
Cel1	7bcefghjk	IRL	OTTER	WHG	26.23	414.99	2.34	0.3	NA	NA	0.44	0.64	NA	1.81
Cel1	7bcefghjk	IRL	PEL_SEINE	WHG	53.27	79.09	8.68	NA	NA	NA	NA	NA	NA	NA
Cel1	7bcefghjk	IRL	PEL_TRAWL	WHG	75.45	43.05	0.04	13.25	0.35	NA	2.74	6.2	44.71	22.68
Cel1	7bcefghjk	IRL	POTS	WHG	1.1	2.04	0.31	NA	0.3	NA	0.28	0.03	1.15	0.56
Cel1	7bcefghjk	IRL	TR1	WHG	1179.75	885.29	1013.57			1166.76	1705.47		3132.73	4353.17
Cel1	7bcefghjk	IRL	TR2	WHG	2747.42	2641.98	4617.16	3333.13			1062.33		1514.07	1248.49
Cel1	7bcefghjk	IRL	TR3	WHG	0.24	0.39	0.28	0.6	0.19	0.05	0.6	0.64	0.26	0.43
Cel1	7bcefghjk	NIR	TR1	WHG	6.478	NA	NA	13.3	NA	0.2	NA	29.179	24.51	27.705
Cel1	7bcefghjk	NIR	TR2	WHG	NA	15.628	10.263	8.599	0.685	10.019	12.803	16.655		3.405
Cel1	7bcefghjk	NLD	PEL_TRAWL	WHG	NA	NA	NA	NA	NA	NA	NA		NA	3
Cel1	7bcefghjk	NLD	TR1	WHG	NA	NA	NA	NA	NA	NA	NA 24		NA 152	2 2 131
Cel1	7bcefghjk	NLD	TR2 BT2	WHG	NA NA	NA NA	NA NA	NA NA	NA 1.22	NA NA		_		
Cel1 Cel1	7bcefghjk 7bcefghjk	SCO SCO	DREDGE	WHG	NA NA	NA NA	0.001	NA NA	1.22 NA	NA NA	0.244	NA NA	NA NA	NA NA
Cel1	7bcefghjk	SCO	GN1	WHG	NA	0.079	0.001 NA	NA	NA	NA	0.002 NA	NA	NA	NA
Cel1	7bcefgfijk 7bcefghjk	SCO	LL1	WHG	NA	NA	NA	NA	NA	0.597	NA	NA	NA	NA
Cel1	7bcefgfijk 7bcefghjk	SCO	OTTER	WHG	0.083	NA	NA	NA	NA	0.597 NA	0.028	NA	NA	0.042
Cel1	7bcefghjk	SCO	PEL TRAWL	WHG	0.06	5.857	NA	NA	NA	NA	NA	NA	0.165	NA
Cel1	7bcefghjk	SCO	TR1	WHG	2.272	4.55	NA	0.237	0.096	4.457	45.533	21.355	28.504	53.737
Cel1	7bcefghjk	SCO	TR2	WHG	2.372	9.884	0.051	5.771	3.177	2.178	16.057	13.06	58.701	10.072
Cel1	7bcefghjk	sco	TR3	WHG	NA	0.04	NA	NA	NA	NA	NA	NA	NA	NA .
		•	-		-	-				-		*		

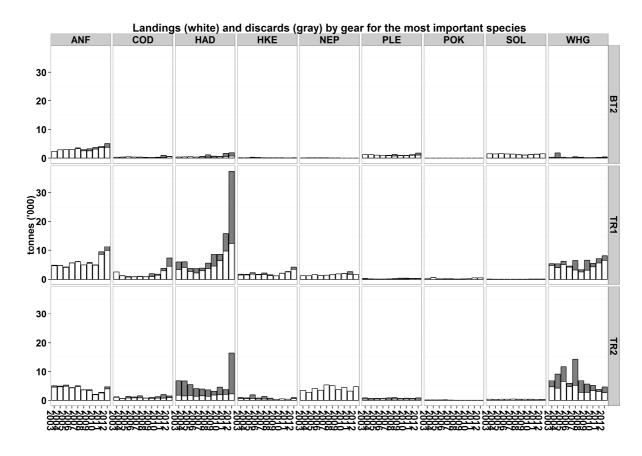


Figure 5.6.3.1.1 Landings and discards of the main species by active gears (BT2, TR1, TR2) in the wider Celtic Sea (Cel1; 7bcefghjk). 2003-2012.

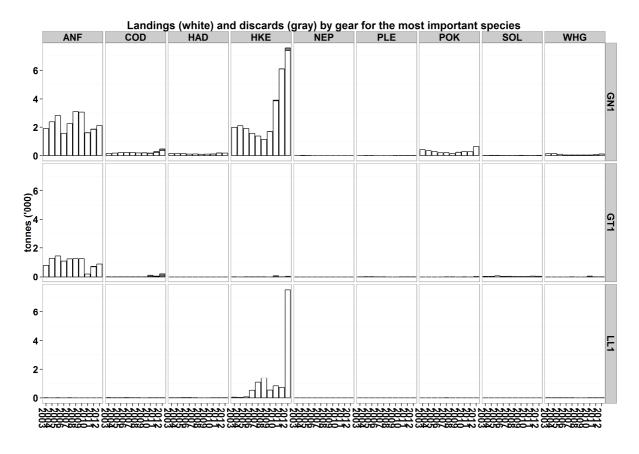
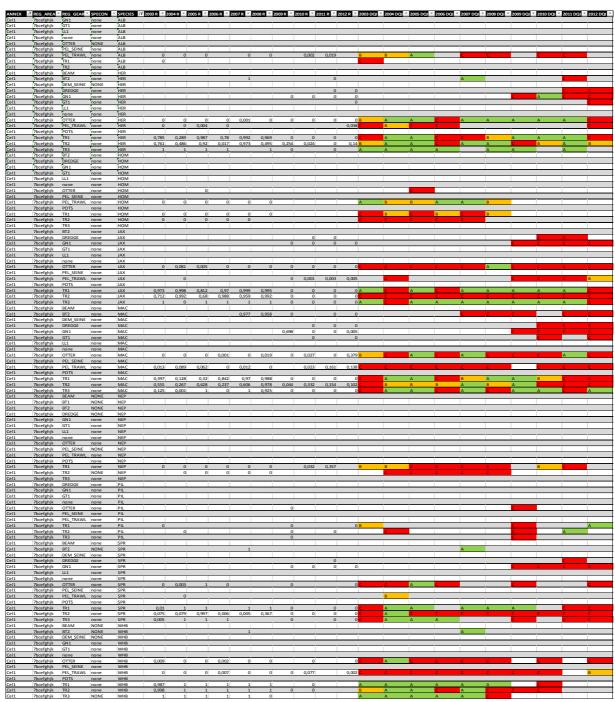



Figure 5.6.3.2.2. Landings and discards of the main species by passive gears (GN1, GT1, LL1) in the wider Celtic Sea (Cel1; 7bcefghjk). 2003-2012.

Table 5.6.3.1.8. Discard rate and associated coverage index for Anglerfish, Haddock, Hake, *Nephrops*, Plaice, Sole and whiting in Cel1 (7bcefghjk) by Gear and Special condition as defined under the cod management plan. A, \geq 66% of landings have associated discard sampling, B, \geq 33% < 66% of landings have associated discard sampling. C < 33% of landings have associated discard sampling. 2003-2012. Gear/Special condition combinations without discard data omitted.

		Ciui c																					
ANNEX .T		REG GEAR	SPECON NONE	SPECIES ANF	√T 2003 R	¥ 2004 R ¥	2005 R ≚ 2	006 R <u>×</u> 2	2007 R 👱 2	008 R <u>×</u> 2	009 R 🗡 2	010 R 📺 2	2011 R 🞽 2	012 R 🞽 2	003 DQI <u>*</u> 2004 D	QI <u>*</u> 2005 DQ	1 <u></u> 2006 DQ	<u>×</u> 2007 DQ	<u>×</u> 2008 DQI	<u>×</u> 2009 DQI	≚ 2010 DQI	* 2011 DQI	2012
	7bcefghjk	BEAM	NONE	HAD								0,484									Α		
el1 el1	7bcefghjk 7bcefghjk	BEAM	NONE	NEP	_							_							_	_	_		_
11	7bcefghjk	BEAM	NONE	PLE																			
1 1	7bcefghjk 7bcefghjk	BEAM	NONE	SOL										0									С
11	7bcefghjk	BT1	none	ANF																			
11	7bcefghjk	BT1	none	HAD																			
l1 l1	7bcefghjk 7bcefghjk	BT1 BT1	none	HKE NEP																			
11	7bcefghjk	BT1	NONE	PLE																			
11	7bcefghjk	BT1	none	SOL													_,				_,		
11	7bcefghjk 7bcefghjk	BT1 BT2	none NONE	WHG					0,072	0,145	0,222	0,156	0,132	0,278				R	-	C	C	C	R
11	7bcefghjk	BT2	NONE	HAD		0 0,022		0	0,364	0,723	0,416	0,312	0,688	0,619	C	С	С	A	A	В	В	A	A
11	7bcefghjk		NONE	HKE		0 0,042	0,737	0,573	0,351	0,462	0,318	0,201	0,205	0,273	C	C	C	A	Α	В	C	В	Α
11	7bcefghjk 7bcefghjk	BT2 BT2	NONE	NEP PLE		0 0.011	. 0	0	0.192	0.452	0.157	0.085	0.16	0.41 A	В	B	Δ	Δ	Δ	B	Δ	Δ	Α
	7bcefghjk		NONE	SOL		0 0,003		0	0,015	0,009	0,031	0,05	0,016	0,001	C	C	В	A	A	A	A	A	В
11	7bcefghjk	BT2	NONE	WHG	0	,1 0,858	0,004	0	0,674	0,55	0,379	0,373	0,456	0,632 C	С	С	С	A	A	A	A	A	Α
11	7bcefghjk 7bcefghjk	DEM SEINE		ANF HAD																			
		DEM_SEINE	NONE	HKE																			
11	7bcefghjk	DEM_SEINE		PLE		_																	_
1 1	7bcefghjk 7bcefghjk	DEM_SEINE	NONE	SOL																			
11	7bcefghjk	DREDGE	NONE	ANF								0,093	0,081	0,263							С	С	C
l1	7bcefghjk	DREDGE	none	HAD								0	0	0			_,				С	C	С
1 1	7bcefghjk 7bcefghjk	DREDGE DREDGE	none	HKE NEP								0	0	0							C	С	E
11	7bcefghjk	DREDGE	NONE	PLE								0,097	0,046	0,225							С	C	С
11	7bcefghjk	DREDGE	NONE	SOL	_	_						0	0	0				_	_		С	С	С
1 1	7bcefghjk 7bcefghjk	DREDGE GN1	none NONE	ANF		0 0	0	0	0	0	0,001	0,006	0,015	0 0	C	C	C	C	С.—	С.—	C	C	C
11	7bcefghjk	GN1	none	HAD		0 0	0	0	0	0	0,003	0,011	0,006	0,012	С	c	С	c	С	В	В	В	В
11	7bcefghjk	GN1	none	HKE		0 0	0	0	0	0	0,007	0,012	0,002	0,025 C	С	c	C	C	С	С	С	С	С
1 1	7bcefghjk 7bcefghjk	GN1 GN1	none	NEP PLE			0			0	0,001	0	0,045	0	C	ε .			С	С	С	С	C
11	7bcefghjk	GN1	none	SOL			0			0	0,006	0	0	0		С			С	С	С	С	С
11	7bcefghjk	GN1	none	WHG		0 0		0	0,1	0	0,152	0,069	0,15	0,047 C	C	C	C	C	C	С	C C	C	C
1 1	7bcefghjk 7bcefghjk	GT1 GT1	none	HAD		0 0		U	0	U		0,012	0,038	0 0	В			č			C	A	c
11	7bcefghjk	GT1	none	HKE				0	0			0,878	0,497	0,002			С	С			c	С	c
11	7bcefghjk	GT1	none	NEP	_													_	_	_			_
l1 l1	7bcefghjk 7bcefghjk	GT1	none	SOL				0				0,007	0,134	0	C		-				C C	<u> </u>	- 0
11	7bcefghjk	GT1	none	WHG					0,069			0,961	0	0,015	С			С			č	С	C
11	7bcefghjk		none	ANF											_			_					_
1 1	7bcefghjk 7bcefghjk	LL1 LL1	none	HAD		0 0		0	0	0				В	C	B	-	C	C				
l1	7bcefghjk	LL1	none	NEP						Ī													
11	7bcefghjk		none	PLE																			_
11	7bcefghjk 7bcefghjk	LL1	none	SOL																			_
	7bcefghjk		none	ANF																			
11	7bcefghjk	none	none	HAD	_	_												_	_	_			_
11	7bcefghjk 7bcefghjk	none	none	NEP																			_
11	7bcefghjk	none	none	PLE																			
11	7bcefghjk 7bcefghjk	none	none	WHG												_		_	_				_
:11	7bcefghjk	none	none	ANF	0.69	94 0.259	0.284	0.04	0.042	0.058	0.091	0.007	0.486	0,01 C	С	c	В	С	c	c	С	С	С
:11	7bcefghjk	OTTER	NONE	HAD	0,1			0,848	0,213	0,999	0,677	0,887	0,216	0,048		В	Α	С	C	A	С		В
11		OTTER	none	NEP	0,6	39 0,013	0,736	0,976	0,378	1	0	0	0	0,029 C	С	С	С	С	A	С	С	С	<u></u>
11	7bcefghjk 7bcefghjk	OTTER	NONE	PLE	0,0	55 0,596	0,189	0,101	0,357	0,133	0,061	0,717	0,019	0,491 C	C	С	С	С	С	С	С	С	С
11	7bcefghjk	OTTER	NONE	SOL		0 0,001	0,003	0,071	0,008		0	0	0	0 0	C	С	C	С		С	С	С	С
l1 l1	7bcefghjk 7bcefghjk	PEL SEINE	none	WHG	0,0	33 0,006	0,236	0,708	0,14	0,477	0,654	0,97	0,264	0,084	С	С	С	С	С	С	С	С	В
11		PEL SEINE		HAD																			
11	7bcefghjk	PEL_SEINE	none	HKE																			
1	7bcefghjk 7bcefghjk		none	PLE	_	_											_	_	_	_	_	_	_
1	7bcefghjk	PEL SEINE	none	SOL																			
11	7bcefghjk	PEL_SEINE	none	WHG																			
1 1	7bcefghjk 7bcefghjk	PEL_TRAWL	none	HAD		0,495																	
1	7bcefghjk	PEL TRAWL	none	HKE		0 0,06		0						c	В		С						
1	7bcefghjk	PEL_TRAWL	none	NEP																			
1	7bcefghjk 7bcefghik	PEL_TRAWL	none	PLE SOL		0,529									В								
1	7bcefghjk	PEL_TRAWL		WHG		0 0,781							0,114	C	C							С	
1	7bcefghjk	POTS	none	ANF																			
1	7bcefghjk 7bcefghjk	POTS	none	HAD																			
1	7bcefghjk	POTS	none	NEP																			
1	7bcefghjk	POTS	none	PLE																			
1	7bcefghjk 7bcefghjk	POTS	none	WHG																			_
1	7bcefghjk	TR1	none	ANF	0,0			0,004	0,012	0,007	0,054	0,026	0,093	0,123 A	A	A	Α	A	A	C	В	В	С
		TR1	none	HAD	0,4			0,408	0,228	0,334	0,464	0,259	0,386	0,667 A	A	A	A	A	A	В	A	A	C
1	7bcefghjk 7bcefghjk	TR1	none	NEP	0,1	0 0,119		0,074	0,253	0,189	0	0,021	0,056	0,171 B	В	C	C	C	C R		В	C	
1	7bcefghjk	TR1	none	PLE	0,44	49 0,307	0,384	0,414	0,548	0,557	0,614	0,522	0,303	0,287 A	A	А	Α	A	Α	С	В	В	В
1	7bcefghjk	TR1	none	SOL	0,00	0,004	0,007	0,002	0,049	0,009	0,006	0,309	0,001	0,016 A	A	A	Α	A	A	C	В	C	В
1	7bcefghjk 7bcefghjk	TR1 TR2	none NONE	ANF	0,1			0,087	0,503	0,237	0,522	0,216	0,208	0,193 A 0,154 B	A	A B	A R	A B	A B	В	A B	A	В
1	7bcefghjk		NONE	HAD	0,0			0,653	0,604	0,608	0,417	0,584	0,437	0,866 A	A	A	В	В	A	A	В	В	В
	7bcefghjk	TR2	NONE	HKE	0,40	0,322		0,424	0,68	0,484	0,003	0	0	0,39 B	В	В	В	В	В	В	В	В	C
1		TR2	NONE	NEP PLF	0,45	57 0.385		0,254	0,513	0.541	0,336	0,409	0,26	0,498 B	C	C	C B	C B	C B	B	0	B	P
1	7bcefghjk 7bcefghjk		NONE	SOL		24 0,007			0,058		0,001	0,409			В	В	c	В	В	C	Č .	C	В
1 1	7bcefghjk 7bcefghjk	TR2						0,201	0,642	0,6	0,512	0,356	0,194	0,428 A	А	А	B	Δ	D	D			В
11 11 11 11 11 11 11 11 11 11 11 11 11	7bcefghjk 7bcefghjk 7bcefghjk	TR2	NONE	WHG	0,3	23 0,542		0,201	0,0.0										В	В	В	В	
1 1 1 1 1	7bcefghjk 7bcefghjk 7bcefghjk 7bcefghjk	TR2 TR3	none	ANF	0,2	34 0,884	0,034	0,02	1	0,158	0,557	0,029	0,065	0,277 A	c	C	A	A	A	В	A	В	C
1 1 1 1 1 1	7bcefghjk 7bcefghjk 7bcefghjk 7bcefghjk 7bcefghjk	TR2 TR3 TR3		ANF HAD HKE	0,3 0,2 0,6 0,6	34 0,884 71 0,584	0,034	0,201 0,886 0,327	0,101 1				0,065 0,338 0	0,277 A 0,255 A	A A	A C	A A B	A A	A A A	B A A	A C B	B C B	A
11 11 11 11 11 11 11 11 11 11 11 11 11	7bcefghjk 7bcefghjk 7bcefghjk 7bcefghjk 7bcefghjk 7bcefghjk 7bcefghjk	TR2 TR3 TR3 TR3 TR3 TR3	none none none	HAD HKE NEP	0,2 0,6 0,9	34 0,884 71 0,584 72 0,348	0,034 0,086 0,793	0,02 0,886 0,327	0,101 1	0,158 0,622 1	0,557 0,588 0	0,029 0,511 0	0,065 0,338 0	0,277 A 0,255 A	A	C A C	A A B	A A A	A A A		A C B	B C B	A
1 1 1 1 1 1 1 1 1	7bcefghjk 7bcefghjk 7bcefghjk 7bcefghjk 7bcefghjk 7bcefghjk	TR2 TR3 TR3 TR3 TR3 TR3 TR3	none none	HAD HKE	0,2	34 0,884 71 0,584 72 0,348 61 0,29	0,034 0,086 0,793 0,051	0,02	0,101	0,158 0,622	0,557 0,588	0,029 0,511	0,065	0,277 A 0,255 A		C A C	A A B	A A A	A A A	B A A	A C B	B C B	A

Table 5.6.3.1.9. Discard rate and associated coverage index for Pelagic Species making up more than 1% of total pelagic landings by pelagic gears (trawl and seine), and *Nephrops* in Cel1 (7bcefghjk) by Gear and Special condition as defined under the cod management plan. $A_{\rm s} \geq 66\%$ of landings have associated discard sampling, $B_{\rm s} \geq 33\% < 66\%$ of landings have associated discard sampling. 2003-2012. Gear/Special condition combinations without discard data omitted.

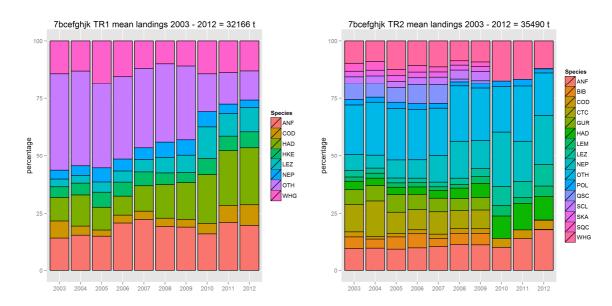


Figure 5.6.3.2.1. Relative percentage (in volume, not taking into account the discards) of each species in the total catches for TR1 (left), and TR2 (right) in Cel1 (7bcefghjk). 2003-2012. Note that landings are only those reported in accordance with the data call, not total landings by the fisheries.

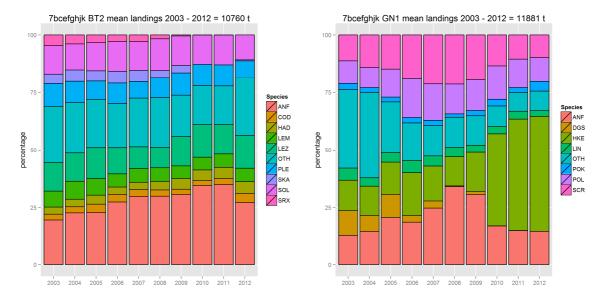


Figure 5.6.3.2.2. Relative percentage (in volume, not taking into account the discards) of each species in the total catches for BT2 (left), and GN1 (right) in Cel1 (7bcefghjk). 2003-2012. Note that landings are only those reported in accordance with the data call, not total landings by the fisheries.

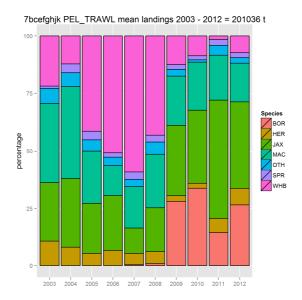


Figure 5.6.3.2.3. Relative percentage (in volume, not taking into account the discards) of each species in the total catches for PEL_TRAWL in Cel1 (7bcefghjk). 2003-2012. Note that landings are only those reported in accordance with the data call, not total landings by the fisheries.

5.6.3.2 ICES sub-divisions 7fg (Cel2)

STECF EWG 13-13 presents the requested cod in weight by fisheries. Age specific data are available on the internet page of the STECF EWG 13-13: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313.

STECF EWG 13-13 notes that discard information is scarce and presents only landing values; though figures have been provided on catch where some discard information is available (Figures 5.6.3.2.1 - 2), this should be interpreted with care due to some key fisheries not having discard information.

Table 5.6.3.2.8 presents discard rates alongside a discard coverage index for what information is available for gears catching anglerfish, haddock, hake, *Nephrops*, plaice, sole and whiting in the subarea7fg of the Celtic Sea. As can be seen, in most cases the discard coverage index is either C (<33% of landings having discard information) or B (\ge 33% < 66%), reflecting the poor discard coverage in the data. The exceptions being for haddock and whiting in TR2 fisheries, where the coverage index is A, indicating that \ge 66% of landings have discard samples. It should be noted that the discard coverage index is only an indication of where a minimum one sample has been provided; therefore it should not necessarily be interpreted an indication of discard information quality, just that some information was available for fisheries using the gear.

Figure 5.6.3.2.1-2 shows landings and discards estimates (where available) of anglerfish, haddock, hake, Nephrops, plaice, sole, and whiting by the main gears from the sub-area of the Celtic Sea 7fg (Cel2), 2003-2012. The main gear for landings of these species is TR1, with landings of haddock, whiting, cod and anglerfish increasing in recent years. Landings of anglerfish in the BT2 fishery have also been increasing since 2008. GN1 landings of Hake, cod and pollack also increased in 2012.

Table 5.6.3.2.1-7 lists the anglerfish, haddock, hake, *Nephrops*, plaice, sole, and whiting landings by Member States and gears, 2003-2012. Landings of anglerfish by Belgian and English BT2 and French TR1 fisheries have increased in recent years. French and Irish haddock landings in the TR1 fishery, as well as Irish TR1 whiting landings have increased. As have landings of sole from the Belgian BT2 vessels.

Table 5.6.3.2.9 shows the discard rate and discard coverage index for pelagic species which contribute to >1% of the landings of the main pelagic gears (PEL_TRAWL and PEL_SEINE). This includes herring, sprat and boarfish only. Discard information for *Nephrops* has also been presented. Where no discard information was available for a gear/species it was omitted from the table. As can be seen, discard information from the fisheries is very scarce, and where available considered to be of low coverage of the landings (in most cases classified as C, <33% of landings covered by discard information). The only exception is TR1 and TR2 catches of herring, where its indicated that there is good coverage (A; ≥66% of landings) with no discards observed in the past four years. It should be noted that the discard coverage index is only an indication of where a minimum one sample has been provided; therefore it should not necessarily be interpreted an indication of discard information quality, just that some information was available for fisheries using the gear.

Figures 5.6.3.2.1-3 show the landings composition of the main gears (TR1, TR2, BT2, GN1, PEL_TRAWL) 2003-2012 from the sub-area of the Celtic Sea (Cel2; 7fg). The main species caught in this area per gear category was defined as species representing more than 2% of the total landings on average, 2003-2012.

For TR1 gear in sub-division 7fg, landings predominately consist of whiting, haddock, Nephrops, cod and anglerfish. Trends are quite stable and mainly driven by Whiting and Haddock.

For TR2 gear, landings are predominately *Nephrops*, whiting, haddock, cod and anglerfish. Trends are quite stable and mainly driven by whiting and Nephrops.

For BT2 gear, landings composition has consists of mainly anglerfish, megrim, sole, rays, lemon sole, cod and haddock. Trends have been stable over the time series driven by anglerfish, megrim and sole.

For GN1, the main species caught in sub-division 7fg are pollock, hake, ling, cod, saithe, anglerfish, haddock, and, up until the landings ban introduced in 2010, dogfish. Trends are quite stable and mainly driven by hake, pollack and saithe.

For Pelagic trawls, landings are dominated by herring with some landings of sprat and boarfish since 2009

Table 5.6.3.2.1 Anglerfish (t) landings by Member States and gears, 2003-2012.

ANNEX N	REG AREA	COUNTRY	REG_GEAR	SPECIES 1	2003	2004	2005 🔻	2006	2007	2008	2009	2010	2011	2012
Cel2	7fg	BEL	BEAM	ANF	1.605	9.951	0.696	0.222	1.725		0.549	1.128	3.225	3.919
Cel2	7fg	BEL	BT2	ANF	_					328 602	7		649.535	989.3
Cel2	7fg	BEL	DREDGE	ANF	072.771	700.113	374.203	332.023	003.103	0.018	303.340	113.013	043.333	0.07
Cel2	7fg	BEL	GN1	ANF				1		0.441				0.07
Cel2	7fg	BEL	OTTER	ANF	0.888	1				0.111			1	
Cel2	7fg	BEL	TR2	ANF	0.000	17.925	27.222	56.967	59.418	76.737	69.156	53.37	50.343	108.612
Cel2	7fg	ENG	BEAM	ANF	0.223	17.323	1.532	30.307	33.410	70.737	03.130	33.37	30.343	100.012
Cel2	7fg	ENG	BT1	ANF	0.223	1.034	1.552		î			î		
Cel2	7fg	ENG	BT2	ANF	293 644	358.271	219 346	179 904	196 717	106 667	105 256	155 43	128.677	375.662
Cel2	7fg	ENG	DREDGE	ANF	0.064	0.03	0.287	0.256	0.086	0.308	0.032	4.33	5.729	6.495
Cel2	7fg	ENG	GN1	ANF	72.693	100.238		50.936	42.145	44.127	61.574	61.483	83.614	58.436
Cel2	71g	ENG	GT1	ANF	0.207	7.081	12.442	12.723	5.232	10.413	15.865	5.797	19.545	44.864
Cel2	71g	ENG	LL1	ANF	0.08	0.092	0.163	0.021	0.001	0.001	13.003	3.737	15.545	77.007
Cel2	7fg	ENG	OTTER	ANF	0.284	0.032	0.251	0.069	0.287	0.001	0.088	0.112	0.067	0.129
Cel2	7fg	ENG	POTS	ANF	0.255	0.013	0.042	0.003	0.026	0.001	0.000	0.003	0.007	0.123
Cel2	7fg	ENG	TR1	ANF	15.422	19.57	16.698	23.109	23.381	32.044	38.382	88.524	83.989	125.938
	7fg	ENG	TR2	ANF	9.826	10.768	6.016	4.785	6.364	4.866	4.027	9.331		7.761
Cel2 Cel2	7fg	ENG	TR3	ANF	9.620	10.708	0.016	4.765	0.304	4.000	4.027	9.551	3.834	7.761
Cel2		ESP		ANF			0.055							11.05
Cel2	7fg 7fg	FRA	TR1 BT2	ANF				2.368				1		11.05
Cel2		FRA	GN1		12.69	24.46	4.643	2.308	0.05	0.058	0.058		0.581	0.12
	7fg			ANF				17.079				0.30		
Cel2	7fg	FRA	GT1	ANF	5.613	0.024	6.586	17.078	9.805	9.754	9.754	0.39	11.345	5.844
Cel2	7fg	FRA	OTTER PEL SEINE	ANF		2.33						1	0.451	0.093
Cel2	7fg	FRA		ANF				1.024					0.535	40.673
Cel2	7fg	FRA	PEL_TRAWL	ANF	002 102	710 710	450,000	1.024	FF2 02C	457.703	455 713	205.42	0.535 1034.251	9.418
Cel2	7fg	FRA	TR1	ANF		719.718								
Cel2	7fg 7fg	FRA FRA	TR2 TR3	ANF ANF	131.111	135.585	101.5	53.842	58.562	43.514	43.514	1.95	1.494 0.389	6.977
Cel2	7fg				40.053	20.050	1 162						0.369	
Cel2		GBJ	BT2	ANF	40.055	29.858	4.163	0.54						
Cel2	7fg	IOM	DREDGE	ANF	10.24	C1 72	0.46	0.54						
Cel2	7fg	IRL	BEAM DT1	ANF	10.34 0.67	61.72	0.46							
Cel2	7fg	IRL	BT1	ANF		162.21	200 25	470.05	246.7	267.04	422.70	464.60	457.50	402.20
Cel2	7fg	IRL	BT2	ANF	156.59	162.31	366.35	479.95	346.7	367.84	433.79	461.68	457.58	493.26
Cel2	7fg	IRL	DEM_SEINE	ANF	2.94	7.61	0.58	0.44						
Cel2	7fg	IRL	DREDGE	ANF	19.86	2.25	0.73	0.44	10.20	15.00	22.00	20.07	22.62	27.05
Cel2	7fg	IRL	GN1	ANF	23.98	38.25	49.56	32.22	19.29	15.88	32.96	28.07	32.63	27.85
Cel2	7fg	IRL	GT1	ANF	0.1	1			3.15	6.32	4.41	8.46	9.61	13.59
Cel2	7fg	IRL	LL1	ANF						0.01	0.01			20.02
Cel2	7fg	IRL	none	ANF	4.10	22.70	0.21	1 21					1	39.03
Cel2	7fg	IRL	OTTER	ANF	4.18	23.79	0.31	1.21						0.44
Cel2	7fg	IRL	PEL_SEINE	ANF	2.97	4.82	0.7	0.2	0.24		1 12		2.0	1.40
Cel2	7fg	IRL	PEL_TRAWL	ANF	0.62	6.21		0.2	0.34	0.04	1.12	0.07	2.9	1.48
Cel2	7fg	IRL	POTS	ANF	··	0.36	100.10	3.14	0.23	0.81	0.36	0.07	1.37	2.26
Cel2	7fg	IRL	TR1	ANF	55.46	78.45	102.19	165.64	233.42	329.31	421.23	461.67	520.45	545.88
Cel2	7fg	IRL	TR2	ANF	261.42	284.53	374.01	383.14	520.75	449.45	350.37	329.72	330.78	420.75
Cel2	7fg	IRL	TR3	ANF	0.050			0.22		0.26		1.033	1.000	4.622
Cel2	7fg	NIR	TR1	ANF	0.058	2.045	4.400	2.465	2 222	0.663	40.015	1.032	1.866	4.633
Cel2	7fg	NIR	TR2	ANF		3.916	4.492	2.465	3.228	8.663	18.816	12.248	0.819	6.026
Cel2	7fg	SCO	DREDGE	ANF		0.05:		2.291	0.363	0.636	3.039	3.276	0.552	
Cel2	7fg	SCO	GN1	ANF		0.031								
Cel2	7fg	SCO	OTTER	ANF		1		1	1		0.056			
Cel2	7fg	SCO	TR1	ANF	1.686	1.924		3.382	1.529	5.85	8.168	30.594	7.448	31.545
Cel2	7fg	SCO	TR2	ANF	0.521	0.056		0.853		1.622	2.48	0.646	8.191	1.676

Table 5.6.3.2.2 Haddock (t) landings by Member States and gears, 2003-2012.

AND EV	DEG 4054 =		050 0510			2024	2005	2005	2007 -	2000 =	2000 =	2010 =	2011	2012
ANNEX *	REG_AREA	COUNTRY	REG_GEAR		2003	2004	2005	2006	2007	2008	2009	2010 *	2011	2012 🔻
Cel2	7fg	BEL	BEAM	HAD	0.121	407.707	0.157	0.057	0.16	00.440	0.174	0.797	1.548	450,204
Cel2	7fg	BEL	BT2	HAD		127.727	154.824	89.212	97.567	88.419	94.372	119.352	150.395	158.201
Cel2	7fg	BEL	OTTER	HAD	4.041	4 500								
Cel2	7fg	BEL	TR2	HAD	0.004	1.693	7.005	7.991	17.585	18.138	33.972	42.22	42.375	57.652
Cel2	7fg	ENG	BEAM	HAD	0.001		0.793							
Cel2	7fg	ENG	BT1	HAD		0.275								
Cel2	7fg	ENG	BT2	HAD	38.613	70.302	48.348	25.01	25.905	17.033	25.711	27.64	11.955	27.761
Cel2	7fg	ENG	GN1	HAD	40.882	56.002	55.492	45.736	31.731	34.396	34.917	30.861	49.007	35.165
Cel2	7fg	ENG	GT1	HAD	1	0.001	0.055	0.367	1.075	0.438	0.081	0.012	0.519	0.257
Cel2	7fg	ENG	LL1	HAD	0.057	0.747	0.914	0.557	0.002					
Cel2	7fg	ENG	OTTER	HAD	0.012				0.023	0.001	0.001	0.027		0.001
Cel2	7fg	ENG	PEL_SEINE	HAD								0.303		
Cel2	7fg	ENG	POTS	HAD			1.017							0.019
Cel2	7fg	ENG	TR1	HAD	12.56	21.568	2.277	3.561	13.138	36.233	20.654	12.22	7.486	31.152
Cel2	7fg	ENG	TR2	HAD	13.521	9.227	7.567	10.59	12.864	11.427	5.348	10.769	7.198	9.858
Cel2	7fg	ENG	TR3	HAD			0.242							
Cel2	7fg	ESP	TR1	HAD										0.105
Cel2	7fg	FRA	BT2	HAD				2.096						
Cel2	7fg	FRA	GN1	HAD	0.092	0.039	0.115			0.068	0.068	0.02	0.005	
Cel2	7fg	FRA	GT1	HAD	0.055		0.004	0.02	0.03	0.013	0.013		0.008	
Cel2	7fg	FRA	LL1	HAD			0.002							
Cel2	7fg	FRA	OTTER	HAD		2.745						6.6	2.905	0.083
Cel2	7fg	FRA	PEL_SEINE	HAD										124.626
Cel2	7fg	FRA	PEL_TRAWL	HAD				0.097					1.305	23.862
Cel2	7fg	FRA	TR1	HAD	1841.537	2845.116	1607.444	1038.685	1462.404	1672.187	1665.277	3006.01	1800.054	3515.479
Cel2	7fg	FRA	TR2	HAD	129.133	230.535	140.252	69.07	128.009	102.29	102.29	43.03	10.922	12.464
Cel2	7fg	FRA	TR3	HAD									0.684	
Cel2	7fg	GBJ	BT2	HAD	4.27	3.989	0.373							
Cel2	7fg	IRL	BEAM	HAD	14.93	44.45	0.65							
Cel2	7fg	IRL	BT1	HAD	0.26									
Cel2	7fg	IRL	BT2	HAD	116.49	121.88	192.59	181.71	161.72	135.48	161.36	167.76	150.77	267.02
Cel2	7fg	IRL	DEM SEINE	HAD	3.55	29.5	2.28							
Cel2	7fg	IRL	DREDGE	HAD	0.67	2.26		0.09						
Cel2	7fg	IRL	GN1	HAD	27.1	40.09	35.42	10.86	41.77	33.61	33.24	38.69	69.34	65.99
Cel2	7fg	IRL	GT1	HAD	1=							0.14	100.0	0.4
Cel2	7fg	IRL	none	HAD										56.79
Cel2	7fg	IRL	OTTER	HAD	5.27	26.26	0.19	0.77			0.04			4.18
Cel2	7fg	IRL	PEL SEINE	HAD	4.07	41.28	7.1	5.77			5.01			10
Cel2	7fg	IRL	PEL TRAWL	HAD	1.27	4.61	7.4	1.48	0.18		3.4		22.39	10.63
Cel2	7fg	IRL	POTS	HAD	1.21	1.49		0.13	0.10	0.03	3.4	0.09	3.28	10.03
Cel2	7fg	IRL	TR1	HAD	128.84	118.84	254.12	257.45	429.02	488.71	1002.84		5 1557.97	1957.18
Cel2	7fg	IRL	TR2	HAD	423.34	474.78	752.65	635.96	524.79	407.2	669.32	575.32	501.71	627.57
					423.34	4/4./0	732.03	0.2	324.79	407.2	009.32	3/3.32	501.71	027.57
Cel2	7fg	IRL	TR3	HAD	4.040			0.2		11 570	0.021	41.055	01.070	262 711
Cel2	7fg	NIR	TR1	HAD	4.049	2.072	2.000	2.562	0.100	11.578	0.021	41.055	91.879	262.711
Cel2	7fg	NIR	TR2	HAD	0.242	2.972	3.969	3.562	0.188	0.655	7.107	7.204	0.625	4.907
Cel2	7fg	SCO	TR1	HAD	0.342	1.038		0.24		0.099	1.626	18.87	17.537	69.223
Cel2	7fg	SCO	TR2	HAD	0.758	2.361		0.324		0.116	0.825	0.052	25.74	0.327

Table 5.6.3.2.3 Hake (t) landings by Member States and gears, 2003-2012.

ANNEX	REG AREA	COUNTRY	AREC GEAR	CDECIEC N	2003	2004	2005	2006	2007	2008	2009 🔻	2010	2011	2012 🔻
			REG_GEAR		2003		2005	2006	2007	2008	2009	2010		2012
Cel2	7fg	BEL	BEAM BT2	HKE	9.147	0.411 12.813	9.437	14.341	0.073 9.217	4.024	5.065	0.147	0.022	6.54
Cel2	7fg			HKE		12.813	9.437	14.341	9.217	4.924	5.065	8.147	9.603	0.54
Cel2	7fg	BEL	OTTER	HKE	1.166	0.256	0.464	1.004	4 200	2 242	4.764	2.452	0.454	1.246
Cel2	7fg	BEL	TR2	HKE	0.004	0.356	0.464	1.894	1.389	2.213	1.764	3.152	0.451	1.246
Cel2	7fg	ENG	BEAM DT1	HKE	0.001	0.000	0.034	0.002						
Cel2	7fg	ENG	BT1	HKE	7.004	0.009	F 01	2 202	2.100	2.071	2.044	4.762	2.010	F 720
Cel2	7fg	ENG	BT2	HKE	7.804	8.559	5.01	3.302	3.198	2.071	3.944	4.763	3.018	5.729
Cel2	7fg	ENG	DREDGE	HKE	242.42	217 001	221 202	124 527	152 620	176 771	101 027	110 563	0.002	444 220
Cel2 Cel2	7fg 7fg	ENG	GN1	HKE	243.42	217.981	0.039	2.967	152.629 2.532		181.937 0.136	119.563 0.106	0.266	7.781
Cel2		ENG	GT1 LL1	HKE	0.007	5.439	3.073		2.532	2.306	0.136	0.106	0.266	7.781
	7fg			-	_	5.439		1.422	0.007		0.01			0.002
Cel2	7fg	ENG	OTTER	HKE	0.002		0.207		0.007		0.01	0.000		0.003
Cel2	7fg	ENG	PEL_SEINE	HKE	2.51	2.15	F 072	7 200	C 027	12 101	22.202	0.009	17.740	F3 C0F
Cel2	7fg	ENG	TR1	HKE	3.51	3.15	5.073	7.308	6.927	13.181	23.392	22.769	17.748	52.685
Cel2	7fg	ENG	TR2	HKE	1.946	1.201	1.328	1.387	0.93	0.653	0.657	0.832	0.299	3.131
Cel2	7fg	ENG	TR3	HKE			0.01							2.442
Cel2	7fg	ESP	TR1	HKE							1			3.412
Cel2	7fg	FRA	BT2	HKE				0.149						
Cel2	7fg	FRA	GN1	HKE	0.64	0.078	38.951		0.168	0.005	0.005	3.41		23.69
Cel2	7fg	FRA	GT1	HKE	0.004	0.001	0.052	0.062	0.053			0.04	0.483	0.017
Cel2	7fg	FRA	OTTER	HKE		0.813						1.26	0.348	
Cel2	7fg	FRA	PEL_SEINE	HKE										6.28
Cel2	7fg	FRA	PEL_TRAWL	HKE				0.027	0.038				0.58	4.479
Cel2	7fg	FRA	TR1	HKE		103.093		76.63	86.224	70.667	70.406			441.438
Cel2	7fg	FRA	TR2	HKE	22.273	22.459	28.955	7.592	9.002	7.126	7.126	2.757	0.773	1.3
Cel2	7fg	FRA	TR3	HKE									0.087	
Cel2	7fg	GBJ	BT2	HKE	0.543	0.515	0.103			1			1	1
Cel2	7fg	IRL	BEAM	HKE	7.25	13.02								
Cel2	7fg	IRL	BT1	HKE	0.07	T		T	1		1	T	T	1
Cel2	7fg	IRL	BT2	HKE	59.04	33.15	42.33	43.28	46.59	23.19	19.81	37.53	32.5	39.08
Cel2	7fg	IRL	DEM_SEINE	HKE	1.56	11.76	0.24			1		1	1	1
Cel2	7fg	IRL	DREDGE	HKE	0.18	0.66								
Cel2	7fg	IRL	GN1	HKE	64.83	130.08	132.03	56.67		233.6	290.03	186.08	233.29	209.95
Cel2	7fg	IRL	GT1	HKE					0.02			0.85	0.3	13.01
Cel2	7fg	IRL	none	HKE	1			1						18.11
Cel2	7fg	IRL	OTTER	HKE	0.59	8.76								0.87
Cel2	7fg	IRL	PEL_SEINE	HKE	1.92	4.86	0.48	1			1	1	_	1
Cel2	7fg	IRL	PEL_TRAWL	HKE	0.43	2.33		0.15	0.07		0.08		14.47	1.8
Cel2	7fg	IRL	POTS	HKE		0.34				0.01			1.64	
Cel2	7fg	IRL	TR1	HKE	50.45	64.76	68.24	107.57	143.23	164.84	180.82	283.14	424.47	449.82
Cel2	7fg	IRL	TR2	HKE	114.15	113.07	98.93	115.97	106.15	97.08	72.98	108.17	55.01	75.96
Cel2	7fg	IRL	TR3	HKE				0.12						
Cel2	7fg	NIR	TR1	HKE	0.761			0.008			0.056	5.317	10.694	15.418
Cel2	7fg	NIR	TR2	HKE		1.795	1.335	0.379	0.153	0.559	0.655	1.797	0.01	0.377
Cel2	7fg	SCO	GN1	HKE	0.456	0.01								
Cel2	7fg	SCO	OTTER	HKE							0.003			
Cel2	7fg	SCO	TR1	HKE	0.277	0.783		0.971	0.481	2.786	2.207	9.104	1.656	1.071
Cel2	7fg	SCO	TR2	HKE	0.114			0.146		0.603	0.021		0.004	0.009

Table 5.6.3.2.4 Nephrops (t) landings by Member States and gears, 2003-2012.

ANNEX 💌	REG_AREA	COUNTRY T	REG_GEAR Z	SPECIES ~	2003	2004	2005 🔻	2006	2007	2008	2009 🔻	2010 🔻	2011 🔻	2012 💌
Cel2	7fg	BEL	BEAM	NEP	0.01							0.055		0.272
Cel2	7fg	BEL	BT2	NEP	0.12	0.572	1.076	0.721	1.46	0.388	2.645	4.285	4.331	5.002
Cel2	7fg	BEL	TR2	NEP		11.836	5.418	6.491	4.791	8.688	12.278	10.934	3.084	0.849
Cel2	7fg	ENG	BEAM	NEP			0.016							
Cel2	7fg	ENG	BT2	NEP	3.041	2.958	3.148	1.753	0.243	0.598	2.862	0.769	1.168	0.601
Cel2	7fg	ENG	GN1	NEP					0.003					
Cel2	7fg	ENG	POTS	NEP			0.081	0.069				0.002		
Cel2	7fg	ENG	TR1	NEP	4.963	1.331	2.076	1.135	0.585	2.966	7.647	4.63	4.636	4.055
Cel2	7fg	ENG	TR2	NEP	9.91	0.801	0.003		1.595		8.872	41.921		0.059
Cel2	7fg	ESP	TR1	NEP										0.732
Cel2	7fg	FRA	GN1	NEP			0.481							
Cel2	7fg	FRA	OTTER	NEP								1.89		
Cel2	7fg	FRA	PEL_TRAWL	NEP				0.95						0.23
Cel2	7fg	FRA	TR1	NEP	683.549	479.493	479.289	307.541	209.096	284.143	284.143	586.91	309.971	255.394
Cel2	7fg	FRA	TR2	NEP	146.341	27.295	45.84	14.184	11.765	12.525	12.525		0.06	
Cel2	7fg	FRA	TR3	NEP									0.085	
Cel2	7fg	IRL	BEAM	NEP	2.14	38.92	6.42							
Cel2	7fg	IRL	BT1	NEP	0.2									
Cel2	7fg	IRL	BT2	NEP	63.6	75.46	83.9	83.29	83.2	32.38	26.89	16.64	17.5	4.17
Cel2	7fg	IRL	DREDGE	NEP		0.9								
Cel2	7fg	IRL	GN1	NEP	0.23	12.51	9.53	3.89		3.97	2.31		0.05	3.12
Cel2	7fg	IRL	GT1	NEP	0.74									0.02
Cel2	7fg	IRL	none	NEP										191.55
Cel2	7fg	IRL	OTTER	NEP	35	209.55	0.12	3.04		0.1	0.1			0.61
Cel2	7fg	IRL	PEL_SEINE	NEP	7.59	2.6	0.08							
Cel2	7fg	IRL	PEL_TRAWL	NEP	3.88	47.46		1.16	0.98		15.15		9.17	30.08
Cel2	7fg	IRL	POTS	NEP		3.54			0.71	0.54			0.1	
Cel2	7fg	IRL	TR1	NEP	143.62	214.45	371.18	436.36	675.74	1080.17	1242.14	827.94	861.3	798.59
Cel2	7fg	IRL	TR2	NEP	1905.31	1675.39	2415.86	1805.46	3110.87	2916.77	2026.65	2350.59	1499.03	2445.44
Cel2	7fg	IRL	TR3	NEP				0.3						
Cel2	7fg	NIR	TR1	NEP			0.608							0.363
Cel2	7fg	NIR	TR2	NEP		34.58	65.012	58.484	46.887	338.122	328.437	328.044	7.587	32.976
Cel2	7fg	SCO	TR1	NEP	0.082	0.11				0.136	0.066	60.74	14.304	38.66
Cel2	7fg	SCO	TR2	NEP						0.665	47.068	7.206	23.634	

Table 5.6.3.2.5 Plaice (t) landings by Member States and gears, 2003-2012.

AND THE S	1050 1051		DEC 0513	005050 -	2002 -	2001 -	-	2006 -	200-	2000 -	2222 =	0010 -		2012
ANNEX	REG_AREA	COUNTRY	REG_GEAR	SPECIES ~	2003 🔻	2004	2005 🔻	2006	2007 🔻	2008	2009 🔻	2010	2011 🔻	2012 🔻
Cel2	7fg	BEL	BEAM	PLE	0.149	0.763	1.066	0.322	0.727		1.606	0.405	1.068	0.504
Cel2	7fg	BEL	BT2	PLE		197.953	150.713	129.684	138.073	105.029	137.42	125.442	154.468	164.498
Cel2	7fg	BEL	OTTER	PLE	5.456	1.000	44.057	40.500	54.45	70.004	70.566	64.540	E4 E22	27.204
Cel2	7fg	BEL	TR2	PLE	0.004	4.363	14.957	40.588	54.17	79.031	79.566	61.549	51.533	37.201
Cel2	7fg	ENG	BEAM	PLE	0.061	0.059	0.016	1		0.201	1			
Cel2	7fg	ENG	BT1	PLE		0.021								
Cel2	7fg	ENG	BT2	PLE	65.888	39.437	27.117	27.423	24.032	23.644	28.013	25.234	22.474	24.078
Cel2	7fg	ENG	DREDGE	PLE	0.002	0.004			0.001			0.033	0.006	0.008
Cel2	7fg	ENG	GN1	PLE	0.227	0.522	0.762	0.887	0.356	0.137	0.199	0.675	0.555	0.366
Cel2	7fg	ENG	GT1	PLE	0.000	0.001	0.03	0.063	0.011	0.012	0.014	0.056	0.119	0.135
Cel2	7fg	ENG	LL1	PLE	0.009	0.007	0.404	0.455	0.054	0.000	0.001	0.404	0.405	0.475
Cel2	7fg	ENG	OTTER	PLE	0.289	0.007	0.491	0.166	0.361	0.083	0.177	0.131	0.106	0.175
Cel2	7fg	ENG	PEL_SEINE	PLE		1		1	1		1	0.042		
Cel2	7fg	ENG	POTS	PLE			0.001							
Cel2	7fg	ENG	TR1	PLE	3.105	2.568	0.337	0.216	0.985	0.823	1.784	1.253	1.945	1.712
Cel2	7fg	ENG	TR2	PLE	28.957	20.504	11.459	23.544	14.542	17.458	12.81	13.582	8.866	7.997
Cel2	7fg	ENG	TR3	PLE			0.017				1			
Cel2	7fg	FRA	BT2	PLE			3.43	0.09				0.235	1.795	0.03
Cel2	7fg	FRA	DREDGE	PLE	0.009		0.004		1		1	0.065	0.065	0.058
Cel2	7fg	FRA	GN1	PLE	0.017	0.008	0.013			0.003	0.003			
Cel2	7fg	FRA	GT1	PLE	0.007	0.153	0.004	0.012		1	1	0.39	1.515	0.399
Cel2	7fg	FRA	OTTER	PLE		0.105						2.12	0.034	
Cel2	7fg	FRA	PEL_SEINE	PLE							1		2.22	2.999
Cel2	7fg	FRA	PEL_TRAWL	PLE	0.003			0.059				0.05	0.09	0.315
Cel2	7fg	FRA	POTS	PLE				I					0.061	
Cel2	7fg	FRA	TR1	PLE	117.392		64.276	51.687	51.98	72.277	71.838	91.84	60.793	71.46
Cel2	7fg	FRA	TR2	PLE	18.84	14.018	13.791	5.051	8.354	6.97	6.97	3.07	1.389	0.811
Cel2	7fg	FRA	TR3	PLE									0.036	
Cel2	7fg	GBJ	BT2	PLE	9.709	11.014	1.739				1			
Cel2	7fg	IRL	BEAM	PLE	0.26	1.4								
Cel2	7fg	IRL	BT2	PLE	9.22	5.49	10.74	15.54	23.15	14.31	7.88	7.15	6.84	11.37
Cel2	7fg	IRL	DEM_SEINE	PLE	0.53	0.53								
Cel2	7fg	IRL	DREDGE	PLE	0.08			0.04			12.12			
Cel2	7fg	IRL	GN1	PLE	0.21	0.39	0.13	0.1	0.32	0.01	0.46	0.00		
Cel2	7fg	IRL	GT1	PLE	0.02			1			1	0.03		
Cel2	7fg	IRL	none	PLE	0.07		0.00							0.48
Cel2	7fg	IRL	OTTER	PLE	0.97		0.02	1	1		1			
Cel2	7fg	IRL	PEL_SEINE	PLE	0.1	1.22								
Cel2	7fg	IRL	PEL_TRAWL	PLE		0.25					0.07		0.5	0.07
Cel2	7fg	IRL	POTS	PLE		0.08				0.02		0.04		
Cel2	7fg	IRL	TR1	PLE	14.88	7.52	7.71	5.75	13.7	23.86	28.48	32.7	38.8	40.95
Cel2	7fg	IRL	TR2	PLE	24.22	28	26.43	26.67	21.87	24.1	24.81	23.2	21.1	20.54
Cel2	7fg	IRL	TR3	PLE										
Cel2	7fg	NIR	TR1	PLE	0.164								0.001	0.354
Cel2	7fg	NIR	TR2	PLE		0.501	0.217	0.496		0.213	0.951	0.716	0.034	0.023
Cel2	7fg	SCO	DREDGE	PLE								0.001	0.001	
Cel2	7fg	SCO	OTTER	PLE							0.085			
Cel2	7fg	SCO	TR1	PLE	0.081						0.038	0.325	0.436	0.231
Cel2	7fg	SCO	TR2	PLE		0.214					0.057		0.093	0.013

Table 5.6.3.2.6 Sole (t) landings by Member States and gears, 2003-2012.

ANNEX	REG AREA	COUNTRY	DEC CEAR	SPECIES Y	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
							_	_		2008	_			
Cel2	7fg	BEL	BEAM	SOL	0.178	1.289	2.138	0.737	4.979	442.474	2.23	4.201	3.811	1.028
Cel2	7fg	BEL	BT2	SOL		693.827	624.618	527.845	522.599	412.1/1	438.424	534.504	688.257	/81.151
Cel2	7fg	BEL	OTTER	SOL	0.649	45 404	45.270	42.465	46.053	40.720	75 240	00.447	00.700	FF 700
Cel2	7fg	BEL	TR2	SOL	1.50	15.101	15.278	43.165	46.052	49.729	75.219	80.117	80.706	55.769
Cel2	7fg	ENG	BEAM	SOL	1.59	0.048	0.21			0.396				
Cel2	7fg	ENG	BT1	SOL	254 204	0.384	475.070	101 100	244 000	105 201	170 755	454500	444 500	112.016
Cel2	7fg	ENG	BT2	SOL	264.394			181.496					_	143.016
Cel2	7fg	ENG	DREDGE	SOL	0.028	0.01	0.209	0.062	0.021	0.007	0.007	0.359	0.285	0.076
Cel2	7fg	ENG	GN1	SOL	0.867	0.922	0.894	0.6	0.715	0.25	0.199	0.212	0.272	0.089
Cel2	7fg	ENG	GT1	SOL		0.011	0.04	0.001	0.007	0.014		0.001		
Cel2	7fg	ENG	LL1	SOL	0.003			1	1	1				
Cel2	7fg	ENG	OTTER	SOL	0.068		0.163	0.022	0.061	0.013	0.006	0.024	0.051	0.356
Cel2	7fg	ENG	PEL_SEINE	SOL								0.002		
Cel2	7fg	ENG	POTS	SOL										0.157
Cel2	7fg	ENG	TR1	SOL	1.639	1.159	0.343	0.07	0.131	0.917	0.923	1.217	0.272	0.471
Cel2	7fg	ENG	TR2	SOL	8.726	8.85	10.151	18.125	9.038	10.327	8.911	12.286	16.39	17.138
Cel2	7fg	ENG	TR3	SOL			0.021				1			
Cel2	7fg	FRA	BT2	SOL			2.615	0.021				0.37	1.54	0.04
Cel2	7fg	FRA	DREDGE	SOL	0.002	1	0.004	1	1	1	1	0.16	0.1	0.08
Cel2	7fg	FRA	GN1	SOL		0.287	0.018							
Cel2	7fg	FRA	GT1	SOL		1.846	0.4					1.713	6.198	1.486
Cel2	7fg	FRA	OTTER	SOL		0.123						0.134	0.018	
Cel2	7fg	FRA	PEL_SEINE	SOL										0.575
Cel2	7fg	FRA	PEL_TRAWL	SOL				0.064				0.03		0.057
Cel2	7fg	FRA	POTS	SOL									0.095	
Cel2	7fg	FRA	TR1	SOL	73.682	38.95	37.966	30.528	36.219	29.986	29.979	25.67	29.864	30.632
Cel2	7fg	FRA	TR2	SOL	19.383	10.278	16.998	4.451	14.416	3.982	3.982	0.73	0.619	0.221
Cel2	7fg	FRA	TR3	SOL									0.007	
Cel2	7fg	GBJ	BT2	SOL	50.138	47.992	20.7							
Cel2	7fg	IOM	DREDGE	SOL					0.001					
Cel2	7fg	IRL	BEAM	SOL	0.98	1.75	0.04							
Cel2	7fg	IRL	BT1	SOL	0.02									
Cel2	7fg	IRL	BT2	SOL	8.96	10.12	15.52	21.69	12.7	12.13	12.02	8.48	6.94	10.77
Cel2	7fg	IRL	DREDGE	SOL		0.37		0.05						
Cel2	7fg	IRL	GN1	SOL	0.69	0.11	0.09	0.86	0.09	0.15	0.23	0.14	0.02	0.03
Cel2	7fg	IRL	none	SOL										0.72
Cel2	7fg	IRL	OTTER	SOL	0.3	0.47	0.02	0.02						
Cel2	7fg	IRL	PEL_SEINE	SOL		0.79								
Cel2	7fg	IRL	PEL_TRAWL	SOL		0.54							0.04	0.03
Cel2	7fg	IRL	TR1	SOL	1.42	2.63	1.26	2.08	2.7	2.96	3.44	3.94	7.25	4.91
Cel2	7fg	IRL	TR2	SOL	9.63	16.3	17.13	13.41	16.64	12.99	10.32	14.42	15.26	13.72
Cel2	7fg	NIR	TR1	SOL									0.004	0.028
Cel2	7fg	NIR	TR2	SOL		0.59	0.616	0.285	0.151	1.086	2.019	1.681	0.058	0.283
Cel2	7fg	SCO	DREDGE	SOL				0.048		0.062		0.038	0.009	
Cel2	7fg	SCO	OTTER	SOL							0.001			
Cel2	7fg	SCO	TR1	SOL							0.094	0.003	0.177	0.318
Cel2	7fg	SCO	TR2	SOL	0.162	0.074					0.063		0.099	0.08

Table 5.6.3.2.7 Whiting (t) landings by Member States and gears, 2003-2012.

											_	_		_
ANNEX	REG_AREA					2004	2005	2006	2007	2008	2009	2010	2011	2012 🔻
Cel2	7fg	BEL	BEAM	WHG	0.122	0.595	0.129	0.393	0.244		0.073		0.035	0.381
Cel2	7fg	BEL	BT2	WHG	112.018	136.629	177.846	53.947	67.412	73.184	38.744	64.398	63.663	90.97
Cel2	7fg	BEL	OTTER	WHG	8.389									
Cel2	7fg	BEL	TR2	WHG		35.829	36.471	69.641	54.535	43.167	45.048	29.604	24.358	50.062
Cel2	7fg	ENG	BEAM	WHG	0.059		0.014							
Cel2	7fg	ENG	BT1	WHG		0.001								
Cel2	7fg	ENG	BT2	WHG	21.739	13.129	12.393	7.205	9.845	10.942	9.58	8.951	8.379	6.519
Cel2	7fg	ENG	DREDGE	WHG		0.003								
Cel2	7fg	ENG	GN1	WHG	14.478	13.127	17.049	11.215	9.524	4.53	3.409	4.037	8.953	7.619
Cel2	7fg	ENG	GT1	WHG		0.097	0.065	0.08	0.225	0.043	0.061	0.017	0.101	0.135
Cel2	7fg	ENG	LL1	WHG	0.223	0.066	0.227	0.015	0.002	0.003		_		
Cel2	7fg	ENG	OTTER	WHG	0.003		0.013		0.033		0.014	0.013		0.001
Cel2	7fg	ENG	PEL_SEINE	WHG								0.612		
Cel2	7fg	ENG	POTS	WHG		0.106			0.009					0.003
Cel2	7fg	ENG	TR1	WHG	15.847	10.371	3.064	2.025	3.232	4.874	6.761	5.973	7.506	8.415
Cel2	7fg	ENG	TR2	WHG	27.997	36.884	27.887	11.535	5.21	4.297	2.714	11.757	2.887	2.076
Cel2	7fg	ENG	TR3	WHG			0.074							
Cel2	7fg	FRA	BT2	WHG				0.063					0.025	
Cel2	7fg	FRA	GN1	WHG	0.009	0.154	4.701		0.022	0.025	0.025			0.416
Cel2	7fg	FRA	GT1	WHG	0.009		0.014		0.012			0.05	0.066	0.015
Cel2	7fg	FRA	OTTER	WHG		10.289						2.5	0.137	0.032
Cel2	7fg	FRA	PEL_SEINE	WHG										16.472
Cel2	7fg	FRA	PEL_TRAWL	WHG	7.727	0.18		1.285					0.135	1.039
Cel2	7fg	FRA	TR1	WHG	2766.229	2636.194	3577.314	2763.385	1789.324	1098.857	1092.821	1212.74	1141.604	977.469
Cel2	7fg	FRA	TR2	WHG	269.742	258.958	460.258	121.41	121.316	84.829	84.829	19.01	10.603	9.006
Cel2	7fg	FRA	TR3	WHG									0.733	
Cel2	7fg	GBJ	BT2	WHG	1.497	1.475	1.134							
Cel2	7fg	IRL	BEAM	WHG	6.76	8.24								
Cel2	7fg	IRL	BT1	WHG	0.17									
Cel2	7fg	IRL	BT2	WHG	49.43	29.69	27.71	21.5	24.21	3.81	2.73	4.21	14.82	12.01
Cel2	7fg	IRL	DEM_SEINE	WHG	6.02	47.02	7.5							
Cel2	7fg	IRL	DREDGE	WHG	0.32	0.72		0.09						
Cel2	7fg	IRL	GN1	WHG	37.87	90.72	16.92	1.99	6.58	8.55	6.69	11.49	14.3	48.93
Cel2	7fg	IRL	GT1	WHG								0.06	0.03	0.15
Cel2	7fg	IRL	none	WHG										93.65
Cel2	7fg	IRL	OTTER	WHG	13.18	363.95								1.81
Cel2	7fg	IRL	PEL_SEINE	WHG	53.27	78.91	8.68							
Cel2	7fg	IRL	PEL_TRAWL	WHG	75.05	42.19		13	0.13		2.69		37.02	19.42
Cel2	7fg	IRL	POTS	WHG		2.04							1.15	
Cel2	7fg	IRL	TR1	WHG	793.4	611.34	641.43	758.07	853.92	814.01	1218.42	1672.12	2496.85	3206.05
Cel2	7fg	IRL	TR2	WHG	1875.43	2153.58	4286.66	3141.33	3403.74	1019.6	828.02	1537.7	1294.8	904.88
Cel2	7fg	IRL	TR3	WHG				0.6						
Cel2	7fg	NIR	TR1	WHG	6.478			13.3		0.2		29.075	24.244	27.705
Cel2	7fg	NIR	TR2	WHG		15.573	10.263	8.599	0.685	10.019	12.803	16.655	1.13	3.405
Cel2	7fg	SCO	OTTER	WHG							0.028			
	_c					2 576					4 544	1 005	4 270	7.223
Cel2	7fg	SCO	TR1	WHG	1.5	3.576					4.511	1.895	4.278	7.223

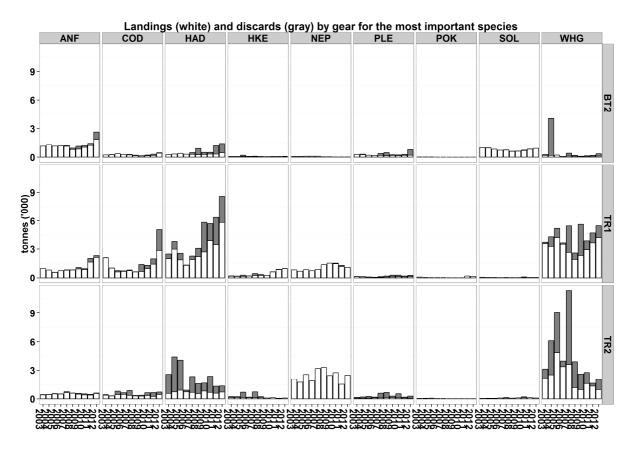


Figure 5.6.3.2.1. Landings and discards of the main species by active gears (BT2, TR1, TR2) in the subsection of the Celtic Sea (Cel2 7fg). 2003-2012.

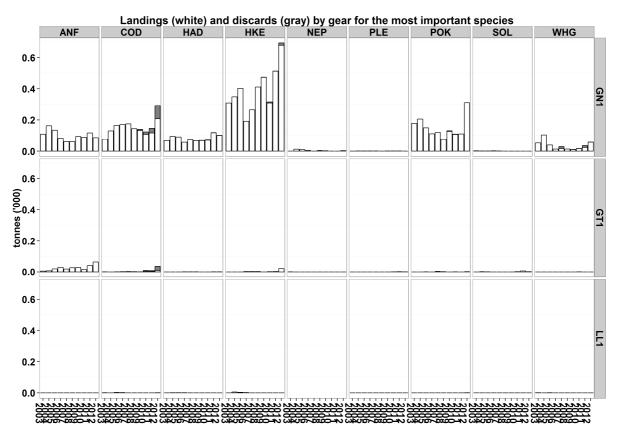


Figure 5.6.3.2.2. Landings and discards of the main species by passive gears (GN1, GT1, LL1) in the wider Celtic Sea (Cel1; 7bcefghjk). 2003-2012.

Table 5.6.3.2.8. Discard rate and associated coverage index for Cod in Cel2 (7fg) by Gear and Special condition as defined under the cod management plan. $A, \geq 66\%$ of landings have associated discard sampling, $B, \geq 33\% < 66\%$ of landings have associated discard sampling, C < 33% of landings have associated discard sampling. 2003-2012. Gear/Special condition combinations without discard data omitted.

					T 2003 R 🐣	2004 R 🛎	2005 R 🎽 2	006 R 🎽 2	007 R 🎽 2	008 R 🐣 2	009 R 🗡 2	010 R 🎽 2	011 R 🐣 2	012 R 💌 2003 DQ	1 × 2004 DQI	≥ 2005 DQI	* 2006 DQI	* 2007 DQI	¥ 2008 DQI	¥ 2009 DQI	* 2010 DQI	¥ 2011 DQI	* 2012 DQI
Cel2	7fg	BEAM BT1	NONE	ANF				_								_					_		_
Cel2 Cel2	7fg 7fg	BT2	none NONE	ANF					0,068	0,15	0,258	0,169	0,139	0,293				Δ.	۸	R	-	Δ	Δ
Cel2	7fg	DEM_SEINE	NONE	ANF					0,008	0,13	0,235	0,105	0,139	0,253				A	Α	В		A	
Cel2	7fg	DREDGE	NONE	ANF								0,616	0,6	0,852							C		
Cel2	7fg	GN1	NONE	ANF	0	0	0			0	0,003	0,001	0	0 C	С	C			C	В	С	C	C
Cel2	7fg	GT1	none	ANF	0			0	0	0		0		0 B			C	С	С		В		C
Cel2 Cel2	7fg 7fg	LL1 none	none none	ANF																			
Cel2	7fg	OTTER	NONE	ANF	0,01	0	0,019	0,03	0,02	0,909	0	0,248	0,363	0,035 C	C	C	A	С	C	С	С	C	C
Cel2	7fg	PEL_SEINE	none	ANF																			
Cel2	7fg	PEL TRAWL	none	ANF		0,095									В								
Cel2	7fg	POTS TR1	none	ANF	11			1				1								_			
Cel2 Cel2	7fg 7fg	TR1	none NONE	ANF	0,004	0,006	0,011	0,003	0,035	0,013	0,141	0,1	0,183	0,078 A 0.083 A	Α	Α	Α	A	A	Δ	Α	Α	Δ
Cel2	7fg	TR3	none	ANF	0,075	0,041	0,003	0,022	0,133	0,058	1	0,200	0,101	0,003 A					A	A		c	
Cel2	7fg	BEAM	NONE	HAD								0,5									А		
Cel2	7fg	BT1	none	HAD																			
Cel2	7fg 7fg	DEM SEINE	NONE	HAD	0	0	0	0	0,397	0,736	0,438	0,367	0,738	0,678 C	С	С	С	A	A	В	C	A	A
Cel2 Cel2	7fg	DREDGE	NONE	HAD																			
Cel2	7fg	GN1	none	HAD	0	0				0	0,003	0,029	0,008	0,012 C	C				С	В	A	В	В
Cel2	7fg	GT1	none	HAD								0		0							С		В
Cel2	7fg	LL1	none	HAD																			
Cel2 Cel2	7fg 7fg	none OTTER	none NONE	HAD	0,006	0,792	0,855	0,386	0,779	0,997	0,957	0,334	0,497	0,072 C		_			_		_	_	
Cel2	7fg	PEL_SEINE	none	HAD	0,006	0,792	0,855	0,380	0,779	0,997	0,957	0,334	0,497	0,072			A	<u>L</u>		A			А
Cel2	7fg	PEL TRAWL	none	HAD		0,954									c								
Cel2	7fg	POTS	none	HAD																			
Cel2	7fg	TR1	none	HAD	0,198	0,22	0,27	0,026	0,161	0,279	0,541	0,317	0,454	0,32 A	A	A	A	A	A	В	A	A	C
Cel2 Cel2	7fg 7fg	TR2	none	HAD	0,778	0,835	0,774	0,194	0,706	0,662	0,505	0,712	0,552	0,47 A	А	А	В	В	A	A	A	A C	A
Cel2	7fg	BEAM	NONE	HKE						-	1		U						^				
Cel2	7fg	BT1	none	HKE																			
Ce12	7fg	BT2	NONE	HKE	0	0	0,723	0,174	0,381	0,521	0,336	0,258	0,324	0,291 C	C	C	C	A	A	В	C	В	A
Cel2	7fg	DEM_SEINE		HKE									0										
Cel2 Cel2	7fg 7fg	DREDGE GN1	none	HKE	0	0	0		0	0	0,003	0,021	0,002	0,021 C	С	С	_	С	C	A	В	В	В
Cel2	7fg	GT1	none	HKE				0	0			0,257	0,578	0,001			C	С			A	С	В
Ce12	7fg	LL1	none	HKE																			
Cel2	7fg	none	none	HKE			0.804	1	0.515	-			0	0					_				
Cel2 Cel2	7fg 7fg	OTTER PEL SEINE	none	HKE	0,001	0,001	0,804	1	0,816	1	0	0	0	U C	C	A	A	C	A	C	C	C	C
Cel2	7fg	PEL TRAWL	none	HKE		0,084									В								
Cel2	7fg	POTS	NONE	HKE																			
Cel2 Cel2	7fg 7fg	TR1 TR2	none	HKE	0,144	0,13 0,374	0,444	0,071	0,485	0,293	0	0,036	0,038	0,015 A 0,018 A	Α	A	В	B	A	Β	Α	Α	Β
Cel2	7fg	TR3	none	HKE	0,427	0,374	0,012	0,204	0,035	0,323	- 0	- 0	0	0,018 A			В	В	A			C	
Cel2	7fg	BEAM	NONE	NEP																			
Cel2		BT1	NONE	NEP																			
Cel2 Cel2	7fg 7fg	DREDGE	NONE	NEP											_	_	_	_	_	_	_	_	_
Cel2	7fg	GN1	none	NEP																		_	
Ce12	7fg	GT1	NONE	NEP																			
Cel2	7fg	none OTTER	none	NEP								_	_		_	_							
Cel2 Cel2	7fg 7fg	PEL SEINE	none NONE	NEP															_				
Cel2	7fg		none	NEP																			
Cel2	7fg	POTS	none	NEP																_			_
Cel2 Cel2	7fg 7fg	TR1 TR2	none	NEP NEP	0	0	0	0	0	0		0,031	0,091	Α	A	В	B C	С	C		В	С	
Cel2	7fg	TR3	none	NEP													_		_				
Cel2	7fg	BEAM	NONE	PLE																			
Cel2 Cel2	7fg 7fg	BT1 BT2	none	PLE	0	0.175	0	0	0.519	0.698	0.288	0.286	0.363	0.748 C	_		_		_	_		_	
Cel2		DEM SEINE		PLE	- 0	0,175		- 0	0,519	0,098	0,288	0,280	0,303	U, 748 C				A	A	A	A	A	A
Cel2	7fg	DREDGE	none	PLE								0,843	0,856	0,966							C	С	C
Cel2	7fg	GN1	none	PLE						0	0,013	0	0,391	0					C	C	С		
Cel2	7fg	GT1	none	PLE								0,012	0	0					_		C	C	C
Cel2 Cel2	7fg	LL1 none	none	PLE																			
Cel2	7fg 7fg	OTTER	NONE	PLE	0,001	0,274	0,057	0,563	0,019	0,153	0,011	0,542	0,231	0,504 C	C	A	В	C	C	С	С	С	C
Cel2	7fg	PEL SEINE	none	PLE																			
Ce12	7fg	PEL_TRAWL	none	PLE		0,471									Α								
Cel2 Cel2	7fg 7fg	POTS TR1	none	PLE	0,113	0,25	0,27	0,216	0,486	0,493	0,641	0,557	0,461	0,572 A	Δ	Δ	Δ	Δ	Δ		Δ	Δ	
Cel2	7fg	TR2	NONE	PLE	0,113	0,663	0,731	0,48	0,480	0,809	0,558	0,806	0,401	0,772 A	A	В	В	В	C	C	C	В	В
Cel2	7fg	TR3	none	PLE						1	1		0,122						A	A		С	
Cel2	7fg	BEAM DT1	NONE	SOL	_					-													
Cel2 Cel2	7fg 7fg	BT1 BT2	none	SOL	0	0,01	0	0	0,027	0,021	0,037	0,068	0,022	0,002 C	С.	С	С.	A	A	A	A	A	С
Cel2	7fg	DREDGE	none	SOL		0,01			-,52.			0	0,022	0,002							C	C	C
Cel2	7fg	GN1	none	SOL							0,007	0	0	0						В	В	В	С
Cel2	7fg	GT1 LL1	none	SOL								0		0							С		С
Cel2 Cel2	7fg 7fg	none	none	SOL																			
Cel2	7fg	OTTER	NONE	SOL			0		0,016		0	0	0	0		С		C		С	С	С	C
Ce12	7fg	PEL_SEINE	none	SOL																			
Cel2 Cel2	7fg 7fg	PEL TRAWL POTS	none	SOL						-													
Cel2	7fg	TR1	none	SOL	0	0	0,002	0	0,073	0,001	0,042	0,721	0,002	0,122 A	Α	Α	A	A	A	С .	В	В	c _
Cel2	7fg	TR2	NONE	SOL	0			0	0,325	0,003	0,003	0,488	0,003	0,019 C	E	В	C	C	C	C	C	С	C
Cel2	7fg	TR3	none	SOL									0					_	_			C	
Cel2 Cel2		BEAM BT1		WHG																			
Cel2				WHG	0,333	0,955		0	0,751	0,531	0,425	0,425	0,524	0,692 C	С		c	Α	Α	Α	A	Α	A
Cel2	7fg	DEM_SEINE	NONE	WHG																			
Cel2	7fg 7fg	DREDGE GN1	none	WHG		0			0,447		0,096	0.093	0,345	0,004	-			-	-	Δ.	R		B
Cel2 Cel2		GT1	none	WHG		- 0		T	0,122	J	0,050	0,729	0,345	0,004	_			ē .			c .	В	В
	7fg	LL1	none	WHG																			
Ce12	7fg	none	none	WHG			0		0.517		0.5==	0		0.405									
Cel2			NONE	WHG	0,002	0,001	0,991	1	0,946	1	0,986	0,606	0,94	0,105 C			A		A				A
Cel2 Cel2	7fg	OTTER PEL SEINE																					
Cel2		PEL_SEINE	none none	WHG	0	0,685								С	C								
Cel2 Cel2 Cel2 Cel2 Cel2	7fg 7fg 7fg 7fg	PEL TRAWL POTS	none none	WHG										С	E								
Cel2 Cel2 Cel2 Cel2 Cel2 Cel2	7fg 7fg 7fg 7fg 7fg	PEL_SEINE PEL_TRAWL POTS TR1	none none none	WHG WHG	0,046	0,245	0,191	0,038	0,516	0,258	0,588	0,25	0,223	0,23 A 0,528 A	A A	A	A	A	A	В	A	A	В
Cel2 Cel2 Cel2 Cel2 Cel2	7fg 7fg 7fg 7fg 7fg	PEL TRAWL POTS	none none	WHG		0,245		0,038 0,152	0,516 0,684	0,258 0,7	0,588 0,622 1		0,223 0,183 0	0,23 A 0,528 A	A A	A A	A A	A A	A A	B A A	A A	A A	B A

Table 5.6.3.2.9. Discard rate and associated coverage index for Pelagic Species making up more than 1% of total pelagic landings by pelagic gears (trawl and seine), and *Nephrops* in Cel2 (7fg) by Gear and Special condition as defined under the cod management plan. A, \geq 66% of landings have associated discard sampling, B, \geq 33% < 66% of landings have associated discard sampling, C < 33% of landings have associated discard sampling. 2003-2012. Gear/Special condition combinations without discard data omitted.

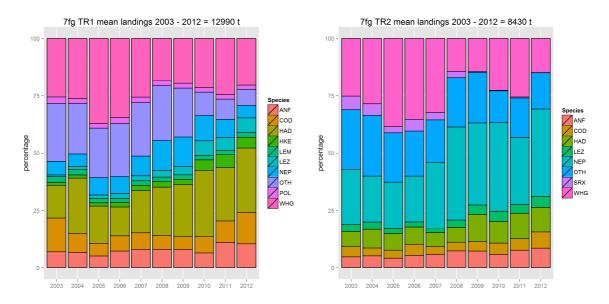


Figure 5.6.3.2.1. Relative percentage (in volume, not taking into account the discards) of each species in the total catches for TR1 (left), and TR2 (right). 2003-2012. Note that landings are only those reported in accordance with the data call, not total landings by the fisheries.

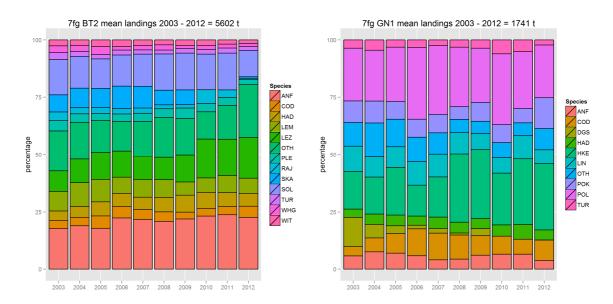


Figure 5.6.3.2.2 Relative percentage (in volume, not taking into account the discards) of each species in the total catches for BT2 (left) and GN1 (right). 2003-2012. Note that landings are only those reported in accordance with the data call, not total landings by the fisheries.

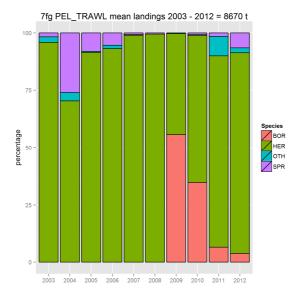


Figure 5.6.3.2.3 relative percentage (in volume, not taking into account the discards) of each species in the total catches for Pelagic Trawl, 2003-2012. Note that landings are only those reported in accordance with the data call, not total landings by the fisheries.

5.6.4 ToR 1.d CPUE and LPUE of cod by area, fisheries and Member States

Tables 5.6.4.1.1 and 5.6.4.1.2 showing LPUE and CPUE by gear groups (regulated and unregulated); area and nation are not presented in this report but are available on the JRC website: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1306

5.6.4.1 ICES sub-divisions 7bcefghjk (Cel1)

STECF EWG 13-13 notes that discard information is scarce. Figure 5.6.4.1.1 displays the trends in cod CPUE and LPUE, 2003-2012 for the four gears with highest CPUE or LPUE over the past 5 years. The increasing LPUE and CPUE trends in recent years are consistent with the ICES 2013 stock assessment which shows a large increase in stock size following a strong 2010 year class.

Tables 5.6.4.1.1 - 2 shows CPUE and LPUE figures by all gear types. Information by nation is not presented in this report but are available on the JRC website: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313.

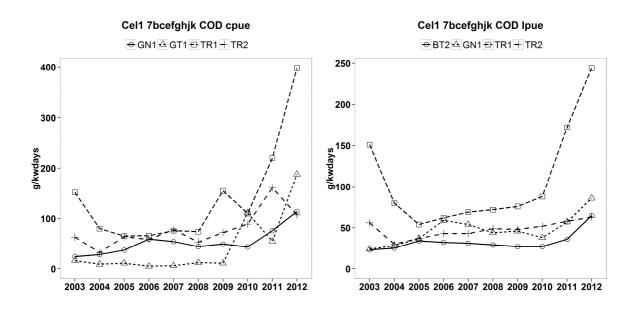


Figure 5.6.4.1.1 CPUE and LPUE for cod and for Celtic Sea and for gear category and years 2003-2012.

Table 5.6.4.1.1 Cod CPUE (g/(kW*days)) by gear/mesh-size category and year, 2003-2012. Celtic Sea

ANNEX	SPECIES:	TREG AREA COD	REG GEAR COD	CPUE 2003 <u>▼</u>	CPUE 2004 🔀	CPUE 2005 <u></u>	CPUE 2006 X	CPUE 2007	CPUE 2008	CPUE 2009 X	CPUE 2010 <u>*</u>	CPUE 2011 <u></u>	CPUE 2012 💌	CPUE 2010-2012 <u></u>
Cel1	COD	7bcefghjk	BEAM	19	37	13	0	0	0	0	0	0	0	0
Cel1	COD	7bcefghjk	BT1		19	0	0	0	0	0	0	0	0	0
Cel1	COD	7bcefghjk	BT2	23	25	34	32	36	36	30	43	123	72	79
Cel1	COD	7bcefghjk	DEM_SEINE	20	54	55	0	0		0	0	0	0	0
Cel1	COD	7bcefghjk	DREDGE	0	0	0	0	0	0	0	1	0	0	0
Cel1	COD	7bcefghjk	GN1	24	28	37	59	54	44	49	43	76	114	78
Cel1	COD	7bcefghjk	GT1	16	9	11	5	6	12	11	111	55	188	118
Cel1	COD	7bcefghjk	LL1	17	6	4	14	2	2	3	3	11	1	3
Cel1	COD	7bcefghjk	none	0				0			0	18	40	38
Cel1	COD	7bcefghjk	OTTER	15	21	0	6	2	0	0	28	22	1	16
Cel1	COD	7bcefghjk	PEL_SEINE	10	14	3					0	0	148	62
Cel1	COD	7bcefghjk	PEL_TRAWL	0	1	0	0	0	0	0	0	1	2	1
Cel1	COD	7bcefghjk	POTS	0	0	0	0	0	0	1	0	1	0	0
Cel1	COD	7bcefghjk	TR1	152	80	65	66	76	74	155	110	220	398	248
Cel1	COD	7bcefghjk	TR2	63	32	64	58	78	53	72	89	161	107	117
Cel1	COD	7bcefghjk	TR3	0	0	0	0		0	0	45	62	0	35

Table 5.6.4.1.2 Cod LPUE (g/(kW*days)) by gear/mesh-size category and year, 2003-2012. Celtic Sea

ANNEX -	SPECIES	REG AREA COD	REG GEAR COD	IPUE 2003 ▼	IPHE 2004 ▼	I PUE 2005 ▼	I PUE 2006 ▼	PUF 2007 ¥	IPUF 2008 ▼	IPUF 2009	I PUE 2010 ▼	IPUF 2011 ▼	IPUF 2012 ▼	PUF 2010-2012 ▼
Cel1	COD	7bcefghjk	BEAM	19	37	13	0	0	0	0	0	0	0	0
Cel1	COD	7bcefghjk	BT1		19	0	0	0	0	0	0	0	0	0
Cel1	COD	7bcefghjk	BT2	23	25	34	32	31	29	27	27	36	65	43
Cel1	COD	7bcefghjk	DEM_SEINE	20	54	55	0	0		0	0	0	0	0
Cel1	COD	7bcefghjk	DREDGE	0	0	0	0	0	0	0	1	0	0	0
Cel1	COD	7bcefghjk	GN1	24	28	37	59	54	44	46	38	57	86	61
Cel1	COD	7bcefghjk	GT1	16	9	11	5	6	12	11	23	33	57	38
Cel1	COD	7bcefghjk	LL1	17	6	4	14	2	2	3	3	11	1	3
Cel1	COD	7bcefghjk	none	0				0			0	18	40	38
Cel1	COD	7bcefghjk	OTTER	15	21	0	0	2	0	0	6	17	1	6
Cel1	COD	7bcefghjk	PEL_SEINE	10	14	3					0	0	148	62
Cel1	COD	7bcefghjk	PEL_TRAWL	0	0	0	0	0	0	0	0	1	2	1
Cel1	COD	7bcefghjk	POTS	0	0	0	0	0	0	1	0	1	0	0
Cel1	COD	7bcefghjk	TR1	151	80	54	62	69	72	76	88	172	244	171
Cel1	COD	7bcefghjk	TR2	56	30	37	43	43	49	48	52	58	63	57
Cel1	COD	7bcefghjk	TR3	0	0	0	0		0	0	45	62	0	35

5.6.4.2 ICES sub-divisions 7fg (Cel2)

STECF EWG 13-06 notes that discard information is scarce. Figure 5.6.4.2.1 displays the trends in cod CPUE and LPUE, 2003-2012 for the four gears with highest CPUE or LPUE over the past 5 years. The increasing LPUE and CPUE trends in recent years are consistent with the ICES 2013 stock assessment which shows a large increase in stock size following a strong 2010 year class.

Tables 5.6.4.2.1 and 5.6.4.2.2 show LPUE and CPUE by gear types. Information by nation is not presented in this report but are available on the JRC website: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313

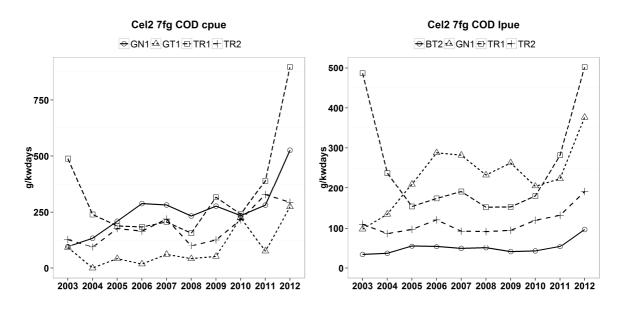


Figure 5.6.4.2.1 CPUE and LPUE for cod and for Divisions VIIfg and for gear category and years 2003-2012.

Table 5.6.4.2.1 Cod CPUE (g/(kW*days)) by gear/mesh-size category and year, 2003-2012. Divisions VIIfg

ANNEX	SPECIES >	IREG AREA COD	¥ REG GEAR COD	CPUE 2003 ×	CPUE 2004 X	CPUE 2005 <u></u>	CPUE 2006	CPUE 2007 🔀	CPUE 2008 <u></u>	CPUE 2009	CPUE 2010 <u></u>	CPUE 2011 <u>*</u>	CPUE 2012 💌	CPUE 2010-2012
Cel2	COD	7fg	BEAM	21	38	109		0	0	0	0	0	0	0
Cel2	COD	7fg	BT1		0	0	0	0	0	0	0	0	0	0
Cel2	COD	7fg	BT2	34	38	55	54	60	66	48	67	90	109	91
Cel2	COD	7fg	DEM_SEINE	0	65	133	0	0	0	0	0	0	0	0
Cel2	COD	7fg	DREDGE	3	6		0				0	0	0	0
Cel2	COD	7fg	GN1	98	135	210	288	282	233	277	235	281	526	350
Cel2	COD	7fg	GT1	92	0	42	18	61	42	52	227	76	274	192
Cel2	COD	7fg	LL1	36		39	61	0		0	0	0	0	0
Cel2	COD	7fg	none	0	0	0	0			0	0	0	136	136
Cel2	COD	7fg	OTTER	167	116	0	115	0	0	0	36	74	0	38
Cel2	COD	7fg	PEL_SEINE	194	133	120	0	0	0	0	0	0	663	608
Cel2	COD	7fg	PEL_TRAWL	2	14		6	0		5	0	19	42	22
Cel2	COD	7fg	POTS	0	2	0				0	0	1	0	0
Cel2	COD	7fg	TR1	489	240	189	185	207	157	316	241	390	897	518
Cel2	COD	7fg	TR2	129	95	178	166	220	101	127	216	328	294	272
Cel2	COD	7fg	TR3	0		0	0	0	0		0	166	0	146

Table 5.6.4.2.2 Cod LPUE (g/(kW*days)) by gear/mesh-size category and year, 2003-2012. Divisions VIIfg

ANNEX 🚽	SPECIES	TEG AREA	COD REG GEAR COD	LPUE 2003	LPUE 2004	LPUE 2005	.PUE 2006 <u></u>	LPUE 2007 <u></u> ✓	LPUE 2008	LPUE 2009 <u></u>	LPUE 2010 🛎	LPUE 2011 <u></u>	LPUE 2012 🞽	LPUE 2010-2012
Cel2	COD	7fg	BEAM	21	38	109		0	0	0	0	0	0	0
Cel2	COD	7fg	BT1		0	0	0	0	0	0	0	0	0	0
Cel2	COD	7fg	BT2	34	37	55	54	49	51	41	43	54	97	67
Cel2	COD	7fg	DEM_SEINE	0	65	133	0	0	0	0	0	0	0	0
Cel2	COD	7fg	DREDGE	3	6		0				0	0	0	0
Cel2	COD	7fg	GN1	98	135	210	288	282	233	263	205	224	377	270
Cel2	COD	7fg	GT1	92	0	42	18	61	42	52	41	28	68	49
Cel2	COD	7fg	LL1	36		39	61	0		0	0	0	0	0
Cel2	COD	7fg	none	0	0	0	0			0	0	0	136	136
Cel2	COD	7fg	OTTER	167	113	0	0	0	0	0	36	25	0	23
Cel2	COD	7fg	PEL_SEINE	194	133	120	0	0	0	0	0	0	663	608
Cel2	COD	7fg	PEL_TRAWL	2	12		6	0		5	0	19	42	22
Cel2	COD	7fg	POTS	0	2	0				0	0	1	0	0
Cel2	COD	7fg	TR1	486	238	154	174	191	152	153	180	282	502	325
Cel2	COD	7fg	TR2	110	87	97	121	93	92	95	120	132	191	147
Cel2	COD	7fg	TR3	0		0	0	0	0		0	166	0	146

5.6.5 ToR 2 Main species by gear group and remarks on quality of catches and discard estimates

Discard data are only available for some species and gears, so the lack of discard information for a given species/gear in the graphs may mean no information rather than zero discards. Furthermore, due to the limited availability and reliability of discard information for some species and from some countries contributing landings information to the dataset, care is required in the use of these data to draw firm conclusions about catch composition.

Discard rates alongside a discard coverage index has been presented in the relevant sections above, where information is available. In most cases the discard coverage index is either C (<33% of landings having discard information) or B ($\ge 33\% < 66\%$), reflecting the poor discard coverage in the data. It should be noted that the discard coverage index is only an indication of where a minimum one sample has been provided; therefore it should not necessarily be interpreted an indication of discard information quality, just that some information was available for fisheries using the gear.

5.6.5.1 ICES sub-divisions 7bcefghjk (Cel1)

Table 5.6.5.1.1 lists the relative landings contributions by major demersal species by the major gears, ranked in ascending order in 2012, 2003-2012. TR1 gear is the main gear landing anglerfish and cod; TR2 is the main gear catching *Nephrops*; BT2 is the main gear landing plaice and sole, while GN1 is the main gear landings hake.

Table 5.6.5.1.1 Relative landings contributions by major demersal species as caught by the major gears, ranked in ascending order in 2012, 2003-2012.

ANNEY	REG AREA	SPECIES	REG GEAR	2002 Pal	2004 Rel	200F Bal	2006 Rel	2007 Rel	2008 Rel	2009 Rel	2010 Rel	2011 Rel	2012 Rel
ANNEX Cel1		ANF	TR3	0.00014		2005 Rel		2007 Rei 0	2008 Rei 0			0.00116	
	7bcefghjk			-,					0			0,00116	_
Cel1	7bcefghjk	ANF	LL1	0,00063		0,00043		0,00017					
Cel1	7bcefghjk	ANF	GT1	0,05619		0,08993		0,07111	0,08191	-,		0,04058	
Cel1	7bcefghjk	ANF	GN1	0,13401		0,17539		0,12914	0,20252			0,10733	
Cel1	7bcefghjk	ANF	BT2	0,16354	-,	0,17856	-,	0,1846	0,1599	-,	-,	0,20839	-,
Cel1	7bcefghjk	ANF	TR2	0,31707		0,29973		0,26959	0,23142			0,1446	-
Cel1	7bcefghjk	ANF	TR1	0,32834		0,25595	0,36248	0,34538	0,32425	0,35321	0,41677	0,49794	0,48381
Cel1	7bcefghjk	ANF	BT1	0,00007							0.00447	0.00446	2
Cel1	7bcefghjk	COD	TR3	0.00000		0.00477		0.00424	0			0,00118	
Cel1	7bcefghjk	COD	LL1	0,00369		0,00177		0,00124	0,00146	.,		0,00213	
Cel1	7bcefghjk	COD	GT1	0,00344		0,00531		0,00456	0,00585			0,00923	
Cel1	7bcefghjk	COD	GN1	0,0344		0,08946		0,09204	0,08732	· · · · · · · · · · · · · · · · · · ·		0,04969	
Cel1	7bcefghjk	COD	BT2	0,0742		0,19929		0,13391	0,1078	, , , , , , , , , , , , , , , , , , ,		0,0646	1
Cel1	7bcefghjk	COD	TR2	0,25946		0,34588		0,35572	0,35415			0,16919	_
Cel1	7bcefghjk	COD	TR1	0,62482		0,35828	0,38699	0,41252	0,44341		0,56737	0,70398	0,71293
Cel1	7bcefghjk	COD	BT1	0.00446	0,00042	0.00440	0.00464	0.00404	0 0000		0.00435	0.00044	0.00004
Cel1	7bcefghjk	HKE	GT1	0,00118		0,00113		0,00131	0,00094			0,00041	
Cel1	7bcefghjk	HKE	BT2	0,0264		0,01735		0,01523	0,01103			0,00631	
Cel1	7bcefghjk	HKE	TR2	0,13579		0,13387		0,09223	0,092	.,		0,04172	
Cel1	7bcefghjk	HKE	TR1 GN1	0,35644		0,40207	-,	0,35545	0,30063	-,		0,25814	
	7bcefghjk	HKE		0,46935		0,43025	 	0,30085	0,26966			0,61945	
Cel1	7bcefghjk	HKE	LL1	0,01084		0,01533	0,12327	0,23494	0,32575	0,13775	0,11258	0,07326	0,39512
Cel1	7bcefghjk	HKE	BT1	(0	0		0.00014	0.00074	
Cel1	7bcefghjk	HKE	TR3	0.00021	-	0		0	0		.,	0,00071	_
	7bcefghjk	NEP						0				0,00041	
Cel1	7bcefghjk	NEP NEP	GN1 BT2	0,00021		0,00255		0.01278	0,00059	· · · · · · · · · · · · · · · · · · ·		0.00403	
Cel1	7bcefghjk	NEP	TR1	0,01637	-,	0,01786		0,01278	0,00514			0,00493	
Cel1	7bcefghjk					0,28707						-,	
Cel1	7bcefghjk	NEP	TR2 BT1	0,71165		0,69252	0,69819	0,77562	0,73873	0,65165	0,6879	0,64625	0,73081
Cel1	7bcefghjk 7bcefghjk	NEP NEP	LL1	0,00021							0		
Cel1		NEP	TR3	0.00189			0.00041					(,
Cel1	7bcefghjk 7bcefghjk	PLE	BT1	0,00189	0		0,00041		0,01758		0,00015		0
Cel1		PLE	LL1	(0	0	0	0,01756		0	(_
Cel1	7bcefghjk	PLE	TR3	(0		0,00153	0,00076			0,00117	
Cel1	7bcefghjk 7bcefghjk	PLE	GT1	0.00486		0,01418	,	0,00153	0,00076			0,00117	
Cel1		PLE	GN1	0,00480	.,	0,00515		0,00013	0,00229	-,,	.,	0,00320	,
Cel1	7bcefghjk	PLE	TR1	0,10378		0,00513		0,0023	0,00229			0,16082	
Cel1	7bcefghjk	PLE	TR2	0,10378		0,26933			0,1055				-
Cel1	7bcefghjk	PLE	BT2	0,64162		0,26933		0,31547 0,60031	0,53746			0,26901	
	7bcefghjk					0,64497	0,61967	0,60031	0,53740	0,50192	0,54615	0,55900	0,38029
Cel1	7bcefghjk 7bcefghjk	SOL	BT1 LL1	(0	0	0	0	0	0	(_
								0	0				
Cel1	7bcefghjk 7bcefghjk	SOL	TR3 GN1	0,00049		0,00857		0,00631	0,00988			0,00106	
												,	
Cel1	7bcefghjk	SOL	GT1 TR1	0,01922		0,03714		0,0247	0,02037			0,02974	
Cel1	7bcefghjk	SOL	TR2			0,04143		0,03836	0,05062			0,06798	-
Cel1	7bcefghjk	SOL		0,18383		0,17476			,	-, -		0,1864	
Cel1	7bcefghjk	SOL	BT2	0,72696	0,74643	0,7381	0,73123	0,71203	0,69691	0,6671	0,70179	0,70685	0,73944

5.6.5.2 ICES sub-divisions 7fg (Cel2)

Table 5.6.5.2.1 lists the relative landings contributions by major demersal species by the major gears, ranked in ascending order in 2012, 2003-2012. TR1 is the main gear landing anglerfish, cod and hake; TR2 is the main gear landing *Nephrops*, while BT2 is the main gear landing plaice and sole.

Table 5.6.5.2.1 Relative landings contributions by major demersal species as caught by the major gears, ranked in ascending order in 2012, 2003-2012.

ANNEX	REG_AREA		REG_GEAR			2005 Rel		2007 Rel	2008 Rel	2009 Rel			2012 Rel
Cel2	7fg	ANF	GT1	0,00227		0,00789	0,01178					0,01164	0,01363
Cel2	7fg	ANF	GN1	0,04118	.,	0,05604	0,0326	-,-	.,	.,	.,	0,03405	0,01832
Cel2	7fg	ANF	TR2	0,15225		0,21295	0,19717	0,24116				0,11496	
Cel2	7fg	ANF	BT2	0,43937		0,48319	0,46897	0,42761		,		0,35972	
Cel2	7fg	ANF	TR1	0,36456	.,	0,23993	0,28947	0,30182	0,3587	0,38798	0,35886	0,47963	0,45474
Cel2	7fg	ANF	BT1	0,00038	,								
Cel2	7fg	ANF	LL1	0	0	0							
Cel2	7fg	ANF	TR3			0			0			0	
Cel2	7fg	COD	LL1	0,00036		0,0019	0,00126	0		0			
Cel2	7fg	COD	GT1	0,00036		0,00063	0,00126	0,00197				0,00201	0,0023
Cel2	7fg	COD	GN1	0,02753		0,10386	0,10739	0,11521	0,11736		0,06848	0,05865	0,05306
Cel2	7fg	COD	BT2	0,08077		0,21976		0,14812				0,09073	0,10357
Cel2	7fg	COD	TR2	0,13799	.,	0,27739	0,29185	0,23897	0,2502	.,	-, -	0,13133	0,11684
Cel2	7fg	COD	TR1	0,75299		0,39645	0,4283	0,49572	0,5053	0,5599	0,61826	0,71679	0,72423
Cel2	7fg	COD	BT1		0								
Cel2	7fg	COD	TR3			0	0		0			0,0005	
Cel2	7fg	HKE	GT1	0	0	0	0,00522	0,00441	0,0025	0	0,00091	0,00068	0,01169
Cel2	7fg	HKE	BT2	0,10953	0,0765	0,0758	0,10609	0,08664	0,03745	0,03368	0,04558	0,03072	0,0284
Cel2	7fg	HKE	TR2	0,1963	0,19332	0,1742	0,22087	0,17327	0,13483	0,0964	0,10665	0,03891	0,04566
Cel2	7fg	HKE	GN1	0,43954	0,48401	0,53457	0,33217	0,38767	0,51186	0,5482	0,28168	0,35085	0,37751
Cel2	7fg	HKE	TR1	0,25462	0,23922	0,21144	0,33391	0,34802	0,31336	0,32172	0,56518	0,57884	0,53675
Cel2	7fg	HKE	BT1	0	0								
Cel2	7fg	HKE	LL1	0	0,00695	0,00399	0,00174						
Cel2	7fg	HKE	TR3			0	0		0			0	
Cel2	7fg	NEP	GT1	0,00034									0
Cel2	7fg	NEP	GN1	0	0,00512	0,00287	0,00147	0	0,00085	0,0005		0	0,00084
Cel2	7fg	NEP	BT2	0,02262	0,03114	0,02527	0,03162	0,0205	0,00705	0,00799	0,00519	0,00838	0,00279
Cel2	7fg	NEP	TR1	0,28089	0,27395	0,2449	0,2739	0,21346	0,29203	0,38312	0,34897	0,43336	0,30585
Cel2	7fg	NEP	TR2	0,69615	0,68979	0,72696	0,69301	0,76604	0,70006	0,60839	0,64584	0,55827	0,69053
Cel2	7fg	NEP	BT1	0									
Cel2	7fg	NEP	TR3				0					0	
Cel2	7fg	PLE	GN1	0	0,00236	0,00299	0,00305	0,00284	0	0,00249	0,00258	0,00267	0
Cel2	7fg	PLE	GT1	0	0	0	0	0	0	0	0	0,00535	0,00261
Cel2	7fg	PLE	TR2	0,14429	0,16038	0,2006	0,29268	0,28125	0,34783	0,31172	0,26357	0,22193	0,17493
Cel2	7fg	PLE	TR1	0,27255	0,23821	0,21557	0,17683	0,19034	0,26359	0,25436	0,32558	0,27273	0,30026
Cel2	7fg	PLE	BT2	0,58317	0,59906	0,58084	0,52744	0,52557	0,38859	0,43142	0,40827	0,49733	0,52219
Cel2	7fg	PLE	BT1		0								
Cel2	7fg	PLE	LL1	0						0			
Cel2	7fg	PLE	TR3			0			0	0		0	
Cel2	7fg	SOL	GN1	0,00177	0,00094	0,00106	0,00118	0,00115				0	0
Cel2	7fg	SOL	GT1		0,00188	0	-,	0			0,00238	0,00603	0,00094
Cel2	7fg	SOL	TR1	0,06832		0,04255	0,0391	0,04467		0,04497		0,03819	0,03399
Cel2	7fg	SOL	TR2	0,03372		0,06383	0,0936	0,09851	0,10803			0,11357	0,08215
Cel2	7fg	SOL	BT2	0,89618		0.89255	0,86611	0,85567				0,84221	0.88291
Cel2	7fg	SOL	BT1	0,03010		2,22200	-,	2,22307	2,2.100	5,5221.5	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-,	2,00251
Cel2	7fg	SOL	TR3			0						0	
Cel2	7fg	SOL	LL1	0									
CCIZ	718	JUL		U									

5.6.6 ToR 3 Information on small boats (<10m by area)

Information for French and UK under 10m fisheries was available; Irish information was not available. Information for other countries is given by gear type, however this information is known to be incomplete.

5.6.6.1 Fishing effort of small boats by area, Member State and fisheries

Table 5.6.6.1.1 Nominal effort (kWdays at sea) by Member State for both areas, the entire Celtic Sea (Cel 1) and the sub-divisions 7fg only (Cel2). Effort by the main countries where data is presented (UK and France) has been relatively stable in the past two years; French effort appears to have increased significantly since 2009 though this is due to incomplete data prior to this period rather than an observed increase in effort by the fisheries.

ANNEX -	REG AREA COD	REG GEAR COD	SPECON	COLINTRY	VESSEL LENGTH ▼	2000 🔻	2001	2002 🔻	2003	2004	2005	2006	2007 🔻	2008	2009	2010	2011	2012
Cel1	7bcefghjk	BEAM	none	ENG	u10m	<u> </u>	Z001		0	0		207	112	471		221	221	
Cel1	7bcefghjk	BT2	none	ENG	u10m				- 0	- 0	12562	13305	15748	11579	3677	221	221	
Cel1	7bcefghjk	DREDGE	none	ENG	u10m				24089	48934	33463	161077	187150	185413	158641	125421	152417	125370
Cel1	7bcefghjk	GN1	none	ENG	u10m				41752	69050	74894	563412	730928	783075	667972	624143	716419	804574
Cel1	7bcefghjk	GT1	none	ENG	u10m				0	0	160	709	3026	3162	1699	1523	974	583
Cel1	7bcefghjk	LL1	none	ENG	u10m				16298	38722	40782	120378	267883	292465	388625	464270		497331
Cel1	7bcefghjk	OTTER	none	ENG	u10m				177	622	1858	1939	3166	2913	4295	404270	523	1463
Cel1	7bcefghjk	PEL SEINE	none	ENG	u10m				1//	022	1036	1535	1300	2313	354	1769	1723	1403
Cel1	7bcefghjk	PEL_SEINE PEL TRAWL	none	ENG	u10m								1106	8244	144	1/09	222	253
Cel1	7bcefghjk	POTS	none	ENG	u10m		1		121943	92568	04522	1624452	1804630			1170425		
										92306		2246						
Cel1 Cel1	7bcefghjk	TR1 TR2	none	ENG	u10m				524 89089	81776	2034 85163	_	4562 658783	9425 638121	10605 495758	18178 470138	34476 314999	29832 388622
	7bcefghjk		none	ENG	u10m				89089	81//6	85163	413462	658783			4/0138	314999	388622
Cel1	7bcefghjk	TR3	none	ENG	u10m									201	152			
Cel1	7bcefghjk	BT2	none	FRA	U10M					7998						2565	594	316
Cel1	7bcefghjk	DREDGE	none	FRA	U10M	383622		2677194		1020244	658413	661222	455336	279707	277385	468049	531299	498655
Cel1	7bcefghjk	GN1	none	FRA	U10M	117885		1075160	355002	470349	383942	399424	310109	150085	150085	407988	289702	355761
Cel1	7bcefghjk	GT1	none	FRA	U10M	77054	53571	775863	263410	233202	202572	216971	255766	96495	96385	204060	235068	233191
Cel1	7bcefghjk	LL1	none	FRA	U10M	125046		1042972	279411	334891	286741	358796	264220	133317	133317	671963	691829	643782
Cel1	7bcefghjk	none	none	FRA	U10M	19031	18910	65818	21485	19490	20585	11710	21071	9972	9972		100435	
Cel1	7bcefghjk	OTTER	none	FRA	U10M	11157	9958	77289	74804	79589	69392	40911	35208	4735	4735	25069	19283	14440
Cel1	7bcefghjk	PEL_SEINE	none	FRA	U10M			264		364		540	295			60	729	
Cel1	7bcefghjk	PEL_TRAWL	none	FRA	U10M			433	1260		2918		900	540	540	2996	3337	2222
Cel1	7bcefghjk	POTS	none	FRA	U10M	428931	806655	6215896	1418687	2126775	1719730	1825507	1621260	1107466	1105491	1126890	1769013	1660944
Cel1	7bcefghjk	TR1	none	FRA	U10M		4725	4305	12837	4918	3990	6615	2520			8116	100	931
Cel1	7bcefghjk	TR2	none	FRA	U10M	27193	17674	307593	126390	170118	71616	91906	47909	26772	21741	62223	91493	99771
Cel1	7bcefghjk	TR3	none	FRA	U10M		6029	46908	12602	13640	13703	8440	1414	721	721	10200	16392	23818
Cel1	7bcefghjk	DREDGE	none	GBG	u10m									560	560			
Cel1	7bcefghjk	GN1	none	GBG	u10m									672	784	2829	4480	4831
Cel1	7bcefghjk	LL1	none	GBG	u10m									325	896		602	478
Cel1	7bcefghjk	POTS	none	GBG	u10m									448	237			
Cel1	7bcefghjk	TR2	none	GBG	u10m											672	90	
Cel1	7bcefghjk	TR2	none	GBJ	u10m					0								112
Cel1	7bcefghjk	GN1	none	IOM	u10m									158				
Cel1	7bcefghjk	DREDGE	none	NIR	u10m									119		573		
Cel1	7bcefghjk	POTS	none	NIR	u10m										2530			
Cel1	7bcefghjk	TR2	none	NIR	u10m							1050		2388	4382	1038	80	
Cel1	7bcefghjk	TR1	none	NLD	U10M			59										
Cel1	7bcefghjk	TR2	none	NLD	u10m													30
Cel1	7bcefghjk	DREDGE	none	SCO	u10m	<u> </u>	<u> </u>				·	<u> </u>			22			1968
Cel1	7bcefghjk	GN1	none	sco	u10m							194	1732	339		85	60	2618
Cel1	7bcefghjk	LL1	none	SCO	u10m			90				169	254	233		127	169	4
Cel1	7bcefghjk	none	none	sco	u10m			50				200			170	/	100	75
Cel1	7bcefghjk	OTTER	none	SCO	u10m		60								1.0			.,,
Cel1	7bcefghjk	POTS	none	SCO	u10m		- 00				187	1040	454	180	37		791	1834
Cel1	7bcefghjk	TR2	none	SCO	u10m						1824	1040	7.74	300	116	35	112	307
CEIT	/bceigiijk	INZ	none	300	u10111						1024			300	110	35	112	307

Table 5.6.6.1.1 continued.

ANNEX	REG AREA COD	REG GEAR COD	SPECON	COUNTRY	VESSEL_LENGTH	2000	2001	2002	2003	2004 👱	2005 👱	2006 👱	2007 👱	2008 👱	2009 💌	2010 👱	2011 👱	2012 👱
Cel2	7fg	BEAM	none	ENG	u10m					0								
Cel2	7fg	BT2	none	ENG	u10m							1009	350	5668	2091			
Cel2	7fg	DREDGE	none	ENG	u10m				0	4250	500	5417	5962	9761	7581	4139	7247	3750
Cel2	7fg	GN1	none	ENG	u10m				1058	25449	15139	93621	183300	217701	178566	188959	186763	202886
Cel2	7fg	GT1	none	ENG	u10m					0	0		845			65	223	317
Cel2	7fg	LL1	none	ENG	u10m				434	24059	21580	10158	84820	84181	127260	134122	152160	143220
Cel2	7fg	OTTER	none	ENG	u10m				95	622	1764	913	1728	57	1885		126	
Cel2	7fg	PEL_SEINE	none	ENG	u10m								1300		354		132	
Cel2	7fg	PEL_TRAWL	none	ENG	u10m										40			
Cel2	7fg	POTS	none	ENG	u10m				12	3867	5083	706650	826383	793296	361204	395633	395011	407189
Cel2	7fg	TR1	none	ENG	u10m				524		1677	2131	4546	2464	6591	4783	12583	11272
Cel2	7fg	TR2	none	ENG	u10m				4030	13397	15912	53406	115790	109414	57108	55202	34583	33061
Cel2	7fg	BT2	none	FRA	u10m													206
Cel2	7fg	DREDGE	none	FRA	u10m											574		
Cel2	7fg	GT1	none	FRA	u10m											3059		
Cel2	7fg	PEL_TRAWL	none	FRA	u10m											596		
Cel2	7fg	POTS	none	FRA	u10m											328		
Cel2	7fg	TR1	none	FRA	u10m											220		
Cel2	7fg	TR2	none	FRA	u10m											592	2395	
Cel2	7fg	TR3	none	FRA	u10m											82		510
Cel2	7fg	DREDGE	none	NIR	u10m									119		573		
Cel2	7fg	TR2	none	NIR	u10m							1050		2388	3389	1038	80	
Cel2	7fg	TR1	none	NLD	U10M			59	1									
Cel2	7fg	DREDGE	none	SCO	u10m													116
Cel2	7fg	GN1	none	SCO	u10m								224					1575
Cel2	7fg	LL1	none	SCO	u10m			90										
Cel2	7fg	none	none	SCO	u10m													75
Cel2	7fg	POTS	none	SCO	u10m								410	180	37		126	1371
Cel2	7fg	TR2	none	SCO	u10m											35		75,

5.6.6.2 Catches (landings and discards) of small boats by area, Member State and fisheries

Table 5.6.6.2.1 lists the cod landings by Member State for both areas, the entire Celtic Sea (Cel 1) and the sub-divisions 7fg only (Cel2). Landings of cod reflect trends by the larger vessels, with landings increasing in recent years following the strong 2010 year class and the increase in stock size (ICES, 2013).

Table 5.6.6.2.Cod landings (t) by Member State for both areas, the entire Celtic Sea (Cel 1) and the subdivisions 7fg only (Cel2).

ANNEX	■ REG_AREA	COUNTRY	REG_GEAR	SPECON	▼ SPECIES	√T 2003 L × 2	004 L 🔀 20	005 L 💌 20	006 L 🔀 20	07 L <u></u> 20	08 L 🔀 20	09 L 🔟 20	10 L 🔀 20	11 L 👱 20	012 L
Cel1	7bcefghjk	ENG	BEAM	none	COD		0,021								
Cel1	7bcefghjk	ENG	BT2	none	COD			0,034	0,176	0,11	0,113	0,006			
Cel1	7bcefghjk	ENG	DREDGE	none	COD	0,004			0,002	0,022	0,001	0,01		0,455	0,023
Cel1	7bcefghjk	ENG	GN1	none	COD	21,298	16,391	10,818	30,372	36,954	19,918	29,282	50,557	87,458	137,248
Cel1	7bcefghjk	ENG	GT1	none	COD	0,003	0,06	0,065		0,022	0,203	0,345	0,659	0,288	0,234
Cel1	7bcefghjk	ENG	LL1	none	COD	0,035	0,077	0,133	0,807	0,82	1,939	6,487	10,935	22,966	17,115
Cel1	7bcefghjk	ENG	none	none	COD		0,005		0,007		0,018				
Cel1	7bcefghjk	ENG	OTTER	none	COD	8,378	5,748	3,683	2,444	0,689	0,012	0,02		0,001	
Cel1	7bcefghjk	ENG	PEL_TRAWL	none	COD										0,012
Cel1	7bcefghjk	ENG	POTS	none	COD	5,516	0,002	0,007	0,026	0,019	0,14	0,526	0,485	1,968	2,456
Cel1	7bcefghjk	ENG	TR1	none	COD	0,14		2,097	0,241	0,125	0,239	0,283	1,795	2,995	4,559
Cel1	7bcefghjk	ENG	TR2	none	COD	5,22	4,902	15,534	23,587	28,079	16,16	12,76	20,643	15,688	21,446
Cel1	7bcefghjk	FRA	BT2	none	COD		0,125						0,02		
Cel1	7bcefghjk	FRA	DREDGE	none	COD	0,017							0,018	0,1	0,048
Cel1	7bcefghjk	FRA	GN1	none	COD	1,077	1,706	0,417	0,846	0,532	0,444	0,444	10,018	17,673	5,778
Cel1	7bcefghjk	FRA	GT1	none	COD	2,465	0,096	0,929	0,551	2,354	0,895	0,895	5,288	10,117	20,194
Cel1	7bcefghjk	FRA	LL1	none	COD	0,145	0,066	0,04	0,046	0,033	0,022	0,022	1,37	14,367	5,843
Cel1	7bcefghjk	FRA	none	none	COD									0,032	
Cel1	7bcefghjk	FRA	OTTER	none	COD	0,02	0,091	0,016	0,002	0,001			0,07	0,1	
Cel1	7bcefghjk	FRA	PEL_SEINE	none	COD									0,008	
Cel1	7bcefghjk	FRA	POTS	none	COD	0,009							0,069	0,537	0,074
Cel1	7bcefghjk	FRA	TR1	none	COD	0,086	0,139		0,051	0,026			0,033		
Cel1	7bcefghjk	FRA	TR2	none	COD	0,259	0,089	0,348	0,02	0,041	0,015		0,182	0,657	0,073
Cel1	7bcefghjk	FRA	TR3	none	COD								0,007	0,038	0,032
Cel1	7bcefghjk	GBG	GN1	none	COD								0,003		0,178
Cel1	7bcefghjk	GBG	LL1	none	COD										0,394
Cel1	7bcefghjk	GBG	TR2	none	COD						0,174		0,002		
Cel1	7bcefghjk	IRL	none	NONE	COD	195,73	17,38	19,19	10,98		1,2	0,42	28,24	34,17	89,27
Cel1	7bcefghjk	NIR	TR2	none	COD				0,105		0,415	0,203	0,239	0,022	
Cel1	7bcefghjk	SCO	DREDGE	none	COD										0,005
Cel1	7bcefghjk	SCO	GN1	none	COD									0,007	0,01
Cel1	7bcefghjk	SCO	LL1	none	COD								0,004		
Cel1	7bcefghjk	SCO	TR2	none	COD			0,044			0,001				0,015
ANNEX	REG AREA	COUNTRY	REG GEAR	SPECON	SPECIES	√T 2003 L	004 L 20	005 L × 20	nn61 × 20	107 L ■ 20	08 L 20	091 20	10 L	11L × 2)12L ×
Cel2	7fg	ENG	BEAM	none	COD		0,015								
Cel2	7fg	ENG	BT2	none	COD				0,016	0,029	0,086	0,006			
Cel2	7fg	ENG	DREDGE	none	COD					0,001					
Cel2	7fg	ENG	GN1	none	COD	0,454	1,012	0,963	5,974	5,064	2,129	2,716	8,279	18,294	26,458
Cel2	7fg	ENG	GT1	none	COD					0,005				0,05	0,013
Cel2	7fg	ENG	LL1	none	COD	0,001	0,009	0,068	0,496	0,251	0,035	0,047	2,585	9,322	7,436
Cel2	7fg	ENG	OTTER	none	COD	3,239	0,485	0,429	1,35	0,671		0,002		0,001	
Cel2	7fg	ENG	POTS	none	COD	0,053			0,006			0,037	0,166	0,701	1,157
Cel2	7fg	ENG	TR1	none	COD	0,089		2,097	0,241	0,125	0,025	0,09	0,4	1,134	1,633
Cel2	7fg	ENG	TR2	none	COD	0,126	1,317	13,026	10,7	7,276	2,282	1,528	2,981	2,298	2,95
Cel2	7fg	FRA	GT1	none	COD								0,1		
Cel2	7fg	FRA	POTS	none	COD								0,01		
Cel2	7fg	IRL	none	NONE	COD	59,88	17,03	18,6	9,45		0,66		26,88	33,7	70,31
Cel2	7fg	NIR	TR2	none	COD				0,105		0,415	0,203	0,239	0,022	
Cel2	7fg	SCO	GN1	none	COD										0,01
Cel2	7fg	SCO	TR2	none	COD										0.015

5.6.7 ToR 4 Data quality and any unexpected evolutions of the trends in catches and effort by area, Member State and fisheries

The inclusion of Spanish data in 2012 is welcome and provides a more complete picture of landings as reported by Member States. A lack of discard information, including for some major fisheries, mean that interpreting trends in catch and CPUE is challenging; submission of discard information by all countries would enable of more complete evaluation of the Celtic Sea fisheries.

5.6.8 ToR 5 Correlation between partial cod mortality and fisheries

The STECF EWG 13-13 notes that the Celtic Sea cod stock (7e-k) is not part of the cod management plan. For reasons of consistency, the STECF EWG presents partial exploitation rates by fisheries and Member States as defined in the cod plan in relation to the estimated total exploitation rate by ICES (2013) and the landings and discards volumes in relation to the estimated total catch for the year available. The full list of all fisheries can be downloaded from the EWG's web page http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313.

Correlations between fishing effort in units of kW days at sea of the major fisheries (top 10, where contributing to >1% of total landings) and partial fishing mortalities are presented in Figures 5.6.8.1 for Cel1 and 5.6.8.4 for Cel2. Trends in partial fishing mortality by these fisheries over time are presented in Figures 5.6.8.2 (Cel1) and 5.6.8.5 (Cel2), and catchability coefficients for these figures are also presented over time in Figures 5.6.8.3 and 5.6.8.6. The following Tables 5.6.8.1-2 present trends in effort and partial F for landings only as discards are not included in the assessment. The presented parameters r (absolute value of Pearson's coefficient of correlation), numbers of points considered as well as a p value to quantify the statistical significance (\leq 0.05) allow conclusions about the quality of the correlation between the partial F and fisheries specific fishing effort.

SSB has increased from below Blim to well above MSY Btrigger since 2010. Recruitment has been highly variable over time with occasional very high recruitment (1987, 2010). Fishing mortality increased from around 0.5 in 1971 to 0.8 in 1981 and varied without trend around this level until 2005, when it sharply declined to around $F_{\rm MSY}$ in 2011 and 2012. French and Irish trawlers represent more than 80 percent of the estimated harvest rates.

STECF EWG 13-13 notes that the correlation between fishing effort and partial fishing mortality of the summed catches and partial Fs for the major fisheries and that for the main country/gear landing cod (French TR1) in the wider Celtic Sea (Cel1; 7bcefghjk) is not significant. However, there is a significant relationship for other major fisheries including for landings for French, Irish, English, Northern Irish and Dutch (catch only) TR2 fisheries and Belgian BT2 (all p<0.05).

When considering the sub-area Cel2 (7fg), the relationship between F and effort is also significant for all summed catches of regulated gears and for the major French TR1 fishery for landings (p<0.05). The relationship between landing partial F and effort remains significant for the main TR2 fisheries (France, Ireland, except England) and the Belgian BT2 fishery in the sub-area 7fg.

The increase in partial F for 2012 for the main French TR1 fishery in 2012 (Figures 5.8.6.2 & 5.8.6.5) and increase in catchability (Figure 5.6.8.1 & 5.6.8.6) may indicate a switch to targeting cod following increased fishing opportunities and increased stock size.

The good correlation between fishing effort and partial fishing mortality for some fisheries indicates that effective fishing management by fishing effort units in KW days at sea may be possible, in these cases, as an auxillary measure to landings constraints and technical measures. The relationship between F and effort appears less direct where the fishery has the ability to adapt targeting behaviour to changes in fishing opportunities (e.g. the French TR1 fishery).

Table 5.6.8.1 Cod in the entire Celtic Sea (7bcefghjk). The left part of the table lists estimated F trajectories from the management plan and the ICES 2013 cod assessment, as well as partial Fs for landings of fisheries using gears defined as those regulated under the cod management plan. The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs of all effort regulated gears to the overall F estimate of the stock.

FMSY= 0.4													Effort kW days ru	unning previ	ous year ba	seline									
			2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		
Fplan													Effort plan												
reduction F plan																									
F estimated			0.915	0.922	0.958	0.800	0.806	0.724	0.727	0.484	0.374	0.424	Effort estimated	55516239	56222641	56322770	51759025	51760380	41025066	39029602	43541555	42707589	42694243		
reduction F estin	nated								0.00	-0.33	-0.23	0.13								-0.05	0.12	-0.02	0.00		
													EFFORT										2	003-2012	
Fpar			2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012 r		o n
BEL BT1	none	catches						0.00006					,						1766						
BEL BT2	none	catches	0.01768	0.03777	0.05610	0.01946	0.02200	0.01089	0.00969	0.00923	0.00873	0.01365		2914644	4568918	3996701	3246205	3351614	2285026	1932211	2392748	2698681	3206396	0.823	0.003
BEL TR2	none	catches		0.00073	0.00256	0.00277	0.00377	0.00182	0.00432	0.00356	0.00669	0.00745			119327	188914	424630	464699	467476	468989	422826	322422	468384	0.433	0.244
ENG BT1	none	catches		0.00030											52079										
ENG BT2	none	catches	0.01468	0.02182	0.03112	0.01945	0.02039	0.01616	0.01631	0.01466	0.03175	0.00977		6040112	5696823	5684136	5278959	5012272	4324163	3862069	3735555	3882328	3728300	0.265	0.460
ENG GN1	none	catches	0.01229	0.02213	0.03025	0.02685	0.02069	0.01303	0.02097	0.01080	0.00523	0.01242		2072275	2209784	1683378	968269	983770	724124	639496	721831	617961	670878	0.378	0.281
ENG GT1	none	catches		0.00000	0.00036	0.00033	0.00038	0.00028	0.00015	0.00044	0.00024	0.00230		18276	40888	27240	71011	29897	37830	17331	16157	86642	117234	0.701	0.024
ENG LL1	none	catches	0.00086	0.00001	0.00084	0.00063	0.00012	0.00001	0.00001	0.00002	0.00002	0.00001		400652	340754	323584	475144	656851	202109	48307	59764	55715	36152	0.487	0.153
ENG TR1	none	catches	0.00587	0.00682	0.00815	0.00744	0.00402	0.00514	0.00858	0.00442	0.00297	0.00653		2435406	2261954	1804168	2227366	2304849	1669349	1368822	1541253	2080247	1393333	-0.259	0.470
ENG TR2	none	catches	0.01002	0.01092	0.02585	0.01349	0.01723	0.01139	0.01108	0.01400	0.00312	0.00345		2177819	2259084	2182086	2026476	2064267	1676522	1728330	1688245	1349178	1316914	0.681	0.030
ENG TR3	none	catches	0.00000		0.00007			0.00000	0.00001					6269	991	3204	1505	5646	7952	10318	2204	4242	13828		
FRA BT2	none	catches	0.00000	0.00022	0.00001	0.00063	0.00002	0.00000	0.00001	0.00012	0.00003	0.00000		45086	317773	263900	305832	320576	146443	138669	306957	205105	131553	0.508	0.134
FRA GN1	none	catches	0.00161	0.00212	0.00154	0.00116	0.00067	0.00093	0.00126	0.00090	0.00265	0.00228		1783662	2085242	2144357	1947806	2175901	2240099	2239709	2233974	2042906	2287411	-0.181	0.616
FRA GT1	none	catches	0.00194	0.00231	0.00351	0.00124	0.00141	0.00194	0.00235	0.01688	0.00294	0.00919		762235	971823	1201844	1371988	1529613	1043635	1043484	992674	999986	936777	-0.286	0.423
FRA LL1	none	catches	0.00125	0.00117	0.00020	0.00357	0.00034	0.00033	0.00040	0.00040	0.00043	0.00028		235082	338303	405334	710618	724605	475817	475817	553903	497021	755496	0.138	0.704
FRA TR1	none	catches	0.34172	0.28088	0.19804	0.14350	0.13395	0.12236	0.32068	0.16887	0.14724	0.34541		7734607	7788841	7366673	7881085	7420257	6314288	6290496	9431237	10053439	9930243	0.035	0.924
FRA TR2	none	catches	0.11682	0.07640	0.17805	0.10285	0.14532	0.07212	0.12819	0.08110	0.06599	0.04064		10516376	10920284	11540724	10898037	10785794	7338510	7293644	6895363	6068354	6018646	0.682	0.030
FRA TR3	none	catches				0.00000				0.00050	0.00024			5832	6986	14923	21471	4483	9527	9527	55029	54466	22264	0.862	0.001
GBG TR2	none	catches				0.00001	0.00000	0.00000		0.00000	0.00000	0.00001				730	6378	11065	5203	3090	7854	2298	11868		
GBJ BT2	none	catches	0.00092	0.00270	0.00139									284450	365302	202229								0.707	0.500
GBJ TR2	none	catches	0.00000			0.00000	0.00004	0.00002	0.00001	0.00003	0.00001	0.00000		3557		6745	19360	30580	25740	31020	37620	41195	12760		
IRL BT2	none	catches	0.00975	0.02103	0.05229	0.03496	0.02052	0.02379	0.01996	0.02302	0.00803	0.00883		3748872	2331454	2969538	2079409	1767496	1020052	916246	948287	879763	1085019	0.303	0.395
IRL GN1	none	catches	0.00607	0.01996	0.03099	0.01788	0.01563	0.01869	0.02109	0.01409	0.00636	0.01064		1062126	886948	678791	531205	561733	532849	550092	523002	451265	495485	-0.055	0.880
IRL GT1	none	catches	0.00001			0.00001	0.00001	0.00001	0.00004	0.00044	0.00005	0.00028		802	172	16260	20223	25383	44065	37179	66405	50980	76602		
IRL LL1	none	catches			0.00009	0.00003	0.00001	0.00014	0.00002			0.00002		91311	3600	72796	1265	55984	23606	29165	34204	17637	64790		
IRL TR1	none	catches	0.01541	0.03191	0.10137	0.05357	0.04575	0.04219	0.09922	0.09754	0.04307	0.04725		5847912	5080624	4811084	3883296	4031609	3868538	4179131	4496000	4410607	4107580	-0.283	0.428
IRL TR2	none	catches	0.04034	0.06522	0.21404	0.11995	0.09311	0.05573	0.06536	0.08112	0.02493	0.02908		5516623	5481022	6549003	5781300	6056725	4609737	3484871	4105661	3760111	4029507	0.694	0.026
IRL TR3	none	catches	0.00001	0.00004		0.00003		0.00000		0.00000	0.00002	0.00001		8499	8964	340	10012	3976	11941	17634	9604	21664	20151		
NIR TR1	none	catches	0.00031			0.00004			0.00001	0.00008	0.00099	0.00174		7641		716	5176		1141	1805	16616	24770	42944	0.945	0.000
NIR TR2	none	catches		0.00082	0.00231	0.00148	0.00062	0.00328	0.00604	0.00498	0.00013	0.00043			53672	72432	42938	20658	128847	153397	146457	6852	31350	0.963	0.000
NLD TR1	none	catches									0.00008										6044	221	4442		
NLD TR2	none	catches							0.00121	0.00085	0.00060	0.00028		36589	64393	108566	162551	113851	90839	216240	252472	259559	150099	0.481	0.159
SCO BT2	none	catches					0.00023											3666		1396					
SCO GN1	none	catches			0.00038	0.00006			0.00000					467260	643185	498672	192066	193116	355719	437451	387259	463248	439892		
SCO TR1	none	catches	0.00116	0.00276		0.00080	0.00031	0.00113	0.00761	0.00191	0.00187	0.00396		802771	879428	1084677	779453	681392	835556	906397	997738	748948	765697	0.407	0.243
SCO TR2	none	catches	0.00021	0.00066		0.00051	0.00032	0.00051	0.00330	0.00035	0.00122	0.00025		489493	444023	419025	387991	368052	506597	497269	456612	549778	322248	0.424	0.222
Sum					0.93951		0.54686							55516239	56222641	56322770				39029602	43541555	42707589	42694243	0.431	0.214
check sum Fpar/f			0.65	0.66	0.98	0.72		0.56	1.03			1.31													

Table 5.6.8.2 Cod in the Celtic Sea (7fg). The left part of the table lists estimated F trajectories from the management plan and the ICES 2013 cod assessment, as well as partial Fs for landings of fisheries using gears defined as those regulated under the cod management plan. The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs of all effort regulated gears to the overall F estimate of the stock.

FMSY= 0.4													Effort kW days ru	unning previ	ous year ba	seline									
			2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	<u> </u>	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		
plan													Effort plan												
eduction F pla	an																								
estimated			0.915	0.922	0.958	0.800	0.806	0.724	0.727	0.484	0.374	0.424	Effort estimated	15045231	15381614	15796036	13389703	13102326	11118500	10726612	12226451	11008442	12823100		
eduction F es	timated								0.00	-0.33	-0.23	0.13								-0.04	0.14	-0.10	0.16		
													EFFORT										2	2003-2012	
Fpar			2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012 r	r	,
BEL BT2	none	catches	0.01715	0.03668	0.05371	0.01823	0.02055	0.00979	0.00803	0.00769	0.00839	0.01321	The state of the s	2419519	3744619	3121706	2534199	2448583	1651116	1570823	1987520	2163164	2636349	0.800	0.005
BEL TR2	none	catches		0.00075	0.00266	0.00285	0.00647	0.00200	0.00419	0.00344	0.00772	0.00757			110564	168754	400049	443057	434936	449108	376867	276627	356164	0.322	0.398
NG BT1	none	catches		0.00006											8787										
ENG BT2	none	catches	0.00629	0.00899	0.01014	0.00584	0.00690	0.00402	0.00230	0.00298	0.00133	0.00329		1050450	1012837	785332	645496	570358	411556	416037	403682	278222	489105	0.803	0.005
ENG GN1	none	catches	0.00610	0.01432	0.02208	0.02097	0.01491	0.00941	0.01233	0.00689	0.00263	0.00799		427137	513629	440032	405494	377381	309350	260006	285725	320757	316814	0.489	0.151
ENG GT1	none	catches			0.00007	0.00026	0.00033	0.00017	0.00014	0.00044	0.00006	0.00173		1570	23919		26791	18299	16459	11269	7110	42487	82680	0.827	0.003
ENG LL1	none	catches	0.00015			0.00040				0.00000				28062	33074	44504	32769	14101	6377	4888	4613	4628	610	0.916	0.000
ENG TR1	none	catches	0.00121	0.00371	0.00201	0.00126	0.00066	0.00046	0.00119	0.00066	0.00020	0.00197		111759	122527	80092	86398	74498	101146	115014	162848	138708	220022	0.108	0.767
ENG TR2	none	catches	0.00197	0.00230	0.00768	0.00461	0.01868	0.00198	0.00139	0.00308	0.00056	0.00131		277253	234967	251717	308751	232452	259463	224727	280872	205009	196845	0.047	0.897
ENG TR3	none	catches			0.00003										373	1119						1890			
FRA BT2	none	catches				0.00044				0.00001	0.00000					2200	15965				2151	4131	176		
FRA GN1	none	catches	0.00025	0.00045	0.00004		0.00004	0.00001	0.00001	0.00004	0.00011	0.00012		29862	37833	18804		5908	441	441	4199	6296	5836		
FRA GT1	none	catches	0.00008	0.00001	0.00017	0.00009	0.00011	0.00011	0.00014	0.00092	0.00029	0.00005		8456	2259	14256	27751	21032	19104	19104	19151	46708	14597	0.235	0.513
FRA LL1	none	catches			0.00001											4745		552	883	883			173		
FRA TR1	none	catches	0.28846	0.23745	0.16252	0.11062	0.10112	0.08107	0.22050	0.11069	0.06359	0.23503		3460445	3326622	3113639	2740592	2475013	2303217	2295080	3283327	2632751	2956038	0.526	0.118
FRA TR2	none	catches	0.03198	0.02332	0.04292	0.01228	0.03369	0.00412	0.00629	0.00454	0.00117	0.00182		711296	593609	731407	287766	355358	230956	230956	73415	39461	35002	0.894	0.000
FRA TR3	none	catches									0.00004										212	2621	636		
GBJ BT2	none	catches	0.00059	0.00158	0.00039									151639	145409	46378								0.588	0.600
IRL BT2	none	catches	0.00770	0.01690	0.04439	0.03245	0.01805	0.02263	0.01965	0.02236	0.00565	0.00882		2877794	1784027	2398012	1779651	1544553	960802	840028	910631	863511	1075069	0.249	0.488
IRL GN1	none	catches	0.00455	0.01798	0.02887	0.01511	0.01426	0.01689	0.01868	0.01161	0.00483	0.00787		326700	420394	315963	184702	232984	301994	245422	236629	193304	228636	0.347	0.326
IRL GT1	none	catches	0.00001				0.00001	0.00001		0.00021	0.00006	0.00022		802				9643	12369	8195	22274	16468	34283		
IRL LL1	none	catches										0.00002				2167		3583	4986	4137	4448	2935	1627		
IRL TR1	none	catches	0.00782	0.01747	0.07467	0.04107	0.03483	0.03545	0.08524	0.08295	0.03695	0.03989		686132	832656	857361	1052210	1393754	1649186	1978763	1874554	2240217	2232046	0.384	0.273
IRL TR2	none	catches	0.02883	0.05258	0.19670	0.11389	0.08217	0.05049	0.06239	0.07813	0.02323	0.02780		2453633	2360432	3309991	2799841	2856080	2302531	1853012	2032989	1432374	1772704	0.797	0.006
IRL TR3	none	catches				0.00003		0.00000									720		324	1500		1498			
NIR TR1	none	catches	0.00031			0.00004			0.00001	0.00008	0.00106	0.00200		7641		716	5176		1141	1805	16028	23389	42944	0.950	0.000
NIR TR2	none	catches		0.00084	0.00246	0.00153	0.00210	0.00333	0.00630	0.00496	0.00014	0.00043			52370	72432	42938	20658	124635	152911	145881	6852	31350	0.921	0.000
SCO GN1	none	catches			0.00038									689	721	1337						2025			
SCO TR1	none	catches	0.00022	0.00012		0.00003		0.00001	0.00017	0.00107	0.00026	0.00123		9622	7701		9616	4479	12835	13077	87699	44476	83618	0.952	0.000
SCO TR2	none	catches	0.00022	0.00064		0.00001		0.00002	0.00167	0.00006	0.00058	0.00007		4770	12285	4095	2828		2693	29426	3626	17933	9776	0.948	0.000
Sum			0.40389	0.43615	0.65268	0.38201	0.35490	0.24197	0.45062	0.34281	0.15886	0.36244		15045231	15381614	15796036	13389703	13102326	11118500	10726612	12226451	11008442	12823100	0.694	0.026
check sum Fpa	ır/F		0.44	0.47	0.68	0.48	0.44	0.33	0.62	0.71	0.42	0.85													

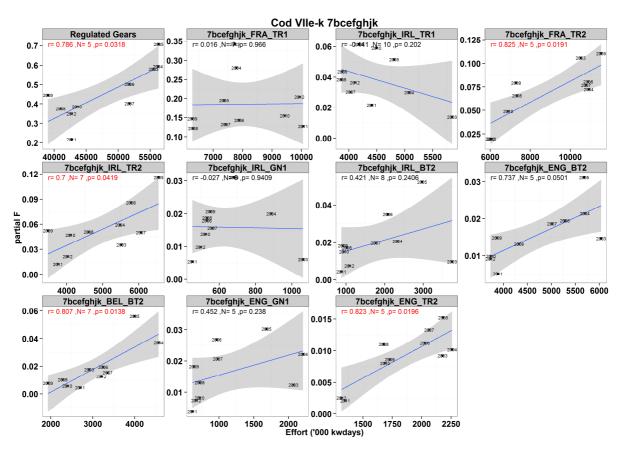


Fig. 5.6.8.1. Cod partial fishing mortality (based on partitioning the F from ICES assessment (ICES, 2013)) over effort ('000 kWd) in the entire Celtic Sea 7bcefghjk (Cel 1) of major fisheries, 2003-2012. The years represent data points, the line a linear fit through the points and the grey the confidence bounds on the linear fit (+-2SE, 95%).

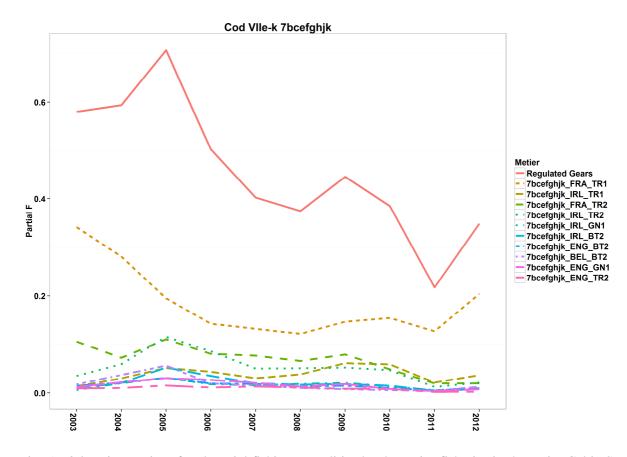


Fig. 5.6.8.2. Time series of cod partial fishing mortalities by the major fisheries in the entire Celtic Sea 7bcefghjk (Cel 1). 2003-2012.

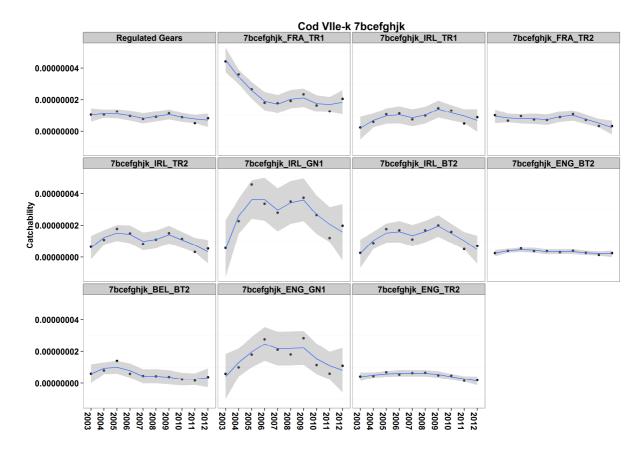


Fig. 5.6.8.3. Time series of cod catchability coefficients (partial F/ KW days effort) for the major fisheries in the entire Celtic Sea 7bcefghjk (Cel 1). 2003-2012. Circles represent data points, the line a smoother fitting through the data points to identify trends, the grey represents confidence bounds round the smoother (+-2SE, 95%).

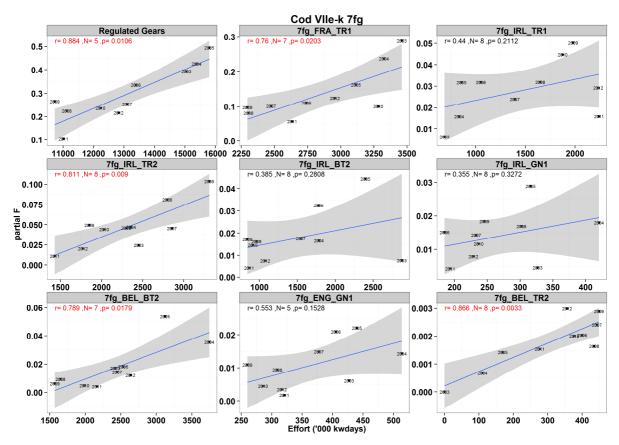


Fig. 5.6.8.4. Cod partial fishing mortality (based on partitioning the F from ICES assessment (ICES, 2013)) over effort ('000 kWd) in the smaller Celtic Sea 7fg (Cel 2) of major fisheries, 2003-2012. The years represent data points, the line a linear fit through the points and the grey the confidence bounds on the linear fit (+-2SE, 95%).

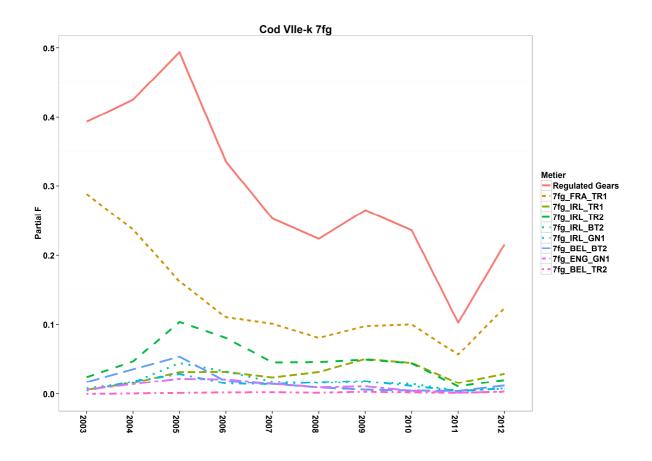


Fig. 5.6.8.5 Time series of cod partial fishing mortalities by the major fisheries in the in the smaller Celtic Sea 7fg (Cel 2). 2003-2012.

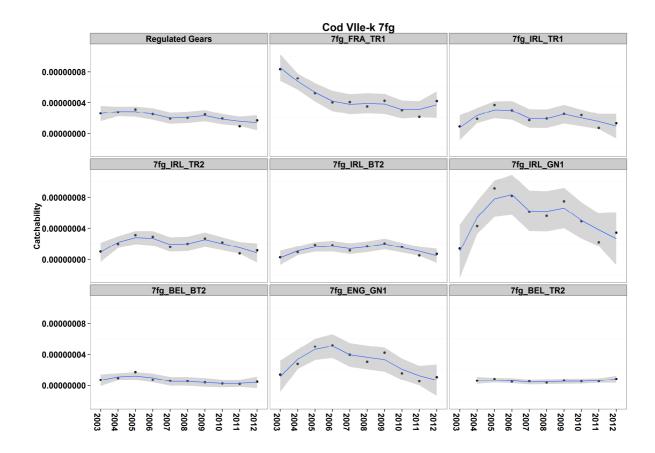


Fig. 5.6.8.6. Time series of cod catchability coefficients (partial F/ KW days effort) for the major fisheries in the smaller Celtic Sea 7fg (Cel 2). 2003-2012. Circles represent data points, the line a smoother fitting through the data points to identify trends, the grey represents confidence bounds round the smoother (+-2SE, 95%).

5.6.9 Spatio-temporal patterns in effective effort by fisheries

The following maps display the spatio-temporal patterns in effective fishing effort (fished hours) by major gear groups for the two potential management areas Cel 1 (7bcefghjk) and Cel 2 (7fg), respectively.

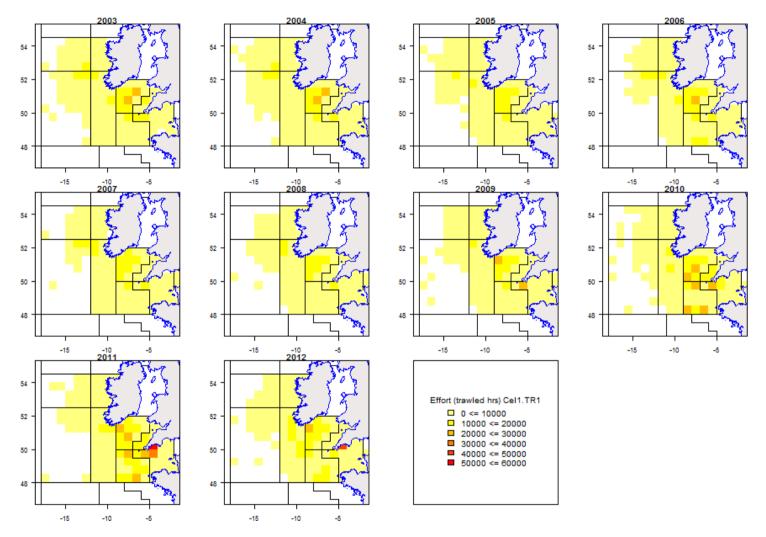


Figure 5.6.9.1.1 Cel1: Effective effort distribution of TR1 gears 2003-2012.

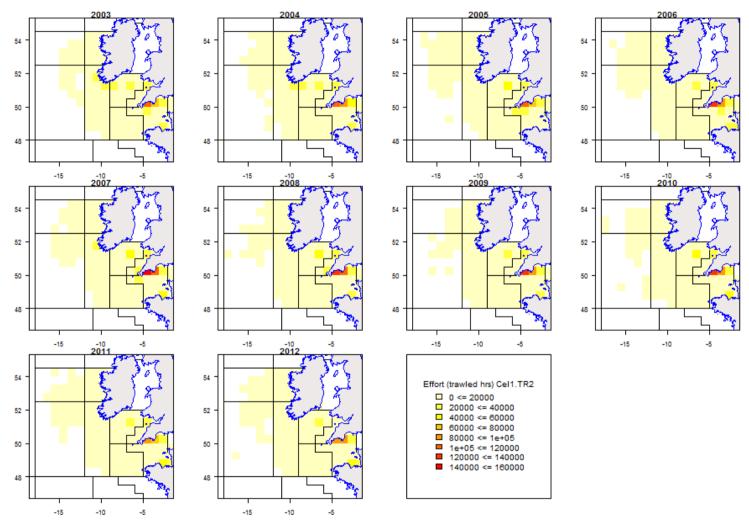


Figure 5.6.9.1.2 Cel1: Effective effort distribution of TR2 gears 2003-2012.

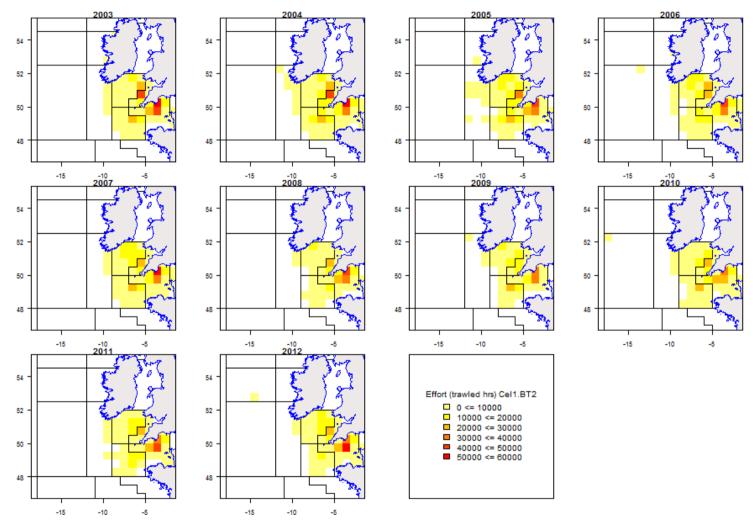


Figure 5.6.9.1.3 Cel1: Effective effort distribution of BT2 gears 2003-2012.

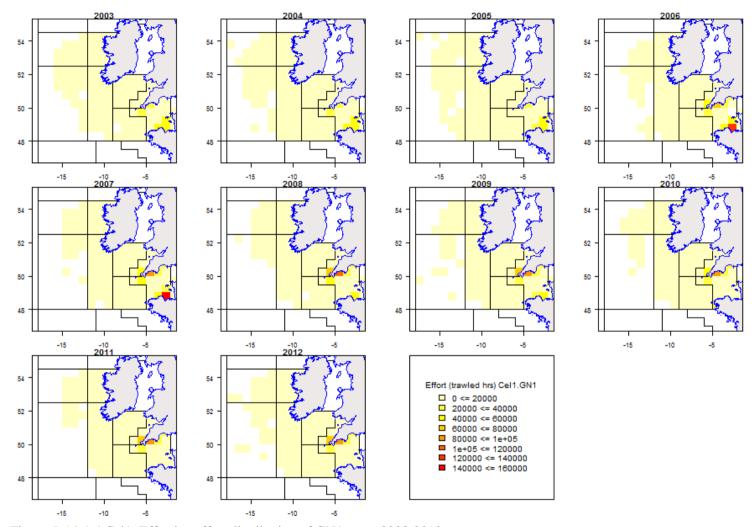


Figure 5.6.9.1.4 Cel1: Effective effort distribution of GN1 gears 2003-2012.

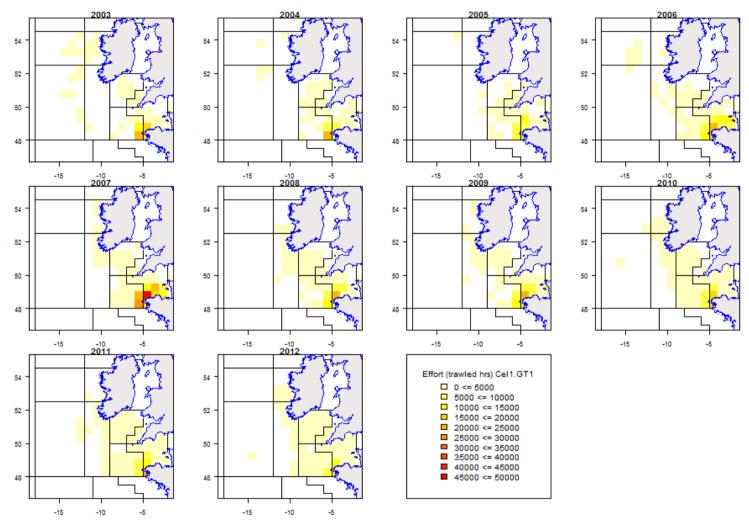


Figure 5.6.9.1.5 Cel1: Effective effort distribution of GT1 gears 2003-2012.

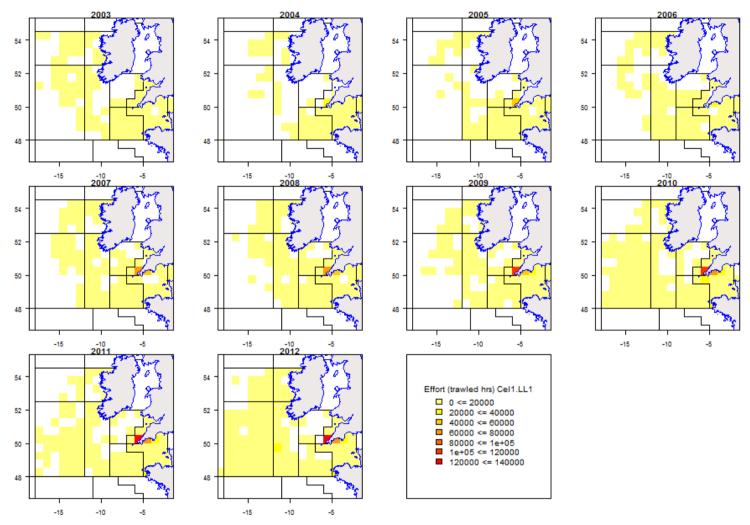


Figure 5.6.9.1.6 Cel1: Effective effort distribution of LL1 gears 2003-2012.

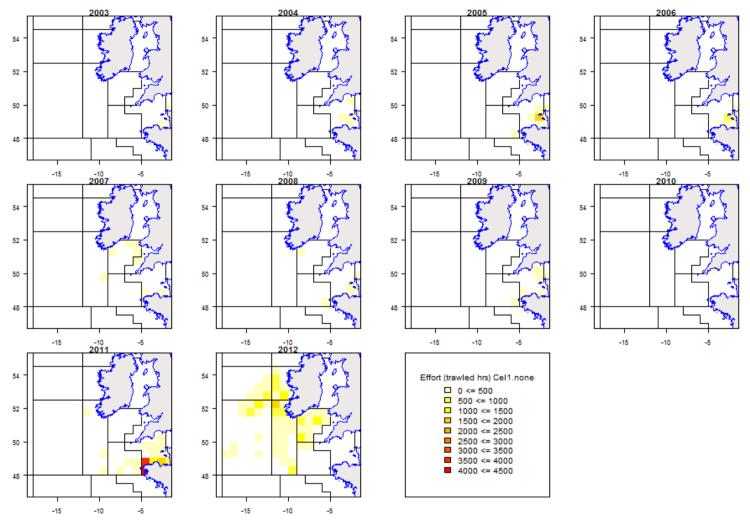


Figure 5.6.9.1.7 Cel1: Effective effort distribution of none gears 2003-2012.

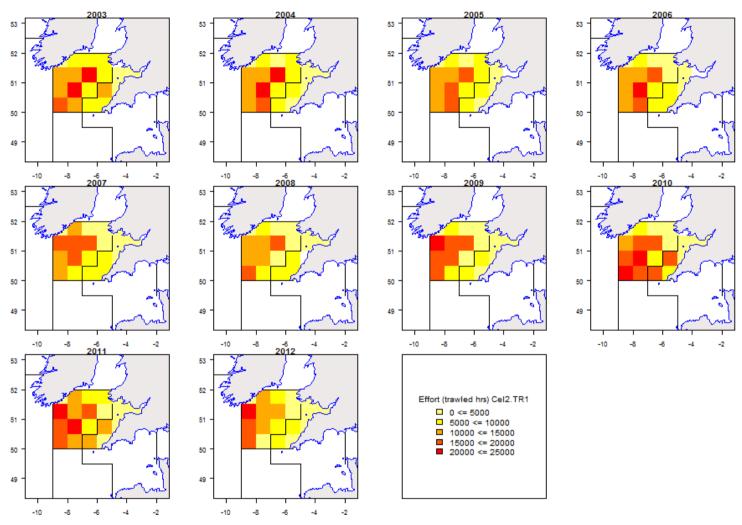


Figure 5.6.9.2.1 Cel2: Effective effort distribution of TR1 gears 2003-2012.

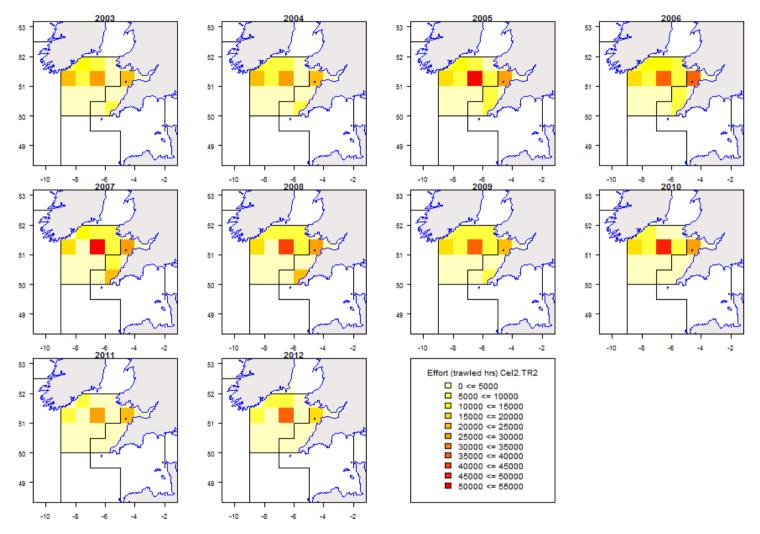


Figure 5.6.9.2.2 Cel2: Effective effort distribution of TR2 gears 2003-2012.

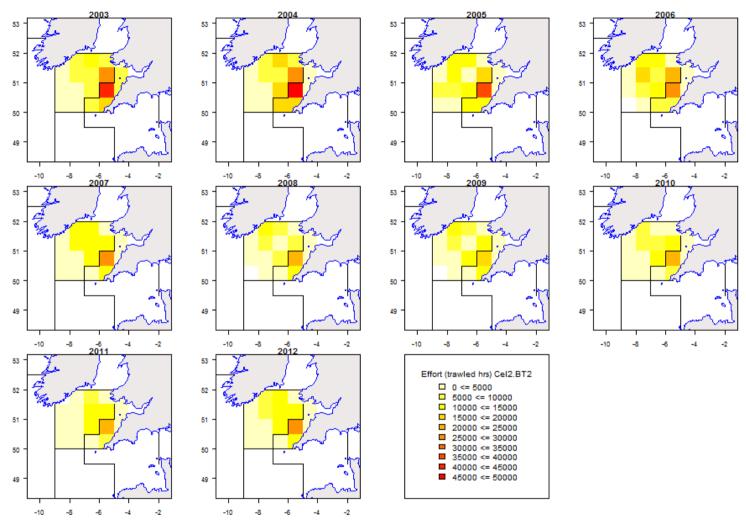


Figure 5.6.9.2.3 Cel2: Effective effort distribution of BT2 gears 2003-2012.

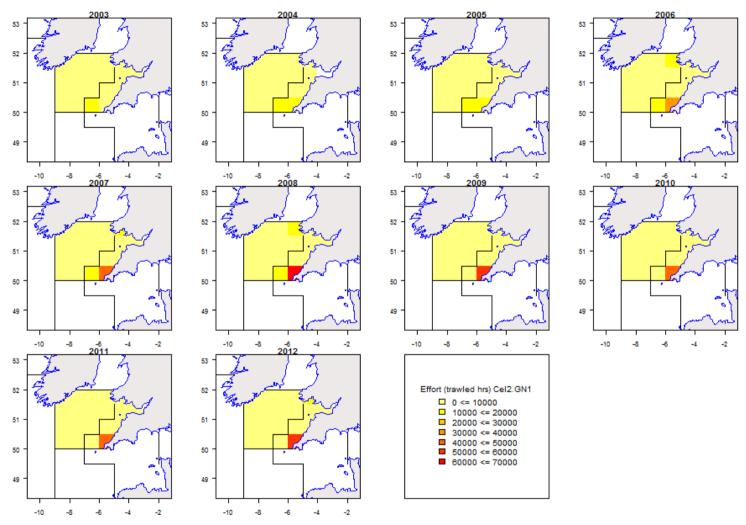


Figure 5.6.9.2.4 Cel2: Effective effort distribution of GN1 gears 2003-2012.

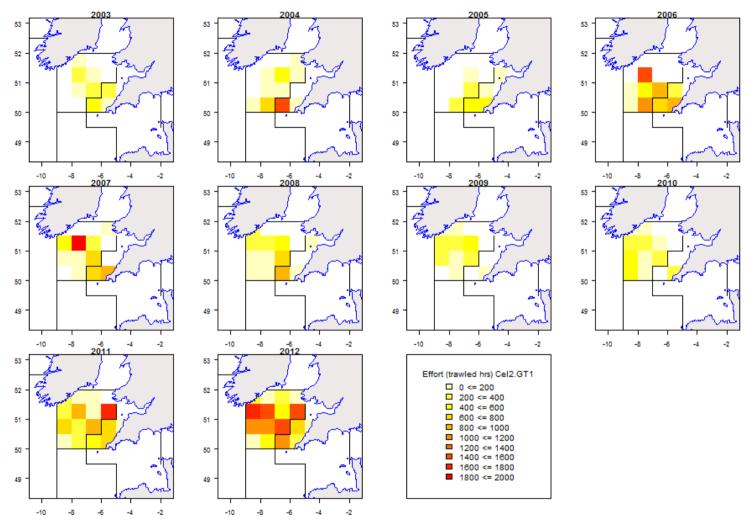


Figure 5.6.9.2.5 Cel2: Effective effort distribution of GT1 gears 2003-2012.

Figure 5.6.9.2.6 Cel2: Effective effort distribution of LL1 gears 2003-2012.

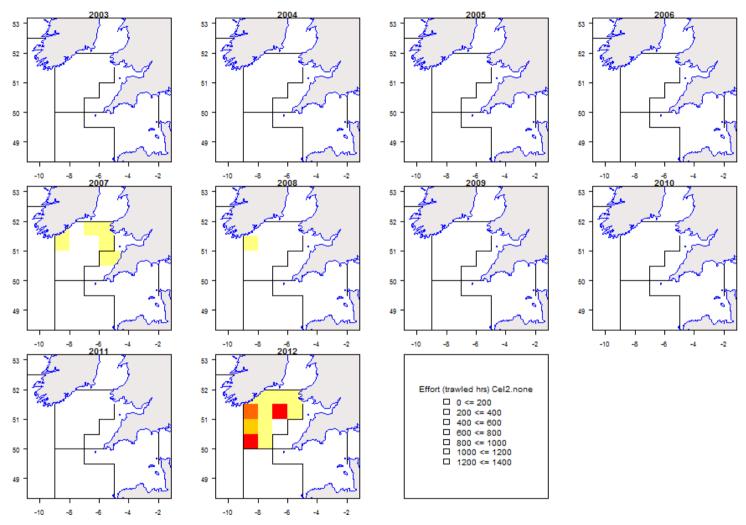


Figure 5.6.9.2.7 Cel2: Effective effort distribution of none gears 2003-2012.

5.7 Southern hake and *Nephrops* effort regime evaluation in the context of Annex IIB to Council Regulation (EU) No 43/2012

STECF-EWG 13-13 considers that Annex IIB of CR 43/2012 represents a fleet specific effort management regime which supports the Southern hake and *Nephrops* recovery plan (CR 2166/2005).

Annex IIB excludes the Gulf of Cádiz although this area is included in the recovery plan (CR 2166/2005) and is part of the area of Southern stock of hake (8c and 9a) and Iberian *Nephrops* populations. The cause of this exclusion is that when the recovery plan was established in 2005 the Spanish administration had already established a fishing plan for the trawl fleet of the Gulf of Cádiz that was followed by consecutives similar plans since then. The last Fishing Plan (ARM/58/2010) was applied since September 2010 to September 2012 and established a 45 days close season in autumn.

CR 43/2012 defines "Gulf of Cádiz" as the area east of longitude 7° 23' W, therefore "excluding Gulf of Cádiz" means in practice to exclude from area 9a the rectangles 01E3, 02E3, 03E3 and 01E4 and partially the rectangles 01E2 and 02E2.

STECF-EWG 13-13 notes that the classification of the trawl mesh size ≥32 mm in point 1 of Annex IIB mixes two clearly defined Portuguese fleets and fisheries. One fishery targets demersal fish species with mesh size 65-69mm and greater (OTB_DEF_>=55_0_0), and the other targets crustaceans with mesh size 55-59mm and greater (OTB_CRU_>=55_0_0), operating in different fishing grounds and depth ranges. The demersal trawl fleet targets a large variety of species, namely horse mackerel (*Trachurus trachurus*), blue whiting (*Micromesistius poutassou*), blue jack mackerel (*Trachurus picturatus*), pouting (*Trisopterus luscus*) and hake (*Merluccius merluccius*). The crustacean trawl fleet operates along the SW and S coasts of Portugal and and the main target species are deepwater rose shrimp (*Parapenaeus longirostris*), Norway lobster (*Nephrops norvegicus*), other shrimp species and blue whiting. The bottom otter trawl fleet is not allowed to fish inside the 6-mile coastal area, and a closed season is established for the Portuguese crustacean trawl in January each year.

The static gears (gillnets, trammel nets, longline and pots) are mainly used by the so-called Portuguese polyvalent fleet, which are licensed for more than one type of gear. Only gillnets and longlines are regulated within the Annex IIB.

Table 5.7.1 Portuguese Annex IIB regulated gears and trammel nets.

Effort control regime (Annex IIB)	DCF métier (Acronym)	Description
Bottom trawls, Danish seines and similar trawls of mesh size	OTB_DEF_>=55_0_0	Otter bottom trawl targeting demersal fish using mesh size \geq 65 mm
≥ 32 mm	OTB_CRU_>=55_0_0	Otter bottom trawl targeting crustacean species using mesh size ≥ 55 mm
	GNS_DEF_60-79_0_0	Set gillnet targeting demersal fish using mesh size of 60-79 mm
Gill-nets of mesh size ≥ 60 mm	GNS_DEF_80-99_0_0	Set gillnet targeting demersal fish using mesh size of 80-99 mm
	GNS_DEF_>=100_0_0	Set gillnet targeting demersal fish using mesh size ≥ 100 mm
Bottom longlines	LLS_DEF_0_0_0	Set longline targeting demersal fish
Trammal note (non-regulated)	GTR_DEF_80-99_0_0	Set trammel net targeting demersal fish using mesh size of 80-99 mm
Trammel nets (non-regulated)	GTR_DEF_>=100_0_0	Set trammel net targeting demersal fish using mesh size $\geq 100 \text{ mm}$

STECF-EWG 13-06 notes that under gears regulated by the Annex IIB there is also a mixture of different Spanish DCF metiers (Table 5.7.2).

The Spanish bottom trawl operating in the Northern and Western coastal waters (ICES Divisions VIIIc and IXa) is prosecuted by vessels with 28 m of average length. The minimum trawl depth is 100 m, the maximum activity period is 18 hours per day and they must stop fishing for a 48-hour continuous period per week. This fleet is composed of otter trawlers and pair trawlers.

The most important Spanish métiers in 8c and 9a are described below:

"Baca" gear (OTB_DEF_>=55_0_0), characterized by a vertical opening of 1.2-1.5 m and a wingspread of 22-25 m, is allowed to use a cod end mesh size of 70 mm to catch demersal species, standing out hake (Merluccis merluccius), megrims (Lepidorhombus boscii and L. whiffiagonis) and anglerfish (Lophius piscatorius and L. budegassa).

"Jurelera" (OTB_MPD_>=55_0_0) permits a higher vertical opening (5-5.5 m) and is allowed to use a smaller mesh size (55 mm), so it is used to target pelagic fish as horse mackerel (*Trachurus trachurus*) and mackerel (*Scomber scombrus*). As 'baca' and 'jurelera' gears can be used in the same trip, the identification of the trip métier must be done by multivariate analysis (Punzón et al., 2010) of the landings profile.

The pair bottom trawl fleet (PTB_MPD_>=55_0_0) uses a gear that can reach a vertical opening of 25 m and a wingspread of 65 m. This fleet is allowed to use a minimum mesh size of 55 mm when it is directed

to blue whiting (*Micromesistius poutassou*), the main species in landings, but needs to be extended to 70 mm when the hake proportion exceeds 15% in landings (Castro et al., 2010). However, both cod ends are included into the same DCF mesh range due to the difficulty of split both kind of trips for sampling purposes.

Table 5.7.2 Spanish Annex IIB regulated gears and trammel nets.

Effort control regime (Annex IIB)	Area	DCF Metier acronym	Description
	8c & 9a	OTB_DEF_>=55_0_0	('Baca') Otter bottom trawl targeting demersal species (hake, megrim, anglerfish) using a cod end mesh size of 70 mm
Trawls, Danish seines		OTB_MPD_>=55_0_0	('Jurelera') Otter trawl targeting pelagic and demersal species (horse mackerel, mackerel)
or similar gears of mesh size $\geq 32 \text{ mm}$	8c & 9a North	PTB_MPD_>=55_0_0	Pair bottom trawl targeting pelagic and demersal species (blue whiting, hake, mackerel) using a
		SDN_MCF_>=55_0_0	Danish seine targeting cuttlefish
	9a South	OTB_MCD_>=55_0_0	Otter bottom trawl targeting crustaceans and demersal species (rose shrimp, hake, cuttlefish)
		GNS_DEF_60-79_0_0	('Beta') Set gillnet targeting demersal species (horse mackerel, pouting, hake,) using a mesh size of 60 mm
Gill-nets of mesh size ≥ 60 mm	8c & 9a North	GNS_DEF_80-99_0_0	('Volanta') Set gillnet targeting hake using a mesh size of 90 mm
		GNS_DEF_>=100_0_0	('Rasco') Set gillnet targeting anglerfish using mesh size of 280 mm
Dattom langlings	8c & 9a	LLS_DEF_0_0_0	Bottom longline targeting demersal species (conger, pomfret, hake,)
Bottom longlines	9a S	LLS_DWS_0_0_0	Bottom longline targeting silver scabbardfish
Trammel nets (non	8c & 9a N	GTR_DEF_60-79_0_0	Set trammel net targeting demersal species (cuttlefish, spider crab, rays,) using mesh size over 60 mm
regulated)	9a S	GTR_DEF_40-59_0_0	Set trammel nets targeting demersal species (cuttlefish, wedge sole, meagre, prawns,) using 40-60 mm mesh size

Otter bottom trawl in 9a South (OTB_MCD_>55_0_0) fishes in both Portuguese and Spanish waters and is directed to crustaceans and demersal species as rose shrimp (*Parapeanaeus longirostris*), hake and cuttlefish (*Sepia officinalis*).

The Northern Spanish gillnet fleet uses three types of nets: "beta", "volanta" and "rasco" nets (Castro et al., 2011).

- "Beta" gear (GNS_DEF_60-79_0_0) uses mesh sizes of 60 mm to target a variety of demersal species as horse mackerel, pouting (*Trisopterus luscus*), hake and mullets (*Mullus spp.*).
- "Volanta" gear (GNS_DEF_80-99_0_0) is a gillnet composed by nets with 10 m high and 50 m length, which is regulated under a mesh size of 90 mm to specifically catch hake.
- "Rasco" gillnet is composed by nets with 3.5 m high and 50 m length, and uses a 280 mm mesh size to target anglerfish (GNS_DEF_>=100_0_0).

The main Spanish set longline fleet (LLS_DEF_0_0_0) uses a line with less than 4000 hooks and is used to catch demersal fish as conger (*C. conger*), pomfret and hake, among others.

The Northern Spanish trammel net fleet (GTR_DEF_60-79_0_0) uses a gear made with three walls of netting, the two outer walls being of a larger mesh size (400-500 mm) than the loosely hung inner netting panel (60-90 mm), and targets a variety of demersal species as cuttlefish, spider crabs or rays.

Annex IIB of CR 43/2012 sets the maximum number of days the fishing vessels are allowed to be present in the area carrying the specified regulated gears (Table 5.7.3). The regulated gear types are named as "3a" (bottom trawler mesh size \geq 32 mm), "3b" (gillnet \geq 60 mm) and "3c" (bottom longline), using the 2006-2007 regulations numbering. Special conditions are applied to vessels that landed less than 5 tons of hake <u>and</u> less than 2.5 tons of Norway lobster in the year 2009 or 2010 (CR 43/2012). These special conditions, previously referred as IIB72ab according to their numbering (Annex IIB, point 7.2, a and b) in CR(s) 40/2008 and 43/2009, were updated to IIB52ab in CR(s) 53/2010 and 57/2011 and to IIB61 in CR43/2012.

In 2010, additional days were allocated to Spanish and Portuguese vessels on the basis of permanent cessation of vessels from each country. This different allocation is reflected in the 2011 allowed days at sea

Table 5.7.3. Historic trends in allowed days at sea by vessel specified in the Council Regulations since 2005.

Annex	AREA	REG GEAR	SPECON (**)	Country	2005	2006	2007	2008	2009	2010	2011	2012
				ESP							158	150
			none	FRA	264	240	216	194	175	158	142	149
IIB	8c9a	20 26 0 20/*\		PRT							172	155
IIID	ocea	3a, 3b & 3c (*)		ESP								
			IIB61	FRA	Unlimited							
				PRT								

^(*) according to 2006 and 2007 regulations

The days of a trip shall not be counted for effort regulation if hake catch (landing \pm discard) is less than 4% of the trip catch (CR 43/2012).

STECF-EWG 13-06 considers that the use of fishing days (or kW*days) to manage effort of static gears such as gillnets and longlines is a very poor approximation of the effective effort and thus may put at risk the management goals.

^(**) SPECON IIB61 corresponds to IIB72ab of the regulations prior to 2010

In the case of Spanish data some inconsistencies between "gear" and "fishery" (= metier) information could be found in the database. That is because "gear" information comes directly from the logbooks (official information) and "fishery" information comes from multivariate analysis carried out to identify the metier of each trip (scientific estimations).

5.7.1 ToR 1.a Fishing effort in kWdays, GTdays and number of vessels by Member state and fisheries

2012 kW*days, GT*days and number of vessels in 8c and 9a were provided by Spain, Portugal, France and Scotland by area, gear, special condition and vessel length. EWG effort data time series start in 2000. Ireland, England and the Netherlands provided sporadic information in previous years. Spain did not provide 2010 and 2011 data.

According to Annex IIB of CR 43/2012, in the context of the recovery plan for Southern hake and *Nephrops* stocks, fishing vessels with overall length above 10 meters that have trawl nets with mesh sizes >32 mm, gillnets > 60 mm or bottom longlines might be present within the area for a maximum of 150 days during 2012 if they have Spanish flag, 149 days if they have French flag and 155 days if they have Portuguese flag (Table I of the Annex II B, Table 5.7.3).

If, during 2009 or 2010 these vessels landed less than 5 tonnes of hake <u>and</u> less than 2.5 tonnes of *Nephrops*, special conditions were applied and they were not covered by the effort limitation (Table 5.7.3), but were obliged not to exceed those amounts in 2012. The special conditions reference years were 2001-2003 average for 2005–2009 regulations, 2007 or 2008 for 2010 regulation, 2008 or 2009 for 2011 regulation and 2009 or 2010 for 2012 regulation.

Spanish and Portuguese regulated trawls landed in 2012 87% of 8c9a hake (Fig. 5.7.2.4), 53% of anglerfish (Fig. 5.7.3.4) and 98% of *Nephrops* landings (Table 5.7.2.1).

Trawl effort data provided by Spain (2002-2009, 2012) to the STECF EWG database come from logbooks and show a decreasing trend since 2004. These data can be compared with the effort data presented by Spain for the same area to the 2013 ICES WGHMM. The data provided to the ICES WG were effort estimates derived from several sources of data. These data also presented a decreasing trend, but show a more marked effort drop in the last years (ICES, 2013; Figure 5.7.1.1, left).

Effort estimates provided by Portugal (2000-2012) to the EWG database present a decreasing trend between 2007 and 2010 and stability since then. Portuguese data come mostly from logbooks and, for those that do not have logbooks (< 10 m), from sales records. We can compare these data with the effort data presented by Portugal for the same area to the 2013 ICES WGHMM. The data provided to the ICES WG come from a standardized effort series based on logbook data (ICES, 2013). These data presented also a decreasing trend until 2010, but no data were available for 2011 and 2012 (Figure 5.7.1.1, right).

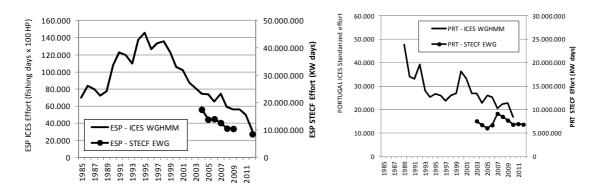


Figure 5.7.1.1. Comparison of <u>trawl</u> effort presented to ICES WGHMM and to STECF EWG data base (this report) (left: Spain, right: Portugal).

Figure 5.7.1.2 shows the decreasing trend in the 8c and 9a trawl fleets from the 2013 ICES WGHMM that corroborates the decreasing trends found in the EWG trawl effort data.

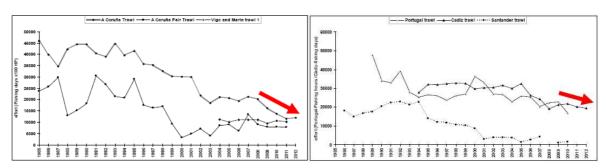


Fig. 5.7.1.2. 8c and 9a trawl fleets effort from the 2013 ICES WGHMM (1985-2012).

The 2000-2012 effort data in terms of kW*days by Member State are given in Table 5.7.1.1.

Table 5.7.1.1. Trend in nominal effort (kW*days at sea) by Member State and existing derogations given in Table 1 of Annex IIB (CR 43/2012), 2000-2012. Derogations are sorted by gear, special condition (SPECON) and country. Data quality is summarised in section 4. Note that the gear type "3t" denotes the non-regulated effort for trammel gear with all mesh sizes. **No Spanish data in 2010 and 2011.**

					2000		2002	2002		2005	2005
ANNEX			R C(SPECON	COUNTRY	2000	2001	2002	2003	2004	2005	2006
IIb	8c-9a	3a	IIB72AB	ESP			2109760	1820929	3051855	2677605	2420208
IIb	8c-9a	3a	IIB72AB	PRT			7621	2459587	1657564	1609414	560066
IIb	8c-9a	3a	none	ENG						1277	
IIb	8c-9a	3a	none	ESP			9822108	15456694	14344840	11072135	11473544
IIb	8c-9a	3a	none	FRA	63277	123663	484849	120552	110098	198178	345256
IIb	8c-9a	3a	none	IRL				4208			1612
IIb	8c-9a	3a	none	PRT	3808432	1807966	1741444	5077895	5074403	4425695	6137863
IIb	8c-9a	3b	IIB72AB	ESP			671679	662947	865145	1033742	916120
IIb	8c-9a	3b	IIB72AB	PRT			5884	35022	2695	51269	116027
IIb	8c-9a	3b	none	ENG							26652
IIb	8c-9a	3b	none	ESP			438463	450978	684167	787527	916038
IIb	8c-9a	3b	none	FRA	4723	4750	24598	5762	28023	97700	69478
IIb	8c-9a	3b	none	PRT	151503	90812	162118	88643	32276	144697	231204
IIb	8c-9a	3b	none	SCO							3234
IIb	8c-9a	3c	IIB72AB	ESP			591039	621801	692039	686974	755191
IIb	8c-9a	3c	IIB72AB	PRT	45446	10923	20594	328631	280951	572386	869687
IIb	8c-9a	3c	none	ENG				8853			4928
IIb	8c-9a	3c	none	ESP			310392	344686	383472	545271	830548
IIb	8c-9a	3c	none	FRA	1738		3312	3318	3972	2094	588
IIb	8c-9a	3c	none	IRL							1684
IIb	8c-9a	3c	none	PRT		544		56188	33808	39774	95715
IIb	8c-9a	3t	none	ESP			461705	438995	736892	955031	742397
IIb	8c-9a	3t	none	FRA	4108		23894	3977	525	300001	1878
IIb	8c-9a	3t	none	PRT	74911	79822	89495	74729	40252	253707	525524
IIb	8c-9a	none	none	ENG	74511	75022	05455	14123	40252	233707	3136
IIb	8c-9a	none	none	esp	0	0	18346437	24809378	16299264	15443521	13662008
IIb	8c-9a	none	none	fra	85431	159563	1216983	224468	97130	125835	318711
IIb	8c-9a	none	none	IRL	65431	1585	4281	11686	37130	123633	6020
IIb	8c-9a	none			0				F402	70001	159803
III											
		none	none	prt	0	0	0	11726	5402	78981	133603
ANNEX		C REG GEAR		COUNTRY	2007	2008	2009	2010	2011	2012	133603
ANNEX IIb				<u> </u>							137603
	REG AREA	C REG GEAR	CCSPECON	COUNTRY	2007	2008	2009				135605
IIb	REG AREA (CC REG GEAR	IIB72AB	COUNTRY	2007	2008	2009			2012	137803
IIb IIb	REG AREA (8c-9a 8c-9a	CC REG GEAR 3a 3a	IIB72AB	COUNTRY ESP FRA	2007 2458721	2008 2478225	2009 2403446	2010	2011	2012 39910	137603
IIb IIb IIb	REG AREA (8c-9a 8c-9a 8c-9a	CC REG GEAR 3a 3a 3a 3a	IIB72AB IIB72AB IIB72AB	COUNTRY ESP FRA PRT	2007 2458721 186292	2008 2478225 195742	2009 2403446 314695	2010	2011	2012 39910 1318635	157605
IIb IIb IIb IIb	REG AREA (8c-9a 8c-9a 8c-9a 8c-9a	CC REG GEAR 3a 3a 3a 3a 3a	IIB72AB IIB72AB IIB72AB IIB72AB none	COUNTRY ESP FRA PRT ESP	2007 2458721 186292 9902350	2008 2478225 195742 7975346	2009 2403446 314695 7959428	2010 310341 47904 82	2011 890648	39910 1318635 8113213	157605
IIIb IIIb IIIb IIIb IIIb	REG AREA (8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a	CC REG GEAR 3a 3a 3a 3a 3a	IIB72AB IIB72AB IIB72AB IIB72AB none none none	COUNTRY ESP FRA PRT ESP FRA IRL PRT	2007 2458721 186292 9902350 274429 8941196	2008 2478225 195742 7975346 315954 8299896	2009 2403446 314695 7959428 315954 7380318	2010 310341 47904	2011 890648	39910 1318635 8113213	155605
IIIb IIIb IIIb IIIb IIIb IIIb IIIb	REG AREA (8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a	CC REG GEAR 3a 3a 3a 3a 3a 3a 3a 3a 3a	IIB72AB IIB72AB IIB72AB IIB72AB none none	COUNTRY ESP FRA PRT ESP FRA IRL	2007 2458721 186292 9902350 274429	2008 2478225 195742 7975346 315954	2009 2403446 314695 7959428 315954	2010 310341 47904 82	2011 890648 71646	39910 1318635 8113213 37581	155005
IIIb IIIb IIIb IIIb IIIb IIIb IIIb III	REG AREA (8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a	2C REG GEAR 3a 3a 3a 3a 3a 3a 3a 3a 3a 3b 3b	IIB72AB IIB72AB IIB72AB IIB72AB none none none iIB72AB IIB72AB	COUNTRY ESP FRA PRT ESP FRA IRL PRT ESP FRA	2007 2458721 186292 9902350 274429 8941196 1056900	2008 2478225 195742 7975346 315954 8299896 1330193	2009 2403446 314695 7959428 315954 7380318 1668152	2010 310341 47904 82 6493382	2011 890648 71646 6046801	39910 1318635 8113213 37581 5492574	155005
IIb	REG AREA (8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a	20 REG GEAR 3a 3a 3a 3a 3a 3a 3a 3a 3b 3b	R CC SPECON IIB72AB IIB72AB IIB72AB none none none IIB72AB IIB72AB	COUNTRY ESP FRA PRT ESP FRA IRL PRT ESP FRA PRT	2007 2458721 186292 9902350 274429 8941196 1056900	2008 2478225 195742 7975346 315954 8299896	2009 2403446 314695 7959428 315954 7380318	2010 310341 47904 82	2011 890648 71646	39910 1318635 8113213 37581 5492574	155005
IIb	REG AREA (8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a	20 REG GEAR 3a	R CCSPECON IIB72AB IIB72AB IIB72AB none none none IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB	COUNTRY ESP FRA PRT ESP FRA IRL PRT ESP FRA PRT ESP FRA PRT ENG	2007 2458721 186292 9902350 274429 8941196 1056900 152925 1984	2008 2478225 195742 7975346 315954 8299896 1330193 176030	2009 2403446 314695 7959428 315954 7380318 1668152 276056	2010 310341 47904 82 6493382	2011 890648 71646 6046801	2012 39910 1318635 8113213 37581 5492574 36742 177891	155005
IIIb IIIb IIIb IIIb IIIb IIIb IIIb III	REG AREA (8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a	CC REG GEAR 3a 3a 3a 3a 3a 3a 3a 3a 3a 3b 3b 3b 3b 3b	R CC SPECON IIB72AB IIB72AB IIB72AB none none none iIB72AB IIB72AB IIB72AB IIB72AB IIB72AB none none	COUNTRY ESP FRA PRT ESP FRA IRL PRT ESP FRA PRT ESP FRA PRT ESP FRA PRT ENG ESP	2007 2458721 186292 9902350 274429 8941196 1056900 152925 1984 1010060	2008 2478225 195742 7975346 315954 8299896 1330193 176030	2009 2403446 314695 7959428 315954 7380318 1668152 276056	2010 310341 47904 82 6493382 248338	2011 890648 71646 6046801 179928	2012 39910 1318635 8113213 37581 5492574 36742 177891	155605
IIIb IIIb IIIb IIIb IIIb IIIb IIIb III	REG AREA (8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a	20 REG GEAR 3a 3b 3b 3b 3b 3b 3b	R CCSPECON IIB72AB IIB72AB IIB72AB none none none IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB none none	COUNTRY ESP FRA PRT ESP FRA IRL PRT ESP FRA ESP FRA ESP FRA FRA PRT ENG ESP FRA	2007 2458721 186292 9902350 274429 8941196 1056900 152925 1984 1010060 128595	2008 2478225 195742 7975346 315954 8299896 1330193 176030 1195943 296765	2009 2403446 314695 7959428 315954 7380318 1668152 276056 1480125 296765	2010 310341 47904 82 6493382 248338	2011 890648 71646 6046801 179928	2012 39910 1318635 8113213 37581 5492574 36742 177891 1474835 46046	155005
IIIb IIIb IIIb IIIb IIIb IIIb IIIb III	REG AREA O 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a	CC REG GEAR 3a 3a 3a 3a 3a 3a 3a 3a 3a 3b 3b 3b 3b 3b 3b 3b 3b	R CC SPECON IIB72AB IIB72AB IIB72AB none none none IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB none none	COUNTRY ESP FRA PRT ESP FRA IRL PRT ESP FRA PRT ESP FRA PRT ENG ESP FRA PRT	2007 2458721 186292 9902350 274429 8941196 1056900 152925 1984 1010060 128595 816228	2008 2478225 195742 7975346 315954 8299896 1330193 176030 1195943 296765 886822	2009 2403446 314695 7959428 315954 7380318 1668152 276056 1480125 296765 763806	2010 310341 47904 82 6493382 248338	2011 890648 71646 6046801 179928	2012 39910 1318635 8113213 37581 5492574 36742 177891	155605
IIIb IIIb IIIb IIIb IIIb IIIb IIIb III	REG AREA (8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a	CC REG GEAR 3a 3a 3a 3a 3a 3a 3a 3a 3a 3b 3b 3b 3b 3b 3b 3b 3b 3b 3c	R CC SPECON IIB72AB IIB72AB IIB72AB none none none IIB72AB IIB72AB IIB72AB IIB72AB none none none	COUNTRY ESP FRA PRT ESP FRA IRL ESP FRA PRT ESP FRA PRT ENG ESP FRA PRT ENG ESP	2007 2458721 186292 9902350 274429 8941196 1056900 152925 1984 1010060 128595	2008 2478225 195742 7975346 315954 8299896 1330193 176030 1195943 296765	2009 2403446 314695 7959428 315954 7380318 1668152 276056 1480125 296765	2010 310341 47904 82 6493382 248338	2011 890648 71646 6046801 179928	2012 39910 1318635 8113213 37581 5492574 36742 177891 1474835 46046 205987	155005
IIIb IIIb IIIb IIIb IIIb IIIb IIIb III	REG AREA (8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a	CC REG GEAR 3a 3a 3a 3a 3a 3a 3a 3b 3b 3b 3b 3b 3b 3b 3b 3c 3c	R CC SPECON IIB72AB IIB72AB IIB72AB none none none IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB	COUNTRY ESP FRA PRT ESP FRA IRL PRT ESP FRA PRT ENG ESP FRA PRT ENG ESP FRA PRT ENG ESP FRA	2007 2458721 186292 9902350 274429 8941196 1056900 152925 1984 1010060 128595 816228 846255	2008 2478225 195742 7975346 315954 8299896 1330193 176030 1195943 296765 886822 897264	2009 2403446 314695 7959428 315954 7380318 1668152 276056 1480125 296765 763806 1099242	2010 310341 47904 82 6493382 248338 114202 680987	2011 890648 71646 6046801 179928 61604 285066	2012 39910 1318635 8113213 37581 5492574 36742 177891 1474835 46046 205987 22172	155005
IIIb IIIb IIIb IIIb IIIb IIIb IIIb III	REG AREA (8c-9a	CC REG GEAR 3a 3a 3a 3a 3a 3a 3b 3b 3b 3b	R CC SPECON IIB72AB IIB72AB IIB72AB none none none IIB72AB	COUNTRY ESP FRA PRT ESP FRA IRL PRT ESSP FRA PRT ENG ESP FRA PRT ENG ESP FRA PRT ENG ESP FRA	2007 2458721 186292 9902350 274429 8941196 1056900 152925 1984 1010060 128595 816228 846255	2008 2478225 195742 7975346 315954 8299896 1330193 176030 1195943 296765 886822 897264	2009 2403446 314695 7959428 315954 7380318 1668152 276056 1480125 296765 763806 1099242 864313	2010 310341 47904 82 6493382 248338	2011 890648 71646 6046801 179928	2012 39910 1318635 8113213 37581 5492574 36742 177891 1474835 46046 205987 22172 239579	155005
IIIb IIIb IIIb IIIb IIIb IIIb IIIb III	REG AREA O 8c-9a	CC REG GEAR 3a 3a 3a 3a 3a 3a 3b 3b 3b 3b	R CC SPECON IIB72AB IIB72AB IIB72AB none none none IIB72AB IIB72AB IIB72AB iIB72AB none none iIB72AB iIB72AB none none none	COUNTRY ESP FRA PRT ESP FRA IRL PRT ESP FRA PRT ESP FRA PRT ENG ESP FRA PRT ESP FRA PRT ESP FRA PRT ESP	2007 2458721 186292 9902350 274429 8941196 1056900 152925 1984 1010060 128595 816228 846255	2008 2478225 195742 7975346 315954 8299896 1330193 176030 1195943 296765 886822 897264 750091 521613	2009 2403446 314695 7959428 315954 7380318 1668152 276056 1480125 296765 763806 1099242 864313 728602	2010 310341 47904 82 6493382 248338 114202 680987	2011 890648 71646 6046801 179928 61604 285066	2012 39910 1318635 8113213 37581 5492574 36742 177891 1474835 46046 205987 22172 239579 2521419	155005
IIIb IIIb IIIb IIIb IIIb IIIb IIIb III	REG AREA O 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a 8c-9a	CC REG GEAR 3a 3a 3a 3a 3a 3a 3b 3b 3b 3b	R CC SPECON IIB72AB IIB72AB IIB72AB none none none IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB none none IIB72AB none none none none none none none non	COUNTRY ESP FRA PRT ESP FRA IRL PRT ESP FRA PRT ENG ESP FRA PRT ENG ESP FRA PRT ESP FRA PRT ESP FRA	2007 2458721 186292 9902350 274429 8941196 1056900 152925 1984 1010060 128595 816228 846255 841563 522362 700	2008 2478225 195742 7975346 315954 8299896 1330193 176030 1195943 296765 886822 897264	2009 2403446 314695 7959428 315954 7380318 1668152 276056 1480125 296765 763806 1099242 864313	2010 310341 47904 82 6493382 248338 114202 680987	2011 890648 71646 6046801 179928 61604 285066	2012 39910 1318635 8113213 37581 5492574 36742 177891 1474835 46046 205987 22172 239579	155005
IIIb IIIb IIIb IIIb IIIb IIIb IIIb III	REG AREA (8c-9a	CC REG GEAR 3a 3a 3a 3a 3a 3a 3b 3b 3b 3b	R CC SPECON IIB72AB IIB72AB IIB72AB none none none IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB none none none none none none none non	COUNTRY ESP FRA PRT ESP FRA IRL PRT ESP FRA PRT ESP FRA PRT ENG ESP FRA PRT ESP FRA	2007 2458721 186292 9902350 274429 8941196 1056900 152925 1984 1010060 128595 816228 846255 841563 522362 700 2472	2008 2478225 195742 7975346 315954 8299896 1330193 176030 1195943 296765 886822 897264 750091 521613 40052	2009 2403446 314695 7959428 315954 7380318 1668152 276056 1480125 296765 763806 1099242 864313 728602 40052	2010 310341 47904 82 6493382 248338 114202 680987 844144 83794	2011 890648 71646 6046801 179928 61604 285066 897019 46310	2012 39910 1318635 8113213 37581 5492574 36742 177891 1474835 46046 205987 22172 239579 2521419 33643	155005
IIIb IIIb IIIb IIIb IIIb IIIb IIIb III	REG AREA (8c-9a	CC REG GEAR 3a 3a 3a 3a 3a 3a 3b 3b 3b 3b	R CC SPECON IIB72AB IIB72AB IIB72AB none none none IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB none none IIB72AB	COUNTRY ESP FRA PRT ESP FRA IRL PRT ESP FRA PRT ENG ESP FRA PRT ENG ESP FRA PRT ESP	2007 2458721 186292 9902350 274429 8941196 1056900 152925 1984 1010060 128595 816228 846255 841563 522362 700	2008 2478225 195742 7975346 315954 8299896 1330193 176030 1195943 296765 886822 897264 750091 521613	2009 2403446 314695 7959428 315954 7380318 1668152 276056 1480125 296765 763806 1099242 864313 728602	2010 310341 47904 82 6493382 248338 114202 680987 844144 83794 91062	2011 890648 71646 6046801 179928 61604 285066 897019 46310 91411	2012 39910 1318635 8113213 37581 5492574 36742 177891 1474835 46046 205987 22172 239579 2521419 33643 115392	155005
IIIb IIIb IIIb IIIb IIIb IIIb IIIb III	REG AREA (8c-9a	CC REG GEAR 3a 3a 3a 3a 3a 3a 3b 3b 3b 3b	R CC SPECON IIB72AB IIB72AB IIB72AB none none none IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB none none none none none none none non	COUNTRY ESP FRA PRT ESP FRA IRL PRT ESP FRA PRT ENG ESP FRA PRT ENG ESP FRA PRT ESP FRA PR	2007 2458721 186292 9902350 274429 8941196 1056900 152925 1984 1010060 128595 816228 846255 841563 522362 700 2472 149000	2008 2478225 195742 7975346 315954 8299896 1330193 176030 1195943 296765 886822 897264 750091 521613 40052 139305	2009 2403446 314695 7959428 315954 7380318 1668152 276056 1480125 296765 763806 1099242 864313 728602 40052	2010 310341 47904 82 6493382 248338 114202 680987 844144 83794	2011 890648 71646 6046801 179928 61604 285066 897019 46310	2012 39910 1318635 8113213 37581 5492574 36742 177891 1474835 46046 205987 22172 239579 2521419 33643 115392 2294	155005
IIIb IIIb IIIb IIIb IIIb IIIb IIIb III	REG AREA O 8c-9a	CC REG GEAR 3a 3a 3a 3a 3a 3a 3b 3b 3b 3b	R CC SPECON IIB72AB IIB72AB IIB72AB none none none IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB none none IIB72AB IIB7AB I	COUNTRY ESP FRA PRT ESP FRA IRL PRT ESP FRA PRT ENG ESP FRA PRT ESP FRA ESP	2007 2458721 186292 9902350 274429 8941196 1056900 152925 1984 1010060 128595 816228 846255 841563 522362 700 2472	2008 2478225 195742 7975346 315954 8299896 1330193 176030 1195943 296765 886822 897264 750091 521613 40052 139305 917963	2009 2403446 314695 7959428 315954 7380318 1668152 276056 1480125 296765 763806 1099242 864313 728602 40052 111767 932788	2010 310341 47904 82 6493382 248338 114202 680987 844144 83794 91062 2323	2011 890648 71646 6046801 179928 61604 285066 897019 46310 91411 3437	2012 39910 1318635 8113213 37581 5492574 36742 177891 1474835 46046 205987 22172 239579 2521419 33643 115392 2294 870809	155005
IIIb IIIb IIIb IIIb IIIb IIIb IIIb III	REG AREA O 8c-9a	CC REG GEAR 3a 3a 3a 3a 3a 3a 3b 3b 3b 3b	R CC SPECON IIB72AB IIB72AB IIB72AB none none none IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB none none none none none none none non	COUNTRY ESP FRA PRT ESP FRA IRL PRT ESP FRA PRT ENG ESP FRA PRT ESP FRA FRA FRT ESP FRA FRA FRT ESP FRA FRA	2007 2458721 186292 9902350 274429 8941196 1056900 152925 1984 1010060 128595 816228 846255 841563 522362 700 2472 149000	2008 2478225 195742 7975346 315954 8299896 1330193 176030 1195943 296765 886822 897264 750091 521613 40052 139305 917963 2823	2009 2403446 314695 7959428 315954 7380318 1668152 276056 1480125 296765 763806 1099242 864313 728602 40052 111767 932788 2823	2010 310341 47904 82 6493382 248338 114202 680987 844144 83794 91062 2323 5048	2011 890648 71646 6046801 179928 61604 285066 897019 46310 91411 3437 3686	2012 39910 1318635 8113213 37581 5492574 36742 177891 1474835 46046 205987 22172 239579 2521419 33643 115392 2294 870809 6551	155005
IIIb IIIb IIIb IIIb IIIb IIIb IIIb III	REG AREA (8c-9a	CC REG GEAR 3a 3a 3a 3a 3a 3a 3a 3b 3b 3b	R CC SPECON IIB72AB IIB72AB IIB72AB none none none IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB none none none none none none none non	COUNTRY ESP FRA PRT ESP FRA PRT ESP FRA PRT ESP FRA PRT ENG ESP FRA PRT FRA PRT FRA PRT SCO ESP FRA PRT	2007 2458721 186292 9902350 274429 8941196 1056900 152925 1984 1010060 128595 816228 846255 841563 522362 700 2472 149000 716707	2008 2478225 195742 7975346 315954 8299896 1330193 176030 1195943 296765 886822 897264 750091 521613 40052 139305 917963 2823 1026614	2009 2403446 314695 7959428 315954 7380318 1668152 276056 1480125 296765 763806 1099242 864313 728602 40052 111767 932788 2823 1264013	2010 310341 47904 82 6493382 248338 114202 680987 844144 83794 91062 2323 5048 1437577	2011 890648 71646 6046801 179928 61604 285066 897019 46310 91411 3437 3686 1430235	2012 39910 1318635 8113213 37581 5492574 36742 177891 1474835 46046 205987 22172 239579 2521419 33643 115392 2294 870809	155005
IIIb IIIb IIIb IIIb IIIb IIIb IIIb III	REG AREA (8c-9a	CC REG GEAR 3a 3a 3a 3a 3a 3a 3b 3b 3b 3b	R CC SPECON IIB72AB IIB72AB IIB72AB none none none IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB none none IIB72AB IIB72AB IIB72AB none none none IIB72AB IIB7AB IIB	COUNTRY ESP FRA PRT ESP FRA PRT ESP FRA PRT ESP FRA PRT ENG ESP FRA PRT DEU	2007 2458721 186292 9902350 274429 8941196 1056900 152925 1984 1010060 128595 816228 846255 841563 522362 700 2472 149000 716707	2008 2478225 195742 7975346 315954 8299896 1330193 176030 1195943 296765 886822 897264 750091 521613 40052 139305 917963 2823 1026614 23373	2009 2403446 314695 7959428 315954 7380318 1668152 276056 1480125 296765 763806 1099242 864313 728602 40052 111767 932788 2823 1264013 6174	2010 310341 47904 82 6493382 248338 114202 680987 844144 83794 91062 2323 5048 1437577 7272	2011 890648 71646 6046801 179928 61604 285066 897019 46310 91411 3437 3686 1430235 4040	2012 39910 1318635 8113213 37581 5492574 36742 177891 1474835 46046 205987 22172 239579 2521419 33643 115392 2294 870809 6551 1401028	155005
IIIb IIIb IIIb IIIb IIIb IIIb IIIb III	REG AREA (8c-9a	CC REG GEAR 3a 3a 3a 3a 3a 3a 3a 3b 3b 3b	R CC SPECON IIB72AB IIB7AB IIB7A	COUNTRY ESP FRA PRT ESP FRA IRL PRT ESP FRA PRT ENG ESP FRA PRT ESP FRA IRL PRT SCO ESP FRA	2007 2458721 186292 9902350 274429 8941196 1056900 152925 1984 1010060 128595 816228 846255 841563 522362 700 2472 149000 716707 1252867 15685 14825151	2008 2478225 195742 7975346 315954 8299896 1330193 176030 1195943 296765 886822 897264 750091 521613 40052 139305 917963 2823 1026614 23373 13411326	2009 2403446 314695 7959428 315954 7380318 1668152 276056 1480125 296765 763806 1099242 864313 728602 40052 111767 932788 2823 1264013 6174 15960434	2010 310341 47904 82 6493382 248338 114202 680987 844144 83794 91062 2323 5048 1437577 7272 0	2011 890648 71646 6046801 179928 61604 285066 897019 46310 91411 3437 3686 1430235 4040 0	2012 39910 1318635 8113213 37581 5492574 36742 177891 1474835 46046 205987 22172 239579 2521419 33643 115392 2294 870809 6551 1401028	155003
IIIb IIIb IIIb IIIb IIIb IIIb IIIb III	REG AREA (8c-9a	CC REG GEAR 3a 3a 3a 3a 3a 3a 3b 3b 3b 3b	R CC SPECON IIB72AB IIB72AB IIB72AB none none none IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB IIB72AB none none IIB72AB IIB72AB IIB72AB none none none IIB72AB IIB7AB IIB	COUNTRY ESP FRA PRT ESP FRA PRT ESP FRA PRT ESP FRA PRT ENG ESP FRA PRT DEU	2007 2458721 186292 9902350 274429 8941196 1056900 152925 1984 1010060 128595 816228 846255 841563 522362 700 2472 149000 716707	2008 2478225 195742 7975346 315954 8299896 1330193 176030 1195943 296765 886822 897264 750091 521613 40052 139305 917963 2823 1026614 23373	2009 2403446 314695 7959428 315954 7380318 1668152 276056 1480125 296765 763806 1099242 864313 728602 40052 111767 932788 2823 1264013 6174	2010 310341 47904 82 6493382 248338 114202 680987 844144 83794 91062 2323 5048 1437577 7272	2011 890648 71646 6046801 179928 61604 285066 897019 46310 91411 3437 3686 1430235 4040	2012 39910 1318635 8113213 37581 5492574 36742 177891 1474835 46046 205987 22172 239579 2521419 33643 115392 2294 870809 6551 1401028	155003

Information on trends in GTdays is available on the website: http://stecf.irc.ec.europa.eu/web/stecf/ewg1313

In addition to the 2006 and 2007 regulation defined gear types "3a" (bottom trawler mesh size \ge 32 mm), "3b" (gillnet \ge 60 mm), "3c" (bottom longline) and the undefined ("none"), the tables include trammel nets under the coding "3t", as they were found to contribute significantly to the static effort deployed (9% of the kWdays and 7% of the landings in 2012).

In May-June 2013 Spain only provided 2012 data, not changing previous data. Portugal provided the whole series, correcting to tons what was submitted in 2012, in kilograms. No differences were found between the resubmitted data in 2012 and the data submitted in 2011.

Figure 5.7.1.3 shows effort trends for Spain and Portugal, the main players in the area (99% of the kWdays in 2012), for the period 2003 – 2012. No Spanish data were available for 2010 and 2011.

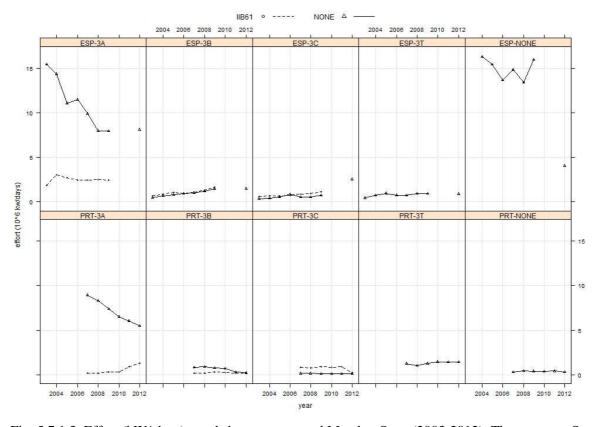


Fig. 5.7.1.3. Effort (kW*days) trends by gear type and Member State (2003-2012). There are not Spanish data from 2010 and 2011. Above: Spain, below: Portugal.

The data submitted by the Member States for the years 2000-2002, initial period of the time series, do not seem realistic as several gears present very low effort data and/or gaps, therefore there were omitted in the Figure 5.7.1.3. Both Spanish and Portuguese information comes from logbooks and for the Portuguese vessel with length under 10 m, from sales notes. Logbooks from Portuguese vessels before

2007 were not completely recorded in the national database and were also omitted in the graph in order to not give a wrong perception of the effort trend in this period. Spanish data from 2010 and 2011 were not available. See section 4 for more details in data quality provided by Member States. In 2012 there is no Spanish effort under special conditions because no vessel had applied for that in 2012.

Spanish and Portuguese regulated trawlers and Spanish unregulated gears (esp-3a, prt-3a and esp-none, respectively) were the gears deploying more effort in the area in 2012 (31%, 26% and 15% respectively).

The effort of trawlers (3a) under effort restrictions (continuous line) is decreasing since 2003 in the case of Spain and since 2007 in the case of Portugal.

The effort of trawlers (3a) without effort restrictions, i.e. with special conditions (IIB61, dashed line) has been stable between 2004 and 2009 in the case of Spain and in the period 2007-2010 in the Portuguese case, with a slight increase since 2010. As referred above, no Spanish vessel applied for special conditions in 2012.

Spanish unregulated gears (esp-none) effort (Figs. 5.7.1.3 and 5.7.1.4) has been stable in the period 2004-2009. The 2012 esp-none effort is one third of the 2004-2009 level. The effort of the Spanish regulated gillnet (esp-3b, 6%) slightly increased between 2003 and 2009 and was kept at the same level in 2012, while Portuguese regulated gillnet (por-3b, 1%) decreased in recent years. The effort of the Spanish regulated longline (esp-3c, 9%) increased in the last year, while the effort of Portuguese longline (por-3c, 1%) decreased for the vessel with special conditions and was stable for the others. Trammel effort is stable along the period for both Spanish and Portuguese fleets (esp-3t, 3%, and prt-3t, 5%).

Considering the high value of the Spanish unregulated effort (ESP-NONE in Figure 5.7.1.3), a more indepth analysis was carried out on this group effort composition in 2012 (Figure 5.7.1.4). The "none" effort (24%) in the Figure 5.7.1.4 corresponds to tuna and mackerel gears (troll and hand lines), while otter and gillnet effort (10% and 4%) are from unregulated or non-identified mesh sizes.

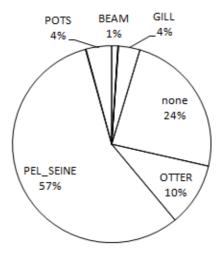


Figure 5.7.1.4.- Spanish non regulated gears (ESP-NONE) effort (KW*day) by gear in 2012. "none" gears (24%) are composed by tuna and mackerel gears (troll and hand lines).

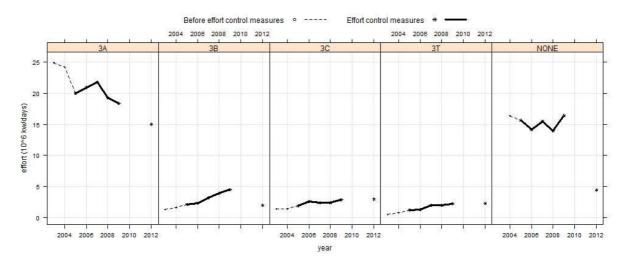
Table 5.7.1.2. Trend in nominal effort (kW*days at sea) by derogations given in Table 1 of Annex IIB (CR 43/2012), 2000-2012. Derogations are sorted by gear and special condition (SPECON) (all countries together). Data qualities are summarised in section 4.3. Note that the gear type "3t" denotes the non-regulated (effort) trammel gear with all mesh sizes. **No Spanish data in 2010 and 2011.**

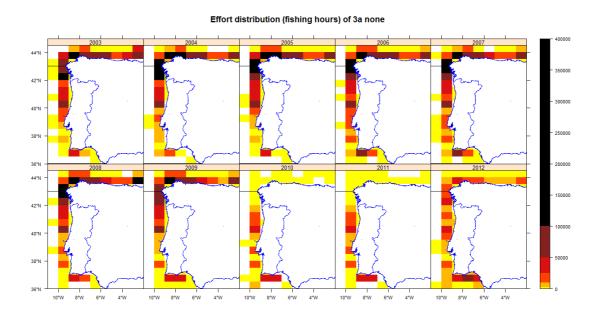
ANNEX	AREA	REG GEAR	SPECON	2000	2001	2002	2003	2004	2005	2006
IIb	8c-9a	3a	IIB72ab	0	0	2,117,381	4,280,516	4,709,419	4,287,019	2,980,274
IIb	8c-9a	3b	IIB72ab	0	0	677,563	697,969	867,840	1,085,011	1,032,147
IIb	8c-9a	3c	IIB72ab	45,446	10,923	611,633	950,432	972,990	1,259,360	1,624,878
IIb	8c-9a	3a	none	3,871,709	1,931,629	12,048,401	20,659,349	19,529,341	15,697,285	17,958,275
IIb	8c-9a	3b	none	156,226	95,562	625,179	545,383	744,466	1,029,924	1,246,606
IIb	8c-9a	3c	none	1,738	544	313,704	413,045	421,252	587,139	933,463
IIb	8c-9a	3t	none	79,019	79,822	575,094	517,701	777,669	1,208,738	1,269,799
IIb	8c-9a	none	none	85,431	161,148	19,567,701	25,057,258	16,401,796	15,648,337	14,149,678
ANNEX	AREA	REG GEAR	SPECON	2007	2008	2009	2010	2011	2012	
IIb	8c-9a	3a	IIB72ab	2,645,013	2,673,967	2,718,141	310,341	890,648	1,358,545	
IIb	8c-9a		1107200	2,043,013	2,013,301					
IID			IIB72ah	1 200 925	1 506 222		2/16/236	′	, ,	
IIh		3b	IIB72ab	1,209,825	1,506,223	1,944,208	248,338	179,928	214,633	
IIb	8c-9a	3c	IIB72ab	1,687,818	1,647,355	1,944,208 1,963,555	844,144	179,928 897,019	214,633 261,751	
IIb IIb					, ,	1,944,208	•	179,928	214,633	
	8c-9a	3c	IIB72ab	1,687,818	1,647,355	1,944,208 1,963,555	844,144	179,928 897,019	214,633 261,751	
IIb	8c-9a 8c-9a	3c 3a	IIB72ab none	1,687,818 19,117,975	1,647,355 16,591,196	1,944,208 1,963,555 15,655,700	844,144 6,541,368	179,928 897,019 6,118,447	214,633 261,751 13,643,368	
IIb IIb	8c-9a 8c-9a 8c-9a	3c 3a 3b	IIB72ab none none	1,687,818 19,117,975 1,956,867	1,647,355 16,591,196 2,379,530	1,944,208 1,963,555 15,655,700 2,540,696	844,144 6,541,368 795,189	179,928 897,019 6,118,447 346,670	214,633 261,751 13,643,368 1,726,868	

Table 5.7.1.2 lists the trend in effort by derogation since 2000 in terms of kW*days at sea. GT*days at sea and number of vessels are available on the web. 3a, 3b, special condition 3c and none gears effort have decreased, while non special condition 3c gears effort has markedly increased and 3t effort is stable.

Regulated trawl deploys most effort in the area (56%), being most of it (91%) under effort control in 2012. Passive gears (3b, 3c and 3t) accounted for approximately 27% of all effort in 2012. However, such results have a limited meaning regarding the fishing pressure exerted by these fleets, once the unit kW*day does not take into account the number of hooks deployed and area covered by the nets and hence it is a poor indicator of the fishing activity. In 2012, about 25% of the effort was assigned to other gears than the regulated ones ("3t" and "none" gears), of which trammel nets ("3t") contribute 9% to the overall effort deployed. Most of this effort is deployed by gears that do not target hake, *Nephrops* or anglerfish.

Figure 5.7.1.5 shows the effort trends by gear type in the period 2003-20012, the dashed line identifying the period before the enforcement of effort control measures. Years 2010 and 2011 were not included because there were not Spanish data. The effort has decreased since 2003 in regulated trawlers (3a) and since 2009 in regulated gillnet (3b) and non regulated gears (none). The effort of longline (3c) and trammel (3t) has been stable in the last years.




Fig. 5.7.1.5. Effort trends by gear type (Spain and Portugal together). Years 2010 and 2011 points removed from the graph since there were not Spanish data. Period before effort control measures in dashed line.

5.7.1.1 Spatial distribution of effective fishing effort by rectangle statistical rectangle

Portugal, Spain, France and Scotland submitted effort by ICES rectangle. Figures 5.7.1.1.1, 5.7.1.1.2 and 5.7.1.1.3 show the distribution of Spanish and Portuguese effort for regulated gears, with effort control ("none") and without effort restriction ("IIB61") for the period 2003-2012. For the years 2010 and 2011, only the effort from Portuguese fleets is plotted because no Spanish data were available for those years. In 2012, no Spanish vessel applied for the effort special condition (IIB61). 2003-2009 Spanish longline effort was misallocated in the figure to specon "none".

As referred in the introduction of section 5.7, STECF-EWG considers that the use of fishing days (or kW*days) to manage effort of static gears such as gillnets and longlines is a very poor approximation of the effective effort. Although the figures present the effective effort in the same units, the effort deployed by the different gear groups is not comparable.

No changes in the effort distribution pattern have been identified since the implementation of the fishing effort regulation.

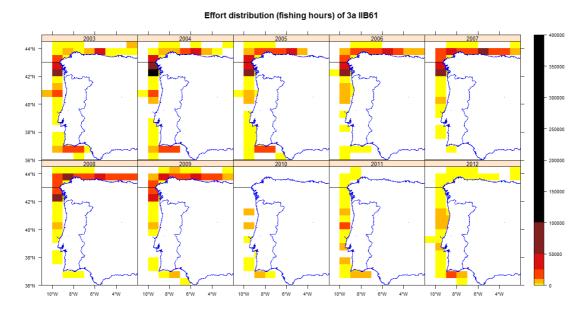
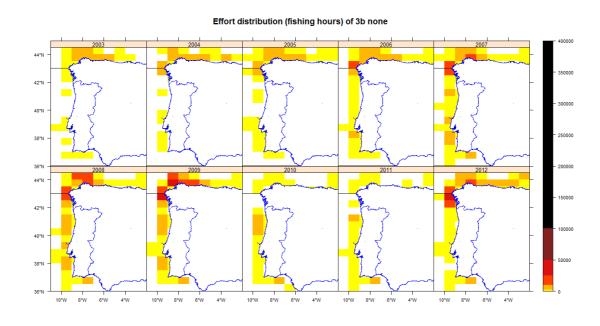



Figure 5.7.1.1.1. Effort spatial distribution for regulated trawl (gear 3a) without (upper panel) and with special conditions (lower panel) for the period 2003-2012. **No Spanish data for the years 2010 and 2011.** In 2012 no Spanish vessel applied for the effort special condition (IIB61).

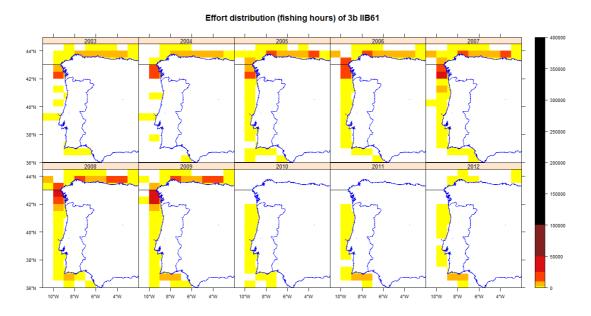
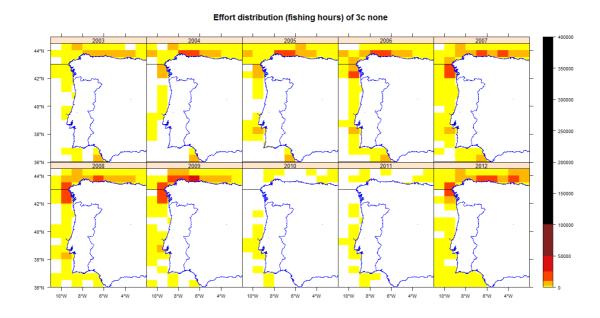



Figure 5.7.1.1.2. Effort spatial distribution for regulated gillnets (gear 3b) without (upper panel) and with special conditions (lower panel) for the period 2003-2012. **No Spanish data for the years 2010 and 2011.** In 2012 no Spanish vessel applied for the effort special condition (IIB61).

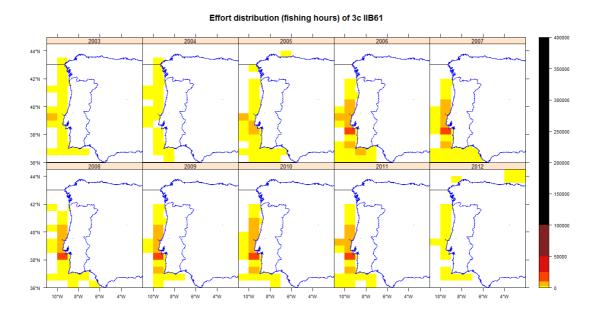


Figure 5.7.1.1.3. Effort spatial distribution for longlines (gear 3c) without (upper panel) and with special conditions (lower panel) for the period 2003-2012. **No Spanish data for the years 2010 and 2011.** In 2012 no Spanish vessel applied for the effort special condition (IIB61). By mistake, in the period 2003-2009, all Spanish effort under category "3c IIB61" was submitted as "3c none".

5.7.2 ToR 1.b Catches (landings and discards) of hake and Norway lobster in weight and numbers at age by Member State and fisheries

Catch time series in the EWG database included 2003-2012 data. 2012 catch data were presented by Spain, Portugal, France and Ireland.

In 2013 Spain provided a new set of discard data from 2003 to 2009 and 2012 for all the species of the EWG requirement. This new set of data was homogeneously raised by landings in the same way for all the metiers and years. There were neither Spanish landings nor discards data for 2010 and 2011.

In 2013 also Portugal provided discards data for otter trawl for the period 2004-2011.

Netherlands, England and Scotland have provided sporadic landings data along the time series in previous years.

Member States (MS) did not provide hake information by age because there are relevant doubts about this species ageing (ICES, 2009, 2010a). For *Nephrops* there is no standardized ageing methodology. Length composition of the catches presented to ICES assessment working groups are available for the DCF metiers, but could not be uploaded to the database because the database accepts only age compositions.

Hake landings provided to the EWG database (this report) (2003-2012) come mainly from logbooks and show a decrease of 64% between 2009 and 2012. These data were compared with the landings data presented for the same area to the 2013 ICES WGHMM in order to check if this high drop is real. ICES WG landings are estimates made from different sources of data and show a decrease between 2009 and 2012 of 24% (Figure 5.7.2.1, left). The landings of the EWG and the ICES WG were more or less the same until 2009 but in 2012 EWG landings are half of those included in the ICES WGMM report. This is because logbooks in 2012 reflect much lower landings than sales notes.

Hake discard data provided to the EWG data base (2003-2012) show a high discard weight variability in the period pivoting around 3 000 tonnes per year. 2003 discard data were not taken into account since values were abnormally low. This was due to incomplete metier identification in the Spanish landings in 2003 that prevent a complete Spanish discard raising that year.

Discard values provided to the EWG are similar to those presented by the Member States to ICES WGHMM, following similar trends, except for 2009. The 2009 discard value in EWG is 66% higher than in WGHMM (4882 t opposite 2935 t). That is because WGHMM in 2010 used several years average value instead the proper 2009 discard estimation, because in that moment 2009 discard estimation seemed very high. Discard sampling information in the following years confirmed that the 2009 estimation was correct and not and outlier or a sampling artefact. The high discard in 2009 was due to the high quantity of individuals below the minimum landing size (MLS = 27 mm) in this fishing ground.

The discards of hake in 2012 are 68% lower than the value in 2009 (Figure 5.7.2.1, right), similar to the decrease in landings (64%). Hake discard quality index for trawl was A (high representativeness) in 2004-2012.

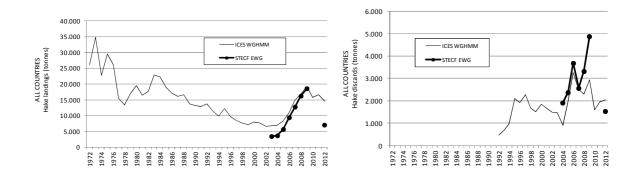


Figure 5.7.2.1. Comparison of the 8c & 9a hake landings and discards (tonnes) presented to ICES WGHMM and STECF EWG database (this report) for all countries and gears (1972-2012). There were no Spanish data from 2010 and 2011 in EWG. Notice the different scale of both graphs.

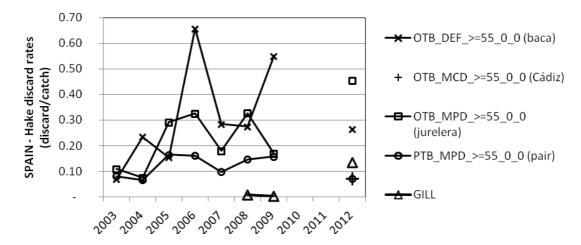


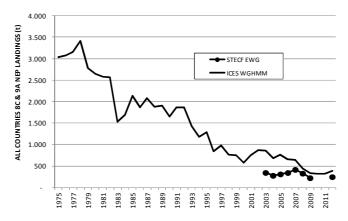
Figure 5.7.2.2. Spanish hake discard rates (discard/catch) for 2003-2009 and 2012.

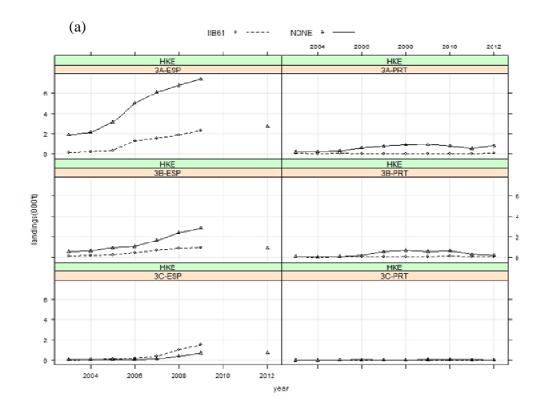
Figure 5.7.2.2 shows that the Spanish metier that have reached the highest rates of hake discards has been the OTB_DEF_>=55 (baca). In 2012 jurelera has the highest rate, followed by baca, gillnet, pair and Cádiz trawl.

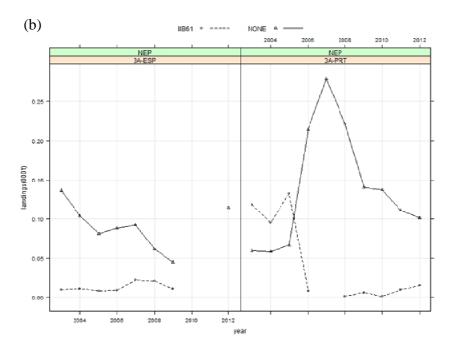
Nephrops landings provided to the EWG database (this report) (2003-2012) come from logbooks and show an increase of 9% between 2009 and 2012. We can compare these data with the landings data presented for the same area to the 2013 ICES WGHMM. ICES WG landings are estimates made from different sources of data and show an increase between 2009 and 2012 of 17% (Figure 5.7.2.3). The landings of the EWG were much less than those from the ICES WG until 2007, since then both seem to be more or less at the same level.

In general, there are no *Nephrops* discards either in Spanish or in Portuguese fisheries because of its very high commercial value. Discard rate is zero in all years (2003-2009 and 2012) except in 2004 (4% of

catch was discarded, 12 t) and 2005 (9%, 31 t). We cannot compare these values with those in the ICES WGHMM because this group considers negligible *Nephrops* discards in the area.



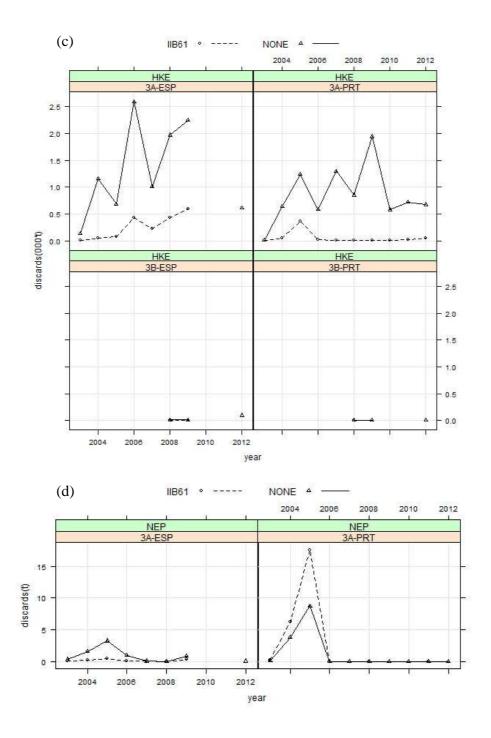

Figure 5.7.2.3. Comparison of the 8c & 9a *Nephrops* landings (tonnes) presented to ICES WGHMM and STECF EWG data base (this report) for all countries and gears (1975-2012). There were no Spanish data from 2010 and 2011 in EWG.

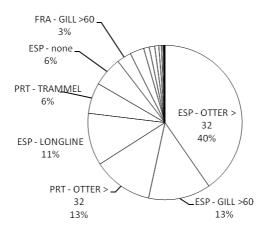

The contributions of the different group of gears to the overall landings can be taken from Table 5.7.2.1. Spanish and Portuguese regulated trawls landed in 2012 the 98% of *Nephrops* landings (Table 5.7.2.1).

The following tables and figures represent the landings and discards by group of gears in weight for hake (HKE) and *Nephrops* (NEP).

Table 5.7.2.1. Hake and *Nephrops* landings and discards (t) by species and derogation, 2003-2012. Regulation gears codes according to the CR No 41/2007: "3a" – bottom trawls of mesh size ≥ 32 mm, "3b" – gillnets of mesh size ≥ 60 mm, "3c" – bottom long-lines. Gear type "3t" denotes the non-regulated (effort) trammel gear with all mesh sizes, gear type "none" contains other gears and the gears not allocated. "--" means "not available", "0" means "0 tonnes". **No Spanish data for 2010 and 2011.**

				200)3	20	04	200	05	20	06	200	07	20	08	20	09	201	.0	201	1	201	12
annex	area regge	ar specon	species	L	D	L	O	L	D	L	D	L	D	L	O	L	D	L	D	L	D	L	D
IIb	8c-9a 3a	none	HKE	2,069	153	2,310	1,818	3,370	1,934	5,584	3,219	6,841	2,320	7,686	2,841	8,313	4,224	762	595	494	747	3,453	1,292
IIb	8c-9a 3a	IIB61	HKE	165	12	185	100	398	442	1,300	449	1,534	239	1,873	433	2,294	607	7	5	17	26	70	58
IIb	8c-9a 3b	none	HKE	545		623		1,040		1,232		2,322		3,406	17	3,698	14	844		381		1,099	110
IIb	8c-9a 3b	IIB61	HKE	84		139		222		427		704		872	4	934	4	82		37		164	
IIb	8c-9a 3c	none	HKE	114		83		139		155		210		538		864		181		110		776	20
IIb	8c-9a 3c	IIB61	HKE	22		63		134		243		413		1,008		1,566		32		37		66	
IIb	8c-9a 3t	none	HKE	11		20		77		94		266		234		358		227		347		504	55
IIb	8c-9a none	none	HKE	406	1	229	2	286	4	311	21	452	14	587	32	525	33	4		22		505	8
IIb	8c-9a 3a	none	NEP	209	0	168	6	155	13	320	1	386	0	294		195	1	140		115		222	0
IIb	8c-9a 3a	IIB61	NEP	127	0	106	6	140	18	17	0	21	0	21		17	0	1		9		16	
IIb	8c-9a 3b	none	NEP	0		0		1		1						0		0				0	
IIb	8c-9a 3b	IIB61	NEP	0				0		0		1		0		0							
IIb	8c-9a 3c	none	NEP									0											
IIb	8c-9a 3c	IIB61	NEP	0										0									
IIb	8c-9a 3t	none	NEP	0		1		1		1		0				1						0	
IIb	8c-9a none	none	NEP	9	0	5	0	15	0	6	0	10	0	15		11	0	8		16		6	




Fig. 5.7.2.4. Trends in landings (a and b) and discards (c and d) of hake and *Nephrops* by Member State, regulated gear and specon. In 2012 there were no Spanish specon landings because no vessel applied for those special conditions.

There is a decrease in the Spanish hake landings from 2009 to 2012 for trawl, gillnet and bottom longline (Fig. 5.7.2.4) that does not seem very realistic (see previous comments about Fig. 5.7.2.1). Portuguese landings of hake are more or less stable in recent years except for a slight decrease in gillnet.

There is an increase in the Spanish landings of *Nephrops* from 2009 to 2012 and a decrease in the Portuguese landings since 2007.

Fleets without fishing effort limitation (IIB61) discard less quantity than the fleets with limitation (none) in almost all the cases.

LANDINGS

DISCARDS

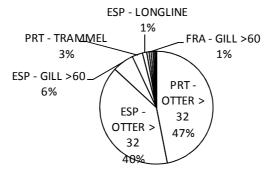


Figure 5.7.2.5. Hake landings (up) and discards (down) by fleet in 8c & 9a in 2012 (ESP: Spain, PRT: Portugal, FRA: France).

The Spanish regulated trawlers (3a) land 40% of hake, followed by Spanish regulated gillnetters (3b, 13%) and Portuguese regulated trawlers (3a, 12%, Fig. 5.7.2.5).

The Portuguese regulated trawlers (3a) land only the 12% of 8c and 9a hake, nevertheless discard 47%. This is coherent with the ICES WGHMM information and it is due to high recruitment (individuals under

27 mm are discarded), the TAC limitation and a 30% by catch landing limitation by trip in the crustacean trawl fleet.

The next fleets in hake discards rank are the Spanish regulated trawlers (3a, 40% of 8c and 9a hake discard) and Spanish regulated gillnets (3b, 6%). All the Spanish regulated gears were in 2012 under the normal effort regime, since no vessel had requested to operate under special conditions.

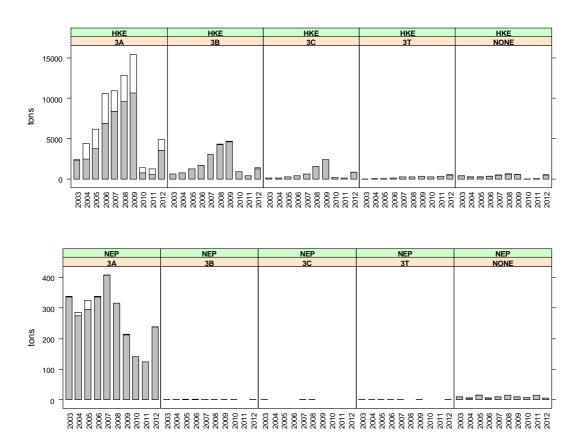


Figure 5.7.2.6 Hake and Norway lobster catches by gear for the years 2003-2012 (discards presented in white colour), Spanish and Portuguese data together. **Spanish data for 2010-2011 not available**.

The data given in the Table 5.7.2.1 form the basis of the Figure 5.7.2.6 displaying the relative catch compositions by species and gear for the years 2003-2012. The very low catches in 2010 and 2011 are related to the lack of information from Spanish fleets. Most of hake catch comes from regulated trawlers (3a, Figure 5.7.2.6). Gillnets and longlines also catch large amounts of hake. In what concerns Norway lobster, the catches come almost exclusively from trawl.

5.7.3 ToR 1.c Catches (landings and discards) of species other than hake and Norway lobster, in particular anglerfish, in weight and numbers at age by Member State and fisheries

In 2013, other species landings and discards from 2012 were provided by Spain, Portugal and France. Spain also provided discard data for all the species of the data call for 2003-2011. Portugal also provided sporadic discard data of some species for the period 2004-2011. Landings and discards time series in the EWG database included 2003-2012 data. France, Ireland, Holland, England and Scotland provided sporadic landing information in previous years. Spain did not provide data for the years 2010 and 2011. At present, the procedure used to raise discards from haul to fleet level in the Portuguese trawl fisheries is adapted from Fernandes et al. (2010) (Jardim and Fernandes, in prep.). Using this procedure, species with low frequency of occurrence or abundance in discards (i.e., a large number of zeros in the data set) cannot be reliably estimated at fleet level (Jardim et al., 2011). The frequency of occurrence and abundance of most species in the discards of the Portuguese bottom trawl fleet was below 30%. Consequently, annual trawl discard volumes and length frequencies at fleet level were only estimated for some métiers, species and years. Where Portuguese discards were not reported, Spanish discard rates have been applied to Portuguese landings, providing new "Portuguese" discard data.

Numbers at age were submitted by Spain in 2010 for anchovy, blue whiting and mackerel for the period 2003-2009 and 2012.

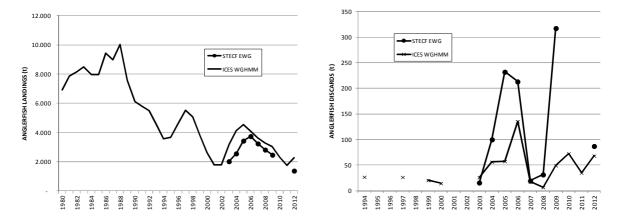
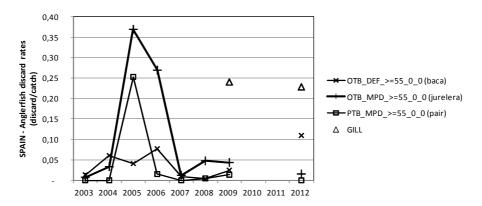


Figure 5.7.3.1. Comparison of the 8c & 9a anglerfish landings (tonnes) presented to ICES WGHMM and STECF EWG data base (this report) for all countries and gears (1980-2012). There were no Spanish data from 2010 and 2011 in EWG.

Anglerfish landings data provided to the EWG come from logbooks and show a decrease trend since 2006. Anglerfish landings provided to the WGHMM come from different sources of data and show a similar trend (Figure 5.7.3.1).

Anglerfish discards correspond basically to Spain; the trends in the EWG and WGHMM are similar except for 2009, when EWG data is much higher. This is because WGHMM will not include the gillnet discards data (278 t in 2009) until the series is longer (Spanish gillnet discards sampling started in 2008).

EWG discards data are higher also in 2005 and 2006 due to Spanish pair trawler discards, which are not included in WGHMM, and to the different raising procedure (EWG by landing and quarter, WGHMM by effort and year).



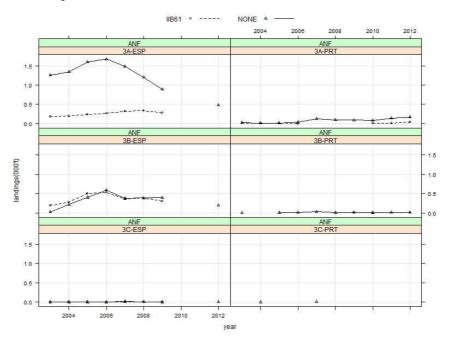

Figure 5.7.3.2. Spanish anglerfish discard rates (discard/catch) for 2003-2009 and 2012.

Figure 5.7.3.2 shows that the Spanish metier that have reached the highest rates of hake discards has been the OTB_MPD_>=55 (jurelera) in 2005 (over 35% of the catch was discarded). In 2012 gillnet has the highest rate, followed by baca, jurelera and pair trawl.

Table 5.7.3.1. Landings and discards (t) by species and derogation, 2003-2012. Regulated gear codes according to the CR No 41/2007: "3a" – bottom trawls of mesh size \geq 32 mm, "3b" – gillnets of mesh size \geq 60 mm, "3c" – bottom long-lines. Gear type "3t" denotes the non-regulated (effort) trammel gear with all mesh sizes, gear type "none" contains other gears and the gears not allocated. "--" means "not available", "0" means "0 tonnes". **No Spanish data for 2010 and 2011**.

					200	13	200	14	200	15	200	16	200	7	200	18	200	9	2010)	2011	L	201	2
annex	area	reg gear	snecon	sneries	1	D	1	D	1	D	1	D	1	D	1	D	1	D	1	D	1	D	1	D
IIb	8c-9a		none	ANF	1,330	14	1,415	85	1,665	206	1,731	194	1.624	16	1,309	25	992	24	85		167		650	62
IIb	8c-9a	3a	IIB61	ANF	189	2	198	14	249	24	274	17	317	3	332	6	280	7	5		10		50	
IIb	8c-9a		none	ANF	26		234		449		599		409		394		411	139	4		11		208	24
IIb	8c-9a	3b	IIB61	ANF	196		280		506		527		365		392		303	91	6		3		3	
IIb	8c-9a		none	ANF	0		1		0		1		15		4		1				0		2	
IIb	8c-9a	3c	IIB61	ANF	0		0		1		1		1		2		1							
IIb	8c-9a	3t	none	ANF	73		182		213		184		241		180		234		85		112		293	
IIb	8c-9a	none	none	ANF	219	0	258	1	360	2	434	2	279	0	216	0	255	56	4		1		94	1
IIb	8c-9a	3a	none	JAX	13,035	88,256	17,111	23,096	16,129	30,900	17,803	135,476	19,476	1,871	17,121	18,197	6,132	396	4,569		3,711		8,384	769
IIb	8c-9a	3a	IIB61	JAX	2,652	14,901	4,878	6,611	3,637	6,622	3,937	33,293	3,910	468	3,159	3,477	170	9	55		110		768	
IIb	8c-9a	3b	none	JAX	35		50		64		63		222		425	371	388	151	140		116		399	
IIb	8c-9a	3b	IIB61	JAX	39		87		76		103		156		208	180	168	36	18		14		20	
IIb	8c-9a	3c	none	JAX	2		3		2		1		11		5		12		2		4		81	
IIb	8c-9a	3c	IIB61	JAX	6		4		7		15		6		4		8		11		2		9	
IIb	8c-9a	3t	none	JAX	7		9		30		48		206		133		247		107		186		314	
IIb	8c-9a	none	none	JAX	14,437	768	15,228	230	13,481	362	12,783	736	12,573	10	19,389	273	17,684	19	30		62		12,566	8
IIb	8c-9a	3a	none	MAC	7,818	6,435	11,250	2,087	16,761	5,793	17,005	7,589	11,988	53,540	14,903	2,578	18, 158	14,707	450		463		2,987	7,130
IIb	8c-9a	3a	IIB61	MAC	2,607	2,383	4,562	1,153	5,314	1,661	5,525	2,707	4,329	15,723	3,384	113	5,730	5,241	2		10		218	
IIb	8c-9a	3b	none	MAC	47		74		59		37		35		82	18	53	2	2		4		55	
IIb	8c-9a	3b	IIB61	MAC	7		38		155		53		37		77	25	55	2	1		2		0	
IIb	8c-9a	3c	none	MAC	1		6		28		3		53		38		80				1		7,494	
IIb	8c-9a	3c	IIB61	MAC	13		71		145		77		87		66		179							
IIb	8c-9a	3t	none	MAC	22		30		30		19		42		59		68		18		14		51	
IIb	8c-9a	none	none	MAC	6,643	15	12,987	31	20,793	96	25,833	168	40,726	909	37,101	47	64,517	391	281		30		8,326	8
IIb	8c-9a	3a	none	RAJ	17	20	30	30	26	7	48	85	86	61	127	43	291	248	236		233		237	
IIb	8c-9a	3a	IIB61	RAJ	0	0	1	1	4	1	5	11	21	20	19	11	15	13	9		16		37	
IIb	8c-9a		none	RAJ	1		5		9		2		10		3	0	7	2	6		3		1	0
IIb	8c-9a		IIB61	RAJ	16		9		10		7		16		8	0	11	2	4		2		1	
IIb	8c-9a		none	RAJ	1		3		1		2		5		4		4		2		2		4	
IIb	8c-9a		IIB61	RAJ	20		11		10		12		17		17		36		6		9		8	
IIb	8c-9a		none	RAJ	38		69		80		102		193		165		240		230		215		162	
IIb		none	none	RAJ	29	7	16	9	29	0	15	2	17		26	0	42	5	8		8		3	
IIb	8c-9a		none	WHB	16,189	29,317	20,544	55,150	19,378	7,033	16,535	11,626	15,783	4,329	16,266	3,029	20,400	9,608	1,153	1,318	399	595	7,377	3,092
IIb	8c-9a		IIB61	WHB	3,805	9,728	5,079	10,239	5,743	2,074	4,359	2,289	4,316	1,157	4,695	1,764	5,085	1,079	1	1	68	101	152	65
IIb	8c-9a		none	WHB	2		1		2		1		1		2		0	0					0	
IIb	8c-9a		IIB61	WHB	0		1		1		0		1		1		1	0						
IIb	8c-9a		none	WHB	11		18		0		3		9		4		9		0		0		19	
IIb	8c-9a		IIB61	WHB	20		17		18		14		9		10		15						4	
IIb	8c-9a		none	WHB	0		0		0		0		1		0		0						0	
IIb	8c-9a	none	none	WHB	255	634	108	165	89	36	215	95	521	65	351	29	363	104					437	2

The contributions of the individual derogations to the overall landings can be taken from Tables 5.7.3.1. For brevity, landings and discards in weight by derogation are restricted to anglerfish (ANF), horse mackerels (JAX), mackerel (MAC), rays (RAJ) and blue whiting (WHB). Note that ANF, JAX and RAJ include more than one species.

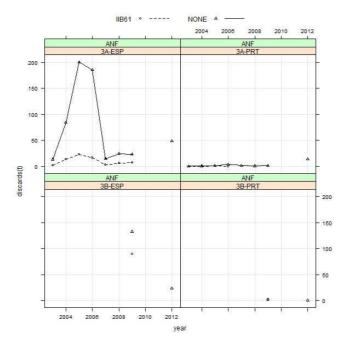
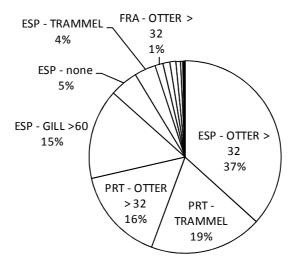



Fig. 5.7.3.3. Trends in landings (up) and discards (down) of anglerfish by Member State, regulated gear and specon. All the Spanish vessels were under the effort regime (none) in 2012.

From these species, special attention is given to anglerfishes (Figures 5.7.3.1, 5.7.3.2 and 5.7.3.3). However, the group anglerfish includes two species, *Lophius piscatorius* and *L. budegassa*, which are in different exploitation status and have different areas of distribution. Landings are decreasing in the Spanish regulated trawl and gillnet and are stable in the other cases (Fig. 5.7.3.3). In 2005 and 2006 the Spanish trawlers using mesh size over 32 mm discarded 223 t and 202 t respectively.

LANDINGS

DISCARDS

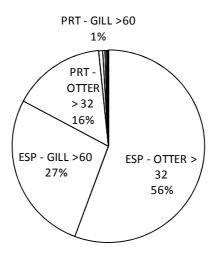
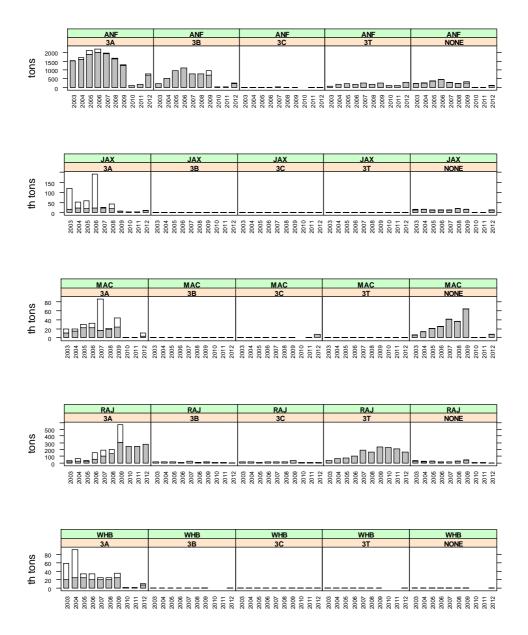
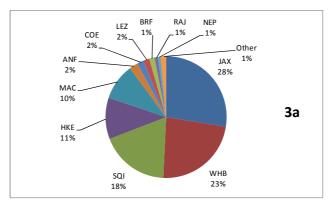
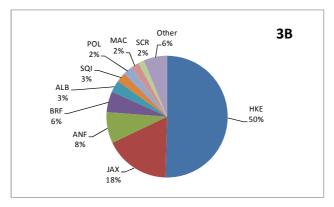


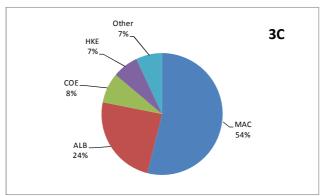
Figure 5.7.3.4. 2012 anglerfish landings (up) and discards (down) by fleet in 8c & 9a (ESP: Spain, PRT: Portugal, FRA: France).

Figure 5.7.3.4 shows the 2012 anglerfish landings and discards by fleet. The Spanish regulated trawlers (3a) landed 37% of anglerfish, followed by Portuguese trammel (3t, 19%), Portuguese regulated trawl

(3a, 16%) and others. All the regulated Spanish gears were under the normal effort regime in 2012. 56% of anglerfish discards is carried out by the Spanish regulated trawlers, 27% by the Spanish gillnet and 16% by the Portuguese regulated trawlers (according to the EWG procedure, Portugal discards come from the application of Spanish discard rates to Portugal landings).


Figure 5.7.3.5. Landings by species and gear for the years 2003-2012 (discards presented in white colour). **Spanish data for 2010-2011 not available.** (ANF = Anglerfishes, JAX = *Trachurus spp.*, MAC = Mackerel, RAJ = Rays and WHB = Blue Whiting). Anglerfish discard quality index for trawl in 2012 was A (high representativeness).


The data given in the Table 5.7.3.1 form the basis of the Figure 5.7.3.5 displaying the catches of anglerfish, horse mackerels, mackerel, rays and blue whiting by gear for the years 2003-2012. The lack of white bars further indicates that discard data were not provided or there were no discards. The very low catches in 2010 and 2011 are related to the lack of information from Spanish fleets.

Regulated trawlers (3a) harvest high quantities of horse mackerels, mackerel and blue whiting (Figure 5.7.3.5). The main species in unregulated gears (NONE) are mackerel and horse mackerels.

In the Figure 5.7.3.6 we can observe the species landed by the regulated gears. Small pelagics like horse mackerels, blue whiting and mackerel represent a high percentage of landings in weight. Figures 5.7.3.7, 5.7.3.8 and 5.7.3.9 show that regulated gears obtain representative parts of the total landings of these species.

Fig. 5.7.3.6. Landings species composition in regulated gears for the year 2012.

Fig. 5.7.3.6 shows the high importance of the small pelagics in the 8c & 9a regulated gears landings (more than 61% in trawlers, 20% in gillnet and 54% in longline).

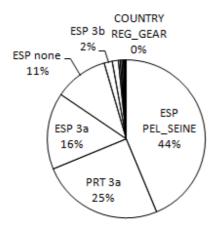


Figure 5.7.3.7. 2012 horse mackerel landings by fleet in 8c & 9a (ESP: Spain, PRT: Portugal)

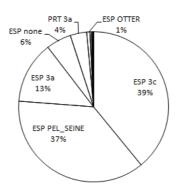


Figure 5.7.3.8. 2012 mackerel landings by fleet in 8c & 9a (ESP: Spain, PRT: Portugal).

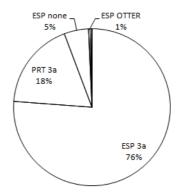


Figure 5.7.3.8. 2012 blue whiting landings by fleet in 8c & 9a (ESP: Spain, PRT: Portugal).

5.7.4 ToR 1.d CPUE and LPUE of hake, Norway lobster and anglerfish by fisheries

Hake CPUE have a high increase between 2003 and 2009 (Figure 5.7.4.1), this fact is corroborated with the ICES WGHMM information (Figure 5.7.4.2). The assessment performed by WGHMM in May 2013 (ICES, 2013) shows that hake biomass has increased since 2006.

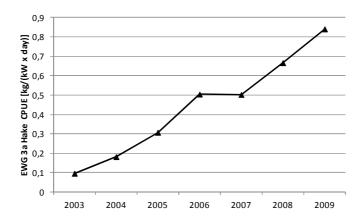


Fig. 5.7.4.1. Hake CPUE for otter trawl with mesh size over 32 mm (gear "3a") for all countries from 2003 to 2009. CPUE points for the period 2010-2012 are omitted because Spanish data for 2010 and 2011 are not available and hake landings in 2012 are considered not reliable. It must be taken into account that 8c & 9a regulated trawlers ("3a") include 7 Spanish and Portuguese different metiers (Tables 5.7.1 and 5.7.2), with different gears and mesh sizes, some of them directed to hake and others directed to other species (crustaceans, small pelagic). This is the general trend. 2012 3a HKE landings were 3523 t.

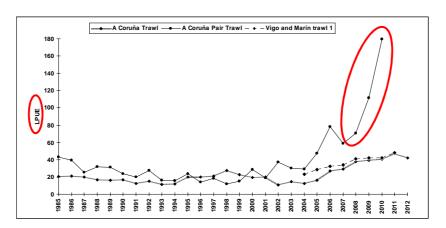


Fig. 5.7.4.2. Hake LPUE from 1985 to 2012 from the 2013 ICES WGHMM.

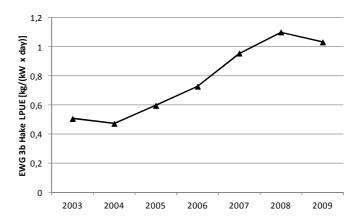


Fig. 5.7.4.3. Hake LPUE for gillnet with mesh size over 60 mm (gear "3b") for all countries from 2003 to 2009. LPUE points for the period 2010-2012 are omitted because Spanish data for 2010 and 2011 are not available and hake landings in 2012 are considered not reliable. It must be taken into account that 8c & 9a regulated gillnets ("3b") include 6 Spanish and Portuguese different metiers (Tables 5.7.1 and 5.7.2), with different mesh sizes, some of them directed to hake and others directed to other species (e.g. anglerfish). This is the general trend. 2012 3b HKE landings were 1263 t.

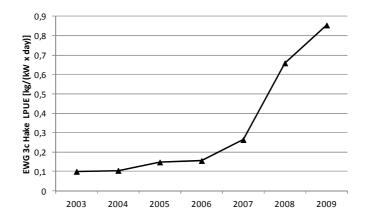


Fig. 5.7.4.4. Hake LPUE for longline with mesh size over 60 mm (gear "3c") for all countries from 2003 to 2009. LPUE points for the period 2010-2012 are omitted because Spanish data for 2010 and 2011 are not available and hake landings in 2012 are considered not reliable. It must be taken into account that 8c & 9a regulated longlines ("3c") include 3 Spanish and Portuguese different metiers (Tables 5.7.1 and 5.7.2). This is the general trend. 2012 3c HKE landings were 842 t.

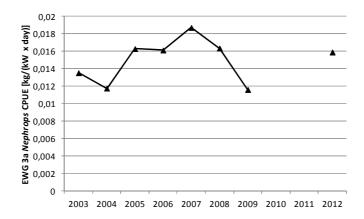


Fig. 5.7.4.5. *Nephrops* CPUE for otter trawl with mesh size over 32 mm (gear "3a") for all countries from 2003 to 2009 and 2012. CPUE points for the period 2010-2011 are omitted because Spanish data for 2010 and 2011 are not available. Management should be carried out at FU level. In 8c & 9a there are 7 different FUs. 2012 3a NEP landings were 238 t.

Nephrops data in 8c9a are mostly from Functional Units 28 and 29 (60%, 2013 ICES WGHMM), in SW and S Portugal (9a). The remaining FUs from Cantabrian Sea (8c) and 9a North except FU 30 (Cádiz), are almost depleted. Nephrops is caught as by catch from other fisheries in very low quantities. Figure 5.7.4.6 compares the standardized Nephrops CPUE presented in WGHMM for FUs 28 and 29 (ICES, 2012) and the CPUE derived from the data presented to this EWG, considering only the Portuguese catches and effort, that are almost the total in these FUs. In the case of this species, discards are negligible and catches are considered equal to landings. The overall trend since 2005 is decreasing in

both cases, although there is a slight increase in 2012 in WGHMM data and stability in EWG data. The EWG CPUE was estimated only for Portuguese bottom trawl (3a), with demersal trawl and crustacean trawl together. The standardized CPUE presented to WGHMM (ICES, 2013) was estimated only for Portuguese crustacean trawl fleet and using only trips targeting *Nephrops*.

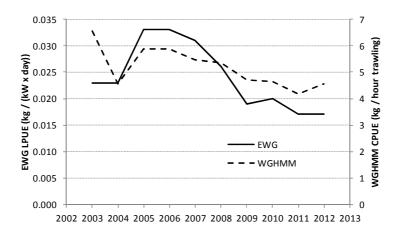


Figure 5.7.4.6 Comparison of *Nephrops* CPUE trends in Functional Units 28 and 29 (SW and S Portugal, within area 9a) using only Portuguese catch and effort data (EWG: CPUE estimated with this EWG data [demersal and crustacean trawl together]; WGHMM: standardized CPUE estimates presented at WGHMM [only crustacean trawl and trips directed to *Nephrops*]).

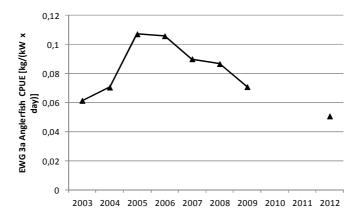


Fig. 5.7.4.7. Anglerfish CPUE for otter trawl with mesh size over 32 mm (gear "3a") for all countries from 2003 to 2009 and 2012. CPUE points for the period 2010-2011 are omitted because Spanish data for 2010 and 2011 are not available. 2012 3a ANF landings were 700 t.

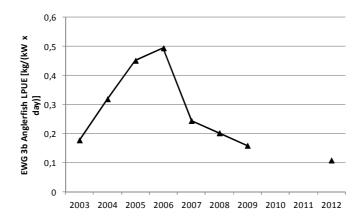


Fig. 5.7.4.8. Anglerfish LPUE for gillnet with mesh size over 60 mm (gear "3b") for all countries from 2003 to 2009 and 2012. LPUE points for the period 2010-2011 are omitted because Spanish data for 2010 and 2011 are not available. 2012 3b ANF landings were 700 t.

The evolution of the 3c ANF CPUE is not presented because there were only 2 t of 3c ANF landings in 2012.

5.7.5 Information on small boats (<10m by area)

Only Portugal has provided data for vessels below 10 m operating in areas 8c-9a, though specifying neither gear nor fishery. These vessels operate, in general, with several gears and do not fill logbooks. Data on catch and effort for these vessels are based on landings records. However, as no data from Spain were available and Annex IIB does not include limitations on this fleet effort, no analysis on this fleet segment was performed.

Since 2003, Portugal has carried out a specific sampling plan to collect data on the activity of the small scale fleet (<10m vessels) operating in continental waters. The data are collected with a stratified random strategy by interviews to skippers, and provides information about catches by species and effort. This sampling plan is under the scope of Reg. (EC) 1639/2001 and the results are presented on the DCF annual reports requested by the DGMARE.

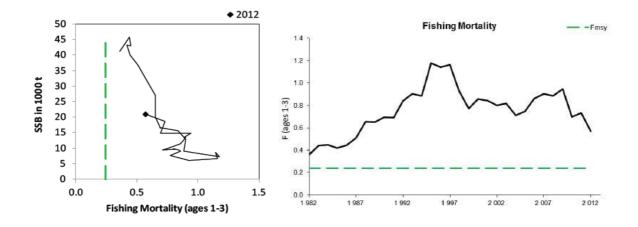
<10 m vessels Spanish information is collected by sales notes, this segment of the fleet is not presented in logbooks. Sales notes only provide information about name of the vessel, port of landing, sold weight by species, price by kg and euros by species. It is not possible to know neither gear nor fishing area.

5.7.6 ToR 2 Remarks on quality of catches and discard estimates

Discards are only provided for trawl (and Spanish gillnets since 2008) for all time series for all species for Spain and for hake and sporadically for other species for Portugal. Discard quality index was A (high representativeness) for hake, *Nephrops*, blue whiting and monkfish in all cases. Although some discards were reported in 2004-2005, *Nephrops* discards are considered zero or negligible. This species has a high market value and almost no *Nephrops* below the minimum landing size is caught.

For more detailed information on quality of catches and discard estimates, see the section 4 "Data Quality" for each country.

5.7.7 ToR 3 Trend in calculated maximum effort of regulated gears and uptake by Member State


No adequate data are available to address this ToR. The allowed activity by vessel for the period 2003-2012 is presented in Table 5.7.3. Although the field "Number of Vessels" in effort database has been filled, the data on the fishing activity is incomplete. Also, the vessels included can operate with different area/fishery/gear/mesh size combinations and therefore, the same vessels may be included in different records. Spain did not present any data on the fishing activity in 2000-2009.

5.7.8 ToR 4 Correlation between partial hake mortality and fishing effort by Member State and fisheries

The STECF EWG 13-13 presents hake catchability (Fig. 5.7.8.2), partial fishing mortalities vs effort (Fig. 5.7.8.3) and partial F (Fig. 5.7.8.4) by major fleets and Member States using the fishing mortality and removals (catches) of the southern stock of hake (ICES Divisions VIIIc and IXa) estimated by 2013 ICES WGHMM (Table 5.7.8.1 and Fig. 5.7.8.1) and the landings and discards volumes presented to the STECF EWG 13-13 (present meeting) (Table 5.7.2.1 and Fig. 5.7.2.4). The full list of all fleets can be downloaded from the EWG's web page: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313.

Table 5.7.8.1. VIIIc and IXa hake stock. Fishing mortality and removals (catches) by year (2003-2012) from 2013 ICES WGHMM.

	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
F	0,82	0,71	0,75	0,86	0,9	0,89	0,95	0,7	0,73	0,57
REMOVALS	8200	7900	10300	14100	17400	19100	22200	16900	19000	16600

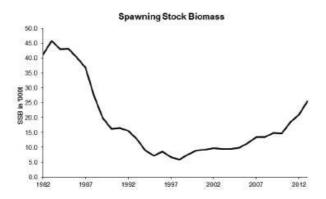


Fig. 5.7.8.1. Hake in Divisions VIIIc and IXa. SSB/F (top left), partial F (top right) and SSB (bottom) for the time-series used in the ICES WG assessment (2013 ICES advice).

The recovery plan was agreed by the EU in 2005 (EC Reg. No. 2166/2005, Appendix 7.4.7.1). The aim of the plan is to rebuild the stock to safe biological limits, set as a spawning-stock biomass above 35 000 tonnes by 2016, and to reduce fishing mortality to 0.27. The main elements of the plan are a 10% annual reduction in F with a 15% constraint on TAC change between years. ICES has not evaluated the plan. The trends in fishing effort in units of kWdays at sea of the relevant fleets are also presented in Table 5.7.1.1 and Fig. 5.7.1.3. Given the data deficiency in 2010 and 2011, STECF EWG 13-13 does not further conclude on the significant correlation between the summed partial Fs of hake for regulated gear groups and their fishing effort with respect to the effects of fishing effort management.

Table 5.7.8.2. VIIIc and IX hake (catches). The left part of the table lists estimated F trajectories from the management plan and the 2013 ICES hake assessment, as well as partial Fs for **catches** of fisheries using regulated gears. The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs from total catches of all effort regulated gears to the overall F estimate of the stock.

2006	Fred	duction	by 10 pe	rcent, 2	010 F re	eductio	n by 15%	6, until	F<=0.3,	Fmsy=	0.24			Effort kW	days runnin	g previous y	ear baselir	ne									
				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012			
F plai	n red	duction	by 10% r	unning	year		0,860	0,774	0,697	0,627	0,564	0,508	0,457		days at sea	plan											
redu	tion	F plan						-0,10	-0,10	-0,10	-0,10	-0,10	-0,10														
														Effort													
F esti	mate	ed		0,82	0,71	0,75	0,86	0,9	0,89	0,95	0,7	0,73	0,57	estimate	28055542	28022977	25153199	27008944	29257150	27446641	27902345	10356861	10004354	22154007			
redu	tion	Festir	nated					0,01	0	0,07	-0,21	-0,18	-0,36								0,02	-0,63	-0,03	1,21			
														EFFORT												2004-20)12
														kW days													
Fpar				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	r	p r	1
ESP	3a	none	catches	0,217	0,314	0,304	0,566	0,458	0,514	0,535			0,113		17277623	17396695	13749740	13893752	12361071	10453571	10362874			8113213	0,140	0,765	7 0,3
ESP	3b	none	catches	0,059	0,065	0,080	0,087	0,121	0,153	0,160			0,033		1113925	1549312	1821269	1832158	2066960	2526136	3148277			1474835	0,930	0,002	7 5,6
ESP	3с	none	catches	0,012	0,013	0,017	0,020	0,030	0,065	0,095			0,026		966487	1075511	1232245	1585739	1368617	1418877	1827844			2521419	0,224	0,629	7 0,5
ESP	3t	none	catches	0,001	0,001	0,001	0,002	0,002	0,005	0,007			0,003		438995	736892	955031	742397	716707	917963	932788			870809	0,559	0,192	7 1,5
FRA	3a	none	catches	0,003	0,003	0,002	0,006	0,003	0,003	0,003	0,002	0,002	0,001		120552	110098	198178	345256	274429	315954	315954	47904	71646	77491	0,791	0,011	9 3,4
FRA	3b	none	catches	0,000	0,003	0,007	0,005	0,007	0,016	0,015	0,010	0,005	0,007		5762	28023	97700	69478	128595	296765	296765	114202	61604	82788	0,966	0,000	9 9,8
FRA	3с	none	catches	0,001		0,000		0,000	0,005	0,005	0,004	0,002	0,001		3318	3972	2094	588	700	40052	40052	83794	46310	55815	0,633	0,067	9 2,1
FRA	3t	none	catches	0,000			0,000		0,000	0,000	0,000	0,000	0,000		3977	525		1878		2823	2823	5048	3686	6551	0,775	0,041	7 2,7
IRL	3a	none	catches	0,000											4208			1612				82					
PRT	3a	none	catches	0,020	0,080	0,141	0,072	0,104	0,081	0,122	0,055	0,048	0,053		7537482	6731967	6035109	6697929	9127488	8495638	7695013	6803723	6937449	6811209	0,113	0,772	9 0,3
PRT	3b	none	catches	0,003	0,001	0,005	0,010	0,029	0,031	0,024	0,028	0,012	0,007		123665	34971	195966	347231	969153	1062852	1039862	929325	464994	383878	0,981	0,000	9 13,3
PRT	3с	none	catches	0,000	0,000	0,003	0,004	0,002	0,002	0,004	0,005	0,004	0,003		384819	314759	612160	965402	990563	889396	976080	935206	988430	354971	0,638	0,064	9 2,1
PRT	3t	none	catches	0,000	0,000	0,004	0,004	0,012	0,006	0,009	0,009	0,013	0,016		74729	40252	253707	525524	1252867	1026614	1264013	1437577	1430235	1401028	0,876	0,002	9 4,8
Sum				0,318	0,480	0,565	0,775	0,768	0,881	0,979	0,113	0,084	0,263		28055542	28022977	25153199	27008944	29257150	27446641	27902345	10356861	10004354	22154007	0,860	0,003	9 4,4
check	sun	n Fpar/	F	0,39	0,68	0,75	0,90	0,85	0,99	1,03	0,16	0,12	0,46														

Table 5.7.8.3. VIIIc and IX hake (landings). The left part of the table lists estimated F trajectories from the management plan and the 2013 ICES hake assessment, as well as partial Fs for **landings** of fisheries using regulated gears. The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs from landings of all effort regulated gears to the overall F estimate of the stock.

2006 F re	edu	ction by 1	l0 perce	ent, I	2010 F	reduct	tion by	15%, u	ntil F<=	0.3, Fn	nsy=0.2	4		Effort kW	days running	previous ye	ear baselin	9									
			20	003	2004	2005	2006	2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012			
															days at sea												
F plan re	edu	ction by 1	.0% run	ning	year		0,860	0,774	0,697	0,627	0,564	0,508	0,457		plan												
reductio	on F	plan						-0,10	-0,10	-0,10	-0,10	-0,10	-0,10														
														Effort estimate d													
Festima	ated	Ŀ	0),82	0,71	0,75	0,86	0,9	0,89	0,95	0,7	0,73	0,57	(regulate	28055542	28022977	25153199	27008944	29257150	27446641	27902345	10356861	10004354	22154007			
reductio	on F	estimate	d					0,01	0	0,07	-0,21	-0,18	-0,36								0,02	-0,63	-0,03	1,21			
														EFFORT												2004- 2012	
														kW days													
Fpar	+											2011		at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		p n	
ESP 3a		one landi											0,092		17277623	17396695	13749740	13893752	12361071	10453571	10362874			8113213			
ESP 3b	_	one landi	,			-	-	-	-	-			0,030		1113925	1549312	1821269	1832158	2066960	2526136	3148277			1474835	-		
ESP 3c	_	one landi		_	_								0,025		966487	1075511	1232245	1585739	1368617	1418877	1827844			2521419	_		
ESP 3t	_	ne landi				-							0,003		438995	736892	955031	742397	716707	917963	932788				_	0,201 7	
	_	one landi		_					-				0,000		120552	110098	198178	345256	274429	315954	315954	47904	71646			0,002	
	_	one landi													5762	28023	97700	69478	128595	296765	296765	114202	61604			0,000	
	_	one landi		_		0,000			0,005	0,005	0,004	0,002	0,001		3318	3972	2094	588	700	40052	40052	83794	46310			0,067	
		one landi					0,000		0,000	0,000	0,000	0,000	0,000		3977	525		1878		2823	2823	5048	3686	6551	0,775	0,041 7	2,74
	_	one landi	0,												4208			1612				82					
PRT 3a	nc	one landi	ngs 0,0	019	0,018	0,025	0,035	0,037	0,041	0,039	0,031	0,019	0,029		7537482	6731967	6035109	6697929	9127488	8495638	7695013	6803723	6937449	6811209	0,662	0,052	2,33
PRT 3b	nc	one landi	ngs 0,0	003	0,001	0,005	0,010	0,029	0,031	0,024	0,028	0,012	0,007		123665	34971	195966	347231	969153	1062852	1039862	929325	464994	383878	0,980	0,000	13,02
PRT 3c	nc	one landi	ngs 0,0	000	0,000	0,003	0,004	0,002	0,002	0,004	0,005	0,004	0,003		384819	314759	612160	965402	990563	889396	976080	935206	988430	354971	0,645	0,061	2,23
PRT 3t	nc	one landi	ngs 0,0	000	0,000	0,004	0,004	0,012	0,006	0,009	0,009	0,013	0,015		74729	40252	253707	525524	1252867	1026614	1264013	1437577	1430235	1401028	0,897	0,001	5,36
Sum			0,3	301	0,308	0,392	0,551	0,636	0,728	0,771	0,089	0,055	0,211		28055542	28022977	25153199	27008944	29257150	27446641	27902345	10356861	10004354	22154007	0,824	0,006	3,84
check su	um I	Fpar/F	0),37	0,43	0,52	0,64	0,71	0,82	0,81	0,13	0,07	0,37														

Table 5.7.8.4. VIIIc and IX hake (discards). The left part of the table lists estimated F trajectories from the management plan and the 2013 ICES hake assessment, as well as partial Fs for **discards** of fisheries using regulated gears. The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs from discards of all effort regulated gears to the overall F estimate of the stock.

2006 F ı	redu	uction by 10	percent	, 2010	F redu	ction b	y 15%,	until F	<=0.3, F	msy=0.	.24		Effort kW d	ays running	previous y	ear baselin	9									
			2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012			
plan r	redu	uction by 10%	6 runniı	ng year		0,860	0,774	0,697	0,627	0,564	0,508	0,457		days at sea	plan											
educti	ion l	F plan					-0,10	-0,10	-0,10	-0,10	-0,10	-0,10														
F estim	nate	ed	0,82	0,71	0,75	0,86	0,9	0,89	0,95	0,7	0,73	0,57	Effort estimated (regulated gears)	28055542	28022977	25153199	27008944	29257150	27446641	27902345	10356861	10004354	22154007			
reducti	ion I	Festimated					0,01	0	0,07	-0,21	-0,18	-0,36								0,02	-0,63	-0,03	1,21			
													EFFORT												2004- 2012	
Fpar			2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	r	p n	
ESP 3a	nor	ne discards	0,015	0,109	0,056	0,184	0,064	0,112	0,122			0,021		17277623	17396695	13749740	13893752	12361071	10453571	10362874			8113213	0,391	0,386	7 0,9
ESP 3b	nor	ne discards	0,000	0,000	0,000	0,000	0,000	0,001	0,001			0,003		1113925	1549312	1821269	1832158	2066960	2526136	3148277			1474835	-0,219	0,637	7 -0,50
SP 3c	non	ne discards	0,000	0,000	0,000	0,000	0,000	0,000	0,000			0,001		966487	1075511	1232245	1585739	1368617	1418877	1827844			2521419	0,865	0,012	7 3,8
SP 3t	nor	ne discards	0,000	0,000	0,000	0,000	0,000	0,000	0,000			0,000		438995	736892	955031	742397	716707	917963	932788			870809	0,136	0,771	7 0,3
RA 3a	nor	ne discards	0,000	0,001	0,001	0,003	0,001	0,001	0,001	0,001	0,001	0,000		120552	110098	198178	345256	274429	315954	315954	47904	71646	77491	0,579	0,102	1,8
RA 3b	nor	ne discards	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000		5762	28023	97700	69478	128595	296765	296765	114202	61604	82788	0,149	0,702	0,3
RA 3c	nor	ne discards	0,000		0,000		0,000	0,000	0,000	0,000	0,000	0,000		3318	3972	2094	588	700	40052	40052	83794	46310	55815			
	-	ne discards	-,			0,000		0,000	0,000	0,000	0,000	0,000		3977	525		1878		2823	2823	5048	3686	6551			
	_	ne discards												4208			1612				82					
	_	ne discards				-								7537482	6731967	6035109	6697929	9127488	8495638	7695013	6803723	6937449			0,874	
	-	ne discards	.,	-,	-,	-,	-,	-,	.,	-,	-,	.,		123665	34971	195966	347231	969153	1062852	1039862	929325	464994	383878	-, -	0,467	,
	_	ne discards	-		-	-		-	-	-				384819	314759	612160	965402	990563	889396	976080	935206	988430			0,107	
	nor	ne discards												74729	40252	253707	525524	1252867	1026614	1264013	1437577	1430235	1401028		0,425	_
Sum			0,017	0,172	0,173	0,224	0,132	0,154	0,207	0,025	0,030	0,053		28055542	28022977	25153199	27008944	29257150	27446641	27902345	10356861	10004354	22154007	0,844	0,004	9 4,1

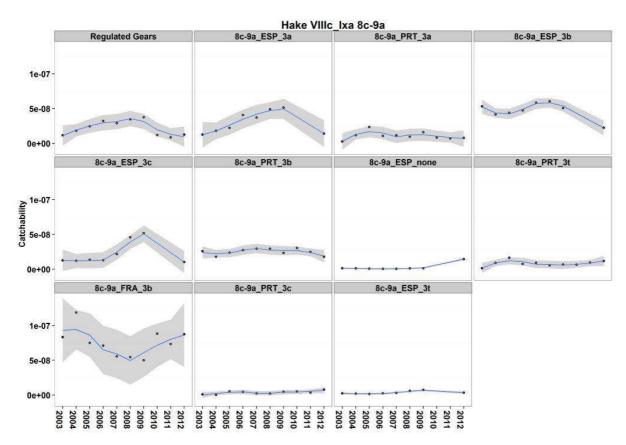


Fig. 5.7.8.2. Hake in Divisions VIIIc and IXa. Catchability by major fleets and Member States (2003-2012) taking into account catches (landings and discards). There is discard information for all trawlers all years and for Spanish gillnet since 2008. No Spanish data in 2010 and 2011. The code automatically selects the top 10 gears for the most recent 3-years in terms of catches and then only gears with >1% of the catch. They are displayed in order left-right, top-bottom. Data points are circles, a line represents a fitted smoother added to help highlight trends and the grey shading represents \pm 2 standard errors (approx 95% confidence interval).

VIIIc and IXa hake catchability for areas VIIIc and IXa has decreased in 2012 for the regulated gears and the Spanish regulated trawl, gillnet and longline (Fig. 5.7.8.2).

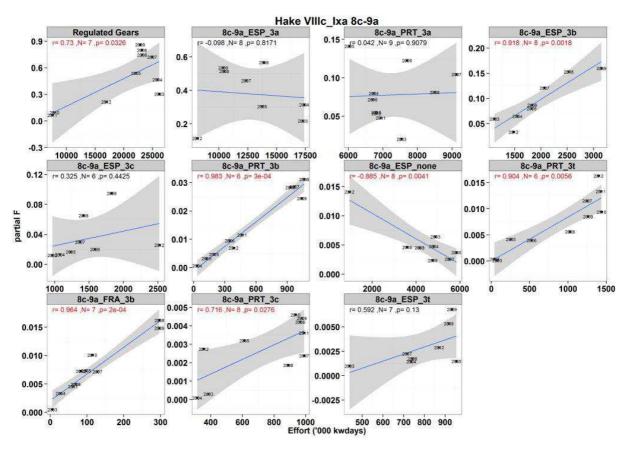


Fig. 5.7.8.3. Hake in Divisions VIIIc and IXa. Regression of partial fishing mortalities over effort (kWdays at sea) by major fleets and Member States (2003-2012) taking into account catches (landings and discards). There is discard information for all trawlers all years and for Spanish gillnet since 2008. No Spanish data in 2010 and 2011. The code automatically selects the top 10 gears for the most recent 3-years in terms of catches and then only gears with >1% of the catch. They are displayed in order left-right, top-bottom. R value shows linear model fit (grey 95% confidence interval), with p-value (significant relationships at 0.05 level shown in red; N and p values adjusted for correlation).

Resulting regressions are shown in Fig. 5.7.8.3 for major fleets. Partial F is significantly correlated to effort for regulated gears, for Spanish, Portuguese and French regulated gillnet, Portuguese regulated longline and Portuguese trammel.

Partial F and effort show a significant inverse correlation for the Spanish non regulated gears except trammel ("none").

It must be taken into account that 2012 values are outliers in several Spanish fleets (regulated trawl [3a] and longline [3c] and non regulated gears except trammel ["none"]). This could be due to the very low 2012 F obtained in the 2013 ICES WG (0.57, Table 5.7.8.1 and Fig. 5.7.8.1), that possibly would be revised in 2014. Moreover, the Spanish effort in kWdays presented to the STECF EWG 13-13 was also quite low in comparison with the values of other years. If there were no 2012 data, there would not be a significant relation between F/effort in the Spanish non regulated gears except trammel ("none").

The presented parameters r (absolute value of Pearson's coefficient of correlation), numbers of points considered as well as a p-value to quantify the statistical significance (≤ 0.05) (Fig. 5.7.8.3) allow conclusions about the quality of the correlation between the partial F and fisheries specific fishing effort. Because there is auto-correlation in the data, the N-value (and p-value) is adjusted to address this and so it results in an N smaller than the actual number of data points. The objective of this is to make the correlation statistic more robust. The code automatically selects the top 10 gears for the most recent 3-years in terms of catches and then only gears with >1% of the catch. They are then displayed in order left-right, top-bottom.

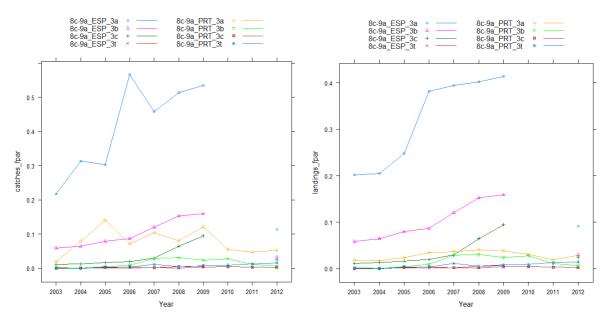


Fig. 5.7.8.4. Hake in Divisions VIIIc and IXa. Partial fishing mortalities by major fleets and Member States (2003-2012) taking into account catches (left) and only landings (right). There is discard information for all trawlers all years and for Spanish gillnet since 2008. No Spanish data in 2010 and 2011. Data prior to effort control regulation (2003-2005) might be incomplete and shall be taken with caution.

Figure 5.7.8.4 shows that the fleet that would have a higher partial F according with the STECF EWG 13-13 would be the Spanish regulated trawlers.

It can be concluded from the estimated F of the stock assessment (Table 5.7.8.1 and Fig. 5.7.8.1) that fishing mortality has decreased in recent years but is well above the F_{MSY} proxy in 2012 (Table 5.7.8.1 and Fig. 5.7.8.1). The estimated F for 2012 by the ICES WG was 0.57, more than 2 times higher than the target of the recovery plan (0.27), and more than 2 times higher than the target of the ICES WGHMM since 2010 (F_{MSY} = 0.24). Nevertheless CPUE seems to increase in the last years (Figs. 5.7.4.1 to 5.7.4.4).

5.7.9 ToR 5 Considerations in order to accomplish spatio-temoral patterns in standardized catchability indices for hake, Nephrops and anglerfish

Depending on data availability this ToR will be addressed during the follow-up meeting STECF EWG in June 2014.

5.8 Western Channel effort regime evaluation in the context of Annex IIC to Council Regulation (EC) No 57/2011)

5.8.1 ToR 1.a Fishing effort in kWdays, GTdays, and number of vessels by Member State and fisheries

STECF EWG-13-13 notes that assignment of derogations and special conditions is based on best expert knowledge. Data errors may exist regarding the huge data bases and the special knowledge required to deal with them (grouping and exact formulation of data queries).

STECF EWG noted six years ago a change in Annexes IIC to Council Reg. 41/2007 for 2007 as compared to the Annex IIC to 51/2006 which removed the special conditions IIC71a and IIC71b to static nets <220mm (3b). STECF EWG further notes that there were no special derogations added to Annex IIC of Council Reg. 40/2008, Annex IIC of Council Reg. 43/2009, Annex IIC of Council Reg. 53/2010 or Annex IIC of Council Reg. 57/2011, or Annex IIC of Council Reg. 43/2012. Table 5.8.1.1 lists the historic developments of days at sea by vessel and derogations.

Table 5.8.1.1 – Western Channel - Historic trends in days at sea by vessel specified in the Council Regulations since 2005.

Annex	AREA	REG GEAR	SPECON	2005	2006	2007	2008	2009	2010	2011	2012	2013
llc	7e	3a	none	240	216	192	192	192	164	164	164	164
IIc	7e	3b	none	240	216	192	192	192	164	164	164	164
IIc	7e	3b deleted	ICC71ab		365							

The previously identified French data problems affecting 2002 have so far not been corrected. STECF EWG decided therefore only to provide effort trends graphically starting from 2003. For brevity and clarity in this report only information since 2004 are tabulated. The dominating fleet from the two existing derogations in 7e (3a and 3b) is by far the English beam trawl fleet with percentages in the last 8 years in excess of 55% of the effort deployed (Table 5.8.1.2 and Figures 5.8.1.1 and 5.8.1.2). The other fleets involved are the French static gear fleet with a decreasing trend from 22% in 2006 to 8% in 2012 of the deployed effort and the Belgian beam trawl fleet with an increasing trend from less then 1% in 2000 up to about 16% in 2007 followed by a fluctuation around 13%. STECF-EWG however notes that about 85% of the overall effort deployed could not be allocated to regulated gear (e.g. gears outside the regulation such as otter- and pelagic trawls, dredges and pots). The "total" trend in Figure 5.8.1.2 is therefore highly influenced by the none regulated gear group. Effort from regulated gears remain low. The composition of the unregulated gears can be found in Table 5.8.1.7. Figure 5.8.1.3 shows the trends for all the unregulated gear in area VIIe.

The differences between the data provided in 2011 and 2012 in effort (kW*days at sea) are provided in Table 5.8.1.3. The main differences appear in the Danish revisions in Otter trawl and Per Trawl in the earlier time series (up to 26%). The 40% difference of the Scottish dredges in 2010 is likely to be an error in submission. Belgian has also revised all their 2011 effort substantially (between 7% and 89% for the different gears) due to an error in last year's calculations.

Information on GT*days at sea and the number of vessels active in 7e is presented in Tables 5.8.1.4 and 5.8.1.5 respectively.

The trends in the nominal effort of the two derogations (3a and 3b) are illustrated in Table 5.8.1.6. The beam trawl fleets decreased gradually from 2% below the 2004 level in 2005 to 39% below that level in 2009. Thereafter it increased again to a relative effort deployed in 2012, 28% below the 2004 level. Also the static gear effort dropped substantially from 4% below the 2004 level in 2006 to a 71% below the 2004 level in 2012.

Category 'none' represents unregulated gear types and mesh sizes in addition to unidentified mesh sizes. The effort of the unregulated gear group 'None' has been around 85% of the overall nominal effort for the whole time series.

Table 5.8.1.7 shows the disaggregation of the 'none' category into the different gears categories. Effort by otter trawl is by far the dominant gear category with percentages in excess of 41% for all years. Dredges contribute around 25%. Pelagic trawl and pots contribute each about 10% to the overall effort of the non regulated gear. The rest of the gears also account for about 10%.

Table 5.8.1.2 – Western Channel - Trend in nominal effort (kW*days at sea) by existing derogations given in Table 1 of Annex IIC (Coun. Reg. 43/2012) and Member State, 2004-2012. Derogations are sorted by gear, special condition (SPECON), and country. Data qualities are summarised in Section 4 of the report.

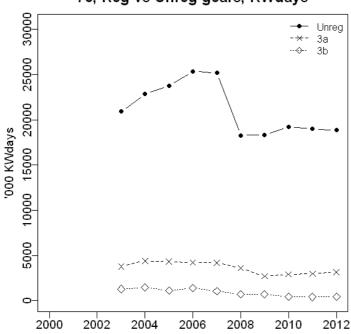
ANNEX	REG AREA COD	REG GEAR COD	SPECON	COUNTRY	2004	2005	2006	2007	2008	2009	2010	2011	2012
llc	7e	3a	none	BEL	633428	689624	628907	837161	584560	358399	383303	514973	554941
llc	7e	3a	none	ENG	3206806	3227096	3283897	3021075	2871790	2197118	2227991	2318845	2474852
llc	7e	3a	none	FRA	317275	261700	289867	320576	146443	138669	303078	200030	131536
llc	7e	3a	none	GBJ	209969	121139							
llc	7e	3a	none	IRL	34577	16518	6474	16610	2143	442			
llc	7e	3a	none	NLD									
llc	7e	3a	none	SCO				3666		1396			
llc	7e	3a Total	none		4402055	4316077	4209145	4199088	3604936	2696024	2914372	3033848	3161329
llc	7e	3b	none	ENG	206294	178818	153434	103278	104187	104045	109304	118156	113947
llc	7e	3b	none	FRA	1236654	946127	1236595	920004	615534	611990	304540	280434	302188
llc	7e	3b	none	SCO			1215	3240	9315	2430			
llc	7e	3b Total	none		1442948	1124945	1391244	1026522	729036	718465	413844	398590	416135
llc	7e	none	none	BEL	6625	11039	17515	17231	45760	106007	138035	95963	213484
llc	7e	none	none	DEU	106234	92768	29865		36994	21196	139157	51687	199687
llc	7e	none	none	DNK	1780	46728	107696	39322	80473	17994	90505		67919
llc	7e	none	none	ENG	4177419	4262278	4138385	4149320	3744303	4043960	4222836	4398527	4523403
llc	7e	none	none	ESP									13629
llc	7e	none	none	FRA	17093208	17780680	19456045	19370589	12637420	12553428	12823801	13095161	12156880
llc	7e	none	none	GBG	75868	57128	45780	57710	28376	37038	68030	58026	61697
llc	7e	none	none	GBJ	1476	6745	19360	30580	25740	31020	38060	42020	13640
llc	7e	none	none	IOM			19902	1116	778				18368
IIc	7e	none	none	IRL	347597	152539	3880	23340	1023	14228	52800	22942	13220
llc	7e	none	none	LTU						29520		150400	
llc	7e	none	none	NIR	1302						576		
llc	7e	none	none	NLD	449855	632891	956066	894614	1073200	801327	1040600	558954	949302
llc	7e	none	none	SCO	607937	691419	585805	595030	606253	676127	598837	543344	641501
llc	7e	none Total	none		22869301	23734215	25380299	25178852	18280320	18331845	19213237	19017024	18872730
llc	7e	Grand Total	none		28714304	29175237	30980688	30404462	22614292	21746334	22541453	22449462	22450194

Table 5.8.1.3 – Western Channel – Percentage difference in effort (kW*days at sea) by existing derogations given in Table 1 of Annex IIC (Coun. Reg. 43/2012) and Member State, 2004-2011. Derogations are sorted by gear, special condition (SPECON), and country. Data qualities are summarised in Section 4 of the report.

ANNEX	REG AREA COD	REG GEAR COD	SPECON	COUNTRY	VESSEL_LENGTH	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
IIc IIc	7e 7e	3a 3a	none none	BEL ENG	O15M O10T15M	0%	0%	0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 3%	0% 0%	0% 0%	14% 0%
lic	7e	3a	none	ENG	O15M				0%	0%	0%	0%	0%	0%	0%	0%	0%
IIc	7e	3a	none	FRA	O10T15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
IIc IIc	7e 7e	3a 3a	none	FRA GBJ	O15M O15M		0%	0%	0% 0	0% 0%	0% 0%	0%	0%	0%	0%	0%	0%
lic	7e	3a	NONE	IRL	O15M				0%	0%	0%	0%	0%	0%	0%		
IIc	7e	3a	none	NLD	O15M	0%											
IIc IIc	7e 7e	3a 3b	none	SCO ENG	O15M O10T15M				0%	0%	0%	0%	0% 0%	0%	0% 0%	0%	0%
IIc	7e	3b	none	ENG	O15M				0%	0%	0%	0%	0%	0%	0%	0%	0%
llc	7e	3b	none	FRA	O10T15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
IIc IIc	7e 7e	3b 3b	none	FRA SCO	O15M O15M	0%	0%	0%	0%	0%	0%	0% 0%	0% 0%	0% 0%	0% 0%	0%	0%
IIc	7e	BEAM	none	BEL	O15M										0%	0%	89%
llc	7e	BEAM	none	ENG	O10T15M				0%	0%	0%	00/	00/		00/	00/	0%
IIc IIc	7e 7e	BEAM BEAM	none	ENG FRA	O15M O10T15M				0%	0%	0% 0%	0%	0%		0%	0% 0%	0% 0%
IIc	7e	BEAM	none	FRA	O15M				0%	0%		0%					
IIc IIc	7e 7e	BEAM BEAM	none NONE	GBJ IRL	O15M O15M	0%	0%	0%		0% 0%							
lic	7e	BEAM	none	NLD	O15M	0 78	0%	0 78		0 /8							
IIc	7e	DEM_SEINE	none	BEL	O15M											0%	7%
IIc IIc	7e 7e	DEM_SEINE DEM_SEINE	none	ENG FRA	O15M o10t15m						0%	0%			0%	0% 0%	0%
lic	7e	DEM_SEINE	none	FRA	o15m											0%	0%
IIc	7e	DEM_SEINE	none	NLD	O15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
llc	7e	DEM_SEINE	none	SCO	O15M							0%	0%	0%	3%	0%	0%
IIc IIc	7e 7e	DREDGE DREDGE	none	BEL ENG	O15M O10T15M				0%	0%	0%	0%	0%	0% 5%	0% 0%	0% 0%	15% 0%
IIc	7e	DREDGE	none	ENG	O15M				0%	0%	0%	0%	0%	0%	0%	0%	0%
llc	7e 7e	DREDGE DREDGE	none	FRA FRA	O10T15M O15M	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%
lic	7e 7e	DREDGE	none	GBJ	O15M	376	376	376	0%	J 76	370	376	376	J 70	J 76	0%	0%
IIc	7e	DREDGE	none	IOM	O10T15M									0%			
llc	7e 7e	DREDGE DREDGE	none NONE	IOM	O15M O15M	0%	0%	0%	0%	0%	0%	0% 0%	0% 0%	0%			0%
lic	7e	DREDGE	none	NLD	O15M	070	0%	0%	0%	0 70	0%	0%	0%	0%	0%	0%	0 78
llc	7e	DREDGE	none	sco	O10T15M			0%			0%					40%	
IIc IIc	7e 7e	DREDGE GILL	none	SCO BEL	O15M O15M	0%	0%	0%	0%	0%	0%	0%	0%	0% 0%	0%	0%	0%
lic	7e	GILL	none	ENG	O10T15M				0%	0%	0%	0%	0%	0%	1%	0%	0%
IIc	7e	GILL	none	ENG	O15M					0%	0%	0%	0%	0%	0%	0%	0%
IIc IIc	7e 7e	GILL	none	FRA FRA	O10T15M O15M	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%
llc	7e	GILL	none	SCO	O15M	070	0,0	0,0	0,0	0,0	0,0	0%	0,0	0,0	0,0	0,0	0,0
IIc	7e	LONGLINE	none	DNK	O15M			0%									
IIc IIc	7e 7e	LONGLINE LONGLINE	none	ENG ENG	O10T15M O15M				0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0%	5% 0%	6%	0% 0%
lic	7e	LONGLINE	none	FRA	O10T15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
IIc	7e	LONGLINE	none	FRA	O15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
IIc IIc	7e 7e	LONGLINE none	none	SCO FRA	O15M O10T15M	0%	0%	0%	0%	0%	0%	0%	0%	0% 0%	0%		0%
llc	7e	none	none	FRA	O15M	0%	0%	0%	0%	0,0	0%	0%	0%	0%	0%		0%
IIc	7e	OTTER	none	BEL	O15M	100/	401	450/	440/	0%	0%	0%	0%	0%	0%	0%	25%
IIc IIc	7e 7e	OTTER OTTER	none	DNK ENG	O15M O10T15M	12%	1%	-15%	-11% 0%	0%	0%	-1% 0%	0%	1%	0%	0%	0%
lic	7e	OTTER	none	ENG	O15M				0%	0%	0%	0%	0%	0%	0%	0%	0%
IIc	7e	OTTER	none	FRA	O10T15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
IIc IIc	7e 7e	OTTER OTTER	none	FRA GBG	O15M O10T15M	0%	0%	0%	0%	0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%
IIc	7e	OTTER	none	GBG	O15M							0%					
IIc IIc	7e	OTTER OTTER	none NONE	GBJ IRL	O15M O15M				0%	00/	0%	0%	0%	0% 0%	0%	0%	0%
lic	7e 7e	OTTER	none	NIR	O15M					0% 0%				0%		0%	
IIc	7e	OTTER	none	NLD	O15M	0%	0%	0%	0%	0%	0%	0%	0%				
llc	7e	OTTER	none	SCO SCO	O10T15M	00/	00/	00/	0%	0%	0%	0%	0%	00/	0%	0%	0% 0%
IIc IIc	7e 7e	OTTER PEL_SEINE	none	ENG	O15M o10t15m	0%	0%	0%	0%	0%	0%	0%		0%	0%	0%	0%
IIc	7e	PEL_SEINE	none	ENG	o15m											0%	
IIc IIc	7e 7e	PEL_SEINE PEL_SEINE	none	FRA FRA	O10T15M O15M	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%
lic	7e 7e	PEL_SEINE PEL_SEINE	none	SCO	O15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
IIc	7e	PEL_TRAWL	none	DEU	O15M	0%	0%	0%	0%	0%	0%	0%		0%	0%	0%	0%
IIc IIc	7e 7e	PEL_TRAWL PEL_TRAWL	none	DNK ENG	O15M O10T15M	-9%	-4%	1%	12% 0%	25% 0%	1% 0%	10% 0%	26% 0%	-9% 0%	0% 0%	0% 0%	0%
lic	7e 7e	PEL_TRAWL	none	ENG	O10115M O15M				0%	0%	0%	0%	0%	0%	0%	0%	0%
IIc	7e	PEL_TRAWL	none	FRA	O10T15M		0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
IIc IIc	7e 7e	PEL_TRAWL PEL_TRAWL	none	FRA GBG	O15M O10T15M	0%	0%	0%	0%	0%	0%	0%	0% 0%	0%	0% 0%	0%	0%
lic	7e	PEL_TRAWL	none	GBJ	010115M 015m								370		370		0%
IIc	7e	PEL_TRAWL	NONE	IRL	O10T15M		0%		£ ·				£ ·		£		
IIc IIc	7e 7e	PEL_TRAWL PEL_TRAWL	NONE none	IRL LTU	O15M O40M	0%	0%	0%	0%	0%			0%		0% 0%	0%	0% 0%
lic	7e	PEL_TRAWL	none	NLD	O15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
IIc	7e	PEL_TRAWL	none	SCO	O10T15M				0%	0%	0%	0%		£	0%		
IIc IIc	7e 7e	PEL_TRAWL POTS	none	SCO ENG	O15M O10T15M	0%	0%	0%	0% 0%	0%	0%	0%	0% 0%	0% 0%	-10%	0% 2%	0% 0%
lic	7e 7e	POTS	none	ENG	O15M				0%	0%	0%	0%	0%	0%	0%	2%	1%
IIc	7e	POTS	none	FRA	O10T15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
IIc IIc	7e 7e	POTS POTS	none	FRA GBG	O15M O10T15M	0%	0%	0%	0%	0%	0%	0%	0%	0% 0%	0%	0% 0%	0%
lic	7e 7e	POTS	none	GBG	O10115M O15M					0%	0%	0%	0%	11%	2%	0%	0%
IIc	7e	POTS	NONE	IRL	O15M										0%		
IIc IIc	7e 7e	POTS POTS	none	SCO SCO	O10T15M O15M		0%	0%									
lic	7e 7e	TRAMMEL	none	ENG	O10T15M		070				0%	0%	0%	0%	0%	0%	0%
		TRAMMEL	none	ENG	O15M				0%	0%	0%	0%	0%	0%	0%	0%	0%
IIc	7e																
IIc IIc IIc	7e 7e 7e	TRAMMEL TRAMMEL	none none	FRA FRA	O10T15M O15M	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%

Table 5.8.1.4 – Western Channel - Trend in GTdays (GT*days at sea) by existing derogations given in Table 1 of Annex IIC (Coun. Reg. 43/2012) and Member State, 2004-2012. Derogations are sorted by gear, special condition (SPECON), and country. Data qualities are summarised in Section 4 of the report.

ANNEX	REG AREA COD	REG GEAR COD	SPECON	COUNTRY	2004	2005	2006	2007	2008	2009	2010	2011	2012
IIc	7e	3a	none	BEL	217960	230378	211798	264266	182061	108653	115214	158450	163206
IIc	7e	3a	none	ENG	931813	932208	957038	922227	919080	715956	732929	810429	942571
IIc	7e	3a	none	FRA	67633	58636	54792	58858	22666	21952	59701	45891	29538
IIc	7e	3a	none	GBJ	63209	36001							
IIc		3a	none	IRL	7838	4112	2022	3620	810	196			
IIc	7e	3a	none	NLD									
IIc	7e	3a	none	SCO				1296		592			
lic	7e	3a Total	none		1288453	1261335	1225650	1250267	1124617	847349	907844	1014770	1135315
IIc	7e	3b	none	ENG	48508	45697	42816	24434	24507	21666	25049	24994	24202
IIc	7e	3b	none	FRA	158424	125936	172966	133602	77388	76950	43128	33332	36865
IIc	7e	3b	none	SCO			384	1024	2944	768			
lic	7e	3b Total	none		206932	171633	216166	159060	104839	99384	68177	58326	61067
IIc	7e	none	none	BEL	3636	5200	6484	6161	15039	34208	43562	29969	65661
IIc	7e	none	none	DEU	143250	106230	39730		50030	29112	154280	48999	189473
IIc	7e	none	none	DNK	774	23056	55676	18646	35877	8022	40349		45702
IIc	7e	none	none	ENG	1004424	1014489	996194	942884	917363	947737	1020597	1028118	1221418
IIc	7e	none	none	ESP									12069
IIc	7e	none	none	FRA	3320926	3501265	3904177	3818126	2530061	2518492	2948271	2952478	2670451
IIc	7e	none	none	GBG	14231	10689	8385	12267	5219	6974	12573	10903	11211
IIc	7e	none	none	GBJ	511	1708	5787	9141	7694	9271	11377	12561	4078
IIc	7e	none	none	IOM			4547	255	114				4121
IIc	7e	none	none	IRL	107588	41848	1240	10073	415	6676	52272	10030	5783
IIc	7e	none	none	LTU						28497		149507	
IIc	7e	none	none	NIR	301						221		
IIc	7e	none	none	NLD	331902	391614	734553	602242	769364	432549	687063	355146	791963
llc	7e	none	none	SCO	198595	218717	194240	208252	229716	265052	225247	200533	233498
lic	7e	none Total	none		5126138	5314816	5951013	5628047	4560892	4286590	5195812	4798244	5255428
llc	7e	Grand Total	none		6621523	6747784	7392829	7037374	5790348	5233323	6171833	5871340	6451810


Table 5.8.1.5 – Western Channel - Trend in number of vessels by existing derogations given in Table 1 of Annex IIC (Coun. Reg. 43/2012) and Member State, 2004-2012. Derogations are sorted by gear, special condition (SPECON), and country. Data qualities are summarised in section 4 of the report.

ANNEX	REG AREA COD	REG GEAR COD	SPECON	COUNTRY	2004	2005	2006	2007	2008	2009	2010	2011	2012
llc	7e	3a	none	BEL	57	67	58	55	49	44	31	33	37
IIc	7e	3a	none	ENG	62	53	51	53	47	43	38	44	43
llc	7e	3a	none	FRA	12	13	20	15	11	10	13	8	6
IIc	7e	3a	none	GBJ	4	2							
llc	7e	3a	none	IRL	2	2	5	1	2	1			
IIc		3a	none	NLD									
llc		3a	none	SCO				1		1			
lic	7e	3a Total	none		137	137	134	125	109	99	82	85	86
llc	7e	3b	none	ENG	21	17	17	14	12	13	12	12	11
IIc	7e	3b	none	FRA	68	62	77	48	34	34	22	22	25
llc	7e	3b	none	SCO			1	1	1	1			
lic	7e	3b Total	none		89	79	95	63	47	48	34	34	36
llc	7e	none	none	BEL	3	6	7	6	12	28	23	20	22
llc	7e	none	none	DEU	4	3	3		2	1	3	1	2
llc	7e	none	none	DNK	1	4	8	1	1	1	1		1
IIc		none	none	ENG	178	162	170	175	174	156	154	158	158
llc	7e	none	none	ESP									5
llc		none	none	FRA	837	943	1114	1259	868	1022	688	654	642
llc	7e	none	none	GBG	1	2	4	5	4	3	3	2	3
IIc		none	none	GBJ	1	1	1	1	1	1	2	3	1
llc	7e	none	none	IOM			1	1	2				1
IIc	7e	none	none	IRL	13	5	1	3	2	2	1	2	3
llc	7e	none	none	LTU						1		1	
IIc	7e	none	none	NIR	1						1		
llc	7e	none	none	NLD	15	13	13	19	15	18	16	17	15
llc	7e	none	none	SCO	23	14	21	16	15	18	18	19	18
lic	7e	none Total	none		1077	1153	1343	1486	1096	1251	910	877	871
llc	7e	Grand Total	none		1303	1369	1572	1674	1252	1398	1026	996	993

Table 5.8.1.6 Western Channel - Trend in nominal effort (kW*days at sea) by derogations given in Table 1 of Annex IIC (Coun. Reg. 43/2012), 2004-2012. Derogations are sorted by gear and special condition (SPECON). Data qualities are summarised in Section 4 of the report.

ANNEX	REG A	REAREG GE	AR (SPECON	2004	2005	2006	2007	2008	2009	2010	2011	2012	Rel. Change to 04	Rel. Change to 11
llc	7e	3a	none	4402055	4316077	4209145	4199088	3604936	2696024	2914372	3033848	3161329	-0.28	0.04
llc	7e	3b	none	1442948	1124945	1391244	1026522	729036	718465	413844	398590	416135	-0.71	0.04
llc	7e	none	none	22869301	23734215	25380299	25178852	18280320	18331845	19213237	19017024	18872730	-0.17	-0.01
Sum	7e			28714304	29175237	30980688	30404462	22614292	21746334	22541453	22449462	22450194	-0.22	0.00

7e, Reg vs Unreg gears, KWdays

Figures 5.8.1.1 – Western Channel -Trend in nominal effort (kW*days at sea) by derogations given in Table 1 of Annex IIC (Coun. Reg. 43/2012), 2003-2012. Derogations are sorted by gear and special condition (SPECON). Data qualities are summarised in section 4. 3a represents beam trawls of mesh size \geq 80 mm and 3b represents static nets with mesh size < 220 mm.

7e, All reg gears, KWdays Total -*- 3b 3a Total -*- 3b 2000 2002 2004 2006 2008 2010 2012

Figures 5.8.1.2 – Western Channel -Trend in nominal effort (kW*days at sea) by derogations given in Table 1 of Annex IIC (Coun. Reg. 43/2012), 2003-2012. Derogations are sorted by gear and special condition (SPECON). Data qualities are summarised in section 4. 3a represents beam trawls of mesh size \geq 80 mm and 3b represents static nets with mesh size < 220 mm.

Figures 5.8.1.3 – Western Channel -Trend in nominal effort (kW*days at sea) by unregulated gear according to Table 1 of Annex IIC (Coun. Reg. 43/2012), 2003-2012. Data qualities are summarised in section 4.

Table. 5.8.1.7. Western Channel Unregulated gear (category none-none) effort (kW*Days) by gear type, 2004-2012.

ANNEX	REG_AREA	REG_GEAR	REG GEAR COD	2004	2005	2006	2007	2008	2009	2010	2011	2012
llc	7e	none	OTTER	11306477	11989022	12028329	11848608	8487417	8578780	8281710	8829762	7718110
IIc	7e	none	DREDGE	5637002	5602368	5903594	6083728	4767408	5120969	4098107	3897499	4292450
IIc	7e	none	PEL_TRAWL	1830379	1475309	2168733	2140059	2012123	1410938	2458100	1537387	2449951
IIc	7e	none	POTS	2801196	2784755	3141625	2718763	1232195	1275601	1972511	2202740	2252751
IIc	7e	none	TRAMMEL	131206	346504	436467	626072	486195	475625	522126	571254	541891
IIc	7e	none	GILL	488105	674577	534836	781892	658756	666149	661402	520427	507914
IIc	7e	none	DEM_SEINE	52316	94168	202941	166784	129716	309602	537514	730853	453211
IIc	7e	none	PEL_SEINE	193853	183887	295531	207190	175282	174967	321953	344896	395244
IIc	7e	none	LONGLINE	382787	441367	615657	587251	312345	279633	321512	301230	237950
IIc	7e	none	BEAM	12234	65823	9980	6031	0	20698	38302	32175	23258
IIc	7e	none	none	33746	76435	42606	12474	18883	18883	0	48801	0
Sum				22869301	23734215	25380299	25178852	18280320	18331845	19213237	19017024	18872730

5.8.2 ToR 1.b Catches (landings and discards) of sole in weight and numbers at age by fisheries

Although the data available for the review of Annex IIC of regulation 53/2010 comes from all countries involved in the fisheries, there is little information on discards for most of the species. Only very sparse discard information is available for anglerfish, cod, haddock, hake, plaice, sole and whiting. The lack of discard information on plaice in particular, increases the likelihood of incorrect assumptions on total removals for that species.

Table 5.8.2.1 lists the landings, discards, discard rates and a "Discard Coverage Index" for the sole by derogations (see explanation of "Discard Coverage Index" in section 4.5). In the regulated beam trawl gear (3a) the discard rates never supersede the 1% and gets an A classification for "Discard Coverage Index" for all years except 2009 and 2010 when they are classified as B. Discard rates for the regulated static gear (3b) is only available for 2012 and gets a C categorisation for "Discard Coverage Index". For brevity, the following sections represent the landings and discards by derogation in weight for a subset of the species caught ie. anglerfish (ANF), cod (COD), haddock (HAD), hake, (HKE), Nephrops (NEP), plaice (PLE), saithe (POK), sole (SOL), and whiting (WHG). However, additional data queries for other species can be made depending on data provisions of the national catches by the experts or national institutes. The data given in the table form the basis of Figure 5.8.2.1 displaying the catch compositions by derogations for the years 2004-2012. The absence of dark bars representing discards also indicates lack of observations rather than low discard numbers.

Figure 5.8.2.1 shows that sole landings have been fluctuating around average. The lower landings for sole in 2003 and 2004 are likely to be an artefact as they are about 50% lower than the landings submitted to ICES (landings used in the assessment of sole 7e). See also section 5.8.10 where the data points for 2003 and 2004 were omitted from the partial F evaluations. For comment on the other species, see section below (Tor I.c).

Table 5.8.2.2 provides the sole catches of the unregulated gear types. The sole catches of the unregulated gear are in excess of 27% of the overall sole catches in area 7e for each year of the data series (2004-2012). The otter trawl fleet is the main fleet involved with percentages in excess of 22%. For 2012 the unregulated gears account for 27% of the overall sole catches where the otter trawl fleet is responsible for 22% of these catches.

Tab. 5.8.2.1 Western Channel - Landings (t), discards (t) and relative discard rates for sole and derogation, 2004-2012 - Note: Discard information for area 7e are sparse and not available for all countries. The bottom part of the table repeats the discard rates together with a "Discard Coverage Index" A,B or C. (see explanation of "Discard Coverage Index" in section 4.5).

ANNEX	REG_GEA	AR SPEC	IES 2004 L	2004 D 2	004 R 2	2005 L	2005 D	2005 R 2	2006 L :	2006 D :	2006 R	2007 L	2007 D	2007 R 2	2008 L 2	2008 D	2008 R 2	009 L	2009 D	2009 R :	2010 L :	2010 D	2010 R	2011 L 2	2011 D	2011 R	2012 L	2012 D 2	2012 R
IIc	3a	SOL	185	0	0.000	487	0	0.000	530	0	0.000	496	1.557	0.003	431	0.029	0.000	348	3.598	0.01	375	2.283	0.006	430	1.323	0.003	478	0.578	0.001
IIc	3b	SOL	48			71			41			49			45			48			22			49			42	0.064	0.002
IIc	none	SOL	193			302			269			274			233			222			197			226			189		
ANNE	X REG_	_GEAR	SPECIES	2004 R	2004	DCI :	2005 R	2004	DCI 2	006 R	2004 I	DCI 20	007 R	2004 D	CI 200	08 R 2	2004 DC	1 200	9 R 20	004 DC	2010	R 20	04 DCI	2011	R 201	1 DQI	2012	R 2004	1 DCI
ANNE:	X REG_ 3a	_GEAR	SPECIES SOL	2004 R 0.000		DCI :	2005 R 0.000		DCI 2	006 R 0.000			0.003			08 R 2			9 R 20	004 DC		R 20	04 DCI		R 201	1 DQI	2012		1 DCI
ANNEX IIc		_GEAR				DCI :			DCI 2											004 DC			04 DCI			1 DQI	0.00		4 DCI

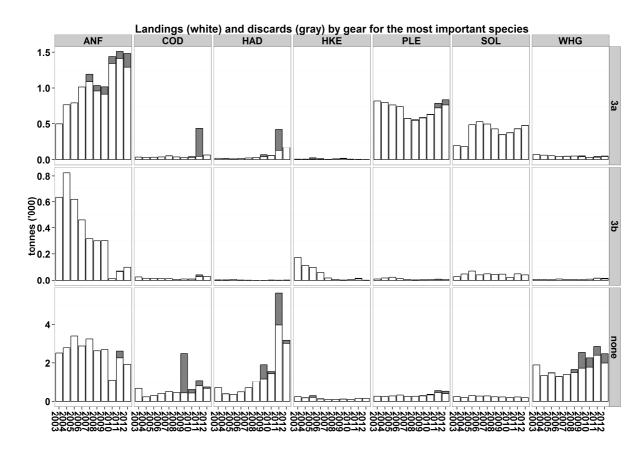


Fig. 5.8.2.1 – Western Channel - Landings (t) and discard (t) by derogation and species, 2004-2012, as well as for the "none" regulated gear. Note that information collected on discards is incomplete, so the apparent absence of discards in the figures for a given species/gear does not necessarily mean zero discards.

Table. 5.8.2.2. Western Chanel. Unregulated gear (category none-none) sole (t) catch composition by gear type, 2004-2012. Note: Discard information for area 7e are sparse and therefore the table figures should rather be interpreted as landings then catches.

Sum					193	302	269	274	233	222	197	226	189
IIc	7e	none	none	SOL	2	4	4	0	0	0		0	
IIc	7e	LONGLINE	none	SOL	0	0	0	0	0	0	0	0	0
IIc	7e	DEM_SEIN	NONE	SOL			0				0	1	0
IIc	7e	BEAM	NONE	SOL	1	13	1	0		1	1	1	0
IIc	7e	PEL_SEIN	none	SOL							0		0
IIc	7e	TRAMMEL	none	SOL	5	12	0	1	2	2	1	1	1
IIc	7e	PEL_TRAV	none	SOL	0	0	0	0	0	0	1	1	1
IIc	7e	GILL	none	SOL	2	5	0	0	0	1	3	2	1
IIc	7e	POTS	none	SOL	0	3	0	1	0	0	10	4	3
IIc	7e	DREDGE	NONE	SOL	17	29	26	31	39	32	23	29	30
IIc	7e	OTTER	NONE	SOL	165	235	237	240	193	187	157	188	153
ANNEX	REG_ARE	REG_GEA	SPECON	SPECIES	2004 L	2005 L	2006 L	2007 L	2008 L	2009 L	2010 L	2011 L	2012 L

The relative contribution of sole weights in the catch (Table 5.8.2.3) shows an increase from 2003 to 2006 and stabilization afterwards for the dominating beam trawls (3a), which coincides with a decrease of the category "none", mainly otter trawls which are not effort regulated in Annex IIc. STECF EWG notes however that this otter trawl fleet is generally responsible for about 25-35% of the estimated sole and plaice catches in weight and about 85% of the cod catches in weight. The static nets with mesh size <220 mm (3b) are taking around 4-11% of sole catches in weight. There is no difference in ranking of the derogations according to the year 2012 or the average of 2010-2012.

Table 5.8.2.3 Western Channel - Ranked derogations according to relative sole catches in weight (t) 2004-2012. Ranking is according to the year 2012 and the average 2010-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	2004 Rel	2005 Rel	2006 Rel	2007 Rel	2008 Rel	2009 Rel	2010 Rel	2011 Rel	2012 Rel	Avg.2010-2012
IIc	7e	SOL	3a	0.44	0.57	0.63	0.61	0.61	0.56	0.63	0.61	0.67	0.64
IIc	7e	SOL	none	0.45	0.35	0.32	0.33	0.33	0.36	0.33	0.32	0.27	0.31
IIc	7e	SOL	3b	0.11	0.08	0.05	0.06	0.06	0.08	0.04	0.07	0.06	0.06

5.8.3 ToR 1.c Catches (landings and discards) of non-sole species in weight and numbers at age by fisheries

Table 5.8.3.1 lists the landings, discards, discard rates and a "Discard Coverage Index" for the main species except sole by derogation, 2004-2012 (see explanation of "Discard Coverage Index" in section 4.5). As the "none" category is a mixture of gear, discard rates (sometimes available from otter trawls) are not tabulated).

For anglerfish, only discard information is available for the regulated beam trawl gear (3a), fluctuating between 7% and 13% with a C qualifier for "Discard Coverage Index" for all years. Sparse information from otter trawls suggests discard rates around 17%.

For cod, discard information for the regulated beam trawl gear (3a) is available since 2003, varying between extreme values (0%-90%) with "Discard Coverage Index" categories A and B). The regulated static gear (3b) discard rated vary between 0% and 31% with a "Discard Coverage Index" of C. Information from otter trawls suggests discard rates between 0% and 83% with a "Discard Coverage Index" of C. STECF-EWG would like to point out the huge spread of discard rates and that most of these values are obtained with a "Discard Coverage Index" of C. The 0% discards rates with a "Discard

Coverage Index" of A are very likely not reflecting an overall year behaviour of any gear. This applies also to other non-sole species.

For plaice, discard information for the regulated beam trawl gear (3a) is available since 2003, varying between extreme values (0%-8%) with a "Discard Coverage Index" of A. Very few discard information is available for the regulated static gear (3b), varying between 0% and 16% with a "Discard Coverage Index" of C. Information from otter trawls suggests discard rates between 0% and 26% with a "Discard Coverage Index" of B.

Figure 5.8.3.1 incorporates next to sole, also the other main species in the fisheries.

The landings of anglerfish for the beam trawl fleets (3a) have substantially increased in 2010, 2011 and 2012 whereas the landings of the regulated static gear (3b) has substantially decreased over that period.

Plaice catches for the regulated beam trawl gear (derogation 3a) have fluctuated around average. The catches (predominantly landings) of the other main non-sole species for regulated beam trawl gear have been stable at low levels. The substantial cod discards in 2013 should be allocated to a very good recruitment year class 2009. Landings by static nets (derogations 3b) are dominated by anglerfish which show a sharp decline since 2010. The category "none" which is responsible for most of the landings (except for sole, plaice and partly anglerfish) consist mainly of otter trawls. Information from otter trawls suggest that there is substantial discarding of cod, haddock and whiting. However, it should be noted that there is almost no discard information available for the period before 2010, and therefore no trends in discard practices can be concluded. Landings of anglerfish have dropped substantially in 2010; whereas landings of cod, haddock and whiting have increased since 2005 (Haddock landings have more than double in 2011 and go inside with high discarding). It appears that the very strong cod year class 2009 was heavily discarded as 0 year old fish by the otter trawlers. All the 2012 landings are somewhat lower than the 2011 landings.

Table 5.8.3.2 provides the cod catches of the unregulated gear types. The cod catches of the unregulated gear are in excess of 84% of the overall cod catches in area 7e for each year of the data series (2004-2012). The otter trawl fleet is taking the bulk of these catches with percentages in excess of 80%. For 2012 the unregulated gears account for 88% of the overall cod catches where the otter trawl fleet is responsible for 81% of these catches.

Table 5.8.3.3 provides the plaice catches of the unregulated gear types. The plaice catches of the unregulated gear are in excess of 23% of the overall plaice catches in area 7e for each year of the data series (2004-2012). The otter trawl fleet is the main fleet involved with percentages in excess of 22%. For 2012 the unregulated gears account for 33% of the overall plaice catches where the otter trawl fleet is responsible for 32% of these catches.

For the main pelagic species, herring, horse mackerel, mackerel and sprat, discard information is very sparse and only sometimes available for otter trawls with a "Discard Coverage Index" of C (information on the STECF website).

Again STECF-EWG would like to mention that there is little information on discards for area 7e for the non-sole species and therefore that the above percentages are more likely to be representative of landings than of total catches.

Tab. 5.8.3.1 Western Channel - Landings (t), discards (t) and relative discard rates by species and derogation, 2004-2012 - Note: Discard information for area 7e is sparse and not available for all countries. The bottom part of the table repeats the discard rates together with a "Discard Coverage Index" A,B or C. (see explanation of "Discard Coverage Index" in section 4.5).

ANNEX	REG_AF	E/SPECIES	REG_GE		2004 D 2	2004 R :	2005 L 2	005 D 2	005 R 2	2006 L 2	006 D 2	006 R 2	2007 L	2007 D	2007 R 2			2008 R 2	2009 L 2	2009 D 2	2009 R 2	2010 L :	2010 D :	2010 R 2	2011 L 2	011 D :	2011 R 2	012 L 2	2012 D 2	2012 R
IIc	7e		За	769			795			1014			1087	108.865	0.091		75.545	0.073		100.499	0.099		95.023	0.066	1413	98.277	0.065		189.724	0.128
IIc	7e	ANF	3b	824			619			459			317			301			302			13			67	3.524	0.05	100		
llc	7e	ANF	none	2802			3411			2895			3255			2620			2690			1104			2260			1925		
IIc	7e	COD	За	30	0.657	0.022	33	0	0	36	0	0	50	2.665	0.051	37			28	1.224	0.042		10.216	0.25		392.222	0.897	63	0.004	0
IIc	7e	COD	3b	16			15			15			14			8			11	0	0	10	0.305	0.029	29	12.692	0.307	31	0	0
IIc	7e	COD	none	232			303			416			511			451			434			432			798			672		
IIC	7e	HAD	3a		2.187	0.147	11	0	0	17	0	0	22	0.275	0.012	30			38	28.994	0.433	54	3.359	0.058		293.154	0.696	170	1.509	0.009
IIC	7e 7e	HAD	3b	4 384			8 363			3 492			703			1024			1167			3 1441	0	0	2 3975			3031	0	0
lic	7e 7e		none 3a		0.532	0.077		17.393	0.739		7.158	0.548	703	0.225	0.056	1024	0	0	1167	4.959	0.279	1441	0.058	0.008	3975	0	0	3031	0.109	0.035
llc	7e		3b	113	0.552	0.077	98	17.353	0.755	59	7.130	0.540	19	0.223	0.030	9		0	3	4.505	0.275	8	0.030	0.013	12	4.528	0.268	2	0.105	0.033
lic	7e	HKE	none	179			206			119			89			102			109			97	0.000	0.010	159	4.020	0.200	154		
llc	7e		За	0			0			0			0			0			0						0			0		
llc	7e	NEP	3b				0			0			ō			0			0			0			0			0		
IIc	7e	NEP	none	8			13			6			10			9			9			17			16			18		
IIc	7e	PLE	За	801	0	0	767	0	0	743	0	0	571	2.346	0.004	547	8.208	0.015	581	6.226	0.011	627	4.995	0.008	726	62.353	0.079	767	70.186	0.084
IIc	7e	PLE	3b	19			25			13			8			4			6			7			8	1.55	0.16	9	0	0
IIc	7e	PLE	none	243			280			323			257			261			275			328			449			388		
IIc	7e	POK	За	1			0			0			0			0			0			0			0	0	0	0		
IIc	7e	POK	3b	11			17			3			1			1			3			5			3			5	0	0
llc	7e	POK	none	6			3			3			1			1			1			16			2			1		
IIc	7e	WHG	За	61	0	0	53	0.553	0.01	45	0	0	45	1.155	0.025	48	0	0	39	12.767	0.247	30		0.051	32	10.65	0.25	42	7.331	
IIC	7e		3b	7			5			10			8			7			6			10	0.01	0.001	16	1.511	0.085	12	4.003	0.251
IIC	7e	WHG	none	1352			1478			1295			1409			1501			1729			1781			2397			1993		
ANNEX	REG	ARE/SPE	FCIES	REG GE	AI2004	4 R 20	004 DC	2005	R 200	04 DCI	2006	R 200	4 DCI	2007 F	2004	DCL :	2008 R	2004	DCI 2	009 R	2004 D	CI 20	10 R 2	004 D0	CL 201	1 R 20	04 DCI	2012	R 2004	4 DCI
IIc	7e	ANI		3a										0.09			0.073			0.099			0.066 C			.065 C			28 C	
IIc	7e	ANI	F	3b																						0.05 B				
llc	7e	ANI		none																						J.00 B				
IIc	7e	CO		3a	0.	022 B			0 B			0 A		0.05	1 A					0.042	3		0.25 A		0	897 B			0 A	
llc	7e	CO		3b	-															0.0			0.029 0			307 C			0 C	
llc	7e	CO		none																-	-				-					
llc	7e	HAI		3a	0.	147 B			0 A			0 A		0.01	2 A					0.433 I	В	(0.058 A		0	.696 A		0.0	09 B	
IIc	7e	HAI	D	3b																			0 0	;					0 C	
llc	7e	HAI	D	none																										
llc	7e	HKI	E	3a	0.	077 B		0.7	39 A		0.5	48 A		0.05	6 A		() B		0.279	В	(0.008 E	3		0 B		0.0	35 B	
	7e	HKI	_	3b																			0.013 C			268 C			0 C	

Table. 5.8.3.2. Western Chanel. Unregulated gear (category none-none) cod (t) catch composition by gear type, 2004-2012. Note: Discard information for area 7e are sparse and therefore the table figures should rather be interpreted as landings then catches.

0.004 A

0.025 A

0.01 B

0.008 A

0.001 C

0.084 A 0 C

0 C

0.148 A 0.251 C

0.16 C

0.25 A 0.085 C

NEP NEP PLE PLE

POK

ANNEX	REG_ARE	/REG_GEA	ISPECON	SPECIES	2004 L	2005 L	2006 L	2007 L	2008 L	2009 L	2010 L	2011 L	2012 L
IIc	7e	OTTER	NONE	COD	223	298	391	503	438	415	399	749	618
IIc	7e	DEM_SEIN	NONE	COD			1	1		5	10	26	19
IIc	7e	PEL_SEIN	Inone	COD							0		15
IIc	7e	TRAMMEL	. none	COD	1	1	2	2	4	3	6	9	14
IIc	7e	GILL	none	COD	4	3	4	. 3	5	7	6	4	. 2
IIc	7e	PEL_TRAV	/none	COD	0	0	0	0	0	0	5	1	2
IIc	7e	LONGLINE	none	COD	3	0	17	· 1	1	1	0	5	2
IIc	7e	DREDGE	none	COD	0	0	0	1	2	2	6	1	0
IIc	7e	POTS	none	COD	0	0	0	0	0	0	1	1	0
IIc	7e	BEAM	none	COD	0	0	0			0	0	C	0
IIc	7e	none	none	COD				0				1	
Sum					232	303	416	511	451	434	432	798	672

Table 5.8.3.3 Western Chanel. Unregulated gear (category none-none) plaice (t) catch composition by gear type, 2004-2012. Note: Discard information for area 7e are sparse and therefore the table figures should rather be interpreted as landings then catches.

ANNEX	REG_AR	E, REG_GEA	SPECON	SPECIES	2004 L	2005 L	2006 L	2007 L	2008 L	2009 L	2010 L	2011 L	2012 L
IIc	7e	OTTER	NONE	PLE	232	258	311	247	252	262	316	428	367
IIc	7e	DEM_SEII	NONE	PLE		0	0	0	0	3	4	9	11
IIc	7e	DREDGE	NONE	PLE	9	14	10	8	8	8	5	9	6
IIc	7e	PEL_SEIN	Inone	PLE				0			0		1
IIc	7e	TRAMMEL	none	PLE	0	3	0	0	1	1	0	1	1
IIc	7e	PEL_TRA	V none	PLE	0	0	0	0	0	0	0	0	1
IIc	7e	GILL	none	PLE	0	1	0	0	0	1	1	1	1
IIc	7e	BEAM	none	PLE	2	4	1	2		0	1	1	0
IIc	7e	POTS	none	PLE	0	0	0	0	0	0	0	0	0
IIc	7e	LONGLIN	Enone	PLE	0	0	0	0	0	0	0	0	0
IIc	7e	none	none	PLE	1	0		0	0	0		0	
Sum					243	280	323	257	261	275	328	449	388

5.8.4 ToR 1.d CPUE and LPUE of sole, plaice and cod by fisheries and Member States

Limited discard information are available for sole, plaice and cod, therefore LPUE for sole, plaice and cod are represented in Tables 5.8.4.1-6. Figures 5.8.4.1-3 show CPUE and LPUE trends for sole, plaice and cod since 2003. Graphically, only the regulated gears and the most important unregulated gears (otter trawl and dredges) are presented.

Tables showing CPUE by gear groups (regulated and unregulated), area and nation are not presented in this report but are available on the JRC website: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313

For sole the regulated beam trawl gear (3a) show a stable trend for the main fleets of England, France and Belgium with values of around 150, 250 and 45 g/kW*days respectively. The high value for the French beamers could be explained because they are predominantly smaller boats with smaller engines compared to the English and Belgium beam trawl fleet. The low values for the Belgian fleet reflect more the "non targeting" nature of the fleet for sole. The CPUE and LPUE from the French static gear (3b) fluctuates highly from year to year between 30 and 150 g/kW*days whereas the English static gear is more stable around 50 g/kW*days.

The highest CPUE and LPUE for plaice are recorded by the Belgian beam trawl fleet (3a), fluctuating between 70 and 260 g/kW*days, closely followed by the English beam trawl fleet of around 250 g/kW*days over the whole period. French beam trawl CPUE and LPUE has increased sharply from 16 g/kW*days in 2007 to 115 g/kW*days in 2011. The English otter trawl fleet also showed a sharp increase from 73 g/kW*days in 2007 to 170 g/kW*days in 2011 and 158 g/kW*days in 2012.

Cod CPUE and LPUE have the highest values for English static gear (3b) with a sharp increase from 38 g/kW*days in 2008 to 167 g/kW*days in 2012. The French otter trawls, fluctuating between 20 and 98 g/kW*days, whereas the English otter trawl and gill net fleet obtain only values between 11 and 54 g/kW*days. The large CPUE value for the French otter trawls increased steadily from 20 g/kW*days in 2004 to 98 g/kW*days in 2011. The value for 2012 is 88 g/kW*days.

Table 5.8.4.1 Western Channel - Sole CPUE (g/(kW*days)) by derogation, Country and year, 2004-2012. Note: Discard information for area 7e area sparse and therefore LPUE is provided in the table. (CPUE is presented in the figures).

ANNEX		REG AREA COD	COUNTRY	REG GEAR COD	LPUE 2004		LPUE 2006 I	PUE 2007	LPUE 2008			LPUE 2011		LPUE 2010-2012
llc	SOL	7e	BEL	3a	11	36	51	41	41	45	42	39	58	47
IIc	SOL	7e	BEL	BEAM	0	0	0	0	0		0	0	0	0
llc	SOL	7e	BEL	DEM_SEINE	0	0	0	0	0	0	0	0	0	0
IIc	SOL	7e	BEL	DREDGE	0	0	0	0	0	15	16	0	12	12
llc	SOL	7e	BEL	OTTER		0	0	0	0	0	0	49	132	72
IIc	SOL	7e	ENG	3a	40	128	142	141	130	137	133	151	164	150
llc	SOL	7e	ENG	3b	5	6	7	48	67	87	27	42	70	47
IIc	SOL	7e	ENG	BEAM	0	152	122	0	0	364	0	0	0	0
llc	SOL	7e	ENG	DEM_SEINE	0		0	0	0		0	0	0	0
IIc	SOL	7e	ENG	DREDGE	6	12	12	11	11	8	15	14	12	14
llc	SOL	7e	ENG	GILL	0	0	0	0	0	11	11	0	0	6
IIc	SOL	7e	ENG	LONGLINE	0	0		0	0	0	0	0	0	0
llc	SOL	7e	ENG	OTTER	9	15	19	21	17	13	12	11	16	13
llc	SOL	7e	ENG	PEL_SEINE	0	0	0	0	0	0	0	0	0	0
llc	SOL	7e	ENG	PEL_TRAWL			0		0		0	0	0	0
llc	SOL	7e	ENG	POTS	0	0	0	0	0	0	0	0	0	0
llc	SOL	7e	ENG	TRAMMEL	0	0	0	0	0	0	0	0	0	0
llc	SOL	7e	FRA	3a	132	115	107	103	225	224	208	305	289	255
llc	SOL	7e	FRA	3b	38	74	32	48	62	62	62	157	113	109
IIc	SOL	7e	FRA	BEAM	168	209	0	0	0	0	684	0	0	471
llc	SOL	7e	FRA	DEM_SEINE	0	0	0	0	0	0	0	6	0	2
llc	SOL	7e	FRA	DREDGE	2	3	2	3	6	6	1	2		
llc	SOL	7e	FRA	GILL	5	8	0	0		0	4	2		
IIc	SOL	7e	FRA	LONGLINE	0	0	0	0	0	0	0	0		
llc	SOL	7e	FRA	none	59	52	94	0	0	0	0	0	0	0
IIc	SOL	7e	FRA	OTTER	16	21	20	20	24	24	21	24	20	22
llc	SOL	7e	FRA	PEL_SEINE							0	0	0	0
IIc	SOL	7e	FRA	PEL_TRAWL	0	0	0	0	0	0	0	1	1	1
llc	SOL	7e	FRA	POTS	0	2	0	1	0	0	8	3		
llc	SOL	7e	FRA	TRAMMEL	42	35	0	2		4	2	2		
llc	SOL	7e	GBG	OTTER	0				0	0		0		
llc	SOL	7e	GBJ	3a	33	157	0	0		0		0		
llc	SOL	7e	GBJ	BEAM	0	0	0	0		0		0		
IIc	SOL	7e	GBJ	OTTER	0		0	0		0		0		
		7e	IOM	DREDGE	0	0		0		0		0		
IIc	SOL	7e	IRL	3a	0		0	120	0		0	0		
llc	SOL	7e	IRL	BEAM	0	0	0	0	0	0		0		
IIc	SOL	7e	IRL	DREDGE		0				0	0	0		
llc	SOL	7e	IRL	OTTER		0	0	0		0		0		
llc	SOL	7e	NIR	OTTER	0	0	0	0	0	0		0		
llc	SOL	7e	SCO	DEM_SEINE	0	0					0	0		
IIc	SOL	7e	SCO	DREDGE	2	4	8	9	19	4	3	0		
llc	SOL	7e	SCO	OTTER	0					9	0	4	6	4

Table 5.8.4.2 Western Channel - Sole CPUE (g/(kW*days)) by derogation and year, 2004-2012. Note: Discard information for area 7e area sparse and therefore LPUE is provided in the table. (CPUE is presented in the figures).

ANNEX	SPECIES	REG AREA COD	REG GEAR COD	SPECON	LPUE 2003	LPUE 2004	LPUE 2005	LPUE 2006	LPUE 2007	LPUE 2008	LPUE 2009	LPUE 2010	LPUE 2011	LPUE 2012	LPUE 2010-2012
llc	SOL	7e	3a	none	53	42	113	126	118	119	129	129	142	151	141
llc	SOL	7e	3b	none	23	33	63	29	48	62	65	53	123	101	92
llc	SOL	7e	BEAM	none	0	82	197	100	0	0	48	26	0	0	11
llc	SOL	7e	DEM_SEINE	none				0				0	1	0	1
llc	SOL	7e	DREDGE	none	4	3	5	4	5	8	6	6	7	7	7
llc	SOL	7e	GILL	none	17	4	7	0	0	0	2	5	2	2	3
llc	SOL	7e	LONGLINE	none	0	0	0	0	0	0	0	0	0	0	0
llc	SOL	7e	none	none	63	59	52	94	0	0	0	0	0	0	0
llc	SOL	7e	OTTER	none	20	15	20	20	20	23	22	19	21	20	20
llc	SOL	7e	PEL_SEINE	none								0	0	0	0
llc	SOL	7e	PEL_TRAWL	none	0	0	0	0	0	0	0	0	1	0	0
llc	SOL	7e	POTS	none	0	0	1	0	0	0	0	5	2	1	3
llc	SOL	7e	TRAMMEL	none	8	38	35	0	2	4	4	2	2	2	2

Table 5.8.4.3 Western Channel - plaice CPUE (g/(kW*days)) by derogation, Country and year, 2004-2012. Note: Discard information for area 7e area sparse and therefore LPUE is provided in the table. (CPUE is presented in the figures).

ANNEX	SPECIES			RY REG GEAR COD			PUE 2006							LPUE 2010-2012
IIc		7e	BEL	3a	73	70	81	99	113	145	130	262	223	
IIc		7e	BEL	DEM_SEINE	0	0	0	0	0	0	0	39	14	17
IIc	PLE	7e	BEL	DREDGE	0	0	0	0		0	0	0	0	0
IIc	PLE	7e	BEL	OTTER		0	57	0	31	0	39	296	237	191
IIc	PLE	7e	ENG	3a	215	217	209	160	166	238	248	245	255	250
IIc	PLE	7e	ENG	3b	5	0	0	0	10	29	9	17	35	21
IIc	PLE	7e	ENG	BEAM	775	152	122	332	0	0	0	165	0	68
IIc	PLE	7e	ENG	DEM SEINE	0	0	0	0	0	0	0	15	11	
IIc	PLE	7e	ENG	DREDGE	6	7	4	1	2	2	3	4	2	3
IIc	PLE	7e	ENG	GILL	0	0	0	0	0	11	11	0	0	6
IIc	PLE	7e	ENG	LONGLINE	0	0	0	0	0	0	0	0	0	0
llc	PLE	7e	ENG	OTTER	71	73	111	73	80	81	127	170	158	151
llc		7e	ENG	PEL SEINE	0	0	0	0	0	0	0	0	0	
IIc	PLE	7e	ENG	PEL TRAWL		0		0	0	0	0	0	0	
lic	PLE	7e	ENG	POTS	0		0	0	0	0	0	0	0	
llc	PLE	7e	ENG	TRAMMEL	0	0	0	0	0	0	0	0	0	
llc		7e	FRA	3a	107	38	21	16	34	36	82	115	84	93
llc	PLE	7e	FRA	3b	14	25	11	8	5	5	20	18	17	
lic	PLE	7e	FRA	BEAM	0	38	0	0	0	0	0	0	0	
lic	PLE	7e	FRA	DEM SEINE	0	0	0	0	0	0	15	24	61	30
lic	PLE	7e	FRA	DREDGE	1	1	1	1	2	2	0	1	1	1
lic	PLE	7e	FRA	GILL	0	2	0	0	0	0	0	0	0	'n
lic	PLE	7e	FRA	LONGLINE	0	0	0	0	0	0	0	0	0	
lic	PLE	7e	FRA	none	30	0	Ū	0	0	0	0	0	0	
lic		7e	FRA	OTTER	12	13	14	13	19	19	17	22	20	
lic	PLE	7e	FRA	PEL SEINE	12	13	14	0	15	13	0	0	3	
llc		7e	FRA	PEL TRAWL	0	0	0	0	0	0	0	0	0	
llc	PLE	7e	FRA	POTS	U	0	U	0	U	U	0	0	0	
llc	PLE	7e	FRA	TRAMMEL	0	9	0	0	2	2	0	2		
IIc		7e	GBG	OTTER	0	9	- 0		0	0	0			182
IIc		7e	GBJ	3a	152	66	0	0	0	0	0	0	337	
lic		7e 7e	GBJ	BEAM	152	00	0	0	0	0	0	0	0	
lic	PLE	7e 7e	GBJ	OTTER	0	0	52	0	0	0	0	0		
IIc	PLE	7e 7e	IRL	3a	U	U	0	0	0	0	0	0	0	
	PLE	7e 7e	IRL	BEAM	0	0		0	^	^	0	0		
IIc IIc		7e 7e	IRL	DREDGE	U	0	0	U	0	0	0	0	0	
	PLE	7e 7e	IRL			0	^	^		0	0	0		
IIc		7e 7e		OTTER			0	0	_				0	
IIc			NIR	OTTER	0	0	0	0	0	0	0	0	0	
IIc	PLE	7e	NLD	DEM_SEINE				^		9	4	12	20	
Ilc	PLE	7e	SCO	3a	0	0	0	0	0	0	0	0	0	
IIc		7e	SCO	DEM_SEINE	0	0	0	0	0	13	0	0	0	
IIc	PLE	7e	SCO	DREDGE	0	0	0	0	2	2	0	0	0	
IIc	PLE	7e	SCO	OTTER	0		0			26	7	25	40	25

Table 5.8.4.4 Western Channel - Plaice CPUE (g/(kW*days)) by derogation and year, 2004-2012. Note: Discard information for area 7e area sparse and therefore LPUE is provided in the table. (CPUE is presented in the figures).

ANNEX	SPECIES	REG AREA COD	REG GEAR COD	SPECON	LPUE 2004	LPUE 2005	LPUE 2006	LPUE 2007	LPUE 2008	LPUE 2009	LPUE 2010	LPUE 2011	LPUE 2012	LPUE 2010-2012
llc	PLE	7e	3a	none	182	178	177	136	152	215	215	239	243	233
llc	PLE	7e	3b	none	12	21	9	7	5	8	17	18	22	19
llc	PLE	7e	BEAM	none	82	61	100	332	0	0	0	31	0	11
llc	PLE	7e	DEM_SEINE	none		0	0	0	C	10	6	14	24	14
llc	PLE	7e	DREDGE	none	2	2	2	1	2	2	1	2	1	2
llc	PLE	7e	GILL	none	0	1	0	0	C	2	2	0	0	1
llc	PLE	7e	LONGLINE	none	0	0	0	0	C	0	0	0	0	0
IIc	PLE	7e	none	none	30	0		0	C	0	0	0	0	0
llc	PLE	7e	OTTER	none	21	21	26	21	30	30	38	48	48	45
llc	PLE	7e	PEL_SEINE	none				0			0	0	3	1
llc	PLE	7e	PEL_TRAWL	none	0	0	0	0	C	0	0	0	0	0
llc	PLE	7e	POTS	none	0	0	0	0	C	0	0	0	0	0
llc	PLE	7e	TRAMMEL	none	0	9	0	0	2	2	0	2	2	1

Table 5.8.4.5 Western Channel - Cod CPUE (g/(kW*days)) by derogation, Country and year, 2004-2012. Note: Discard information for area 7e area sparse and therefore LPUE is provided in the table. (CPUE is presented in the figures).

ANNEX				RY REG GEAR COD	LPUE 2004 LPU	E 2005 LPU	IE 2006 LPU	JE 2007 LPU	JE 2008 LPU					E 2010-2012
IIc	COD	7e	BEL	3a	3	4	8	6	9	17	10	12	11	11
IIc	COD	7e	BEL	DEM_SEINE	0	0	0	0	0	0	49	235	96	117
IIc	COD	7e	BEL	OTTER			0	0	0		0	0	0	0
IIc	COD	7e	ENG	3a	7	8	9	14	11	10	11	17	23	17
IIc	COD	7e	ENG	3b	58	56	85	116	38	67	64	127	167	120
IIc	COD	7e	ENG	BEAM		0	0		0	0	0	0	0	0
IIc	COD	7e	ENG	DEM_SEINE	0		0	0	0	0	29	15	21	20
IIc	COD	7e	ENG	DREDGE	0	0	0	0	0	0	0	0	0	0
IIc	COD	7e	ENG	GILL	11	27	23	24	46	54	44	26	30	37
IIc	COD	7e	ENG	LONGLINE	0	0	0	0	0	0	0	0	0	0
IIc	COD	7e	ENG	OTTER	20	22	23	45	41	24	32	37	49	39
IIc	COD	7e	ENG	PEL_SEINE	0	0	0	0	0	0	0	0	0	0
IIc	COD	7e	ENG	PEL_TRAWL	0			0	0	0	0	0	0	0
IIc	COD	7e	ENG	POTS	0	0	0	0	0	0	0	0	0	0
IIc	COD	7e	ENG	TRAMMEL	0	0	0	0	0	0	0	30	49	34
IIc	COD	7e	FRA	3a	3	0	3	0	0	0	0	0	0	0
IIc	COD	7e	FRA	3b	3	4	2	2	5	5	10	50	43	34
IIc	COD	7e	FRA	BEAM		0		0	0	0	0	0	0	0
IIc	COD	7e	FRA	DEM_SEINE	0	0	0	0	0	0	29	54	51	45
IIc	COD	7e	FRA	DREDGE	0	0	0	0	1	1	2	0	0	1
IIc	COD	7e	FRA	GILL	5	2	4	1	2	2	2	6	2	3
IIc	COD	7e	FRA	LONGLINE	11	0	33	2	4	4	0	20	5	8
IIc	COD	7e	FRA	none				0			0	20	0	20
IIc	COD	7e	FRA	OTTER	20	26	34	42	55	55	54	98	88	80
IIc	COD	7e	FRA	PEL_SEINE							0	0	38	14
IIc	COD	7e	FRA	PEL_TRAWL	0	0	0	0	0	0	4	1	2	3
IIc	COD	7e	FRA	POTS	0						0	1	0	0
IIc	COD	7e	FRA	TRAMMEL	8	3	5	3	6	6	12	15	25	17
IIc	COD	7e	GBG	OTTER	0		0	0	0		0	0	0	0
IIc	COD	7e	GBJ	3a	19	17	0	0	0	0	0	0	0	0
IIc	COD	7e	GBJ	BEAM	0	0	0	0	0	0	0	0	0	0
IIc	COD	7e	GBJ	OTTER	0		0	0	0	0	0	0	0	0
IIc	COD	7e	IRL	3a	0	0	0	120	0		0	0	0	0
IIc	COD	7e	IRL	BEAM	0	0	0	0	0	0	0	0	0	0
IIc	COD	7e	IRL	OTTER	0	0	0	0		0	0	0	343	343
Ilc	COD	7e	NIR	OTTER		0	0	0	0	0	0	0	0	0
llc	COD	7e	NLD	DEM_SEINE						19	12	27	33	23
IIc	COD	7e	SCO	3a	0	0	0	273	0		0	0	0	0
llc	COD	7e	SCO	3b	0	0				0	0	0	0	0
IIc	COD	7e	SCO	DEM_SEINE	0	0	23	18		13	0	14	0	8
IIc	COD	7e	SCO	DREDGE		0	0	0	0	0	0	0	0	0
IIc	COD	7e	SCO	OTTER	0					9	7	41	75	43

Table 5.8.4.6 Western Channel - Cod CPUE (g/(kW*days)) by derogation and year, 2004-2012. Note: Discard information for area 7e area sparse and therefore LPUE is provided in the table. (CPUE is presented in the figures).

ANNEX	SPECIES	REG AREA COD	REG GEAR COD	SPECON	LPUE 2004	LPUE 2005	LPUE 2006	LPUE 2007	LPUE 2008	LPUE 2009	LPUE 2010	LPUE 2011	LPUE 2012	LPUE 2010-2012
llc	COD	7e	3a	none	7	7	9	12	10	10	10	15	20	15
llc	COD	7e	3b	none	11	12	12	14	10	14	24	73	77	58
llc	COD	7e	BEAM	none	0	0	0		0	0	0	0	0	0
llc	COD	7e	DEM_SEINE	none			5	6		16	19	36	42	32
llc	COD	7e	DREDGE	none	0	0	0	0	0	0	1	0	0	0
llc	COD	7e	GILL	none	6	4	7	4	8	9	8	8	4	7
llc	COD	7e	LONGLINE	none	8	0	26	2	3	4	0	17	4	7
llc	COD	7e	none	none				0			0	20	0	20
llc	COD	7e	OTTER	none	20	25	33	42	52	48	48	85	80	71
llc	COD	7e	PEL_SEINE	none							0	0	38	14
llc	COD	7e	PEL_TRAWL	none	0	0	0	0	0	0	2	1	1	1
llc	COD	7e	POTS	none	0	0	0	0	0	0	0	0	0	0
llc	COD	7e	TRAMMEL	none	8	3	5	3	6	6	11	16	26	18

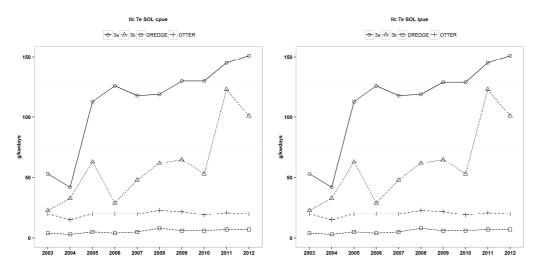


Figure 5.8.4.1 Western Channel - Sole - CPUE (left) and LPUE (right) (g/(kW*days)) by derogation and year, 2003-2012.

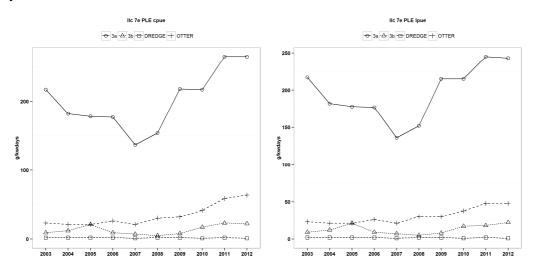


Figure 5.8.4.2 Western Channel - Plaice – CPUE (left) and LPUE (right) (g/(kW*days)) by derogation and year, 2003-2012.

Figure 5.8.4.3 Western Channel - Cod - CPUE (left) and LPUE (right) (g/(kW*days)) by derogation and year, 2003-2012.

5.8.5 ToR 2 Information on small boats (<10m)

5.8.5.1 Fishing effort of small boats by Member State

It should be noted that not all countries have submitted information and that the total figures are therefore likely to give an underestimation of effort and catches of this vessel category.

Table 5.8.5.1.1 provides an overview of the effort deployed by vessels >10m (regulated and non regulated gear) and vessels <10m in the Western Channel for the period 2004-2011. The effort from the vessels <10m fluctuates between 13% and 25% of the effort deployed by the vessels >10m.

Table 5.8.5.1.1 Western Channel - Trend in nominal effort (kW*days at sea) by derogations given in Table 1 of Annex IIC (Coun. Reg. 43/2012), unregulated gear and vessels <10m, 2004-2012.

ANNEX	REG AREA	(REG GEAR	SPECON	2004	2005	2006	2007	2008	2009	2010	2011	2012
IIc	7e	3a	none	4402055	4316077	4209145	4199088	3604936	2696024	2914372	3033848	3161329
IIc	7e	3b	none	1442948	1124945	1391244	1026522	729036	718465	413844	398590	416135
IIc	7e	none	none	22869301	23734215	25380299	25178852	18280320	18331845	19213237	19017024	18872730
Sum_O10m	7e			28714304	29175237	30980688	30404462	22614292	21746334	22541453	22449462	22450194
Sum_U10m	7e			4723799	3698241	5633713	5463330	4315920	3878714	4903821	5615040	5560087
%-U10m	7e			16	13	18	18	19	18	22	25	25

5.8.5.2 Catches (landings and discards) of sole and associated species by small boats by Member State

Table 5.8.5.2.1 gives a preliminary overview of the catches of some main species (anglerfish, cod, haddock, hake, Nephrops, plaice, saithe, sole and whiting in area 7e for vessels <10m (2004-2012). STECF EWG would like to mention that although these figures are underestimates, they indicate that between 7% and 14% of the sole catches are taken by vessels <10m.

More detailed information for vessels <10 meters were available only from France for the period 2003-2007. This information was presented in the 2008 report and is not repeated here. An update will be provided once new data become available.

Table 5.8.5.2.1 Western Channel – Overview of anglerfish, cod, haddock, hake, nephrops, plaice, saithe, sole and whiting catches by vessels <10m, 2004-2012.

ANNEX	REG	_ARE/SPECIES	REG_GEAR	2004 L	2005 L	2006 L	2007 L	2008 L	2009 L	2010 L	2011 L	2012 L
IIc	7e	ANF	3a	769	795	1014	1087	959	915	1345	1413	1293
IIc	7e	ANF	3b	824	619	459	317	301	302	13	67	100
IIc	7e	ANF	none	2802	3411	2895	3255	2620	2690	1104	2260	1925
SUM_O10	0m			4395	4825	4367	4659	3881	3907	2461	3740	3317
SUM_U10	0m			262	217	201	287	238	226	179	197	240
%_U10m				6	4	5	6	6	6	7	5	7
IIc	7e	COD	3a	30	33	36	50	37	28	31	45	63
IIc	7e	COD	3b	16	15		14	8	11	10	29	31
IIc	7e	COD	none	232	303	416	511	451	434	432	798	672
SUM_O10	0m			277	351	466	575	496	472	473	872	766
SUM_U10				27	18		56	36		84		174
%_U10m				10			10	7				
IIc	7e	HAD	3a	13			22	30				170
IIc	7e	HAD	3b	4			2	1		3		
IIc	7e	HAD	none	384	363		703	1024			3975	3031
SUM_O10				401	381	513	728	1055	1206	1498	4105	3204
SUM_U10				4		8	27	37	28		96	148
%_U10m				1			4	4				
IIc	7e	HKE	3a	6			4	10				3
IIc	7e	HKE	3b	113			19	9				
Ilc	7e	HKE	none	179	206	119	89	102			159	154
SUM_O10				298	310	185	112	121	125	111	176	159
SUM_U10				2			1	3				
%_U10m			_	1		1	1	3				
IIc	7e	NEP	3a	0			0	0			0	-
IIc	7e	NEP	3b	_	0		0	0				
IIc	7e	NEP	none	8			10	9			16	18
SUM_O10				8		7	10	9			16	18
SUM_U10				0			0	0			1	0
%_U10m IIc	7e	PLE	3a	801	767	743	571	547		627		767
lic	7е 7е	PLE	3a 3b	19			8	547 4				9
llc	7e 7e	PLE	none	243	280	323	257	261	275			388
SUM O10		PLE	none	1063	1071	1079	836	812	861	962	1183	1164
SUM U10				82			105	75				161
% U10m				8			103	9			9	
IIc	7e	POK	3a	1			0	0				
llc	7e	POK	3b	11	17		1	1				-
llc	7e	POK	none	6			1	1	1			
SUM O10		1 010	110110	18		6	3	3			4	
SUM U10				1		1	1	1	2			3
% U10m				6			29	26				52
IIc	7e	SOL	3a	185		530	496	431	348			478
llc	7e	SOL	3b	48		41	49	45				42
IIc	7e	SOL	none	193	302	269	274	233			226	189
SUM O10				426	860	841	819	709	619	594	706	709
SUM_U10				59	75		86	51	44		87	101
%_U10m				14			10	7				14
IIc	7e	WHG	3a	61			45	48				
IIc	7e	WHG	3b	7			8	7				12
IIc	7e	WHG	none	1352			1409	1501	1729		2397	1993
SUM_O10				1420	1536	1350	1462	1556	1774	1820	2445	2048
SUM_U10				79			123	128	141	155		155
%_U10m				6			8	8				

5.8.6 ToR 3 Evaluation of fully documented fisheries FDF

5.8.6.1 Fishing effort of FDF by Member State and fisheries in comparison with fisheries not working under FDF provisions

Only England had vessels operating under an FDF fisheries for the first time in 2012. 7 vessels were operational in the FDF fisheries using the regulated beam trawl gear (3a) and one vessel using the unregulated beam trawl gear. The total number of English vessels operating these gears are 43 and 2 respectively.

Effort deployed by the regulated beam trawls (3a) FDF, accounts for 22% of the total English effort for that gear. The unregulated beamers fishing with a FDF licence represented 16% of the total English effort for that gear (Table 5.8.6.1.1).

The effort of the FDF fisheries to the total deployed effort by the regulated beamers (3a) and unregulated beamers amount to 17% and 1% respectively (Table 5.8.6.1.1).

Table 5.8.6.1.1 Western Channel: (A part 1) total fishing effort for countries with Fully Documented Fisheries (FDF, REM/CCTV), (B) FDF (REM/CCTV) nominal fishing effort (kW*days) and (A part 2, C) the percentage of total effort attributable to FDFs for 2012

Table A, part 1		
COUNTRY	GEAR	2012
ENG	3a	2474852
	3b	113947
	BEAM	1587
	DEM_SEINE	95175
	DREDGE	1745440
	GILL	33495
	LONGLINE	35542
	OTTER	1415239
	PEL_SEINE	
	PEL_TRAWL	551025
	POTS	625564
	TRAMMEL	20336
	none	
ENG Total		7112202

Table B		
COUNTRY	GEAR	2012
ENG	3a 3b	537367
	BEAM DEM_SEINE DREDGE GILL LONGLINE OTTER PEL_SEINE PEL_TRAWL POTS TRAMMEL none	251
ENG Total		537618

Table C
2012
21.7%
0.0%
15.8%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
7.6%

Table A, part 2 Effort of all contries by gear

ac	ıe.	

Table C

GEAR	2012
3a	3161329
3b	416135
BEAM	23258
DEM_SEINE	453211
DREDGE	4292450
GILL	507914
LONGLINE	237950
OTTER	7718110
PEL_SEINE	395244
PEL_TRAWL	2449951
POTS	2252751
TRAMMEL	541891
none	
Grand Total	22450194

GEAR	2012
3a	537367
3b	
BEAM	251
DEM_SEINE	
DREDGE	
GILL	
LONGLINE	
OTTER	
PEL_SEINE	
PEL_TRAWL	
POTS	
TRAMMEL	
none	
Grand Total	537618

	2012
1	7.0%
	0.0%
	1.1%
	0.0%
(0.0%
	0.0%
(0.0%
(0.0%
(0.0%
(0.0%
(0.0%
(0.0%
(0.0%
	2 4%

5.8.6.2 Catches (landings and discards) of sole and other species taken by FDF fisheries by Member State and fisheries in comparison with fisheries not working under FDF provisions

Only England had vessels operating under an FDF fisheries for the first time in 2012. The landings obligation only applied to sole. Catches of sole accounted for 27% in the regulated beam trawls (3a) and for 36% in the unregulated beamers (Table 5.8.6.2.1). The catches of sole from to FDF fisheries to the total international catches of the 3a regulated gears and the unregulated beamers amount for 23% and 28% respectively (Table 5.8.6.2.1). This FDF fisheries also catches 11% of the total catches of plaice, 11% of turbot, 10% of anglerfish and 5% of megrim. Other species separately, represent less than 3% of total catches in this area.

Table 5.8.6.2.1 Western Channel: (A part 1) total catches for sole for countries with Fully Documented Fisheries (FDF, REM/CCTV) (B) catches (tonnes), and (A part 2, C) the percentage of catches attributed to FDFs for 2012.

Table A, part	1
COUNTRY	

COUNTRY	GEAR	2012
ENG	3a	408
	3b	8
	BEAM	0.245
	DEM_SEINE	0
	DREDGE	21
	GILL	0
	LONGLINE	0
	OTTER	23
	PEL_SEINE	0
	PEL_TRAWL	0
	POTS	0
	TRAMMEL	0
	none	0
ENG Total		460

Т	ah	ıle	В

Table B		
COUNTRY	GEAR	2012
ENG	3a 3b	110
	BEAM DEM_SEINE DREDGE GILL LONGLINE OTTER PEL_SEINE PEL_TRAWL POTS TRAMMEL none	0.089
ENG Total		110

Table C

ıavı	<u> </u>
	2012
	26.9%
	0.0%
	36.3%
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%
	23.9%

Table A, part 2 Sole catches of all contries by gear

2012
478
42
0.315
0
30
1
0
153
0
1
3
1

none **Grand Total**

Table B

GEAR	2012
3a	110
3b	
BEAM	0.089
DEM_SEINE	
DREDGE	
GILL	
LONGLINE	
OTTER	
PEL_SEINE	
PEL_TRAWL	
POTS	
TRAMMEL	
none	
Grand Total	110

Table C

2012
22.9%
0.0%
28.3%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
15.5%

5.8.6.3 Comparative analysis of sole selectivity by FDF fisheries and non-FDF fisheries

STECF EWG 13-13 was unable to address this ToR due to the unavailability of the necessary information.

5.8.7 ToR 4 Spatio-temporal patterns in effective effort by fisheries

Figure 5.8.7.1 shows the spatial distribution of the effective fishing effort for beam trawl fleets with mesh size \geq 80mm (3a) during the period 2003 to 2012. The pattern seems similar for the whole period with higher effort deployed south of Devon.

Figure 5.8.7.2 shows the spatial distribution of the effective fishing effort for static nets with mesh size <220mm (3b) during the period 2003 to 2012. The fishing effort pattern is rather homogeneous over the whole VIIe area and full time series with occasional higher densities of activities along the most southern point of the English coast and off the French coast from Saint-Malo.

Figure 5.8.7.3 shows the spatial distribution of the effective fishing effort for the unregulated beam trawl fleet with no mesh size provided or mesh size < 80mm during the period 2003 to 2012. Since 2008, the effort which was predominantly deployed on the English coast and the French coast north of Cherbourg, has substantially decreased in all rectangles and is now more evenly spread over the whole area.

Figure 5.8.7.4 shows the spatial distribution of the effective fishing effort for the unregulated demersal seine during the period 2003 to 2012. The years 2003 and 2004 only indicate activities in 1 rectangle. Since 2005 most effort deployed in the same rectangles off the English coast with a substantial increase in the last 4 years, especially south of Dorcet up to the French coast.

Figure 5.8.7.5 shows the spatial distribution of the effective fishing effort for the unregulated dredges during the period 2003 to 2012. Most effort deployed off the English coast and off the coast of Saint Malo.

Figure 5.8.7.6 shows the spatial distribution of the effective fishing effort for the unregulated gill nets during the period 2003 to 2012. A similar pattern appears apparent of effort deployment for all years over almost the whole VIIe area, with higher concentrations on the most southern part of the English coast and off the coast of Saint-Malo. In 2010, 2011 and 2012 they appear to be less effort deployed along the French coast.

Figure 5.8.7.7 shows the spatial distribution of the effective fishing effort for the unregulated longlines during the period 2003 to 2012. Again, a similar pattern appears apparent of effort deployment for all years over almost the whole VIIe area, with the highest concentrations along the English coast off Brixham.

Figure 5.8.7.8 shows the spatial distribution of the effective fishing effort for the unregulated otter trawls during the period 2003 to 2012. From 2003 until 2012 a similar pattern appears apparent of effort deployment over almost the whole VIIe area with higher concentrations along the English coast and off the coast of Saint Malo.

Figure 5.8.7.9 shows the spatial distribution of the effective fishing effort for the unregulated pelagic seine during the period 2003 to 2012. Very sparse patches of effort deployment, predominantly along the French coast off Brest until 2009. Since then a more widely effort spread over the whole VIIe area with even higher concentrations off the French coast at Brest.

Figure 5.8.7.10 shows the spatial distribution of the effective fishing effort for the unregulated pelagic trawls during the period 2003 to 2012. A similar pattern appears apparent of effort deployment for all years over almost the whole VIIe area, with the highest concentrations on the English coast off Brixham.

Figure 5.8.7.11 shows the spatial distribution of the effective fishing effort for the unregulated pots during the period 2003 to 2012. A similar pattern appears apparent of effort deployment for all years, predominantly along the English coast and the French coast off Saint Malo.

Figure 5.8.7.12 shows the spatial distribution of the effective fishing effort for the unregulated trammel nets during the period 2003 to 2012. A similar pattern appears apparent of effort deployment for all years, with the highest concentrations predominantly off the French coast.

Figure 5.8.7.13 shows the spatial distribution of the effective fishing effort for the unregulated gear ("none-none"), gears without mesh size given during the period 2003 to 2012.A similar pattern of effort deployment for all years, predominantly off the French coast with some relatively higher values. For 2011 very high effort was deployed along the French coast and particularly off Brest. STECF notes that these relative high values only represent a very small amount of the total effort deployed in VIIe.

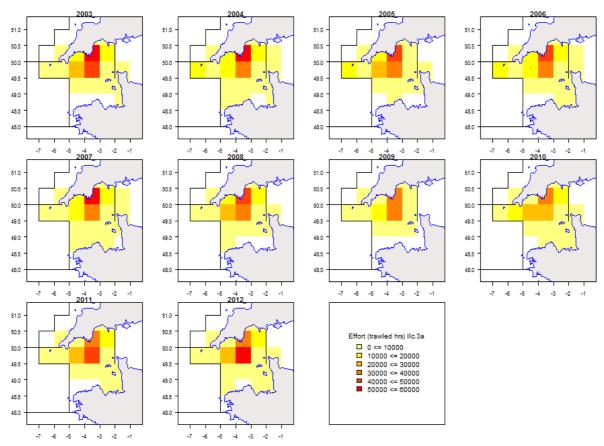


Figure 5.8.7.1. Western Channel. Spatial distribution of effective fishing effort (trawled hours) by ICES statistical rectangle for the Beam trawl fleet with mesh size \geq 80 mm(3a), 2003-2012.

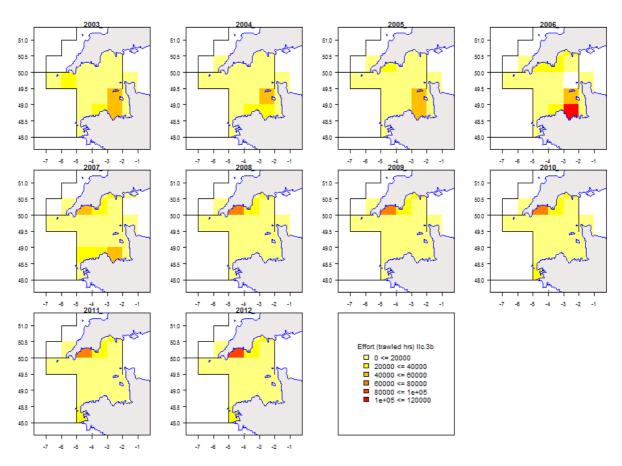


Figure 5.8.7.2. Western Channel. Spatial distribution of effective fishing effort (trawled hours) by ICES statistical rectangle for static nets with mesh size <220mm (3b), 2003-2012.

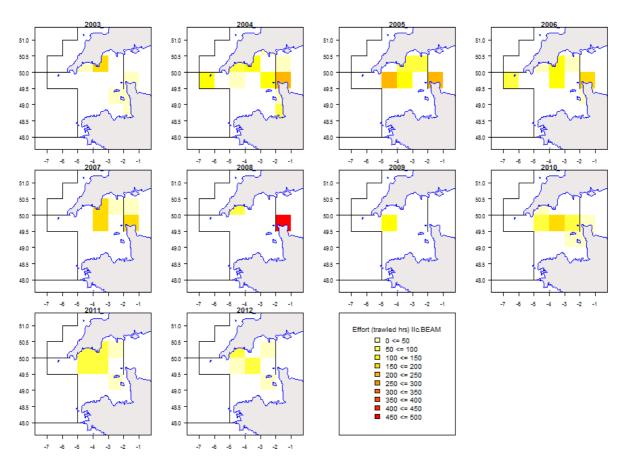


Figure 5.8.7.3. Western Channel. Spatial distribution of effective fishing effort (trawled hours) by ICES statistical rectangle for Beam trawl fleet with no mesh size provided or mesh size <80 mm, 2003-2012.

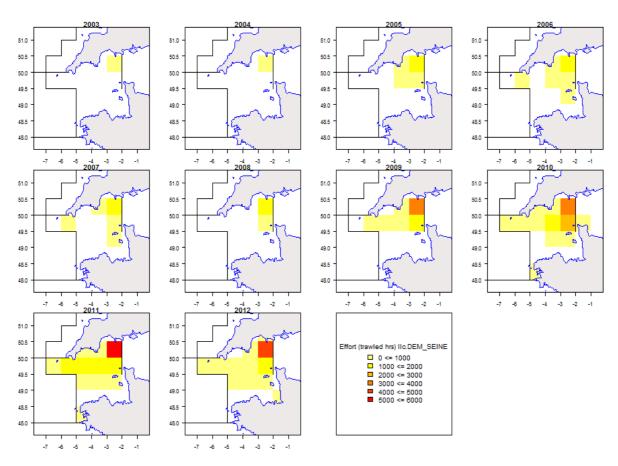


Figure 5.8.7.4. Western Channel. Spatial distribution of effective fishing effort (trawled hours) by ICES statistical rectangle for Demersal Seine, 2003-2012.

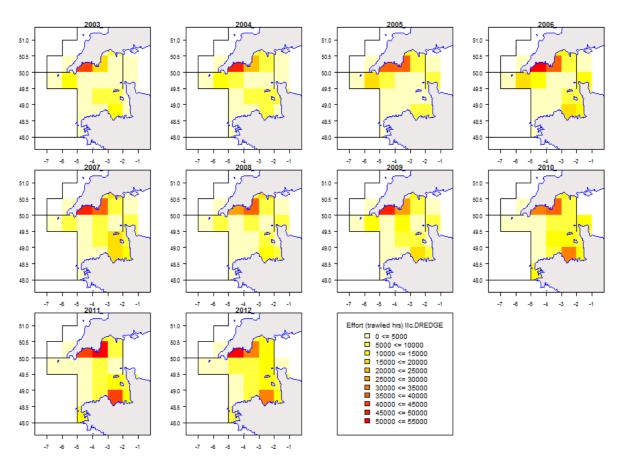


Figure 5.8.7.5. Western Channel. Spatial distribution of effective fishing effort (trawled hours) by ICES statistical rectangle for Dredges, 2003-2012.

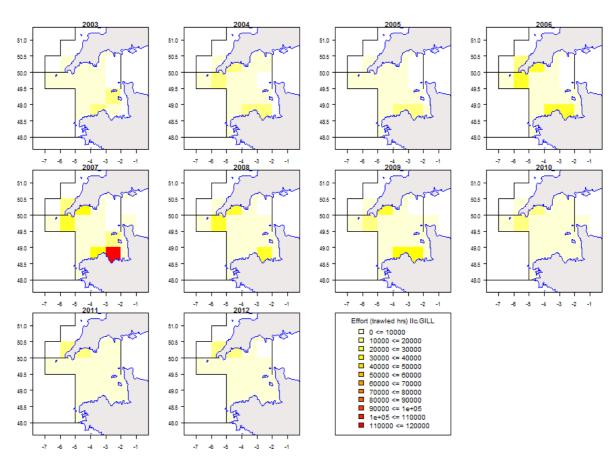


Figure 5.8.7.6. Western Channel. Spatial distribution of effective fishing effort (trawled hours) by ICES statistical rectangle for Gill nets, 2003-2012.

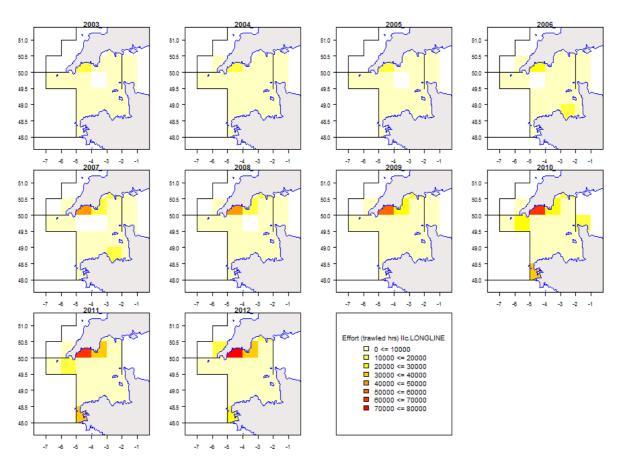


Figure 5.8.7.7. Western Channel. Spatial distribution of effective fishing effort (trawled hours) by ICES statistical rectangle for Longlines, 2003-2012.

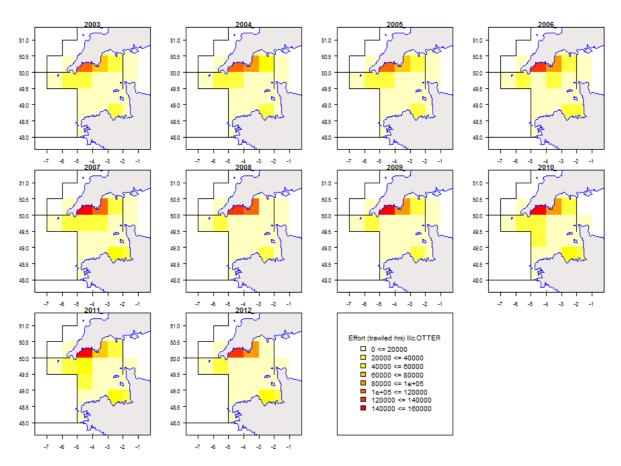


Figure 5.8.7.8. Western Channel. Spatial distribution of effective fishing effort (trawled hours) by ICES statistical rectangle for Otter Trawl, 2003-2012.

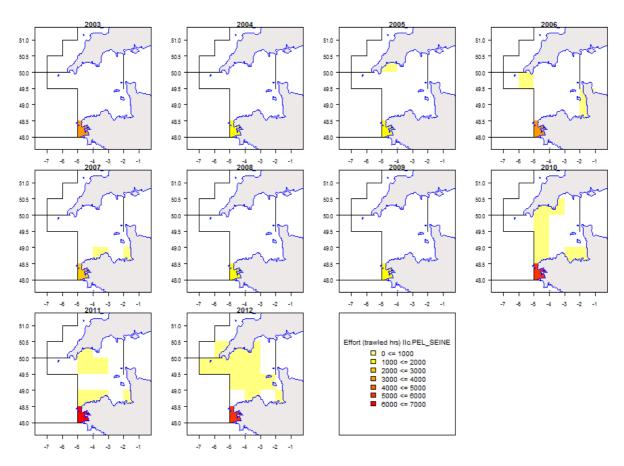


Figure 5.8.7.9. Western Channel. Spatial distribution of effective fishing effort (trawled hours) by ICES statistical rectangle for Pelagic Seine, 2003-2012.

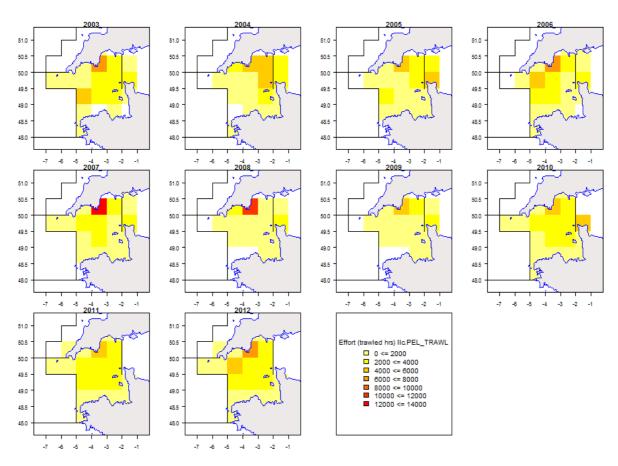


Figure 5.8.7.10. Western Channel. Spatial distribution of effective fishing effort (trawled hours) by ICES statistical rectangle for Pelagic Trawl, 2003-2012.

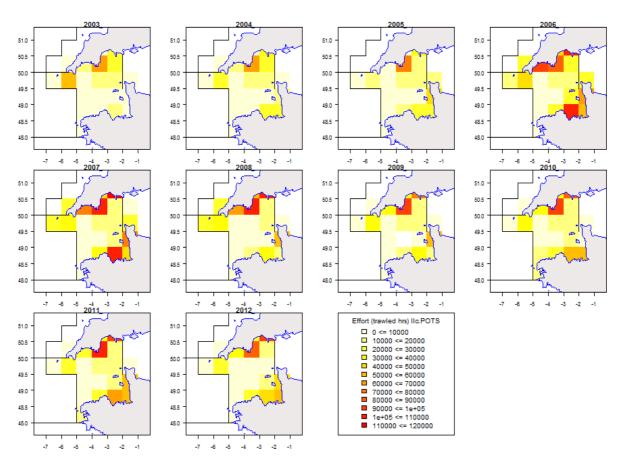


Figure 5.8.7.11. Western Channel. Spatial distribution of effective fishing effort (trawled hours) by ICES statistical rectangle for Pots, 2003-2012.

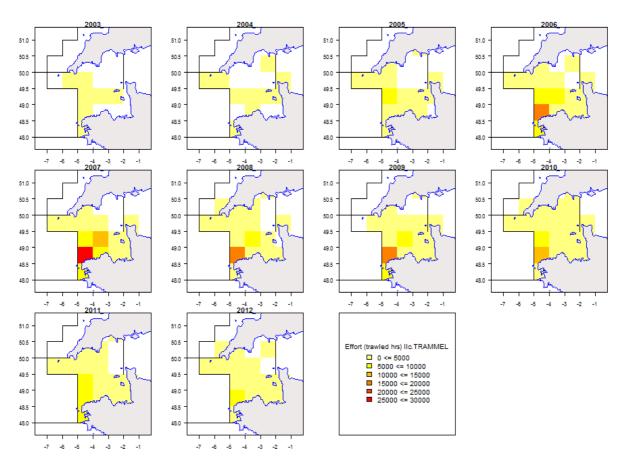


Figure 5.8.7.12. Western Channel. Spatial distribution of effective fishing effort (trawled hours) by ICES statistical rectangle for Trammel nets, 2003-2012.

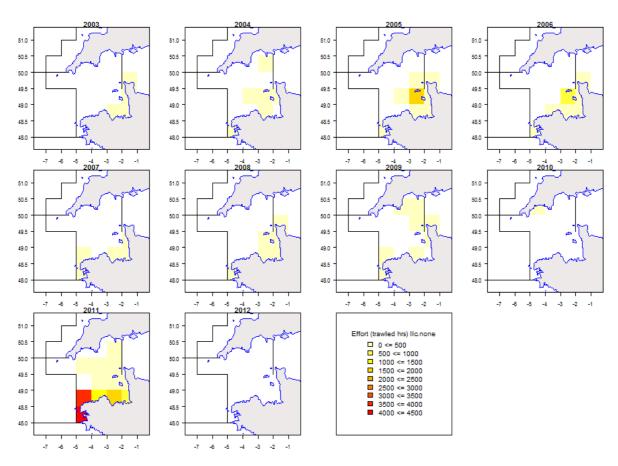


Figure 5.8.7.13. Western Channel. Spatial distribution of effective fishing effort (trawled hours) by ICES statistical rectangle for None ("none-none"), gears without mesh size given, 2003-2012.

5.8.8 ToR 5 Trend in calculated maximum effort of regulated gears and uptake by Member State

Table 5.8.8.1 lists the effort in units of days at sea estimated for the effort regulated and non effort regulated fisheries by Member State. Although, the time series is only considered complete for the three most recent years 2010 to 2012 (data from the French fisheries is only available for the last 3 years), there is information from English and the Belgian regulated beam trawl fleet (3a) and from English regulated static gear (3b) since 2005.

Unlike the situation in the Baltic, the definitions of few fisheries and specific days at sea allocations to them allow the assessment of the effort uptake from the numbers of boats using effort regulated gears, assuming no major changes in gears used. Multiple counting of vessels (overestimation) is implied from vessels using more than one regulated gear. The maximum numbers of days available for such fisheries, i.e. the maximum days at sea per vessel multiplied with the number of vessels, are also given in the Table 5.8.8.1. EWG-13-13 would like to note that the UK has developed a "Days at Sea Scheme" where extra

days can be claimed. The EU COM informed EWG-13-13 that in 2011, 42 extra days were requested and obtained by the UK(English) regulated beam trawl fleet (3a) mounting up to a total days at sea of 206 days for 2011. Therefore the "max-days" in 2011 is not 7216 (164 days x 44 vessels) but 9064 (206 days x 44 vessels) and thus the %-used is not 79% but 63%. In 2013, UK has put forward a new request for 43 extra days for their beam trawl fleet (3a). France requested 11 extra days for their beam trawl fleet (3a) and 14 extra days for their static gear (3b). Both member states have been granted their request for 2013.

For the regulated beam trawl fleet (3a), the English series indicate an increasing uptake (47% - 95%) over time whereas the Belgian and the French regulated beam trawl fleet show a stable uptake on a low (around 10%) and high level (around 65%) respectively. The English regulated static gear (3b) show a slight increase (20%-40%) over time whereas the French regulated static gear show a stable uptake around 50%.

Table 5.8.8.1 Western Channel - Trend in days at sea by existing derogations given in Table 1 of Annex IIC (Coun. Reg. 43/2012) and Member State, 2004-2012. Maximum days at sea are calculated from number of vessels multiplied with the maximum days allowed per vessel. Derogations are sorted by gear, special condition (SPECON), and country. Data qualities are summarised in Section 4 of the report.

* = special derogation for	· UK-3a gear in 2011	obtaining 206 da	lys instead of the basic 164 days.

REG AREA COD	REG GEAR COD	SPECON	COUNTR	RY	2004	2005	2006	2007	2008	2009	2010	2011	2012
7e	3a	none	BEL	Vessel	57	67	58	55	49	44	31	33	37
				max-days		16080	12528	10560	9408	8448	5084	5412	6068
				days-used			670	810	542	174	342	521	534
				% used			0.05	0.08	0.06	0.02	0.07	0.10	0.09
7e	3a	none	ENG	Vessel	62	53	51	53	47	43	38	44	43
				max-days		12720	11016	10176	9024	8256	6232	9064*	7052
				days-used	6026	5960 0.47	6065 0.55	6167 0.61	6175 0.68	4769 0.58	5070 0.81	5687 0.63*	6675 0.95
7e	3a	none	FRA	% used Vessel	12	13	20	15	11	10	13	0.63*	0.95
76	Ja	none	FINA	max-days	12	13	20	15	- ''	10	2132	1312	984
				days-used							1271	914	606
				% used							0.60	0.70	0.62
7e	3a	none	GBJ	Vessel	4	2							
				max-days		480							
				days-used	333	174							
				% used		0.36							
7e	3a Total	none		Vessel	135	135	129	123	107	97	82	85	86
				max-days	0	29280	23544	20736	18432	16704	13448	15788	14104
				days-used	6359	6134	6735	6977	6717	4943	6683	7122	7815
				% used							0.50	0.45	0.55
7e	3b	none	ENG	Vessel	21	17	17	14	12	13	12	12	11
				max-days		4080	3672	2688	2304	2496	1968	1968	1804
				days-used	1211	1047	844	584	566	646	618	752	721
-	OI:		ED.	% used	00	0.26	0.23	0.22	0.25	0.26	0.31	0.38	0.40
7e	3b	none	FRA	Vessel	68	62	77	48	34	34	22 3608	22 3608	25 4100
				max-days days-used							1830	1780	1951
				% used							0.51	0.49	0.48
7e	3b Total	none		Vessel	89	79	94	62	46	47	34	34	36
10	ob rotal	HOHE		max-days	0	4080	3672	2688	2304	2496	5576	5576	5904
				days-used	1211	1047	844	584	566	646	2448	2532	2672
				% used							0.44	0.45	0.45
7e	none	none	BEL	Vessel	3	6	7	6	12	28	23	20	22
				days-used						20			
7e	none	none	DEU	Vessel	4	3	3		2	1	3	1	2
				days-used						4	34	12	46
7e	none	none	DNK	Vessel	1	4	8	1	1	1	1		1
				days-used	2	40	123	32	27	6	30		24
7e	none	none	ENG	Vessel	178	162	170	175	174	156	154	158	158
_								18693	16610	17383			
7e	none			days-used	19227	19410	18298	10000	10010	11000	17797	18402	17213
	Horie	none	ESP	Vessel	19227	19410	18298	10000	10010	11000	17797		17213 5
7.				Vessel days-used								18402	17213 5 135
7e	none	none	ESP FRA	Vessel days-used Vessel	837	943	1114	1259	868	1022	688	18402 654	17213 5 135 642
	none	none	FRA	Vessel days-used Vessel days-used	837	943	1114	1259	868	1022	688 52225	18402 654 54427	17213 5 135
7e 7e				Vessel days-used Vessel days-used Vessel	837	943	1114	1259	868	1022	688 52225 3	654 54427 2	17213 5 135 642 51683 3
7e	none	none	FRA GBG	Vessel days-used Vessel days-used Vessel days-used	837	943 2 172	1114	1259	868 4 100	1022	688 52225 3 277	654 54427 2 180	17213 5 135 642
	none	none	FRA	Vessel days-used Vessel days-used Vessel	837 1 226	943	1114 4 152	1259 5 245	868	1022 3 121	688 52225 3	654 54427 2	17213 5 135 642 51683 3
7e	none	none	FRA GBG	Vessel days-used Vessel days-used Vessel days-used Vessel Vessel	837 1 226 1	943 2 172 1	1114 4 152 1	1259 5 245 1	868 4 100 1	1022 3 121 1	688 52225 3 277 2	654 54427 2 180 3	17213 5 135 642 51683 3 229 1 62
7e 7e	none none none	none none	FRA GBG GBJ	Vessel days-used Vessel days-used Vessel days-used Vessel days-used days-used	837 1 226 1	943 2 172 1	1114 4 152 1 88	1259 5 245 1 139	868 4 100 1 117	1022 3 121 1	688 52225 3 277 2	654 54427 2 180 3	17213 5 135 642 51683 3 229 1
7e 7e	none none none	none none	FRA GBG GBJ	Vessel days-used Vessel days-used Vessel days-used Vessel days-used Vessel days-used Vessel	837 1 226 1	943 2 172 1	1114 4 152 1 88 1	1259 5 245 1 139	868 4 100 1 1117 2	1022 3 121 1	688 52225 3 277 2	654 54427 2 180 3	17213 5 135 642 51683 3 229 1 62
7e 7e 7e 7e	none none none none	none none none none none	GBG GBJ IOM	Vessel days-used	837 1 226 1 2	943 2 172 1 27	1114 4 152 1 88 1	1259 5 245 1 139 1	868 4 100 1 1117 2 4	1022 3 121 1 140	688 52225 3 277 2 173	654 54427 2 180 3 191	17213 5 135 642 51683 3 229 1 62
7e 7e 7e	none none none	none none none	FRA GBG GBJ IOM	Vessel days-used Vessel Vessel Vessel Vessel	837 1 226 1 2	943 2 172 1 27	1114 4 152 1 88 1	1259 5 245 1 139 1	868 4 100 1 1117 2 4	1022 3 121 1 140	688 52225 3 277 2 173	18402 654 54427 2 180 3 191	17213 5 135 642 51683 3 229 1 62
7e 7e 7e 7e	none none none none	none none none none none	FRA GBG GBJ IOM IRL LTU	Vessel days-used days-used days-used Vessel days-used	837 1 226 1 2	943 2 172 1 27	1114 4 152 1 88 1	1259 5 245 1 139 1	868 4 100 1 1117 2 4	1022 3 121 1 140	688 52225 3 277 2 173	654 54427 2 180 3 191	17213 5 135 642 51683 3 229 1 62
7e 7e 7e 7e	none none none none	none none none none none	GBG GBJ IOM	Vessel days-used Vessel	837 1 226 1 2 13	943 2 172 1 27	1114 4 152 1 88 1	1259 5 245 1 139 1	868 4 100 1 1117 2 4	1022 3 121 1 140	688 52225 3 277 2 173	654 54427 2 180 3 191	17213 5 135 642 51683 3 229 1 62
7e 7e 7e 7e 7e	none none none none none none none	none none none none none none none	FRA GBG GBJ IOM IRL LTU NIR	Vessel days-used	837 1 226 1 2 2 13	943 2 172 1 27	1114 4 152 1 88 1 53	1259 5 245 1 139 1 3 3	868 4 100 1 117 2 4 2	1022 3 121 1 140 2	688 52225 3 277 2 173	18402 654 54427 2 180 3 191	17213 5 135 642 51683 3 229 1 62 1 566 3
7e 7e 7e 7e	none none none none none none	none none none none none none	FRA GBG GBJ IOM IRL LTU	Vessel days-used	837 1 226 1 2 13	943 2 172 1 27	1114 4 152 1 88 1	1259 5 245 1 139 1	868 4 100 1 1117 2 4	1022 3 121 1 140	688 52225 3 277 2 173	18402 654 54427 2 180 3 191 2 1	17213 5 1355 642 51683 3 2299 1 62 3
7e 7e 7e 7e 7e 7e 7e	none none none none none none none none	none none none none none none none none	FRA GBG GBJ IOM IRL LTU NIR	Vessel days-used Vessel tays-used Vessel days-used Vessel days-used Vessel days-used Vessel days-used days-used vessel days-used	837 1 226 1 2 13	943 2 172 1 27 5	1114 4 1522 1 88 1 53 1	1259 5 245 1 139 1 3 3	868 4 100 1 117 2 4 2	1022 3 121 1 140 2 1	688 52225 3 277 2 173 1	18402 654 54427 2 180 3 191 2 1	17213 5 13536 6422 51683 2299 1 622 1 5663 3
7e 7e 7e 7e 7e 7e	none none none none none none none	none none none none none none none	FRA GBG GBJ IOM IRL LTU NIR	Vessel days-used Vessel	837 1 226 1 2 2 13	943 2 172 1 27	1114 4 152 1 88 1 53	1259 5 245 1 139 1 3 3	868 4 100 1 117 2 4 2	1022 3 121 1 140 2	688 52225 3 277 2 173	18402 654 54427 2 180 3 191 2 1	17213 5 1383 6422 51683 2289 1 626 3 3
7e 7e 7e 7e 7e 7e 7e 7e 7e	none none none none none none none none	none none none none none none none none	FRA GBG GBJ IOM IRL LTU NIR	Vessel days-used Vessel days-used Vessel days-used Vessel days-used Vessel days-used Vessel days-used days-used days-used vessel	837 1 226 1 2 13 13 1 7 15	943 2 172 1 27 5	1114 4 152 1 88 1 53 1	1259 5 245 1 139 1 3 3 3	868 4 100 1 117 2 4 2	1022 3 121 1 140 2 1 18	688 52225 3 277 2 173 1	18402 654 54427 2 180 3 191 2 1 17 468 19	17213 5 1355 6425 51683 229 1 625 1 566 3 155 433 18
7e 7e 7e 7e 7e	none none none none none none none none	none none none none none none none none	FRA GBG GBJ IOM IRL LTU NIR	Vessel days-used Vessel	837 1 226 1 2 1 3 1 7 15 23	943 2 172 1 27 5 13 14 1153	1114 4 152 1 1 88 1 1 53 1 1 13 21	1259 5 245 1 139 1 3 3 3	868 4 100 1 1 117 2 4 2 15 15	1022 3 121 1 140 2 1 18 18 18	688 52225 3 277 2 173 1 1 1 1 16 18	18402 654 54427 2 180 3 191 2 1 17 468 19	17213 5 1358 642 51683 3 2299 1 62 1 566 3 3 3
7e 7e 7e 7e 7e 7e 7e 7e 7e	none none none none none none none none	none none none none none none none none	FRA GBG GBJ IOM IRL LTU NIR	Vessel days-used Vessel days-used Vessel days-used Vessel days-used Vessel days-used Vessel days-used days-used days-used days-used days-used days-used Vessel days-used	837 1 226 1 2 13 13 1 7 15 23 1077 19464	943 2 172 1 27 5 5	1114 4 152 1 88 1 1 53 1 1 13 21 1343 18714	1259 5 245 1 1 139 1 1 3 3 3 3	868 4 100 11 117 2 4 2 15 15 196 16858	1022 3 121 1 140 2 1 18 18 1251 17674	688 52225 3 277 2 173 1 1 1 1 16 18 910 70537	18402 654 54427 2 180 3 191 2 1 17 468 19 877 73680	17213 135 642 51683 3 229 1 62 1 1 556 3 3
7e 7e 7e 7e 7e 7e 7e 7e 7e	none none none none none none none none	none none none none none none none none	FRA GBG GBJ IOM IRL LTU NIR	Vessel days-used Vessel	837 1 226 1 2 1 3 1 7 15 23	943 2 172 1 27 5 13 14 1153	1114 4 152 1 1 88 1 1 53 1 1 13 21	1259 5 245 1 139 1 3 3 3	868 4 100 1 1 117 2 4 2 15 15	1022 3 121 1 140 2 1 18 18 18	688 52225 3 277 2 173 1 1 1 1 16 18	18402 654 54427 2 180 3 191 2 1 17 468 19	17213 5 1355 642 51683 3 229 1 62 1 566 3 3

5.8.9 ToR 6 Data quality and any unexpected evolutions of the trends in catches and effort by Member State and fisheries

STECF EWG 13-13 reiterates its observation that a relatively high percentage of sole are landed by non-effort regulated gears.

5.8.10 ToR 7 Correlation between partial sole mortality and fishing effort by Member State and fisheries

The STECF EWG presents partial fishing mortalities by major fisheries and Member States in relation to the estimated fishing mortality by ICES (2013) and the landings volumes in relation to the estimated total landings for the years available. Discards of sole in VIIe are negligible and are not included in the sole VIIe assessment. The full list of all fisheries can be downloaded from the EWG's web page: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313

Table 5.8.10.1 lists the fishing mortalities anticipated from the management plan as well as those estimated by ICES 2013. It can be concluded from the estimated F that the stock is sustainably exploited since 2009 (Fmsy=0.27), assuming that discarding is negligible (less than 1%). Since 2009, the estimated partial Fs of the effort regulated gear groups contributed about 60% to the overall fishing mortality. The remainder is then contributed by other gear groups, not regulated by fishing effort and additional unallocated removals considered by ICES. The presented parameters r (absolute value of Pearson's coefficient of correlation), numbers of points considered, as well as a p value to quantify the statistical significance (≤ 0.05) allow conclusions about the quality of the correlation between the partial F and fisheries specific fishing effort.

Figure 5.8.10.1 shows the correlation between the partial F's and the effort for the main fisheries, using the full time series available (2003-2012). It was noted however that for 2003 and 2004, the DCF data do represent only about 50% of the landings reported to ICES (basis for the partial F's) and therefore should not be taken into account in the regression evaluation. As the adjustments to the ICES data in those years were predominantly done for the English beam trawl fleet (3a), catching most of the sole, it is not surprising that these two data years appear as outliers for the English beam trawl fleet (ENG 3a). Therefore STECF-EWG decided to exclude the first two years of data for the partial F analysis. Figure 5.8.10.2 shows the correlation between the partial F's and the effort for the main fisheries for the shorter time series 2005-2012. Figure 5.8.10.3 shows the catchability and Figure 5.8.10.4 the time series of the partial F's over the same period for the main fisheries.

STECF EWG 13-13 notes that the correlations between the summed partial Fs for landings of the major fisheries and their estimated fishing efforts are significant for the period 2005-2012 (Table 5.8.10.1). The partial Fs of Belgian and English fisheries using the regulated gear 3a, accounting for about 50% of the landings, are closely correlated with their specific effort estimates in kW*days at sea. Also the unregulated French otter trawl fleet, taking about 17% of the sole landings, has a significant correlation between partial F and kW*days at sea (Figure 5.8.10.2). However for the French regulated beam trawl fisheries (3a), which represent just about 5% of the sole landings, the correlation between F and effort (kW*days) is statistically not significant. The regulated static gear (3b) show a negative regression for the English fleet and a rather high p-value for the French fleet. This indicates that effective fisheries management for sole in ICES Division VIIe by fishing effort in units of kW*days at sea appears possible, also an auxiliary measure to catch constraints and technical measures. Catchability of the main metiers

are rather stable apart from the French regulated beam trawl fleet (3a). Since 2008 there appears to be a shift in catchability in the regulated French beam trawl fleet when more vessels between 10-15m were active then vessels over 15m.

STECF EWG 13-06 notes that if a fishing effort regime in the Western Channel is to be maintained, it shall consider an appropriate measure of effective unit of fishing effort to account for vessel size/power and gear effectiveness.

Table 5.8.10.1 Western Channel sole. The left part of the table lists estimated F trajectories from the management plan and the ICES 2013 sole assessment, as well as partial Fs for landings of fisheries using regulated gears. The right part of the table lists the respective trends in fishing effort (kW*days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs of all effort regulated gears to the overall F estimate of the stock.

Runni	ig pre	vious y	year annual	F reduction	ons by 20	percent u	ntil F<=Fn	nsy=0.27						Effort kW days ru	inning previo	ous year bas	seline											
				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012				
F plan	n							0.356	0.285	0.270	0.270	0.270	0.270	Effort plan					5218704	4174963	3966215	3966215	3966215	3966215				
reduc	ction F	plan							-0.20	-0.05	0.00	0.00	0.00							-0.20	-0.05	0.00	0.00	0.00				
F esti	imated	d .		0.255	0.304	0.334	0.352	0.356	0.321	0.214	0.208	0.213	0.246	Effort estimated	5057647	5845003	5441022	5599174	5218704	4324657	3410663	3328216	3432438	3577464				
reduc	ction F	estim	nated						-0.10	-0.33	-0.03	0.02	0.15								-0.21	-0.02	0.03	0.04				
														EFFORT											2005-2012			
Fpar				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	r	р	n	
BEL	3a	none	landings	0.00019	0.00203	0.00814	0.01106	0.01181	0.00859	0.00476	0.00470	0.00542	0.00902		211491	633428	689624	628907	837161	584560	358399	383303	514973	554941	0.875	0.004	8	4.42
ENG	3a	none	landings	0.04254	0.03601	0.13284	0.16066	0.14998	0.13183	0.09179	0.08843	0.09302	0.11508		3374514	3206806	3227096	3283897	3021075	2871790	2197118	2227991	2318845	2474852	0.943	0.000	8	6.94
ENG	3b	none	landings	0.00016	0.00026	0.00040	0.00038	0.00179	0.00235	0.00294	0.00091	0.00141	0.00227		323618	206294	178818	153434	103278	104187	104045	109304	118156	113947	-0.775	0.024	8	-3.00
FRA	3a	none	landings	0.00142	0.01214	0.00947	0.01055	0.01148	0.01177	0.00972	0.01865	0.01604	0.01079		45086	317275	261700	289867	320576	146443	138669	303078	200030	131536	0.282	0.499	8	0.720
FRA	3b	none	landings	0.00669	0.01345	0.02247	0.01389	0.01545	0.01354	0.01169	0.00574	0.01169	0.00968		956465	1236654	946127	1236595	920004	615534	611990	304540	280434	302188	0.678	0.065	8	2.259
GBJ	3a	none	landings	0.00301	0.00199	0.00613									122867	209969	121139											
IRL	3a	none	landings	0.00016	0.00007		0.00017	0.00074	0.00012						23606	34577	16518	6474	16610	2143	442				0.975	0.005	5	7.600
Sum				0.05417	0.06595	0.17945	0.19671	0.19125	0.16820	0.12090	0.11843	0.12758	0.14684		5057647	5845003	5441022	5599174	5218704	4324657	3410663	3328216	3432438	3577464	0.957	0.000	8	8.081
check	sum l	Fpar/F		0.21	0.22	0.54	0.56	0.54	0.52	0.56	0.57	0.6	0.6															

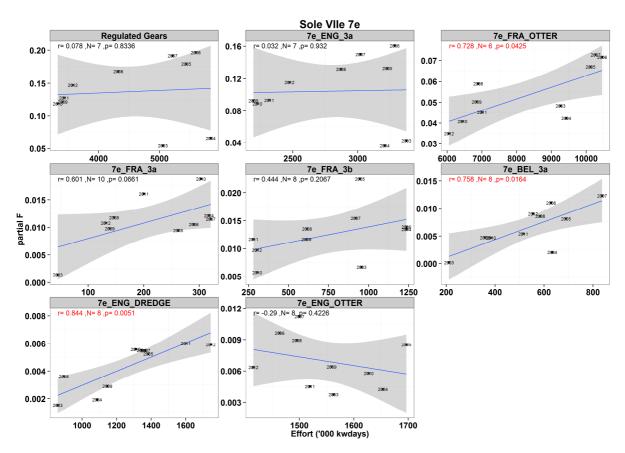


Fig. 5.8.10.1 Western Channel sole. Partial fishing mortality (based on harvest rate estimates) over effort (kW*days) of the major fisheries, 2003-2012.

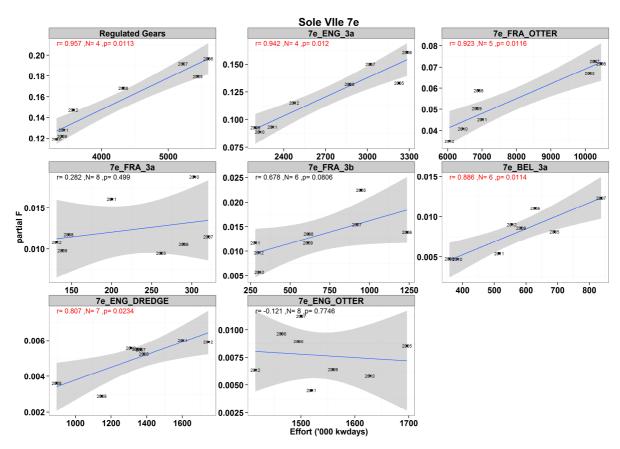


Fig. 5.8.10.2 Western Channel sole. Partial fishing mortality (based on harvest rate estimates) over effort (kW*days) of the major fisheries, 2005-2012.

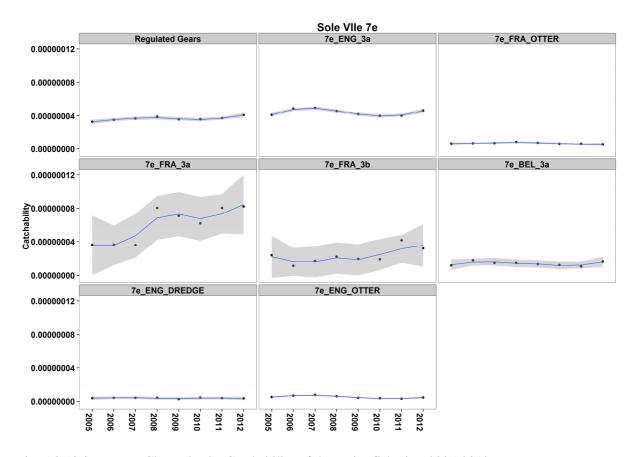


Fig. 5.8.10.3 Western Channel sole. Catchability of the major fisheries, 2005-2012.

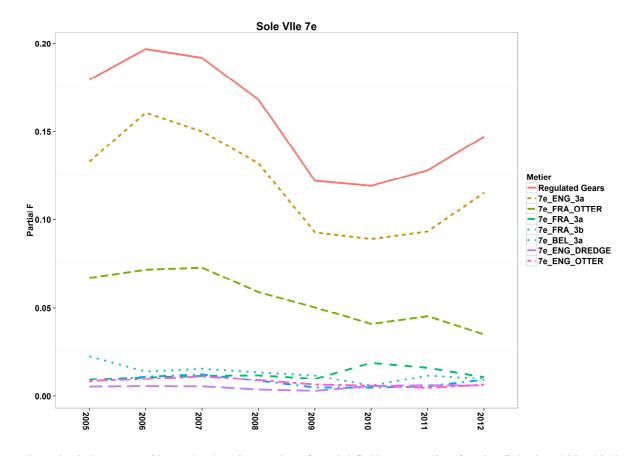


Fig. 5.8.10.4 Western Channel sole. Time series of partial fishing mortality of major fisheries, 2005-2012.

5.8.11 New ToR to facilitate STECF's management plan evaluation

5.8.11.1 Relationship between fishing mortality or biomass with fishing effort, taking into account partial fishing mortality between fleet segments (including non-regulated)

STECF EWG 13-13 notes that the previous section 5.8.10 elaborates on relationship between the partial fishing mortalities and the effort in kW*days by major fisheries and Member States in relation to the estimated fishing mortality by ICES (2013) for regulated and non-regulated gears.

5.8.11.2 Comparison of different effort units (in particular differences between days-at-sea and kW*days)

Section 5.8.10 elaborates on relationship between the partial fishing mortalities and the effort in kW*days by major fisheries and Member States in relation to the estimated fishing mortality by ICES (2013) for regulated and non-regulated gears.

As explained in section 5.8.10, the 2002 and 2003 data was also excluded from this analysis.

Where time series of days at sea were available for more than 5 years, comparison plots were made for regulated and non-regulated gears by Member States; investigating the relationship between:

- 1) The partial fishing mortality and the effort in days at sea (left panels)
- 2) The partial fishing mortality and the effort in kW days at sea (right panels)

Unfortunately all French gear groups were excluded from this comparison as only 3 years of days at sea were available at this EWG-13-13.

Figure 5.8.11.2.1 show the linear trends of the available regulated gears from Belgium (3a) and England (3a and 3b). For the regulated beam trawl gear (3a) there is a slightly better fit of the data points for the English fleet if kW*days is used than when days at sea is used. For the English regulated static gear (3b) the relationship is negative in both cases.

Figures 5.8.11.2.2a-b shows the linear trends of the available unregulated gears from England. For the unregulated beam trawl gear and the dredges there is a slightly better fit of the data points if kW*days is used than when days at sea is used. For the other unregulated gears there is a poor fit or a negative trend between the partial fishing and both effort units.

STECF EWG 13-13 notes that the regulated and non regulated beam trawl gear, responsible for the majority of the sole catches, show predominantly a slightly better regression to the partial fishing mortality if kW*days is used than when days at sea is used. Therefore a kW*days regulation may seem more appropriate.

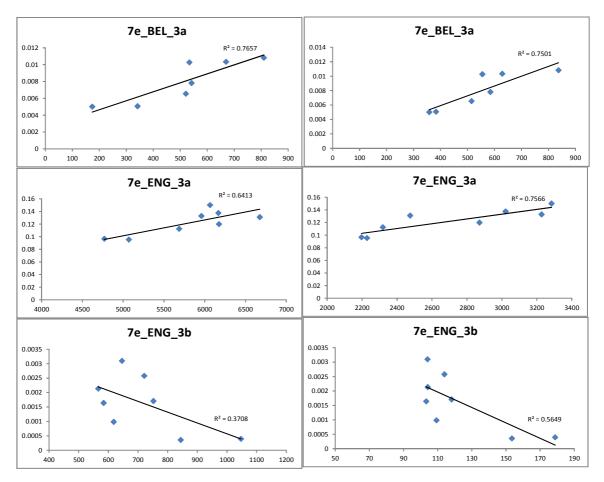


Fig. 5.8.11.2.1a Western Channel sole. Partial fishing mortality (based on harvest rate estimates) over effort (days at sea- left panels) and (kW days at sea – right panels, units in thousands) of major regulated fisheries, 2005-2012.

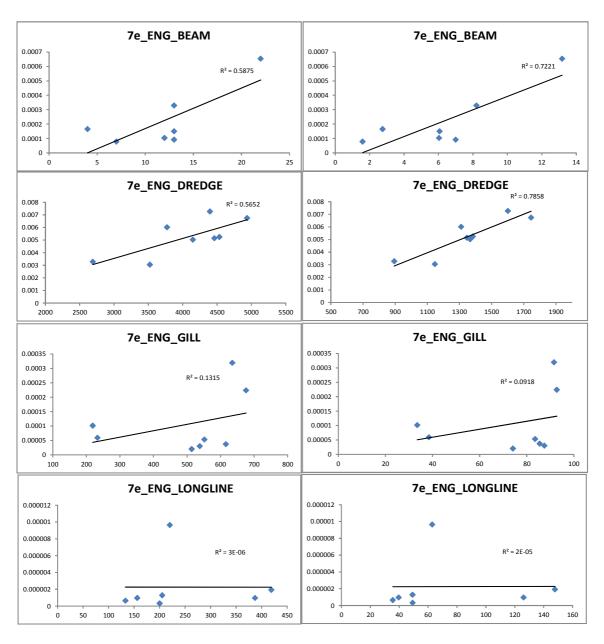


Fig. 5.8.11.2.2a Western Channel sole. Partial fishing mortality (based on harvest rate estimates) over effort (days at sea - left panels) and (kW days at sea - right panels in units of thousands) of major unregulated fisheries, 2005-2012.

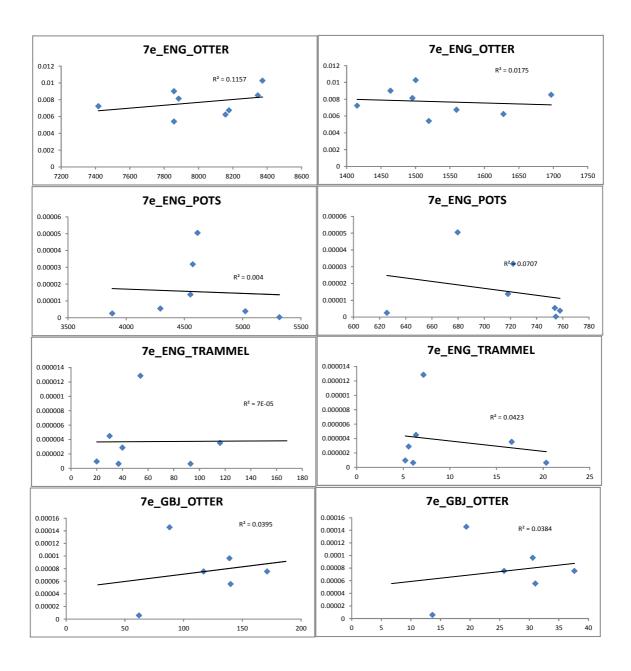


Fig. 5.8.11.2.2b Western Channel sole. Partial fishing mortality (based on harvest rate estimates) over effort (days at sea- left panels) and (kW days at sea – right panels in units of thousands) of major unregulated fisheries, 2005-2012.

5.8.11.3 Recent changes in management

STECF EWG 13-13 presents spatio-temporal patterns in effective fishing effort by rectangle and regulated gears in section 5.8.7 of the present report.

STECF EWG 13-13 notes that the UK has developed a "Days at Sea Scheme" for Western Channel for which extra days at sea can be claimed for the regulated gears in the sole VIIe management plan. The EU informed EWG-13-13 that in 2011, 42 extra days were requested and obtained by the UK regulated beam trawl fleet (3a) mounting up to total days at sea of 206 days for 2011 instead of the basic 164 days. In 2013, the UK has put forward a new request for 43 extra days for their beam trawl fleet (3a). France requested 11 extra days for their beam trawl fleet (3a) and 14 extra days for their static gear (3b). Both member states have been granted their request for 2013.

5.9 Deep Sea and Western Waters effort regime evaluations

Details of the Deep Sea Regulations can be found in COUNCIL REGULATION (EC) No 2347/2002.

The format for presenting Deep Sea information was discussed during the July 2009 SGMOS meeting when experts with particular knowledge were present. It was agreed that the most useful presentation would be data summarised on a regional approach so as to identify geographic differences in effort distribution by key member states and important gears. It was decided that regions would be based on ICES areas. It may be the case that similarities between some of these areas would allow areas to be combined in future summaries. Where an ICES area contained waters within EU jurisdiction and waters outside of this, separate summaries are provided where data allow.

In this section of the report tables showing effort by gear groups (regulated and unregulated), area and nation are only summaries. The full tables are available on the JRC website: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313.

It should be noted that Spain has not provided data for 2010 and 2011.

Details of the Western Waters regulations and its geographical extent can be found in the regulation COUNCIL REGULATION (EC) No 1415/2004.

The EWG experienced extreme difficulties in preparing these data and the interpretation of them is confounded by uncertainty in the western waters data summaries for some member states most notably Portugal, France and Spain. SINCE THESE COUNTRIES OPERATE EXTENSIVELY IN THE WESTERN WATERS AREAS AND ARE LIKELY TO CONTRIBUTE A SIGNIFICANT PROPORTION TO THE OVERALL EFFORT COVERED BY THIS REGULATION, THE DATA SHORTFALL IMPLIES THAT OVERALL EFFORT FIGURES REMAIN UNRELIABLE.

The EWG database records effort in the areas covered by the Western waters regulation including effort which becomes categorised as 'deep sea'. Since these two regulations are legislated to be non-overlapping, columns are included to show the western waters effort without the deep sea.

Table 5.9.1. COUNCIL REGULATION (EC) No 2347/2002 Annex I and 2 species list:

Code	Annex	Scientific name	Common name
ALF	1	Beryx spp	Alfonsinos
APQ	1	Apristurus laurussonii	Iceland catchark
ARU	1	Argentina silus	Greater silver smelt
BLI	1	Molva dypterygia	Blue ling
BSF	1	Aphanopus carbo	Black scabbard
CFB	1	Centroscyllium fabricii	Black dogfish
СГБ	1	1	_
CYP		Centroscymnus coelolepis	Portuguese dogfish Longnose velvet dogfish
	1	Centroscymnus crepidater	
DCA	1	Deania calcea	Birdbeak dogfish
ETR	1	Etmopterus princeps	Greater lantern shark
ETX	1	Etmopterus spinax	Velvet belly
FOX	1	Phycis blennoides	Forkbeards
GAM	1	Galeus murinus	Mouse catshark
GSK	1	Somniosus microcephalus	Greenland shark
GUP	1	Centrophorus granulosus	Gulper shark
GUQ	1	Centrophorus squamosus	Leafscale gulper shark
HXC	1	Chlamydoselachus anguineus	Frilled shark
ORY	1	Hoplostethus atlanticus	Orange roughy
OXN	1	Oxynotus paradoxus	Sharpback shark
RNG	1	Coryphaenoides rupestris	Roundnose grenadier
SBL	1	Hexanchus griseus	Six-gilled shark
SCK	1	Dalatias licha	Kitefin shark
SHO	1	Galeus melastomus	Blackmouth dogfish
SYR	1	Scymnodon ringens	Knifetooth dogfish
ALC	2	Alepocephalus bairdii	Baird's smoothhead
ANT	2	Antimora rostrata	Blue antimora
BRF	2	Helicolenus dactylopterus	Blue mouth redfish
СМО	2	Chimaera monstrosa	Rabbitfish
COE	2	Conger conger	Conger eel
CYH	2	Hydrolagus mirabilis	Large-eyed rabbitfish
ELZ	2	Lycodes esmarkii	Eelpout
EPI	2	Epigonus telescopus	Black cardinal fish
HPR	2	Hoplostethus mediterraneus	Silver roughy
JAD	2	Dipturus nidarosiensis	Norwegian skate
KEF	2	Chaceon affinis	Deep-water red crab
РНО	2	Alepocephalus rostratus	Risso's smoothhead
RCT	2	Rhinochimaera atlantica	Straightnose rabbitfish
RHG	2	Macrourus berglax	Roughhead grenadier
RIB	2	Mora moro	Common mora
RJG	2	Amblyraja hyperborea	Arctic skate
RJY	2	Rajella fyllae	Round skate
SBR	2	Pagellus bogaraveo	Red (blackspot) seabream
SFS	2	Lepidopus caudatus	Silver scabbard fish
SFV	2	Sebastes viviparus	Small redfish
TJX	2	Trachyscorpia cristulata	Spiny (deep sea) scorpionfish
WRF	2	Polyprion americanus	Wreckfish

5.9.1 ToR 1a Fishing effort by area

DEEP SEA

Effort within the Deep sea and Western waters has been compiled for kW*days-at-sea, GT*days-at-sea, and numbers of vessels. Within the report the focus is on kW*Days at sea. Information on GT*days at sea and numbers of vessels is available via the website: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313

Overview of spatial distribution of fishing effort data: Collation of data to address questions associated with deepwater fisheries provided an opportunity to present spatial data across wide geographic areas giving a general picture of the distribution of fishing activity.

For each ICES Sub-area, tables are included which show effort by country (and an overall effort for the area) and effort by gear. In addition, figures illustrating trends are included for the most important gears.

Figures 5.9.1.1 to 5.9.1.5 show respectively the distribution of effort for five of the categories of gear; bottom trawl, pelagic trawl, longline, gill nets and beam trawl specified in the Terms of Reference.

Bottom trawl effort is concentrated in ICES Area IVa as well as the Continental shelf and slope to the west and southwest of Ireland and the UK. Bottom trawl effort in the Bay of Biscay, the Cantabrian Sea and off the Portuguese coast increased in 2012 compared to 2010 and 2011.

Pelagic trawling was concentrated to the west of Ireland, and to the west and north of Scotland in the mid 2000s. This effort decreased greatly between 2007 and 2009, increased again in 2010, but has reduced again in 2011 and 2012.

Longline effort was concentrated on the shelf and slope between Shetland and Portugal but has been in decline in recent years. Longline effort from the Azores has shown an increase since 2009.

In the mid 2000s gill net effort was concentrated in the Celtic sea and Porcupine Bank. Due to current restrictions in the use of deepwater gill nets much of this effort is now concentrated in the Celtic sea, with some effort in the North sea, west of Scotland and the Bay of Biscay.

Beam trawling is concentrated in the Celtic sea and the western English Channel. While beam trawls are not a deepwater gear some of the species caught are classified under Annex 2.

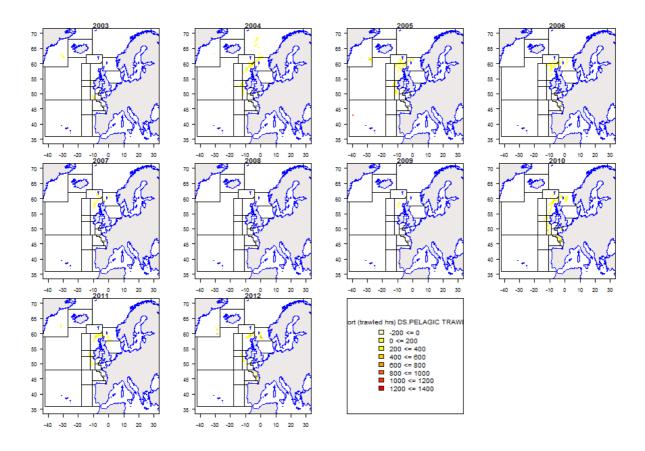


Figure 5.9.1.1 Distribution of pelagic trawl effort (specified as deep sea fisheries), 2003 – 2012.

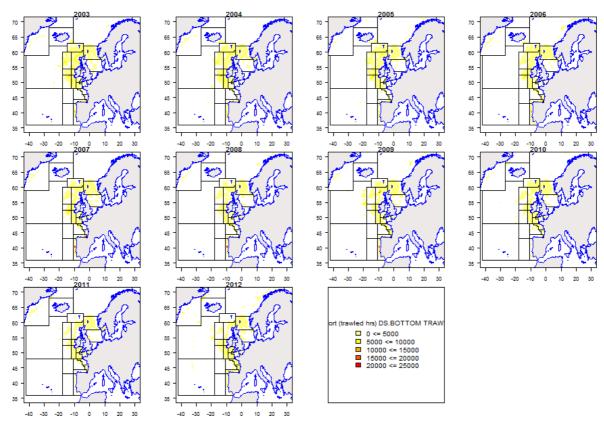


Figure 5.9.1.2 Distribution of bottom trawl effort (specified as deep sea fisheries), 2003 – 2012.

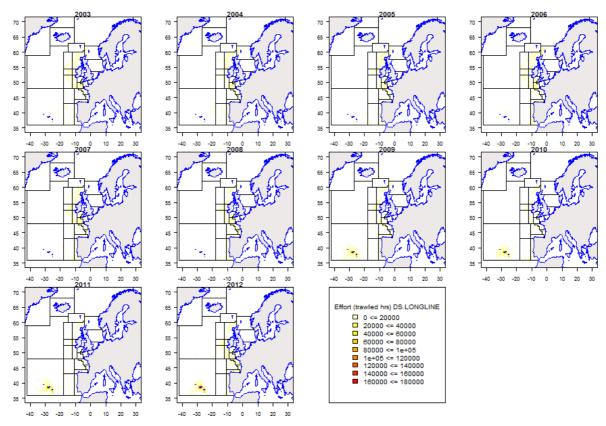


Figure 5.9.1.3 Distribution of longline effort (specified as deep sea fisheries), 2003 - 2012

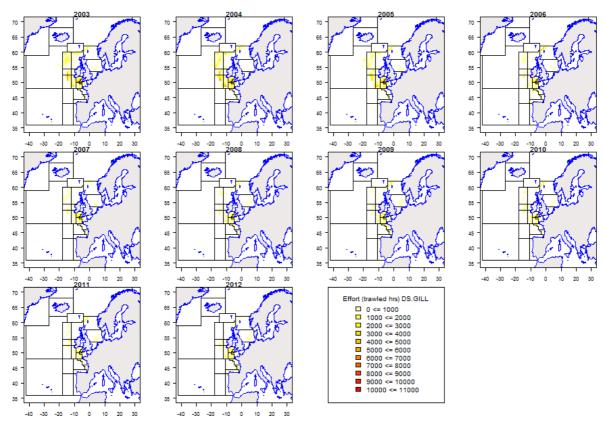


Figure 5.9.1.4 Distribution of gill net effort (specified as deep sea fisheries), 2003 – 2012.

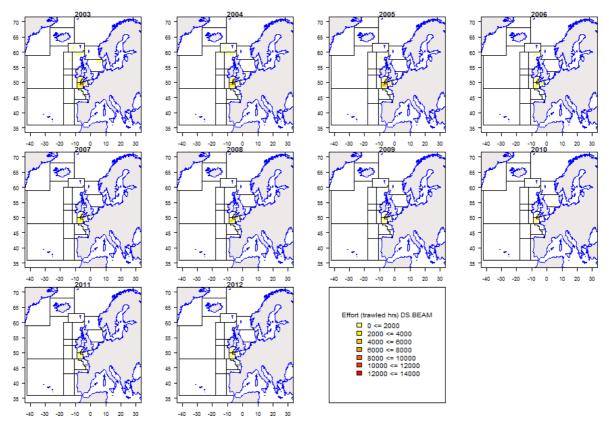


Figure 5.9.1.5 Distribution of beam trawl effort (specified as deep sea fisheries), 2003 – 2012.

WESTERN WATERS

Effort data under the Western Waters regulation is presented by a number of EU and non-EU areas. Where relevant these encompass breakdowns by country, gear and vessel length groups.

5.9.1.1 Fishing effort in ICES area I by fisheries and Member States only linked to Deep Sea species

Area I non-EU

Only sparse effort by Germany was reported previously from this area (Tables 5.9.1.1.1, 5.9.1.1.2 and Figure 5.9.1.1.1). However France reported some effort in 2012. None of this is in EU waters.

Table 5.9.1.1.1.- Deep Sea fishing effort (kW*days) 2000 - 2012 by member state ICES Sub-area I non-EU.

Area	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
1 non EU	DEU							70600			2427			
	FRA													96750
1 non EU Total								70600			2427			96750

Table 5.9.1.1.2.- Deep Sea fishing effort (kW*days) 2000 – 2012 by gear and member state ICES Subarea I non-EU.

Area	Gear	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
1 non EU	BOTTOM TRAWLS	DEU							70600			2427			
		FRA													96750
1 non EU To	tal								70600			2427			96750

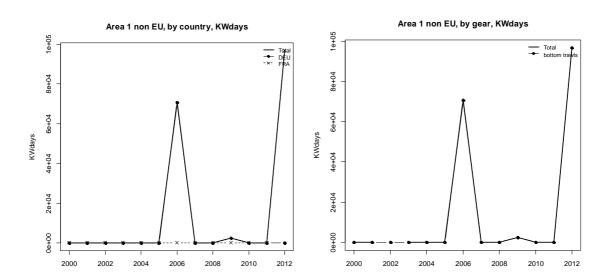


Figure 5.9.1.1.1.- Deep Sea Effort (kW*days) 2000-2012 by member state and by gear ICES Area I non EU.

5.9.1.2 Fishing effort in ICES area II by fisheries and Member States only linked to Deep Sea species

Area II EU

Five countries reported effort in this area with the majority being carried out by two countries, France and UK, with the pattern of each varying through time (Table 5.9.1.2.1). French effort showed a particularly noticeable drop in the mid 2000s, before increasing again from 2006. French effort has dropped sharply in 2011 and 2012. UK effort has fluctuated throughout the time series and mainly comprises bottom trawl, with some gill net effort. Netherlands pelagic trawl effort stopped in 2007 (Table 5.9.1.2.2). Germany contributed some effort in the mid 2000s. Effort in Sub-area II (EU) shows no obvious trend.

The principal gear used in this Sub-area (Table 5.9.1.2.2, and Figure 5.9.1.2.1) was the otter trawl (by France and UK). UK gill net effort fluctuated between 2002 and 2010 (albeit at a relatively low level), but had ceased since 2010.

Table 5.9.1.2.1.- Deep Sea fishing effort (kW*days) 2000 – 2012 by member state ICES Sub-area II EU.

Area	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
2 EU	DEU				33516	87864		12000						
	DNK	10311												
	FRA	208280	325607	623365	43886	29608	65124	210353	134456	248412	246993	144020	63238	141426
	NLD	24265	22652		13200	158115								
	UK	53922	34900	43295	66870	26431	12017	200446	97363	79378	73683	71877	19261	80985
2 EU Total		296778	383159	666660	157472	302018	77141	422799	231819	327790	320676	215897	82499	222411

Table 5.9.1.2.2.- Deep Sea fishing effort (kW*days) 2000 - 2012 by gear and member state ICES Subarea II EU.

Area	Gear	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
2 EU	BOTTOM TRAWLS	DEU					4410		12000						
		FRA	208280	325607	623365	43886	29608	65124	210353	134456	248412	246993	144020	63238	141426
		UK	53922	34900	43295	66870	17755	4661	178712	45144	24171	47637	69845	19261	80985
	GILL	DEU				33516	53802								
		UK					8676	7356	21734	39241	55207	26046	2032		
	PELAGIC TRAWLS	DEU					29652								
		DNK	10311												
		NLD	24265	22652		13200	158115								
		UK								12978					
2 EU Total			296778	383159	666660	157472	302018	77141	422799	231819	327790	320676	215897	82499	222411

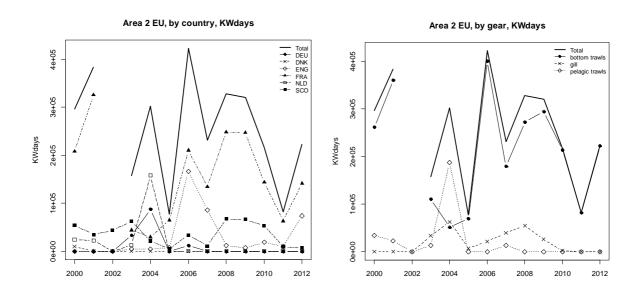


Figure 5.9.1.2.1.- Deep Sea Effort (kW*days) 2000-2012 by member state and by gear ICES Area II EU. Due to the uncertainty in French 2002 data this year has been removed from the figure.

Area II non-EU

Seven countries reported effort in this area with the majority being carried out by the UK (Table 5.9.1.2.3). Total effort has decreased since the mid 2000s. UK bottom trawl effort has been in decline since 2008, however effort by France, which started in 2010, is increasing. Netherlands pelagic trawl

effort stopped in 2006 (Table 5.9.1.2.4). Germany contributed some effort in the mid 2000s. Effort in Sub-area II (non EU) has been decreasing since 2004.

The principal gear used in this Sub-area (Table 5.9.1.2.4, and Figures 5.9.1.2.2.) was the otter trawl (by UK and France). Netherland pelagic trawl effort reached a peak in 2004 but has ceased since 2007.

Table 5.9.1.2.3.- Deep Sea fishing effort (kW*days) 2000 – 2012 by member state ICES Sub-area II non-EU.

Area	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
2 non EU	DEU				94653	49420	43686	262923			266743			
	DNK	22351												
	FRA											81836	115246	183749
	IRL			2940	1350									
	NLD		86785		349335	781113	196020	216254						
	PRT	764606	175049											
	UK	1059	1536	813	701782	649580	817921	802633	613414	603521	380425	283442	247297	229508
2 non EU Total		788016	263370	3753	1147120	1480113	1057627	1281810	613414	603521	647168	365278	362543	413257

Table 5.9.1.2.4.- Deep Sea fishing effort (kW*days) 2000-2012 by gear and member state ICES Subarea II non-EU.

Area	Gear	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
2 non EU	BOTTOM TRAWLS	DEU				94653		43686	262923			266743			
		DNK	8367												
		FRA											71532	115246	183749
		PRT	486524	175049											
		UK	1059	1536	813	701782	649580	817921	802633	470655	603521	380425	283442	247297	229508
	DREDGE	FRA											10304		
	LONGLINE	IRL				1350									
	PELAGIC TRAWLS	DEU					49420								
		DNK	13984												
		IRL			2940										
		NLD		86785		349335	781113	196020	216254						
		PRT	278082												
		UK								142759					
2 non EU Total			788016	263370	3753	1147120	1480113	1057627	1281810	613414	603521	647168	365278	362543	413257

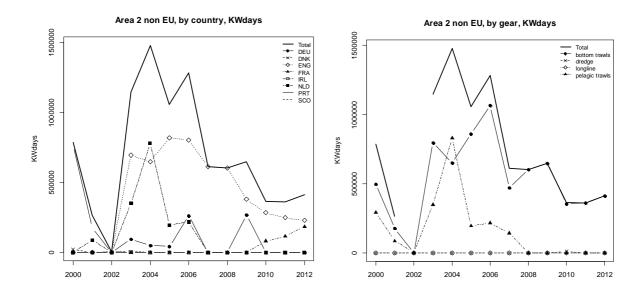


Figure 5.9.1.2.2. Deep Sea Effort (kwdays) 2000-2012 by member state and by gear ICES Area II non EU. Due to the uncertainty in French 2002 data this year has been removed from the figure.

5.9.1.3 Fishing effort in ICES area III by fisheries and Member States only linked to Deep Sea species

Area III no Baltic

All effort takes place in EU waters but is very limited and the majority of the records are for Danish vessels using bottom trawls. German data was reported for 2004 only and France reported a small amount of effort in 2012.

Table 5.9.1.3.1.- Deep Sea fishing effort (kW*days) 2000 – 2012 by member state ICES Sub-area III EU no Baltic.

Area	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
3 no Baltic	DEU					1470								
	DNK	259424	170543	156554	231924	529970	383720	155403	4128		8990	2682	17698	
	FRA													1850
3 no Baltic Total		259424	170543	156554	231924	531440	383720	155403	4128		8990	2682	17698	1850

Table 5.9.1.3.2.- Deep Sea fishing effort (kW*days) 2000 – 2012 by gear and member state ICES Subarea III EU no Baltic.

Area	Gear	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
3 no Baltic	BOTTOM TRAWLS	DEU					1470								
		DNK	209235	170543	155557	231924	529970	383720	155403	4128		8990	2682	17698	
		FRA													1850
	LONGLINE	DNK			997										
	PELAGIC TRAWLS	DNK	50189												
3 no Baltic T	otal		259424	170543	156554	231924	531440	383720	155403	4128		8990	2682	17698	1850

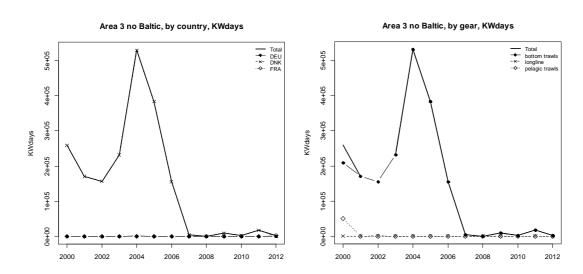


Figure 5.9.1.3.1.- Deep Sea Effort (kwdays) 2000-2012 by member state ICES Area III no Baltic.

5.9.1.4 Fishing effort in ICES area IV by fisheries and Member States only linked to Deep Sea species

Area IV

All reported effort in this ICES area occurs in EU waters. Six countries have reported effort in this area with four countries, France, Netherlands, Denmark and UK contributing the most (Tables 5.9.1.4.1 and 5.9.1.4.2). There is an obvious downward trend in overall effort up to 2008 but effort increased again in 2009 and seems to have stabilised in 2010 and 2011, before increasing again in 2012. French and UK effort showed marked declines up to 2002, after which French effort was reasonably constant before increasing in 2012. UK effort has stayed reasonably stable. While Dutch effort peaked in the mid 2000s significant longlining was again carried out in the last three years. Germany has also contributed sporadic effort.

Denmark submitted a revision of historical effort in 2012, which led to a major increase in their previously reported effort for the area. Apart from 2000 the effort was quite stable up to 2007, when it

began to decrease. After reporting no effort in 2011 it has reported a large amount of effort for 2012. All this effort was recorded for bottom trawls.

Otter trawl was by far the most important gear used, by France, Denmark and the UK. UK gill net effort was stable up to 2006 after which it fluctuated somewhat. The reported 2012 UK effort is only 20% of that recorded in 2011 The UK also used beam trawl but have not reported effort since 2005. The UK also reports small amounts of longline effort. Netherlands pelagic effort which peaked in 2003 has begun increasing again in the last two years.

Table 5.9.1.4.1.- Deep Sea fishing effort (kW*days) 2000 – 2012 by member state ICES Sub-area IV.

Area	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
4	DEU					206302	134099	195941	15600		123550		19416	26586
	DNK	1191536	176947	121607	216490	100543	123079	121490	125089	26555	6215	16297		611372
	FRA	1017129	635135	1575689	277155	176632	261732	178577	289736	185516	173847	484416	286163	714657
	IRL	25800	35145	10500		4701								
	NLD	7260	134640	128276	619530	537132	500354	195760	222638	40084		106630	117744	201960
	UK	915288	1331006	1309362	1824463	1258477	1294938	1388434	1015346	991177	1371175	1402424	1480961	907825
4 Total		3157013	2312873	3145434	2937638	2283787	2314202	2080202	1668409	1243332	1674787	2009767	1904284	2462400

Table 5.9.1.4.2.- Deep Sea fishing effort (kW*days) 2000 – 2012 by gear and member state ICES Subarea IV.

Area	Gear	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	4 BEAM	NLD											8826		
		UK	3222	32751	37836	48867	16008	13125							
	BOTTOM TRAWLS	DEU					39270	61113	108000			123550		19416	
		DNK	1098619	176947	116858	216490	100543	123079	121490	125089	26555	6215	16297		424424
		FRA	1017129	635135	1575689	277155	176632	261732	178577	289736	185516	173847	477056	285427	714657
		IRL	25800	35145	10500										
		UK	904847	1277117	1241007	1429526	879032	937099	942983	803140	795289	1104312	1191245	1122185	816323
	DREDGE	FRA											7360		
	GILL	DEU						3798							26586
		UK		1968		253583	305389	259341	399015	136272	187454	225154	200327	350442	79141
	LONGLINE	DNK			249										
		UK	7219	11557	3004	63020	50987	85373	46397	11044	8434	41709	10672	8244	12091
	PELAGIC TRAWLS	DEU					167032	69188	87941	15600					
		DNK	92917		4500										186948
		IRL					4701								
		NLD	7260	134640	128276	619530	537132	500354	195760	222638	40084		97804	117744	201960
		UK		7613	27515	28560	7061			64890					
	POTS	UK				907			39						
	TRAMMEL	FRA												736	
		UK											180	90	270
4 Total			3157013	2312873	3145434	2937638	2283787	2314202	2080202	1668409	1243332	1674787	2009767	1904284	2462400

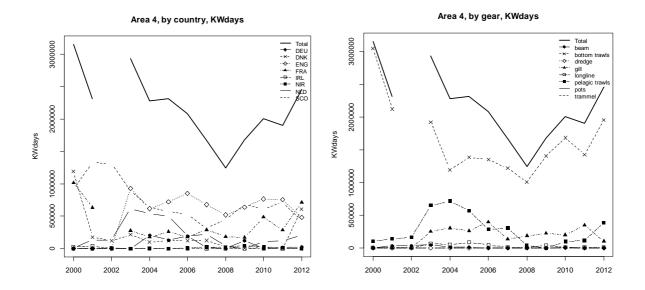


Figure 5.9.1.4.1. Deep Sea fishing effort (kW*days), 2000 – 2012, by member state and by gear, in ICES Sub-area IV EU. Due to the uncertainty in French 2002 data this year has been removed from the figure.

5.9.1.5 Fishing effort in ICES area V

Deepwater V EU

Four countries, France, Netherlands and UK and Germany contributed effort in this area, with Ireland reporting effort only in 2001 (Tables 5.9.1.5.1 and 5.9.1.5.2 and Figure 5.9.1.5.1). In the EU portion, French effort has dominated throughout the series and remained high up to 2009, however this effort had dropped by 90% by 2011 with a small increase again in 2012. UK effort showed a marked decline since 2004 and is now at quite a low level.

The predominant gear used was otter trawl, by France and the UK, but this effort has decreased in recent years. Gill net effort by France ceased in 2009 and by the UK in 2006. Netherlands pelagic trawl effort has decreased during the time period and has recorded effort only once, 2010, in the last four years. German effort in the middle part of the time series was both gill nets and pelagic trawls.

Table 5.9.1.5.1.- Deep Sea fishing effort (kW*days) 2000 – 2012 by member state ICES Sub-area V EU.

Area	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
5 EU	DEU				4851	4942	60375	12742	2600					
	FRA	952552	991663	4018388	1231117	1203179	992021	981544	1177248	947792	947792	381100	96200	131350
	IRL		1800											
	NLD		228862	14014	117600	175353	80010	31618	11453	33971		6600		
	UK	71576	75066	81539	187245	250636	59417	23658	296	11228	20837	41132	5877	840
5 EU Total		1024128	1297391	4113941	1540813	1634110	1191823	1049562	1191597	992991	968629	428832	102077	132190

Table 5.9.1.5.2.- Deep Sea fishing effort (kW*days) 2000 - 2012 by gear and member state ICES Subarea V EU.

Area	Gear	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
5 EU	BEAM	FRA				1519	12288								
	BOTTOM TRAWLS	FRA	868648	959279	3653332	1195742	1102571	921365	927080	1111008	793232	793232	381100	96200	131350
		IRL		1800											
		UK	68486	74278	74021	57191	84681	14668	15854	296	11228	20837	37747	5877	840
	GILL	DEU				4851									
		FRA	83904	32384	365056	33856	88320	70656	54464	66240	154560	154560			
		UK				130054	106655	41530	7804						
	LONGLINE	UK		788				3219					3385		
	PELAGIC TRAWLS	DEU					4942	60375	12742	2600					
		NLD		228862	14014	117600	175353	80010	31618	11453	33971		6600		
		UK	3090		7518		59300								
5 EU Total			1024128	1297391	4113941	1540813	1634110	1191823	1049562	1191597	992991	968629	428832	102077	132190

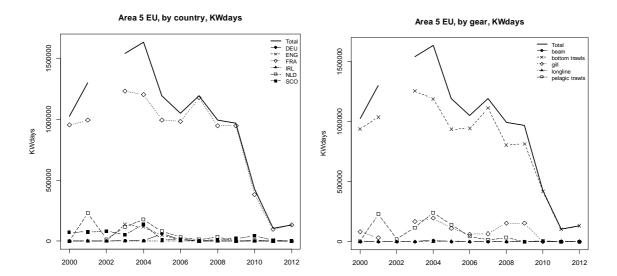


Figure 5.9.1.5.1. Deep Sea fishing effort (kW*days), 2000 – 2012, by member state and by gear, in ICES Sub-area V EU. Due to the uncertainty in French 2002 data this year has been removed from the figure.

Western Waters V EU

There is uncertainty relating to French effort, values in 2002 are extremely high. Overall effort figures are therefore unreliable.

Effort within this area has declined over time, and the pace of decline had quickened in the last number of years. In 2012 effort increased slightly but is only approximately 15% of that recorded for 2009. Historically bottom trawls, gill nets and pelagic trawl by France, the UK and the Netherlands accounted for the majority of the effort. Since 2009 pelagic trawl and gill nets have almost ceased, and in 2012 bottom trawl effort was confined to France, (Table 5.9.1.5.3. and Figure 5.9.1.5.2).

Table 5.9.1.5.3.- Effort (kW*days) by country, gear and vessel size group within ICES Sub-area V EU, 2000-2012.

					2000)		2001			2002			2003			2004			2009	5
						Excluding															
Area	Gear	Country	Vessel length	Effort	Deep Effort	Deep Effort															
EU	beam	FRA	o15m	0	0		0	0		0	0		1519	1519		12288	12288		0	(J
		sco	o15m	0		0	1608		1608	0		(0)	0	0		(0		
l l	bottom trawls	DEU	o15m	1020		1020	0		0	0		(0)	0	0		(0		
		ENG	o15m	0	0		0	0		0	0		5712	5712		8405	8405		3135	3135	5
		FRA	o15m	871738	868648	3090	971028	959279	11749	3787280	3653332	133948	1202423	1195742	6681	1106396	1102571	3825	923573	92136	5 22
		IRL	o15m	0	0		1800	1800		0	0) 0		0	0		0		0
		sco	o15m	86876	68486	18390	111676	74278	37398	84950	74021	10929	57491	51479	6012	83343	76276	7067	14952	1153	3 34
1	dredge	sco	o15m	0		0	0		0	0		C	260)	260	0		(0		
	gill	DEU	o15m	0	0	0	0	0	0	0	0	(15876	4851	11025	5733	0	5733	0	(0
		ENG	o15m	0	0	0	0	0	0	0	0		158890	130054	28836	106655	106655	(42147	41530	0 6
		FRA	o15m	83904	83904	0	32384	32384	0	369816	365056	4760	35328	33856	1472	88320	88320	(70656	70656	ő
		sco	o15m	246		246	0		0	0		()	0	0		(0		
l l	longline	ENG	o15m	0	0)	0	0		0	0			0		0	0		3219	3219	e e
		ESP	o15m	0		0	0		0	0		()	0	0		(0		
		sco	o15m	0	0	0	1404	788	616	7892	0	7892		0	0	0	0	(0)
	pelagic trawls	DEU	o15m	0	0	0	0	0	0	0	0	(102767	7 0	102767	4942	4942	(70965	60375	5 1059
		FRA	o15m	79488		79488	9719		9719	329728		329728	47104	1	47104	14720		14720	17664		176
		IRL	o15m	0		0	0		0	0		(13057	7	13057	29321		29321	27100		271
		NLD	o15m	0	0	0	451252	228862	222390	28028	14014	14014	200693	117600	83093	341000	175353	165647	142740	80010	0 627
		sco	o15m	3090	3090	0	5112	0	5112	38700	7518	31182	52687	7 0	52687	94966	59300	35666	0)
	pots EN	ENG	o15m	0		0	0		0	0		() (0	744		744	0		
		NIR	o15m	0		0	0		0	0		C) ()	0	0		(0		
		sco	o15m	0		0	0		0	0		(0)	0	0		(0		
	trammel	FRA	o15m	0		0	41216		41216	0		() ()	0	0		(0		
EU Total				1126362	1024128	102234	1627199	1297391	329808	4646394	4113941	532453	1893807	1540813	352994	1896833	1634110	26272	1316151	119182	3 1243

	2006			2007			2008			2009			2010)		2011			2012	
		Excluding			Excluding			Excluding			Excluding			Excluding			Excluding			Excluding
Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort									
0	0		0	0		0	0		0	C		0	C		0	0		0	0	i
C		C	0		C	0		0	0		C	0		C	0		(0		0
5100		5100	0		C	0		0	0		C	0		C	0		C	0		0
1522	1522		0	0		0	0		0	C		0	C		0	0		0	0	1
930601	927080	3521	1117358	1111008	6350	793232	793232	. 0	793232	793232		381100	381100	(96200	96200	C	131350	131350	0
0	0		0	0		0	0		0	C		0	C		0	0		0	0	1
16313	14332	1981	2566	296	2270	12661	11228	1433	0	20837	-20837	0	37747	-37747	21118	5877	15241	. 0	840	-840
0			0		C	0		0	0			0			0		(0		0
0	0	C	0	0	0	0	0	0	0	C	(0	C	(0	0	(0	0	0
7804	7804	C	0	0	C	0	0	0	0	C	(0	C	(0	0	(0	0	0
54464	54464	C	82432	66240	16192	154560	154560	0	154560	154560		0	C		0	0	C	846	0	846
0			0		C	0		0	0		C	0		C	0			559		559
0	0		0	0		0	0		0	C		0	C		0	0		0	0	i
0		C	0		C	0		0	0		C	0		C	0		C	412		412
0	0		0	0	0	0	0	0	0	C	(3681	3385	296	238	0	238	0	0	0
28639			2600			0	0	-	0			0	C	(0	0	(0	0	0
55936		55936	29440		29440	17664		17664	17664		17664	0		(0		(0		0
0		(5880		5880	0		0	0		(0		(2800		2800	0		0
83036	31618	51418	44686	11453	33233	48530	33971	14559	43560	C	43560	6600	6600	(0	0	(0	0	0
0	0		0	0	0	0	0	0	0		(16120		16120	0	0	(0	0	0
0			0		0	0		0	0		(0		(0		(0		0
1744		1744	0		0	0		0	0		(0		(0		(0		0
0			0		0	0		0	0		(231		231	0		(0		0
0			0		0	0		0	0		(0			0		(0		0
1185159	1049562	135597	1284962	1191597	93365	1026647	992991	33656	1009016	968629	40387	407732	428832	-21100	120356	102077	18279	133167	132190	977

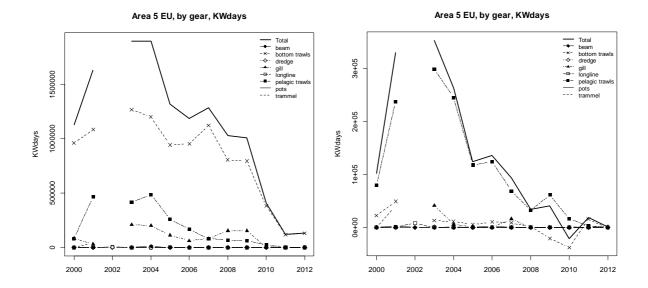


Figure 5.9.1.5.2.- Effort (kW*days) reported within ICES Sub-area V EU by gear type, 2000-2012, with (left) and without (right) reported deepwater effort.

Deepwater V non-EU

In this area bottom trawl effort of both France and the UK peaked in 2004 and has decreased slowly since. The UK reported no effort since 2010 and France has not recorded effort for 2012. German effort dropped from the mid 2000s before bottom trawl effort began rising in 2009. This effort has continued to 2012. Germany and the Netherlands recorded pelagic trawl effort up to 2007, but this has since stopped, bar 2010 effort recorded for the Netherlands.

Table 5.9.1.5.4.- Deep Sea fishing effort (kW*days) 2000 - 2012 by member state ICES Sub-area V non-EU.

Area	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
5 non EU	DEU				256560	194758	446140	274286	23400	7281	103500	385062	244500	231906
	FRA	113443	696775	1835624	664525	776742	381706	325531	294664	219992	219992	44400	7400	
	NLD		7260		271601	15850	154495	26765	47559			7428		
	UK	201788	271314	476184	917320	1071860	885811	422340	272851	114920	128263	232011		
5 non EU Total		315231	975349	2311808	2110006	2059210	1868152	1048922	638474	342193	451755	668901	251900	231906

Table 5.9.1.5.5.- Deep Sea fishing effort (kW*days) 2000 - 2012 by gear and member state ICES Subarea V non-EU.

Area	Gear	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
5 non EU	BEAM	FRA				6077	7400								
	BOTTOM TRAWLS	DEU				256560	174990	339900	249060		7281	103500	385062	244500	231906
		FRA	113443	696775	1835624	658448	769342	381706	325531	294664	219992	219992	44400	7400	
		UK	201788	271314	476184	917320	1071860	885811	422340	272851	114920	128263	232011		
	PELAGIC TRAWLS	DEU					19768	106240	25226	23400					
		NLD		7260		271601	15850	154495	26765	47559			7428		
5 non EU Total			315231	975349	2311808	2110006	2059210	1868152	1048922	638474	342193	451755	668901	251900	231906

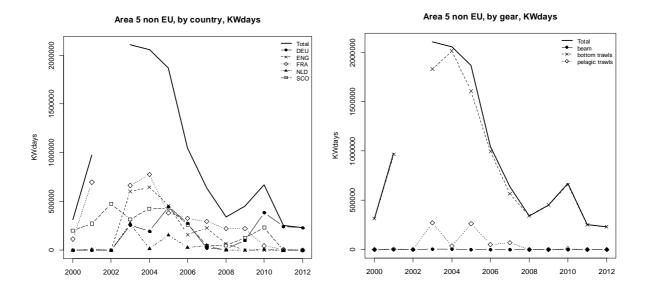


Figure 5.9.1.5.3. Deep Sea fishing effort (kW*days), 2000 - 2012, by member state and by gear, in ICES Sub-area V non-EU. Due to the uncertainty in French 2002 data this year has been removed from the figure.

Western Waters V non-EU

There is uncertainty relating to French effort, values in 2002 are extremely high. Overall effort figures are unreliable.

Overall effort within this area has declined over time, having previously been fished by a number of nations utilising bottom and pelagic trawls (Table 5.9.1.5.6. and Figure 5.9.1.5.4).

The majority of fishing effort within the area is directed toward fisheries not covered by the western waters regulation. Fishing was principally carried out by Germany, the Netherlands, and the UK. Bottom trawling is the primary gear within the area, much of which targets deepwater fisheries. Bottom trawl effort for 2012 has only been reported by Germany.

Pelagic trawl effort, conducted mainly by Scotland and the Netherlands, fluctuated between 2003 and 2005, at which stage effort started declining. Pelagic effort ceased in 2010.

Table 5.9.1.5.6.- Effort (kW*days) by country, gear and vessel size group within ICES Sub-area V non EU, 2000-2012.

					2000			2001			2002			2003			2004	1		2005	
						Excluding			Excluding			Excluding			Excluding			Excluding			Excluding
Area	Gear	Country	Vessel length	Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort
5 non EU	beam	FRA	o15m		0			0			0			6077			7400)		0	
		sco	o15m	67634		67634	0		C	0		C) ()	0	0		0	0		0
	bottom trawls	DEU	o15m	210449	0	210449	319410	0	319410	153555	0	153555	369090	256560	112530	208425	174990	33435	342960	339900	3060
		DNK	o15m	0		0	0		C	0		C	0)	0	0		0	0		0
		ENG	o15m	0	0	0	0	0	C	0	0	C	602100	602100	0	652390	646050	6340	455353	455353	0
		FRA	o15m	2931	113443	-110512	16112	696775	-680663	53420	1835624	-1782204	58750	658448	-599698	29974	769342	-739368	7979	381706	-373727
		sco	o15m	409056	201788	207268	565565	271314	294251	856447	476184	380263	721186	315220	405966	840663	425810	414853	931460	430458	501002
	gill	FRA	o10t15m	0		0	0		0	0		C) ()	0	0		0	0		0
			o15m	0		0	0		0	0		C	2944	1	2944	0		0	0		0
	longline	sco	o15m	5595		5595	800		800	18168		18168	3608	3	3608	0		0	0		0
	pelagic trawls	DEU	o15m	0	0	0	0	0	0	0	0	C	167013	3 0	167013	19768	19768	3 0	106240	106240	0
		DNK	o15m	0		0	0		C	7005		7005	40568	3	40568	0		0	0		0
		FRA	o15m	55936		55936	103040		103040	0		C	23552	2	23552	41216		41216	52992		52992
		NLD	o15m	49302	0	49302	18234	7260	10974	22210	0	22210	522811	271601	251210	89936	15850	74086	385028	154495	230533
		sco	o15m	19140		19140	0		C	0		C	15888	3	15888	46080		46080	8353		8353
	trammel	FRA	o15m	0		0	20608		20608	0		C) (0	0		0	0		0
5 non EU Total				820043	315231	504812	1043769	975349	68420	1110805	2311808	-1201003	2527510	2110006	423581	1928452	2059210	-123358	2290365	1868152	422213

	2006			200	7		2008			2009)		2010)		2011			2012	2
		Excluding			Excluding			Excluding			Excluding			Excluding			Excluding			Excluding
Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort
	0				ס		0			())		C)		()
0		0	0			0		0	0			0)	() ()	(0		(
250260	249060	1200	137210		137210	7281	7281	0	130500	103500	27000	385062	38506	2 (244500	244500	(231906	231906	6 (
0		0	0			0		0	0		C	0)	(26413	3	26413	0		(
159462	159462	0	226963	22696	3 (67258	67258	0	0	C) (0) () (0 (0) (0	() (
12989	325531	-312542	23690	29466	4 -270974	1850	219992	-218142	1850	219992	-218142	60422	4440	16022	2 8872	7400	1472	0	() (
704552	262878	441674	342705	4588	3 29681	252446	47662	204784	414088	128263	285825	475549	23201	243538	1540	0	1540	0	() (
0		0	0			0		0	0		(0)	(292	2	292	0		(
0		0	0		(0		0	0		(0)	() ()	(0		(
0		0	0			0		0	0		(0)	() ()	(0		(
57020	25226	31794	23400	2340) (20800	0	20800	0	C) (0) () (0 (0) (0	() (
0		0	0			0		0	0		(0)	() ()	(0		(
23552		23552	17664		1766	0		0	0		(0)	(0)	(0		(
53530	26765	26765	81918	4755	3435	0	0	0	0	() (7428	742	3 (0	0	(0	() (
28980		28980	82287		8228	68337		68337	0		(28120)	28120	0)	(0		(
0		0	0		(0		0	0		(0)	() ()	(0		(
1290345	1048922	241423	935837	638474	4 29736	417972	342193	75779	546438	451755	94683	956581	66890	287680	28161	251900	29717	231906	231906	6 (

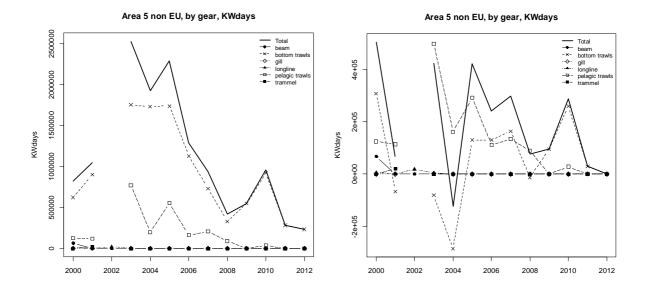


Figure 5.9.1.5.4.- Effort (kW*days) reported within ICES Sub-area V non-EU by gear type, 2000-2012, with (left) and without (right) reported deepwater effort.

5.9.1.6 Fishing effort in ICES area VI

Deepwater VI EU

Several countries, France, Netherlands, Ireland, UK and Germany fished in this area (Tables 5.9.1.6.1 and 5.9.1.6.2 and Figure 5.9.1.6.1). In this area French and UK effort dominated throughout the series. French effort peaked in 2001 but and between 2007 and 2010 had stabilised at about 40% of earlier values. This effort has dropped again in 2011 and 2012. UK effort peaked in 2003 and has also stabilised in the last four years, but at a much lower level than French effort. Bottom trawl was the predominant gear used in area VI followed by pelagic trawling and gill nets. Total effort has been in decline since 2002.

In addition to otter trawl, UK effort comprises all the other gear types. UK gill net activity had declined up to 2010 but showed an increase again in 2011. However in 2012 effort dropped to an insignificant amount. UK longline effort, which had declined between 2008 and 2010, has begun to increase again in the last two years.

Irish effort is primarily for bottom trawl, with some effort recorded for pelagic trawl between 2000 and 2004. Effort decreased after 2005 and has fluctuated since.

Dutch effort, which consisted entirely of pelagic trawls, fluctuated during the early 2000s. This stabilised between 2006 and 2010 even though no effort was recorded in 2009. However in the last two years effort has begun decreasing again. German effort was concentrated between 2003 and 2007, with gill nets and pelagic trawls being used. In 2010 German effort was recorded for gill nets and in 2012 was recorded for pelagic trawls.

Table 5.9.1.6.1.- Deep Sea fishing effort (kW*days) 2000 – 2012 by member state ICES Sub-area VI EU.

Area	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
6 EU	DEU				441	557611	335978	356344	215066			34839		312000
	DNK	2406												
	ESP										199237			294198
	FRA	6300751	6720756	26462011	5332009	5605366	5279115	4105642	3912664	3795716	3795716	3097857	2063204	2082197
	IRL	584925	845204	554224	306629	220854	254537	63679	160602	132217	32282	81929	16578	34122
	NLD	1574305	1573595	1380242	604027	2937769	1737822	1054019	1061055	1013096		988482	658560	529201
	UK	3218645	4045381	3988130	5298339	4552120	2924540	1834797	1574185	925284	1362479	1221865	1064186	972123
6 EU Total		11681032	13184936	32384607	11541445	13873720	10531992	7414481	6923572	5866313	5389714	5424972	3802528	4223841

Table 5.9.1.6.2.- Deep Sea fishing effort (kW*days) 2000-2012 by gear and member state ICES Subarea VI EU.

Area	Gear	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
6 EU	BEAM	FRA				54693	95526								
		UK	11278	9298	4214	17964	50267	14625							
	BOTTOM TRAWLS	DEU					12530								
		DNK	2406												
		ESP										142583			150200
		FRA	6041623	6316287	25605568	4967172	5355877	5116610	3995234	3543821	3594454	3594454	2997921	2046576	2063044
		IRL	449853	522150	216898	299429	192885	253337	63679	148902	132217	32282	81929	16578	33413
		UK	3045072	3803261	3585331	3765838	2782751	1794175	1225019	942905	665645	1145465	959278	712339	652372
	DREDGE	UK				12688									
	GILL	DEU				441	66848	29540	15192				34839		
		FRA	255888	313683	807848	307424	111848	124528	100472	286283	161800	161800	99936	16628	19153
		IRL		8844											
		UK	19068		15406	1013475	841609	690287	147742	90561	105292	50425	69752	123079	272
	LONGLINE	ESP										56654			143998
		FRA							9936	82560	39462	39462			
		IRL	3693	45222	8100	7200	17000	1200		11700					
		UK	30852	50791	99769	439338	561125	387085	462036	531318	149543	166589	192835	228768	319479
	none	IRL													709
	PELAGIC TRAWLS	DEU					478233	306438	341152	215066					312000
		FRA	3240	90786	48595	2720	42115	37977							
		IRL	131379	268988	329226		10969								
		NLD	1574305	1573595	1380242	604027	2937769	1737822	1054019	1061055	1013096		988482	658560	529201
		UK	112375	182031	283410	5120	297769	38368							
	POTS	UK				43916	18599			9401	4804				
6 EU Total			11681032	13184936	32384607	11541445	13873720	10531992	7414481	6923572	5866313	5389714	5424972	3802528	4223841

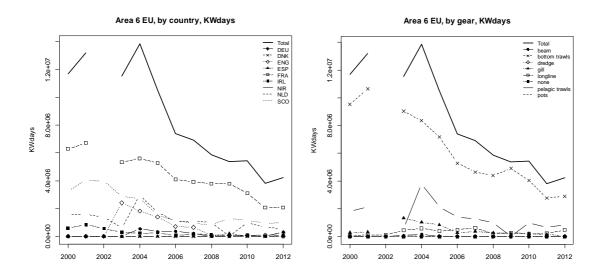


Figure 5.9.1.6.1. Deep Sea fishing effort (kW*days), 2000 - 2012, by country and by gear, in ICES Subarea VI EU. Due to the uncertainty in French 2002 data this year has been removed from the figure.

Western Waters VI EU

There is uncertainty relating to French effort, values in 2002 are extremely high. Overall effort figures are unreliable. There has been a gradual decline in effort within Area VI EU over the period (Table 5.9.1.6.3. and Figure 5.9.1.6.2.)

The influence of deepwater fisheries in Area VI EU is less than in Area V, here the majority of annual effort is directed to non-deepwater fisheries. A variety of nations operate within this area.

Bottom trawling and pelagic trawling are the primary gear categories within this area, along with smaller amounts of pots and gill nets.

Bottom trawling effort has declined throughout the time series. Effort from 2006 to 2008 was stable before dropping in 2009 by roughly 50%. It stabilised here again for three years before declining once more in 2012. Scotland continues to dominate bottom trawl effort, with large contributions from France (directed toward deepwater fisheries), and to a lesser extent Ireland.

Pelagic trawl effort peaked in 2004 and has shown a steady decline since. There was a small increase in effort in 2011, but this has dropped in 2012 and is back at 2010 levels. Historically pelagic effort was dominated by the Netherlands, with major additional effort from Scotland and Ireland. Netherlands effort has been in decline in the last number of years. In 2012 Ireland recorded the most effort in this sector.

A number of other gear categories are reported from this area, occurring at comparatively low levels. This includes pot, dredging, longlines and gillnets. Of these, pots have the highest effort. Much of this effort originates from Scottish vessels, although Irish, English and Northern Irish vessels also utilise this gear. Gillnetting previously showed higher levels of effort, the majority of which was associated with deepwater fisheries, which have subsequently declined since 2006 to low levels. Scotland, France and Germany carry out demersal gillnetting at lower levels.

Table 5.9.1.6.3.- Effort (kW*days) by country, gear and vessel size group within ICES Sub-area VI EU, 2000-2012.

					2000			2001			2002			2003			2004			2005	
						Excluding			Excluding			Excluding			Excluding			Excluding			Excluding
Area 6 EU	Gear beam	Country ENG	Vessel length	Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort	Effort I	Deep Effort	Deep Effort	Effort 442	Deep Effort	Deep Effort 442	Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort
PEO		BEL	o10t15m o15m	27240	-	27240	10308		10308	5595		5595	19005		19005	18103		18103	8566		8566
		ENG	o15m	0		C	0		C	0		0	832		832	12067		12067	1810		1810
		FRA	o15m	0			1472	0	1472	0	0	0	25827	54693	-28866	37257				C	
		IRL SCO	o15m o15m	10523 144668		10523	12528 84589	9298	12528 75291	110422	4214	106208	0 148341	17964	130377	38963 251008		38963	5068 144717	14625	5068 130092
		ENG	o10t15m	0		13333	0 0	3230	7,52,52	0	42.14	0	78267	1730-	78267	27096		27096			37472
		FRA	o10t15m	0		C	0		C	0		0	23547		23547	C		(0		0
		IOM	o10t15m	0		C	0		0	0		0	0		0				0		0
		IRL NIR	o10t15m o10t15m	102163 0		102163	91438	0	91438	62234 0	0	62234	93897 16445	0	93897 16445	61003 22824		61003	31160 15635		31160 15635
		SCO	o10t15m	1642074			1668443		1668443	1574994	224	1574770	1802760	0		1810666			1679974		
		BEL	o15m	0		C	0		0	0		0	0		0	((0		0
		DEU	o15m	65842			59689	0	59689	23580	0	23580	19191	0		12530			35586	C	
		DNK ENG	o15m	44514			87663	0	87663	130437	0	130437	162941 1187262	1116819		98707 819392			0 683083	632562	
		ESP	o15m	0			0	0		0	0	0	0	1110619		019392			0 00	032302	
		FRA	o15m	6431933				6316287	540919	24478451	25605568	-1127117	4829354	4967172	-137818	4713492			5117917	5116610	
		IOM	o15m	0		C	0		0	0		0	181		181	1172		1177	181		181
		IRL NIR	o15m	2271093		1821240			1666839	1392006	216898	1175108	2053249	299429		1544175					
		NIR	o15m o15m	0			0 0	0		10592	0	10592	604490 9840	18578	585912 9840	501317		497218	421825	4808	417017
		SCO	o15m	13099323		10054251	13318903	3803261	9515642	11946784	3585107	8361677	10919812	2630441		9215112		7177736	6859956	1156805	5703151
	dredge	ENG	o10t15m	0		- 0	0		- 0	0		0	9672		9672	19995		19995	9672		9672
		FRA	o10t15m	0			0		0	0		0	7332		7332	1128		1128			0
		IOM	o10t15m	7649		7649	13630		13630	9954		9954	680		680	397		397	0 397		397
		NIR	o10t15m	7649		7049	0 13030		13030	0		9934	8736		8736	13993		1399	22540		22540
		SCO	o10t15m	228953		228953	236363		236363	222879		222879	229317		229317	241114		241114	220231		220231
		ENG	o15m	0		C	0		0	0		0	13537		13537	8710		8710			31402
		IOM	o15m	0 515		515	0 8935		8935	24050		24050	8144 10260		8144 10260	13229		13229	2722		2722
		NIR	o15m	212		515	8935		8933	24050		24050	30375		30375	31729		31729	13754		13754
		sco	o15m	1596666		1596666	1662645	0	1662645	1842336	0	1842336	1638062	12688		1348167			1209839	C	
		IRL	o10t15m	1740		1740			0	1740		1740	735		735	1711		1711			192
		NIR	o10t15m	0		C	0		0	0		0	0		0			(0		0
		SCO DEU	o10t15m o15m	9427 265418		9427 265418	12986 90861		12986 90861	5822 41454	0	5822 41454	5005 138094	441	5005 137653	246 134492		246 6764	2038		2038
		ENG	o15m	0			0 0	0	50002	0	0	0	937655	880886		651447			525032	498085	
		FRA	o15m	19259	255888	-236629	135040	313683	-178643	431452	807848	-376396	109888	307424	-197536	159958	111848	48110	268726	124528	144198
		IRL	o15m	1994	C		19636	8844	10792	6518	0	6518	19232	0		20402				C	
		SCO	o15m	30278		11210	12132	0	12132	16681	15406	1275	152512 0	132589	19923	190162			252944		60742
		NIR	o10t15m	0			0			0		0	0		0				1574		1574
		sco	o10t15m	0		C	0		0	2016		2016	0		0	c			0		0
		ENG	o15m	0			0	0	0	0	0	0	380566			461786					
		ESP FRA	o15m o15m	52948			0	0		0	0	0	0						0 0		
		IRL	o15m	3693			45222	45222		10800	8100	2700	7200			18400			3000		
		ENG	o15m	30167			45222	45222	0	10800	8100	2700	-183083	-176054.5	-7028.5	-212493					
		IRL	o10t15m	0		C	0		0	0		0	0		0				0		0
		IRL SCO	o10t15m o15m	50876 0		50876	57096	0	57096	59693 0	0	59693	52102 0	0	52102	26746		26746	42054		42054
		SCO	015m	0				U		0	U	0	0		0	112		112			195
		IRL	o10t15m	16394		16394			5671	20155		20155	172		172			(320		320
		SCO	o10t15m	0		C	0		0	157		157	0		0	157		157			0
		DEU	015m	666036			774479	0		590791	0		682432 74864		682432 74864	762402 289874	478233	284169 289874	638384	306438	331946 180965
		DNK ENG	o15m o15m	161281		161281	24349		24349	31509 0		31509	74864 519661		74864 519661	411524		411524			180965 294900
		FRA	o15m	273019		269779	223838	90786	133052	1026100	48595	977505	379243	2720		437400				37977	
		IRL	o15m	2159868			1418939	268988	1149951	2164888	329226	1835662	2591699	0	2591699	2755700		2744731	1534869	C	1534869
		NIR	o15m	0			0	0	0	0	0	0	296038	5120		461786			272866	C	
		NLD SCO	o15m o15m	3672629 3251290			3976905 3617298	1573595 182031	2403310 3435267	3453892 4574857	1380242 283410	2073650 4291447	2400041 5440059	604027		6156392 5663711			5544240 4517350	1737822 38368	
		LTU	040m	3231290		3138913	0 3017298	182031	3433207	4374837	283410	4291447	3440039		3440039	3003711	292005	33/1/02	4317330	36300	0 4476362
	pots	ENG	o10t15m	0			0		0	0		0	23270		23270	Č		(8376		8376
		IRL	o10t15m	0		C	10556		10556	11542		11542	42987		42987	51068		51068	19007		19007
		NIR SCO	o10t15m o10t15m	1301245		1301245	0 1373675		1373675	0 1141446		0 1141446	46855 1214692		46855 1214692	100776		100776	121866 1401767		121866 1401767
		DEU	010t15m	1301245		1301243	13/30/5		13/30/3	21168		21168	24696		24696	49833		4983	55125		55125
		ENG	o15m	0			0	0	0	0	0	0	280047	43916	236131	145394			219603	0	
		GBJ	o15m	0		C	0		0	0		0	0		0	C		(0		0
		IRL	o15m	358415		358415	564982		564982	568652		568652	619014		619014	631838		631838	584531		584531
		NIR SCO	o15m o15m	384786		384786	0 373210	0	373210	0 412552	0	412552	71548 466579	0	71548 466579	92984 389057		92984 370458			91613 325376
		FRA	o10t15m	564		564		- 0	J. J210	412332	- 0	0	400379		0	303037		3,0430	0 323370		0
		IRL	o10t15m	0		C	0		0	0		0	0		0	C		(0		0
		SCO	o10t15m	2265		2265	1416		1416	0		0	636		636	435		435	0		0
		ENG FRA	o15m o15m	0			0 114816		114816	0		0	27508 0		27508				0 0		0
									114810			- 0									
		IRL	o15m	0	1		0		C C	0			0						12000		12000

	2006			2007			2008			2009			2010			2011			2012	2
Effort	Deep Effort	Excluding Deep Effort	Effort		Excluding Deep Effort	Effort	Deep Effort	Excluding Deep Effort	Effort	Deep Effort	Excluding	Effort		Excluding Deep Effort	Effort	Deep Effort	Excluding Deep Effort	Effort	Deep Effort	Excluding Deep Effort
0	Deep Errort	Deep Errort 0	ETIOIL		Deep Ellori	0	Deep Ellort	Deep Errort	0		Deep Effort	EHORE		Deep Errort 0	EHOR		Deep Errort	EHOR	Deep Errort	Deep Ellort
4415		4415	2356		2356	0		C	0		0	0		0	()	C	0		0
0	0	0			0	0			0		0	0		0) (0	0		
6335	U	6335				0								0			,		,	
101694	0		1803	0	1803	0			0			0		0) 0
36827		36827	42813		42813	56881		56881	9421		9421	12314		12314	20017		20017	37521		37521
0		0	0		0	649		649	0		0	0		0			0	0		0
18456		18456	13467		13467	16261		16261	6016		6016	12798		12798	7903		7903	6309		6309
49371	0	49371	84096	0	84096	56871	C	56871	58295	531	57764	116005		116005	137987	7 0		99194		99194
1657683	0		1680552			1532567		1532567			1459322	1293038			1112107		1112107	1200395		1200395
1766 22797	0	1766 22797	795 23652		795 23652	3060		3060	0 4854		4854	1176		1176 6957				1103		1103
11520	0		23032			0			0			0337		0	ì			0		
382087	319610		270096		25980	78276			61318			70815		2488	49349		1625	35874		
0	0				0	0			0			0		0				174309	150200	
4263214 894	3995234	267980 894	3942141		398320	3963300		368846	3963300		368846	3095528		97607	2151504		104928	2143724		1 80680 284
1412180	63679	1348501	1396292		1247390	1195738	132217	1063521	801585	32282	769303	919701	81929	837772	825742	16578	809164	704529	33413	
434857	2813	432044	710247		704827	639134	10312		513126		509939	786835	7822	779013	813435	790	812645	707288	C	707288
5800069	902596	4897473	5705025		5011656	6214274		5594771	6744754		5635937	5980778		5097649	5464 5843202		5464 5179377	6089033		884 5 5441988
20508	902596	4897473 20508	17860		17860			23879	7068		7068	5980778		5U97649 0	12928		12928	20353		20353
0		0	C		C	0		0	0		0	0		0)	C	0		0
2508		2508	2304		2304	13871		13871	5443		5443	884		884	4862		4862	2920		2920
556 10921		556 10921	884 2685		884 2685	10115		10115	13738		13738	10177		10177	640 2588		640 2588	11709		11709
147675		147675	108381		108381	121309		121309	13738		132383	154918		154918	150292		150292	186572		186572
36378		36378	18125		18125	3868		3868	17617		17617	7304	l .	7304	18182	2	18182	39266		39266
6625		6625	8981		8981	22011		22011	9981		9981	6966		6966	12509		12509	37183		37183
5332		5332	19404 19744		19404 19744	7938 14763		7938 14763	50602		50602	15643		15643	2415		2415	106265		106265
931168	0		712625		712625				834279			806927			707876			934114		
2379		2379	7351		7351			5421	1140		1140	551		551	2075		2075	75		75
1044		1044	553		553	3564 5493		3564 5493	0		0	0		0			0	0		0
56548	15192		161064		161064	141492					91269	114683		79844	10777		107771	65261		65261
102666	102666	0	90561		0	0			41885	41885		2540	2540	0	6085	60851		30899	C	
276528	100472		228799		-57484	649678			649678			375934		275998	633039			494285		
1175 132772	45076		5995 65169			4528 186312			2135			190339		123127	157892			146672		
0	43070	0,030	05105		03103	0		01020	0		0	1397		1397	7470		7470	3471		3471
0		0	C		C C	0		C	0		0	0		0)	C	0		0
0 312858	282970	29888	325325		46424	28103			0			0		0				4415	4415	0
312838	282970	29888	325325	308904	16421	28103							0	0) (, ,	459895	143998	
163130	9936	153194	445344	82560	362784	277750			277750			189072	. 0	189072	172250	0	172250	205044		
0	0		11700		0	0			0			0		0		0			C	
-74864 0	-136517	61653	71709.5		173181.5	124823.5 218		119144	138875		119144	94536		94536 835	86125		86125	100314.5		102522
50920		50920	61281		61281	47721		47721	50969		50969	43058		43058	4138		41387	57776		57776
0			C		0	0	C		0	C		0		0		0		13315		
0		0	2223		2223	20908		20908	48410		48410	55669		55669	57503		57503	47269		47269
4320		4320	2512 C		2512	2092		2092	640		640	1488		1488	12652		12652	4097		4097
1143771	341152	802619	1161097		946031	684150		684150	484479		484479	367736		367736	1073742		1073742	739578		427578
820379		820379	132815		132815	99889		99889	0		0	0)	0	119982		119982	94838		94838
890428	_	890428	845598		845598	653736		653736	721818		721818	425610		425610	296414		296414	110154		110154
305922 1754981	0		324841 1463653		324841 1463653	257796 1645492			257796 1580228			233392 1385132		233392 1385132	138664 1637878		138664	39480 2155644		
287355	0	287355	249162	. 0	249162	124524	C	124524	64013		64013	178558	0	178558	408601			316834		316834
4327834	1054019	3273815	4430203	1061055		3824546		2811450	2815153		2815153	1557718	988482	569236	1258498	658560		1667234	529201	1138033
2316619	0	2316619	2185832		2185832	1458951		1458951	1798030		1798030 29520	1559693	. 0	1559693	1766211 150400		1766211	1651511		1651511
9260		9260	11967		11967	3531		3531	45565		29520 45565	135451		135451	6546		65461	26762		26762
123069		123069	201366		201366	165038		165038	175838		175838	207251		207251	145184		145184	156218		156218
111192		111192	201613		201613	188029		188029	143821		143821	158370		158370	160594		160594	201561		201561
1474879 98384		1474879 98384	1661647 92176		1661647 92176	1630841 34398		1630841	1657389		1657389 46978	1761371		1761371 75535	1534473		1534473 63157	1519643 7991		1519643 7991
228556	0		500374		491414	147114			63725			64031		64031	61952			51799		
0		0	C		C	0		C	321		321	. 0)	0	1043	3	1043	0		0
441124		441124	462973		462973	394266		394266	327243		327243	297001		297001	209050		209050	127620		127620
60072 374470		60072 374470	110316 421709		110316 421268	82843 400018		82843 395214	11306 526231		11306 526231	25479 622139		25479 622139	135049 530089		135049 530089	497483		440
3/44/0	- 0	0	421709		421208	400018		353214	0 520231		320231	022139		022139	530085		. 330089	497483		457483
448		448	c		0	0		C	0		0	0		0	359		359	0		0
0		0				0			0											0
0		0	0		0	0			0		0	0		0)				0
0		0	C			0			0			0			,					0
31610323	7414481	24195842	31168435	6923572	24244863	28379716	5866313	22513403	27418881	5389714	22029167	24048181	5424972	18623209	23583447	7 3802528	19780919	23990246	4223841	19766405

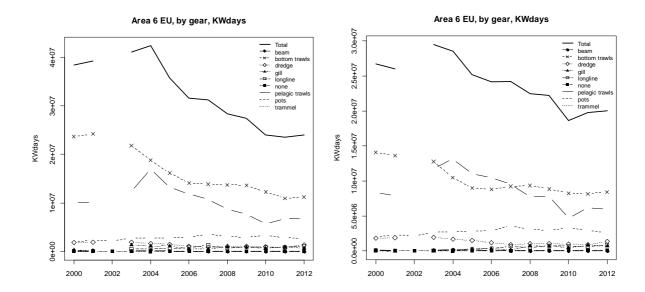


Figure 5.9.1.6.2.- Effort (kW*days) reported within ICES Sub-area VI EU by gear type, 2000-2012, with (left) and without (right) reported deepwater effort.

Deepwater VI non-EU

The effort in Area VI non-EU peaked in 2004 and has been in decline since, with the 2012 figure being the smallest of the time series, (Tables 5.9.1.6.4, 5.9.1.6.5 and Figure 5.9.1.6.3). This effort has been dominated by the UK, however UK effort has dropped by more than 99% since its peak in 2004. In 2012 Spain recorded effort in this area for bottom trawls for the first time.

Bottom trawl was the most important method, with some gill net effort being reported up to 2001 by Portugal and 2007 by the UK. Netherlands carried out pelagic trawls for a number of years in the mid 2000s.

Table 5.9.1.6.4.- Deep Sea fishing effort (kW*days) 2000 – 2012 by member state ICES Sub-area VI non-EU.

Area	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
6 non EU	ESP													215918
	EST						12656	18080						
	NLD				4398	139938								
	PRT	342636	361300			72900								
	UK	99475	260982	232059	1222142	1398142	706837	529460	367291	170600	99545	135929	41990	8514
6 non EU Total		442111	622282	232059	1226540	1610980	719493	547540	367291	170600	99545	135929	41990	224432

Table 5.9.1.6.5.- Deep Sea fishing effort (kW*days) 2000 – 2012 by gear and member state ICES Subarea VI non-EU.

Area	Gear	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
6 non EU	BOTTOM TRAWLS	ESP													215918
		EST						12656	18080						
		UK	99475	213568	153329	871779	1024477	548210	451499	316165	151087	99545	135929	41990	8514
	GILL	PRT	342636	361300											
		UK		46526	78730	342362	373665	158627	77961	51126					
	LONGLINE	PRT					72900								
		UK		888		8001									
	PELAGIC TRAWLS	NLD				4398	139938								
	POTS	UK									19513				
6 non EU Total			442111	622282	232059	1226540	1610980	719493	547540	367291	170600	99545	135929	41990	224432

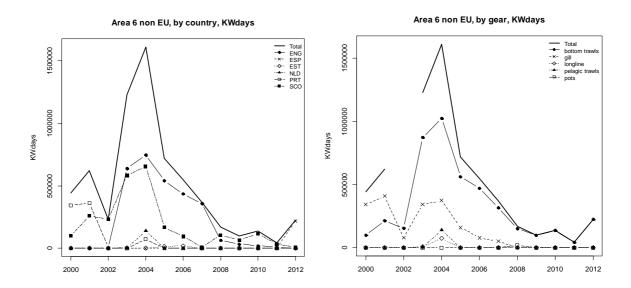


Figure 5.9.1.6.3. Deep Sea fishing effort (kW*days), 2000 – 2012, by country and by gear, in ICES Subarea VI non-EU.

Western Waters VI non-EU

Effort has been declining within this area over time, having peaked in 2004. Effort had increased slightly between 2008 and 2010, and has stabilised since (Table 5.9.1.6.6. and Figure 5.9.1.6.4.).

Bottom trawling is the primary activity, carried out by English and Scottish vessels. Much of the effort had been directed towards deepwater fisheries. Scottish effort, which had increased to to 2010, has begun to decline again. In 2012 England, whose effort had been in decline since 2004, didn't report any bottom trawl effort, however, Spain recorded a large amount of effort, for the first time.

At the beginning of the time series, gillnetting also occurred, carried out by England, Scotland and Portugal, and much of this effort was directed toward deepwater fisheries. Since 2006 effort within this category has been minimal.

A period of pelagic trawling which occurred between 2003 and 2005 has ceased. Effort by Germany using pots from 2010 to 2012 seems to be directed at deep-water red crab.

Table 5.9.1.6.6.- Effort (kW*days) by country, gear and vessel size group within ICES Sub-area VI non-EU, 2000-2012.

					2000	1		2001			2002			2003	1		2004			2005	j
						Excluding			Excluding			Excluding			Excluding			Excluding			Excluding
Area Ge	ear	Country	Vessel length	Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort
6 non EU bo	ottom trawls	DNK	o15m	0		0	0		0	()	(6371		6371	0		(0		
		ENG	o15m	0	0	0	0	C	C	(0	(514353	514353	0	727273	698028	29245	528446	528446	j
		ESP	o15m	0	0	0	0	C	C		0	(0 0) (0	0	0	(0	C)
		FRA	o15m	0		0	0		C	()	(0 0)	0	0		(0		
		sco	o15m	154635	99475	55160	269854	213568	56286	205365	153329	52036	458126	357426	100700	352587	326449	26138	24708	19764	494
		EST	o40m		0			C			0			()		0			12656	j
		LTU	o40m	0		0	0		0	()	(0 0)	0	0		(0		
gil	II	ENG	o15m	0	0	0	0	C	0	(0	(126696	124990	1706	47538	47538	(12044	12044	į.
		FRA	o15m	0		0	0		C)	(0 0)	0	0		(0		
		PRT	o15m	342636	342636	0	361300	361300	C	158848	0	158848	В () (0	51136	0	51136	0	C)
		sco	o15m	75883	0	75883	87388	46526	40862	124119	78730	45389	226990	217372	9618	326127	326127	(151406	146583	3 48:
loi	ngline	PRT	o15m	0	0	0	0	C	0	(0	(0) (0	136080	72900	63180	0	C)
	_	sco	o15m	23050	0	23050	25498	888	24610	1111	. 0	1111	1 8001	8001	. 0	0	0	(0	C)
pe	lagic trawls	DEU	o15m	0		0	0		0	()	(9884		9884	0		(0		
	_	DNK	o15m	24060		24060	0		C)	(0 0)	0	0		(0		
		NLD	o15m	0	0	0	0	C	C		0	(214451	4398	210053	254730	139938	114792	88605	C	886
		sco	o15m	33150		33150	9046		9046)	(154562		154562	0		(0		
po	ots	DEU	o15m	0		0	0		0	()	(0 0)	0	0		(0		
		ENG	o15m	0		0	0		C	()	(24797	,	24797	0		(0		
		sco	o15m	0	0		0	C		(0) ()	0	0		0	C	J
non EU Total				653414	442111	211303	753086	622282	130804	489443	232059	257384	1744231	1226540	517691	1895471	1610980	284491	805209	719493	3 983

	2006			2007			2008			2009			2010			2011			2012	
													2010						2012	
		Excluding																		
Effort	Deep Effort	Deep Effort																		
0		(0		(0		0	0))	(0		(
434191	434191		307643	307643		65188	65188	0	33612	33612		19940	19940) (6940	6940	(0	0	
0	0		0			0	0	0	0	0) () (0	(230572	215918	14654
0			0			0		0	0			2427		2427)	(0		(
39808			57544	8522	49022	94473	85899	8574	182346	65933	116413	415654	115989	299665	278137	35050	243087	68660	8514	60146
	18080			C			0			0			()		0			0	
0			0			0		0	0			0 0)	(0 0)		53718		53718
0	0		58329	51126	7203	0	0	0	0	0		0) () (0	0	(0	0	(
0			0		(0		0	0			0)	(0)	(818		818
0	0	C	0	C	(0	0	0	0	0	C	0) () (0	0	(0	0	(
77961	77961		67248		67248	0	0	0	15317	0	15317	') () (0 0	0		0	0	(
0	0	C	0	C	(0	0	0	0	0	C	0) () (0	0	(0	0	(
0	0	(0	0	(0	0	0	0	0	(0 0) () (0	0	(645	0	645
0		(0		(0		0	0		(0)	(0)	(0		(
0		(0		(0		0	0		(0)	(0)	(0		(
0	0	(0	C	(0	0	0	0	0	(0) () (0	0	(0	0	(
0		(0		(0		0	0		() ()	(0)	(0		(
0			0		(0		0	0			39709	9	39709	91296	i .	91296	23101		23101
0		C	35364		35364	0		0	0		C	0)	(0)	(0		(
0	0		0	C		19513	19513		0	0		C) ()	C	0		0	0)
551960	547540	22500	526128	367291	158837	179174	170600	8574	231275	99545	131730	477730	135929	34180	376373	41990	334383	377514	224432	15308

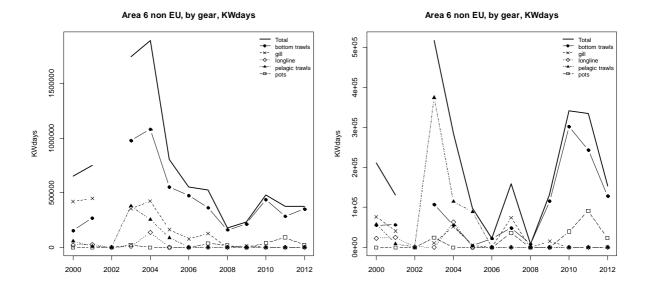


Figure 5.9.1.6.4.- Effort (kW*days) reported within ICES Sub-area VI non-EU by gear type, 2000-2012, with (left) and without (right) reported deepwater effort.

5.9.1.7 Fishing effort in ICES area VII excluding VIId

Deepwater VII EU no VIId

Six countries supplied data indicating activity in this area (Tables 5.9.1.7.1, 5.9.1.7.2 and Figure 5.9.1.7.1), from 2003 to 2007 by Germany, and 2009 and 2012 from Spain. UK, France and Ireland were the main countries with the Netherlands also reporting pelagic trawl effort in this area throughout the time series

This area has been broken up into Area VII (EU no VIId), EU VIId, and non EU. EU VIId is the eastern English channel and is often associated with the North Sea as much as the English Channel.

With the exception of the UK, effort of most of the other nations has dropped dramatically. For the UK effort peaked in 2004 at 7.5 million KWdays before it began dropping. However UK effort has been relatively stable since 2009. French effort has also declined by just over 60% in the time period and for Ireland it is even more striking, down from 1.6 million KWdays to just under 190,000 KWdays.

The main effort in this area is recorded for the UK bottom trawl effort, followed by France and Ireland. In 2012 however Spain recorded extensive bottom trawl effort, similar to that recorded by the UK in the middle part of the time series. Gill net effort in France and the UK has been declining since reaching a peak in 2004. Between 2006 and 2008 the UK longline effort was nearly as important as gill nets, but this effort decreased quickly up to 2011, before showing an increase again in 2012. Spain also reported considerable longline effort for 2012. The UK reported effort by beam trawls and trammel nets but both have been in decline recently, although there was an increase in trammel net activity in 2012.

In general the declines in effort reported above are evident in most gears. The Netherlands has been responsible for most of the pelagic trawling. This effort fluctuated between 2000 and 2005, and became intermittent at low levels after that. The Netherlands reported quite high effort again for 2010 but this has decreased again in 2011 and 2012.

Table 5.9.1.7.1.- Deep Sea fishing effort (kW*days) 2000-2012 by member state ICES Sub-area VII EU no VIId.

Area	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
7 EU no 7d	DEU				111935	318242	344403		8398					
	ESP										374808			3827062
	FRA	2029867	2388719	7738371	1544420	1236669	1591217	1633554	1424224	992530	981979	965551	688175	827292
	IRL	1576450	2867608	3033612	3290922	2495796	2236290	1158833	811713	607795	128419	107778	130793	187119
	NLD	1146962	219372	535722	150544	636250	299936	22652		53536		482503	225060	111619
	UK	1835996	1593830	1456107	7415966	7135728	6434736	4853687	5236725	4235020	2851074	3000554	2671318	2336111
7 EU no 7d Total		6589275	7069529	12763812	12513787	11822685	10906582	7668726	7481060	5888881	4336280	4556386	3715346	7289203

Table 5.9.1.7.2.- Deep Sea fishing effort (kW*days) 2000-2012 by gear and member state ICES Subarea VII EU no VIId.

Area	Gear	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
7 EU no 7d	BEAM	IRL		59082	5372			17507							1547
		UK				1780538	1655828	1630596	910940	974833	788631	434315	333813	322008	381556
	BOTTOM TRAWLS	ESP										154898			2528775
		FRA	1729990	1936562	5021776	1142499	944045	1027472	1228501	1011353	705892	695341	757599	576611	680547
		IRL	1326313	2468071	2536986	3036176	2473880	2187958	1127858	749478	603370	128419	107778	130793	176355
		NLD											3385		
		UK	1325727	1126415	976686	3185967	2846227	2725982	2650833	2909815	2041911	1812445	1872463	1760043	1071343
	DREDGE	FRA											110		
	GILL	DEU				111935	185086	189137		8398					
		ESP										8985			1588
		FRA	291082	439105	2708847	396953	261655	555657	351137	245631	219877	219877	129931	107103	135602
		IRL	159080	144985	132049	165956	18916	11875	30975	30385	4425				
		UK	368315	206294	209473	1919589	2262210	1656905	623470	639964	638693	491055	592565	513031	609884
	LONGLINE	ESP										210925			1281762
		FRA	8795	9688			21409	1133	46139	167240	66761	66761	72518		9338
		IRL	43647	69347	65700	73800	3000	18950		31850					
		UK	92543	139149	173271	458307	305419	352092	615056	691143	746843	110627	172638	70581	244630
	none	ESP													14937
		IRL		1612											9217
	PELAGIC TRAWLS	DEU					133156	155266							
		FRA		3364	7748	4968	5912	3355	2479				1620	1768	
		IRL	47410	124511	293505	14990									
		NLD	1146962	219372	535722	150544	636250	299936	22652		53536		479118	225060	111619
		UK		72061		34271	41484	50625					27309		
	POTS	FRA					3648						3087		140
		UK				545	8376				15155		654	162	
	TRAMMEL	FRA						3600	5298				686	2693	1665
		UK	49411	49911	96677	36749	16184	18536	53388	20970	3787	2632	1112	5493	28698
7 EU no 7d Total			6589275	7069529	12763812	12513787	11822685	10906582	7668726	7481060	5888881	4336280	4556386	3715346	7289203

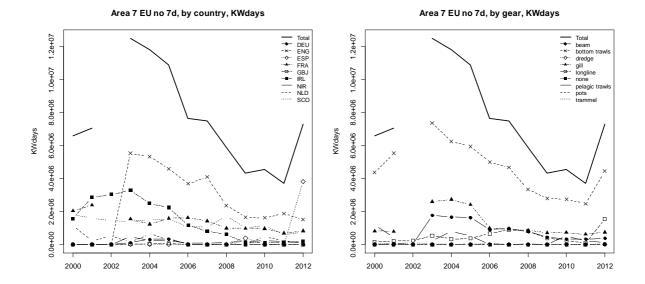


Figure 5.9.1.7.1. Deep Sea fishing effort (kW*days), 2000 - 2012, by country and by gear, in ICES Subarea VII EU no VIId. Due to the uncertainty in French 2002 data this year has been removed from the figure.

VII EU no VIId Western Waters

There is uncertainty relating to French effort.

Within EU waters of Area VII, excluding VIId, a wide variety of activity occurs incorporating a number of nations. Overall effort declined from 2004 until 2007, but has been fluctuating since. A relatively small proportion of effort is directed to deepwater fisheries (Table 5.9.1.7.3 and Figure 5.9.1.7.2).

The main gear in use is the bottom trawl, with France the primary contributor followed by Ireland and the UK. Bottom trawl effort has remained relatively stable throughout the time series. Within the UK effort by England has dropped gradually while that of Scotland has stayed stable.

Pelagic trawling is dominated by the Netherlands and with smaller amounts by Ireland, UK, France and Germany. Netherlands effort has decreased slightly in the last two years after being reasonably stable since 2003. Effort by Germany and France has been stable, while that of Ireland has begun to increase since 2008. Within the UK effort by England is stable while that of Scotland has declined.

Beam trawling, mainly carried out by England, Belgium and Ireland, has declined from a peak in 2003. This is likely due to a number of decommissioning schemes removing vessels from the fleet. Effort seems to have stabilised since 2009.

Dredging effort (by France, Scotland, England and Ireland) has remained stable through the time series. A small amount of effort is also directed toward pots and gillnets, particularly by France.

Table 5.9.1.7.3.- Effort (kW*days) by country, gear and vessel size group within ICES Sub-area VII EU no VIId, 2000-2012.

					2000			2001	ı		2002			2003			2004			2005	i
Area	Gear	Country	Vessel length	Effort		Excluding Deep Effort	Effort		Excluding Deep Effort	Effort		Excluding Deep Effort	Effort		Excluding Deep Effort	Effort		Excluding Deep Effort	Effort		Excluding Deep Effort
7 EU no 7d	beam	ENG	o10t15m	0			0		(0		0	20099	3	200993	81373	3	81373	83351		83351
		FRA IRL	o10t15m o10t15m	19608 1320		19608	15582		1558	2 14707 0 0		14707	721		7217	27252		27252	72001		72001 0
		NIR	o10t15m	0		0				0		0		0)	(0		0
		SCO BEL	o10t15m o15m	3307239		3307239	3841067		3841067	7 4365260		4365260	479948	7	4799487	6051749	9	6051749	5691268		5691268
		ENG FRA	o15m	0		0	85561		8556:	0 0 1 181057		0 181057	602158 4028		4263449 40289	5739694 296461		4123256 296461	5804604 244545	1556059	4248545 244545
		GBJ	o15m o15m	0) (0 0	0	0	32532	8 22402	302926	409038	39390	369648	205771	74537	131234
		IRL NIR	o15m o15m	4016703 0		4016703	3710536		365145	4 3625994 0 0		3620622	489994		4899946	3605637	7 0	3605637	3489563	17507	3472056
		NLD	o15m	233246		233246	2184		218	4 7048		7048	2200		22000			(5884		5884
	bottom trawls	SCO ENG	o15m o10t15m	0	0) (0 0		0	157421	0 0 7 6554	1567663	1564197		1559595	1548480	3845	1544635
	DOCLOTH GUMPS	FRA	o10t15m	459112	672		504324			4 3109661	0		121570	5 0		1442682	2 0		1330539		1330539
		GBG IOM	o10t15m o10t15m	0		0				0 0		0	23		239			(730		730 2126
		IRL	o10t15m	292972		292972	316604		31660	4 311512		311512	42970	0	429700	397518	3	397518	398023		398023
		NIR SCO	o10t15m o10t15m	1313						0 0			32759: 3970			480458			470614 74832		
		BEL	o15m	39210		39210	37083		3708	36086		36086	2220		22209	132868		132868	232400		232400
		DNK ENG	o15m o15m	182847 0		182847	146098		146098	51441 0 0		51441 0	11120 371059		111205 1891508	213006 3615810		213006 1955683	77968		77968 1712899
		ESP FRA	o15m o15m	0 11477151			15259853			0 0 1 74353370		69331594	1760032	0 0		17806538			18308670		0
		GBG	o15m	0		9747833	13239833		1332329.	0 0		03331394		0	10437627	17800336		10002493	0		0
		GBJ IOM	o15m o15m	0		0				0 0		0	355° 2745		3557 27459	11188		11188	6745 25251		6745 25251
		IRL	o15m	8395827		7069514	9791002		732293	1 10855752		8318766	1287760	6 3036176		13028688	2473880	10554808	12713515	2187958	10525557
		NIR NLD	o15m o15m	55980		55980	216084		21608	0 0 4 208550		208550	513142 25571			3873541 64393			3688605 108566	189486	
		SCO	o15m	1922928	1325727		1590164	1126415		9 1454815	976686	478129	145477	6 918175	536601	1478468	943076	535392	1807434		651934
	dredge	ENG FRA	o10t15m o10t15m	859043		859043	1048444		104844	0 0 4 7828280		7828280	32802 232095		328023 2320953	415033 2954269		415033 2954269	606335 2755241	0	606335 2755241
		IOM	o10t15m	0		0	0		(0		0	71	7	717)	(209		209
		IRL NIR	o10t15m o10t15m	10671 0		10671	18238		18238	8 5518 0 0		5518 0	1976: 2946:	9	19763 29469	16170 44290)	16170 44290	2686 50615		2686 50615
		SCO BEL	o10t15m o15m	6351		6351	21611		2161	1 19662		19662	949		9496	4196	5	4196	22366		22366
		ENG	o15m	0		0				0		0	82067	7	820677	928810)	928810	1034158		1034158
		FRA GBJ	o15m o15m	399764 0		399764	510343		51034	3 2543721 0 0		2543721	63165 5729		631654 57295	904367		904367	644169		644169
		IOM	o15m	0			0			0		0	785	6	7856	5387	7	5387	4985		4985
		IRL NIR	o15m o15m	828345 0		828345	618445		61844	608505		608505	1067220 10573		1067220 105733	1117122 93221		1117122 93221	584823 61077		584823 61077
		NLD	o15m	0		0	54426		54420	56253		56253	15379	0	153790	136772	2	136772	198540		198540
	gill	SCO ENG	o15m o10t15m	1157996 0		1157996	1479778		1479778	8 1328895 0 0		1328895 0	147055 37211		1470555 225606	1326466 416116		1326466	1595680 329209		1595680 187858
		FRA	o10t15m	275261			273569			9 2213729			74093			1015940			904288		
		IRL NIR	o10t15m o10t15m	83141 0		83141	63582		6358	2 56252 0 0		56252 0	9867		98676	96556		96556	79440		79440
		NLD	o10t15m	0		0				0 0		0			0			(0		0
		DEU DEU	o15m o15m	417051		417051	391578		391578			377303	37113	8 111935		452381	185086		396914		
		ENG ESP	o15m o15m	0) (0 0		0	171502			1805994			1364180	1206139	
		FRA	o15m	807869		516787	896164					-510401	104272		645773	1069302			1240907		
		GBJ	o15m o15m	1545953		1386873	1294591		114960	0 0 6 778516	132049	646467	105555	0 3 165956	889597	853461		834545	626023	11875	0 614148
		NIR	o15m	0		0	0		(0 0		0		0	0)	(0		0
		NLD SCO	o15m o15m	0 450872		82557	660 348860		14256	0 0 6 246997		0 37524	46726		150037	640666		118490	499567	309415	190152
	longline	ENG	o10t15m	0			0) (0 0	0	0	8263:		81993	65028			58340	1161	57179
		ESP FRA	o10t15m o10t15m	41782		41782	25673		2567	327200		327200	11142	6	111426	153667	7	153667	198527		198527
		IRL SCO	o10t15m o10t15m	0		0	0 0			0 0		0			0			(4074		4074 221
		DNK	o15m	0		0	0 0			6993		6993						(0		0
		ENG ESP	o15m o15m	0			0 0			0 0			36215			334140			359017	300599	
		FRA	o15m	127040	8795		84155	9688	7446	7 178820	0		12365	6 0	123656	184636	21409	163227	206807	1133	205674
		IRL SCO	o15m o15m	77156 196263	43647 92543		134643 306560			6 69300 1 286098		3600 112827	9131: 13926:	1 73800 1 127249		4400			68722 50975	18950 50332	
		FRA IRL	o10t15m o10t15m	26031 0		26031	12208		1220	8 55474 0 2088		55474	1075	6	10756	33746	5	33746	76396		76396
		SCO	o10t15m o10t15m	0		0	0 0			0 0		2088						(2130		2130
		DNK ESP	o15m o15m	14700		14700				0 0		0			0			(0		0
		FRA	o15m	205		205	365		365	8717		8717	2100	8	21008)	(327		327
		IRL ENG	o15m o10t15m	0		0	4581		2969	9 375		375 0	795		7950	19022		19022	13409		13409
		FRA	o10t15m	38446		38446	49353	424	48929	225559	0	225559	11139	8 0		109005			72864	0	
		GBG IRL	o10t15m o10t15m	716		716	8378		8378	0 0 8 1911		1911	672		6720	7060		7060	2988		2988
		NIR	o10t15m	0		0			(0 0		0	208	0	2086)	5066	0 1341		1341
		SCO DEU	o10t15m o15m	1152412			1029246			6 1168186			115279	3 0	1152793	5066 1236846	133156	1103690	936424	155266	781158
		DNK ENG	o15m o15m	454122 0		454122	356152		356152	2 389577 0 0		389577	18021 112001		180216 1120013	285933 909490		285933 909490	529574 601144	0	529574
		ESP	o15m	0						0 0		0	-	0	0)	(0		0
		FRA GBJ	o15m o15m	1105863 0		1105863	1634683		1631743	3 5899371 0 0		5891623 0	176796	0 4968 0	1762992 0	1645559		1639647	1623092	3355	1619737
		IRL	o15m	2716924	47410	2669514	1950784		182627	3 2651504		2357999	156540	7 14990	1550417	1762567	7 0	1762567	1592041		1592041
		NIR NLD	o15m o15m	7343001	1146962	6196039	6139612	219372	592024	0 5033174	535722	4497452	29553: 477855i		261260 4628006	257341 5183074			287278 4516777	30242 299936	
		SCO	o15m o40m	760782			1094798	72061		7 886920	0	886920	47130	3 0		1092027	35084		1107013	20383	1086630
	pots	LTU ENG	o10t15m	0	0		0 0			0 0	0		108286	3 0		1084923	3 0		1177925	0	
		FRA GBG	o10t15m o10t15m	482132 0		482132	680910		680910	0 4388916 0 0		4388916	104824			1768450		1768450	1751646		
		IOM	o10t15m	0		0	0	1		0		0	158:	1	1581	1395	5	1395	0		0
		IRL NIR	o10t15m o10t15m	66827 0		66827 0	76572		76572	95186 0 0		95186 0	4948 3418		49481 34180	138065 30312		138065 30312	192380 26230		192380 26230
		SCO	o10t15m	49070		49070	52119		52119	9 2136		2136	156	5	1565)	(12627		12627
		DEU ENG	o15m o15m	0		0	0 0			0 48951		48951 0	7982 55567		79821 555132	22932 537343		22932 5 528967	67473 496013		67473 496013
		FRA GBG	o15m o15m	358292 0		358292	301650		301650	957513		957513	20690		206908	310610 75868		306962 75868	331470 56398		331470 56398
		GBJ	o15m	0			0			0 0		0	7219	6	72196	80150)	80150	17726		17726
		IOM IRL	o15m o15m	0 29274		29274	0 0 44134		44134	0 0 4 79530		79530	10793		107939	58839		58839	107808		107808
		NIR	o15m	0		252/4	0		(0 0		79350	-	0	107935	781	ı	781	107808		0
\vdash		SCO ENG	o15m o10t15m	0		-	3384		338	9 0		0	37		373	243			11051	5706	5 5345
		FRA	o10t15m	362480	0		428847			7 1376153	0		463009	9 0	463009	613504			763828		
		IRL	o10t15m	0		0				0 0	0	0	800 1790		802 1197	40645		3782	16189	12830	3359
		ENG	o15m	0																	
		ENG FRA	o15m o15m	140184	0		216520					1121650	29922		299226	358319	9 0	358319	438016	3600	434416
7 EU no 7d Tota		ENG	o15m o15m o15m o15m			140184		C	3885	5 0		1121650 0 15327	299220 5050	0	299226 0 30458		0	358319 172	438016 16260	3600	434416 16260

	2006			2007			2008			2009			2010			2011			2012	
Effort	Deep Effort	Excluding Deep Effort	Effort	Deep Effort	Excluding Deep Effort	Effort		Excluding Deep Effort		Deep Effort	Excluding Deep Effort	Effort	Deep Effort	Excluding Deep Effort	Effort		Excluding Deep Effort			Excluding Deep Effort
61634 99790		61634 99790	77449		77449 130720	96733 55970		96733 55970	50274 48196		50274 48196	59927 111460		59927 111460	69980 117792		69980 117792	84607 69224		84607 69224
0 145		0 145	748		748	0 3401		0 3401	0 82		0 82	0		0	0		0	0		0
0		0	4308567		(1378		1378	0 2596153		0	0		0	3458008		0	0 3874607		3874607
4400152 5296966	910940		4980958	971167		2841633 4272013	788631		3829861	434315		3112466 3686937	333813	3112466 3353124	3860618	322008		3667325	381556	3285769
207818	0	207818	189856	. 0	189856	90473	0	90473	90473		90473	196958	0	196958	87754 0	0	87754	62709	0	62709
2560813 0	0	2560813	2317723	0		1394546 238			1090173 288	C		1166341		1166341	1092076	0	1092076	1264517 0	1547	1262970
0		0			(0		0	0		0	1467		1467	0		0	3235		3235
1575058	9768	1565290	4740 1675567		1074 1657127	1628854	10101	1618753	1396 1749571	9759	1396 1739812	1739408	1009	1738399	1668442	989	1667453	1602051	2854	1599197
2045449 6042	0	2045449	2477485 11393		2477485 11393	1442715 5605	C	1442715 5605	1414733 3090	C	1414733 3090	1473669		1470855 7854	1559074 2298		1558750 2298	1440137 11868	0	1440137 11868
373 466124		373 466124	4973 619016		4973 619016	8235 554130		8235 554130	12652 628520		12652 628520	6188 705336		6188 705336	78525 652020		78525 652020	66856 759628		66856 759628
471479	0	471479	451548	0	451548	492927		492927	474066	C	474066	398376	82	398294	306889	C	306889	407288	0	407288
5860 458682	0	5860 458682	18385 541488		18385 541488	162 535010		162 535010	52193 498969		52193 498969	89992 437109		89992 437109	26820 351547		26820 351547	19782 489331	0	19782 489331
121909 3084725	1680393	121909 1404332	77502		77502 1078886	54619 2014449	1001010	54619 1013439	161809 1617857	899723	161809 718134	1961967	916477	1045490	2041608		817220	0 1801653	694663	1106990
0	0	0		0		0	C	0	0	154898	-154898	0	0	0	0	0	0	3742780	2528775	1214005
17116070 336	1228501	336	16055918	1		12339845 0	705892	0	12298413 0	695341	0	15129220		0	14776517 0		0	14652767 0	680547	0
19360 5054		19360 5054	30580		30580 25439	25740 7252		25740 7252	31020 9330		31020 9330	37620 16620		37620 16620	41195 75300		41195 75300	13640 42259		13640 42259
10766994 3324521	1127858 72490	9639136 3252031	11206943 3055167			9356067 3461946	603370 136248		7949197 3206546	128419 190772		8892561 2908860		8784783 2681212	8718651 2582363	130793 181438		8756120 2396202	176355 105076	
162551	0	162551	113851	. 0	113851	91281	C	91281	216240	C	216240	258516	3385	255131	259780	0	259780	154541	0	154541
1197595 617534	888182	309413 617534	1070697		220943 573308	1434085 417874	894552	539533 417874	1477357 562160	712191	765166 562160	1847876 655367		1120629 655367	1418011 788032	353228	788032	1422605 888453	268750	1153855 888453
3279571 186	0	3279571 186	3330398		3330398 3599	2518083 6605	C	2518083 6605	2478802 0	C	2478802	1680695	110	1680585 0	1680609 0		1680609	1594941 0	0	1594941 0
24492 51904		24492 51904	38799 41507		38799 41507	63475 62664		63475	75323 17874		75323 17874	92844 16018		92844 16018	138448 27961		138448 27961	111243 43701		111243 43701
34863		51904 34863	36187		41507 36187	10087		10087	43352		43352	74611		74611	24045		24045	38532		38532
0 1171472		1171472	1079311		1079311	76714 760558		76714 760558	72828 801975		72828 801975	109230 954110		109230 954110	101286 1179089		101286 1179089	107906 1311621		107906 1311621
719978 0		719978	852839 0		852839	788184 0		788184 0	788405 0		788405	664555		664555 440	540029 440		540029 440	488812 0		488812 0
33423 188454		33423 188454	12059		12059	12816 249862		12816	3908 300350		3908	10953		10953 379675	404069		404069	0 421176		0 421176
47758		47758	65029		65029	82416		82416	82629		82629	379675 97030		97030	49892		49892	77669		77669
130515 1254132		130515 1254132	179128 1378616		179128 1378616	146404 1749138		146404 1749138	213697 1778744		213697 1778744	77210 1372408		77210 1372408	1151318		1151318	0 1273983		1273983
311725 951675	103130	208595 951675	277319 917344	76449	200870 917344	245683 704412	78641	167042	273159 704349	68803	204356	264715 442616	66165	198550 438404	261479 453543	86313	175166 453543	263845 453261	89284 1086	174561 452175
103073		103073	113708		113708	130633		130633	156942		156942	135905		135905	96876		96876	113456	1000	113456
0 161		161			(0		0	2106 0		2106 0	1701		1701 0	1296 0		1296	1539 0		1539 0
0 32794	0	32794	171880		163482	2700 229650		2700 229650	93910		93910	114413		0 114413	91953		91953	105780	0	105780
664922	500364	164558	710381		147561	482738	375119	107619	367021 0	240907 8985		459376	265584	193792	360084 0		127629	408895 24339	307930 1588	100965 22751
996131	351137	644994	1258557	245631	1012926	1535687	219877	1315810	1535360	219877		1791358		1665639	1589363	107103	1482260	1837460	134516	1702944
0 457663	30975	426688	495966		465581	443173	4425	438748	0 415369	C	415369	716 409269		716 409269	0 374722		374722	0 391029	0	391029
0		0				0		0	2140		2140	0		0	0		0	0		0
192066 71515	19976 1106		193116 81526			355719 63299	184933		437451 44113	181345 1710		387259 52964		126443 51570	463248 53477			439892 41153	212670 840	
0	1100	0	0			0	084	0	0	1710	0	0		0	0		0	96	840	96
350334 1265		350334 1265	313997 9962		313997 9962	139114 16474		139114 16474	139114 26309		139114 26309	170925 21794		170925 21794	133564 14590		133564 14590	112422 23081		112422 23081
0		0				0		0	0		0	0		0	0		0	0		0
463285	428127 0	35158	587563	493801		139650			5118 0	215 210925		6800	1180	5620	3781 0	1900		0 2418998	0 1281762	
360284	46139	314145	410608	167240	243368	336703	66761	269942	336703	66761	269942	374256	72518		359037	0	359037	633264	9338	623926
0 249936	0 185823	64113	46022 257928	196816	61112	31331 811319	634525	176794	2856 194403	108702	85701	13030 232883		13030 62819	3193 132797	67945	64852	45334 414308	243790	
41748 0		41748	6979		6979	16784 371		16784 371	16784 0		16784	52		5	45498 0		45498	0 64		64
0		0	0			0		0	0		0	0		0	0		0	0		0
0	0	0		0		0	C		0	C		0	0	0	0	0		37916	14937	22979
858 0	0	858	6401		6401	5849 0		5849	5849 0	0	5849	0		0	8828 0		8828	841252	9217	832035
21430 79681	0	21430 79681	55665 111755		55665 111755	83542 69017		83542 69017	76419 69017		76419 69017	81105 111331		81105 111331	65979 96641		65979 96641	53907 122264	0	53907 122264
9035		9035	201		201	09017		7176	191 12012		191 12012	0 11545		11545	35754		35754	0 86408	0	0 86408
0		0			0091	7176 859		/1/6 859	0		0	11545		11545	35/54		35/54	80408		0
596 856734	0	596 856734	962635		962635	1191573	C	1191573	894 1095622	C	894 1095622	1827980	0	1827980	1718554	0	1718554	0 1637554	0	
461159 1024722	0	461159	937210 1032729		937210	350859 1239855		350859	692215 1212908		692215	2183860 1479529		2183860 1452220	615653 1168163		615653 1168163	1188791 983157	0	1188791
0 1715749	2479	0	1830063			985998		0	982443		0	2030306		2028686	1697450		0	3929 2055625		3929
0		0				0	C	0	0	C	0	0		0	385		385	0	0	0
1362255 153357	0		2007140	0	2007140 191854	2278960 118872	0		3575662 126604	0		4333838 123838		4333838 123838	2323534 182539	0		3762800 240458	0	
4683381 310332	22652		4252343 927221		4252343	5963606 1033393	53536	5910070	4570498 803582	0	4570498	5980349 1135333	479118		4111501 113676	225060		3749935 195698	111619	3638316
0	0	0				0		0	246000		246000	0		0	601600		601600	60800		60800
986043 2194275	0		950806 1912615	0		908744 417846	C	417846	964163 417846	0		1034869	3087	983368 1031782	952812 1251737	0		851206 1358973	0 140	1358833
0		0				112 0		112	0		0	6632		6632 0	0 37165		37165	3805 37298		3805 37298
308644 42220		308644 42220	510050 41589		510050 41589	460907 97166		460907 97166	505456 75477		505456 75477	625175 90511		625175 90511	575993 45249		575993 45249	577673 50414		577673 50414
31257		31257	35190		35190	33366		33366	94393		94393	84485		84485	77922		77922	76297		76297
37763 500612	0	37763 500612	49735 567335	0	49735 567335	33957 592420	C		45423 608494	C		41460 612065	0		63464 579240		63464 579240	23675 450587	0	
383133 39402	0		367272 67026	0		150231 39489	C		150231 65761	C		372225 54663	0		385966 55728	0		414227 46024	0	
31959		31959	35952		35952	88230		88230	90251		90251	62274		62274	52172		52172	68016		68016
328 103058		328 103058	57898		57898	30176 48282		30176 48282	9840 41122		9840 41122	33333		33333	25256 18642		25256 18642	82000 8604		82000 8604
1206 0	n	1206	581		581	580 16073	15155	580 918	1597 918		1597 918	220		220 0	534 0		534	5304 0	0	5304
7679 906651	3267 0		13686	8509		18151 662533	2835	15316	16870 662382	1435	15435	3172 493742	0	3172 493276	16093 505116	0	16093 502863	11907 476744	0 1397	11907 475347
6673		6673	18759		18759	23267		23267	30616		30616	30733		30733	27980		27980	27574		27574
63807 465337	50121 5298		16867 471663			20745 381102			3249 381102	1197		13969 498932		12857 498712	72025 494870			105327 460213	28698 268	
13550 0	0	13550	6624		6624	22125 0		22125	7800 0		7800	35672		35672 0	23000		23000	49028 0	0	49028
83061245	7668726	75392519												75132688	71770208			81097375	7289203	

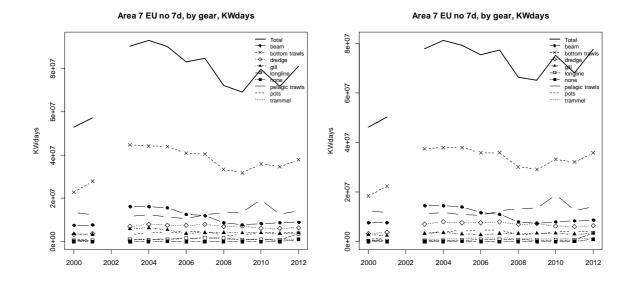


Figure 5.9.1.7.2.- Effort (kW*days) reported within ICES Sub-area VII EU no VIId by gear type, 2000-2012, with (left) and without (right) reported deepwater effort. Due to uncertainty in French 2002 data this year has been removed from the figures.

Deepwater VII non-EU

Prior to 2011 Area VII non EU effort was confined to the UK and was made up of bottom trawling and gill netting. This effort stopped in 2004. In 2011 France reported a small amount of bottom trawl effort and in 2012 Spain reported small amounts of bottom trawl and longline effort.

Table 5.9.1.7.4.- Deep Sea fishing effort (kW*days) 2000 – 2012 by member state ICES Sub-area VII non-EU.

Area	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
7 non EU	ESP													3074
	FRA												442	
	UK		2296	3003	906	2519								
7 non EU Total			2296	3003	906	2519							442	3074

Table 5.9.1.7.5.- Deep Sea fishing effort (kW*days) 2000 – 2012 by gear and member state ICES Subarea VII non-EU.

Area	Gear	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
7 non EU	BOTTOM TRAWLS	ESP													1419
		FRA												442	
		UK		2296		906									
	GILL	UK			3003		2519								
	LONGLINE	ESP													1655
7 non EU Total				2296	3003	906	2519							442	3074

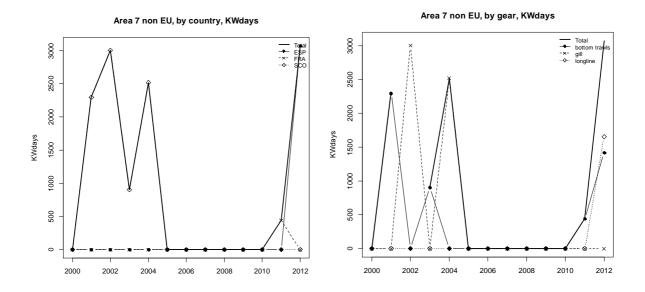


Figure 5.9.1.7.3. Deep Sea fishing effort (kW*days), 2000 – 2012, by country and by gear, in ICES Subarea VII non-EU.

Western Waters VII non-EU

There is uncertainty relating to French effort.

No effort was recorded in this area between 2006 and 2008, (Table 5.9.1.7.6). Prior to that there was some effort for Netherlands in pelagic trawl, and sporadic effort in bottom trawls, gill nets and longlines.

Since 2009 small amounts of bottom trawl effort have been recorded by France, Spain and Scotland. Longline effort was reported from 2010 to 2012 by France and Scotland again, and in 2012 by Spain. Occasional pelagic trawl effort has been reported by Germany, France, Spain and the Netherlands.

Table 5.9.1.7.6.- Effort (kW*days) by country, gear and vessel size group within ICES Sub-area VII non-EU, 2000-2012.

					2000	0		200)1		200	2		2003	1		200	4		200	15
						Excluding			Excluding			Excluding			Excluding			Excluding			Excluding
Area G	iear	Country	Vessel length	Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort									
7 non EU b	ottom trawls	ESP	o15m	() () ()	0	0 (0		0 ()	0 ()	0)	0 (0	0
		FRA	o15m	() () ()	0	0 (0		0 ()	0 ()	0 ()	0 (0	0
		SCO	o15m	() () (2	196 229	96 (0 0		0 (90	906	5	30	3	0 308		0	0
gi	ill	ESP	o15m	()	()	0	(0		(0	0		0 ()	(0	
		FRA	o15m	()	()	0	(0		()	0		0 ()	(0	
		SCO	o15m	() ()		0	0	3003	300	3		0 ()	2519	251	9	- 1	0	0
lo	ongline	ESP	o10t15m	()	(0	0	(0		(0	0		0 ()	() (0	
		ESP	o15m	() () ()	0	0 (0		0 ()	0 () (0 ()	0 (0	0
		FRA	o15m	()	()	0	(0		(0	0		0 ()	(0	
		PRT	o15m	()	()	0	(0		(330)2	330	2 ()	(0	
		SCO	o15m	()	(5	111	521:			(0	0		0 ()	() (0	
n	one	ESP	o15m	()	()	0	(0		(D	0		0 (ס	(0	
p	elagic trawls	DEU	o15m	37093	3	37093	3	0	(0		(1059	8	1059	В ()	(0	
		ESP	o15m	()	()	0	(0		(D	0		0 (ס	() (0	
		FRA	o15m	()	()	0	(0		(D	0		0 (ס	(0	
		NLD	o15m	()	()	0	(0		(30141	.3	30141	3 43510)	43510	22289	6	2228
		SCO	o15m	()	(31	162	3862	2 0		(2892	18	2892	В (ס	() (0	
7 non EU Total				37093	3 (37093	3 11	169 229	96 9073	3003	300	3 (34514	17 906	34424	1 4633	7 251	9 43818	22289	6	0 22289

	2006	i		200	7		2008	3		200	9		201	.0		201	1		2012	2
		Excluding																		
Effort	Deep Effort	Deep Effort																		
0	() (()	0 0	0	(0	0) ()	0	0 0)	0	0 0	4160	1419	2741
0	() (()	0 (0	(0	0) () :	8232	0 8232	44:	2 44:	2 (810	(810
0	() (()	0 (0	(0	7875		7875	5	0	0 ()	0	0 0	0	(0
0		()	(0		0	0		()	0	()	0	(1102		1102
0		(()	(0		0	0		()	0	() (0	(1104		1104
0	()	()	0	0	()	0)		0	0		0	0	0	()
0		(((0		0	0		()	0	() (0	(478		478
0	() ()	0 (0	(0	0) ()	0	0 ()	0	0 (136266	1655	134611
0		(()	(0		C	0		() :	8722	8722	4420	0	4420	9810		9810
0		(()	(0		0	0		()	0	() (0	(0		0
0		(()	(0		0	0		(2	8325	28325	1471	3	14713	1432		1432
0		C	((0		C	0		C)	0	() ()	(1940		1940
0		(()	(0		C	0		(3	5000	36000) (0	(0		0
0		(()	(0		0	0		()	0	() (0	(4520		4520
0		(()	(0		0	0		(5	7930	57930	1032	В	10328	71233		71233
0		(()	(0		0	75820		75820)	0	(2616	4	26164	0		0
0		(()	(0		C	0		(0	() (0	(0		0
0	() (()	0 (0	(0	83695	(83695	13	9209	0 139209	5606	7 44:	2 55625	232855	3074	229781

5.9.1.8 Fishing effort in ICES area VIId

Deepwater VIId

Area VII EU VIId effort is primarily from UK and France and this effort fluctuates greatly from year to year.

2006 marks a change in effort from English beam to Scottish bottom trawl, although the bottom trawl effort has been in decline since its peak in 2008, (Figure 5.9.1.8.1). Between 2010 and 2012 France has reported bottom trawl effort as well.

From 2001 to 2004 the Netherlands reported some pelagic effort, and in 2010 and 2011 some bottom trawl effort has been recorded. France reported pelagic effort from 2000 to 2006.

Table 5.9.1.8.1.- Deep Sea fishing effort (kW*days) 2000 – 2012 by member state ICES Sub-area VIId.

Area	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
7d	FRA	3274	230	66355	9090	27425	43790	5530	4517	1716	1716	12482	21014	12408
	NLD		35596	13240	68230	141760						2708	6000	
	UK		825		42719	14231	22041	1264	36304	127017	59626	19436	14506	1875
7d Total		3274	36651	79595	120039	183416	65831	6794	40821	128733	61342	34626	41520	14283

Table 5.9.1.8.2.- Deep Sea fishing effort (kW*days) 2000 - 2012 by gear and member state ICES Subarea VIId.

Area	Gear	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
7d	BEAM	FRA		230											
		UK				41808	14231	22041	1264	17015	6524				
	BOTTOM TRAWLS	FRA	736						1997	4517			11930	20231	12025
		NLD											2708	6000	
		UK		825						19289	120493	59626	19436	14506	1875
	LONGLINE	FRA									1716	1716	221		221
		UK				911									
	PELAGIC TRAWLS	FRA	2538		66355	9090	27425	43790	3533					220	
		NLD		35596	13240	68230	141760								
	POTS	FRA												141	
	TRAMMEL	FRA											331	422	162
7d Total			3274	36651	79595	120039	183416	65831	6794	40821	128733	61342	34626	41520	14283

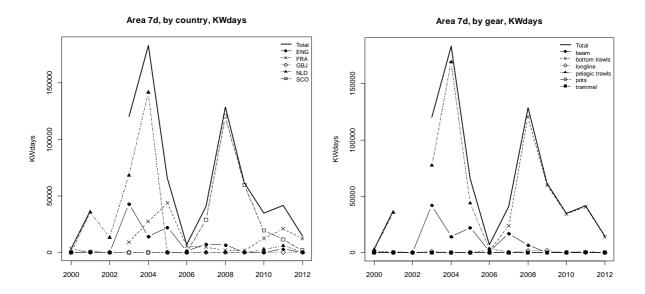


Figure 5.9.1.8.1. Deep Sea fishing effort (kW*days), 2000 – 2012, by country and by gear, in ICES Subarea VIId. Due to the uncertainty in French 2002 data this year has been removed from the figure.

Western Waters VIId

Effort within Area VIId had been increasing up to 2006, after which it began to decline. Over the last three years however effort has appeared to stabilise. France is the principal nation operating within this area, driving the overall trends. There is an issue with 2002 French data and therefore this year should be discounted. There is essentially no effort associated with deepwater fisheries (Table 5.9.1.8.3 and Figure 5.9.1.8.2).

While a wide variety of gears are utilised within this area, bottom trawling by France and dredging, also France and the UK, show the greatest effort. Pelagic trawling is primarily carried out by the Netherlands, France and Germany, with some minor effort from other nations. Beam trawling is mainly by Belgium, with small effort from France and UK, and the majority of trammel net effort is by France.

Table 5.9.1.8.3.- Effort (kW*days) by country, gear and vessel size group within ICES Sub-area VIId, 2000-2012.

Second Control Contr						2000			2001			2002			2003			2004	1		200	5
West								err .			arr .											
Second Control Contr									Deep Effort							Deep Effort			Deep Effort			Deep Effort
March 1965							0			(0			178756			14102			13762
OR Sign OR C C C C C C C C C						0			230			0										
PA																						207038
Galler Same Galler Gal								-	0													
No. 1970									0													
Section Sect								2572			4415					(
Second S									0			0	0			() (0 (
Fig.	b						1419			1618			0			((_		
CO 203399 9							276261	-	0	900943			4995642									
## 1. See 2597 2597 1879 1979 1979 1970							270502			00001			4555042			100202			130433			201415
0.65					23757		23757	19276		19276	7802		7802	2084		2084	27043		2704	10924		1092
PA							0			(0			((
Section Sect																						
BE							35/1159		0	65311/5		U	38851172									
MID Strim 221480 0 221480 0 221480 0 19002 0 221480 0 19002 0 19002 0 19004 0 19004 0 19002							0						0						2020			2510
Decision Control Con			NLD			0	221430	249901	0	249901	175232	0	175232	193684		193684	323486	6 (323486	344814		0 34481
Fig.						-	4101	020	825	(-	0	0							,		
SCO	C						200262			1244200			E220241									
Mail							200202			1244590			3336241			1408036			1976036			203094
FRA							0						0									
Mil							0			(0									17247
PAL O.S.							831479			2664630			12536088			3272292			4190146			537059
MID 0.5m 2997 2997 2998 2989 24724 247							0	-					0			120025			20006			E120
SCO 015m 9971 9971 9981 9848 9848 985 985 105699 1155897 115507 85179 9817 991							20957			20890			24724									
BIL SIRISSIM 5322 5322 0 0 0 0 13375 13375 471 471 0 1471																						85179
FRA 03115m 81309	g	gill	BEL	o10t15m	5322		5322	0		(0		0	1375								
BEL OlSm D D 13299 13299 GA98 GA98 GA98 15232 15232 3930 18320 19306 193							0			(0									219
DEU OLSM S84 S84 O O O O O O O O O							81309															
Find Ol5m O O O O O O O O O							844			15295			0049			13232			10120			19020
NILD 0.15m							0			(0			(
Congline Chi G							94649	42072		42072			708558	135124		135124	111106	i	11110	37647		3764
FRA OLIUS 9911 0 9911 25888 0 2588 953160 0 953160 88085 0 88085 103333 0 103303 0 10300 91082 0 9108							0						0	,	•	((
FNG	"						0011		0	25026			052160									
ESP OLSM O. O. O. O. O. O. O. O																						
Pack					0		0			C			0			((0		
Pelagic trawls [NG] 0.1015m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					00000								411504	00.20		00.2						622
Pelagic trawls FNG	n						5145			2058			10744									246
FRA 0.1015m 3995 0 3995 36087 0 36087 583735 0 583735 0 334671 0 334671 265398 0 265188 411922 0 41192													10744			53068			8/400			121
SCO 0101.5m O O O O O O O 1639 1639 O O O O O O O O O	,						3995		0	36087			583735			334671			265198			
DNK				o10t15m	0		0	-		C	0		0	1639)	1639	0)	(0		
ENG 015m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							306752			186367			202281						25606			25264
FRA 015m 81202 2538 80966 1339409 0 1339409 4957287 66355 4890932 1491834 900 1482744 1874695 27425 1847270 1981575 43790 193774 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							0						0						40004			4050
RL							809664		n	1339409		66355	4890932									
TU 040m 0 0 0 0 0 0 0 0 0										(23333				(225770
NLD 015m 2170260 0 2170260 2149949 35596 2114333 1550882 13240 1537642 2460589 68230 239259 1965236 141760 1823476 1838845 0 183884				o40m	0		0	0		C			0			((0		(
SCO 015m 2542 2542 13099 13099 34936 34936 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							0			(0			(
pots ENG 010t15m 0 0 0 0 0 455318 455318 405275 44430 44430 44430 FRA 010t15m 43649 0 43649 61304 0 603473 0 603473 67772 0 67772 79729 0 79729 132541 0 132541 0 132541 0 1010 1010 1010 0 0 67772 0 67772 79729 0 79729 132541 0 1010 1010 1010 1010 0 0 57062 55848 63848 101017 1010 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>35596</td><td></td><td></td><td>13240</td><td></td><td></td><td></td><td>2392359</td><td></td><td></td><td>1823470</td><td>1838845</td><td></td><td>U 183884</td></td<>									35596			13240				2392359			1823470	1838845		U 183884
FRA 010t15m 43649 0 43649 61304 0 61304 603473 0 603472 67772 0 67772 79729 0 79729 132541 0 13254 0 15m 0 0 0 0 0 0 0 0 57062 57062 63848 63848 101314 10101 1010							2543			13099			34936 0			455318			40527	444340		444340
FRA 015m 29488 29488 31730 114920 114920 13342 13342 36717 37214 772 GBG 015m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ľ						43649		0	61304		0	603473									0 13254
GRG 015m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							0			(0									10101
GBJ 015m 0 0 0 0 0 0 0 0 0 1512 1512 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							29488			31730			114920			13342			3671			7721
trammel ENG 010t15m 0 0 0 0 0 0 11295 11295 8742 8742 9183 911 FRA 010t15m 174556 0 174556 938665 0 938665 7057120 0 7057120 1938504 0 1938504 2116989 0 2116989 205884 0 25088 IRL 010t15m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							0						0						151			-
FRA 010t15m 174556 0 174556 938665 0 938665 0 938665 7057120 0 7057120 1938504 0 1938504 2116989 0 2116989 2505884 0 250588	-				-		0	_ ~		(0			1129						918
RL 010t15m 0 0 0 0 0 0 0 0 0	ľ						174556		0	938665			7057120									
FRA 015m 91079 0 91079 327867 0 327867 1464752 0 1464752 615347 0 615347 515961 0 515961 802345 0 8023.							0	-		(0		0			((0		
							0						0			(_			1		
	7d Total		FKA	015m	91079 11352166	3274		327867 20070289			1464752 8 88145628	79595		615347 32259072								

	2006			2007			2008			2009			2010			201			2012	
		Excluding			Excluding			Excluding			Excluding			Excluding			Excluding			Excluding
	Deep Effort	Deep Effort	Effort 0	Deep Effort	Deep Effort		Deep Effort	Deep Effort	Effort 0	Deep Effort	Deep Effort	Effort		Deep Effort	Effort	Deep Effort	Deep Effort	Effort		Deep Effort
0 156183		156183	147478		147478	189297		189297	200709		200709	187831		187831	161558		161558	192816		19281
562145	0		588358	0		497791	0		497791	C		395548			398689		398689	483846		
2782454		2782454	3184292		3184292	2696039		2696039	2226560		2226560	1924990		1924990	1881904		1881904			155419
203081	1264	201817	180704	7239		179585	6524		203490	C		84354			39435		39435			4878
747367		747367	574879		574879	656013		656013	656013		656013	184402	1	184402	147537	7	147537	200968	1	20096
0	0	0	0	0	0	0	0	0	0	C		() (0)
4796		4796	0		0	0		0	1471		1471	. (663		663			
0	0	0	9776	9776		3055	0	3055	6353	C	6353) (2210		2210) (,
172387		172387	149703		149703	144447		144447	143126		143126	148423		148423	136908		136908			15364
2963942	525	2963417	3174239	0		2260060	0		2256872	C		1757627			2041029					
894		894	1788		1788	0		0	0		0						C	0		
23328		23328	13756		13756	15816		15816	46344		46344			142527	188933		188933			21733
0		0	10016		10016	0		0	0		0	(C			C	0		
30864	0 1472		5084	0		59054			148815 7908201			227741			332110					
11145296 10560	14/2	11143824 10560	10474572 13420		10470055 13420	8140065 9680	0	8140065 9680	7908201		7908201 7480	5597093		5585163	5119404		1 5102033	4883251		487122
0		10,00	15420		1.5420	0		0	0		0) () (945		94
287224	0	287224	434839	0	434839	625656	0		608242	C	608242	728019	2708	725311	611819		605819			
115117	0	115117	207336	19289		340147	120493		330859	59626		250268			227705					
105802		105802	143027		143027	137115		137115	87868		87868	158847		158847	91936		91936			7797
3199963		3199963	2627561		2627561	2463234		2463234	2455520		2455520	1801763		1801763	2233550		2233550	1957404		195740
0		0	3723		3723	18490		18490	85486		85486	4251 75562		4251 75562	49669		49669			2919
236687		236687	279007		279007	220826		220826	295786		295786	357892		357892	480465		480465			18070
5919406		5919406	5018197		5018197	4307266		4307266	4284322		4284322	2561916		2561916	3143882		3143882			287209
0		0	0		0	0		0	2316		2316	()	C)	C	0		
0		0	0		0	0		0	0		0			C	884		884			3186
119581		119581	97064		97064	146896		146896	130823		130823	93755		93755	C		С) (
264240		264240	376741 0		376741	299207		299207 4710	539144		539144	1445337		1445337	1232845		1232845			80921
0 2529		2529	1699		1699	4710 4957		4/10	12756		12756	3685		3685 25620	25787	_	25787	7 7399		739
237516		237516	350342		350342	132543		132543	132543		132543	63930		63930			35458			7963
23556		23556	906		906			5850	19527		19527	7200)	7200)	C) ()	
0		0	0		0	0		0	0		0	()	C	0		C	0		
0		0	0		0	0		0	0		0	(C			C	3249		324
63609		63609	36151		36151	18452		18452	18452		18452	34731		34731	9727		9727			3003
442 40165		442 40165	0 37362		37362	39699		39699	40081		40081	46296	1	46296	38205		38205	35662		3566
100220	0		122800			103313			103313	1716		105941					0 84953			
0	0	0	561	0	561	0	0	0	0	C	0) () () () (0 0) () ()
0		0	0		0	0		0	0		0	(C			C	672		67
14522		14522	39773		39773			13367	13367		13367			12273			1559			440
4036 28908		4036 28908	15289 4314		15289 4314	84558		84558	84558 157051		84558 157051				4141		4141			
28908 870		28908 870	4314		4314	157051		157051	15/051		15/051) () () (
368239	0		504108		504108		0	317645	317367	C	317367	180417		180417	197731		197511			25849
0		0	0		0	0		0	0		0			C			C) (
222395		222395	225990		225990			168359	166693		166693			298994			360449			42798
0		0	0		0	0		0	0		0	(0	16195		16195			9905
278743 2134645	3533	278743 2131112	481527 1773861		481527 1773861	263669 1323773		263669 1323773	306734 1323773		306734 1323773	218563		218563	117360		117360 593833			20946
2134645	3533	2131112	1773861	0	1//3861	1323773		1323773	1323773	С	1323773			898279	593833		593833	916969		91696
20000		2000	0		0	0		33000	19680		19680				,					
0		0	0		0	0		0	0		0			C			C			
1277534	0		1613832	0	1613832	1588572	0	1588572	1714632	C	1714632	1451892	2 (1451892	682597	7 (682597	1265767	, (126576
9748		9748	0		0	0		0	0		0	(0	(,	C) (
384311		384311	442350		442350	377034		377034	344887		344887	382655		382655	384280		384280			40415
314291 90300	0	314291 90300	226545 111499		226545 111499	91168 104667		91168 104667	91168 78262	С	91168 78262	704266		704266	348716		1 348575			38551 4783
75462		75462	90988		90988	53385		53385	78262 53385		78262 53385	12940		12940	10352		10352			4783 1760
17667		17667	12661		12661	0		0	3171		3171	2182		2182			8223			1725
0		0	0		0	0		0	0		0) () () (
6081		6081	7708		7708			9580	5968		5968			8324			8075			833
2979380	0	2979380	2945844	0	2945844	2052319	0	2052319	2048565	C	2048565	1576941		1576610	1615044		1615044			
0		0	0		0	0		0	0		0	(0	(0	220		22
702341	0	702341	26676 642980	0	26676 642980	16200 559170	0	16200 559170	7416 559170	C	7416 559170	21600		21600	30600		30600 2 223830			3408 17986
702341 38448827	6794		37431326	40821		30932780	128733		30847050	61342		219436								

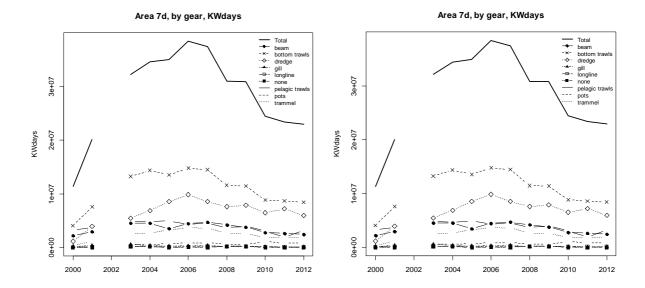


Figure 5.9.1.8.2.- Effort (kW*days) reported within ICES Sub-area VIId by gear type, 2000-2012, with (left) and without (right) reported deepwater effort. Due to uncertainty in French 2002 data this year has been removed from the figures.

5.9.1.9 Fishing effort in the Biologically Sensitive Area

There is uncertainty relating to 2002 French effort.

From a peak in 2003 there was a gradual decline until 2006 after which effort fluctuated. In 2011 there was a 20% decrease compared to 2010, but in 2012 effort levels increased again, comparable to those between 2005 and 2010(Table 5.9.1.9.1 and Figure 5.9.1.9.1). Overall, bottom trawl effort predominates within the area, in common with the picture for the wider EU waters of Area VII. Ireland provides the majority of this effort, followed by France and the UK. Prior to 2009 Ireland and France contributed similar amounts but since 2010 Irish effort increased while France decreased. In 2012 Spain reported high bottom trawl effort for this area.

Pelagic trawls effort had increased in recent years, in particular by Irish and German vessels, while effort from the Netherlands has stayed constant.

Gillnetting, by France, Ireland and England, shows a decline in effort similar in recent years. This is mainly down to a reduction of French effort. Beam trawling, carried out almost exclusively by Ireland, showed a pronounced decline until 2008 after which effort stabilised. There was a drop in Irish effort in 2011 but this increased again in 2012.

The use of pots and dredges in the area is low, however both gears show marked increases in most recent years. Both gears are used almost exclusively by Ireland.

Table 5.9.1.9.1.- Effort (kW*days) by country, gear and vessel size group within the BSA Area, 2000-2012.

	Gear beam	Country			2000	Excluding								2003			2004			2005	
	beam	Country							Excluding			Excluding			Excluding			Excluding			Excluding
3SA			Vessel length		Deep Effort	Deep Effort		Deep Effort	Deep Effort		Deep Effort	Deep Effort								Deep Effort	Deep Effort
		FRA IRI	o10t15m	0 1320		1320	0		0	0		0	147		147	1028		1028	0		
		ENG	010t15m 015m	1320		1320	0		0	0		0	0 123144		123144	126299		126299	0 121301		121301
		FRA	015m	0		0	0		0	0		0	736		736	0		120299	0		12130
		GBJ	o15m	0		0	0		0	0		0	5214		5214	0		0	3690		3690
		IRL	o15m	2476553		2476553	2446989		2446989	2493468		2493468	3057578		3057578	2024402		2024402	2366210		2366210
	bottom trawls		o10t15m	0		0	0		0	0		0	187		187	0		0	0		
		FRA IRL	o10t15m o10t15m	0 197249		197249	729 206432		729 206432	0 251398		251398	9717 363720		9717 363720	2469 361385		2469 361385	5779 318867		5779 318867
		ENG	010t15m	197249		197249	206432		206432	251398		251398	1121805		1121805	1112851		1112851	937084		937084
		ESP	o15m	0		0	0		0	0		0	0		0	0		0	0		33700
		FRA	o15m	4624713		4624713	6021542		6021542	30013150		30013150	7359217		7359217	6558503		6558503	5986029		5986029
		IRL	o15m	3839065		3839065	4235608		4235608	5440454		5440454	6357592		6357592	6239288		6239288	5318872		5318872
		NIR	o15m	0		0	0		0	0		0	3018		3018	9742		9742	5628		5628
		NLD SCO	o15m o15m	0 397712		0 397712	8796 229925		8796 229925	734 166305		734 166305	19680 162863		19680 162863	0 220742		220742	0 135867		425005
		ENG	010t15m	39//12		39//12	229925		229925	166305		166305	162863		162863	220742		220742	135867		135867
	urcuge	FRA	o10t15m	0		n	3696		3696	18306		18306	3796		3796	2099		2099	7030		7030
		IRL	o10t15m	505		505	14758		14758	5518		5518	19763		19763	16170		16170	2686		2686
		ENG	o15m	0		0	0		0	0		0	0		0	0		0	0		0
		FRA	o15m	2216		2216	0		0	16935		16935	981		981	5618		5618	6993		6993
		IRL	o15m	162716		162716	91984		91984	13806		13806	130279		130279	87392		87392	97290		97290
		SCO ENG	o15m o10t15m	0		0	0		0	0		0	4157 26954		4157 26954	0 26637		26637	16009		16009
		FRA	o10t15m	0		0	0		0	0		0	26954		20954	1206		1206	16009		10009
		IRL	o10t15m	60425		60425	38606		38606	38941		38941	59748		59748	66732		66732	58528		58528
		DEU	o15m	24420		24420	5404		5404	7514		7514	32698		32698	38186		38186	18512		18512
		ENG	o15m	0		0	0		0	0		0	256302		256302	350021		350021	218585		218585
		ESP	o15m	0		0	0		0	0		0	0		0	0		0	0		0
		FRA	o15m	323241 474484		323241 474484	456239 533290		456239 533290	3381794 556104		3381794 556104	954326 736368		954326 736368	947097		947097 634358	1144216 463542		1144216 463542
		IRL SCO	o15m o15m	128714		128714	132822		132822	5038		5038	736368		736368	634358 63895		63895	9586		9586
		ENG	o10t15m	0		120/14	0		132022	0		3038	73003		79005	03033		03893	0		9380
		FRA	o10t15m	0		0	0		0	1112		1112	4356		4356	0		0	0		0
		IRL	o10t15m	0		0	0		0	0		0	0		0	0		0	436		436
		ENG	o15m	0		0	0		0	0		0	29490		29490	32225		32225	32502		32502
		ESP	o15m	0		0	0		0	0		0	0		0	0		0	0		0
		FRA IRL	o15m o15m	79946 28314		79946 28314	40848 22068		40848 22068	192312 0		192312	15741 14346		15741 14346	12698 0		12698	20472 21511		20472 21511
		SCO	015m	7049		7049	992		992	51584		51584	20082		20082	0		0	21511		21511
		IRL	o10t15m	0		0	0		0	0		0	0		0	0		0	0		0
		ESP	o15m	0		0	0		0	0		0	0		0	0		0	0		0
		FRA	o15m	0		0	0		0	0		0	0		0	0		0	0		0
		IRL	o15m	0		0	3872		3872	375		375	0		0	0		0	0		0
		FRA IRI	o10t15m	970		970	0		448	0		0	0		1960	0		0	444		444
		DEU	o10t15m o15m	332939		332939	448 219170		448 219170	0 201377		201377	1960 417205		1960 417205	2650 461106		2650 461106	203082		203082
		ENG	o15m	0		0	0		0	0		0	227676		227676	271407		271407	269645		269645
		FRA	o15m	275303		275303	253786		253786	500927		500927	309251		309251	208006		208006	326643		326643
		IRL	o15m	1079314		1079314	958056		958056	852818		852818	613744		613744	853756		853756	725256		725256
		NIR	o15m	0		0	0		0	0		0	26094		26094	31854		31854	52854		52854
		NLD	o15m	1074997		1074997	2057215		2057215	478739		478739	1151065		1151065	1633095		1633095	967750		967750
		SCO ENG	o15m o10t15m	241997 0		241997	372886 0		372886	220016 0		220016	97359 0		97359	442369 44		442369 44	146720 0		146720
		FRA	o10t15m	0		0	0		0	0		0	0		0	220		220	0		0
		IRL	o10t15m	66103		66103	76572		76572	88680		88680	40748		40748	93647		93647	124598		124598
		DEU	o15m	0		0	0		0	0		0	0		0	441		441	0		0
		ENG	o15m	0		0	0		0	0		0	0		0	0		0	0		0
		FRA	o15m	9921		9921	4905		4905	2224		2224	5847		5847	21105		21105	3892		3892
	trammel	IRL ENG	o15m o10t15m	1201 0		1201	1074		1074	0		0	2871 0		2871	1581 0		1581	671 2050		671 2050
		FRA	o10t15m	0		0	0		0	0		0	0		0	0		0	4374		4374
		IRL	o10t15m	0		0	0		0	0		0	160		160	0		0	0		
		ENG	o15m	0		0	0		0	0		0	0		0	9829		9829	6178		6178
		FRA	o15m	0		0	0		0	0		0	8040		8040	7864		7864	4994		4994
		IRL	o15m	0		0	3885		3885	0		0	0		0	0		0	0		0
BSA Total		sco	o15m	0 15911387		15911387	18442597		0 18442597	44999629		44999629	12336 23887366		12336 23887366	22980017		22980017	20156376		20156376

	2006			2007	7		2008			2009			2010)		201:	1		2012	2
		Excluding			Excluding			Excluding			Excluding			Excluding			Excluding			Excluding
Effort	Deep Effort	Deep Effort		Deep Effort		Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort			Deep Effort	Effort		Deep Effort		Deep Effort	Deep Effort
		0	440		440	0		C	0		0	2017		2017	3755		3755			176
125501		120005	0		11013	3848		2046	0		22400	0 0		0	405044		405044	0 0		62427
126605		126605 657	11012 831		11012 831	3848		3848	23408		23408	60723		60723 1598	105041		105041	63437		63437
03.		037	0		0.001	0			0		0	0 0		1338	0			0		0
1426734		1426734	1145248		1145248	695074		695074	653053		653053			662489	356556		356556			536504
(0	326		326	468		468	0		0	0		0	0		(0		0
837		837	2594		2594	6991		6991	5961		5961			9246	17885		17885			5654
341772		341772	450099		450099	452538		452538	524788		524788			596883	520615		520615			610577
121716		1217163	1180630		1180630			1026696	940642		940642			1010822	1073342		1073342			1236900
		0	0		0	0			0		0	0		2984866	0			1604600		1604600
5796059 4456909		5796059 4456909	5720768 4860493		5720768 4860493	4607029 4560695		4607029 4560695	4567101 4675826		4567101 4675826	2984866 4775122		2984866 4775122	2413727 4192362		2413727 4192362			2561634 4176373
1092		1092	4800493		4600493	10324		10324	2423		2423	4773122		41172	21257		21257	32956		32956
(0	762		762	0		C	1530		1530			708	0		(4221		4221
227482		227482	213564		213564	541060		541060	528121		528121			792844	611242		611242			569989
()	0	0		0	0		C	0		0	0		0	0)	(144		144
965		965	12082		12082	7596		7596	7596		7596			17964	17333		17333			12033
5237		5237	6625		6625			16726	15758		15758			22500	31239		31239			16879
		0	0		0	3382		3382	0		0	0		0	0			0		0
38072		38072	5399 45932		5399 45932	5781 58134		5781 58134	5781 109653		5781 109653	16595 78890		16595 78890	30191 71995		30191 71995			10211 123961
38072		38072	45932		45932	58134 1997		58134 1997	109653		109653	78890		78890 972	/1995		/1995	123961		123961
21005		21005	6134		6134	7015		7015	11998		11998			20617	15542		15542	-		15678
2100		0	0134		0	6391		6391	6391		6391	. 0		0	500		500			654
80160)	80160	87793		87793	115964		115964	142545		142545	121066		121066	86583		86583			99017
(0	0	4862		4862	0		C	0		0	0		0	0)	(0		0
215730	0	215730	226793		226793	162279		162279	162354		162354	165994		165994	145293		145293			153746
(0	0		0	0		C	0		0	0		0	0		(1161		1161
963379		963379	1027582		1027582	707073		707073	707073		707073			404952	515920		515920			534552
290983		290983	379623 0		379623	382348		382348	370007 30955		370007 30955	351139 2910		351139 2910	331027		331027	356501		356501
111		111	0		0	0			30955		368			2910	0) 0		0
111		0	0		0	0			0		300	1345		1345	103		103	-		173
25:		251	5757		5757	11421		11421	18772		18772			11702	8148		8148			7754
28886	5	28886	69025		69025	4570		4570	215		215			885	0		(0		0
		0	0		0	0		C	0		0	0		0	0		(278659		278659
84008		84008	11587		11587	104854		104854	104854		104854	19111		19111	75389		75389			176197
		0	2330		2330	699		699	2856		2856	7030		7030	1645		1645			4573
43002		43002	33185 233		33185 233	89937 275		89937 275	11066		11066			5024 52	0			73270		73270
		0	233		233	0		2/3	0			0 0		0	0			1291		1291
		0	2652		2652	0		C	0		0	0		0	1912		1912			0
()	0	0		0	0		C	0		0	0		0	0		(462261		462261
(0	0		0	1064		1064	1064		1064			5465	3130		3130			1285
(0	827		827			3788	10466		10466			5704	10503		10503			39934
59606		59606	95556		95556	221226		221226	607073		607073	336430		336430	617935		617935	577869		577869
254553		254553 212989	97159		97159	102583 156242		102583 156242	318971		318971	706129 321813		706129	430171		430171			118955
212989 640447		640447	249834 1206605		249834 1206605	156242		156242	156242 1668613		156242 1668613	2058997		321813 2058997	162453 594843		162453 594843			207397 1827134
11186		11186	38964		38964	14170		14170	29242		29242	2036997		2030397	394643		334043	62995		62995
1211930		1211930	1516373		1516373	1560452		1560452	1778313		1778313	1506957		1506957	1598172		1598172			1380269
(0	217449		217449	357630		357630	511318		511318			586611	11923		1192			21858
(0	0		0	0		C	0		0	0		0	0		(189		189
(0	1694		1694	148		148	148		148			2031	4793		4793			1245
67897		67897	181751		181751	170391		170391	177863		177863	217068		217068	193864		193864			188258
6464		6464	1727		1727	0		C	0		0	0		0	0		-	0		0
168 5739		168 5739	0 410		410	0 441		441	0 441		441	2210		2210	400		400	0 800		800
7945		7945	8842		8842	7893		7893	6637		6637	5131		5131	400		400	0 800		800
1979		1979	1273		1273	410		410	1531		1531			1025	4100		4100			2067
35684		35684	23449		23449	19152		19152	19152		19152			16751	19183		19183			3805
6074	4	6074	18369		18369	21941		21941	28328		28328			30554	27097		27097	24089		24089
11869		11869	4781		4781	1886		1886	2052		2052			4198	11413		1141			25404
29880	0	29880	18218		18218	20679		20679	20679		20679			8525	11844		11844			4599
		0	6624		6624	22125		22125	7800		7800			35120	23000		23000			49028
		0	0		0	0			0		0	0		0	0			0		0
17932052	2	17932052	19204266		19204266	17431749		17431749	18977028		18977028	18037957		18037957	14373426		14373426	18268916		18268916

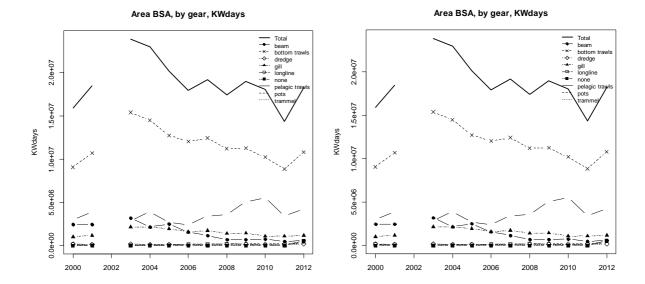


Figure 5.9.1.9.1.- Effort (kW*days) reported within the BSA by gear type, 2000-2012, with (left) and without (right) reported deepwater effort. Due to uncertainty in French 2002 data this year has been removed from the figures.

5.9.1.10 Fishing effort in ICES area VIII

Deepwater VIII EU

Most of the effort in this area was contributed by four countries, UK, France, Spain and Netherlands, as shown in Tables 5.9.1.10.1 and 5.9.1.10.2. Small amounts of effort were reported from Ireland, Portugal and Germany on occasion.

Netherlands effort, entirely for pelagic trawl, declined to zero in 2007, but some was recorded again in 2010. Netherlands effort comprised the majority of the pelagic trawling effort.

UK and French effort increased to the mid 2000s but has since declined. Spanish effort was stable at low levels between 2002 and 2008, before recording a major increase in 2009. After this peak Spain reported no data in this area until 2012, however the 2012 effort was three times the previous highest effort.

Figure 5.9.1.10.1 shows trends in effort by country and by main gears illustrating that bottom trawls were the most important followed by pelagic trawls, gill nets and longlines. In general the pattern of peak effort in the mid 2000s followed by decline is evident in all gears. There was a peak of effort in both bottom trawl and longlines in 2009 but this had decreased again in 2010 and 2011. The Spanish effort reported this year lifts 2012 to the highest in the time series.

Bottom trawl was the predominant gear used in this region, with, historically, 92% of the effort reported by France. This was reversed in 2012 with Spain reporting 90% of the effort. Gill net effort was initially

confined to France but since 2004 the UK has been contributing 50%. In 2012 Spain again reported the majority of the effort.

Over the time series the majority of the longline effort came from the UK, but Spain reported large effort for 2009, and doubled that effort in 2012. In 2011 France reported increased effort for trammel nets, similar to that reported for the early 2000s, but this decreased again in 2012.

Table 5.9.1.10.1.- Deep Sea fishing effort (kW*days) 2000 – 2012 by member state ICES Sub-area VIII EU.

Area	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
8 EU	DEU					22626								
	ESP			176264	191014	119988	142950	142037	199227	158387	971345			2810612
	FRA	206775	198432	1221537	289751	287276	572978	563460	330069	330114	326333	296990	222426	152795
	IRL	23400		2500										
	NLD	328154	200158	734687	49974	22284	26400	35596				67980		
	PRT			4069	9663	10329				1089				8080
	UK		3001		87112	195594	131379	351815	108637	102356	29684	84663	106929	6887
8 EU Total		558329	401591	2139057	627514	658097	873707	1092908	637933	591946	1327362	449633	329355	2978374

Table 5.9.1.10.2.- Deep Sea fishing effort (kW*days) 2000-2012 by gear and member state ICES Subarea VIII EU.

Area	Gear	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
8 EU	BEAM	UK									880				
	BOTTOM TRAWLS	ESP			159589	147836	78301	59641	75924	133403	84600	285745			1404693
		FRA	141365	161208	999557	177729	229630	473093	424001	194049	280599	276818	173738	147863	114434
		PRT									1089				8080
		UK											6943	9166	287
	DREDGE	FRA												73	
	GILL	ESP			5124	10091	8707	20233	17137	2638	3814	129719			196134
		FRA	53458	24366	88991	95204	53378	78282	117246	121418	20269	20269	28215	21244	14077
		UK					89612	67015	278374	57053	58969	29684	51073	18881	6600
	LONGLINE	ESP			7884	24830	31131	60298	48533	61414	63745	538568			1087768
		FRA	5379	10849	2054			1417	2674	407	19486	19486	76154	41262	14347
		PRT			4069	9663	10329								
		UK		3001		87112	105982	64364	73441	51584	41960		12761	78882	
	none	ESP			3667	8196	1849	2778	358	1544	3889	11863			90933
	PELAGIC TRAWLS	DEU					22626								
		ESP									2273	5406			5341
		FRA	3807		116371	8225		7442	10239	6521			13619	882	3730
		IRL	23400		2500										
		NLD	328154	200158	734687	49974	22284	26400	35596				67980		
		UK											13886		
	POTS	ESP													23970
		FRA						1596					2464		
	TRAMMEL	ESP				61			85	228	66	44			1773
		FRA	2766	2009	14564	8593	4268	11148	9300	7674	9760	9760	2800	11102	6207
		UK									547				
8 EU Total			558329	401591	2139057	627514	658097	873707	1092908	637933	591946	1327362	449633	329355	2978374

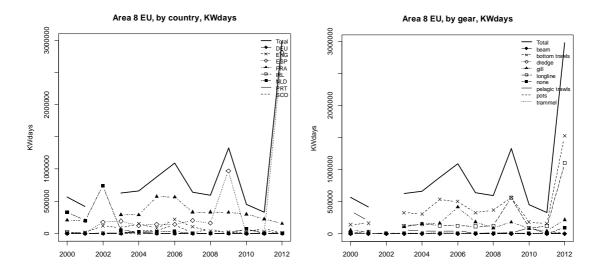


Figure 5.9.1.10.1. Deep Sea fishing effort (kW*days), 2000 – 2012, by country and by gear, in ICES Subarea VIII EU. Due to the uncertainty in French 2002 data this year has been removed from the figure.

Western Waters VIII EU

Note: There is great uncertainty relating to effort descriptions of this area. Issues appear in French 2002 data and there is uncertainty around 2010 data. Spain did not provide information for 2010 or 2011.

Two nations primarily fish this area, France and Spain. The overall trend has fluctuated within this area with greatest effort around 2006/2007 following increased French effort. With the lack of Spanish data in 2010 and 2011 it is impossible to provide information on recent effort trends. Spanish effort has been reported again for 2012 which has led to the increase in recorded effort. Little effort is associated with deepwater fisheries (Table 5.9.1.10.3 and Figure 5.9.1.10.2).

Most effort occurs with bottom trawling gear, dominated by France. French bottom trawl effort in 2010 and 2011 is approximately 40% of what it was in the preceding five years, and it dropped further by 40% in 2012. Spanish effort for 2012 is quite high, similar to levels reported by France for 2010 and 2011. A small (1-2%) proportion of effort is contributed by Portugal.

Pelagic trawling accounts for around 12-18% of effort within the area, again primarily by France and Spain. French effort had been stable at a low level between 2008 and 2011, but showed an increase again in 2012. Spain reported pelagic effort for the first time since 2005.

Other gears are used within the area to lesser extents, with trammel and gillnetting accounting for around 10% each. France is again the dominant nation using both gear classes, particularly within the trammel category. French trammel net effort however, which was stable until 2009, has since decreased by approximately 90%. French gill net effort has begun to decrease since 2010.

Spain reported longline effort for 2012 well in excess of that reported by France. French effort has begun to increase since 2010 after a period of low, stable, effort.

Table 5.9.1.10.3.- Effort (kW*days) by country, gear and vessel size group within ICES Sub-area VIII EU, 2000-2012.

					2000			2001			2002			2003			2004			2005	
					2000	Excluding			Excluding			Excluding		Exc	luding		E	xcluding			Excluding
rea EU	Gear	Country	Vessel length none	Effort D	eep Effort	Deep Effort Ef	fort I	Deep Effort	Deep Effort	Effort 1294869	Deep Effort	Deep Effort 1294869	Effort D 1025995	eep Effort Dec	1025995	Effort De 1231609	ep Effort D	eep Effort 1231609	Effort E 1418940	leep Effort	Deep Effort 1418940
EU	34	FRA	o15m	0		0	0		0	1294809		1294809	0		1025995	0		1231609	0		0
		PRT	o15m	0		0	0		0	0		0	73004		73004	8503		8503	18769		18769
	3b	FRA FRA	none o10t15m	0		0	0		0	418138 0		418138 0	432698 0		432698 0	576138 0		576138 0	726348 0		726348 0
		FRA	o15m	0		0	0		0	0		0	0		0	0		0	0		0
	3c	ESP FRA	none o10t15m	0		0	0		0	515959 0		515959	521325 0		521325	568483 0		568483	574857 0		574857
		FRA	o15m	0		0	0		0	0		0	0		0	0		0	0		. 0
		PRT	o15m	0		0	0		0	0		0	9663		9663	10329		10329	3550		3550
	beam	FRA BEL	o10t15m o15m	913195		913195	820583		820583	771813		771813	15860 618667		15860 618667	16628 656093		16628 656093	35522 836309		35522 836309
		ENG	o15m	0	0	0	0	0	0	0	0	0	220	0	220	0	0	0	0	0	0
		FRA IRL	o15m o15m	0		0	0		0	0		0	0		0	9728 1492		9728 1492	0		0
		NLD	015m	0		0	973068		973068	0		0	0		0	1492		1492	0		0
	bottom trawls	ESP	none	0	0	0	0	0	0	7661229		7501640	13275010	147836	13127174	11346357	78301	11268056	8815762	59641	8756121
		ESP FRA	o10t15m	1206539	592	0 1205947	2068789	0	2068789	8727547		8727547	3067089	0	3067089	0 3820207	461	0 3819746	5430623	0	5430623
		DNK	o15m	32020	332	32020	0		0	0/2/54/	Ü	0/2/34/	0		0	0		0	0		0
		ENG	o15m	0	0	0	0	0	0	0	0	0	67484	0	67484	129094	0	129094	80390	0	80390
		ESP FRA	o15m o15m	3712065	0 140773	3571292	6201271	161208	6040063	31414798	999557	30415241	8356263	0 177729	8178534	9670496	0 229169	9441327	13681228	0 473093	
		IRL	o15m	0	140773	0	242	101200	242	11050	333337	11050	10028	177725	10028	10663	223103	10663	0	473033	13200133
		NIR	o15m	0		0	0		0	0		0	0		0	0		0	0		0
		NLD PRT	o15m	140423	0	140423	54732	0	54732	82622	0	82622	25281	0	25281	2796	0	2796	2796	0	2796
		sco	o15m	0	0	0	0	0	0	4634	0	4634	0	0	0	0	0	0	0	0	
	dem seine	FRA	o10t15m o15m	0		0	0		0	0		0	0		0	0		0	0		- 0
	dredge	ESP	none	0		0	0		0	0			0		0	0		0	0		
		ESP	o10t15m	0		0	0		0	0		0	0		0	0		0	0		- 0
		FRA ESP	o10t15m o15m	257278 0	0	257278	331011 0	0	331011	1350691	0	1350691	397245 0	0	397245 0	424849 0	0	424849 0	475747 0	0	475747
		FRA	o15m	3189		3189	885		885	13770		13770	620		620	4130		4130	1722		1722
		IRL SCO	o15m	0		0	0 25124		25124	0		0	17804		17804	0		0	0		0
	gill	ESP	none	0	0	0	25124	0		1004942	5124	999818	894906	10091	884815	1213582	8707	1204875	1430508	20233	1410275
		ENG	o10t15m	0	0		0	0		0	0		0	0		0	0		0	0	
		ESP FRA	o10t15m o10t15m	278713	0 482	278231	0 487657	0	487657	1835097	0	1835097	586583	0	586583	740538	0	740538	0 1514317	0 5614	1508703
		IRL	o10t15m	0	402	0	0		0	0		0	144		144	0		0	0		0
		ENG FSP	o15m	0	0	0	0	0	0	0	0	0	0	0	0	49056	43008	6048	43734	16406	27328
		FRA	o15m o15m	961665	52976	908689	1163285	24366	1138919	4179645	0 88991	4090654	1058556	95204	963352	0 1187019	0 53378	0 1133641	2058958	72668	1986290
		IRL	o15m	12116	32370	12116	0	24300	0	0	00331	0	0	33204	0	1800		1800	0		0
	longline	SCO	o15m none	0	0	0	0	0	0	0 223921	7884	216037	7163 279010	0 24830	7163 254180	66082 284009	46604 31131	19478 252878	102765 247783	50609 60298	52156 187485
	iongine	ESP	o10t15m	0	0	0	0	0		223921	7884	218037	279010	24830	234180	284009	31131	232070	247783	00298	
		FRA	o10t15m	33120	802	32318	105834	6838	98996	504724	2054	502670	82748	0	82748	144520	0	144520	473380	0	
		IRL ENG	o10t15m o15m	0	0	0	0	0	0	0	0	0	97042	87112	9930	0 111278	105982	0 5296	873 71646	64364	873 7282
		ESP	o15m	0	0	0	0	0	0	0	0	o	0	0	0	0	0	0	0	0	0
		FRA	o15m	57670	4577	53093	70295	4011	66284	433331	0	433331	155703	0	155703	165058	0	165058	138014	1417	136597
		IRL PRT	o15m	0	0		0	0	0	0	4069		485	9663	485	4275	10329	4275	8879	0	8879
		sco	o15m	0	0	0	3001	3001		0	0	0	0	0	0	0	0	0	1102	0	1102
	none	ESP ESP	none o10t15m	0	0	0	0	0		5753450 0		5749783	4634113 0	8196 0	4625917	4482906 0	1849 0	4481057	5520930 0	2778 0	
		FRA	o10t15m	151747		151747	214786		214786	1027994	Ü	1027994	178628		178628	179275		179275	186043		186043
		ESP	o15m	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		FRA	o15m o15m	900		900	0		0	0		0	4802		4802	0		0	6517 25000		6517 25000
	otter	FRA	o10t15m	0		0	0		0	0		0	0		0	0		0	0		0
		BEL FRA	o15m	0		0	0		0	0		0	0		0	0	-	0	0		0
	pel_seine	FRA	o15m o10t15m	0		0	0		0			0	0		0	0		0	0		0
		FRA	o15m	0		0	0		0	0		- 0	0		0	0		0	0		0
	pel trawl	FRA	o10t15m o15m	0		0	0		0	0		0	0		0	0		0	0		- 0
	pelagic trawls	ESP	none	0	0	0	0	0		8621388		8621388	15858441	0	15858441	5334468	0	5334468	4257594	0	
		ESP FRA	o10t15m o10t15m	0 138026	0	138026	0 378217	0		0 1211975	0	1211975	0 312462	0	312462	0 267350	0	267350	0 569222	0	
		IRL	o10t15m	0		0	5824		5824	6944		6944	0		0	0		0	0		0
		DEU	o15m	246685	0	246685	323841	0	323841	207308	0	207308	51022	0	51022	122593	22626	99967	298693	0	298693
		DNK ENG	o15m	73875	0	73875 0	21385 0	0	21385	0	0	0	0 181144	0	181144	0 224597	0	224597	166621	0	166621
		ESP	o15m	0	0	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		FRA IRL	o15m	3263817	3807 23400	3260010	2850008	0		18916865		18800494 204008	3656818	8225	3648593	1632314	0	1632314	4030865	7442	
	1	NIR	o15m o15m	357375 0	23400	333975 0	99474 0	0	99474	206508	2500	204008	202314 0	0	202314	196430 0	0	196430 0	195308 0	0	195308
		NLD	o15m	2322788	328154	1994634	3585045	200158	3384887	1885345	734687	1150658	847751	49974	797777	203153	22284	180869	536805	26400	510405
	pots	SCO	o15m	14662		14662	0		0	0 347578		0 347578	3972 473182		3972 473182	0 684460		684460	539499		539499
	pota	ESP	o10t15m	0	0	0	0	0	0	347578 0	0	34/5/8	4/3182	0	4/3182	684460	0	0	223-633	0	0
		FRA	o10t15m	21273	0	21273	9531	0	9531	60945	0	60945	53430	0	53430	190520	0	190520	57703	0	57703
		IRL DEU	o10t15m o15m	0		0	0		0	0		0	0 24255		24255	0 37485		0 37485	0 2646		2646
	l	ENG	015m	0		0	0		0	0		0	24255		2-7233	10185		10185	0		2040
		ESP	o15m	0	0	0	0	0		0			0	0	0	0	0	0	0	0	
	trammel	FRA ESP	o15m none	279991	0	279991	174914	0	174914	579693 235826	0	579693 235826	184899 266077	61	184899 266016	158381 441945	0	158381 441945	127796 654742	1596	126200 654742
		ENG	o10t15m	0	0	, i	0	0		0	0		0	0	200010	0	0		0	0	
		ESP FRA	o10t15m o10t15m	0	0	0	0 267154	0	0	0 1220120	0	0	0	0	0	0	0	754404	0 1494444	948	0
		FRA ESP	o10t15m o15m	215285	0	215285	267154 0	0	267154 0	1328129 0	0	1328129 0	527208 0	0	527208 0	754404 0	0	/54404 0	1494444	948	
		FRA	o15m	297998	2766	295232	479212	2009	477203	2311607	14564	2297043	776822	8593	768229	865017	4268	860749	2116251	10200	2106051
EU Total	ı	1		14992415	558329	14434086	20715168	401591	20313577	103150335	2139057	101015347	59313936	627514	58696085	48240295	658097	47592527	58981201	873707	58107494

	2000			200			2000			2000			2010			2044			2012	
	2006 Ex	cluding		2007	Excluding		2008	Excluding		2009	Excluding		2010	Excluding		2011	Excluding		2012	Excluding
Effort	Deep Effort De	eep Effort	Effort 1641234	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort		Deep Effort	Deep Effort	Effort		Deep Effort	Effort	Deep Effort	Deep Effort		Deep Effort	Deep Effort
1679648		1679648	1641234		1641234	1553902 0		1553902	1529901		1529901			0	(39910		39910
54602		54602	0		C	0			41730		41730		0	0	14420)	14420	121713		121713
626935		626935	691660		691660	946341		946341	1234163		1234163			0	(2322		2322
0		0	0		0	0		(0		0		0	0	(34420		34420
559331		559331	707969		707969	772428		772428	918735		918735			0				0 1029		1029
0		0	0		0	0			0 0		0			0			-	1029		1029 21143
0		0	0		0	0		(0		0			0	((0		0
4104 942990		4104 942990	438 980041		438 980041	776015		776015	924272		924272	1569 912846		1569 912846	1258 898622		1258 898622	723000		723000
0	0	0	0		0	880	880	77001	0	0	0	5110-0		0	0.002			0	0	723000
0		0	0		0	0			0		0			0				0		0
0		0	0		0	0			0		0			0	(0		0
8904063	75924	8828139	8016774	133403	7883371	6183515	84600	6098915	6211119	0	6211119		0 0	O.) (0	0	0
0 8384886		8384886	9142569		9142113	6819825	1799	6818026	0 6772216	1799	6770417	3050309		3049491	3023692		3023534	3188 2334559	0	3188 2334559
0	0	0	11850		11850	0819823		0010020	62415		62415		0	C)		0		0
104436	0	104436	0			0	0		7920	0	7920	13619		6676	42040			24444	0	
14574204	0 424001	14150203	16077214			0 14723046	278800		0 14639513	285745 275019	-285745 14364494	4683314		4510394	5356219			5888458 3295469	1404693 114434	4483765 3181035
33917	424001	33917	6448		6448	1800	270000	1800		273013	2304	400332		4510554	1080		1080	2000	124454	2000
0		0	0		0	0			2707		2707 12776	8936		8936				0 1972		0 1972
108595	0	108595	569383		569383	598782	1089	597693		0	12776 287116	225946		8936 225946	419385		419389	1972 365769	8080	
0	0	0	0	0		0	0	(1180	0	1180		0 0	0	4615		4615	11010	287	10723
0		0	0		0	0			0 0		0			0	215)	215	606861		606861
0		0	49		49	0		ì	588		588	(0	0	()		0		0
0 598745	0	598745	505681		505681	0 411552	0	411552	400047	0	400047	14298		142985	151355		151282	300	0	300
598745	0	598745	505681		505681	411552		411552	0 0	0	400047	14298		142985	151355		151282	302271	0	302271 661
0		0	3117		3117	0		(0		0	7173		7173	8504		8504	6627		6627
0		0	0		0	0			0		0			0				0		0
1683385	17137	1666248	1425842			1808366	3814	1804552		0	1908846		0 0	o o				0	0	0
3096	3096		0			2050	2050		5351	5351 216	-216	225						1384 438634	1384 4074	434560
1984675	1758	1982917	1658799			1155945	3354	1152591		3354	1143595	76169		761427	776761			762505	0	
0		0	0		C	0		(0		0		0	0	()		0		0
199548	151232 0	48316	54377	53577	800	16679	16679		41720	18037 129503	23683 -129503	7860		44324	79668		60787	63381 933963	4689 192060	58692 741903
2032257	115488	1916769	1695291	116516	1578775	2145942	16915	2129027	2129970	16915	2113055	2316170	27951	2288219	1756019	20922	1735097	1703856	14077	1689779
0 172436	124046	48390	69676		66200	0 112945	40240	72705	0 39250	6296	0 32954	71340		56802	22686		22686	0 28587	527	28060
184225	48533	48390 135692	265484			315958	63745			6296	32954 452625	/1340		56802	22686			28587	527	
0	0	0	0	0	0	0	0	(0	2291	-2291			0				636891	127165	
744255 2473	1824	742431 2473	653368 0		652961	510060 0	2029	508031	510060 873	2029	508031 873	833216		833054	780880		780880	788358	88	788270
69002	61704	7298	66303	48028	18275	40775		22475	962	0	962	3958	в о	3958	(0	0	
0 183189	0 850	182339	205807	0	205807	0 280569	0 17457	263112	280569	536277 17457	-536277 263112	469680	0 75992	393688	559245	41262	517983	3881944 605726	960603 14259	2921341 591467
11367	850	182339	13432		13432	280569	17457	263112	280569	1/45/	263112	46968		393688	559245		51798	0 005726	14259	591467
	0			0	1		0			0			0						0	
12682 4449478	11737 358	945 4449120	6574 5208751			27684 3783266	23660 3889	4024 3779377	3032063	0	3032063	25590		12837	97949			28658	0	
0	0	0	0	0	0	0	0	(0	0	0			0	() (13942	1081	12861
348466		348466	266967		266967	433638		433638	433638	11863	433638 -11863			0	150856		150856	892456	89852	802604
3297	0	3297	11699		11699	16177		16177		11003	16177			0	10311		10311	0	07032	802004
0		0	0		0	0		(0		0	270011)		0		0
0		0	0		0	0		(0 0		0	2706446		2706446	3029634		3029634	3234890 3449		3234890 3449
0		0	0		0	0		·	0		0	4614663	3	4614663	4273109	5	4273105	4964000		4964000
0		0	0		0	0			0		0	825		828	(588		0
0		0	0			0			0		0	4462	4	44624	140721	i	140721	180038		180038
2701966		2701000	4067360		4067200	2665276	9000	2662000	0		0	10259		102598	43346		43346	285976		285976
3791866 0	0	3791866 0	4067360			3665276 0	2273		6461572	0				0				0 41087	93	
746908	0	746908	753222	0		311515	0		304711	0		666466	5 442	666024	511346			289465	0	
183966	0	183966	0		0	85325	0	85325	0 47295	0	0 47295	4123		41237	11025		11025	0 21933	0	21933
38027		38027	181719		181719	184439		184439	181440		181440	29240	0	29240	7123	1	7123	89296		89296
92445 0	0	92445	36288 0	0	36288	167200	0	167200	224055	0	224055	6108		47197	30569			0 1544248	0 5248	0
5409869	10239	5399630	3929356		3922835	1576063	0	1576063	1522637	5406 0	-5406 1522637	184972	0 0 3 13177	1836546	1646033		1645151	1544248 2307163	5248 3730	1539000 2303433
137196	0	137196	100377		100377	22418	0		21871	0	21871	52668	8 0	52668	11100			44306	0	
0 472316	35596	436720	106118		106118	403896	0	403896	2165	0	2165 189568	9998		32006	23760		23760	0	0	0
0	33336	0	0		C	0		(25396		25396	99900		000	()	23/60	0		0
463663		463663	585731		585731	497069		497069	410088		410088							0 42861	21746	0 21115
75783	0	75783	64399		64399	10741	0			0	10741	429758		429346	468645		468645	42861 421214	21746	
0		0	0		0	0		(0		0		0	C	90		90	133		133
29507 0		29507	45482 0		45482	33957 9856		33957 9856	6174		6174	727		7272	8009		8009	6896		6896
0	0	0	0	0		0	0	(0	0	0		0 0	0	(12877	2224	
145664	0	145664	103419		103419	14170	0		14170	0	14170	347860		345808	265852		265852	262653	0	262653
527309 0	85 0	527224	536042			641249 547	66 547		647739	0								0 0	0	
0	0	0	0	0	0	0	0		0	44	-44		0 0	0) () (377127	1681	375446
2793823	0	2793823	2913921			2552035 0	0		2552035	0	2552035	2023726		2023210	2010833			2135966	92	2135966 92347
2247644	9300	2238344	2390601			2358160	9760			9760	2346270	233600		2333720	2159736			2396238	92 6207	92347 2390031
65816273	1092908	64723365	65770832	637933	65132899	55972056	591946	55380110	58025442	1327362	56698080	29023393	1 449633	28573758	28796707	329355	28467352	43322694	2978374	40344320

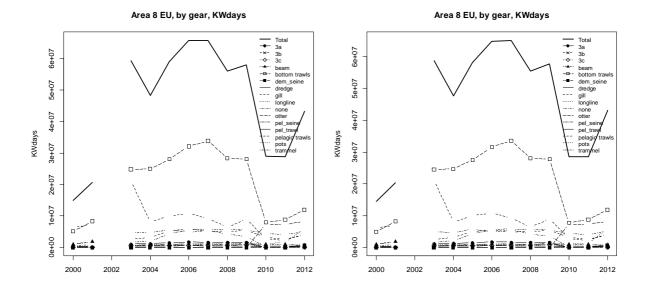


Figure 5.9.1.10.2.- Effort (kW*days) reported within ICES Sub-area VIII EU by gear type, 2000-2012, with (left) and without (right) reported deepwater effort. Due to uncertainty in French 2002 data this year has been removed from the figures.

Deepwater VIII non-EU

Fishing effort in Area VIII non EU was minimal. The UK has some historical effort for gill nets and pots, and France conducted a small amount of bottom trawl in 2011. Spain reported bottom trawl and longline effort for 2012

Table 5.9.1.10.4.- Deep Sea fishing effort (kW*days) 2000 – 2012 by member state ICES Sub-area VIII non-EU.

Area	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
8 non EU	ESP													2397
	FRA												497	
	UK							34994		5376				
8 non EU Total								34994		5376			497	2397

Table 5.9.1.10.5.- Deep Sea fishing effort (kW*days) 2000-2012 by gear and member state ICES Subarea VIII non-EU.

Area	Gear	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
8 non EU	BOTTOM TRAWLS	ESP													1985
		FRA												497	
	GILL	UK							34994						
	LONGLINE	ESP													412
	POTS	UK									5376				
8 non EU To	tal								34994		5376			497	2397

Western Waters VIII non-EU

Minimal effort occurs sporadically within this area, Table 5.9.1.10.6. In 2012 Spain reported effort in all categories except gill nets and pots. Without this Spanish effort total effort in 2012 in this area would have decreased compared to 2010 and 2011.

Table 5.9.1.10.6.- Effort (kW*days) by country, gear and vessel size group within ICES Sub-area VIII non-EU, 2000-2012.

					200	0		2001	1		200	2		200	3		200	4		200	5
						Excluding															
rea (Gear	Country	Vessel length	Effort	Deep Effort	Deep Effort															
non EU	bottom trawls	FRA	o10t15m		0		0 0			0	0		0	0	()	0		0	0	
		ESP	o15m		0	0	0 0	()	0	0 ()	0	0	0 ()	0	0	0	0	0
		FRA	o15m		0	0	0 0	()	0	0 ()	0	0	D ()	0	0	0	0	0
		PRT	o15m		0	-	0 0			0	0		0	0)	0		0	0	
٤	gill	FRA	o15m		0		0 0			0	0		0	0)	0		0	0	
		sco	o15m		0	0	0	()		0 ()		0	D		0	D		0	0
I	longline	ESP	o10t15m		0		0 0			0	0		0	0)	0		0	0	
		ESP	o15m		0	0	0 0	()	0	0 ()	0	0	0 ()	0	0	0	0	0
		FRA	o15m		0	-	0 0			0	0		0	0)	0		0	0	
		sco	o15m		0	-	0 0			0	0		0	0)	0		0	0	
r	none	ESP	o15m		0	-	0 0			0	0		0	0)	0		0	0	
F	pelagic trawls	ESP	o15m		0		0 0			0	0		0	0)	0		0	0	
		FRA	o15m		0	-	0 0			0	0		0	0)	0		0	0	
F	pots	sco	o15m		0	0	0	()		0 ()		0	0		0	0		0	0
t	trammel	FRA	o10t15m		0		0 0			0	0		0	0)	0		0	0	
		ESP	o15m		0		0 0			0	0		0	0)	0		0	0	
non EU Total	•				0	0	0 0	()	0	0 ()	0	0	0 ()	0	0	0	0	0

	2006			200	7		2008			200	9		20	10		201	1		2012	
		Excluding			Excluding			Excluding												
Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort												
0		()	0	(0			0 ()		0	2804	280	4 29	4	294	0		(
0	0	()	0 (0 (0	0		0 0)	0	0	0	0	0 (0	0	4559	1985	2574
0	0	C)	0 (0 (0	0		0 0)	0	0	0	0	0 612	1 49	7 5624	662	0	662
23762		23762	2	0	(0			0 0)		0	0		0 (0	(0		
0		(0	(0			0 0)		0	0		0 382	5	3825	2995		2995
34994	34994			0 (0	0	0)	0		0	0) (0	0	0	
0		C)	0	(0			0 0)		0	0		0 (ס	(2177		2177
0	0	C)	0 (0 (0	0		0 0)	0	0	0	0	0 (0) (188404	412	187992
0		()	0	(0			0 0)		0	30301	3030	1 1487	6	14876	10298		1029
0		()	0	(0			0 0)		0	73754	7375	4 6692	В	66928	9452		945
0		C)	0	(0			0 0)		0	0		0 (ס	(3131		3131
0		C)	0	(0			0 0)		0	0		0 (0	(4737		4737
0		()	0	(0			0 0)		0	52118	5211	8 7135	6	71356	7282		7282
0	0			0 (0	5376	5376		()	0		0	0		0	0	0	0	
0		(0	(0			0 0			0	573	57	3 15	В	158	0		
0		C)	0	(0			0 0)		0	0		0 (ס	(94		9.
58756	34994	23762	2	0 (0 0	5376	5376		0 0)	0	0	159550	0 15955	0 16355	8 49	7 163063	233791	2397	231394

5.9.1.11 Fishing effort in ICES area IX

Deepwater IX EU

Most of the effort in area IX was contributed by Portugal, with lesser amounts by Spain, as shown in Tables 5.9.1.11.1 and 5.9.1.11.2. Occasional, small amounts of effort were recorded by France and UK. Prior to 2003 recorded effort was quite low and the highest values occur in recent years.

Portuguese longline effort is the most important in the area and this gear is responsible for the overall trend, however in 2012 Spain reported 10% of the effort.

Portuguese bottom trawl effort peaked in 2007, and none was reported for 2012. Between 2002 and 2010 Spanish bottom trawl effort fluctuated slightly, but the effort recorded for 2012 is the highest for the time series. Spain also reported large effort for pots in 2012.

Table 5.9.1.11.1.- Deep Sea fishing effort (kW*days) 2000 - 2012 by member state ICES Sub-area IX EU.

Area	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
9 EU	ESP			145453	161165	94341	98119	136223	280696	148213	100673			451421
	FRA									1472	1472		588	
	PRT	40929	28032	15563	323445	254615	465091	820110	964352	859628	787838	628818	601916	627340
	UK							138797	11906					
9 EU Total		40929	28032	161016	484610	348956	563210	1095130	1256954	1009313	889983	628818	602504	1078761

Table 5.9.1.11.2.- Deep Sea fishing effort (kW*days) 2000 - 2012 by gear and member state ICES Subarea IX EU.

Area	Gear	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
9 EU	BOTTOM TRAWLS	ESP			141910	159002	88954	84697	117280	266955	135644	88673			285478
		FRA												588	
		PRT	9210		6122	6182	37237	63980	90888	133980	85031	103658	37393	30150	
	DREDGE	PRT						89	74				89		
	GILL	ESP			1933	351			159	210	1372				10935
		FRA									1472	1472			
		PRT	1477	5141	1859	3712		2956	4340	16061	12332	7604	2453	1760	772
		UK							130733	11906					
	LONGLINE	ESP			986		1264	6112	14148	13531	10249	12000			64590
		PRT	27976	22191	7582	309598	213345	393156	710169	787845	734259	667917	580377	567197	621507
		UK							4928						
	none	ESP			562	1812	4123	7310	4612		948				6989
	PELAGIC TRAWLS	ESP													693
		PRT				201		71	60		142	137		66	
	POTS	ESP			62										80785
		PRT		428			1865	354	1541	1331	3296	395	100	153	216
		UK							3136						
	TRAMMEL	ESP							24						1951
		PRT	2266	272		3752	2168	4485	13038	25135	24568	8127	8406	2590	4845
9 EU Total			40929	28032	161016	484610	348956	563210	1095130	1256954	1009313	889983	628818	602504	1078761

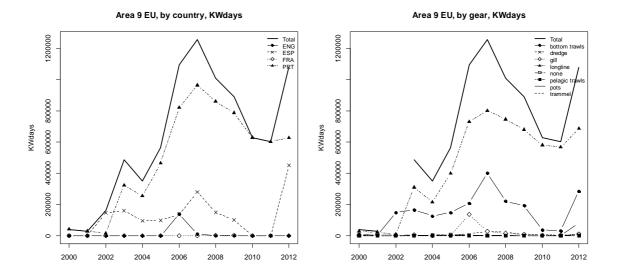


Figure 5.9.1.11.1. Deep Sea fishing effort (kW*days), 2000 – 2012, by country and by gear, in ICES Subarea IX EU. Due to the uncertainty in French 2002 data this year has been removed from the figure.

Western Waters IX EU

Two nations are active in this area, Portugal and Spain, although minor contributions from other nations do occur (Table 5.9.1.11.3 and Figure 5.9.1.11.2). Spanish data was not provided for 2010 or 2011.

Overall effort increased from 2001 peaking between 2007 and 2009. With the lack of Spanish data for 2009 and 2010 effort in the area appeared to drop by approximately 50%. The inclusion of Spanish data for 2012 brings the total effort level back up to 2006 levels, just before the peak. Comparatively little effort is directed toward deepwater fisheries, apart from Portuguese longlines. Spanish deepwater effort was only provided in this area for 2009 and 2012. Given the low effort assigned to deepwater fisheries in these years deepwater effort may not have been significant over the period.

The main fishing activity is bottom trawling, and while this is carried out by both nations, Portuguese effort is much higher. Over the period Portuguese effort increased until 2007, but has been declining slowly since. In 2008 and 2009 it made up 80% of the bottom trawl effort. Spanish effort levels had remained relatively stable in recent years, up to 2009, but the effort reported for 2012 is very similar to Portuguese effort for the year.

Spanish pelagic trawls were the next most important, in terms of effort, up to 2009. The Spanish pelagic effort for 2012 is approximately 35% of that reported for 2009.

Low effort levels of trammel net, gillnet, and pots occur, are carried out, particularly by Portugal. Trammel net effort has increased in recent years, while effort in both pots and gill nets have been in decline.

Table 5.9.1.11.3.- Effort (kW*days) by country, gear and vessel size group within ICES Sub-area IX EU, 2000-2012.

				2000			2001			200			200			200			2005	
Gear	Country	Vessel length	Effort	Deep Effort	Excluding Doop Effort	Effort	Deep Effort	Excluding	Effort	Deep Effort	Excluding Deep Effort	Effort	Deep Effort	Excluding Doop Effort	Effort	Deep Effort	Excluding Deep Effort	Effort	Deep Effort	Excluding Deep Effor
3a	ESP	none)	Deep Elloit			0		Deep Elloit	814891			794934	1820246		1820246			1258
50	PRT	o10t15m)	ì			0			014031			754554	10202-10		10202-10			1230
	PRT	o15m	·		(0			7621			2386583	1649061		1649061	1590645		1590
3b	ESP	none	((0			253541			230249	289007		289007			307
	PRT	o10t15m	((0			0			33226	0		0			2
	PRT	o15m	()	(0		0	5884		5884	1796	5	1796	2695		2695	25049		2
3c	ESP	none	()	(0		0	75080		75080	100476	5	100476	123556		123556	112117		11
	PRT	o10t15m	110)	110	0		0	0		0	1069	9	1069	15187		15187	62878		6
	PRT	o15m	45336	5	45336	10923		10923	20594		20594	317899	9	317899	255435		255435	505958		50
beam	ESP	none	()	(0		0	10822		10822	11804	1	11804	25121		25121	25154		
	ESP	o10t15m	()	(0		0	0		0) ()	0	0		0	0		
bottom traw	/ls ESP	none	(0	(0	0	0	2321107	14191	2179197	2386397	7 15900	2 2227395	3094901	8895	4 3005947	2368758	84697	7 22
	ESP	o10t15m	(0	(0	0	0	0		0) ()	0	0		0	0	C)
	IRL	o10t15m	((0	0		0)	0	0		0	0		
	PRT	o10t15m	5816		5816			0			0			0	0		0			
	ESP	o15m	(0	0						0	0			-	C	
	FRA	o15m	(0	0		(C)
	IRL	o15m)	(0			0			4208			0	-		
1	PRT	o15m	3662193				0								5071607					
dredge	ESP	none	((0			8622			10357	23443		23443			
	ESP	o10t15m	((0		0	0		0) (0	0		0	0		
	PRT	o10t15m		0			0												89	9
	ESP	o15m	((0			0			0	0		0			
gill	ESP	none	(0	0									249307			
	ESP	o10t15m	(0	0							0			-	0	
	PRT	o10t15m	193				0	0												
	ENG ESP	o15m	(0	0		0			()	0			0	0	
		o15m					0	0						0					0	
	FRA PRT	o15m o15m	151310				5141	0 87967										-	2639	
longline	ESP	none	151310				0	8/96/												
longime	ESP	o10t15m		_			0	0						0 0	0 0				0112	
	FRA	o10t15m)	(Ü	0						0	0		0			1
	PRT	o10t15m		-			0	0						859			-		16086	5
	ENG	015m		_		0	0		0					000	0			0	20000	
	ESP	o15m) 0			0	0							0				0	
	PRT	o15m					22191	-6733							77114					
none	ESP	none					0	0												
	ESP	o10t15m					0										0 0			
	ESP	o15m	(0	0						0	0				C	
pelagic traw	ls ESP	none	()	(0		0	1570656		1570656	1998361	L	1998361	3483303		3483303	3067963		3
	ESP	o10t15m	(0	(0	0	0	0) () ()	0	0		0	0	C	
	PRT	o10t15m		0			0)		20	1)		71	l
	ESP	o15m	(0	(0	0	0	0		0) ()	0	0		0	0	C)
	FRA	o15m	()	(0		0	0		0) ()	0	0		0	0		
	PRT	o15m	(0			0	0											0	
pots	ESP	none	(0	0						856098	1168353		1168353			
	ESP	o10t15m	(0	0						0	0				C	
	PRT	o10t15m	(0	0						3119			518)
	DEU	o15m	((0			0			0	0		0			
	ENG	o15m	(0	0						0					0	
	ESP	o15m		0			0	0						0					C	
	PRT	o15m) 0		0	428	-428						0 8607						
trammel	ESP	none	(0	0						174174						
	ESP	o10t15m	(0	0				_		0			0 0			
	PRT	o10t15m	2016				0	438												
	ESP PRT	o15m o15m	72895				0	70113						0 0	44224				2420	
				2266	/0629	/9384	272	79112	88515		88515	37931	1 369	34239	44231	216	8 42063	189840	3430	1

	2006			2007			2008			2009)		2010			2011			2012	
		Excluding			Excluding			Excluding			Excluding			Excluding			Excluding			Excluding
Effort I	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort E	ffort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort	ffort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort
740560		740560	817487		817487	924323		924323	873545		873545	0		0	0		0	0		0
382		382	71		71	13105		13105	35862		35862	45159		45159	50829		50829	43956		43956
505082		505082	186221		186221	182637		182637	237103		237103	265182		265182	825399		825399	1152966		1152966
289185		289185	365240		365240	383852		383852	433989		433989	0		0	0		0			0
50752		50752			84384	104430		104430			157906			142579	88224		88224	91618		91618
65275		65275			68541	71600		71600			118150			105759	91704		91704			86273
195860		195860			138286	124836		124836	180507		180507			0	0		0			0
112386		112386	135113		135113	119727		119727	162909		162909	140068		140068	189677		189677	45721		45721
757301		757301			706450	630364		630364	701404		701404			704076	707342		707342			193858
25077		25077			28021	18232		18232			16275			0	0		0			0
0		0			0	0		0			0			0	0		0			40016
2715222	117280	Ů	- v			1948330	135644	Ü	1881415	(0					
0	117200					0	133044							-	0					
0		0			0	0		0			0			82	0		0			103678
0		0			89	0		0			0			0	0		0			0
0	0	-				0	0								0					4365909
0	0	-			-	0	-	-	-				-	-	588					
0	U	0			0	746	U	746			0			0	588		0			810
6029268	90888	-	-		-	746 7701114	85031			103658					5627416		-			5126805
	90888					33876	85031			103656				6230043	5627416		5597266			3120805
26099		26099			30039			33876			58241									- 0
0		0	0		0	0	_	0	0		0	0		0	0		0	643		643
	74			0			0			(89			(С	
0		0			0	0		0			0			0	0		0			1128
287174	159					371351	1372								0					
0	0	-			-	0	0		0			-			0					
47292	269					112498	901			89					59136					
130733	130733		11906			0	0		0			0	-		0			0		
0	0					0									0					
0	0					0									736					
184177	4071	180106	718943	15724	703219	777508	11431	766077	668527	7515	661012	600022	1397	598625	225930	1563	224367	148094	772	147322
646323	14148	632175	256878	13531	243347	205655	10249	195406	275977			0	0	0	0	(0	0		
0	0					0	0	0			-675	0	0		0				26211	77749
0		0	0		0	0		0	0		0	0		0	684		684	0		0
52976	39265	13711	51615	52013	-398	56083	45702	10381	43053	54347	7 -11294	51577	17713	33864	30175	37019	-6844	18619	30971	-12352
4928	4928		0	0		0	0		0	C)	0	0		0	()	0	C	i
0	0	0	0	0	0	0	0	0	0	11325	-11325	0	0	0	0	(0	178724	38379	140345
47149	670904	-623755	118832	735832	-617000	122982	688557	-565575	93497	613570	-520073	78133	562664	-484531	84475	530178	-445703	119790	590536	-470746
309026	4612	304414	315969	0	315969	380804	948	379856	563673	C	563673	0	0	0	0	(0	0	C	0
0	0	0	0	0	0	0	0	0	0	(0	0	0	0	0	(0	16029	1213	14816
0	0	0	0	0	0	0	0	0	0	(0	0	0	0	0	(0	250614	5776	244838
2802865		2802865	2872281		2872281	3041047		3041047	3346249		3346249	0		0	0		0	0		0
0	0	0	0	0	0	0	0	0	0	(0	0	0	0	0	(0	356945	345	356600
	60			0			142			(0			66			C	/
0	0	0	0	0	0	0	0	0	0	(0	0	0	0	0	(0	895370	348	895022
0		0	0		0	0		0	0		0	0		0	0		0	323		323
0	0	0	0	0	0	0	0	0	0	137	7 -137	0	0	0	0	(0	452	C	
632260	C	632260	718759	0	718759	873801	0	873801	927395	(0	0	0	(0	0	C	
0	0					0	0	0		(0	0	0	0	0	(0	113489	79226	34263
121213	835					250634				267					234767					
0		0			7272	0		0			0			14544	14948		14948			0
3136	3136					0	0	0							0					0
0	0					0	0		-			-	-	-	0			-		
39918	706					188751	3157			128					174534					
275258	24					352813	0		359209	(0					
2/3238	24					332813	0								0					
135727	910		-			386146	2648		-	535					444680				2652	
133727	910					380140	2048			333					444080				60	
389797	12128	-	-	_	-	643654	21920		-	7592		-		-	985555					
17622401	1095130					20020899	1009313			889983					9836799					
1/622401	1095130	1052/405	20496362	1256954	19239408	20020899	1009313	19011/28	20583225	88998:	19693242	10303362	628818	96/4633	9836/99	602504	9234361	10506948	10/8/61	. 1542818/

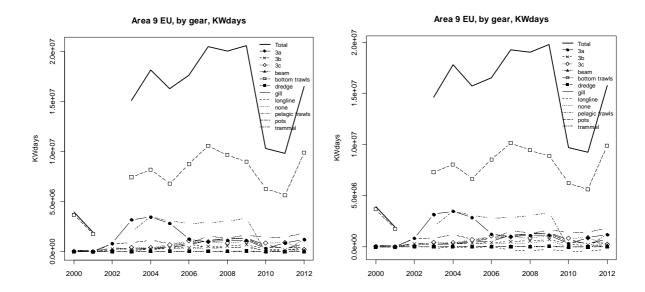


Figure 5.9.1.11.2.- Effort (kW*days) reported within ICES Sub-area IX EU by gear type, 2000-2012, with (left) and without (right) reported deepwater effort. Due to uncertainty in French 2002 data this year has been removed from the figures.

Deepwater IX non-EU

In Area IX non-EU effort peaked between 2003 and 2005 but has declined greatly since. All the effort is Portuguese. Between 2005 and 2011 it has been solely longline. In 2012 Portugal recorded an increase in longline effort and Spain recorded bottom trawl effort.

Table 5.9.1.11.4.- Deep Sea fishing effort (kW*days) 2000 – 2012 by member state ICES Sub-area IX non-EU.

Area	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
9 non EU	ESP													1687
	PRT	39812	63800	40008	163067	63968	163069	3356	13187	43272	11581	3401	5217	18640
9 non EU Total		39812	63800	40008	163067	63968	163069	3356	13187	43272	11581	3401	5217	20327

Table 5.9.1.11.4.- Deep Sea fishing effort (kW*days) 2000 - 2012 by gear and member state ICES Subarea IX non-EU.

Area	Gear	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
9 non EU	BOTTOM TRAWLS	ESP													1687
	GILL	PRT	7832	4718	9565	229		1968							
	LONGLINE	PRT	31559	59082	30155	162301	63968	159709	3356	13187	43272	11581	3401	5217	18640
	PELAGIC TRAWLS	PRT						1250							
	TRAMMEL	PRT	421		288	537		142							
9 non EU To	tal		39812	63800	40008	163067	63968	163069	3356	13187	43272	11581	3401	5217	20327

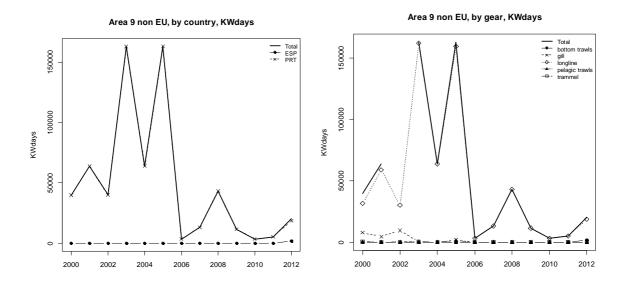


Figure 5.9.1.11.3. Deep Sea fishing effort (kW*days), 2000 - 2012, by country and by gear, in ICES Subarea IX non-EU. Due to the uncertainty in French 2002 data this year has been removed from the figure.

Western Waters IX non-EU

Little effort is associated with this area in recent years. Prior to 2006 a variety of gears were used, all at low levels, and all of them by Portugal (Table 5.9.1.11.6. and Figure 5.9.1.11.4.). Since 2006, effort declined and was focused in longlines. In 2012 Portuguese longline effort increased. Some of the longline effort is associated with deepwater fisheries.

In 2012 Spain reported effort for bottom trawls, pelagic trawls and longlines. Lithuania reported effort for pelagic trawl.

Table 5.9.1.11.6.- Effort (kW*days) by country, gear and vessel size group within ICES Sub-area IX non-EU, 2000-2012.

					2000)		2001	l l		200	2		2003			2004	ı		200	5
						Excluding															
Area	Gear	Country	Vessel length	Effort	Deep Effort	Deep Effort															
9 non EU	bottom trawls	ESP	o15m	(0) (0	(0	0) () (0	0	0	0) () () (0
		PRT	o15m	98235	5	98235	116517		116517	169518		169518	224597	,	224597	27180		27180	72890)	72890
	gill	PRT	o10t15m	(0) (0	(0	0) (46304	229	46075	0	C) (2471	. (2471
		PRT	o15m	130277	7832	122445	213782	4718	209064	201508	956	191943	69055	0	69055	805	C	805	32635	196	30667
	longline	PRT	o10t15m	(0) (0	(0	0) (19729	11250	8479	0	C) (24403	1185	12553
		ESP	o15m	()	(0		C	0		0) ()	0	0		() ()	C
		PRT	o15m	49469	31559	17910	98993	59082	39911	45689	3015	15534	197108	151051	46057	35788	63968	-28180	167159	14785	9 19300
	none	ESP	o15m	()	(0		C	0		0) ()	0	0		() ()	C
	pelagic trawls	ESP	o15m	()	(0		C	0		0) ()	0	0		() ()	C
		PRT	o15m)		())		0			0)		1250	0
		LTU	o40m	()	(0		C	0		0) ()	0	0		() ()	C
	pots	PRT	o10t15m	()	(0		C	0		0	642	!	642	0		(2961	L	2961
		PRT	o15m	()	(0		C	0		0) ()	0	0		(590)	590
	trammel	PRT	o10t15m	339		339	0		C	680		680	9396	i	9396	0		(9438	3	9438
		PRT	o15m	16195	421	15774	19851	(19851	22840	28	3 22552	38958	537	38421	0	0) (15314	14:	2 15172
9 non EU Total				294515	39812	254703	449143	63800	385343	440235	4000	400227	605789	163067	442722	63773	63968	-195	327861	16306	9 166042

	2006			2007	,		2008			2009)		201	0		201	1		2012	!
		Excluding																		
Effort	Deep Effort	Deep Effort																		
0	0	C	0	(0	0	0	0	0	C) ()	0	0	0	0 (0 0	37661	1687	35974
0		C	0		C	0		0	0)	0)	0	() ()	0
0	0	(0	(0	0	0	0	0	C) ()	0	0)	0 () () () C	0
0			0	(0	0	0	0	0	C) (D	0	0)	0 () () () C	0
0	0	C	0		0	0	0	0	0	C) ()	0	0)	0 () () () С	0
0		C	0		C	0		0	0)	0)	0	(40340		40340
2714	3356	-642	4065	13187	-9122	34660	43272	-8612	43305	11581	3172	1 802	20 340	1 461	1281	2 521	7 7595	51438	18640	
0		(0)	C	0		0	0)	0)	0	(3961		3961
0		C	0		C	0		0	0)	0		0	0	(1808		1808
	0			()		0			()			0			0		C)
0		(0		C	0		0	0)	0)	0	(10304		10304
0		(0)	C	0		0	0)	0)	0	() ()	0
0		(0)	C	0		0	0)	0)	0	() ()	0
0		(0		0	0		0	0)	0)	0	() ()	0
0	0		0		0	0	0	0	0	C) (D	0	0	o	0 () () (0	0
2714	3356	-642	4065	13187	-9122	34660	43272	-8612	43305	11581	3172	1 802	0 340	1 461	1281	2 521	7 7595	145512	20327	125185

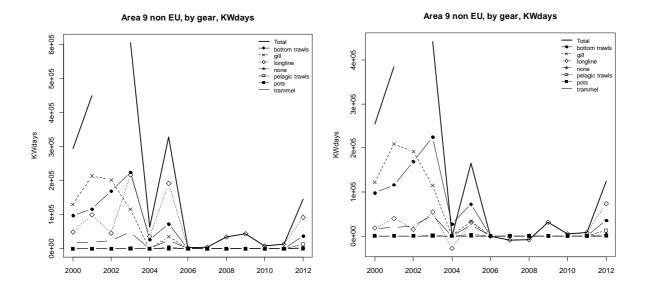


Figure 5.9.1.11.4.- Effort (kW*days) reported within ICES Sub-area IX non-EU by gear type, 2000-2012, with (left) and without (right) reported deepwater effort. Due to uncertainty in French 2002 data this year has been removed from the figures.

5.9.1.12 Fishing effort in ICES area X

Deepwater X EU

Reporting of effort in ICES X has been more sporadic than other areas. In 2012 Portugal updated their submission and reported large longline effort for 2009 to 2012. For the first three years this was quite consistent, with a small decrease in 2012.

Table 5.9.1.12.1.- Deep Sea fishing effort (kW*days) 2000 – 2012 by member state ICES Sub-area X EU.

Area	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
10 EU	ESP													1440
	PRT				7517			15006			1305573	1223923	1393208	988374
10 EU Total					7517			15006			1305573	1223923	1393208	989814

Table 5.9.1.12.2.- Deep Sea fishing effort (kW*days) 2000 - 2012 by gear and member state ICES Subarea X EU.

Area	Gear	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
10 EU	BOTTOM TRAWLS	ESP													1058
	LONGLINE	ESP													382
		PRT				7517			15006			1305573	1223923	1393208	988374
10 FLI Total						7517			15006			1305573	1223023	1393208	02021/

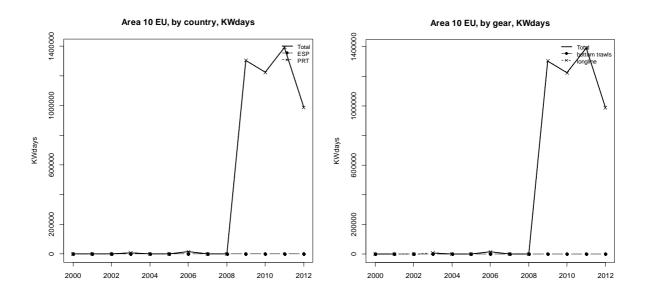


Figure 5.9.1.12.1. Deep Sea fishing effort (kW*days), 2000 - 2012, by country and by gear, in ICES Subarea X EU.

Western Waters X EU

Little effort is carried out within this area. The effort that does occur is with longlines by Portugal (Table 5.9.1.12.3 and Figure 5.9.1.12.2). This effort was regularly associated with deepwater fisheries. In 2012 Spain reported effort for longline, gill net and bottom trawl. Spanish longline effort is not deepwater effort.

Table 5.9.1.12.3.- Effort (kW*days) by country, gear and vessel size group within ICES Sub-area X EU, 2000-2012.

					200	0		200	1		200	2		200)3		200	4		200	5
						Excluding															
Area	Gear	Country	Vessel length	Effort	Deep Effort	Deep Effort															
10 EU	bottom trawls	ESP	o15m		0	0 (0	0	0	0	0	0	0	0	0	0	0	0 ()	0	0 (
		PRT	o15m		0		D	0		0	0		0	0		0	0	()	0	(
	gill	ESP	o10t15m		0		0	0		0	0		0	0		0	0	()	0	(
		ESP	o15m		0		0	0		0	0		0	0		0	0	()	0	(
	longline	ESP	o10t15m		0	-	0	0		0	0		0	0		0	0	()	0	(
		PRT	o10t15m			0			0			0			0			0			0
		ESP	o15m		0	0 (0	0	0	0	0	0	0	0	0	0	0	0 ()	0) (
		FRA	o15m		0		D	0		0	0		0	0		0	0	()	0	(
		PRT	o15m		0	0 (D	0	0	0	0	0	0 7	517 751	17	0 355	0	0 3550	420	1	420
	none	ESP	o15m		0		D	0		0	0		0	0		0	0	()	0	(
	trammel	FRA	o10t15m		0	-	0	0		0	0		0	0		0	0	()	0	(
10 EU Total					0	0 (D	0	0	0	0	0	0 7	517 751	17	0 355	0	0 3550	420	1	420:

	2006	i		2007	7		2008	3		2009			2010)		2011	L		2012	
		Excluding			Excluding															
Effort	Deep Effort	Deep Effort E	ffort	Deep Effort	Deep Effort															
(0) (1	0 () (0	() (0	C	0) () (0		0	0	1256	1058	198
)	(75	0	750	C)	(0		0) ()	0	()	0	0		0
()	C		0	C			(0		C) ()	C	()	0	74		74
()	C		0	C	C		(0		C) ()	C	()	0	1374		1374
()	C		0	C			(0		C) ()	C	()	0	77		77
	C)		()		()		825191			785038	3		898336	5		716666	
() () (0 () (C	() (0	C	0) () (0	(0	0	101864	382	101482
()	(1	0	(0)	(0		0) ()	0	()	0	442		442
(15006	-15006	i	0 () (() (12112	480382	-468270) (438885	-438885	21182	494872	-473690	0	271708	-271708
()	C		0	C	C		(0		C) ()	C	()	0	11752		11752
()	C		0		C		(0		C) ()	C	184	1	184	0		0
(15006	-15006	75	0 (750	C	() (12112	1305573	-468270) (1223923	-438885	21366	1393208	-473506	116839	989814	-156309

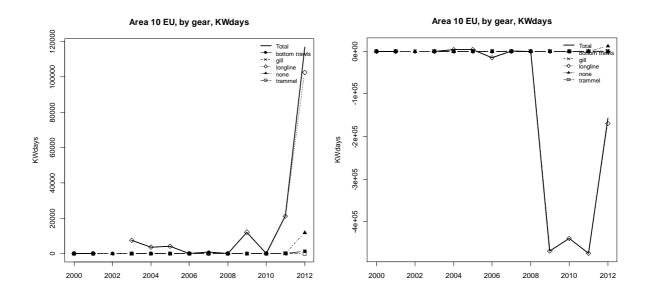


Figure 5.9.1.12.2.- Effort (kW*days) reported within ICES Sub-area X EU by gear type, 2000-2012, with (left) and without (right) reported deepwater effort.

Deepwater X non-EU

Most of the effort in the non EU part of X is Portuguese longline, with some pelagic trawl effort reported for 2005. Ireland, 2004 to 2005, recorded some effort from bottom trawls. Spain reported a small amount of longline effort for 2012, (Table 5.9.1.12.4 and 5.9.1.12.5 and Figure 5.9.1.12.3).

Table 5.9.1.12.4.- Deep Sea fishing effort (kW*days) 2000 – 2012 by member state ICES Sub-area X non-EU.

Area	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
10 non EU	ESP													169
	IRL					31378	8656							
	PRT		9929	6987	9188	26101	229555	8931	20388		2478			
10 non EU Total			9929	6987	9188	57479	238211	8931	20388		2478			169

Table 5.9.1.12.5.- Deep Sea fishing effort (kW*days) 2000 - 2012 by gear and member state ICES Subarea X non-EU.

Area	Gear	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
10 non EU	BOTTOM TRAWLS	IRL					31378	8656							
	LONGLINE	ESP													169
		PRT		9929	6987	9188	26101	25533	8931	20388		2478			
	PELAGIC TRAWLS	PRT						204022							
10 non EU Total				9929	6987	9188	57479	238211	8931	20388		2478			169

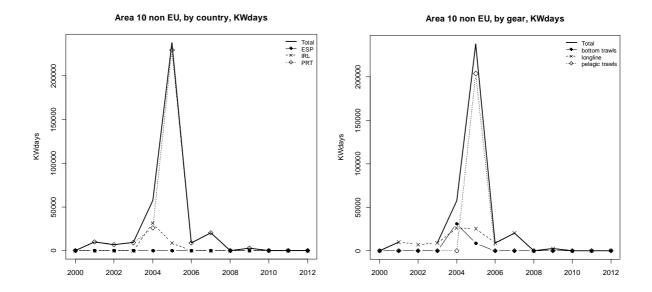


Figure 5.9.1.12.3. Deep Sea fishing effort (kW*days), 2000 - 2012, by country and by gear, in ICES Subarea X non-EU.

Western Waters X non-EU

Little effort is carried out within Area X non EU. Effort which does occur is primarily with longlines by Portugal, associated with deepwater fisheries (Table 5.9.1.12.6. and Figure 5.9.1.12.4.). this effort ceased in 2009.

Occurrence of other gears or nations is more sporadic and tends to relate to deepwater fisheries, including small amounts of bottom trawling in 2004/2005 by Ireland. From 2010 to 2012 France recorded effort in all gear types. In 2012 Spain reported major effort for longlines and much smaller effort for bottom and pelagic trawls.

Table 5.9.1.12.6.- Effort (kW*days) by country, gear and vessel size group within ICES Sub-area X non-EU, 2000-2012.

					2000	0		2001			2002	,		200	3		2004	1		2005	5
						Excluding			Excluding			Excluding			Excluding			Excluding			Excluding
Area	Gear	Country	Vessel length	Effort	Deep Effort		Effort	Deep Effort		Effort	Deep Effort	Deep Effort	Effort	Deep Effort	Deep Effort	Effort	Deep Effort		Effort	Deep Effort	Deep Effort
10 non EU	bottom trawls	FRA	o10t15m	(0	C	0))		0	0		0)	((
		ESP	o15m	(0	C	0		(1)		0	0		0)	((
		FRA	o15m	(0	C	0		()		0	0		0)	(
		IRL	o15m	(0 (0	0	C)) ()		0	D	31378	31378	В	8656	8656	6
	dre dge	FRA	o10t15m	(0	C	0		()		0	0	(0)	((
	gill	FRA	o10t15m	(0	0	0)		0	0		0)	(
		FRA	o15m	(0	C	0		()		0	0	(0)	((
	longline	FRA	o10t15m	(0	C	0		()		0	0		0)	()	
		ESP	o15m	(0 (0 0	0	C) ()) () (0	0	0 (0) () ((0
		FRA	o15m	(0	C	0		()		0	0		0)	(()	
		PRT	o15m	13046	5 (13046	30424	9929	2049	843	9 6987	145	2 168	08 918	8 7620	29859	2610:	1 3758	39348	25533	3 1381
	none	ESP	o15m	(0	0	0)		0	0		0)	(
	pelagic trawls	FRA	o10t15m	(0	0	0		()		0	0		0)	()	
		ESP	o15m	(0	C	0		()		0	0	(0)	(
		FRA	o15m	(D	C	0)		D	0		0)	((
		PRT	o15m		(0		C)		()			0		()		204022	2
	pots	FRA	o10t15m	(D	C	0		(1)		0	0		0)	((
		PRT	o15m	(0	C	0)		0	0		0)	((
	trammel	FRA	o10t15m	(0	0	0)		0	0		0		((
		FRA	o15m	(D	C	0		(1)		D	0		0)	((
		PRT	o15m	(0	C	6894		689		ס		D	0		0)		(
10 non EU Tota	al			13046	5 (13046	37318	9929	2738	843	6987	7 145	2 168	108 918	8 7620	61237	57479	3758	48004	23821	1 1381

	2006	i		2007	1		2008			2009	9		20	10		201:	1		201	2
		Excluding																		
Effort	Deep Effort	Deep Effort																		
0			0	0	()	C	0		()	059	1059	2594	ı	2594	5362		5362
0			0	0	()	0	0		()	0	()	C	3671		3671
0)	0	(()	C	0		()	964	1964	810)	810	1176	i	1176
0	C)		0 0)	C	0	1	0	()		0	0	() ()	0	1)
0)	0	((C	0		()	0	(()	C	220		220
0			0	0	()	C	0		()	111	111	765	5	765	0)	0
0			0	0	()	0	0		()	0	(660)	660	0)	0
0			0	0	()	0	0		(698	5698	133	3	133	1233		1233
0	C) (0	0 0) (0	C	0	() ()	0	0 0	() (0	634674	16	9 634505
0)	0	(()	0	0		()	0	(4464	l .	4464	7072		7072
8931	8931)	0 20388	-20388	1792	2 0	1792	12786	2478	10308	3	0	0 (() (0	0	1	0 0
0			0	0	()	C	0		()	0	()	C	22800)	22800
0		()	0	((C	0		() :	575	1575	()	C	0		0
0			0	0	()	C	0		()	0	()	C	10517	1	10517
0)	0	(()	0	0		() :	106	2106	1986	i	1986	0		0
	C)		0)		0			()			0		(0			0
0			0	0	()	C	0		()	0	(73	3	73	110)	110
0			0	0		9929		9929	2478		2478	3	0	(()	C	0)	0
0		()	0	((0	0		()	483	1483	4676	5	4676	309		309
0		()	0	(C	0		()	323	323	1221		1221	. 0		0
0			0	0	(()	C	0		()	0	(()	C	0)	0
8931	8931	. ()	0 20388	-20388	11721		11721	15264	2478	12786	5 1	319	0 14319	17382	2 (17382	687144	16	9 686975

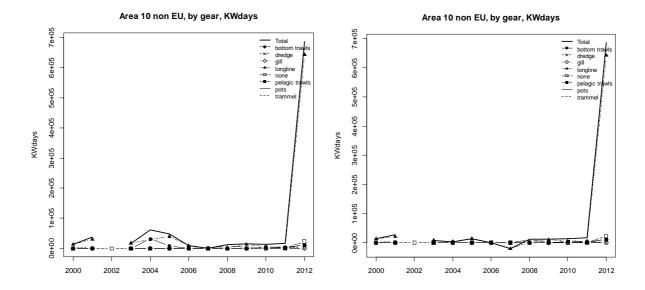


Figure 5.9.1.12.4.- Effort (kW*days) reported within ICES Sub-area X non-EU by gear type, 2000-2012, with (left) and without (right) reported deepwater effort. Due to uncertainty in French 2002 data this year has been removed from the figures.

5.9.1.13 Fishing effort in ICES area XII by fisheries and Member States only linked to Deep Sea species

Overall effort from ICES area XII is shown in Table 5.9.1.13.1. The UK recorded most effort throughout the series (mainly using otter trawl and gill net – Table 5.9.1.13.2 and Figure 5.9.1.13.1) although the trawl effort ceased in 2005 and all UK effort ceased in 2008. Other countries contributing effort included Germany, Netherlands, Estonia and Ireland. Spain provided effort for 2009 and is the only country to provide data for 2012. This effort was for bottom trawl and some pelagic trawl and other unspecified gears. In 2010 and 2011 only France has provided effort, from bottom trawls.

Table 5.9.1.13.1.- Deep Sea fishing effort (kW*days) 2000 – 2012 by member state ICES Sub-area XII non-EU.

Area	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
12 non EU	DEU				21000	22932	9708							
	ESP										2361476			289766
	EST						2712	28024	35328					
	FRA											5141	5530	
	IRL				29509									
	NLD					14420	22944							
	PRT					63180								
	UK	16797	46413	45579	102568	49670	113809	2356	4480	9359				
12 non EU Total		16797	46413	45579	153077	150202	149173	30380	39808	9359	2361476	5141	5530	289766

Table 5.9.1.13.2.- Deep Sea fishing effort (kW*days) 2000 – 2012 by gear and member state ICES Subarea XII non-EU.

Area	Gear	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
12 non EU	BOTTOM TRAWLS	ESP										1896092			287490
		EST						2712	28024	35328					
		FRA											5141	5530	
		IRL				28159									
		UK	10646	26963	7455	12768	3310	9255							
	GILL	UK	6151	19450	38124	87514	46360	104554	2356						
	LONGLINE	ESP													1232
		IRL				1350									
		PRT					63180								
	none	ESP										241944			
	PELAGIC TRAWLS	DEU				21000	22932	9708							
		ESP										223440			1044
		NLD					14420	22944							
	POTS	UK				2286				4480	9359				
12 non EU Total			16797	46413	45579	153077	150202	149173	30380	39808	9359	2361476	5141	5530	289766



Figure 5.9.1.13.1. Deep Sea fishing effort (kW*days), 2000 - 2012, by country and by gear, in ICES Subarea XII non-EU.

5.9.1.14 Fishing effort in ICES area XIV by fisheries and Member States only linked to Deep Sea species

Effort in ICES Area XIV, shown in Tables 5.9.1.14.1 and 5.9.1.14.2 and Figure 5.9.1.14.1, is mainly expended outside EU waters by Germany and the UK using otter trawls. UK effort peaked in 2004 but has since declined while German effort rose in the mid 2000s and remains at a relatively high level. There was an increase in German effort in 2011 but this has dropped to recent figures again in 2012. Spain has reported otter trawl effort for 2009 and a smaller amount for 2012. German pelagic trawling took place in the mid 2000s with effort also reported for 2011.

Table 5.9.1.14.1.- Deep Sea fishing effort (kW*days) 2000 – 2012 by member state ICES Sub-area XIV non-EU.

Area	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
14 non EU	DEU				1067316	1975374	1349730	1248640	1427857	1719689	1960922	1694549	2419111	1754268
	ESP										194085			211076
	PRT						35100							
	UK				801239	609192	261337		143075	96501	250077	186300	189933	105092
14 non EU Total					1868555	2584566	1646167	1248640	1570932	1816190	2405084	1880849	2609044	2070436

Table 5.9.1.14.2.- Deep Sea fishing effort (kW*days) 2000-2012 by gear and member state ICES Subarea XIV non-EU.

Area	Gear	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
14 non EU	BOTTOM TRAWLS	DEU				1016316	1963026	1232628	1248640	1427857	1719689	1960922	1694549	2313211	1754268
		ESP										194085			41329
		UK				801239	609192	261337		143075	96501	250077	186300	189933	105092
	LONGLINE	PRT						35100							
	PELAGIC TRAWLS	DEU				51000	12348	117102						105900	
		ESP													169747
14 non EU Total						1868555	2584566	1646167	1248640	1570932	1816190	2405084	1880849	2609044	2070436

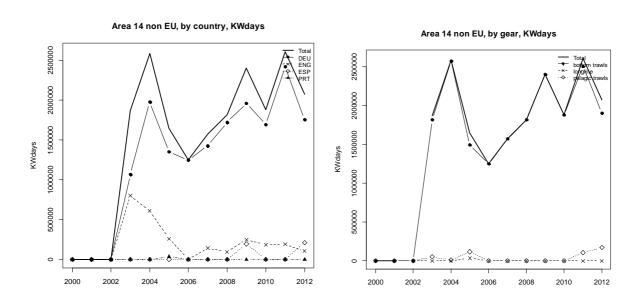


Figure 5.9.1.14.1. Deep Sea fishing effort (kW*days), 2000 - 2012, by country and by gear, in ICES Subarea XIV non-EU.

5.9.1.15 Fishing effort in CECAF area 34.1.1

Deepwater 34.1.1 EU

All effort in CECAF 34.1.1 has been recorded by Portugal (Tables 5.9.1.15.1 and 5.9.1.15.2 and Figure 5.9.1.15.1). All the effort is for longline bar 2004 when it was recorded for trammel nets.

Table 5.9.1.15.1.- Deep Sea fishing effort (kW*days) 2000 – 2012 by member state CECAF area 34.1.1 EU.

Area	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
34.1.1 EU	PRT				2349	2327	9304	28137	9160	25508	26448	11077		11269
34.1.1 EU Total					2349	2327	9304	28137	9160	25508	26448	11077		11269

Table 5.9.1.15.2.- Deep Sea fishing effort (kW*days) 2000 – 2012 by gear and member state CECAF area 34.1.1 EU.

Area	Gear	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
34.1.1 EU	LONGLINE	PRT				2349		9304	28137	9160	25508	26448	11077		11269
	TRAMMEL	PRT					2327								
34.1.1 EU To	otal					2349	2327	9304	28137	9160	25508	26448	11077		11269

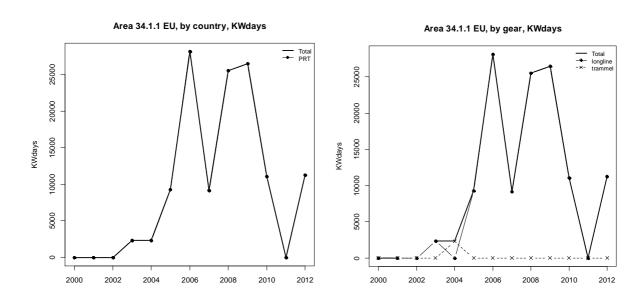


Figure 5.9.1.15.1. Deep Sea fishing effort (kW*days), 2000 - 2012, by country and by gear, in CECAF area 34.1.1 EU.

Western Waters 34.1.1 EU

Effort is low within this area. Portugal was the sole nation with effort reported in this area and is associated with longlining (Table 5.9.1.15.3 and Figure 5.9.1.15.2). Much of this effort is used to target deepwater fisheries. Between 2008 and 2009 greater effort became directed to other fisheries, and deepwater effort was further reduced in 2010 and 2011. In 2012 however all Portuguese longlining effort was focused on deepwater. A single year of Portuguese bottom trawling created an effort peak in 2007.

In 2012 Spain reported longlining effort which was not directed at deepwater.

Table 5.9.1.15.3.- Effort (kW*days) by country, gear and vessel size group within CECAF area 34.1.1 EU, 2000-2012.

					2000)		2001			200	2		200	3		2004	1		2005	5
			Vessel			Excluding															
Area	Gear	Country	length	Effort	Deep Effort	Deep Effort															
34.1.1 EU	bottom trawls	PRT	o15m	0)		0) ()	() ()	0	0		(0		0
	longline	PRT	o10t15m	0) () (0	0) ()) () () (0	0) (0	(0
		ESP	o15m	0)	(0) ()	() ()	0	0		(0		0
		PRT	o15m	0) () (4092	0	409	2 ()) (7038	3 234	4689	7502		7502	5011	9304	4 -4293
	pelagic trawls	ESP	o15m	0)	(0) ()	() ()	0	0		(0		0
	trammel	PRT	o15m		()		0))		232	7		()
34.1.1 EU Total				0) () (4092	0	409	2 ()) (703	3 234	4689	7502	232	7 7502	5011	9304	4 -4293

	2006	5		2007	7		2008			2009			2010)		201:	L		2012	
		Excluding			Excluding															
Effort	Deep Effort	Deep Effort	Effort I	Deep Effort	Deep Effort															
()	0	307168		307168	0		C	0		(0	0	0	(0	0		0
() (0	412	(412	0	0	C	6132	0	6132	2 1590	5 3258	12648	3641	L (3641	0	0	0
()	0	0		0	0		C	0		()	0	0	()	0	13032		13032
10952	28137	-17185	13356	9160	4196	57440	25508	31932	62323	26448	35875	3827	7819	30451	47337	7 (47337	0	11269	-11269
()	0	0		0	0		C	0		(0	0	0	()	0	81		81
	C)		()		0			0			())		0	
10952	28137	-17185	320936	9160	311776	57440	25508	31932	68455	26448	42007	7 5417	5 11077	43099	50978	3 (50978	13113	11269	1844

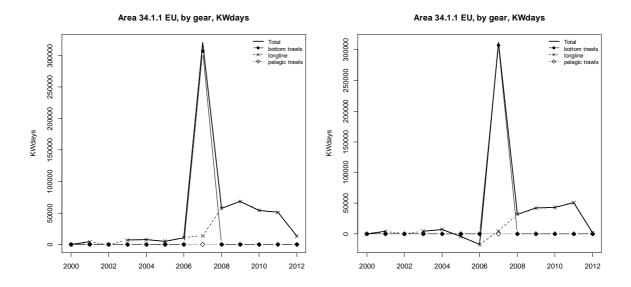
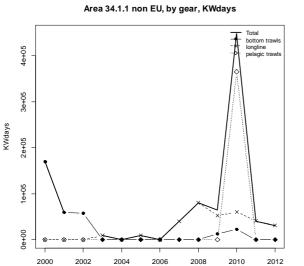


Figure 5.9.1.15.2.- Effort (kW*days) reported within CECAF area 34.1.1 EU by gear type, 2000-2012, with (left) and without (right) reported deepwater effort.

Western Waters 34.1.1 non-EU


Effort is low within this area. Portugal reported bottom trawl effort for 2000 to 2002 and again for 2009 and 2010. Since 2003 the major effort is for Portuguese longlines.

In 2012 Spain reported small effort for longlines. In 2010 Lithuania recorded effort for pelagic trawling.

Table 5.9.1.16.4.- Effort (kW*days) by country, gear and vessel size group within CECAF area 34.1.1 non-EU, 2000-2012.

					2000)		2003	L		200	2		2003	В		2004	Į.		200	5
			Vessel			Excluding															
Area	Gear	Country	length	Effort	Deep Effort	Deep Effort															
34.1.1 non EU	bottom trawls	PRT	o15m	169762		169762	5938	3	59388	57369)	57369	(0		0	() ()	0
	longline	PRT	o10t15m	0		0)	0)	C	(0		0	()	0
		ESP	o15m	0		C)	C)	C	(0		0	() ()	0
		PRT	o15m	0		C)	C		1	C	9135		9135		0	(921	3	9213
	pelagic trawls	LTU	o40m	0		0)	C	(C	(0		0	() ()	0
34.1.1 non EU Total				169762		169762	5938	3	59388	57369		57369	9135		9135	-	0	(921	3	9213

	2006	i		200	7		2008	B		2009)		2010)		201:	1	201	2
		Excluding		Excluding															
Effort	Deep Effort	Deep Effort	Effort Deep Effort	Deep Effort															
	0	0	0		0	0		0	12682		12682	22380		22380) ()	0	0	0
	0	0	13503		13503	21081		21081	14024		14024	14997		14997	3135	2	31352	0	0
-	0	0	0		0	0		0	0		(0		C) ()	0	309	309
-	0	0	26276		26276	59059		59059	38319		38319	45496		45496	913	5	9135	30517	30517
-	0	0	0		0	0		0	0		(365424		365424	. ()	C	0	0
-	0	0	39779		39779	80140		80140	65025		65025	448297		448297	4048	7	40487	30826	30826

Area 34.1.1 non EU, by gear, KWdays Total bottom trawls longline pelagic trawls 2000 2002 2004 2006 2008 2010 2012

Figure 5.9.1.15.3.- Effort (kW*days) reported within CECAF area 34.1.1 non-EU by gear type, 2000-2012, with (left) and without (right) reported deepwater effort.

5.9.1.16 Fishing effort in CECAF area 34.1.2

Deepwater 34.1.2.EU

Up to 2011 all effort in CECAF 34.1.2 was in EU waters and recorded by Portugal, Tables 5.9.1.16.1 and 5.9.1.16.2. Prior to 2010 there had been an increasing trend in effort in the EU area, however a recent resubmission of data has shown a large increase in effort since 2010. All this effort is by longline.

Table 5.9.1.16.1.- Deep Sea fishing effort (kW*days) 2000 – 2012 by member state CECAF area 34.1.2 EU.

Area	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
34.1.2 EU	PRT					8771	12191	6808	14909	19293	24163	631527	664263	530592
34.1.2 EU Total						8771	12191	6808	14909	19293	24163	631527	664263	530592

Table 5.9.1.16.2.- Deep Sea fishing effort (kW*days) 2000 - 2012 by gear and member state CECAF area 34.1.2 EU.

Area	Gear	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
34.1.2 EU	LONGLINE	PRT					8771	12191	6808	14909	19293	24163	631527	664263	530592
34.1.2 EU To	otal						8771	12191	6808	14909	19293	24163	631527	664263	530592

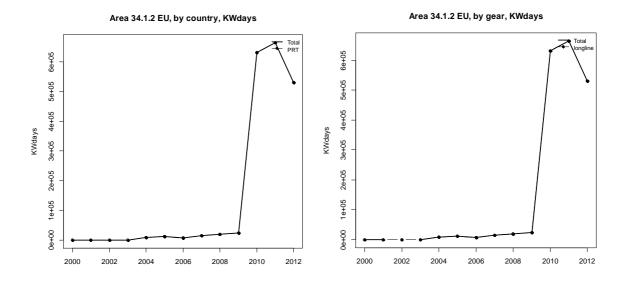


Figure 5.9.1.16.1. Deep Sea fishing effort (kW*days), 2000-2012, by country and by gear, in CECAF area $34.1.2\ EU$.

Western Waters 34.1.2.EU

A revision of Portuguese data has increased its longline effort in this area greatly between 2010 and 2012, (Table 5.9.1.16.3 and Figure 5.9.1.16.2). Spain has also reported longline effort for 2012.

Table 5.9.1.16.3.- Effort (kW*days) by country, gear and vessel size group within CECAF area 34.1.2 EU, 2000-2012.

					2000)		2003	ı		200	2		200	3		2004	1		2005	5
			Vessel			Excluding															
Area	Gear	Country	length	Effort	Deep Effort	Deep Effort															
34.1.2 EU	longline	PRT	o10t15m		0 ()	() ()	()	0		0 (0	0	()	() (J
		ESP	o15m		0	()	() ()	()	0	0	0		()	0
		PRT	o15m		0 () (358:	1 (358:	L C)	0 0	214	8 (2148	19547	8771	10776	14743	1219	1 2552
	none	ESP	o15m		0	()) ()	()	0	0	0		()	0
	pots	IRL	o10t15m		0	()) ()	()	0	0	0		()	0
	trammel	PRT	o15m		0	(()	() ()	(0	0	2327		2327			0
34.1.2 EU Total					0 0) (358:	1 (358:)	0 0	214	8 (2148	21874	8771	13103	14743	1219:	1 2552

	2006			2007	7		2008			2009)		2010)		2011			2012	
		Excluding																		
Effort	Deep Effort	Deep Effort																		
0	0) ()	0	0)	0	C)	532035	532035	i	552996	552996		493707	493707	
0		0) ()	C	0		C	0		(0)	(0		0	43967		43967
10737	6808	3929	1149	14909	-3415	24638	19293	5345	43453	24163	19290	106349	99492	6857	129625	111267	18358	55934	36885	19049
0		0)	C	0		0	0		(0)	(0		0	1484		1484
0		0)	C	0		C	0		(0)	(90		90	0		0
0	Ī	0) ()	C	0		C	0		() ()	(0		0	0		0
10737	6808	3929	1149	14909	-3415	24638	19293	5345	43453	24163	19290	638384	631527	6857	682711	664263	18448	595092	530592	64500

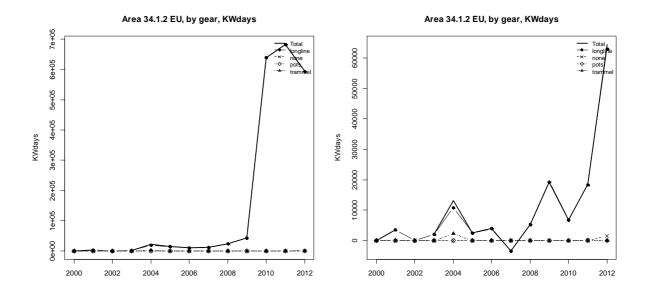


Figure 5.9.1.16.2.- Effort (kW*days) reported within CECAF area 34.1.2 EU by gear type, 2000-2012, with (left) and without (right) reported deepwater effort.

Western Waters 34.1.2 non-EU

Spain has reported some effort for 2012, (Table 5.9.1.16.4).

Table 5.9.1.16.4.- Effort (kW*days) by country, gear and vessel size group within CECAF area 34.1.2 non-EU, 2010-2012.

					2010			2011			2012	
						Excluding			Excluding			Excluding
			Vessel		Deep	Deep		Deep	Deep		Deep	Deep
Area	Gear	Country	length	Effort	Effort	Effort	Effort	Effort	Effort	Effort	Effort	Effort
34.1.2 non	longline	ESP	o15m	0		0	0		0	1253		1253
	none	ESP	o15m	0		0	0		0	3308		3308
34.1.2 non	EU Total			0		0	0		0	4561		4561

5.9.1.17 Fishing effort in CECAF area 34.1.3

Deepwater and Western Waters 34.1.3 EU

No effort was submitted within this area.

Deepwater 34.1.3 non-EU

Very little effort has been recorded for this area. The Netherlands recorded some pelagic trawl effort for 2004, and Spain recorded bottom trawl effort for 2012.

Table 5.9.1.17.1.- Deep Sea fishing effort (kW*days) 2000 – 2012 by member state CECAF area 34.1.3 non-EU.

Area	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
34.1.3 non EU	ESP													304166
	NLD					22944								
34.1.3 non EU Total						22944								304166

Table 5.9.1.17.2.- Deep Sea fishing effort (kW*days) 2000 – 2012 by gear and member state CECAF area 34.1.3 non-EU.

Area	Gear	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
34.1.3 non E	BOTTOM TRAWLS	ESP													304166
	PELAGIC TRAWLS	NLD					22944								
34.1.3 non E	U Total						22944								304166

Western Waters 34.1.3 non-EU

No effort data has regularly been submitted for this area. The Netherlands made a submission of deepwater effort in 2004, highlighting a data issue, and in 2012 Spain also submitted deepwater effort.

5.9.1.18 Fishing effort in CECAF area 34.2

Deepwater 34.2.0 EU

Effort has been recorded for longline in this area by Portugal over the past four years.

Table 5.9.1.18.1.- Deep Sea fishing effort (kW*days) 2000 – 2012 by member state CECAF area 34.2.0 EU.

Area	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
34.2.0 EU	PRT										7927	11540	2373	1017
34.2.0 EU Total											7927	11540	2373	1017

Table 5.9.1.18.2.- Deep Sea fishing effort (kW*days) 2000 – 2012 by gear and member state CECAF area 34.2.0 EU.

Area	Gear	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
34.2.0 EU	LONGLINE	PRT										7927	11540	2373	1017
34.2.0 EU To	tal											7927	11540	2373	1017

Western Waters 34.2.0 EU

Effort is low within this area. According to the data provided Ireland carried out some pelagic trawls in 2008, and Portugal submitted longline effort for 2011. Spain has recorded longline effort for 2012, (Table 5.9.1.18.3 and Figure 5.9.1.18.1).

Table 5.9.1.18.3.- Effort (kW*days) by country, gear and vessel size group within CECAF area 34.2.0 EU, 2007-2012.

					2007	7		200	8		2009			2010			2011			2012	
						Excluding															
Area	Gear	Country	Vessel length	Effort	Deep Effort	Deep Effort															
34.2.0 EU	longline	PRT	o10t15m						0		1287			429			0			0	
		ESP	o15m											0	0	0		0	38360		38360
		PRT	o15m) (0 (6640	-6640		0 11111	-11111	7202	2373	4829	0	1017	-1017
	none	ESP	o15m		1)						0	0	0		0	588		588
	pelagic trawls	IRL	o10t15m				291		29:					0	0	0		0	0		0
34.2.0 EU Total) (291		0 29:		7927	-6640) (11540	-11111	7202	2373	4829	38948	1017	37931

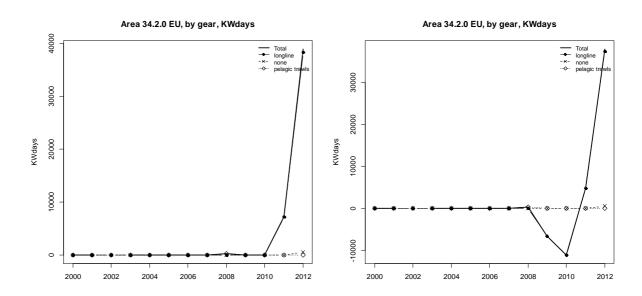


Figure 5.9.1.18.1.- Effort (kW*days) reported within CECAF area 34.2.0 EU by gear type, 2000-2012, with (left) and without (right) reported deepwater effort.

Deepwater 34.2.0 non-EU

Longline effort was reported for 2012 by Portugal.

Table 5.9.1.18.4.- Deep Sea fishing effort (kW*days) 2000 – 2012 by member state CECAF area 34.2.0 non-EU.

Area	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
34.2.0 non EU	PRT													18669
34.2.0 non EU Total														18669

Table 5.9.1.18.5.- Deep Sea fishing effort (kW*days) 2000-2012 by gear and member state CECAF area 34.2.0 non-EU.

Area Gear	MS	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
34.2.0 non El LONGLI	NE PRT													18669
34.2.0 non EU Total														18669

Western waters CECAF Area 34.2.0 non-EU

Effort is low within this area. According to the data provided, a relatively small Portuguese longline fishery, which began in this area in 2005, has fluctuated in recent years. In 2012 Lithuania has reported pelagic trawl effort and Spain has reported a large amount of bottom trawl effort, (Table 5.9.1.17.2 and Figure 5.9.1.18.2).

Table 5.9.1.18.6.- Effort (kW*days) by country, gear and vessel size group within CECAF area 34.2.0 non-EU, 2000-2012.

					2000)		2001			2002	2		2003			2004			2005	
			Vessel			Excluding															
Area	Gear	Country	length	Effort	Deep Effort	Deep Effort															
34.2.0 non EU	bottom trawls	PRT	o15m	0		0	0		C	688	5	6885	0)	(0		(0		0
	longline	ESP	o15m	0		0	0		C)	(0)	(0		(0		0
		PRT	o15m	0	(0	0	C	0)) () (0	0	(0	C) (63205	C	63205
	none	ESP	o15m	0		0	0		0)	(0)	(0		(0		0
	pelagic trawls	LTU	o40m	0		0	0		C)	(0)	(0		(0		0
34.2.0 non EU	Total			0	(0	0	C	0	688	5 (6885	0	0	(0	C) (63205	C	63205

	2006			2007	7		2008			2009			2010)		2011			2012	
		Excluding																		
Effort	Deep Effort	Deep Effort																		
0		0	C)	(0		0	0		C	0		0	()	0	0		0
0		0	C		0	0		0	0		C	0		0	()	0	542704		542704
29104	0	29104	15157	' (15157	13984	0	13984	. 0	C) (23696	C	23696	12582	2 (12582	26186	18669	7517
0		0	0)	(0		0	0		C	0		0	()	0	12201		12201
0		0	C			0		0	0		C	0		0	()	0	20608		20608
29104	0	29104	15157	' (15157	13984	0	13984	. 0	C) (23696	C	23696	12582	2 (12582	601699	18669	583030

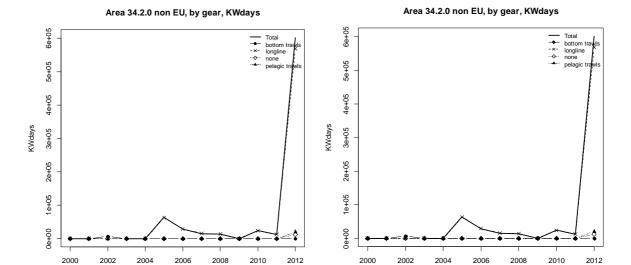


Figure 5.9.1.18.2.- Effort (kW*days) reported within CECAF area 34.2.0 non-EU by gear type, 2000-2012, with (left) and without (right) reported deepwater effort.

5.9.2 ToR 1b Catches (landings and discards) by area

In this section of the report tables showing catches by gear groups (regulated and unregulated), area and nation are only summaries. The full tables are available on the JRC website:

http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313

Spain has not provided data for 2010 and 2011. This affects the analysis of the data in the report, particularly in more southern areas where Spain would be one of the major states participating in the fisheries of the area.

From 2012 Greenland halibut has now been included as a deepwater species. Their importance will be reflected in the Deepwater species tables, mainly in the northern regions. The species will not appear in the catch composition plots however. An analysis of the data shows Greenland halibut appearing in catch plots from ICES areas IV to VIII, which is highly unlikely. This may be due to issues of misidentification or mis-recording. This matter can be looked into before next years meeting.

The rankings of the species in the landing and discard tables were based on the last year, whereas in previous years it was based on the average of the last three years of the time series.

5.9.2.1 Catches in ICES area I by fisheries and Member States only linked to Deep Sea species

Area I non-EU

Table 5.9.2.1.1 shows the top 5 deepwater species landed in Area I (non EU). In 2012 landings information from French bottom trawlers is provided for the first time. It is the only information provided for this area.

Table 5.9.2.1.1. Top 5 deepwater species landed (tonnes) in Area I (non EU). The ranking is based according to last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
1 NON EU	GHL	L	0	0	0	0	0	0	0	0	0	3

5.9.2.2 Catches in ICES area II by fisheries and Member States only linked to Deep Sea species

Area II EU

Tables 5.9.2.2.1 shows the top 5 deepwater species landed and discarded in Area II (EU). Greenland halibut are the most important landed species for the last number of years with catches coming from UK, French and German bottom trawlers.

Blue ling was another important species. Catches increased up to 2008-2009 and the fishery appears to be targeted as catches are quite clean. In 2010 however blue ling trawl catches dropped considerably, and are remaining low. Occasionally large landings of greater argentine are taken, by pelagic trawls, in a clean fishery operating in EU waters, (Figure 5.9.2.2.1), probably in the region of the Norwegian slope.

Table 5.9.2.2.1. Top 5 deepwater species landed (tonnes) in Area II (EU). The ranking is based according to last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
2 EU	GHL	L	56	12	30	38	45	55	105	104	28	58
2 EU	BLI	L	2	1	3	4	8	20	18	5	3	8
2 EU	ARU	L	2	430	0	0	0	0	0	23	0	0
2 EU	СМО	L	0	0	0	0	0	0	0	0	0	0
2 EU	COE	L	0	0	0	0	0	0	0	0	0	0

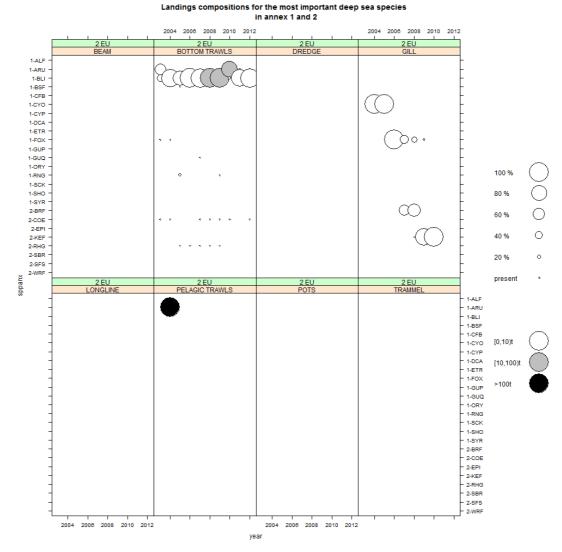


Figure 5.9.2.2.1. Landings of Annex 1&2 Deep Sea species (tonnes) 2003-2012 by gear ICES Area II EU. Size of circles represents relative contribution to landings, shading indicates quantity.

Area II non-EU

There was deepwater effort in ICES Area II non-EU but no landings of Annex 1 or 2 species were recorded. Only small catches of Greenland halibut appear in the landings table (Table 5.9.2.2.2) from UK, France and Germany bottom trawls.

Table 5.9.2.2.2. Top 5 deepwater species landed (tonnes) in Area II (non EU). The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
2 NON EU	GHL	L	23	1	6	6	2	6	12	0	0	3

5.9.2.3 Catches in ICES area III by fisheries and Member States only linked to Deep Sea species

Area III no Baltic

Table 5.9.2.3.1 shows the top 3 deepwater species landed in Area III (no Baltic). The ranking is based according to the last year landings. Historically the main fishery was roundnose grenadier targeted by Danish bottom trawlers, up to 2006. No fishing took place in 2007 or 2008, but small amounts of grenadier were landed again between 2009 and 2011. Landings of blue ling were recorded between 2003 and 2006 also mainly by Danish bottom trawlers. In 2012 a small amount of black scabbard was landed by French bottom trawlers.

Table 5.9.2.3.1. Top 5 deepwater species landed (tonnes) in Area III (no Baltic). The ranking is based according to last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
3 no baltic	BSF	L	0	0	0	0	0	0	0	0	0	3
3 no baltic	RNG	L	4125	11429	14311	2715	0	0	1	1	5	0
3 no baltic	BLI	L	17	18	47	42	0	0	0	0	1	0

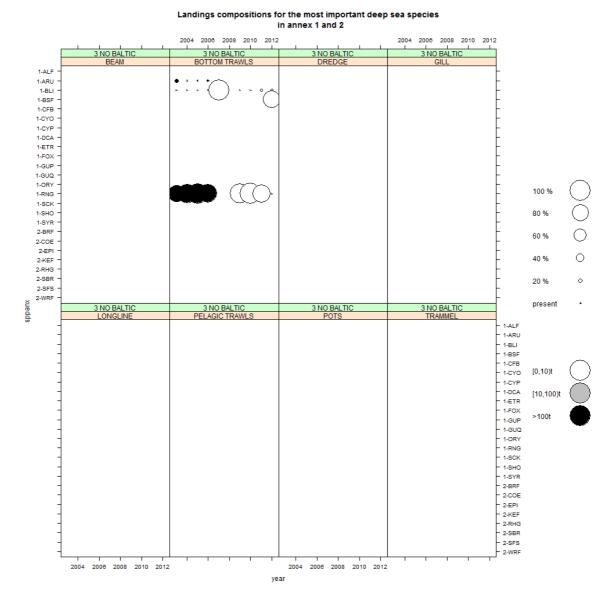


Figure 5.9.2.3.1. Landings of Annex 1&2 Deep Sea species (tonnes) 2003-2012 by gear ICES Area III no Baltic. Size of circles represents relative contribution to landings, shading indicates quantity.

Discard information is only available for roundnose greadier (Table 5.9.2.3.2). The large value in 2006 should be treated with caution. It should be noted that zero values do not necessarily mean no discards data, it may mean that data are not available.

Table 5.9.2.3.2. Top 5 deepwater species discarded (tonnes) in Area III (no Baltic).

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
3 no baltic	RNG	D	231	0	0	2165426	0	0	1	0	149	0
3 no baltic	BLI	D	0	0	0	0	0	0	0	0	0	0
3 no baltic	BSF	D	0	0	0	0	0	0	0	0	0	0

5.9.2.4 Catches in ICES area IV by fisheries and Member States only linked to Deep Sea species

Area IV

Table 5.9.2.4.1 shows the top 5 deepwater species landed in Area IV (EU). Greenland halibut catches have fluctuated greatly through the time series, but after reaching a peak in 2009 have been stable at a lower level over the last three years. Landings of this species come from bottom trawl fisheries by France and the UK. Landings of Greater argentine, primarily from pelagic trawls, but also bottom trawls, have been sporadic in recent years. Conger eel landings, which were quite stable from 2003 – 2008, doubled in 2009 and have remained stable at this new level. Blue ling catches, which had increased between 2008 and 2010, have dropped to low levels. Gill net catches of deepwater crab have been declining since 2008.

Table 5.9.2.4.1. Top 5 deepwater species landed (tonnes) in Area IV (EU). The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
4 EU	GHL	L	126	93	5	10	7	32	139	62	74	56
4 EU	ARU	L	20	51	0	18	0	0	0	10	0	45
4 EU	COE	L	8	8	8	6	8	6	15	13	17	11
4 EU	CMO	L	2	0	0	0	0	0	0	6	2	10
4 EU	BLI	L	26	34	12	9	4	10	15	53	5	7

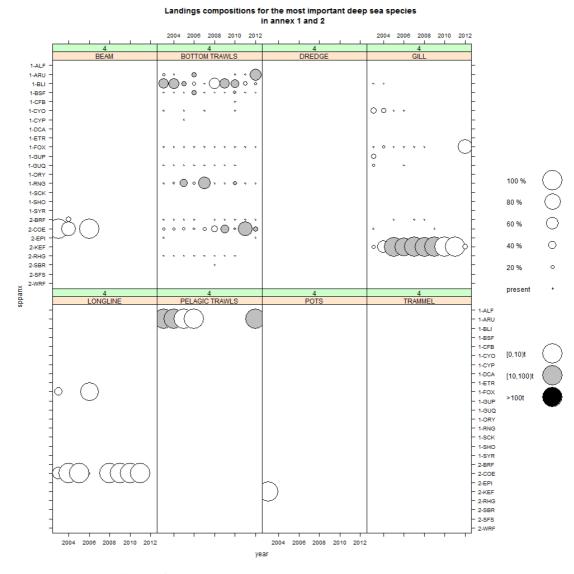


Figure 5.9.2.4.1. Landings of Annex 1&2 Deep Sea species (tonnes) 2003-2012 by gear ICES Area IV. Size of circles represents relative contribution to landings, shading indicates quantity.

Table 5.9.2.4.2 Top 5 deepwater species discarded (tonnes) in Area IV (EU).

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
4 EU	СМО	D	3	1	11	0	0	0	0	4	0	0
4 EU	COE	D	0	0	0	0	0	0	0	2	0	0
4 EU	ARU	D	9	0	0	0	0	0	0	0	0	0
4 EU	BLI	D	86	31	11	0	0	0	0	0	0	0
4 EU	GHL	D	0	0	0	0	0	0	0	0	0	0

5.9.2.5 Catches in ICES area V by fisheries and Member States

Deepwater V EU

Bottom trawls provides the majority of landings from this area (Figure 5.9.2.5.1, Table 5.9.2.5.1). The main species targeted are roundnose grenadier and blue ling, with smaller catches of black scabbard, leafscale gulper sharks, and regular landings of roughhead grenadier and blue mouth redfish.

Blue ling landings were highest at the start of the time series, but have been in decline since 2003, apart from a second peak in 2007. Landings are stable since 2010 Greenland halibut landings fluctuated greatly before peaking in 2010. Landings have been in decline in 2011 and 2012. Roundnose grenadier landings were stable up to 2007 when they too went into decline. In 2012 landings of roundnose grenadier were very low.

In 2010 Scotland reported landings of greater silver smelt and France both Portuguese dogfish and black dogfish.

Up to 2009 gill nets were landing small amounts, less than 10 tonnes, of blue ling, and in the early part of the time series also caught deepwater red crab, *Chaceon affinis*, but this ended in 2006. Netherlands pelagic trawlers landed greater silver smelt in 2004 and 2005 but nothing since.

Beam trawl data from 2003 and 2004 may be misclassified bottom trawl data.

Table 5.9.2.5.1. Top 5 deepwater species landed in ICES Area V (EU). The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
5 EU	BLI	L	895	859	644	647	807	592	591	358	303	398
5 EU	GHL	L	268	164	72	62	14	251	522	1167	588	303
5 EU	BSF	L	145	81	71	75	96	145	145	111	79	114
5 EU	RNG	L	1041	1062	932	875	862	448	450	330	10	24
5 EU	CMO	L	1	0	0	0	0	0	0	23	12	10

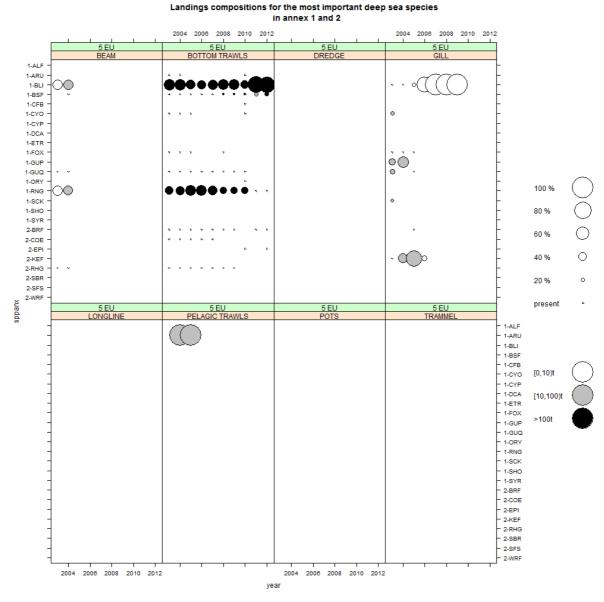


Figure 5.9.2.5.1. Landings of Annex 1&2 Deep Sea species (tonnes) 2003-2012 by gear ICES Area V EU. Size of circles represents relative contribution to landings, shading indicates quantity.

Western Waters 5 EU

Catch and catch composition

The majority of demersal species landings are associated with the deepwater fisheries taking place within the area.

The top five demersal species landed from V EU are detailed within Table 5.9.2.5.2 showing anglerfish to have had the greatest landings in recent years. However anglerfish landings dropped dramatically from 270t in 2009 to just 3t in 2010, and 6t in 2011. Landings of this species originate solely from France. In 2009 and 2010 large landings of Greenland halibut were reported, but these dropped to recent levels in 2011. Landings of all other species averaged across 2009 to 2011 are very low.

Small quantities edible crab were landed from this area prior to 2006 (Table 5.9.2.5.3). Nothing has been landed since 2006.

The primary pelagic species landed is blue whiting, although no landings were reported for 2011. Sporadic landings of mackerel also occur (Table 5.9.2.5.4).

Table 5.9.2.5.2. Top demersal species landed (tonnes) within Area V EU, 2003-2012. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
5 EU	BLI	L	895	859	644	647	807	592	590	351	303	398
5 EU	BSF	L	145	81	71	75	96	145	145	111	79	114
5 EU	RED	L	227	110	90	109	239	122	122	84	11	37
5 EU	RNG	L	656	682	706	747	769	404	404	309	8	23
5 EU	USK	L	10	14	11	18	25	14	14	14	2	21

Table 5.9.2.5.3. Scallop and crab species by gear landed within Area V EU, 2003-2012. Values are landings in tonnes. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
5 EU	CRE	L	5	6	4	20						

Table 5.9.2.5.4. Top pelagic species landed (tonnes) within Area V EU, 2003-2012. The ranking is based according to the last year landings.

No data

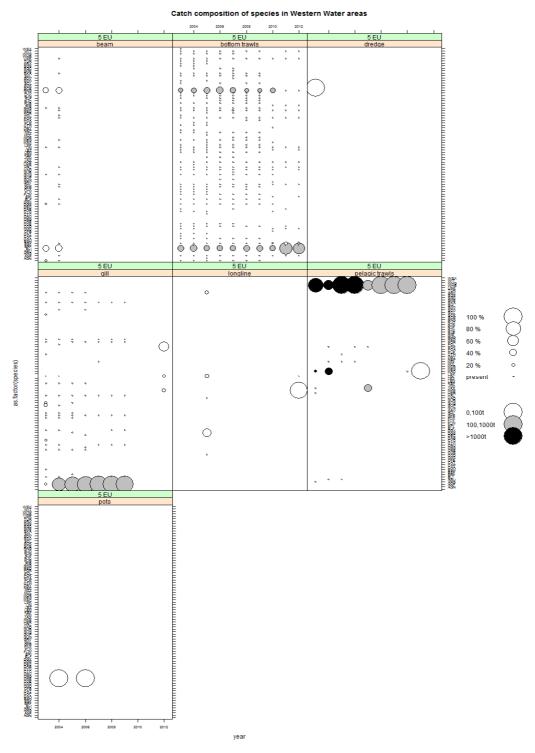


Figure 5.9.2.5.2. Landings composition by gear (countries combined) Western waters area V EU, 2003-2012. Size of circles represents relative contribution to landings, shading indicates quantity.

Deepwater V non-EU

Landings are solely provided by bottom trawls (Figure 5.9.2.5.3, Table 5.9.2.5.5). The main species landed are blue ling, Greenland halibut and Roundnose grenadier. However since 2005 there has been a significant reduction in the grenadier landings down to a very low level. From 2006 Blue ling provided the greatest landings however after reporting stable landings in the previous three years no landings are provided for 2011 or 2012. Greenland halibut landings increased from low levels in 2007 before peaking in 2010. Landings have declined again in 2011 and 2012.

France also records regular landings of black scabbard, but this ceased in 2010. Scottish landings of Portuguese dogfish ceased in 2005 but in 2010 France reported landings for both Portuguese dogfish and Black dogfish.

Again there is a possible issue of misclassified beam trawl data.

Table 5.9.2.5.5. Top 5 deepwater species landed in ICES Area V (non EU). The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
5 NON EU	GHL	L	174	77	49	51	4	187	404	1035	577	301
5 NON EU	RNG	L	385	380	226	128	93	44	45	21	2	1

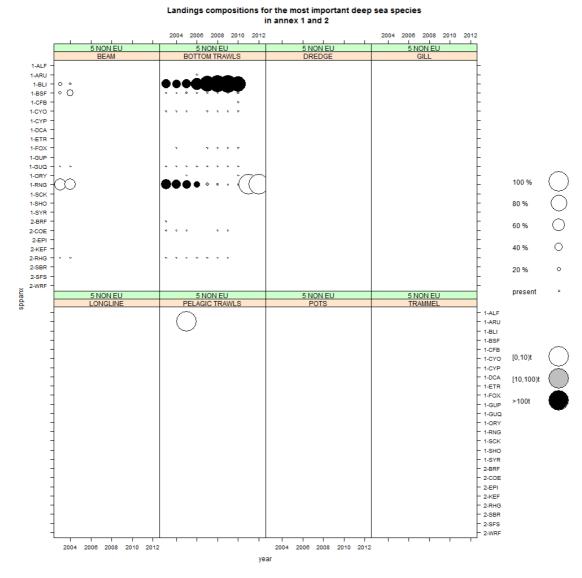


Figure 5.9.2.5.3. Landings of Annex 1&2 Deep Sea species (tonnes) 2003-2012 by gear ICES Area V (non EU). Size of circles represents relative contribution to landings, shading indicates quantity.

Western Waters V non-EU

The top five demersal species landed from V non-EU are detailed within Table 5.9.2.5.6. Up to 2009 saithe contributed the biggest landings both as recent average and over the period available, however landings dropped markedly in 2011. In 2010 and 2011 the largest landings in this area were Greenland halibut reported by Germany and Scotland. Declining quantities of cod have also been landed from this area by Scotland, however in 2011 only 1t of cod were reported for this area by France. Anglerfish and haddock also occur in the current top five with variable landings, and no landings were reported for either species in 2011.

No landings of scallops or crabs were reported within this area.

Blue whiting is the sole pelagic species landed in recent years. In the last three years landings are only reported for 2010, (Table 5.9.2.5.8).

Table 5.9.2.5.6. Top demersal species landed (tonnes) within Area V non-EU, 2003-2012. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
5 NON EU	GHL	L	161	64	41	22	231	186	467	1035	577	301
5 NON EU	RED	L	2273	1772	1553	964	335	6	14	87		23
5 NON EU	COD	L	492	782	804	337	424	412	339	366	1	7
5 NON EU	CAT	L	23	23	18	12	1	0	4	8	3	2
5 NON EU	RNG	L	2	37	44	0		0	2	21	2	1

Table 5.9.2.5.7. Scallop and crab species by gear landed within Area V non-EU, 2003-2012. Values are landings in tonnes. The ranking is based according to the last year landings.

No data

Table 5.9.2.5.8. Top pelagic species landed (tonnes) within Area V non-EU, 2003-2012. The ranking is based according to the last year landings.

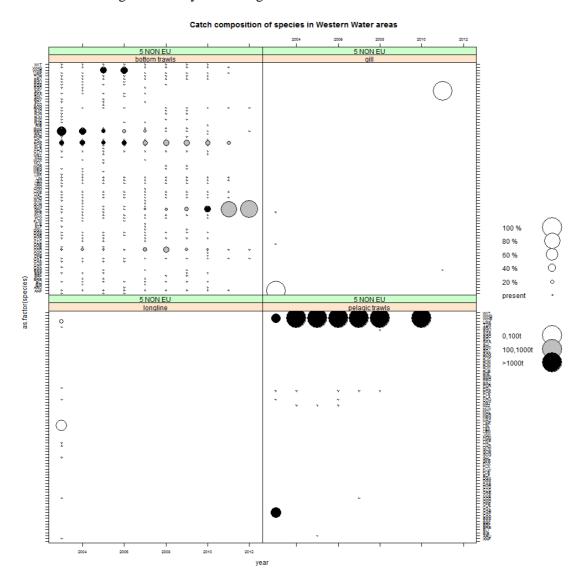


Figure 5.9.2.5.4. Landings composition by gear (countries combined) Western waters area V (non EU), 2003-2012. Size of circles represents relative contribution to landings, shading indicates quantity.

5.9.2.6 Catches in ICES area VI by fisheries and Member States

Deepwater VI EU

Table 5.9.2.6.1 shows the top 5 deepwater species landed, and Figure 5.9.2.6.1 shows aggregate catches by gear in VI (EU).

There is a mixed bottom trawl fishery targeting roundnose grenadier, blue ling and black scabbard. It is conducted mainly by France with small landings by Scotland. Roundnose grenadier landings were highest in 2003 and have been in slow decline since, before increasing again in 2012. Black scabbard landings were reasonably stable up to 2009 but have declined by 40% in the last three years. Blue ling landings were stable until 2006, but then also began declining. Since 2010 France has reported landings of *Chimaera monstrosa*.

Of the other Annex 1 species Portuguese dogfish, leafscale gulper sharks and greater forkbeard are all landed consistently, albeit in small amounts. Of the Annex 2 species blue mouth redfish, conger eel and roughhead grenadier are also all landed regularly. Beam trawl landings of roundnose grenadier and blue ling, in 2003 and 2004, are probably misclassified.

Pelagic trawls, mainly Dutch, are targeting greater argentine. Landings decreased to very low levels between 2008 and 2010, but have increased in the last two years to the highest in the time series.

In recent years longlines are primarily targeting greater forkbeard. Landings have increased in the last three years. There are also regular landings of blue mouth redfish and conger eel. Historically various species of shark were targeted but these landings have stopped since 2007.

In the early 2000s there were large landings of Portuguese dogfish by the UK using gill nets. Other sharks, such as leafscale gulper shark, were also targeted. These landings stopped in 2006. Scotland and England are currently using gill nets to target deep-water red crab, *Chaceon affinis*, with regular landings of 10 - 100 tonnes up to 2009. These landings decreased in 2010 and 2011, and none were recorded for 2012. This species was also fished using pots up until 2008.

Table 5.9.2.6.1. Top 5 deepwater species landed in ICES Area VI (EU). The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
6 EU	ARU	L	87	1204	186	216	195	0	36	27	1485	2318
6 EU	BSF	L	3106	2859	2614	1813	2052	2373	2427	1801	1536	1613
6 EU	BLI	L	2974	3288	2673	2565	2060	1717	1928	1450	1146	1031
6 EU	RNG	L	5104	4652	2978	1950	1579	1440	1447	1309	876	1021
6 EU	СМО	L	31	1	0	6	10	8	0	285	227	259

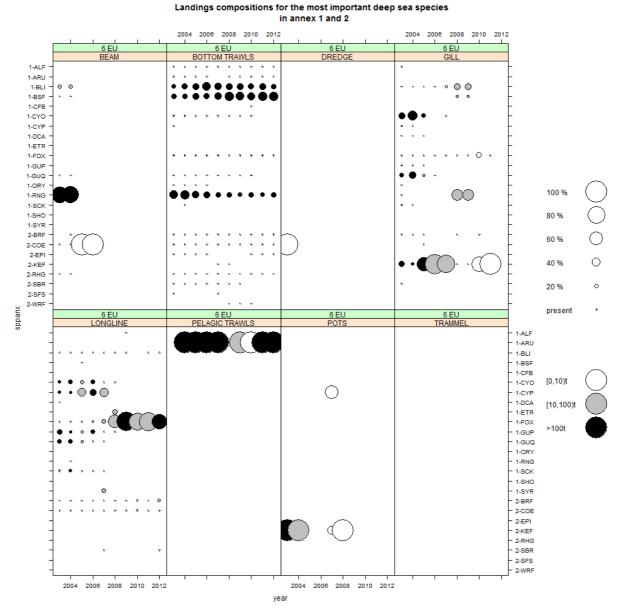


Figure 5.9.2.6.1. Landings of Annex 1&2 Deep Sea species (tonnes) 2003-2012 by gear in ICES Area VI (EU). Size of circles represents relative contribution to landings, shading indicates quantity.

Western Waters VI EU

There are a variety of different fisheries taking place within area VI EU by a number of different gears, as seen in Figure 5.9.2.6.2. The top five demersal species landed from VI EU are detailed within Table 5.9.2.6.2. Landings of all five species are far higher than those in area V. *Nephrops* has both the greatest average landings and throughout the period, and although a slight decline is seen in most recent years landings appear to have stabilised. Saithe and Haddock show fluctuations without trend. Hake landings show a steady increase over the whole period, as do those of anglerfish until 2010 when landings were reduced. Anglerfish landings increased again in 2011.

Table 5.9.2.6.3 details landings of scallops and crabs in area VI EU. Large scallop landings occur from dredging, and showed a declining trend until 2007. In 2008 landings increased again, and were stable until 2012 when they increased by 50%. Relatively small amounts of scallops are landed from the 'none' category, but this has been declining in recent years.

Pots contribute large quantities of edible crabs . Landings of which increased until 2007. Since then they have fluctuated Landings dropped in 2008 and 2009, increased again in 2010 and 2011, before suffering another drop in 2012. Only minor landings of spider crab have occurred between 2007 and 2009, from pots and traps.

There are four top pelagic species landed from VI EU (Table 5.9.2.6.4). Mackerel have the highest landings. Landings decreased up to 2008, but have increased again since. Horse mackerel landings have doubled in 2011 and 2012 compared to previous landings. Blue whiting landings had been in decline since 2006 and reached their lowest level in 2011, however they showed an increase again in 2012. Herring landings were reasonably stable until 2010 but have begun to decrease in the last two years.

Table 5.9.2.6.2. Top demersal species landed (tonnes) within Area VI EU, 2003-2012. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
6 EU	NEP	L	8951	8567	8705	11463	13990	13044	10733	10187	11135	12409
6 EU	HKE	L	636	1148	2012	2335	3481	3820	5236	6025	6552	8688
6 EU	POK	L	5147	4720	6486	9592	6688	6554	7355	5560	6629	7220
6 EU	HAD	L	6949	3749	3753	6221	5623	5259	5762	5128	3182	5584

Table 5.9.2.6.3. Scallop and crab species by gear landed within Area VI EU, 2003-2012. Values are landings in tonnes. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
6 EU	CRE	L	7940	8176	8138	8670	9343	8105	7421	8982	9205	7751
6 EU	SCR	L				0	5	2	4	0		
6 EU	SCE	L	5382	4663	4043	3090	2766	3606	3189	3060	3099	4664

Table 5.9.2.6.4. Top pelagic species landed (tonnes) within Area VI EU, 2003-2012. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
6 EU	MAC	L	154579	126763	115097	98393	100539	86700	139443	107318	159088	119779
6 EU	JAX	L	22470	17745	14296	11168	22546	25066	19035	23547	40006	45178
6 EU	WHB	L	39217	117778	116028	150047	57709	31622	34394	40723	8758	28593
6 EU	HER	L	35808	32236	36406	39979	36262	30778	30059	29444	23782	25323

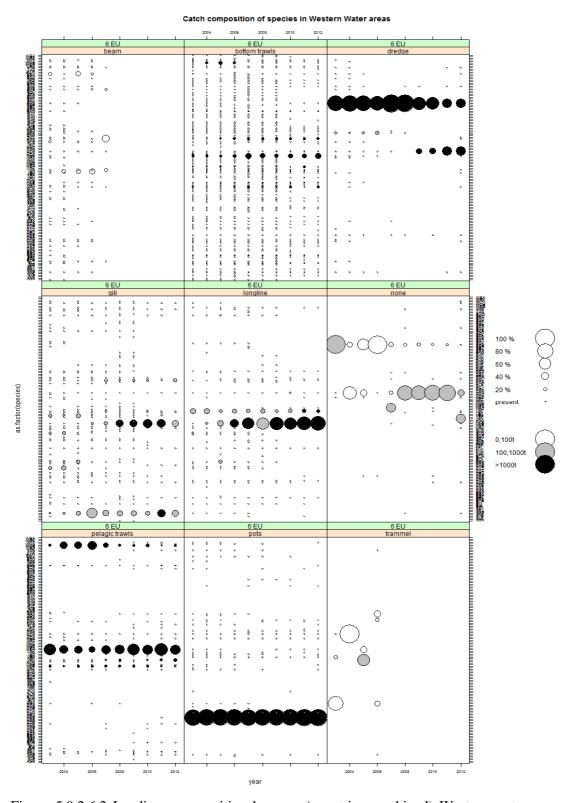


Figure 5.9.2.6.2 Landings composition by gear (countries combined) Western waters area VI EU, 2003-2012. Size of circles represents relative contribution to landings, shading indicates quantity.

Deepwater VI non-EU

Otter trawls in VI non EU have been targeting Blue ling, Greater forkbeard and Blue mouth redfish, but landings have been declining in recent years (Figure 5.9.2.6.3). In 2012 however landings of Silver scabbard fish, Baird's smoothhead, Roundnose grenadier and Roughhead grenadier were the most important.

Gill net landings, which were targeting deep-water red crab, Portuguese dogfish and greater forkbeard, ceased in 2007.

Table 5.9.2.6.5. Top 5 deepwater species landed in ICES Area VI (non EU). The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
6 NON EU	SFS	L	0	0	0	0	0	0	0	0	0	655
6 NON EU	ALC	L	0	0	61	82	0	0	0	0	0	335
6 NON EU	RNG	L	1	0	88	34	0	0	0	0	0	258
6 NON EU	RHG	L	0	0	0	0	0	0	0	0	0	191
6 NON EU	BSF	L	1	1	73	3	0	0	0	0	0	68

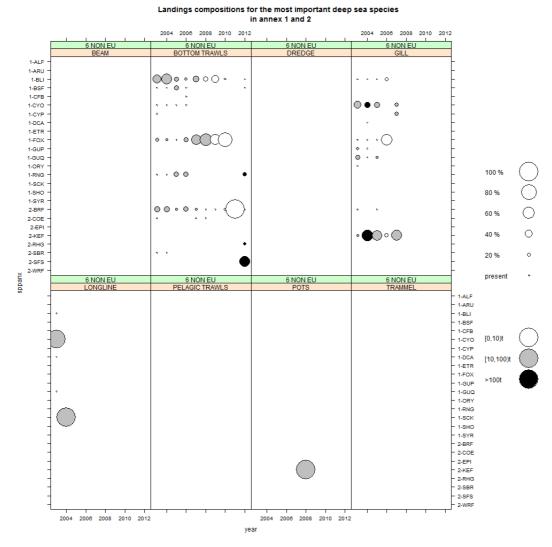


Figure 5.9.2.6.3. Landings of Annex 1&2 Deep Sea species (tonnes) 2003-2012 by gear ICES Area VI (non EU). Size of circles represents relative contribution to landings, shading indicates quantity.

Western Waters VI non-EU

The top five demersal species landed from VI non-EU are detailed within Table 5.9.2.6.6 with more general composition given in Figure 5.9.2.6.4. Witch has been an important species for both England and Scotland although landings have decreased after peaking in 2004. 2011 landings were the lowest on record. However, haddock is now the top demersal species, although landings have fluctuated wildly in recent years. Landings of anglerfish have fluctuated over the years but they have been over 100t for the last two years. Landings of ling have been low during the time series. A small increase in the landings of saithe reflects the greater effort directed to demersal species within this area over the last two years.

Within area VI non-EU minimal crab landings occurred in 2003-2004, with nothing since. No scallop landings have been reported (Table 5.9.2.6.7).

This is not an area of activity for pelagic fishing. Blue whiting landings were reported in 2003, but since then there have been no pelagic landings (Table 5.9.2.6.8).

Table 5.9.2.6.6. Top demersal species landed (tonnes) within Area VI non-EU, 2003-2012. The ranking is based according to the last year landings.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
6 NON EU	RHG	L										436
6 NON EU	KEF	L	41	186	40	0	62	28		78	140	47
6 NON EU	RNG	L	1	0	9							38
6 NON EU	ANF	L	52	126	217	94	172	20	42	124	104	37
6 NON EU	ALC	L										29

Table 5.9.2.6.7. Scallop and crab species by gear landed within Area VI non-EU, 2003-2012. Values are landings in tonnes. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
6 NON EU	CRE	L	1	5								

Table 5.9.2.6.8. Top pelagic species landed (tonnes) within Area VI non-EU, 2003-2012. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
6 NON EU	WHB	L	8198									

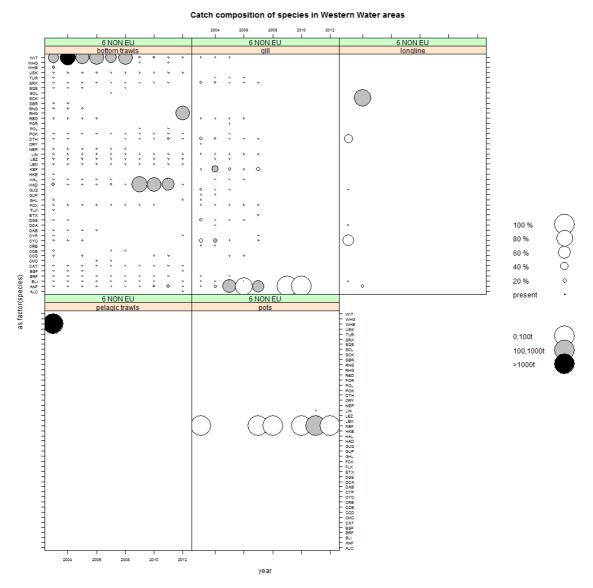


Figure 5.9.2.6.4 Landings composition by gear (countries combined) Western waters area VI non EU, 2003-2012. Size of circles represents relative contribution to landings, shading indicates quantity.

5.9.2.7 Catches in ICES area VII excluding VIId by fisheries and Member States

Deepwater VII EU, no VIId

Landings of conger eel increased ten-fold in 2012, the majority being reported by Spain using longlines and bottom trawl. Spain reported large landings for blue mouth redfish, using the same two gears, and landings of Wreckfish, *Polyprion americanus* using longlines.

The bottom trawl fishery produced a wide variety of landings. France and Ireland were targeting roundnose grenadier and black scabbard. Landings of grenadier started to decrease after 2007 while black scabbard landings stayed higher. Black scabbard landings suffered a dip in 2010, but increased again in 2011 and remained high in 2012.

This fishery also reports catches for roughhead grenadier, Portuguese dogfish and cardinal fish. The cardinal fish catches were probably connected with the historic orange roughy fishery. Reported landings of the orange roughy fishery ceased in 2005. Reported landings of Portuguese dogfish ceased after 2007 but were reported again in 2010.

The beam trawl fishery is conducted primarily by England. The main landings are conger eel but landings have begun to decrease in recent years. Small amounts of greater forkbeard are also landed.

Gill nets targeted sharks early on but the only shark species with reported landings after 2006 is Portuguese dogfish. Landings of deep-water red crab decreased after 2007 but have increased again since 2010.

Pelagic trawling for greater silver smelt stopped in 2005, although the Netherlands restarted the fishery in 2010. No landings are reported for 2011 or 2012.

Table 5.9.2.7.1. Top 5 deepwater species landed in ICES Area VII no VIId (EU). The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
7 EU NO 7D	COE	L	677	571	496	381	295	215	148	145	107	1047
7 EU NO 7D	BRF	L	47	43	69	72	58	61	70	53	38	711
7 EU NO 7D	BSF	L	344	375	198	359	199	124	125	84	175	148
7 EU NO 7D	WRF	L	0	1	2	2	5	3	14	6	4	67
7 EU NO 7D	RNG	L	359	260	179	326	167	84	83	36	45	45

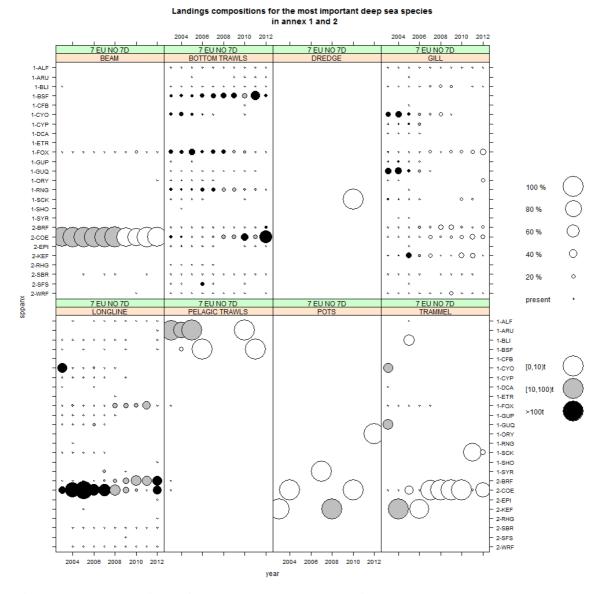


Figure 5.9.2.7.1. Landings of Annex 1&2 Deep Sea species (tonnes) 2003-2012 by gear ICES Area VII EU no VIId

Western Waters VII EU, no VIId

The top five demersal species landed from this area are detailed within Table 5.9.2.7.2 with more general composition given in Figure 5.9.2.7.2. Anglerfish landings were quite stable between 2003 and 2009, before dropping in 2010. Landings increased again in 2011 and 2012 produced the highest figure of the time series. Hake and haddock landings were also stable up to 2009 but have increased steadily since. *Nephrops* landings increased in 2006 and have been stable since.

Crab and Scallop landings from the area are detailed in Table 5.9.2.7.3. This shows that the greatest landings of scallops by far originate from dredges and that there has been a general increase until 2009. After a slight dip in 2010 landings increased again in 2011 and 2012. Beam trawls also land scallops, although at a much lower level. Edible crabs are landed by a wide variety of gears, with pots yielding the greatest landings. 2012 had the highest landings in the time series at 9500t. Spider crabs are mainly targeted by gill nets. Landings have been relatively stable throughout the time series.

Horse mackerel tops the pelagic species landings, having shown greatly increased landings since 2009 (Table 5.9.2.7.4). Mackerel showed a large increase between 2006 and 2010. 2011 mackerel landings dropped to 2007 levels but increased again in 2012. Boarfish landings were first reported for 2007 and increased dramatically to 2010. Landings dropped sharply in 2011, before increasing again in 2012. Blue whiting landings peaked in 2007 and have been declining since. Herring landings have been stable through the time series, before showing a marked increase in 2012. 2011 also saw a large increase of landings of albacore tuna, double the 2009 figure and five times greater than the 2010 level. 2012 landings are similar to 2011.

Table 5.9.2.7.2. Top demersal species landed (tonnes) within Area VII EU no VIId, 2003-2011. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
7 EU no 7d	ANF	L	15085	16789	16708	16066	18040	15633	15934	11951	17601	21287
7 EU no 7d	HKE	L	4549	4737	4769	4516	4756	4493	4078	7713	10496	19592
7 EU no 7d	NEP	L	12128	12070	12914	12732	16229	17696	15291	15731	15326	17458
7 EU no 7d	HAD	L	6334	7097	5567	4714	6056	6385	7734	9727	13307	16689

Table 5.9.2.7.3. Scallop and crab species by gear landed within Area VII EU no VIId, 2003-2011. Values are landings in tonnes. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
7 EU no 7d	CRE	L	7539	7183	6196	6172	8319	6953	7090	8305	8806	9509
7 EU no 7d	SCR	L	2463	3235	2868	2502	2804	2535	2519	2032	2145	2169
7 EU no 7d	SCE	L	14349	20144	19703	17538	19116	19301	22411	19150	19935	21713

Table 5.9.2.7.4. Top pelagic species landed (tonnes) within Area VII EU no VIId, 2003-2011. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
7 EU NO 7d	JAX	L	33550	39575	39485	35948	21953	30574	90274	120234	95484	107184
7 EU NO 7d	BOR	L					772	1387	83055	136586	28073	77153
7 EU NO 7d	MAC	L	40939	48840	39563	18625	34943	38656	65508	82066	37958	52454
7 EU NO 7d	HER	L	16674	16993	18279	16227	15018	13425	12101	14380	17852	26959
7 EU NO 7d	WHB	L	23813	16085	85621	73753	113551	73139	34644	33926	2930	21629
7 EU NO 7d	ALB	L	1832	996	2207	210	1597	2245	2536	955	5548	5366
7 EU NO 7d	SWO	L	63	26	30	3	10	5	4	4	7	15
7 EU NO 7d	BFT	L	49	12	24	0	7	3	3	4	8	11
7 EU NO 7d	BET	L			0		3			0	2	0

Figure 5.9.2.7.2. Landings composition by gear (countries combined) Western waters area VII EU excluding VIId, 2003-2012. Size of circles represents relative contribution to landings, shading indicates quantity.

Deepwater VII non-EU

No information has been reported since 2004, except for very small landings reported by Spain in 2012 for Conger eel and Bluemouth redfish, less than 0.5 tonnes in total, (Figure 5.9.2.7.3)

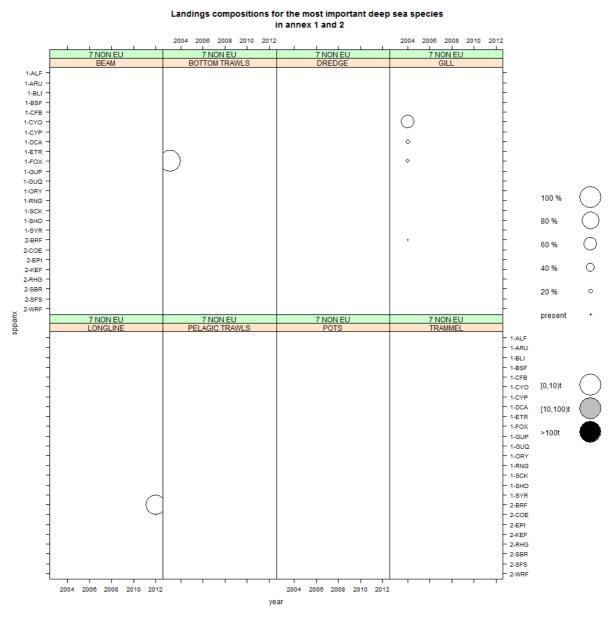


Figure 5.9.2.7.3. Landings of Annex 1&2 Deep Sea species (tonnes) 2003-2012 by gear ICES Area VII (non EU)

Western Waters VII non-EU

Very few demersal species are landed from this area (Table 5.9.2.7.5). Small amounts of Hake landings have been reported since 2010. For 2012 small landings of Megrim, Anglerfish, Squid and Witch were reported.

There are no reported landings of scallops or crabs within this area.

Blue whiting historically is the only pelagic species with reported landings from the area (Table 5.9.2.7.7). It should be noted that blue whiting landings (2003, 2009 and 2010) do not match the occurrence of pelagic trawl effort which also occurs in 2004 and 2005, indicating an issue in the submitted data. In 2011 Netherlands reported landings of 2000t of horse mackerel. In 2012 there was a large increase in the landings of Albacore reported by France and Spain.

Table 5.9.2.7.5. Top demersal species landed (tonnes) within Area VII non-EU, 2003-2011. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
7 NON EU	HKE	L		0						1	4	9
7 NON EU	LEZ	L		0						0		4
7 NON EU	ANF	L	0	0						0	0	4
7 NON EU	SQI	L										3
7 NON EU	WIT	L								0		1

Table 5.9.2.7.6. Scallop and crab species by gear landed within Area VII non-EU, 2003-2011. Values are landings in tonnes. The ranking is based according to the last year landings.

No reported landings.

Table 5.9.2.7.7. Top pelagic species landed (tonnes) within Area VII non-EU, 2003-2011. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
7 NON EU	WHB	L	2515						1712	689		
7 NON EU	JAX	L									2078	
7 NON EU	ALB	L								157	46	805
7 NON EU	ANE	L										5
7 NON EU	SWO	L								2		1
7 NON EU	BFT	L								1		
7 NON EU	YFT	L								6		

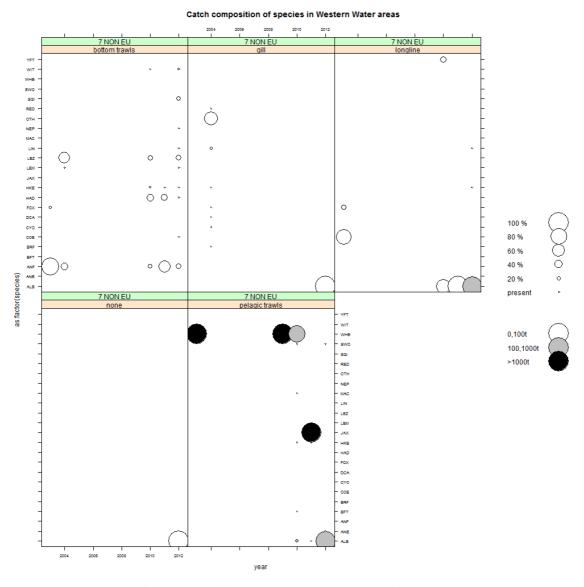


Figure 5.9.2.7.4. Landings composition by gear (countries combined) Western waters area VII non-EU, 2003-2011. Size of circles represents relative contribution to landings, shading indicates quantity.

5.9.2.8 Catches in ICES area VIId by fisheries and Member States

Deepwater VIId

The catch data provided are very sparse. In recent years otter trawls were catching small amounts of red seabream. Small landings of conger eel, less than 10 tonnes, were reported for longlines in 2008 and 2009. In 2011 and 2012 small landings of roundnose grenadier were reported from French bottom trawls.

Table 5.9.2.8.1. Top 5 deepwater species landed (tonnes) in ICES Area VIId. The ranking is based according to the last year landings.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
7D	RNG	L	0	0	0	0	0	0	0	0	2	1
7D	SBR	L	0	0	0	0	2	10	10	4	1	0
7D	COE	L	0	0	0	0	0	7	6	0	0	0
7D	RIB	L	0	0	0	0	0	0	0	0	0	0

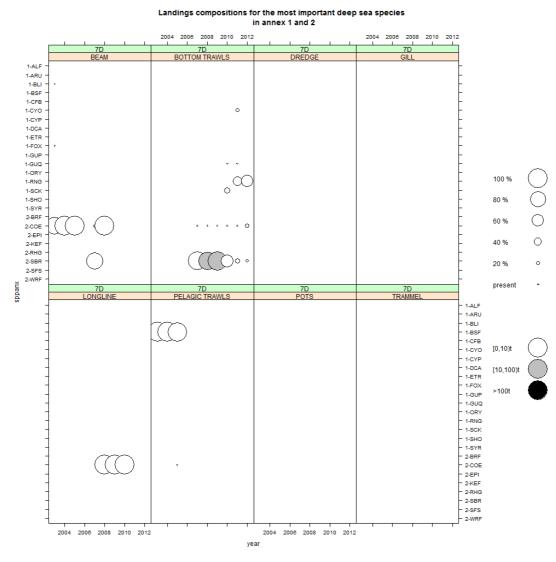


Figure 5.9.2.8.1. Landings of Annex 1&2 Deep Sea species (tonnes) 2003-20121 by gear ICES Area VIId.

Western Waters

There are a number of different fisheries taking place in this area by a number of different gears showing varying species compositions as seen in Figure 5.9.2.8.2. In relation to the top demersal species (Table 5.9.2.8.2) whiting contributes the greatest quantities. Having been in decline for a number of years landings have increased in 2010 and 2011 before decreasing again in 2012. Sole and plaice are currently landed in similar quantities following a decline, in 2009, in sole landings. Around 1000t of Seabass is landed from the area, with a slight decline in most recent years, before increasing again in 2012. Similar landings of Dab are also produced.

Table 5.9.2.8.3 details scallop and crab landings from the area, showing large and increasing landings volumes of scallops made by dredgers. There is a small pot fishery for edible crabs, after a dip in 2007 and 2008 landings have begun to increase again. Pot fishing for spider crabs was in decline up to 2009, but landings have increased again in the last three years.

Pelagic landings of Herring landings have remained at high levels since the start of the series before doubling in 2012. Horse mackerel have increased greatly since 2009, making this species the top landed pelagic species within VIId (Table 5.9.2.8.4). Mackerel landings have been in decline throughout the time period, although landings increased briefly in 2011. Pilchard landings stopped in 2009 before a small amount was recorded for 2012. Small amounts of tuna have been landed in 2011 and 2012.

Table 5.9.2.8.2. Top demersal species landed (tonnes) within Area VIId, 2003-2012. The ranking is based according to the last year landings.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
7d	WHG	L	6363	4827	4502	3511	3052	3893	3992	5493	6295	3342
7d	SOL	L	5487	4878	4019	4141	4412	3950	4011	2692	3222	3080
7d	PLE	L	3879	3611	3066	2785	3144	2988	2682	2849	3130	2831
7d	BSS	L	995	1064	1143	849	1117	965	985	893	870	1058
7d	DAB	L	1034	945	905	944	903	798	865	982	1229	999

Table 5.9.2.8.3. Scallop and crab species by gear landed (tonnes) within Area VIId, 2003-2012. Values are landings in tonnes. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
7 d	CRE	L	709	787	820	775	521	508	494	588	681	976
7 d	SCR	L	137	88	101	71	74	18	16	85	96	99
7 d	SCE	L	10686	13477	16654	15331	14299	14313	18313	19153	22045	19424

Table 5.9.2.8.4. Top pelagic species landed (tonnes) within Area VIId, 2003-2012. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
7d	HER	L	21274	25699	29328	26022	18256	12717	20063	18679	18306	34357
7d	JAX	L	1691	3171	2933	1700	3988	1852	18930	21181	19189	19382
7d	MAC	L	9900	8979	6797	6965	4695	5462	5545	4045	7679	4907
7d	PIL	L	6625	6620	10766	12397	7789	8514	8513			50
7d	ALB	L				0					31	2
7d	YFT	L										0
7d	BET	L										0

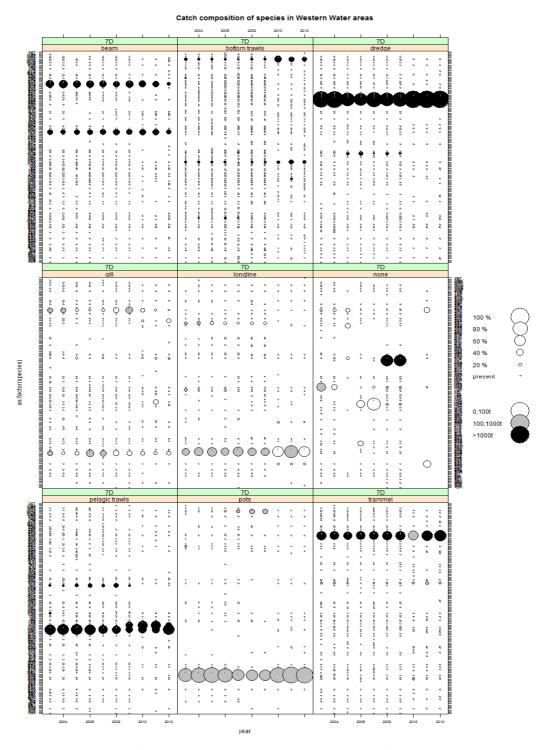


Figure 5.9.2.8.2 Landings composition by gear (countries combined) Western waters area VIId, 2003-2012. Size of circles represents relative contribution to landings, shading indicates quantity.

5.9.2.9 Catches in the Biologically Sensitive Area by fisheries and Member States

Western Waters

As in the wider area VII, a variety of fisheries occur within the BSA through the use of different gears. Beam trawling occurs targeting anglerfish, gillnetting for hake, dredging for scallops and potting for edible crab. The general species composition by gear is given in Figure 5.9.2.9.1.

After being stable through the time series landings of Hake have begun to increase in the last two years. They now produce the highest landings for the area. Landings of Anglerfish suffered a drop in 2010 but have recovered since with those of 2012 being the highest of the time series Haddock have fluctuated around relatively stable levels over the period, but again showed an increase in 2012. Landings of Megrim and Whiting were quite stable up to 2009 when landings began to increase.

Table 5.9.2.9.2 details scallop and crab landings from the BSA. In this area scallop and crab landings are far lower than the wider VII EU area. Scallops from dredging were stable until 2007 but have shown an increasing trend up to 2011. Landings decreased again in 2012. Edible crabs landed from pots are also showing an increasing trend. All other gears contribute minimal landings.

In relation to pelagic species, Horse mackerel had previously been relatively stable until extremely large landings occurred in 2009 (Table 5.9.2.9.3). Horse mackerel landings dropped in 2010 but have increased again in the last two years. Boarfish landings have fluctuated considerably since first being reported in 2007. Mackerel, having recorded increased landings in 2009 and 2010, in 2011 dropped by 60% before increasing again in 2012. Herring landings were in decline up to 2011 but showed an increase in 2012 Landings of albacore tuna were quite low but French pelagic data recorded 386t in 2011 and this more than doubled again in 2012.

Table 5.9.2.9.1. Top demersal species landed (tonnes) within the BSA, 2003-2012. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
BSA	HKE	L	3544	4171	3699	3792	4104	3475	3655	3511	5600	7970
BSA	ANF	L	5323	4633	4082	4219	5147	4621	5100	3981	4990	6222
BSA	HAD	L	3671	3163	2957	2562	3106	2866	3982	3469	3970	5284
BSA	LEZ	L	2291	2124	2268	2015	2211	2258	3088	4355	3785	5275
BSA	WHG	L	5161	3126	2993	2398	2258	1632	2200	3276	3415	4712

Table 5.9.2.9.2. Scallop and crab species by gear landed within the BSA, 2003-2012. Values are landings in tonnes. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
BSA	CRE	L	454	402	773	221	399	404	427	611	505	717
BSA	SCR	L	6	19	13	4	25	75	68	34	35	20
BSA	SCE	L	174	126	197	114	170	370	470	490	836	709

Table 5.9.2.9.3. Top pelagic species landed (tonnes) within the BSA, 2003-2012. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
BSA	JAX	L	8259	10139	10041	9347	5821	10866	40236	28191	31915	42029
BSA	BOR	L					772		39459	71612	7265	41948
BSA	MAC	L	17757	29705	22987	12602	24871	27851	42127	41028	17337	28583
BSA	HER	L	10322	8430	6086	6506	7486	6889	5832	6440	4390	6292
BSA	ALB	L	195	57	289	0	27	14	8	8	387	863
BSA	SWO	L	4	2	5		0	0	0		1	4
BSA	BFT	L	2	2			1				1	4

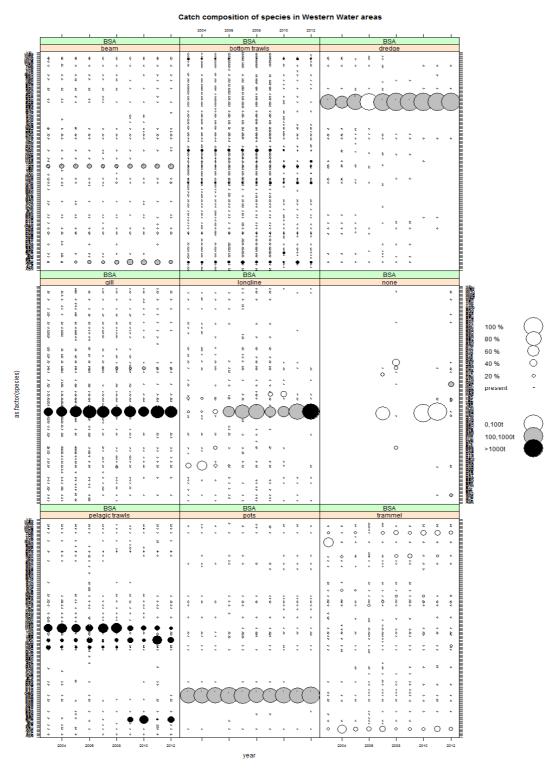


Figure 5.9.2.9.1. Landings composition by gear (countries combined) Western waters area BSA. Size of circles represents relative contribution to landings, shading indicates quantity.

5.9.2.10 Catches in ICES area VIII by fisheries and Member States

Deepwater VIII EU

In 2012 Spain reported the majority of the landings for this area. Spain landed large amounts of conger eel, caught by bottom trawl and longlines. They also reported increased landings for blue mouth redfish using longline, bottom trawl and gill nets. Spanish longlines also reported increased landings for Red spot seabream, Blue ling and Wreckfish. Due to the lack of Spanish data for 2010 and 2011 it is impossible to say when this increase in these fisheries started.

Historically, France, England and Scotland reported landings for this area but in recent years these landings have nearly stopped.

French pelagic trawls regularly land small amounts, less than 10 tonnes, of black scabbard. Spain landed blackmouth dogfish in 2008 and 2009.

Table 5.9.2.10.1. Top 5 deepwater species landed in ICES Area VIII (EU). The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
8 EU	COE	L	99	143	81	75	71	91	167	29	48	2283
8 EU	BRF	L	1	8	27	69	17	49	145	6	42	865
8 EU	SBR	L	2	10	2	2	4	3	8	0	1	88
8 EU	BLI	L	3	6	8	13	9	14	41	5	3	85
8 EU	WRF	L	2	0	1	1	3	4	62	16	14	78

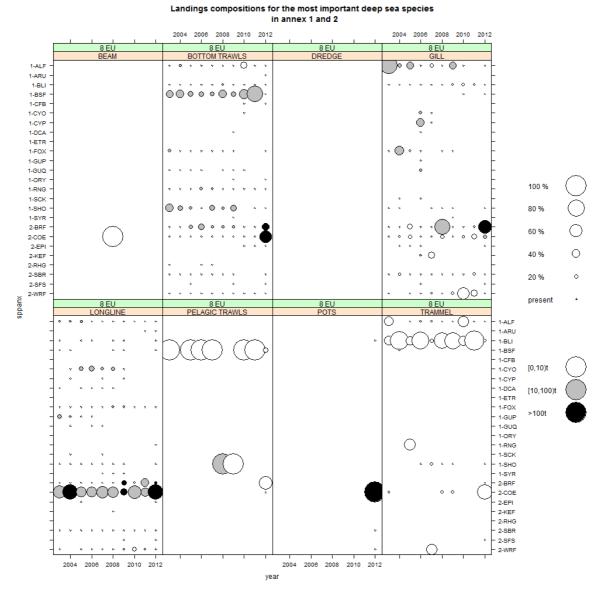


Figure 5.9.2.10.1 Landings of Annex 1&2 Deep Sea species (tonnes) 2003-2012 by gear ICES Area VIII (EU)

Table 5.9.2.10.2. Top 5 deepwater species discarded in ICES Area VIII (EU).

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
8 EU	BRF	D	0	0	0	0	0	0	0	0	0	670
8 EU	COE	D	0	0	0	0	0	0	0	1	0	41
8 EU	BLI	D	0	0	0	0	0	0	0	0	0	28
8 EU	SBR	D	0	0	0	0	0	0	0	0	0	0
8 EU	WRF	D	0	0	0	0	0	0	0	0	0	0

Western Waters VIII EU

Information from landings in this area appears to reflect the absence of data from Spain for 2010 and 2011. It is therefore difficult to give an objective assessment of landings for these years.

Hake provide the largest landings of demersal species. Landings increased up to 2008 and appear to be stable since, Table 5.9.2.10.3. Landings began increasing again in 2011 and in 2012 were the highest of the time series. Squid landings had a historic peak in 2004. In 2012 however landings surged to the highest in the time series. Anglerfish landings had been stable between 2004 and 2009, but appear to be decreasing. Sole landings have been stable since 2004. Landings of *Nephrops norvegicus* were stable through the time series, but suffered a decrease in 2012.

Details of scallop and crab landings from this area are given in Table 5.9.2.10.4. Scallops are primarily landed by dredge. Having been quite stable through the time series landings have declined dramatically in 2010 and 2011, but showed an improvement again in 2012. The main landings of edible crab are from pots, with some landings coming from bottom trawls. Crab landings from pots fell by 80% in 2008 and 2009, but since 2010 have increased greatly, with 2012 providing the highest landings of the time series.. Trammel nets provide landings of spider crabs, as do bottom trawls and gill nets. However landings from all three methods are in decline.

Pelagic landings have been dominated by mackerel which reached a peak in 2009. Landings appear to be dropping in recent years. Horse mackerel stocks were reasonably stable up to 2008 and have declined since. Anchovy landings declined from an early peal in 2004 with minimal landings reported for 2008 and 2009. Landings have improved since then with 2012 being the highest of the time series. Albacore tuna landings peaked in 2006 before decreasing to 2009. Landings for 2012 are the second highest of the series. Blue whiting landings peaked in 2009 and appear to be in decline since.

Table 5.9.2.10.3. Top demersal species landed (tonnes) within Area VIII EU, 2003-2012. The ranking is based according to the last year landings.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
8 EU	HKE	L	6034	6093	9609	9677	12348	16546	17137	9083	10114	18600
8 EU	SQI	L	376	396	489	220	178	324	204	3	14	4094
8 EU	ANF	L	5627	6943	7929	7861	7603	7348	7192	1056	2763	3755
8 EU	SOL	L	2278	2549	3299	3479	3279	3342	3427	3010	3643	3358
8 EU	NEP	L	2501	2605	3232	3020	2909	2765	2735	2587	3014	1865

Table 5.9.2.10.4. Scallop and crab species by gear landed within Area VIII EU, 2003-2012. Values are landings in tonnes. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
8 EU	CRE	L	1082	1353	1020	1005	891	392	388	1430	1495	1797
8 EU	SCR	L	560	704	720	899	758	587	579	497	428	450
8 EU	SCE	L	540	533	660	633	727	635	618	179	217	571

Table 5.9.2.10.5. Top pelagic species landed (tonnes) within Area VIII EU, 2003-2012. The ranking is based according to the last year landings.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
8 EU	MAC	L	24788	37059	49523	52583	56302	58359	98446	5446	4110	23677
8 EU	JAX	L	24517	26645	32564	31411	27570	30403	23403	1206	1008	15624
8 EU	ANE	L	3058	5634	205	910	97	0	0	2267	2048	12781
8 EU	ALB	L	4953	3785	10154	13066	7989	3642	1038	269	190	11799
8 EU	WHB	L	16513	18801	18244	16529	17652	16448	21482	31	41	6512
8 EU	BFT	L	698	1685	3444	1385	1721	1334	343	65	25	214
8 EU	SWO	L	47	23	94	88	43	16	3	6	2	36
8 EU	BET	L	60	16	326	52	320	5	5	0	0	15
8 EU	YFT	L			27		12			3		0

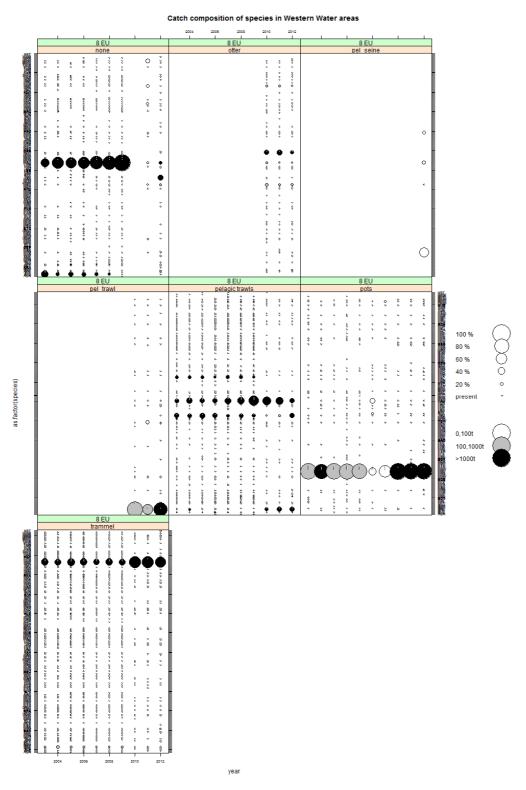


Figure 5.9.2.10.2. Landings composition by gear (countries combined) Western waters area VIII EU. Size of circles represents relative contribution to landings, shading indicates quantity.

Deepwater VIII non-EU

No information reported after 2006, bar small landings of Bluemouth redfish and Conger eel in 2012, by Spain

Table 5.9.2.10.5 Top 5 deepwater species landed (tonnes) in ICES Area VII (EU). The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
8 non EU	BRF	L	0	0	0	0	0	0	0	0	0	0
8 non EU	COE	L	0	0	0	0	0	0	0	0	0	0
8 non EU	CMO	L	0	0	0	4	0	0	0	0	0	0
8 non EU	CYO	L	0	0	0	1	0	0	0	0	0	0
8 non EU	CYP	L	0	0	0	4	0	0	0	0	0	0
8 non EU	DCA	L	0	0	0	1	0	0	0	0	0	0

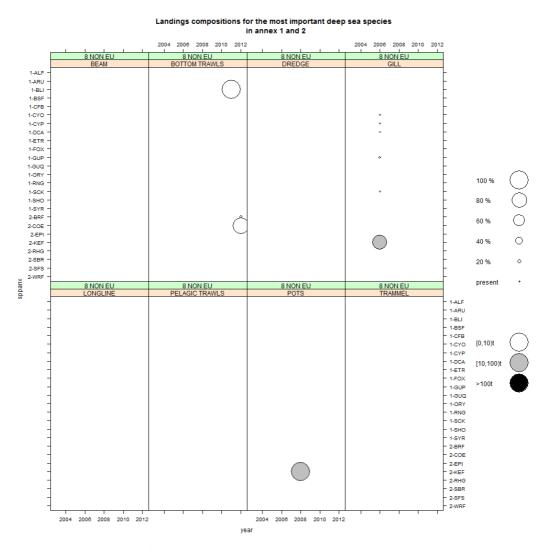


Figure 5.9.2.10.1 Landings of Annex 1&2 Deep Sea species (tonnes) 2003-2012 by gear ICES Area VIII (EU).

Western Waters VIII non-EU

No demersal species landings were reported between 2003 and 2010. In 2011 18t of hake was reported for French bottom trawls (Table 5.9.2.10.6). Very small landings were reported for 2012

No scallops or crabs landings were reported (Table 5.9.2.10.7).

Albacore tuna landings were first reported in 2010 by France and Scotland and increased again 2011. In 2012 landings continued to increase but Spain was the main contributor rather than either of the earlier two countries, (Table 5.9.2.10.8). Horse mackerel landings were reported for 2006 by Portugal and 2012 by Spain.

Table 5.9.2.10.6. Top demersal species landed (tonnes) within Area VIII non-EU, 2003-2012. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
8 NON EU	SQI	L										1
8 NON EU	HKE	L								0	18	0
8 NON EU	NEP	L									0	0
8 NON EU	TUR	L								0	0	0

Table 5.9.2.10.7. Scallop and crab species by gear landed within Area VIII non-EU, 2003-2012. Values are landings in tonnes. The ranking is based according to the last year landings.

No reported landings.

Table 5.9.2.10.8. Top pelagic species landed (tonnes) within Area VIII non-EU, 2003-2012. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
8 NON EU	ALB	L								246	390	607
8 NON EU	JAX	L				69						65
8 NON EU	SWO	L								0	1	2
8 NON EU	BET	L										0

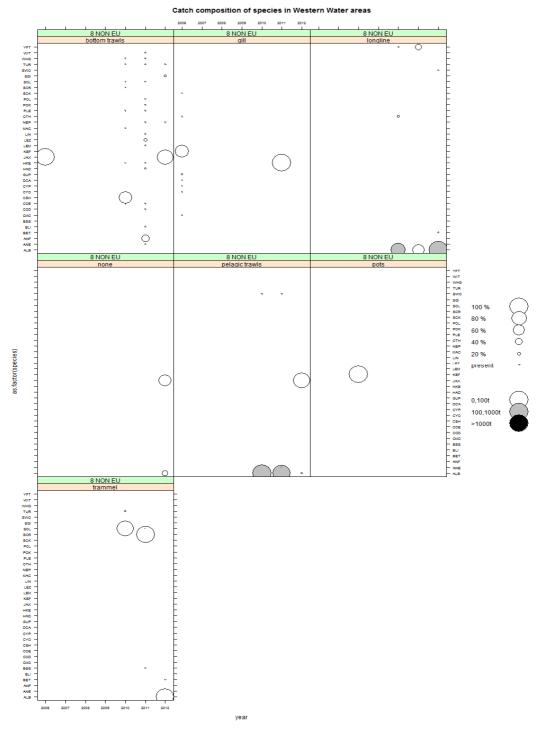


Figure 5.9.2.10.4. Landings composition by gear (countries combined) Western waters area VIII non-EU. Size of circles represents relative contribution to landings, shading indicates quantity. Spanish 2010 landings not included.

5.9.2.11 Catches in ICES area IX by fisheries and Member States

Deepwater IX EU

Portuguese longlining for Black scabbard fish is the major component of this area. Landings began to increase in 2005 and have been quite stable since 2007. Throughout the time series Portugal has reported small landings of Conger eel using longline. In 2012 Spain has reported large catches using longline, bottom trawl, and in particular pots. Spain also reported landings of blue mouth redfish in 2012, (Table 5.9.2.11.1, Fig 5.9.2.11.1).

Longlining is the major gear used in the area, mainly by Spain and Portugal, followed by bottom trawl. Blackmouth catshark were the main landings by bottom trawl historically, but these ceased in 2010.

Table 5.9.2.11.1. Top 5 deepwater species landed in ICES Area IX (EU). The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
9 EU	BSF	L	422	43	1175	1939	2720	2854	2701	2702	2704	2472
9 EU	COE	L	14	8	23	48	50	42	22	11	15	399
9 EU	BRF	L	3	0	5	10	47	18	19	14	12	172
9 EU	SBR	L	0	0	0	9	16	7	7	5	11	21
9 EU	FOX	L	4	1	7	11	12	20	7	7	9	13

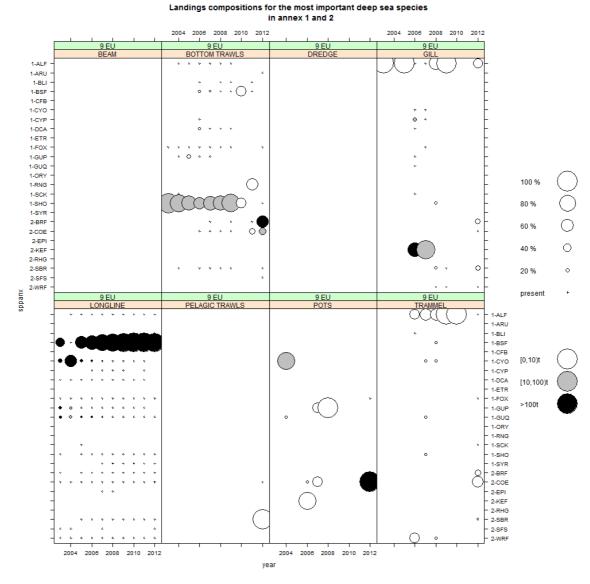


Figure 5.9.2.11.1 Landings of Annex 1&2 Deep Sea species (tonnes) 2003-2012 by gear ICES Area IX (EU).

Table 5.9.2.11.2. Top 5 deepwater species discarded in ICES Area IX (EU).

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
9 EU	BRF	D	0	0	0	0	0	0	0	0	0	59
9 EU	COE	D	0	0	0	0	0	0	0	0	0	6
9 EU	BSF	D	0	0	0	0	0	0	0	0	0	0
9 EU	FOX	D	0	0	0	0	0	0	0	0	0	0
9 EU	SBR	D	0	0	0	0	0	0	0	0	0	0

Western Waters IX EU

Hake is the most important demersal species landed in this area. Landings began increasing in 2004 and peaked in 2009. Landings have decreased since, dropping by 50% in 2012. Northern shortfin squid landings were decreasing between 2004 and 2009, but Spain reported large landings in 2012 using bottom trawls. Anglerfish landings have remained quite stable despite experiencing a small peak in 2006 and 2007. Landings of Rajidae increased up to 2008 and have stabilised since.

Small landings of spider crab were reported between 2006 and 2010 by Portugal using trammel nets. In 2012 Spain reported all the spider crab, edible crab and scallop landings.

Spain and Portugal are the two countries reporting landings of pelagic species from this area with only Ireland reporting mackerel landings from pelagic trawl in 2008. Horse mackerel is the major species caught with both pelagic and bottom trawls being used. Landings have fluctuated somewhat throughout the time series, and without Spanish data for 2010 and 2011 it is not possible to give a full assessment of trends. Anchovy landings were very low until 2012 when Spain reported large landings using pelagic trawls. Blue whiting landings were high until 2010 but had dropped by 50% in 2012. Mackerel landings suffered a large drop in 2009, but appear to have stabilised since. Swordfish and albacore landings have fluctuated through the time series but in 2012 Spain reported high landings for swordfish using longlines.

Table 5.9.2.11.2. Top demersal species landed (tonnes) within Area IX EU, 2003-2012. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
9 EU	HKE	L	913	751	1217	2777	4143	5025	6736	1764	1252	3189
9 EU	SQI	L	349	609	290	60	62	161	51			1802
9 EU	ANF	L	607	544	620	918	1164	763	596	187	276	610
9 EU	RAJ	L	47	56	62	111	269	277	423	501	489	454
9 EU	SOL	L	19	25	53	55	688	136	157	163	161	231

Table 5.9.2.11.3. Scallop and crab species by gear landed within Area IX EU, 2003-2012. Values are landings in tonnes. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
9EU	CRE	L										2
9EU	SCR	L				5	6		2	5		94
9EU	SCE	L										43

Table 5.9.2.11.4. Top pelagic species landed (tonnes) within Area IX EU, 2003-2012. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
9 EU	JAX	L	7387	11325	7329	10412	12393	15012	10372	4637	4036	14191
9 EU	ANE	L	23	36	5	23	22	7	17	6	10	4813
9 EU	WHB	L	4271	6967	6993	4620	5220	6607	6123	1154	463	2827
9 EU	MAC	L	1975	3133	4115	4552	6886	6981	1416	189	246	1088
9 EU	SWO	L	22	46	12	6	15	13	7		7	195
9 EU	ALB	L	13	51	179	57	111	110	4			73
9 EU	BET	L		0		0			2			1

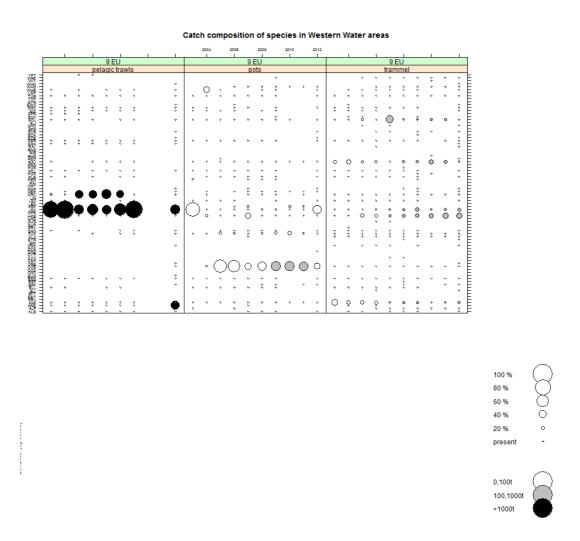


Figure 5.9.2.11.2. Landings composition by gear (countries combined) Western waters area IX EU. Size of circles represents relative contribution to landings, shading indicates quantity.

Deepwater IX non EU

Landings of conger eel and wreckfish from longline by Portugal fluctuated at low numbers through the time series. Occasionally landings of blue mouth redfish are also reported.

Table 5.9.2.11.5. Top 5 deepwater species landed in ICES Area IX (non EU). The ranking is based according to the last year landings.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
9 NON EU	COE	L	1	12	8	4	9	10	12	6	12	14
9 NON EU	WRF	L	4	16	4	1	9	12	5	2	2	8
9 NON EU	ALF	L	1	0	0	0	0	0	0	0	0	6
9 NON EU	BRF	L	0	0	0	1	2	2	5	0	2	5

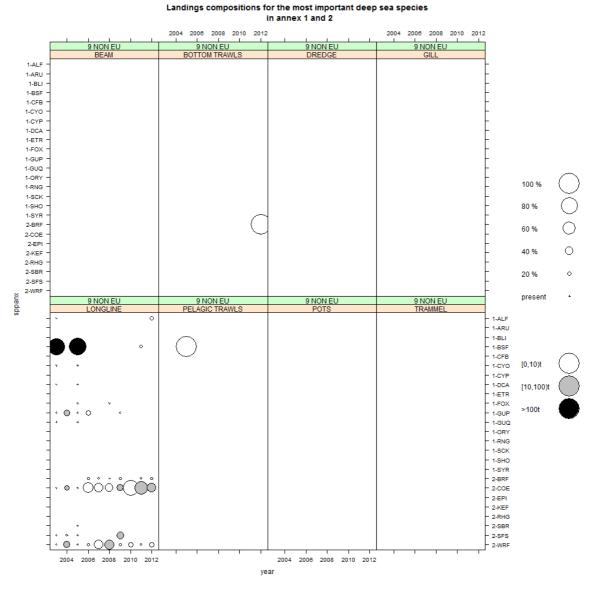


Figure 5.9.2.11.3 Catches of Annex 1&2 Deep Sea species (tonnes) 2003-2012by gear ICES Area IX (non EU).

Western Waters IX non-EU

Demersal landings are very low for this area. Conger eel were the most important species in 2012 followed by Wreckfish, Blue mouth redfish and Hake.

No landings of scallop or crab have been reported for this area

Pelagic landings in this area ceased between 2005 and 2011, except for a small amount of horse mackerel reported by Portugal in 2009. In 2012 landings were reported for Swordfish, Horse mackerel, Mackerel and Blue whiting, as well as lesser amounts of other tuna species.

Table 5.9.2.11.6. Top demersal species landed (tonnes) within Area IX non-EU, 2003-2012. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
9 NON EU	COE	L	21	10	27	5	3	15	39	9	17	45
9 NON EU	WRF	L	19	10	10	1	4	15	21	1	4	17
9 NON EU	BRF	L				1		5	9		2	13
9 NON EU	HKE	L	48	9	34							10
9 NON EU	FOX	L	15		8	1		4		2		2
9 NON EU	RAJ	L			1			2	2			2

Table 5.9.2.11.7. Scallop and crab species by gear landed within Area IX non-EU, 2003-2012. Values are landings in tonnes. The ranking is based according to the last year landings.

No landings have been reported for this area.

Table 5.9.2.11.8. Top pelagic species landed (tonnes) within Area IX non-EU, 2003-2012. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
9 NON EU	SWO	L	3		3							71
9 NON EU	JAX	L	4	26	59				2			42
9 NON EU	WHB	L	5	33	43							13
9 NON EU	MAC	L	5		6							10
9 NON EU	ALB	L										2
9 NON EU	BET	L			1							1
9 NON EU	YFT	L										0

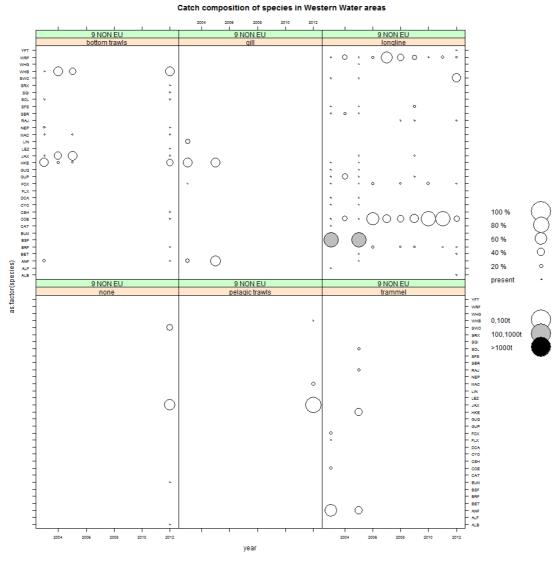


Figure 5.9.2.11.4. Landings composition by gear (countries combined) Western waters area IX non EU. Size of circles represents relative contribution to landings, shading indicates quantity.

5.9.2.12 Catches in ICES area X by fisheries and Member States

Deepwater X EU

Portugal recently resubmitted their data for 2010 to 2012 for this area. It is mainly related to longlining in the Azores.

Table 5.9.2.12.1. Top 5 deepwater species landed in ICES Area X (EU). The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
10 EU	BSF	L	0	0	0	0	0	0	0	32	116	443
10 EU	SBR	L	0	0	0	0	0	0	0	403	357	303
10 EU	COE	L	0	0	0	0	0	0	0	198	271	259
10 EU	ALF	L	0	0	0	0	0	0	0	189	180	165
10 EU	SFS	L	0	0	0	0	0	0	0	46	97	156

Western Waters X EU

There have been no demersal, pelagic, scallop, or crab species landed from this area prior to 2012. A small amount of hake was landed by Spain. Spain landed approximately 180t of Swordfish from longlines, with small amounts of Horse mackerel and Albacore tuna

Table 5.9.2.12.2. Top demersal species landed within Area X (non EU), 2003-2012. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
10 EU	HKE	L										3
10 EU	POL	L										0
10 EU	ANF	L										0
10 EU	LIN	L										0

Table 5.9.2.12.3. Top pelagic species landed within Area X (EU), 2003-2012. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
10 EU	SWO	L										178
10 EU	JAX	L										10
10 EU	ALB	L										4
10 EU	ANE	L										1
10 EU	YFT	L							9			0

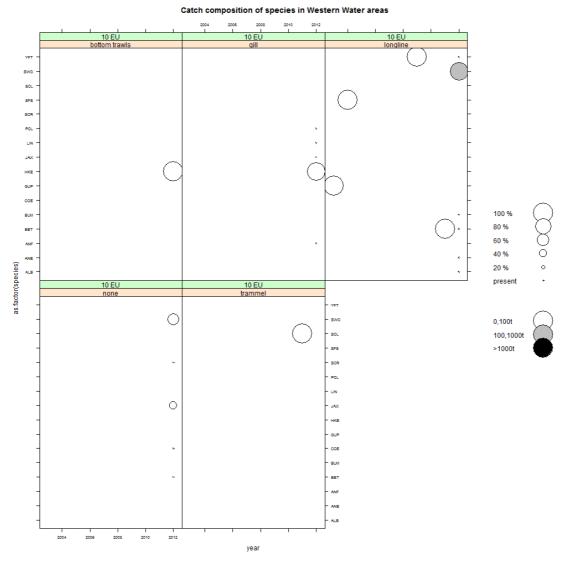


Figure 5.9.2.12.1 Landings composition by gear (countries combined) Western waters area X (EU). Size of circles represents relative contribution to landings, shading indicates quantity.

Deepwater X non-EU

Minor landings (less than 0.5 tonnes) of red seabream should be noted

Table 5.9.2.12.4. Top 5 deepwater species landed in ICES Area X (non EU). The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
10 NON EU	SBR	L	0	0	0	0	0	0	0	0	0	0

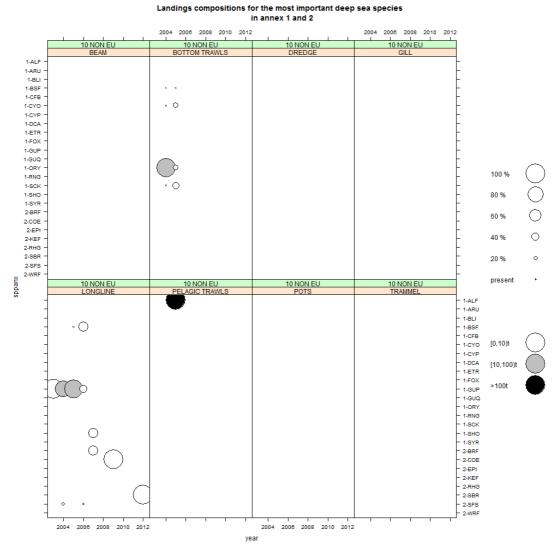


Figure 5.9.2.12.2. Catches of Annex 1&2 Deep Sea species (tonnes) 2003-2012by gear ICES Area X (non EU)

Western Waters X non-EU

Minimal landings of demersal species have been reported between 2012 and 2012, Table 5.9.2.12.5 France reported landings of 1t of scallops, and less of edible crab for 2012.

Minimal pelagic landings were reported prior to 2012. In 2012 Spain reported landings of Swordfish and Albacore tuna using longlines, along with small amounts of Horse mackerel from pelagic trawls.

Table 5.9.2.12.5. Top demersal species landed (tonnes) within Area X non-EU, 2003-2012. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
10 NON EU	WHM	L										1
10 NON EU	HKE	L								1	0	1
10 NON EU	WHG	L								0	0	1
10 NON EU	BSS	L								0	0	1
10 NON EU	SOL	L								1	1	1

Table 5.9.2.12.6. Scallop and crab species by gear landed within Area X non-EU, 2003-2012. Values are landings in tonnes. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
10 NON EU	SCE	L										1

Table 5.9.2.12.7. Top pelagic species landed (tonnes) within Area X non-EU, 2003-2012. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
10 NON EU	SWO	L	2		2	1		1				715
10 NON EU	ALB	L			2			1			5	650
10 NON EU	JAX	L										134
10 NON EU	BET	L										21
10 NON EU	MAC	L								1	0	0
10 NON EU	WHB	L										0

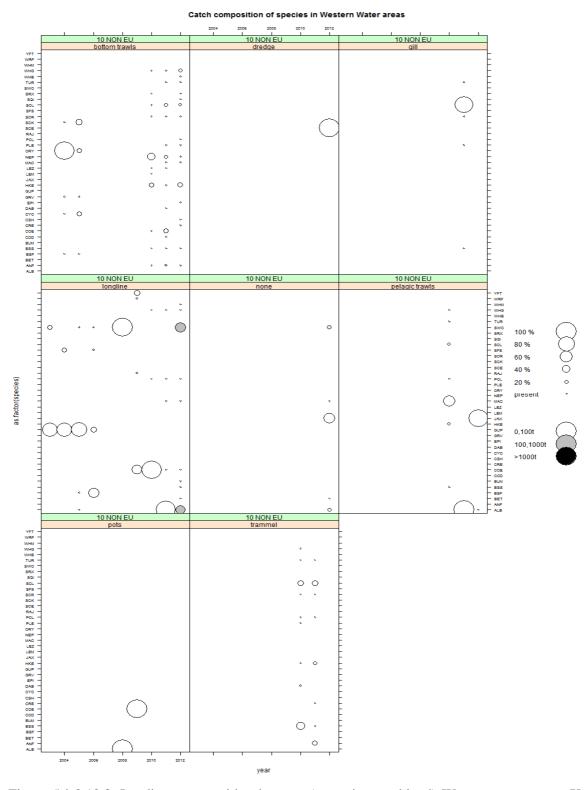


Figure 5.9.2.12.3. Landings composition by gear (countries combined) Western waters area X non-EU. Size of circles represents relative contribution to landings, shading indicates quantity.

5.9.2.13 Catches in ICES area XII by fisheries and Member States only linked to Deep Sea species

Area XII non-EU

Figure 5.9.2.13.1 and Table 5.9.2.13.1 show that trawl landings were mainly of roundnose grenadier landed by Estonia between 2005 and 2007, with Spain reporting large landings of the species in 2009 and 2012. Spain also reported small grenadier landings by pelagic trawl for the same years.

In 2012 Spain reported landings of Bairds smoothhead, Roughhead grenadier, Silver scabbard fish and Blue ling from bottom and pelagic trawls.

Orange roughy was landed by Ireland in 2003. Sporadic landings of blue ling and black scabbard were reported up to 2006, with France reporting a small catch of black scabbard for 2010 and 2011.

Gill net catches of Portuguese dogfish, leafscale gulper shark and deep-water red crab by the UK ended in 2006.

Occasional pot landings of deep-water red crab ended in 2008.

Table 5.9.2.13.1. Top 5 deepwater species landed in ICES Area XII (non EU). The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
12 non EU	RNG	L	1		20	27	140		2328	2		1521
12 non EU	ALC	L			3	76	9					621
12 non EU	RHG	L										526
12 non EU	SFS	L										244
12 non EU	BLI	L	6		21	1	7		196	0	0	205

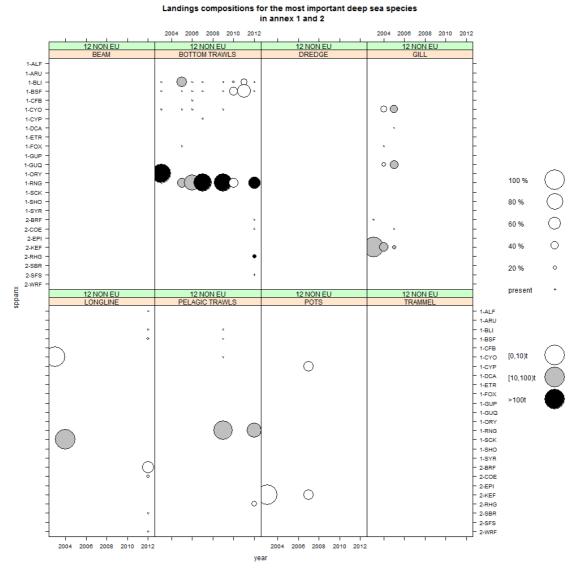


Figure 5.9.2.13.1 Landings of Annex 1&2 Deep Sea species (tonnes) 2003-2012 by gear ICES Area XII (non EU)

5.9.2.14 Catches in ICES area XIV by fisheries and Member States only linked to Deep Sea species

Area XIV non-EU

The main species landed by bottom trawl, by Germany and the UK, is Greenland halibut followed by, small landings of roundnose grenadier and occasional landings of blue ling. In 2012 Spain reported large landings of roundnose and roughhead grenadiers using bottom and pelagic trawls.

Table 5.9.2.14.1. Top 5 deepwater species landed in ICES Area XIV (non EU). The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
14 non EU	GHL	L	3498	4546	4426	4298	4535	5044	5087	4812	5815	4468
14 non EU	RHG	L										2687
14 non EU	RNG	L	42	27	12	18	19	17	27	35	32	1911
14 non EU	BLI	L	6	7	18			1	77	3	7	3

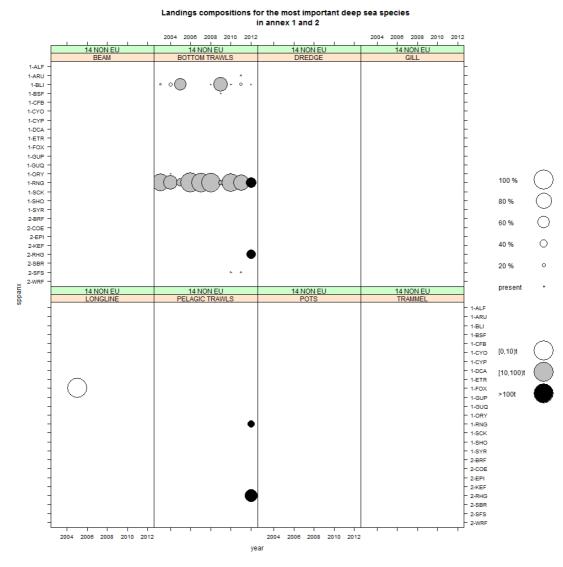


Figure 5.9.2.14.1 Landings of Annex 1&2 Deep Sea species (tonnes) 2003-2012 by gear ICES Area XIV (non EU).

5.9.2.15 Catches in CECAF area 34.1.1 by fisheries and Member States

Deepwater 34.1.1 EU

Regular, small, landings are reported by Portugal, using longline, for Conger eel, Wreckfish and Greater forkbeard.

Table 5.9.2.15.1. Top 5 deepwater species landed in CECAF Area 34.1.1 (EU). The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
34.1.1 EU	COE	L	2	0	1	16	5	15	15	12	0	3
34.1.1 EU	WRF	L	0	0	1	16	6	14	11	3	0	3
34.1.1 EU	FOX	L	1	0	0	3	2	5	2	2	0	1

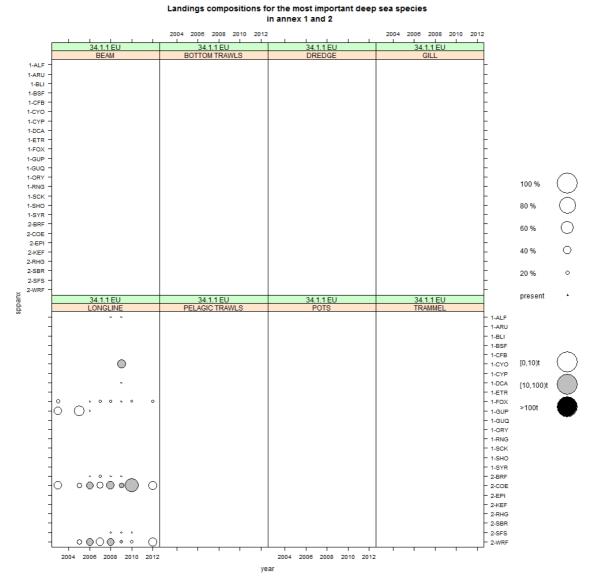


Figure 5.9.2.15.1 Landings of Annex 1&2 Deep Sea species (tonnes) 2003-2012 by gear CECAF Area 34.1.1 (EU).

Western Waters 34.1.1 EU

In 2013 Spain reported small landings of Swordfish for this area using longlines, Table 5.9.2.15.4 and Figure 5.9.2.15.2.

Table 5.9.2.15.2. Top demersal species landed (tonnes) within CECAF Area 34.1.1 EU, 2003-2012. The ranking is based according to the last year landings.

No data reported.

Table 5.9.2.15.3. Scallop and crab species by gear landed within CECAF Area 34.1.1 EU, 2003-2012. Values are landings in tonnes. The ranking is based according to the last year landings.

No data reported.

Table 5.9.2.15.4. Top pelagic species landed (tonnes) within CECAF Area 34.1.1 EU, 2003-2012. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
34.1.1 EU	SWO	L										16
34.1.1 EU	ANE	L										0

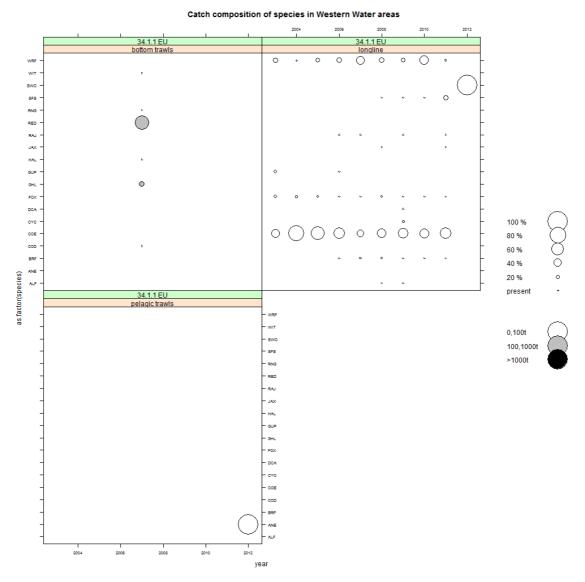


Figure 5.9.2.15.2 Landings composition by gear (countries combined) Western waters CECAF Area 34.1.1 (EU). Size of circles represents relative contribution to landings, shading indicates quantity.

Western Waters 34.1.1 non EU

Portugal has landed small amounts of Conger eel and Wreckfish through the time series. Since 2007 regular landings of Bluemouth redfish and occasional landings of Greater forkbeard and Rajidae are reported as well as Silver scabbardfish in 2012.

Lithuania reported 130 tonnes of Mackerel from pelagic trawls for 2012.

Table 5.9.2.15.5. Top demersal species landed (tonnes) within CECAF Area 34.1.1 non-EU, 2003-2012. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
34.1.1 NON EU	COE		9		4		13	13	14	16	14	40
34.1.1 NON EU	SFS											13
34.1.1 NON EU	WRF		7		2		6	13	10	7	10	9
34.1.1 NON EU	FOX		4					1		2	2	4
34.1.1 NON EU	BRF						4	2	8	5	9	1
34.1.1 NON EU	RAJ							5	1			1

Table 5.9.2.15.6. Scallop and crab species by gear landed within CECAF Area 34.1.1 non-EU, 2003-2012. Values are landings in tonnes. The ranking is based according to the last year landings.

No data provided.

Table 5.9.2.15.7. Top pelagic species landed (tonnes) within CECAF Area 34.1.1 non-EU, 2003-2012. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
34.1.1 NON EU	MAC	L										131
34.1.1 NON EU	SWO	L										1

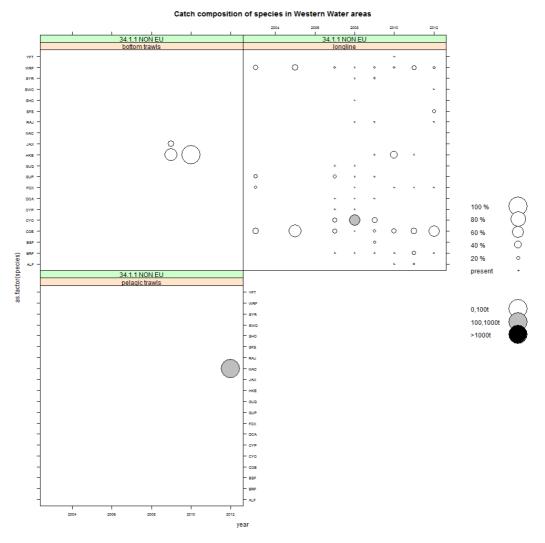


Figure 5.9.2.15.3 Landings composition by gear (countries combined) Western waters CECAF Area 34.1.1 non-EU. Size of circles represents relative contribution to landings, shading indicates quantity.

5.9.2.16 Catches in CECAF area 34.1.2 by fisheries and Member States

Deepwater 34.1.2 EU

Portugal revised its data in 2012 and now shows landings in this area for the last three years. The main species are Black scabbard fish and Leafscale gulper shark caught using longlines by vessels less than 15m. They also report small landings of Conger eel and occasional landings of Alfonsinos and Wreckfish

Table 5.9.2.16.1 Top 5 deepwater species landed in CECAF Area 34.1.2 (EU). The ranking is based according to the last year landings.

area	species	Type	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
34.1.2 EU	BSF	L	0	2	0	0	0	0	0	1792	1873	1657
34.1.2 EU	GUQ	L	0	0	0	0	0	0	0	185	170	119
34.1.2 EU	COE	L	0	5	7	8	9	13	14	5	1	8
34.1.2 EU	ALF	L	0	0	0	0	0	0	2	1	9	6
34.1.2 EU	WRF	L	0	4	2	5	11	7	10	2	0	6

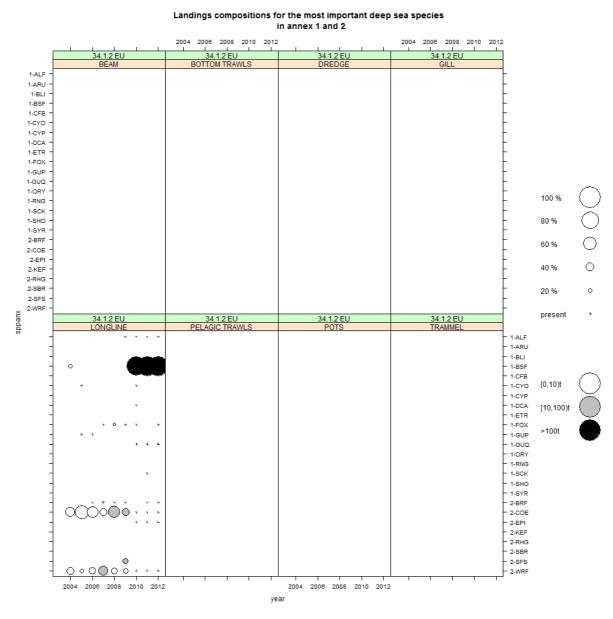


Figure 5.9.2.16.1 Catches of Annex 1&2 Deep Sea species (tonnes) 2003-2012 by gear CECAF Area 34.1.2 (EU).

Western Waters 34.1.2 EU

The revised Portuguese data shows recent large demersal landings for longlines. The main species landed are Black scabbardfish followed by Leafscale gulper shark. Smaller amounts of Conger eel and Wreckfish have been landed throughout the time series.

Small amounts of pelagic have been landed since 2010.

Table 5.9.2.16.2. Top demersal species landed (tonnes) within CECAF Area 34.1.2 EU, 2003-2012. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
34.1.2 EU	BSF	L		2						1792	1873	1657
34.1.2 EU	GUQ	L								185	170	119
34.1.2 EU	COE	L	2	10	20	7	15	14	26	22	45	50
34.1.2 EU	WRF	L	2	3	5	4	14	9	17	7	8	16
34.1.2 EU	RAJ	L							1		2	4

Table 5.9.2.16.3. Scallop and crab species by gear landed within CECAF Area 34.1.2 EU, 2003-2012. Values are landings in tonnes. The ranking is based according to the last year landings.

No data provided.

Table 5.9.2.16.4. Top pelagic species landed (tonnes) within CECAF Area 34.1.2 EU, 2003-2012. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
34.1.2 EU	BET	L								0	0	127
34.1.2 EU	SWO	L								2	3	25
34.1.2 EU	MAC	L										11
34.1.2 EU	ALB	L								0	0	1
34.1.2 EU	YFT	L										0

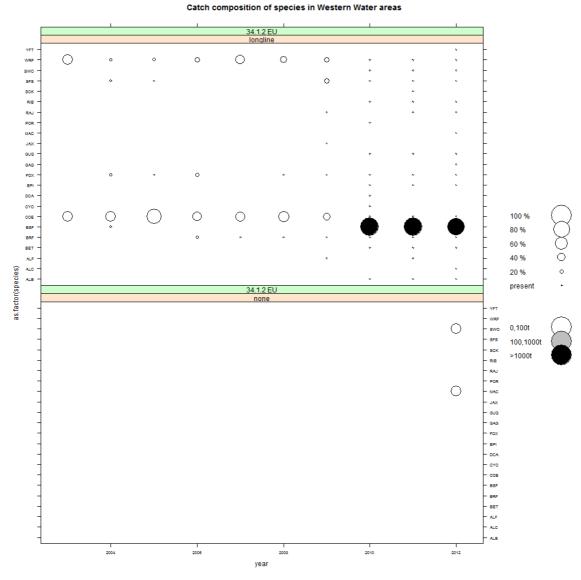


Figure 5.9.2.16.2 Landings composition by gear (countries combined) Western waters CECAF Area 34.1.2 (EU). Size of circles represents relative contribution to landings, shading indicates quantity.

Western Waters 34.1.2 non EU

In 2012 Spain reported some landings of Bigeye tuna from longlines, as well as very small amounts of Mackerel and Swordfish.

Table 5.9.2.16.5. Top pelagic species landed within CECAF Area 34.1.2 (non EU), 2003-2012. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
34.1.2 NON EU	BET	L										15
34.1.2 NON EU	MAC	L										1
34.1.2 NON EU	SWO	L										1

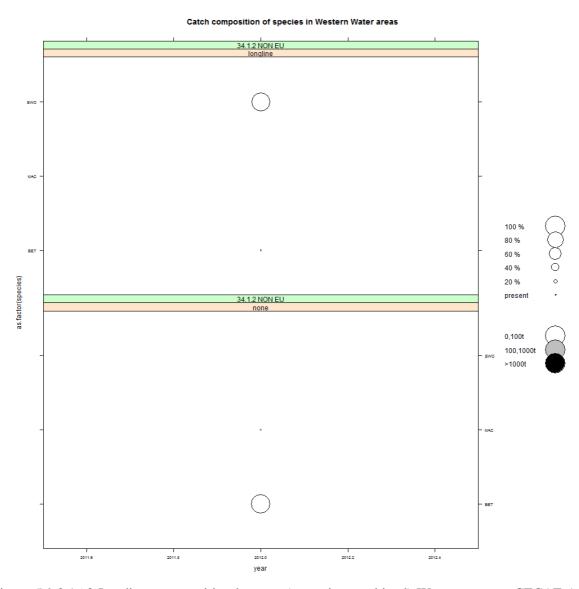


Figure 5.9.2.16.3 Landings composition by gear (countries combined) Western waters CECAF Area 34.1.2 (non EU). Size of circles represents relative contribution to landings, shading indicates quantity.

5.9.2.17 Catches in CECAF area 34.1.3 by fisheries and Member States

Deepwater 34.1.3

Spain reported landings for this area for 2012. All landings were by bottom trawl.

Table 5.9.2.17.1. Top pelagic species landed (tonnes) within CECAF Area 34.1.3 non- EU, 2003-2012. The ranking is based according to the last year landings.

Area	Species	Type	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
34.1.3 non EU	BSF	L										14
34.1.3 non EU	SFS	L										5
34.1.3 non EU	FOX	L										0
34.1.3 non EU	BRF	L										0
34.1.3 non EU	ORY	L										0

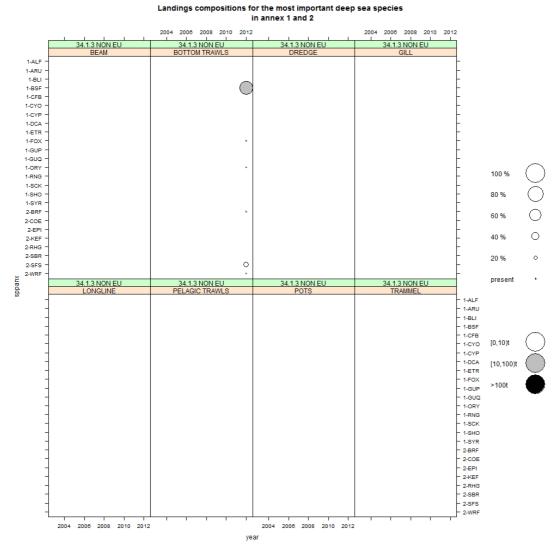


Figure 5.9.2.17.1 Catches of Annex 1&2 Deep Sea species (tonnes) 2003-2012 by gear CECAF Area 34.1.3 (non EU).

Western Waters 34.1.3

No data was presented for this area.

5.9.2.18 Catches in CECAF area 34.2 by fisheries and Member States

Deepwater 34.2.0 EU

Portugal submitted revised data showing small landings in this area for the last three years, all using longline.

Table 5.9.2.18.1 Top 5 deepwater species landed in CECAF Area 34.2 (EU). The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
34.2.0 EU	SBR	L	0	0	0	0	0	0	0	1	0	9
34.2.0 EU	SFS	L	0	0	0	0	0	0	0	0	0	9
34.2.0 EU	WRF	L	0	0	0	0	0	0	0	12	1	3

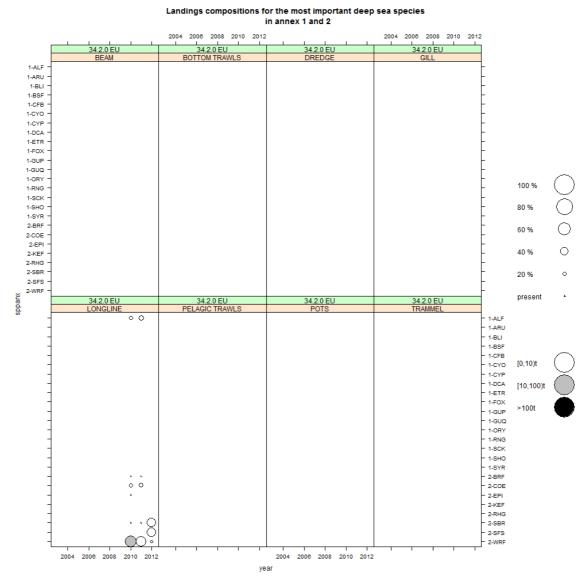


Figure 5.9.2.18.1 Catches of Annex 1&2 Deep Sea species (tonnes) 2003-2012 by gear CECAF Area 34.2 (EU).

Western Waters 34.2.0 EU

In 2012 Spain reported small landings of Swordfish and Bigeye tuna caught using longlines

Table 5.9.2.18.2. Top pelagic species landed (tonnes) within CECAF Area 34.2.0 EU, 2003-2012. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
34.2.0 EU	SWO	L										36
34.2.0 EU	BET	L									2	7
34.2.0 EU	ALB	L										0
34.2.0 EU	YFT	L										0

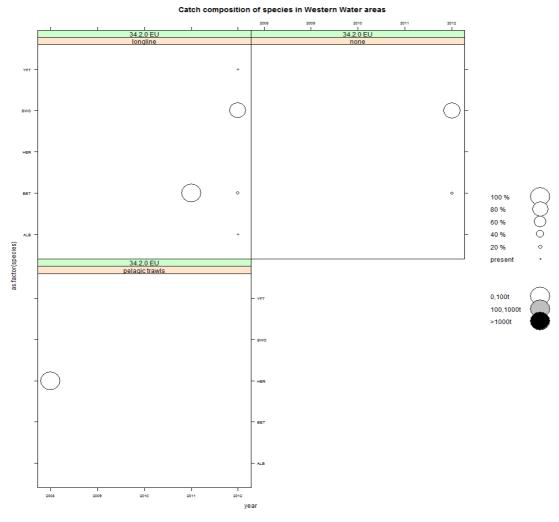


Figure 5.9.2.18.2 Landings composition by gear (countries combined) Western waters CECAF Area 34.2.0 EU. Size of circles represents relative contribution to landings, shading indicates quantity.

Deepwater 34.2.0 non EU

Portugal submitted revised data showing small landings in this area for 2013, all using longline.

Table 5.9.2.18.3 Top 5 deepwater species landed in CECAF Area 34.2 (non EU). The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
34.2.0 NON EU	COE	L	0	0	0	0	0	0	0	0	0	12
34.2.0 NON EU	BRF	L	0	0	0	0	0	0	0	0	0	7
34.2.0 NON EU	WRF	L	0	0	0	0	0	0	0	0	0	7
34.2.0 NON EU	FOX	L	0	0	0	0	0	0	0	0	0	1
34.2.0 NON EU	SCK	L	0	0	0	0	0	0	0	0	0	1

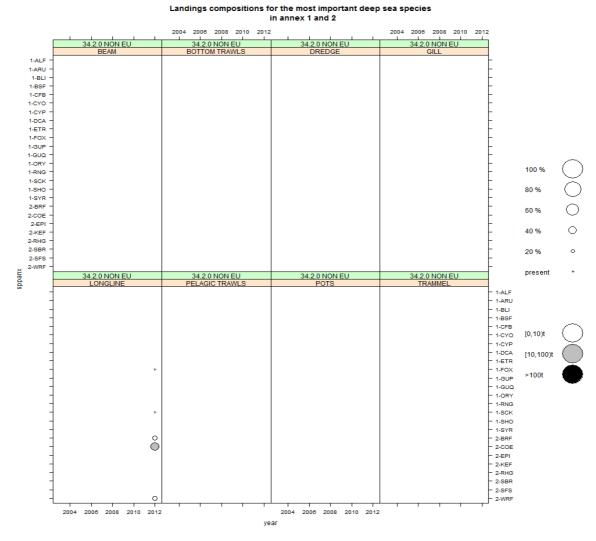


Figure 5.9.2.18.3 Catches of Annex 1&2 Deep Sea species (tonnes) 2003-2012 by gear CECAF Area 34.2 (non EU).

Western Waters 34.2.0 non-EU

Small landings of demersal fish have been reported by Portugal

In 2012 Spain reported landings for Swordfish and other tuna species caught using longlines. Lithuania reported very small landings of Mackerel and Horse mackerel caught using pelagic trawls.

Table 5.9.2.18.4. Top demersal species landed (tonnes) within CECAF Area 34.2.0 non-EU, 2003-2012. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
34.2.0 non EU	COE	L				6	9	4		15	10	12
34.2.0 non EU	BRF	L					1			6	2	7
34.2.0 non EU	WRF	L				14	13	4		8	6	7
34.2.0 non EU	RAJ	L								4		3

Table 5.9.2.18.5. Scallop and crab species by gear landed within CECAF Area 34.2.0 non-EU, 2003-2012. Values are landings in tonnes. The ranking is based according to the last year landings.

No data provided

Table 5.9.2.18.6. Top pelagic species landed (tonnes) within CECAF Area 34.2.0 non-EU, 2003-2012. The ranking is based according to the last year landings.

area	species	Туре	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
34.2.0 NON EU	SWO	L			5							561
34.2.0 NON EU	BET	L			1							50
34.2.0 NON EU	YFT	L										10
34.2.0 NON EU	JAX	L										4
34.2.0 NON EU	MAC	L										1
34.2.0 NON EU	ALB	L										0

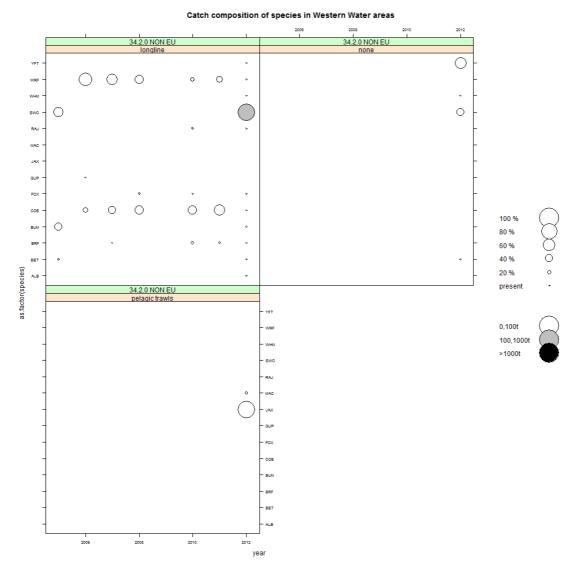


Figure 5.9.2.18.4 Landings composition by gear (countries combined) Western waters CECAF Area 34.2.0 non-EU. Size of circles represents relative contribution to landings, shading indicates quantity.

5.9.3 ToR 1c CPUE and LPUE (landings and discards) by area

In this section of the report tables showing CPUE by gear groups (regulated and unregulated), and area are only summaries. The full tables are available on the JRC website: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313.

Some of the tables and graphs presented in this section need to be treated with caution due to the fact that Spain has not provided data for 2010 and 2011. This will mainly affect information from ICES area VIII to CECAF area 34.2 0 where Spain is one of the main participators. It should also be noted that discard estimates are generally scarce. However, CPUE is presented interpreting lack of discard information as no discards. LPUE values are also provided on the internet site: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313

From 2012 Greenland halibut has now been included as a deepwater species. Their importance will be reflected in the Deepwater species tables, mainly in the northern regions.

The tables included in this TOR are prepared using the top deepwater species in the deepwater section and the top demersal species in the Western waters section of each Area.

5.9.3.1 CPUE in ICES area I by fisheries and Member States only linked to Deep Sea species

Area I non-EU

France reported CPUE data for 2012 for Greenland halibut.

Table 5.9.3.1.1 Area I non-EU CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
DS	1 non EU	GHL	BOTTOM TRAWLS										28

5.9.3.2 CPUE in ICES area II by fisheries and Member States only linked to Deep Sea species

Area II EU

Limited CPUE data are available for deepwater stocks in Area II EU, Table 5.9.2.3.1. Data for Greenland halibut from bottom trawls fluctuates through the time series, as does Blue ling, albeit at lower levels. Data for the other species is patchy.

Table 5.9.3.2.1 Area II EU CPUE (g/(kW*days)), 2003-2012.

AN	NEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
DS		2 EU	ARU	BOTTOM TRAWLS	22							108	5	0
				PELAGIC TRAWLS		2290								
			BLI	BOTTOM TRAWLS	14	16	46	11	47	74	62	22	39	35
			CMO	BOTTOM TRAWLS	1									1
			COE	BOTTOM TRAWLS	0	0			0	0	0	0		0
			GHL	BOTTOM TRAWLS	502	214	429	96	250	202	356	486	339	261
				GILL		11			2	3				

Area II non-EU

There is only CPUE data relating to Greenland halibut available for area II non-EU.

Table 5.9.3.2.2 Area II EU CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
DS	2 non EU	GHL	BOTTOM TRAWLS	29	1	7	5	3	10	19	0		7

5.9.3.3 CPUE in ICES area III by fisheries and Member States only linked to Deep Sea species

Area III no Baltic

Very limited CPUE data are available for deepwater stocks in Area III no Baltic, table 5.9.3.3.1. All the data relates to bottom trawls. CPUE for Roundnose grenadier increased markedly up to 2006. In recent years data has been presented again on roundnose grenadier, and blue ling, although in the case of roundnose grenadier at a much lower level than prior to 2006. CPUE for blue ling showed an increase in 2012. Data were reported for Black scabbard for the first time.

Table 5.9.3.3.1 Area III no Baltic CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
DS	3 no Baltic	BLI	BOTTOM TRAWLS	74	34	123	270	83		19	0	40	267
		BSF	BOTTOM TRAWLS										1472
		RNG	BOTTOM TRAWLS	18781	21506	37297	13951734			207	227	8656	35

5.9.3.4 CPUE in ICES area IV by fisheries and Member States only linked to Deep Sea species

Area IV

CPUE data for deepwater stocks in Area IV are presented in table 5.9.3.4.1. The data relates primarily to bottom trawls. CPUE data for greater argentine ceased after 2006, apart from one record in 2010, before being recorded again in 2012. CPUEs for Blue ling have decreased since the start of the time series, apart from a small spike in 2010, and are now at very low levels. Conger eel is targeted by bottom trawl although data is also presented for longlines between 2008 and 2011. CPUEs for Greenland halibut have fluctuated through the time series.

Table 5.9.3.4.1 Area IV CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
DS		4 ARU	BOTTOM TRAWLS	9	5		9		0		6	C	14
			PELAGIC TRAWLS	19	63	1	20)					47
		BLI	BOTTOM TRAWLS	58	54	17	7	3	10	11	31	. 3	3
			GILL	0	0								
		CMO	BOTTOM TRAWLS	3	1	8	0	0	0	0	6	1	. 5
			GILL			0							
		COE	BEAM	7	3								
			BOTTOM TRAWLS	4	7	6	4	7	6	9	9	12	. 6
			GILL	0						0			
			LONGLINE	2	2	4	4		30	37	47	34	
		GHL	BOTTOM TRAWLS	65	78	3	7	5	32	98	37	52	. 28
			GILI	0	0	2	0	0	0	1	1		1

5.9.3.5 CPUE in ICES area V by fisheries and Member States

Deepwater V EU

CPUE data available for deepwater stocks in Area V EU are presented in table 5.9.3.5.1. CPUEs were highest for bottom trawls, targeting blue ling, roundnose grenadier, Greenland halibut, black scabbard and, in recent years, *Chimaera monstrosa*. Effort for beam and pelagic trawls ceased in 2004 and for gill nets in 2009.

CPUEs for blue ling were stable through the time series but increased greatly in 2011 and 2012. A similar increase was recorded for black scabbard whereas while roundnose grenadier figures increased

in 2010 they dropped rapidly in 2011. Greenland halibut also peaked in 2010 but has been in decline since. CPUEs have been reported for *Chimaera monstrosa* since 2010.

Table 5.9.3.5.1 Area V EU DS CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
DS	5 EU	BLI	BEAM	361	1065								
			BOTTOM TRAWLS	711	713	683	683	726	733	723	856	2966	3015
			GILL	18	0	40	50	5	14	14			
		BSF	BEAM		105								
			BOTTOM TRAWLS	116	67	76	80	86	181	179	267	779	865
		CMO	BOTTOM TRAWLS	1	0						73	117	78
		GHL	BEAM		5								
			BOTTOM TRAWLS	73	71	23	12	9	80	145	316	114	15
			GILL	15	9	16							
		RNG	BEAM	349	1034								
			BOTTOM TRAWLS	524	564	754	792	692	503	497	741	81	173

Western Waters V EU

No data presented in this section as all species relates to the top 5 deep sea species in the area (see former section).

CPUEs in the western waters of area V EU were highest for bottom trawls, although the largest LPUE values recorded are for anglerfish caught by gill nets (Table 5.9.3.5.2). However no information has been reported for this for 2010 and 2011. Since 2008 greater CPUEs are being recorded for Greenland halibut and halibut in bottom trawls.

Table 5.9.3.5.2 Area V EU WW CPUE (g/(kW*days)), 2003-2012.

No data presented, see former table 5.9.3.5.1.

Deepwater V non-EU

Once again CPUEs in area V non-EU were highest for bottom trawls. In 2003 and 2004 high CPUEs were presented for beam trawl. It is quite possible that this should be reclassified as bottom trawl, (Table 5.9.3.5.3).

CPUEs for Greenland halibut increased between 2007 and 2009 before dropping again in 2012. Those for roundnose grenadier were consistent up to 2009 but have decreased since.

Table 5.9.3.5.3 Area V non-EU DS CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
DS	5 non EU	GHL	BEAM	64	1								
			BOTTOM TRAWLS	95	38	30	51	7	545	894	1565	2290	1297
		RNG	BEAM	1247	498								
			BOTTOM TRAWLS	206	187	141	129	164	129	101	32	7	5

Western waters V non-EU

CPUEs in the western waters of area V EU were highest for bottom trawls, Table 5.9.3.5.4.

CPUEs for cod peaked in 2008 and have been in decline since. Low CPUE data is reported for Wolffish.

Table 5 9.3.5.4 Area V non-EU WW CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
WW	5 non EU	CAT	BOTTOM TRAWLS	13	13	10	10	1	0	8	9	12	10
		COD	BOTTOM TRAWLS	281	452	466	432	579	1252	621	397	2	29
			LONGLINE	261									
			PELAGIC TRAWLS					2					

5.9.3.6 CPUE in ICES area VI by fisheries and Member States

Deepwater VI EU

Spanish data is lacking for this area for 2010 and 2011 which causes difficulties analysing the data.

Once again bottom trawl is the dominant method used in this area, (Table 5.9.3.6.1).

CPUEs for blue ling have been very stable through the time series whereas those for black scabbard have begun to increase in the last two years. CPUEs for roundnose grenadier declined up to 2006 but have been relatively stable since. CPUEs for *Chimaera monstrosa* rose in 2010 and appear to have stabilised in since.

CPUEs for greater argentine caught by pelagic trawl fluctuated between 2004 and 2007, before ceasing. In 2011 and 2012 however the Netherlands and Germany revived the fishery.

Once again it is quite possible that beam trawl effort in 2003 and 2004 should be reclassified as bottom trawl.

Table 5.9.3.6.1 Area VI EU DS CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
DS	6 EU	ARU	BOTTOM TRAWLS	10	2	5	1		0	1	5	1	2
			PELAGIC TRAWLS		316	72	153	153			7	2252	2771
		BLI	BEAM	493	258								
			BOTTOM TRAWLS	321	389	373	484	443	386	386	359	413	355
			GILL	31	5	4	5	15	80	100			
			LONGLINE	2	0	1	9	4	1	32		2	7
		BSF	BEAM	116	41								
			BOTTOM TRAWLS	343	342	365	343	443	538	492	446	553	556
			GILL						37	47			
			LONGLINE			0							
		CMO	BOTTOM TRAWLS	3	0	0	1	2	2		73	82	89
		RNG	BEAM	1851	1021								
			BOTTOM TRAWLS	550	540	416	369	341	319	287	324	316	352
			GILL	0					143	179			
		1	LONGLINE		0								

Western Waters VI EU

Bottom trawls are the main fishery in this area, followed by longlining and gill nets.

Table 5.9.3.6.2 presents CPUE data for the four most important demersal species. Discarding appears to take place in the bottom trawl fleet for anglerfish, haddock, hake and saithe.

Hake longline and gill net CPUEs are showing an increasing trend, with gill nets peaking in 2010, but staying at high levels since. Longline CPUEs are continuing to increase with 2012 being the highest in the time series. CPUEs for bottom trawl have been reasonably stable since 2004.

Saithe CPUEs in the gill net fishery began increasing in 2006, and reached their highest value in 2012. CPUEs for the bottom trawl fishery reached a peak in 2006 before going into decline. Figures showed an increase once more in 2012.

Nephrops CPUEs for pots have remained quite stable through the series.

Haddock bottom trawl CPUEs have been in decline since a peak in 2006, bar 2010 when a spike in CPUE occurred.

Table 5.9.3.6.2 Area VI EU WW CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	REG_GEAR	SPECIES	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
ww	6 EU	BEAM	HAD	12	22	5	11	38					
			HKE		1	3	2						
			NEP	10									
			POK	0	18		14	247					
		BOTTOM TRAWLS	HAD	660	481	419	901	742	611	699	646	422	547
			HKE	121	226	262	77	242	238	131	208	190	207
			NEP	390	427	502	772	968	906	744	776	965	1056
			РОК	725	309	944	1075	622	651	512	486	682	812
		DREDGE	HAD		0								0
			HKE		0	0							
			NEP	1	2	3	3						1
			РОК										6
		GILL	HAD	2	0	3	10	18	16	19	11	9	6
			HKE	8	12	27	202	605	1127	1254	1487	1313	1202
			NEP	0	1								
			РОК	16	4	3	117	499	372	414	423	279	750
		LONGLINE	HAD	1	1	7	6	4	1	0		0	
			HKE	283	489	1117	1330	1490	1357	2089	2603	3851	4598
			NEP		0							0	
			РОК	4	3	6	8	13	9	4	2	8	2
		none	HAD										20
			HKE					2					20 11
			NEP	0	5	1						0	10
		PELAGIC TRAWLS	HAD	1			0	0			1	1	
			HKE	1		0	0			36	14	0	7
			NEP							0		0	0
			РОК	2		0	0	0			0	0	
		POTS	HAD	6	3	0	0		0				0
			HKE	0	0		0						0
			NEP	163	187	206	200	153	189	199	192	190	224
			РОК		0				0			0	

Deepwater VI non-EU

CPUEs from the bottom trawl have been very low in recent years, Table 5.9.3.6.3. In 2012 data was reported for a number of species by Spain, with Silver scabbard fish being the most important, followed by *Alepocephalus bairdii* and roundnose grenadier.

Data for deepwater red crab from gill nets ceased in 2007, and data was reported for 2008 for pots.

Table 5.9.3.6.3 Area VI non-EU DS CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
DS	6 non EU	ALC	BOTTOM TRAWLS			109	176						1494
		BSF	BOTTOM TRAWLS	1	1	130	7						305
		KEF	GILL	69	497	253	4	714					
			POTS						1435				
		RHG	BOTTOM TRAWLS										849
		RNG	BOTTOM TRAWLS	2	0	158	72						1149
		SFS	BOTTOM TRAWLS										2916

Western waters VI non-EU

CPUEs for anglerfish have fluctuated throughout the time series. CPUE for gill net peaked and ceased in 2009. Portugal reported data for longlines in 2004.

Table 5.9.3.6.4 Area VI non-EU WW CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	REG_GEAR	SPECIES	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
ww	6 non EU	BOTTOM TRAWLS	ANF	34	30	52	77	166	128	86	284	365	108
		GILL	ANF	53	169	1152	745	891		1516			
		LONGLINE	ANF		162								

5.9.3.7 CPUE in ICES area VII excluding VIId by fisheries and Member States

Deepwater VII EU no VIId

Spanish data is lacking for this area for 2010 and 2011 which causes difficulties analysing the data.

CPUEs for conger eel caught on longline peaked between 2004 and 2005 but have been in decline since. CPUEs in 2012 increased again however, close to levels last seen in 2006, Table 5.9.3.7.1. Conger eel CPUEs from the bottom trawl fishery were stable at low levels, before an increase was noted in 2012.

CPUEs for Bluemouth redfish using longlines began increasing in 2007 and have continued to do so up to 2012. An increase was also noted for bottom trawls in 2012.

After peaking in 2006 bottom trawl CPUEs for roundnose grenadier have stabilised in recent years, at a very low level. Black scabbard CPUEs were stable for the time series, at a similar level to grenadiers, despite a spike in 2011. CPUEs for Wreckfish using longlines are on the increase since 2009, but all other methods are in decline

Table 5.9.3.7.1 Area VII EU no VIId DS CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
DS	7 EU no 7d	BRF	BOTTOM TRAWLS	4	3	8	11	5	6	8	2	5	41
			GILL	3	8	8	16	5	9	13	3	2	3
			LONGLINE	17	5	3	4	34	40	96	185	348	380
			none										86
			PELAGIC TRAWLS	0									
		BSF	BOTTOM TRAWLS	46	59	33	72	43	37	44	41	71	30
			LONGLINE	7		0		0		3			8
			none										5
			PELAGIC TRAWLS		7		8					1	
		COE	BEAM	22	30	37	31	31	. 39	17	17	29	17
			BOTTOM TRAWLS	47	39	21	13	19	29	35	46	37	120
			GILL	2	2	4	6	8	4	8	6	5	4
			LONGLINE	531	814	808	424	187	104	94	51	40	326
			none										58
			PELAGIC TRAWLS	5									
			POTS		84						6		
			TRAMMEL	0	1	12	1	36	17	9	28	105	13
		RNG	BOTTOM TRAWLS	49	42	30	65	36	25	30	17	18	10
			GILL			1							
			LONGLINE		0								
		WRF	BEAM								0		
			BOTTOM TRAWLS	0	0	0	0	0	0	0	0		0
			GILL	0	0	0	1	. 2	4	11	2	2	1
			LONGLINE		2	5	2	3	0	16	21	37	43

Western Waters VII EU no VIId

Spanish data is lacking for this area for 2010 and 2011 which causes difficulties analysing the data.

CPUE information is presented for this area, Tables 5.9.3.7.2. Discarding appears to take place in the bottom trawl fleet for haddock, hake and whiting, with a small amount for anglerfish also.

For anglerfish gill net CPUEs showed an increase up to 2009, but have declined since, while bottom trawl figures were reasonably stable up to 2009 but have begun to increase since. Trammel nets had the highest CPUEs up to 2009.

Haddock bottom trawl CPUEs were stable to 2008, but are increasing since. Beam trawl CPUE has begun increasing since 2008.

Gill net and longline CPUEs for hake are increasing rapidly in the last number of years. CPUEs for bottom trawls were stable at low levels, but have also begun increasing since 2010.

Bottom trawl CPUEs for *Nephrops* had been increasing gradually between 2004 and 2010, but have started to increase at a faster rate in the last two years.

Table 5.9.3.7.2 Area VII EU no VIId WW CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
ww	7 EU no 7d	ANF	BEAM	159	195	197	243	300	331	415	437	7 481	578
			BOTTOM TRAWLS	229	230	223	252	280	264	302	199	359	430
			DREDGE	16	9	11	15	12	8	13	21	լ 21	24
			GILL	327	376	520	428	546	751	767	406	508	523
			LONGLINE	10	2	7	1	2	C	0	() (0
			none	2	15	13	2	632	2	2		38	263
			PELAGIC TRAWLS	0	3	1	1	1	1	. 1	. 1	1 1	6 ا
			POTS	2	1	0	1	1	1	. 0	1	L C	3
			TRAMMEL	965	1251	1163	747	785	1111	1134	185	638	789
		HAD	BEAM	26	31	34	30	49	125	85	72	191	218
			BOTTOM TRAWLS	332	334	231	237	227	320	465	390	611	1959
			DREDGE	0	1	0	0	0	C	0	() 2	2 0
			GILL	26	23	27	30	30	23	30	28	3 50	43
			LONGLINE	8	12	16	9	5	1	. 0	3	5	5 1
			none					7	2			58	118
			PELAGIC TRAWLS	1	50	1	0	0	C	0	() 3	18
			POTS	0	2	0	0	0	C	0	() 1	. 0
			TRAMMEL	0	0	0	0	1	C	1	. 2	2 2	. 2
		HKE	BEAM	8	7	21	15	10	10	10	11	9	9
			BOTTOM TRAWLS	72	72	112	76	99	81	. 56	79	95	136
			DREDGE	0	0	0	0	0	C	0	() (0
			GILL	342	333	352	427	335	278	427	978	1653	1868
			LONGLINE	50	33	73	352	633	903	711	953	1028	2037
			none			23		24				422	235
			PELAGIC TRAWLS	1	1	0	0	0	C	1	. 6	5 42	18
			POTS	0	1	0	0	0	C	0	() 1	ι 0
			TRAMMEL	6	3	4	5	4	4	. 2	. 74	1 8	48
		NEP	BEAM	5	9	7	8	7	4	5	3	3	3 1
			BOTTOM TRAWLS	268	266	290	309	398	528	478	445	523	883
			DREDGE		1		0			0)		
			GILL	0	3	4	1	0	1	. 1	. () (1
			LONGLINE	1							()	
			none		0	64			1			1	434
			PELAGIC TRAWLS	1	7	3	0	1	C	2	. () 4	3
			POTS	3	13	1	0	1	2	. 2	. 3	3 2	2 2
			TRAMMEL	1		0	0	0	C	0	2	2 2	2 0

Deepwater VII non-EU

CPUE data is very sparse from this area.

Table 5.9.3.7.1 Area VII non-EU DS CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
DS	7 non EU	BRF	GILL		5								
			LONGLINE										133
		COE	LONGLINE										14

Western waters VII non-EU

Bar the last three years CPUE data from this area is very limited.

Table 5.9.3.7.4 Area VII non-EU WW CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
WW	7 non EU	ANF	BOTTOM TRAWLS	206	302						1	158	864
		HKE	BOTTOM TRAWLS								0	23	215
			GILL		187								
			LONGLINE										59
			PELAGIC TRAWLS								12	110	
		LEZ	BOTTOM TRAWLS		455						1		1267
		SQI	BOTTOM TRAWLS										560
		WIT	BOTTOM TRAWLS								0		284

5.9.3.8 CPUE in ICES area VIId by fisheries and Member States

Deepwater

Spanish data is lacking for this area for 2010 and 2011 which causes difficulties analysing the data.

There is limited CPUE data from this area. In the last number of years it relates primarily to bottom trawling for red (blackspot) seabream.

Table 5.9.3.8.1 Area VIId DS CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
DS	7d	COE	BEAM	9	12	5		4	21				
			BOTTOM TRAWLS					3	7	3	2	7	35
			LONGLINE						3332	3332	452		
			PELAGIC TRAWLS			0							
		RIB	BOTTOM TRAWLS										1
		RNG	BOTTOM TRAWLS									55	90
		SBR	BEAM					26					
			BOTTOM TRAWLS					54	83	169	117	29	23

Western waters

Spanish data is lacking for this area for 2010 and 2011 which causes difficulties analysing the data.

Discarding appears to take place in the bottom trawl fleet for dab, plaice and whiting. There is also some discarding in beam trawls for dab, plaice and common sole. There is also an issue with the 2010 CPUE figures for bottom trawls with respect to dab and plaice reported by the Netherlands, France and Belgium.

Beam and bottom trawl CPUEs for plaice have shown an increase in 2011, despite the 2010 data mentioned above, Table 5.9.3.8.2. figures dropped again in 2012 however. Trammel net figures, which had been stable, increased in 2011 and 2012. Gill net levels were stable up to 2010 before peaking in 2011. The 2012 figure is close to the long term average.

Beam trawl CPUEs for Sole have fluctuated throughout the time series. Gill net CPUEs were quite stable with two large years in 2008 and 2009, but they have declined in the last number of years with 2012 being the second lowest in the time series. Trammel net figures, which had been in decline, showed an increase in 2011, and again in 2012.

Dab bottom trawl CPUEs were stable up to 2009, with a peak in 2007. As mentioned above there is an issue with the 2010 data. Figures have been decreasing since 2011, however the 2012 figure is still higher than the long term average. Beam trawl CPUEs have shown a small increase since 2010.Gill net CPUEs are stable.

Longline CPUEs for Seabass have begun to increase in recent years with 2011 and 2012 being the highest of the time series. CPUEs from pelagic trawls increased up to 2011 but dropped again in 2012. CPUEs for bottom trawls increased to 1020 and have fluctuated since.

Bottom trawl CPUEs for whiting were reasonably constant up to 2009. The CPUE increased dramatically in 2010 but has fallen back in each of the last two years.

Table 5.9.3.8.3 Area VIId WW CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
ww	7d	BSS	BEAM	1	2	2	1	1	1	1	C) (15
			BOTTOM TRAWLS	52	47	47	40	54	63	65	178	64	100
			DREDGE	0	0	0	0	0	2	2	. 1	L C	1
			GILL	14	16	14	17	9	11	15	40	42	24
			LONGLINE	71	59	98	106	135	151	168	122	187	186
			none	2	2		0	84	5	5		85	,
			PELAGIC TRAWLS	50	68	90	50	60	47	44	112	138	43
			POTS	0	0	0	0	0	0	0	1	1 3	1
			TRAMMEL	14	12	9	5	6	8	8	7	7	10
		DAB	BEAM	89	44	97	69	46	58	71	. 96	121	117
			BOTTOM TRAWLS	169	151	51	77	136	48	53	12095	234	102
			DREDGE	0	1	1	1	0	1	1) (0
			GILL	22	21	25	23	32	52	48	71	L 64	45
			LONGLINE	0			0				C) ()
			none	28	70		1	7	9	10			
			PELAGIC TRAWLS	1	1	1	1	0	1	1	. 1	1 2	. 4
			POTS	0	0	0	0	0	0		4	1 2	. 7
			TRAMMEL	21	17	20	19	43	497	23	859	93	61
		PLE	BEAM	425	505	442	393	431	524	481	670	756	593
			BOTTOM TRAWLS	126	236	82	70	56	66	65	19089	218	113
			DREDGE	13	11	17	8	6	10	10	8	3 8	8
			GILL	121	127	233	54	137	124	118	109	549	150
			LONGLINE	1	0	2	4	1	1	4	2	2 5	2
			none	92	170	158	7	22	18	19		17	,
			PELAGIC TRAWLS	3	3	3	1	0	3	3	3	3 7	9
			POTS	0	1	0	1	1			7	7 6	12
			TRAMMEL	143	179	96	68	97	101	97	143	216	204
		SOL	BEAM	630	609	539	482	455	477	567	623	580	482
			BOTTOM TRAWLS	57	43	34	40	44	48	50	46	5 84	54
			DREDGE	7	9	13	5	2	5	6	8	3 7	10
			GILL	392	392	264	161	224	518	559	244	348	177
			LONGLINE	0			0		0	3	1	٤	5
			none	295	287	207	57	33	39	39		66	5
			PELAGIC TRAWLS	5	3	3	3	1	4	4	. 4	1 8	9
			POTS	0	0	0	0	1	0	0	5	5 4	
			TRAMMEL	593	516	458	373	453	493	495	337	649	
		WHG	BEAM	20	20	18	23	19	22	21	. 33	3 27	31
			BOTTOM TRAWLS	879	345	323	229	210	378	333	2666	1169	490
			DREDGE	1	0	0	0	0	1	. 1) (0
			GILL	8	13	27	19	11	12	13	32	2 12	. 8
			LONGLINE		1	0	0	0	0	0	1	l 1	. 1
			none	13	18		20	87	60	61			
			PELAGIC TRAWLS	17	11	8	6	12	28	27	106	5 13	22
			POTS	0	0	0	0	0	0		2	2 6	
L	<u> </u>		TRAMMEL	8	9	10	5	6	8	5	27	7 8	7

5.9.3.9 CPUE in the Biologically Sensitive Area by fisheries and Member States

Spanish data is lacking for this area for 2010 and 2011 which causes difficulties analysing the data.

Beam trawl, bottom trawl, gill nets and trammel nets provide CPUEs for anglerfish, Table 5.9.3.9.1. Figures for trammel nets declined until 2008 since when they have shown a recovery. In the early years of the series bottom trawls came second to trammel nets, but in recent years they produce the highest CPUEs. Beam trawl figures have also increased steadily since the start of the series. Gill net figures are stable at lower levels.

Bottom trawls provide the highest CPUEs for haddock with the figure reported for 2012 needing to be treated with caution. Bottom trawl CPUEs had been increasing in the last number of years, but at a moderate rate. Beam trawls and gill nets provide lower but increasing CPUEs.

Historically Gill nets produced the highest CPUEs for hake, increasing slowly through the time series. The CPUE doubled in 2011 and is at a similar level this year. In recent years Longline effort has also become very important, starting from a very low base, and in 2011 and 2012 has surpassed gill nets. Bottom trawls are a small but increasing source of effort.

Beam and bottom trawls report similar CPUEs for megrim in recent years. Levels for both gears increased in 2009 and were stable up to 2011. In 2012 CPUEs increased by 50% again.

The greatest CPUEs for whiting come from bottom trawls. Figures were stable between 2003 and 2009, increased in 2010 and 2011, and doubled again in 2012. Gill net CPUEs also doubled in 2012.

Table 5.9.3.9.1 BSA WW CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
ww	BSA	ANF	BEAM	65	90	131	214	213	338	499	476	493	475
			BOTTOM TRAWLS	317	290	280	311	379	380	409	346	521	676
			DREDGE	7	11	1	12	2	2	0			
			GILL	102	100	96	68	93	73	87	68	103	81
			LONGLINE	7	2	2	0	0	3	5		1	Ĺ
			none									19	294
			PELAGIC TRAWLS	1	2	2	1	0	1	2	0	C	3
			POTS	3	4		28	5	5	2	2	3	10
			TRAMMEL	483	844	466	313	336	253	290	287	387	352
		HAD	BEAM	40	52	61	74	87	130	142	134	113	238
			BOTTOM TRAWLS	221	201	213	197	234	238	335	322	428	76523
			DREDGE	5	20	1	4						
			GILL	57	42	48	47	56	74	83	72	111	108
			LONGLINE	19	80	30	8		2	3	10		
			none						182				159
			PELAGIC TRAWLS	2	9	3	1	1	0		0	2	
			POTS	10					0				
			TRAMMEL	0	1	5	4	2	2	13	3	4	
		HKE	BEAM	22	18				28				
			BOTTOM TRAWLS	75	71	75	84	88	89	91	155	191	
			DREDGE	2					0				
			GILL	1070			1633	1646	1472			3091	3036
			LONGLINE	215				1050	1987			3135	
			none		207	JEE	1032	1050	1307	333	2000	11944	
			PELAGIC TRAWLS	2	2	0	0	0	0	1	8		
			POTS	11				1	·	0			
			TRAMMEL	2					6				
		LEZ	BEAM	157					280				_
			BOTTOM TRAWLS	115				153	183				
			DREDGE	1				100	100	2.0	555		
			GILL	8				4	6	5	17	10	18
			LONGLINE	14	_	0		0		1			
			none	1				U				11	
			PELAGIC TRAWLS	1	1	1	0	0	0	0	0		
			POTS	3			0		3				
			TRAMMEL	2				6	0				
		WHG	BEAM	18				18	5				_
		******	BOTTOM TRAWLS	314				177	143				
			DREDGE	4					1-3	155	310	300	, , , , ,
			GILL	67					23	20	22	32	2 73
			LONGLINE	4								1	
	ĺ		none	- 4	3		,	U	1	1			101
	ĺ		PELAGIC TRAWLS	45	11	3	0	0		0	0	3	
	ĺ		POTS	20		2		1		1			
	ĺ			0									
			TRAMMEL	<u> </u>	6	3	1	1	0	1	2		5 2

5.9.3.10 CPUE in ICES area VIII by fisheries and Member States

Deepwater VIII EU

Spanish data is lacking for this area for 2010 and 2011 which causes difficulties analysing the data, however the bulk of the CPUE data reported in 2012 was from Spain. As a result of this data CPUEs for all species and gears in table 5.9.3.10.1 are at or above the highest in their respective time series.

The highest CPUEs for conger eel are provided by longlines. Figures were stable up to 2008. Since then CPUEs were low but showed a large increase in 2012. Spain also reported very high CPUEs for conger eel from pots in 2012. Gill nets and bottom trawls provide some effort but figures fluctuate through the time series.

The importance of CPUEs from bottom trawls and gill nets for bluemouth redfish had been replaced in recent years by longlines. In 2012 however gill nets were the most important again.

CPUEs from the other three species in the table are not large, even in 2012. Trammel nets followed by bottom trawl are most important for blue ling, with gill nets and longlines the most important for both Bluemouth redfish and Wreckfish.

Table 5.9.3.10.1 Area VIII EU DS CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
DS	8 EU	BLI	BOTTOM TRAWLS	3	13	12	21	25	31	20	15	13	26
			GILL	16	4	4	4	4	7	17	23	6	33
			LONGLINE	C		1	4		10	46			57
			none						26	9			27
			POTS										0
			TRAMMEL	20	281	32	15	5	82	87	89	45	63
		BRF	BOTTOM TRAWLS	2	12	31	108	46	45	41	6	2	653
			GILL	C	26	60	36	7	384	15	3	7	1033
			LONGLINE	5	1	5	5	3	3	213	58	349	253
			none							35			368
			PELAGIC TRAWLS										123
			POTS										25
			TRAMMEL										30
		COE	BEAM						133				
			BOTTOM TRAWLS	13	14	9	4	9	9	15	6	4	387
			GILL	1	42	38	4	6	97	13	20	16	311
			LONGLINE	773	895	554	571	593	630	279	303	385	1303
			none	12		40		40)	3			1196
			PELAGIC TRAWLS										18
			POTS										4965
			TRAMMEL	5					18	16			295
		SBR	BOTTOM TRAWLS	C	2	1	1	6	1	1			12
			GILL	14	- 55	2	2	11	. 1	3	2	9	7
			LONGLINE	3	7	9	10	4	18	13	1	3	57
			none	C			42						61
			POTS										3
		WRF	BOTTOM TRAWLS	1	. 0	0	0	C	10	6	5	1	. 2
			GILL	C		1	1	15	7	26	80	19	
			LONGLINE	12		5	6			97	99	106	
			none										10
			POTS										0
			TRAMMEL					13					

Western Waters VIII EU

Spanish data is lacking for this area for 2010 and 2011 which causes difficulties analysing the data.

Beam trawl CPUEs were reasonably through the time series but have begun increasing since 2009. Bottom trawls have been stable throughout, despite a spike in 2010. Gill nets CPUEs were stable between 2003 and 2009. The figures doubled in 2010 and have remained stable at this new level since. Longline CPUEs have been fluctuating in recent years. Trammel net CPUEs were high in 2003 and 2004. They have been stable at a lower level since with a slight peak in 2011.

Bottom trawl, gill nets, beam trawl and trammel nets have all produced CPUEs for anglerfish. In recent years beam trawl CPUEs are increasing and it is becoming more important than the other gears. Bottom trawl figures have been quite stable despite a large dip in 2010. Gill net CPUEs were stable up to 2009, suffered a large dip in 2010, and are showing a slow increase since. Trammel net CPUEs have dropped to a very low level since 2009.

Gill net CPUEs for hake increased greatly in 2010 and have remained high since. CPUEs for longlines have fluctuated in recent years while those for bottom trawls increased up to 2010, but have since begun decreasing again.

Beam trawl CPUEs for Sole have been quite stable through the time series, while those for trammel nets dipped between 2005 and 2010, but have begun to increase in the last two years.

Bottom trawl CPUEs for *Nephrops* were stable up to 2009. They spiked in 2010 but have decreased again since.

Table 5.9.3.10.2 Area VIII EU WW CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
WW	8 EU	ANF	BEAM	185	13	207	147	145	243	286	248	249	324
			BOTTOM TRAWLS	177	208	197	164	149	163	161	51	134	136
			DREDGE	2	2	1	0	0	3	4		1	
			GILL	202	308	308	282	281	261	312	56	121	158
			LONGLINE	1	1	1	2	8	3	1	0	1	1
			none	4	4	3	23	12	4	. 7			79
			PELAGIC TRAWLS	2	5	0	1	1	1	3	2	4	3
			POTS	1	2	0	0	2	1	2	0	0	2
			TRAMMEL	195	283	136	112	95	120	128	8	34	32
		HKE	BEAM	22	17	18	10	3	4	13	10	31	29
			BOTTOM TRAWLS	121	145	192	258	245	350	386	643	144	267
			DREDGE	8	1	4	4	2	2	2	9	1	0
			GILL	770	663	728	461	655	980	953	2307	2640	2643
			LONGLINE	146	129	173	213	316	673	878	442	697	504
			none	12	10	8	8	8	19	25		7	732
			PELAGIC TRAWLS	22	7	22	15	30	11	8	55	198	191
			POTS	3	1	0	1	0	11	12	7	12	8
			TRAMMEL	79	65	27	18	37	40	45	59	59	44
		NEP	BEAM	6	6	9	7	3	1	2	4	4	2
			BOTTOM TRAWLS	96	100	113	89	82	91	93	984	185	89
			DREDGE	0	0	5	0	0	2	2	13		0
			GILL	0	1	0	0	0	1	1	0	0	0
			LONGLINE	0				0	0				
			none	1	0	0	0	0	0	0			0
			PELAGIC TRAWLS	0		0	0	0	5	4	1	. 8	2
			POTS	4	5	19	2	2	2	3	4	6	5
			TRAMMEL	0	1	0	1	0	0	0	1	0	0
		SOL	BEAM	466	468	401	402	406	369	402	525	437	532
			BOTTOM TRAWLS	28	29	34	26	27	26	27	522	54	38
			DREDGE	5	4	6	4	7	5	5	3	10	2
			GILL	83	78	68	49	29	27	26	41	38	20
			LONGLINE	0	8	7	5	0	0	0	2	2	0
			none	0	1	0	1	0	0	0		13	3
			PELAGIC TRAWLS	0	0	0	0	0	1	1	1	2	2
			POTS	0	0	0	0	0	0	0	1	. 3	4
			TRAMMEL	639	561	390	334	301	377	378	375	556	416
		SQI	BEAM			0							
			BOTTOM TRAWLS	14	15	16	6	5	11	7	0	1	164
			DREDGE			0	0						
			GILL	1	1	2	1	1	1	1	0	0	65
			LONGLINE	0	0			0	0	0			0
			none	0	0	0	0	0	O	0			452
		1	PELAGIC TRAWLS	0	0		0	0	O	0			0
			POTS	0									1
			TRAMMEL	0	0	0	0	0	0	0			0

Deepwater VIII non-EU

CPUE information is only available for 2012

Table 5.9.3.10.3 Area VIII non-EU DS CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
DS	8 non EU	BRF	BOTTOM TRAWLS										6
		COE	BOTTOM TRAWLS										38

Western waters VIII non-EU

CPUE information was only supplied for this area in recent years.

Table 5.9.3.10.4 Area VIII non-EU WW CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
WW	8 non EU	HKE	BOTTOM TRAWLS								2	192	31
			GILL									4303	
		NEP	BOTTOM TRAWLS									27	5
		SQI	BOTTOM TRAWLS										233
		TUR	BOTTOM TRAWLS								12	22	3
			TRAMMEL								35		

5.9.3.11 CPUE in ICES area IX by fisheries and Member States

Deepwater IX EU

Spanish data is lacking for this area for 2010 and 2011 which causes difficulties analysing the data.

Longlines are the main gear used in this area, although in 2012 Spain has supplied CPUE data for a number of other gear types.

Longline CPUEs for black scabbard have increased through the time series up to 2011, but have decreased in 2012. Longline CPUEs for Bluemouth redfish and Conger eel were stable at low levels until 2012 when an increase was reported. Longline figures for Greater forkbeard and Red seabream are stable.

Table 5.9.3.11.1 Area IX EU DS CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
DS	9 EU	BRF	BOTTOM TRAWLS					3		1		3	599
			GILL										291
			LONGLINE	10		13	13	57	24	28	24	21	. 72
			none				4						748
			POTS										18
			TRAMMEL										41
		BSF	BOTTOM TRAWLS				34	17	14	5	27	8	
			LONGLINE	1363	200	2943	2649	3385	3828	3971	4654	4767	3603
			TRAMMEL						41				
		COE	BOTTOM TRAWLS				1	1	0	0		33	269
			GILL										34
			LONGLINE	45	37	58	65	61	56	32	19	25	180
			none										336
			PELAGIC TRAWLS										115
			POTS				214	751					2481
			TRAMMEL										72
		FOX	BOTTOM TRAWLS	5	0	3	2	4	20	10			1
			GILL					C					
			LONGLINE	10	5	18	14	12	20	8	12	16	19
			none						20				
			POTS										0
			TRAMMEL										1
		SBR	BOTTOM TRAWLS		1		3	2	. 0	0			17
			GILL						68	4			258
			LONGLINE			0	11	19	8	11	9	19	14
		1	none										66
		1	PELAGIC TRAWLS										3931
			TRAMMEL										13

Western Waters IX EU

Spanish data is lacking for this area for 2010 and 2011 which causes difficulties analysing the data.

CPUEs in this area are highest for gill nets followed by bottom trawl and trammel nets. Gill net CPUEs increased up to 1020 but have begun to decrease again in the last two years. Bottom trawl CPUEs peaked in 2009 and appear to be decreasing since. Due to the lack of Spanish data in 2010 and 2011 however the position is unclear. Trammel net CPUEs have increased through the time series, with a large spike occurring in 2007. Longline CPUEs increased between 2007 and 2009, but have declined and fluctuated since.

Gill nets are the most important gear for Hake, table 5.9.3.11.2. CPUEs increased up to 2007 but have decreased in the last two years. Bottom trawl CPUEs peaked in 2009 and appear to have stabilised at a lower level since. Longlines and trammel nets have become more important in recent years.

Trammel net CPUEs for angler fish decreased through the time series but appear to be increasing again since 2011. Bottom trawl and gill nets show a similar pattern but at a much lower level.

Table 5.9.3.11.2 Area IX EU WW CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
ww	9 EU	ANF	BEAM	C	0	1	1	1	3	1			
			BOTTOM TRAWLS	49	41	59	83	77	52	37	13	23	32
			GILL	99	77	97	107	62	48	53	11	. 30	18
			LONGLINE		2	0	0	1	0	0			0
			none	14	6	3	4	5	11	8			6
			PELAGIC TRAWLS	C	2	. 0	2	0	0	0			1
			POTS	C	1	. 1	1	1	1	2	10	2	
			TRAMMEL	135	113	120	97	110	88	91	59	78	137
		HKE	BEAM	20	3	11	37	53	161	64			24
			BOTTOM TRAWLS	78	129	306	369	391	457	721	200	189	275
			DREDGE							5			24
			GILL	224	144	237	274	510	631	612	734	644	445
			LONGLINE	6	2	43	43	69	234	401	115	93	279
			none	19	19	11	11	37	45	42			165
			PELAGIC TRAWLS	C		2	0	4	1	2			3
			POTS	2	. 2	1	4	55	10	10	10	52	24
			TRAMMEL	20	32	119	99	163	124	164	158	243	261
		RAJ	BEAM	3	1	1				5			
			BOTTOM TRAWLS	1	. 0	1	3	7	13	33	37	38	25
			DREDGE		0								
			GILL	28	12	6	3	10	3	3	11	. 11	2
			LONGLINE	1	. 0	0	1	7	3	5	8	12	20
			none	20	12	. 6	8	7	6	12			
			PELAGIC TRAWLS	C)		0	0	0	0			
			POTS	C	1	. 2	2	2	7	8	21	. 19	7
			TRAMMEL	85			88		108	121		150	88
		SOL	BEAM	36			54		34	32			42
			BOTTOM TRAWLS	C		-	1	1	2	2	2	. 2	6
			DREDGE		0								
			GILL	8	10		7	6				i	23
			LONGLINE			0	0		0				0
			none	8			3	2		3			3
			PELAGIC TRAWLS	C		-	0		0	0			0
			POTS	C			2		3	0	5		1
			TRAMMEL	33			47		75	75	98	101	76
		SQI	BEAM	1			1						0
			BOTTOM TRAWLS	32	. 52	29	5	3	13	4			161
			DREDGE										3
			GILL	C	0		0	0	0	0			1
			LONGLINE										0
			none	1			1		1	0			61
			PELAGIC TRAWLS	2			4			2			0
			POTS	C			0		0	0			
			TRAMMEL	C	0	0	0						0

Deepwater IX non-EU

Prior to 2011 all the data was provided by Portugal, but Spain provided some data in 2012.

Longline CPUEs for Conger eel increased between 2008 and 2011 but decreased in 2012. Longline data for Wreckfish fluctuates through the time series.

Table 5.9.3.11.3 Area IX non-EU DS CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
DS	9 non EU	BRF	BOTTOM TRAWLS										364
			LONGLINE				298	152	46	432		383	215
		COE	BOTTOM TRAWLS										62
			LONGLINE	6	188	50	1192	682	231	1036	1764	2300	751
		FOX	LONGLINE			25			23				
		WRF	LONGLINE	25	250	25	298	682	277	432	588	383	429

Western waters IX non-EU

Prior to 2011 all the data was provided by Portugal, but Spain provided some data in 2012.

Table 5.9.3.11.4 Area IX non-EU WW CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
ww	9 non EU	HKE	BOTTOM TRAWLS	111	331	206							289
			GILL	156		171							
			LONGLINE	23		52							
			PELAGIC TRAWLS										11
			TRAMMEL			121							
		RAJ	LONGLINE						58	46			22
			TRAMMEL			40							

5.9.3.12 CPUE in ICES area X by fisheries and Member States

Deepwater X EU

All the 2010 and 2011 data was supplied by Portugal, with Spain contributing some data in 2012.

Table 5.9.3.12.1 Area X EU DS CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
DS	10 EU	ALF	LONGLINE								155	129	166
		BSF	LONGLINE								26	83	448
		COE	BOTTOM TRAWLS										213
			LONGLINE								161	195	262
		SBR	LONGLINE								329	256	306
		SFS	LONGLINE								37	69	158

Western Waters X EU

All 2012 data has been reported by Spain.

Table 5.9.3.12.2 Area X EU WW CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
WW	10 EU	ANF	GILL										21
		HKE	BOTTOM TRAWLS										10
			GILL										2031
		LIN	GILL										16
		POL	GILL										79

Deepwater X non-EU

CPUE data for 2012 was supplied by Spain

Table 5.9.3.12.3 Area X non-EU DS CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
DS	10 non EU	SBR	LONGLINE										213

Western waters X non-EU

CPUE data for this area was supplied by France for the three years, and by Spain in 2012. Spanish data is lacking for this area for 2010 and 2011 which causes difficulties analysing the data.

Table 5.9.3.12.4 Area X non-EU WW CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
ww	10 non EU	BSS	BOTTOM TRAWLS								2	16	5
			GILL									9	
			LONGLINE										1
			PELAGIC TRAWLS								8		
			TRAMMEL								115	15	
		HKE	BOTTOM TRAWLS								162	23	85
			PELAGIC TRAWLS								60		
			TRAMMEL								11	33	
		SOL	BOTTOM TRAWLS								64	108	51
			GILL									564	
			PELAGIC TRAWLS								57		
			TRAMMEL								83	49	
		WHG	BOTTOM TRAWLS								30	20	53
			LONGLINE								49	1	0
			PELAGIC TRAWLS								11		
			TRAMMEL								3		

5.9.3.13 CPUE in ICES area XII by fisheries and Member States only linked to Deep Sea species

Area XII non EU

Spanish data is lacking for this area for 2010 and 2011 which causes difficulties analysing the data.

Bottom trawl CPUE data is sporadic through the time series and was mainly reported for Blue ling and Roundnose grenadier. Both datasets have fluctuated through the years. In 2012 Spain provided data for a number of species using a number of other gears.

Table 5.9.3.13.1 Area XII non-EU DS CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
DS	12 non EU	ALC	BOTTOM TRAWLS			218	2701	265					2129
		BLI	BOTTOM TRAWLS	141		1744	53	202		103	82	58	713
			LONGLINE										41
			PELAGIC TRAWLS							1			
		GHL	BOTTOM TRAWLS			37	61						398
			GILL	3									
		RHG	BOTTOM TRAWLS										1812
			PELAGIC TRAWLS										4741
		RNG	BOTTOM TRAWLS	15		1660	953	3967		1169	356		5245
			PELAGIC TRAWLS							248			12596
		SFS	BOTTOM TRAWLS										850

5.9.3.14 CPUE in ICES area XIV by fisheries and Member States only linked to Deep Sea species

Area XIV non-EU

Spanish data is lacking for this area for 2010 and 2011 which causes difficulties analysing the data.

CPUE data for Greenland halibut was provided by Germany and the UK. The data has been reasonably consistent through the time series.

CPUEs for Roundnose grenadiers were consistent at low levels through the time series. Again the data was provided by Germany and the UK. In 2012 Spain reported high CPUEs for the fishery. They also reported high CPUE values for Roughhead grenadier in 2012.

Sporadic CPUEs are provided for blue ling but at very low levels.

Table 5.9.3.14.1 Area XIV non-EU DS CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
DS	14 non EU	BLI	BOTTOM TRAWLS	3	3	12			0	32	1	3	2
		GHL	BOTTOM TRAWLS	1925	1767	2963	3442	2887	2777	2115	2559	2203	2351
		RHG	BOTTOM TRAWLS										345
			PELAGIC TRAWLS										11966
		RNG	BOTTOM TRAWLS	23	11	8	14	12	10	11	18	13	375
			PELAGIC TRAWLS										7127

5.9.3.15 CPUE in CECAF area 34.1.1 by fisheries and Member States

Deepwater 34.1.1 EU

CPUE data from this area has been provided by Portugal, all for longlines, with no data reported for 2011. CPUEs for Conger eel were quite stable between 2006 and 2009, before peaking in 2010. There was a big reduction reported in 2012. CPUEs for Wreckfish peaked in 2007 and have been in decline since. Data for Greater forkbeard have fluctuated throughout the time series.

Table 5.9.3.15.1 CECAF Area 34.1.1 EU DS CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
DS	34.1.1 EU	COE	LONGLINE	851		107	569	546	588	567	1083		266
		FOX	LONGLINE	426			107	218	196	76	181		89
		WRF	LONGLINE			107	569	655	549	416	271		266

Western Waters 34.1.1 EU

No information available.

Western waters CECAF 34.1.1 non-EU

Table 5.9.3.15.3 CECAF Area 34.1.1 non-EU WW CPUE (g/(kW*days)), 2003-2012.

No information available. All available information is presented in the table for deep sea species.

5.9.3.16 CPUE in CECAF area 34.1.2 by fisheries and Member States

Deepwater CECAF 34.1.2 EU

All the data is reported by Portugal.

CPUE data for Conger eel and Wreckfish peaked in the mid 2000s and have declined sharply in the last three years. CPUE data was first reported for Beryx spp in 2009, but values are decreasing since.

CPUE data have been reported for Black scabbard and Leafscale gulper shark for the last three years. Both datasets are quite stable.

Table 5.9.3.16.1 CECAF Area 34.1.2 EU DS CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
DS	34.1.2 EU	ALF	LONGLINE							83	2	14	11
		BSF	LONGLINE		228						2838	2819	3124
		COE	LONGLINE		570	574	1175	604	674	579	8	2	15
		GUQ	LONGLINE								294	256	224
		WRF	LONGLINE		456	164	734	738	363	414	3	0	11

Western Waters CECAF 34.1.2 EU

No information available. All available information is presented in the table for deep sea species.

5.9.3.17 CPUE in CECAF area 34.1.3 by fisheries and Member States

Deepwater CECAF 34.1.3 non-EU

Data is only available from Spain for this area, and only for 2012.

Table 5.9.3.17.1 CECAF Area 34.1.3 non-EU DS CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
DS	34.1.3 non EU	BRF	BOTTOM TRAWLS										1
		BSF	BOTTOM TRAWLS										46
		FOX	BOTTOM TRAWLS										1
		ORY	BOTTOM TRAWLS										0
		SFS	BOTTOM TRAWLS										17

5.9.3.18 CPUE in CECAF area 34.2 by fisheries and Member States

Deepwater CECAF 34.2.0 EU

Spanish data is lacking for this area for 2010 and 2011 which causes difficulties analysing the data. The data for the last three years has been provided by Portugal.

Table 5.9.3.18.1 CECAF Area 34.2.0 non-EU DS CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
DS	34.2.0 EU	SBR	LONGLINE								75	4	8644
		SFS	LONGLINE										8654
		WRF	LONGLINE								1066	480	2559

Western Waters CECAF 34.2.0 EU

No data available.

Deepwater CECAF 34.2.0 non-EU

Spanish data is lacking for this area for 2010 and 2011 which causes difficulties analysing the data. Data is only available for 2012.

Table 5.9.3.18.2 CECAF Area 34.2.0 non-EU DS CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
DS	34.2.0 non EU	BRF	LONGLINE										375
		COE	LONGLINE										643
		FOX	LONGLINE										54
		SCK	LONGLINE										54
		WRF	LONGLINE										375

Western waters CECAF 34.2.0 non-EU

Spanish data is lacking for this area for 2010 and 2011 which causes difficulties analysing the data. Only limited data is available for this area

Table 5.9.3.18.3 CECAF Area 34.2.0 non-EU WW CPUE (g/(kW*days)), 2003-2012.

ANNEX	REG_AREA	SPECIES	REG_GEAR	CPUE 2003	CPUE 2004	CPUE 2005	CPUE 2006	CPUE 2007	CPUE 2008	CPUE 2009	CPUE 2010	CPUE 2011	CPUE 2012
ww	34.2.0 non EU	RAJ	LONGLINE								169		5

5.9.4 ToR 2 Potential requirement, provision, process, and evaluation of VMS data to Deep Sea fisheries management

Additional data on fishing depth and VMS position could be useful to the deepwater data analysis. The Group feel that VMS data would be highly valuable in improving the analysis and interpretation of deep sea fisheries through the identification of individual fisheries at a fine scale.

Since fishing depth data may not be regularly recorded by vessel logbooks it could be possible to estimate depth from VMS data. If VMS were to be used it should be limited to aggregated data identified as fishing effort, such as a grid basis of 0.1 x 0.1 degree, and linked to logbooks for associated catches.

Data should be processed into grid format within member state to a predetermined standard methodology and submitted in a grid format for aggregation at an international level.

This aggregated data could subsequently be presented in map format.

ICES currently have a working group, WGSFD, looking at VMS issues. EWG believes that some guidance could be sought from them regarding methodology and processing this type of data and that in the future, a combined approach to accessing; collating and analysing these data would be beneficial and make better use of available scientific resources.

5.9.5 ToR 3 Recent effort trends in pelagic fisheries, with emphasis on ICES areas XI, X and CECAF areas

STECF EWG 13-13 has not addressed this ToR due to time constraints. Respective data on effort trends in pelagic fisheries are available on the website: http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313

5.9.6 ToR 5 Comments on data quality and unexpected effects in Deep Sea and Western Waters fisheries data

STECF EWG 13-13 has no specific comments.

5.10 Bay of Biscay effort regime evaluation in the context of Council Regulation (EC) No 388/2006)

5.10.1 ToR 1.a Fishing effort in kWdays, GTdays and number of vessels by Member State and fisheries

Catch and effort data have been provided by all Member States. Spanish data have been provided only for 2012. Spanish data provided the previous years on the period before 2012 are now under revision, effort and catch time series need to be reconsidered before further complete analysis of the activity in this area.

All analyses consider the 2012 Spanish data, the only year for which Spanish data are available.

As data problems were discovered with the French effort information for 2002, STECF-EWG-13-13 decided only to provide effort trends graphically starting from 2003 onwards.

Following the ToRs, all analyses were made this year for 8a and 8b separately.

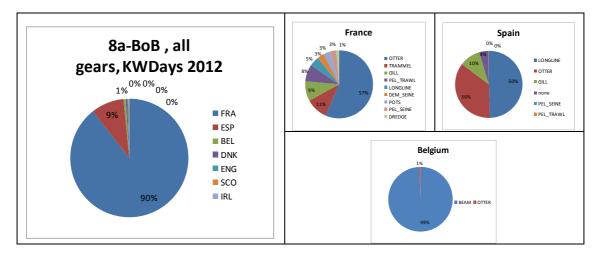


Figure 5.10.1.1: 8a-BoB, Distribution per country (and gear) of the nominal effort (kWdays).

In 8a-BoB, 90% of 2012 effort is French, 9% Spain and 1% Belgium. The main French fisheries are otter trawl, trammel and gill net and pelagic trawl. The main Spain fisheries are longline, otter trawl and gill net. Only Belgium beam trawl fleet (except 1% otter) are operational in quarter 3 in 8a-BoB (Figure 5.10.1.1).

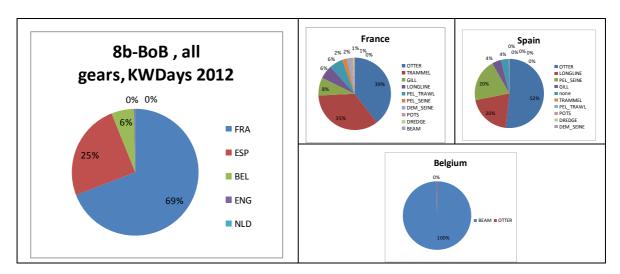


Figure 5.10.1.2: 8b-BoB, Distribution per country (and gear) of the nominal effort (KWDays).

In 8b-BoB, 69% of effort in 2012 is French, 25% Spain and 6% Belgium. The main French fisheries are otter trawl, trammel and gill net, longline and pelagic trawl. The main Spain fisheries are otter trawl, longline and pelagic seine. Only Belgium beam trawl fleet (except less than 1% otter) are operational in quarter 3 in 8b-BoB (Figure 5.10.1.2).

All 2012 figures presented below take into account the Spanish data (only provided for this year). This issue must be kept in mind before any firm conclusions are drawn.

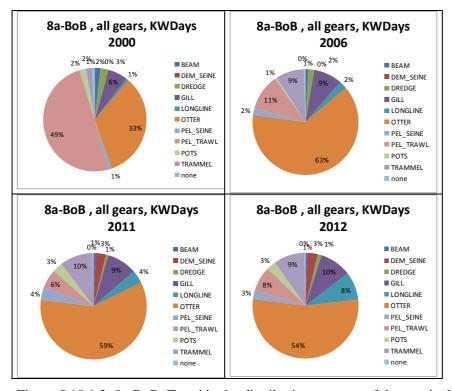


Figure 5.10.1.3: 8a-BoB, Trend in the distribution per gear of the nominal effort (KWDays).

The French otter trawl fleet being by far the dominating fleet with percentages around 60% of the effort deployed in the last 8 years in 8a-BoB (Table 5.10.1.1 and Figures 5.10.1.3).

The other fleets involved are the French trammel and gill nets with increasing trends from about 5% in 2000 up to 10% in the last few years.

The predominantly French Pelagic trawl effort went down from about 50% in the beginning of the series to around 7% in the last few years following a large decommissioning due to the anchovy crisis.

The Belgian beam trawl fleet accounts only for about 4% of the effort.

The Spanish and French longline fleet represent together 8% of the effort in 2012.

Demersal seine is a new gear which appears the last three years.

Information on the nominal effort of the specific condition SBCIIIART5 is given in Tables 5.10.1.1 5.10.1.5 and 5.10.1.6. Data broken down following this specific condition were only provided for 2010-2012 period for French vessels and since 2006 for Belgian vessels, introducing a shift for the main gear type from the "none" category to the specon "SBCIIIART5". The specon "SBCIIART5" was not provided for Spanish data. Following these considerations, no firm conclusion could be drawn based on the figures 5.10.1.5 presented below.

As a quality check, STECF routinely compares the data currently submitted with the data submitted during the previous year, as is displayed in Table 5.10.1.3. Compared to the data submitted in 2011, effort of Belgium beam trawlers was underestimated for 2011. After the resubmission of this year, this effort finds again a value in the trend of the other years available. No other great differences appear between the two data sets except some small differences which appear for 2011 English otter trawl and for 2000&2001 Danish pelagic trawl and 2009 Danish otter trawl.

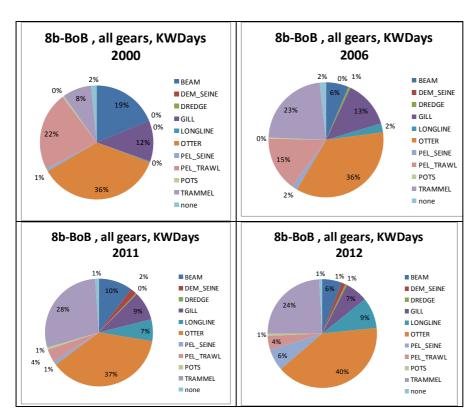


Figure 5.10.1.4: 8b-BoB, Trend in the distribution per gear of the nominal effort (kWdays).

The French otter trawl fleet being by far the dominating fleet with percentages around 38% of the effort deployed in all the period in 8b-BoB (Table 5.10.1.2 and Figures 5.10.1.4). The percentage increase a little in 2012 adding the Spanish otter trawl.

The other fleets involved are the French trammel nets with increasing trends from about 8% in 2000 up to 27% in the last five years and French gill nets with stable trends from about 10% in all the period.

The French Pelagic trawl effort went down from about 20% in the beginning of the series to less than 5% in the last few years following a large decommissioning due to the anchovy crisis.

The Belgian beam trawl fleet accounts for about 8% of the effort in the last eight years.

The French longline fleet increase the last few years from less than 1% up to 7% in 2011 and 9% in 2012 adding the Spanish longline fleet.

Demersal seine is a new gear which appears the last three years.

The Spanish pelagic seine fleet is 6% of the effort in 2012.

Information on the nominal effort of the specific condition SBCIIIART5 is given in Tables 5.10.1.2, 5.10.1.7 and 5.10.1.8. As mentioned above, data broken down following this specific condition were only provided for 2010-2012 period for French vessels and since 2006 for Belgian vessels, introducing a shift for the main gear type from the "none" category to the specon "SBCIIART5". The specon "SBCIIART5" was not provided for Spanish data. **Following these considerations, no firm conclusion could be drawn based on the figures 5.10.1.6 presented below.**

As a quality check, STECF routinely compares the data currently submitted with the data submitted during the previous year, as is displayed in Table 5.10.1.4. Compared to the data submitted in 2011, no differences appear between the two data sets except some small differences which appear for 2010&2011 Belgium beam trawl fleet.

Table 5.10.1.1 – Bay of Biscay – 8a - Trend in nominal effort (kW*days at sea) by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2000-2012. Derogations are sorted by gear, special condition (SPECON), and country (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

REG AREA C	OD REG GEAR CO	D SPECON	COUNTRY	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
8a-BoB 8a-BoB	BEAM	none	BEL ENG	178 657	45 799	60 384	41 337	105 779	123 376			880				
8a-BoB			FRA				15 860	26 032	35 522	4104					1 111	
8a-BoB 8a-BoB	BEAM	none	NLD Total	178 657	17 652 63 451	60 384	57 197	131 811	158 898	4 104		880			1 111	
8a-BoB	BEAM	SBcIllart5	BEL							241 716	226 017	91 076	108 412	152 261	150 812	136 302
8a-BoB			FRA											588		
8a-BoB	BEAM	SBcIllart5	Total							241 716	226 017	91 076	108 412	152 849	150 812	136 302
8a-BoB 8a-BoB	DEM_SEINE	NONE	FRA NLD										6152	331 067	612 472	99 372
8a-BoB	DEM_SEINE	none	Total										6 152 6 152	331 067	612 472	99 372
8a-BoB	DEM SEINE	SBCIIIARTS	i FRA												215	542 371
8a-BoB	DEM_SEINE	SBCIIIARTS													215	542 371
8a-BoB	DREDGE	none	FRA	260 467	331 633	1 341 184	395 354	414 407	420 148	533 612	468 381	377 579	366 074	90 026	122 145	176 601
8a-BoB 8a-BoB			IRL SCO		25 124		14 754									
8a-BoB	DREDGE	none	Total	260 467	356 757	1 341 184	410 108	414 407	420 148	533 612	468 381	377 579	366 074	90 026	122 145	176 601
8a-BoB	DREDGE	SBcIllart5	FRA											22 677	8 443	70 603
8a-BoB	DREDGE	SBcIllart5	Total											22 677	8 443	70 603
8a-BoB	GILL	none	ENG					48 409	32 606	121 744	39 301	18 347	44 662	60 023	63 140	52 447
8a-BoB 8a-BoB			ESP FRA	614 761	875 674	4 272 016	1 254 706	1 420 988	2 128 437	2 396 764	1 821 041	1 790 230	1 765 262	1 534 146	1 274 483	189 434 981 798
8a-BoB			SCO				7163	58 729	78 826	33 150	54 702	93 152	29 681	49 473	21 850	28 060
8a-BoB	GILL	none	Total	614 761	875 674	4 272 016	1 261 869	1 528 126	2 239 869	2 551 658	1 915 044	1 901 729	1 839 605	1 643 642	1 359 473	1 251 739
8a-BoB 8a-BoB	GILL	SBcIllart5 SBcIllart5	FRA Total											575 670 575 670	471 754 471 754	776 035 776 035
														373070	4/1/54	770 055
8a-BoB 8a-BoB	LONGLINE	none	ENG ESP				84319	97 728	69 064	57 542	33 853	14 941				928 283
8a-BoB 8a-BoB			FRA IRL	78 659	105 092	693 116	183 650	241 134	365 723 842	656 098 2 105	621 551	546 023	546 023	603 895	701 468	710 982
8a-BoB			sco		3 001					6 797	1 378	20 726		9 337	58 942	2 024
8a-BoB	LONGLINE	none	Total	78 659	108 093	693 116	267 969	338 862	435 629	722 542	656 782	581 690	546 023	613 232	760 410	1 641 289
8a-BoB 8a-BoB	LONGLINE	SBcIllart5	FRA Total											72 918	43 375	151 567
84-808	LONGLINE	SBUIIGIUS	Total											72 918	43 375	151 567
8a-BoB 8a-BoB	OTTER	none	DNK ENG	20 896			29 899	11 033		41 472	11 850		42 920 7 920	3 240	26 490	
8a-BoB			ESP													675 020
8a-BoB 8a-BoB			FRA IRL	3 359 620	6 600 024 242	32 577 912	9 749 134	11 645 225 985	14681996	18 526 531 1 209	20 544 828	17 065 302	16 945 895	6 396 041	6 287 764	4 506 741
										1 200						
8a-BoB 8a-BoB			NIR		2.72	4634		303		1205			1 624			10.723
8a-BoB 8a-BoB 8a-BoB	OTTER	none		3 380 516	6 600 266	4 634 32 582 546	9 779 033	11 657 243	14 681 996	18 569 212	20 556 678	17 065 302	1 624 16 998 359	6 399 281	6 314 254	10 723 5 192 484
8a-BoB	OTTER	none SBcIllart5	NIR SCO	3 380 516			9 779 033		14 681 996		20 556 678	17 065 302		6 399 281	6 314 254	
8a-BoB 8a-BoB 8a-BoB	OTTER	SBcIllart5	NIR SCO Total BEL FRA	3 380 516			9 779 033		14 681 996		20 556 678	17 065 302		5 344 311	5 556 913	5 192 484 950 6 068 276
8a-BoB 8a-BoB 8a-BoB	OTTER	SBcIllart5	NIR SCO Total BEL FRA Total	3 380 516			9 779 033		14 681 996		20 556 678	17 065 302				950 6 068 276 6 068 276
8a-BoB 8a-BoB 8a-BoB	OTTER	SBcIllart5	NIR SCO Total BEL FRA	3 380 516			9 779 033 9 779 033		14 681 996 447 532		20 556 678 611 037	17 065 302 17 065 302		5 344 311	5 556 913	5 192 484 950 6 068 276
8a-BoB 8a-BoB 8a-BoB 8a-BoB	OTTER	SBcIllart5	NIR SCO Total BEL FRA Total		6 600 266	32 582 546		11 657 243		18 569 212			16 998 359	5 344 311 5 344 311	5 556 913 5 556 913	950 6 068 276 6 068 276 2 202
8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB	OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE	SBcIllart5 SBcIllart5 none none SBcIllart5	NIR SCO Total BEL FRA Total ESP FRA Total	100 552	6 600 266	32 582 546 1 796 023	395 906	11 657 243 459 144	447 532	18 569 212 591 583	611 037	637 343	16 998 359 637 028	5 344 311 5 344 311 684 055 684 055	5 556 913 5 556 913 744 393	5192 484 950 6 068 276 6 068 276 2 202 556 022 558 224
8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB	OTTER OTTER PEL_SEINE PEL_SEINE	SBcIllart5 SBcIllart5 none none	NIR SCO Total BEL FRA Total ESP FRA Total	100 552	6 600 266	32 582 546 1 796 023	395 906	11 657 243 459 144	447 532	18 569 212 591 583	611 037	637 343	16 998 359 637 028	5 344 311 5 344 311 684 055 684 055	5 556 913 5 556 913 744 393	950 6 068 276 6 068 276 6 068 276 2 202 556 022 558 224
8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB	OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE	SBcIllart5 SBcIllart5 none none SBcIllart5	NIR SCO Total BEL FRA Total ESP FRA Total FRA Total DEU	100 552 100 552 246 685	368 955 368 955 368 955	32 582 546 1 796 023	395 906	11 657 243 459 144	447 532	18 569 212 591 583 591 583 169 488	611 037 611 037	637 343 637 343 85 325	637 028 637 028	5 344 311 5 344 311 684 055 684 055 828 828	5 556 913 5 556 913 744 393 744 393	5192 484 950 6 068 276 6 068 276 2 202 556 022 558 224 588 588
8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB	OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_SEINE	SBcIllart5 SBcIllart5 none none SBcIllart5 SBcIllart5	NIR SCO Total BEL FRA Total	100 552	6 600 266 368 955 368 955	32 582 546 1 796 023 1 796 023	395 906 395 906	11 657 243 459 144 459 144	447 532 447 532	18 569 212 591 583 591 583	611 037	637 343 637 343	16 998 359 637 028 637 028	5 344 311 5 344 311 684 055 684 055 828 828	5 556 913 5 556 913 744 393 744 393	5 192 484 950 6 068 276 6 068 276 2 202 556 022 558 224
8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB	OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_SEINE	SBcIllart5 SBcIllart5 none none SBcIllart5 SBcIllart5	NIR SCO Total BEL FRA Total FRA Total FRA Total DEU DNK	100 552 100 552 246 685	368 955 368 955 368 955	32 582 546 1 796 023 1 796 023	395 906 395 906 30 222	11 657 243 459 144 459 144 122 593	447 532 447 532 263 370	18 569 212 591 583 591 583 169 488 38 027	611 037 611 037	637 343 637 343 85 325 146 452	637 028 637 028 20 800 181 440	5 344 311 5 344 311 684 055 684 055 828 828 41 237 29 240	5 556 913 5 556 913 744 393 744 393 11 025 7 123	5 192 484 950 6 068 276 6 068 276 2 202 556 022 558 224 588 588 89 296 1 323
8a-BoB	OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_SEINE	SBcIllart5 SBcIllart5 none none SBcIllart5 SBcIllart5	NIR SCO Total BEL FRA Total ESP FRA Total FRA Total DEU DNIK ENG ESP FRA III	100 552 100 552 246 685 73 875	369 955 369 955 369 955	1 796 023 1 796 023 1 191 411	395 906 395 906 30 222 166 043	11 657 243 459 144 459 144 122 593 139 716	447 532 447 532 263 370 119 686	18 569 212 591 583 591 583 169 488 38 027 92 445	611 037 611 037 181 719 36 288	637 343 637 343 85 325 146 452 155 677	16 998 359 637 028 637 028 20 800 181 440 170 028 441 705 4 028	5 344 311 5 344 311 684 055 684 055 828 828 41 237 29 240 44 490	5 556 913 5 556 913 744 393 744 393 11 025 7 123 24 501	5 192 484 950 6 068 276 6 068 276 2 202 556 022 558 224 588 588 89 296
8a-BoB	OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_SEINE	SBcIllart5 SBcIllart5 none none SBcIllart5 SBcIllart5	NIR SCO Total BEL FRA Total ESP FRA Total DEU DNK ENG ESP FRA IRL NIR NILD	100 552 100 552 246 685 73 875 2 176 395 320 050 2 179 992	368 955 368 955 368 955 1 762 788	32 582 546 1 796 023 1 796 023 1 191 411 8 455 429	395 906 395 906 30 222 166 043 2 221 241 39 676 652 927	11 657 243 459 144 459 144 122 593 139 716 768 951	447 532 447 532 263 370 119 686 2 022 315	18 569 212 591 583 591 583 169 488 38 027 92 445 2 499 642	611 037 611 037 181 719 36 288 2 148 883	637 343 637 343 85 325 146 452 155 677	637 028 637 028 637 028 20 800 191 440 170 025 4 028 541 166 742	5 344 311 5 344 311 684 055 684 055 828 828 41 237 29 240 44 490	5 556 913 5 556 913 744 393 744 393 11 025 7 123 24 501	5 192 484 950 6 068 276 6 068 276 6 068 276 2 202 556 022 558 224 588 588 89 296 1 323 1 178 408
8a-BoB	OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_SEINE	SBcIllartS SBcIllartS none none SBcIllartS SBcIllartS none	NIR SCO Total BEL FRA Total ESP FRA Total FRA Total DEU DNK ENG ESP FRA IIRL NIR NLD SCO	100 552 100 552 100 552 246 685 73 875 2 176 395 320 050 2 179 932 14 662	368 955 368 955 369 955 1 762 788 64 970 3 365 216	32 582 546 1 796 023 1 796 023 1 796 023 1 91 411 8 455 429 90 412 1 393 278	395 906 395 906 30 222 166 043 2 221 241 39 676 652 927 3 972	11 657 243 459 144 459 144 122 593 139 716 760 951 65 951 114 007	447 532 447 532 263 370 119 686 2 022 315 52 942 512 294	18 569 212 591 583 591 583 169 488 38 027 92 445 2 499 642 37 511 428 503	611 037 611 037 181 719 36 208 2148 883 27 652 94 666	637 343 637 343 85 325 146 452 155 677 482 127	16 998 359 637 028 637 028 20 800 181 440 170 025 441 705 541 166 742 19 496	5 344 311 5 344 311 684 055 684 055 928 828 41 237 22 240 44 499 1 203 385 15 000	5 556 913 5 556 913 744 393 744 393 11 025 7123 24 501 1 033 030	5 192 484 950 6 068 276 6 068 276 2 202 556 022 558 224 588 588 89 296 1 323 1 179 408 13 439
8a-BoB	OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL	SBcillart5 None none SBcillart5 SBcillart5 none SBcillart5 none	NIR SCO Total BEL FRA Total ESP FRA Total FRA Total FRA INIR NIR NID SCO Total	100 552 100 552 246 685 73 875 2 176 395 320 050 2 179 992	368 955 368 955 368 955 1 762 788 64 970	1 796 023 1 796 023 1 796 023 1 91 411 8 455 429 90 412	395 906 395 906 30 222 166 043 2 221 241 39 676 652 927	11 657 243 459 144 459 144 122 593 139 716 768 951 65 951	447 532 447 532 263 370 119 686 2022 315 52 942	18 569 212 591 583 591 583 169 488 38 027 92 445 2 499 642 37 511	611 037 611 037 181 719 36 288 2148 883 27 652	637 343 637 343 85 325 146 452 155 677 482 127	637 028 637 028 637 028 20 800 191 440 170 025 4 028 541 166 742	5 344 311 5 344 311 5 344 311 684 055 828 828 41 237 29 240 44 490 1 203 385 1 5 000 99 986 1 433 338	5 556 913 5 556 913 744 393 744 393 11025 7 123 24 501 10 33 030 11 880 1087 559	5 192 484 950 6 068 276 6 068 276 2 202 556 022 558 224 588 588 89 296 1 323 1 178 408 13 439
8a-BoB	OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL	SBcIllartS SBcIllartS none none SBcIllartS SBcIllartS none	NIR SCO Total BEL FRA Total ESP FRA Total FRA Total DEU DNK ENG ESP FRA IIRL NIR NLD SCO	100 552 100 552 100 552 246 685 73 875 2 176 395 320 050 2 179 932 14 662	368 955 368 955 369 955 1 762 788 64 970 3 365 216	32 582 546 1 796 023 1 796 023 1 796 023 1 91 411 8 455 429 90 412 1 393 278	395 906 395 906 30 222 166 043 2 221 241 39 676 652 927 3 972	11 657 243 459 144 459 144 122 593 139 716 760 951 65 951 114 007	447 532 447 532 263 370 119 686 2 022 315 52 942 512 294	18 569 212 591 583 591 583 169 488 38 027 92 445 2 499 642 37 511 428 503	611 037 611 037 181 719 36 208 2148 883 27 652 94 666	637 343 637 343 85 325 146 452 155 677 482 127	16 998 359 637 028 637 028 20 800 181 440 170 025 441 705 541 166 742 19 496	5 344 311 5 344 311 684 055 684 055 928 828 41 237 22 240 44 499 1 203 385 15 000	5 556 913 5 556 913 744 393 744 393 11 025 7123 24 501 1 033 030	5 192 484 950 6 068 276 6 068 276 2 202 556 022 558 224 588 588 89 296 1 323 1 179 408 13 439
8a-BoB	OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL PEL_TRAWL PEL_TRAWL	SBcillartS Inone Inone SBcillartS SBcillartS Inone SBcillartS SBcillartS SBcillartS SBcillartS SBcillartS	NIR SCO Total BEL FRA Total FRA Total DEU DNIC ENIC ESP FRA IIRL NIR NILD SCO Total FRA Total	100 552 100 552 100 552 246 685 73 875 2 176 395 320 050 2 179 932 14 662	368 955 368 955 369 955 1 762 788 64 970 3 365 216	32 582 546 1 796 023 1 796 023 1 796 023 1 91 411 8 455 429 90 412 1 393 278	395 906 395 906 30 222 166 043 2 221 241 39 652 927 3 972 3 114 081	11 657 243 459 144 459 144 122 593 139 716 768 951 65 951 114 007	447 532 447 532 263 370 119 686 2 022 315 52 942 512 294	18 569 212 591 583 591 583 169 488 38 027 92 445 2 499 642 37 511 428 503 3 265 616	611 037 611 037 181 719 36 288 2 148 883 2 76 52 94 666 2 489 208	637 343 637 343 85 325 146 452 155 677 482 127 367 306	16 998 359 637 028 637 028 20 800 181 440 170 025 441 705 541 166 742 19 496	5 344 311 5 344 311 684 055 684 055 828 828 41 237 29 240 44 490 1 203 385 1 5 000 99 986 1 433 338	5 556 913 5 556 913 744 393 744 393 744 393 11 025 7123 24 501 1 033 030 11 880 1 087 559	5 192 484 950 6 068 276 6 068 276 2 202 550 224 588 588 89 296 1 323 1 179 408 1 3439 1 282 466
8a-BoB	OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL PEL_TRAWL	SBcIllartS SBcIllartS none SBcIllartS SBcIllartS none SBcIllartS SBcIllartS SBcIllartS SBcIllartS	NIR SCO Total BEL FRA Total FRA Total DEU DNK ENN ESP FRA IIRL NIR NLD SCO Total FRA Total DEU DNK ENN ESP FRA IRL NIR DL SCO Total FRA Total DEU DNC ESP FRA DL SCO TOTAL FRA DEU ENG ESP FRA DL SCO TOTAL FRA DEU ENG	100 552 100 552 246 685 73 875 2 176 395 320 050 2 173 932 14 662 5 005 599	968 955 368 955 369 955 323 841 21 385 1 762 788 64 970 3 365 216 5 538 200	32 582 546 1.796 023 1.796 023 1.796 023 1.91 411 8.455 429 90 412 1.393 278 10 130 530	395 906 395 906 30 222 166 043 2 221 241 39 676 652 927 3 972 3 114 081	11 657 243 459 144 459 144 122 593 139 716 768 951 114 007 1 211 218	447 532 447 532 263 370 119 686 2 022 315 52 942 512 294 2 970 607	18 569 212 591 583 591 583 169 488 38 027 92 445 2 499 642 37 511 428 503 3 265 616	611 037 611 037 181 719 36 288 2 148 893 27 652 94 666 2 489 208	637 343 637 343 85 325 146 452 155 677 482 127 367 306 1 236 887	637 028 637 028 637 028 20 880 191 440 170 025 40 28 54 028 54 166 742 19 496 1004 777	5 344 311 5 344 311 684 055 684 055 828 41 237 29 240 44 490 1 203 885 15 000 99 986 1 433 338	5 556 913 5 556 913 744 393 744 393 11 025 7123 24 501 1 030 030 11 880 1 087 559	5 192 484 950 6 068 276 6 068 276 2 202 556 022 558 224 588 89 296 1 323 1 178 409 1 3 439 1 282 466
8a-Bob 8a-Bob	OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL PEL_TRAWL PEL_TRAWL	SBcillartS Inone Inone SBcillartS SBcillartS Inone SBcillartS SBcillartS SBcillartS SBcillartS SBcillartS	NIR SCO Total BEL FRA Total ESP FRA Total FRA Total DEU DNK ENG ESP FRA IRL NIR NID SCO Total FRA Total	100 552 100 552 100 552 246 685 73 875 2 176 395 320 050 2 179 932 14 662	368 955 368 955 369 955 1 762 788 64 970 3 365 216	32 582 546 1 796 023 1 796 023 1 796 023 1 91 411 8 455 429 90 412 1 393 278	395 906 395 906 395 906 30 222 166 043 2 221 241 39 675 652 927 3 972 3 114 081	11 657 243 459 144 459 144 122 593 139 716 768 951 114 007 1 211 218	447 532 447 532 263 370 119 686 2 022 315 52 942 512 294	18 569 212 591 583 591 583 169 488 38 027 92 445 2 499 642 37 511 428 503 3 265 616	611 037 611 037 181 719 36 288 2 148 883 2 76 52 94 666 2 489 208	637 343 637 343 637 343 85 325 146 452 155 677 482 127 367 306 1 236 887	16 998 359 637 028 637 028 20 800 181 440 170 025 441 705 541 166 742 19 496	5 344 311 5 344 311 684 055 684 055 828 828 41 237 29 240 44 490 1 203 385 1 5 000 99 986 1 433 338	5 556 913 5 556 913 744 393 744 393 744 393 11 025 7123 24 501 1 033 030 11 880 1 087 559	5 192 484 950 6 068 276 6 068 276 2 202 556 022 558 224 588 588 89 296 1 323 1 179 408 1 3 439 1 282 466 337 915 337 915
8a-BoB	OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL PEL_TRAWL PEL_TRAWL POTS	SBcillart5 none none SBcillart5 none sBcillart5 none sBcillart5 none none none	NIR SCO Total BEL FRA Total FRA Total DEU DNK ENG ESP FRA IIR NIR NLD SCO Total Total DEU DNK TOTAL TOTAL TOTAL DEU DNK ESP FRA TOTAL	100 552 100 552 100 552 246 685 73 875 2176 395 32 0050 2173 992 14 662 5 005 599	369 955 369 955 369 955 369 955 1 762 788 64 970 3 365 216 5 538 200	32 582 546 1 796 023 1 796 023 1 796 023 1 91 411 8 455 429 90 412 1 393 278 10 130 530	395 906 395 906 30 222 166 043 2 221 241 39 676 652 927 3 972 3 114 081	11 657 243 459 144 459 144 459 144 122 593 139 716 768 951 65 951 114 007 1211 218 21 168 10 165 312 543	447 532 447 532 263 370 119 686 2022 315 52 942 2970 607	18 569 212 591 583 591 583 169 488 38 027 92 445 2 499 642 37 511 428 503 3 265 616	611 037 611 037 181 719 36 288 2148 883 27 652 94 666 2489 208	637 343 637 343 85 325 146 452 155 677 482 127 367 306 1 236 887	16 998 359 637 028 637 028 637 028 20 800 181 440 170 025 441 705 4 028 541 166 742 19 496 1 004 777	5 344 311 5 344 311 684 055 684 055 828 41 237 29 240 44 490 1 203 385 15 000 99 986 1 41 33 338 101 972 101 972	5 556 913 5 556 913 744 393 744 393 744 393 11 025 7 123 24 501 1 037 030 1 108 910 1 087 559 1 08 910 5 551 436 5 551 436	5 192 484 950 6 068 276 6 068 276 2 202 5 550 224 588 588 1 323 1 78 408 1 3 439 1 282 466 3 37 915 3 37 915
8a-BoB	OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL PEL_TRAWL PEL_TRAWL PEL_TRAWL POTS	SBciliart5 none none SBciliart5 SBciliart5 none SBciliart5 none SBciliart5 none	NIR SCO Total BEL FRA Total FRA Total FRA Total DEU DINK ENG ESP FRA NIR NLD SCO Total FRA Total FRA Total DEU ENG FRA TOTAL	100 552 100 552 100 552 246 685 73 875 2176 395 32 0050 2173 992 14 662 5 005 599	369 955 369 955 369 955 369 955 1 762 788 64 970 3 365 216 5 538 200	32 582 546 1 796 023 1 796 023 1 796 023 1 91 411 8 455 429 90 412 1 393 278 10 130 530	395 906 395 906 395 906 30 222 166 043 2 221 241 39 675 652 927 3 972 3 114 081	11 657 243 459 144 459 144 459 144 122 593 139 716 768 951 65 951 114 007 1211 218 21 168 10 165 312 543	447 532 447 532 263 370 119 686 2022 315 52 942 2970 607	18 569 212 591 583 591 583 169 488 38 027 92 445 2 499 642 37 511 428 503 3 265 616	611 037 611 037 181 719 36 288 2148 883 27 652 94 666 2489 208	637 343 637 343 637 343 85 325 146 452 155 677 482 127 367 306 1 236 887	16 998 359 637 028 637 028 637 028 20 800 181 440 170 025 441 705 4 028 541 166 742 19 496 1 004 777	5 344 311 5 344 311 684 055 684 055 828 41 237 29 240 44 490 1 203 385 1 5 000 99 986 1 433 338 101 972 101 972	5 556 913 5 556 913 744 393 744 393 11 025 7 123 24 501 1 033 030 1 1880 1 087 559 1 08 910	5 192 484 950 6 068 276 6 068 276 2 202 5 556 022 5 588 5 88 8 9 296 1 3 23 1 178 408 1 3 439 1 282 466 3 37 915 3 37 915
8a-BoB	OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL PEL_TRAWL PEL_TRAWL POTS POTS POTS	SBcillartS SBcillartS none none SBcillartS SBcillartS SBcillartS SBcillartS SBcillartS SBcillartS SBcillartS SBcillartS SBcillartS	NIR SCO Total BEL FRA Total FRA Total DEU DINK ENIG ESP FRA IIRL NIR NILD SCO Total FRA Total	100 552 100 552 100 552 246 685 73 875 2176 395 32 0050 2173 992 14 662 5 005 599	369 955 369 955 369 955 369 955 1 762 788 64 970 3 365 216 5 538 200	32 582 546 1 796 023 1 796 023 1 796 023 1 91 411 8 455 429 90 412 1 393 278 10 130 530	395 906 395 906 395 906 30 222 166 043 2 221 241 39 675 652 927 3 972 3 114 081	11 657 243 459 144 459 144 459 144 122 593 139 716 768 951 65 951 114 007 1211 218 21 168 10 165 312 543	447 532 447 532 263 370 119 686 2022 315 52 942 2970 607	18 569 212 591 583 591 583 169 488 38 027 92 445 2 499 642 37 511 428 503 3 265 616	611 037 611 037 181 719 36 288 2148 883 27 652 94 666 2489 208	637 343 637 343 85 925 146 452 155 677 482 127 367 306 1 236 887 7 056 22 195 29 251	16 998 359 637 028 637 028 637 028 20 800 181 440 170 025 441 705 4 028 541 166 742 19 496 1 004 777	5 344 311 5 344 311 684 055 684 055 828 41 237 29 240 44 490 1 203 385 1 5 000 99 986 1 433 338 101 972 101 972 619 138 619 138	5 556 913 5 556 913 744 393 744 393 744 393 11 025 7123 24 501 1 033 030 11 880 1 087 559 1 08 910 1 08 910 551 436 551 436	5 192 484 950 6 082 76 6 068 276 6 068 276 5 062 2 2 202 5 5 022 5 5 022 5 88 1 323 1 178 408 1 3 439 1 282 466 3 37 915 3 37 915 3 451 463 4 13 4265
8a-Bob	OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL PEL_TRAWL PEL_TRAWL POTS POTS POTS POTS TRAMMEL	SBcillartS none none SBcillartS none sBcillartS none sBcillartS none SBcillartS none SBcillartS none	NIR SCO Total BEL FRA Total FRA Total DEU DINK ENG FRA IIR NIR NLD SCO Total FRA Total FRA Total FRA Total DEU DINK ENG ESP FRA IIR NIR NLD SCO Total FRA Total FRA Total FRA Total FRA Total	100 552 100 552 100 552 246 685 73 875 2 176 395 320 050 2 173 932 14 662 5 005 599	368 955 368 955 368 955 368 955 1 762 788 64 970 3 365 216 5 538 200	32 582 546 1.796 023 1.796 023 1.796 023 1.91 411 8.455 429 90 412 1.393 278 1.0 130 530 606 445 606 445	395 906 395 906 30 222 166 043 2 221 241 39 676 652 927 3 972 3 114 081 14 112 203 191 217 303	11 657 243 459 144 459 144 459 144 122 593 139 716 65 951 114 007 1 211 218 21 168 21 168 31 2 543 343 896	447 532 447 532 263 370 119 696 2 022 315 52 942 512 294 2 970 607	18 569 212 591 583 591 583 169 488 38 027 92 445 2 499 642 37 511 428 503 3 265 616	611 037 611 037 611 037 181 719 36 288 2 148 883 27 652 94 666 2 489 208 11 500 126 862 138 362	637 343 637 343 85 325 146 452 155 677 482 127 367 306 1 236 887 7 056 22 195 29 251	16 998 359 637 028 637 028 20 800 181 440 170 025 441 705 4 1064 170 027 19 496 1004 777 22 195 22 195	5 344 311 5 344 311 684 055 684 055 828 22 22 40 44 490 1 203 385 1 5 000 99 986 1 1433 338 101 972 101 972 20 990 20 990 20 990	5 556 913 5 556 913 744 393 744 393 744 393 11 025 71 23 24 501 1 087 559 108 910 108 910 551 436 551 436 71 587	5 192 484 950 6 068 276 6 068 276 2 202 5 556 022 5 568 224 5 88 8 9 296 1 323 1 178 408 1 3 439 1 282 466 3 37 915 3 37 915 3 1 34 265 1 34 265 1 34 265
8a-BoB	OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL PEL_TRAWL PEL_TRAWL POTS POTS POTS	SBcillartS SBcillartS none none SBcillartS SBcillartS SBcillartS SBcillartS SBcillartS SBcillartS SBcillartS SBcillartS SBcillartS	NIR SCO Total BEL FRA Total FRA Total DEU DNK FRA Total DEU DNK FRA Total DEU DNK FRA Total TOTAL FRA TOTAL	100 552 100 552 100 552 246 685 73 875 2176 395 32 085 2173 932 14662 5 005 599	368 955 368 955 368 955 323 841 21 395 1 762 788 64 970 3 365 216 5 538 200	32 582 546 1 795 023 1 796 023 1 796 023 1 91 411 8 455 429 90 412 1 393 278 10 130 530 506 445	395 906 395 906 395 906 30 222 166 043 2 221 241 39 676 652 97 3 972 3 114 081 14 112 203 191 217 303	11 657 243 459 144 459 144 459 144 122 593 139 716 769 951 114 007 1 211 218 21 168 10 185 312 543 343 896	447 532 447 532 263 370 119 686 2 022 315 52 942 512 294 2 970 667	18 569 212 591 583 591 583 169 488 38 027 92 445 2 499 642 37 511 428 503 3 265 616	611 037 611 037 181 719 36 288 2 148 883 2 7652 9 4 666 2 489 208 11 500 126 862 138 362	637 343 637 343 85 325 146 452 155 677 482 127 367 306 1 236 887 7 056 22 195 29 251	16 998 359 637 028 637 028 637 028 20 800 181 440 170 025 441 705 4 028 541 166 742 1 9 496 1 004 777	5 344 311 5 344 311 684 055 684 055 684 055 828 828 1 29 240 44 490 1 203 385 1 5 000 99 966 1 433 338 101 972 101 972 619 138 619 138 20 990 20 990	5 556 913 5 556 913 744 393 744 393 744 393 11 025 7123 24 501 1 033 030 1 087 559 108 910 108 910 551 436 71 587	5192484 950 608276 608276 608276 556022 558024 588 89296 1323 1178 408 13 439 148466 337 915 337 915
8a-Bob	OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL PEL_TRAWL PEL_TRAWL POTS POTS POTS TRAMMEL TRAMMEL TRAMMEL	SBcillart5 none none SBcillart5 SBcillart5 none none SBcillart5 none SBcillart5 none SBcillart5 none SBcillart5 none SBcillart5 SBcillart5 SBcillart5 SBcillart5 SBcillart5 SBcillart5 SBcillart5 SBcillart5 SBcillart5	NIR SCO Total BEL FRA Total FRA Total DEU DINK ENIG ESP FRA INID SCO Total FRA Total FRA Total DEU DINK FRA Total	100 552 100 552 100 552 246 685 73 875 2 176 395 320 050 2 173 932 14 662 5 005 599	368 955 368 955 368 955 368 955 1 762 788 64 970 3 365 216 5 538 200	32 582 546 1.796 023 1.796 023 1.796 023 1.91 411 8.455 429 90 412 1.393 278 1.0 130 530 606 445 606 445	395 906 395 906 30 222 166 043 2 221 241 39 676 652 927 3 972 3 114 081 14 112 203 191 217 303	11 657 243 459 144 459 144 459 144 122 593 139 716 65 951 114 007 1 211 218 21 168 21 168 31 2 543 343 896	447 532 447 532 263 370 119 696 2 022 315 52 942 512 294 2 970 607	18 569 212 591 583 591 583 169 488 38 027 92 445 2 499 642 37 511 428 503 3 265 616	611 037 611 037 611 037 181 719 36 288 2 148 883 27 652 94 666 2 489 208 11 500 126 862 138 362	637 343 637 343 85 325 146 452 155 677 482 127 367 306 1 236 887 7 056 22 195 29 251	16 998 359 637 028 637 028 20 800 181 440 170 025 441 705 4 1064 170 027 19 496 1004 777 22 195 22 195	5 344 311 5 344 311 5 344 311 684 055 684 055 928 229 41 237 29 240 44 490 1 203 385 15 000 99 986 1 433 338 101 972 101 972 20 990 20 990 20 990 20 990	5 556 913 5 556 913 744 393 744 393 744 393 744 393 11 025 7 123 24 501 1 033 030 11 800 1 087 559 108 910 108 910 551 436 551 436 71 587 71 587 1 677 072	5 192 484 950 6 068 276 6 068 276 2 202 5 550 222 5 588 5 88 8 9 296 1 3 23 1 178 408 1 3 439 1 282 466 3 37 915 3 37 915 1 34 265 1 34 265 1 34 265 1 34 265 1 34 295 1 721 983
8a-Bob	OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL PEL_TRAWL PEL_TRAWL POTS POTS POTS TRAMMEL TRAMMEL TRAMMEL	SBcillartS none none SBcillartS none none SBcillartS none SBcillartS none sBcillartS none sBcillartS sBcillartS sBcillartS sBcillartS SBcillartS SBcillartS SBcillartS SBcillartS SBcillartS SBcillartS	NIR SCO Total BEL FRA Total ESP FRA Total DEU DNK ESP FRA IIRL NIR NID SCO Total FRA Total	100 552 100 552 100 552 246 685 73 875 2 176 395 320 050 2 173 932 14 662 5 005 599	368 955 368 955 368 955 368 955 1 762 788 64 970 3 365 216 5 538 200	32 582 546 1.796 023 1.796 023 1.796 023 1.91 411 8.455 429 90 412 1.393 278 1.0 130 530 606 445 606 445	395 906 395 906 30 222 166 043 2 221 241 39 676 652 927 3 972 3 114 081 14 112 203 191 217 303	11 657 243 459 144 459 144 459 144 122 593 139 716 65 951 114 007 1 211 218 21 168 21 168 31 2 543 343 896	447 532 447 532 263 370 119 696 2 022 315 52 942 512 294 2 970 607	18 569 212 591 583 591 583 169 488 38 027 92 445 2 499 642 37 511 428 503 3 265 616	611 037 611 037 611 037 181 719 36 288 2 148 883 27 652 94 666 2 489 208 11 500 126 862 138 362	637 343 637 343 85 325 146 452 155 677 482 127 367 306 1 236 887 7 056 22 195 29 251	16 998 359 637 028 637 028 20 800 181 440 170 025 441 705 4 1064 170 027 19 496 1004 777 22 195 22 195	5 344 311 5 344 311 684 055 684 055 684 055 828 828 41 237 29 240 41 237 15 050 1 20 385 1 15 050 1 1433 338 1 10 972 1 10 1 972 2 0 990 2 0 990 2 0 990 2 0 990 3 5 5 5 4 4 3 5 5 5 5 4 4	5 556 913 5 556 913 744 393 744 393 744 393 11 025 7123 24 501 1 033 030 1 1800 1 087 559 108 910 1 08 910 71 551 436 551 436 551 436 307 538	5 192 484 950 6 088 276 6 086 276 6 086 276 2 202 5 560 224 588 588 89 296 1 323 1 178 409 1 3439 1 282 466 1 337 915 337 915 337 915 1 34 265 1 34 265 2 49 151 2 49 151 2 49 151
8a-Bob	OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL PEL_TRAWL PEL_TRAWL POTS POTS POTS TRAMMEL TRAMMEL TRAMMEL	SBcillart5 none none SBcillart5 SBcillart5 none none SBcillart5 none SBcillart5 none SBcillart5 none SBcillart5 none SBcillart5 SBcillart5 SBcillart5 SBcillart5 SBcillart5 SBcillart5 SBcillart5 SBcillart5 SBcillart5	NIR SCO Total BEL FRA Total FRA Total DEU DINK ENIG ESP FRA INID SCO Total FRA Total FRA Total DEU DINK FRA Total	100 552 100 552 100 552 246 685 73 875 2 176 395 320 050 2 173 932 14 662 5 005 599 211 486 211 486 211 486	368 955 368 955 368 955 368 955 1 762 788 64 970 3 365 216 5 538 200 151 440 151 440	32 582 546 1 796 023 1 796 023 1 796 023 1 91 411 8 455 429 90 412 1 393 278 10 130 530 506 445 606 445 2 061 054	395 906 395 906 30 222 166 043 2 221 241 39 676 652 927 3 972 3 114 081 14112 203 191 217 303 575 096	11 657 243 459 144 459 144 459 144 122 593 139 716 768 951 65 951 114 007 1 211 218 21 168 10 185 312 543 343 896	447 532 447 532 263 970 119 686 2022 915 52 942 2970 607 173 870 173 870 1 615 492	18 569 212 591 583 591 583 169 488 38 027 92 445 2 499 642 37 511 428 503 3 265 616 13 631 153 118 166 749 2 530 660	611 037 611 037 611 037 181 719 36 288 21 48 883 27 652 94 666 2 489 208 11 500 126 862 138 362 2 961 192	637 343 637 343 85 925 146 452 155 677 482 127 367 306 1 236 887 7 056 22 195 29 251 547 2 471 064 2 471 611	20 800 181 440 170 025 441 705 4 029 541 166 742 19 496 1 004 777 22 195 2 2 195 2 471 064	5 344 311 5 344 311 5 344 311 684 055 684 055 928 229 41 237 29 240 44 490 1 203 385 15 000 99 986 1 433 338 101 972 101 972 20 990 20 990 20 990 20 990	5 556 913 5 556 913 744 393 744 393 744 393 11 025 7 123 24 501 1 087 559 108 910 108 910 551 436 551 436 71 587 71 587 1677 072	5 192 484 950 6 068 276 6 068 276 2 202 5 550 222 5 588 5 88 8 9 296 1 3 23 1 178 408 1 3 439 1 282 466 3 37 915 3 37 915 1 34 265 1 34 265 1 34 265 1 34 265 1 34 295 1 721 983
8a-Bob	OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL PEL_TRAWL PEL_TRAWL POTS POTS POTS TRAMMEL TRAMMEL TRAMMEL	SBcillartS none none SBcillartS none none SBcillartS none SBcillartS none sBcillartS none sBcillartS sBcillartS sBcillartS sBcillartS SBcillartS SBcillartS SBcillartS SBcillartS SBcillartS SBcillartS	NIR SCO Total BEL FRA Total FRA Total DEU DINK ENG ESP FRA IIRL NIR NLD SCO Total FRA Total	100 552 100 552 100 552 246 685 73 875 2 176 395 320 050 2 173 932 14 662 5 005 599	368 955 368 955 368 955 368 955 1 762 788 64 970 3 365 216 5 538 200	32 582 546 1.796 023 1.796 023 1.796 023 1.91 411 8.455 429 90 412 1.393 278 1.0 130 530 606 445 606 445	395 906 395 906 30 222 166 043 2 221 241 39 676 652 927 3 972 3 114 081 14 112 203 191 217 303	11 657 243 459 144 459 144 459 144 122 593 139 716 65 951 114 007 1 211 218 21 168 21 168 31 2 543 343 896	447 532 447 532 263 370 119 696 2 022 315 52 942 512 294 2 970 607	18 569 212 591 583 591 583 169 488 38 027 92 445 2 499 642 37 511 428 503 3 265 616	611 037 611 037 611 037 181 719 36 288 2 148 883 27 652 94 666 2 489 208 11 500 126 862 138 362	637 343 637 343 85 325 146 452 155 677 482 127 367 306 1 236 887 7 056 22 195 29 251	16 998 359 637 028 637 028 20 800 181 440 170 025 441 705 4 1064 170 027 19 496 1004 777 22 195 22 195	5 344 311 5 344 311 5 344 311 684 055 684 055 928 229 41 237 29 240 44 490 1 203 385 15 000 99 986 1 433 338 101 972 101 972 20 990 20 990 20 990 20 990	5 556 913 5 556 913 744 393 744 393 744 393 744 393 11 025 7 123 24 501 1 033 030 11 800 1 087 559 108 910 108 910 551 436 551 436 71 587 71 587 1 677 072	5 192 484 950 6 088 276 6 086 276 6 086 276 2 202 5 560 224 588 588 89 296 1 323 1 178 409 1 3439 1 282 466 1 337 915 337 915 337 915 1 34 265 1 34 265 2 49 151 2 49 151 2 49 151
8a-Bob	OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL PEL_TRAWL PEL_TRAWL POTS POTS POTS TRAMMEL TRAMMEL TRAMMEL TRAMMEL TRAMMEL	sections sections sections none none sections none sections none sections none sections none sections sections none sections sections none sections none sections none none sections none none	NIR SCO Total BEL FRA Total FRA Total DEU DNK ENG ESP FRA Total DEU DNK ENG ESP FRA Total Total FRA Total	100 552 100 552 100 552 246 685 73 875 2 176 395 3 20 050 2 173 932 14 662 5 005 599 211 486 211 486 211 486	368 955 368 955 368 955 368 955 323 841 21 385 49 770 3 365 216 5 538 200 151 440 151 440	32 582 546 1 796 023 1 796 023 1 796 023 1 91 411 8 455 429 90 412 1 393 278 10 130 530 605 445 606 445 2 061 054	395 906 395 906 39 596 30 222 166 043 2 221 241 39 676 652 927 3 972 3 114 081 14 112 203 191 217 303 575 096	11 657 243 459 144 459 144 459 144 122 593 139 716 769 951 114 007 1 211 218 21 169 10 185 31 2 43 343 896	447 532 447 532 263 370 119 686 2 022 315 52 942 512 294 2 970 607 173 870 1 615 492 1 615 492	18 569 212 591 583 591 583 169 488 38 027 92 445 2 499 642 37 511 428 503 3 265 616 13 631 153 118 166 749 2 530 660 2 530 660	611 037 611 037 611 037 181 719 36 288 2 148 883 2 76 52 94 666 2 489 208 11 500 126 862 138 362 2 961 192 2 961 192	637 343 637 343 85 325 146 452 155 677 482 127 367 306 1 236 887 7 056 22 195 29 251 2471 064 2 471 061	16 998 359 637 028 637 028 637 028 20 800 181 440 170 025 40 28 541 166 742 19 496 1004 777 22 195 22 195 22 471 064 2 471 064	5 344 311 5 344 311 5 344 311 684 055 684 055 928 229 41 237 29 240 44 490 1 203 385 15 000 99 986 1 433 338 101 972 101 972 20 990 20 990 20 990 20 990	5 556 913 5 556 913 744 393 744 393 744 393 11 025 7123 24 501 1 033 030 1 180 1 108 910 1 108 910 551 436 551 436 551 436 1 71 597 71 587 1 677 072 1 677 072	5 192 484 950 6 088 276 6 068 276 6 068 276 6 068 276 5 068 276 5 082 2 2 202 5 5 0 22 5 5 0 22 5 5 0 22 5 1 323 1 7 349 1 3 4 39 1 2 8 4 5 1 4 6 3 1 3 4 7 9 1 5 1 3 4 7 9 1 5 1 3 4 7 9 1 5 1 3 4 7 9 1 5 1 3 4 7 9 1 5 1 3 4 7 9 1 5 1 7 1 9 8 1 1 7 2 1 9 8 3 1 7 2 1 9 8 3 1 7 2 1 9 8 3

Table 5.10.1.2 – Bay of Biscay – 8b - Trend in nominal effort (kW*days at sea) by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2000-2012. Derogations are sorted by gear, special condition (SPECON), and country (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

Part		D REG GEAR COD				2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Page		BEAM	none		734 538	774 784	711 429	577 330	550 314	712 933		438				147	440
Mart		BEAM	none		734 538		711 429	577 330	550 314	712 933		438				147	440
Page	8b-BoB	BEAM	SBcIllart5	BEL							701 274	754 024	684 939	815 860	760 585	747 810	586 698
Beauty B	8b-BoB	BEAM	SBcIllart5	Total													
Part		DEM_SEINE	none														
Decompose Control Co														6 624		137 008	
Section Sect	8b-BoB	DEM_SEINE	none	Total										6 624	61 015	137 008	53 142
Column																	
		DREDGE	none			263	10 982	2 511	7 536	52 315	64 803	36 614	33 423	33 423	29 311	18 220	
	8b-BoB	DREDGE	none	Total		263	10 982	2511	7 536	52 315	64 803	36 614	33 423	33 423	29 311	18 220	48 165
Columb C																	
1985 1985															3 396	7 393	12 096
		GILL	none							2 893	40 108	15 076					104564
					458 112	564 724	1 566 592	352 927		1 217 137	1 429 468	1 173 159		1 044 466			199 981
		GILL	none	Total	458 112	564 724	1 566 592	352 927		1 220 030	1 469 576	1 188 235		1 044 466			304 545
Section Sect	8b-BoB	GILL	SBcIllart5	Total											199 718	249 443	364 334
Backer Fig.		LONGLINE	none						12 428	2 582	9 426	20 748	5 296				507 639
Bashele School	8b-BoB				9 595	71 037	198 859	51 483	59 324	235 437	260 702		194 503	194503	460 343	424 089	
	8b-BoB			sco													
18-80 100 1	8P-ROR	LONGLINE	none	lotal	9 595	71 037	198 859	51 483	71 752	238 019	270 128	258 935	201 233	194 503	460 343	424 089	809 163
1988 OTTEN POPE 1980 1997 13444 1998 1997 1997 13444 1998																	
1,793,249 1,793,249 1,793,259 1,79								27.505	110.051	70.050	60.064						
Second Fig.	8b-BoB	OTTER	none	ESP													1 293 234
De-Bold Control Section Sect					1 403 129	1 370 925		1 254 536	1 413 043	3 780 100		4 114 702	3 789 258	3 781 816	640 861	985 186	626 927
FRA SOLIDAY	8b-BoB	OTTER	none	Total	1 403 129	1 370 925	5 739 922	1 292 121	1 531 104	3 858 352	3 894 710	4 114 702	3 789 258	3 781 816	640 861	996 153	1 944 605
B-Bord OTTEK Section	8b-BoB	OTTER	SBcIllart5												1 976 799	1 7/15 026	
Secondary Seco	8b-BoB	OTTER	SBcIllart5														
PB-B0B PEL_TRAWL	8b-BoB	PEL_SEINE	none	ESP													500 912
BR-BolB		PEL_SEINE	none														
BR-BolB	Oh DoD	DEL TRAWI	nono	DELL							12.005						
BR-BoB	8b-BoB	T CC_INSTITE	none	ENG					67346	8 055	12 003			47 280			
She book PEL_TRAWIL none Total Statistics FRA Statistics	8b-BoB			FRA	881 049									386 776	361 874	195 840	
Bib-Bob PEL_TRAWL Sedilarts FRA									92 485	72 948		39 547				7 920	
8b-BoB POTS none ESP 8b-BoB POTS none Total 18 226 10 288 12 319 26 482 35 213 2 981 34 432 38 021 2 716 2716 28 349 28 015 13 444 8b-BoB POTS none Total 18 226 10 288 12 319 26 482 35 213 2 981 34 432 38 021 2 716 2 716 28 349 28 015 14 568 8b-BoB POTS SBolliants FRA 8b-BoB POTS SBolliants Total 18 226 10 288 12 319 26 482 35 213 2 981 34 432 38 021 2 716 2 716 28 349 28 015 14 568 8b-BoB POTS SBolliants Total 24 946 24 870 5 2 304 8b-BoB TRAMMEL none ESP 8b-BoB TRAMMEL none Total 32 1889 403 795 1 539 166 702 655 623 795 1 943 385 2 474 068 2 293 981 2 398 241 2 396 111 124 925 87 703 147 220 8b-BoB TRAMMEL SBolliants FRA 8b-BoB TRAMMEL SBolliants Total Trammer Tram	8b-BoB	PEL_TRAWL	none	Total	881 049	785 249	6 040 971	870 687	526 855	1 207 085	1 683 439	1 014 722	437 721	434 056	361 874	203 760	295 210
Bib-Bob POTS																	
Seb-Bob FRA 19 226 10 288 12 319 26 482 35 213 2 981 34 432 38 021 2 716 2 716 28 349 28 015 13 444															43 230	1313/	
Bib-Bob POTS SBelliartS FRA 24946 24870 52304		POTS	none		18 226	10 288	12 319	26 482	35 213	2 981	34 432	38 021	2 716	2 716	28 349	28 015	
8b-Bo8 TRAMMEL none ESP	8b-BoB	POTS	none	Total	18 226	10 288	12 319	26 482	35 213	2 981	34 432	38 021	2716	2716	28 349	28 015	14 568
8b-BoB TRAMMEL none ESP																	
8b-BoB TRAMMEL Secilarity FRA 321 889 403 795 1539 166 702 655 623 795 1943 385 2 474 068 2 293 981 2 398 241 2 396 111 124 925 87 703 147 220 8b-BoB TRAMMEL Secilarity FRA 2 077 736 1996 776 2 286 383 8b-BoB TRAMMEL Secilarity Total 2 077 736 1996 776 2 286 383 8b-BoB None None ESP 8b-BoB FRA 5 9 97 9 2 742 398 353 73 154 75 689 116 764 192 933 106 136 181 700 181 700 76 984 8b-BoB None None Total 5 9 997 9 2 742 398 353 73 154 75 689 114 764 192 933 106 136 181 700 181 700 76 984 8b-BoB None None Secilarity FRA 5 9 97 9 2 742 398 353 73 154 75 689 114 764 192 933 106 136 181 700 181 700 76 984 8b-BoB None Secilarity FRA 5 9 97 9 2 742 398 353 73 154 75 689 114 764 192 933 106 136 181 700 181 700 76 984 8b-BoB None Secilarity															∠4 946	24 8/0	
8b-BoB TRAMMEL SBolliart5 FRA 2 077 736 1 996 776 2 286 383	8b-BoB		none		321 889	403 795	1 539 166	702 655	623 795	1 943 385	2 474 068	2 293 981	2 398 241	2 396 111	124 925	87 703	
8b-BoB TRAMMEL SBelliartS Total 2077.736 1996.776 2.286.383	8b-BoB	TRAMMEL	none	Total	321 889	403 795	1 539 166	702 655	623 795	1 943 385	2 474 068	2 293 981	2 398 241	2 396 111	124 925	87 703	151 012
Sb-BoB none none ESP																	
8b-BoB FRA 59 997 92 742 398 353 73 154 75 689 116 764 192 933 106 136 181 700 181 700 76 984 Sb-BoB IRL 25 000 Sb-BoB none none Total 59 997 92 742 398 353 73 154 75 689 141 764 192 933 106 136 181 700 181 700 76 984 91 180 Sb-BoB none SBcIllart5 FRA 8615 Sb-BoB none SBcIllart5 FRA 8615 Sb-BoB none SBcIllart5 SRA 8615 Sb-BoB None SBcIllart5 SRA SBCILl		TRAMMEL	succession												2 0/7 736	1 996 776	
8b-BoB RL 25 000 8b-BoB none Total 59 997 92 742 398 353 73 154 75 689 141 764 192 933 106 136 181 700 181 700 76 984 91 180 8b-BoB none SBdIIlart5 FRA 8 615		none	none		59 997	92 742	398 353	73 154	75 689	116 764	192 933	106 136	181 700	181 700		76 984	91 180
8b-BoB none	8b-BoB	none	none	IRL						25 000							91 190
					33 331	22.142	530 333	,3134	, , , 003	2-12 704	252 333	100 100	101 /00	101 700			52100

Table 5.10.1.3 – Bay of Biscay – 8a – Percentage difference in effort (kW*days at sea) by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2000-2011 between the data provided in 2012 and 2013. Derogations are sorted by gear, special condition (SPECON), and country (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

REG AREA CO	DD REG GEAR COD	SPECON	COUNTRY	VESSEL_LENGTH	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
8a-BoB	BEAM	none	BEL	O15M	0%	0%	0%	0%	0%	0%						
8a-BoB	BEAM	none	ENG	O15M									0%			
8a-BoB	BEAM	none	FRA	O10T15M				0%	0%	0%	0%					0%
8a-BoB	BEAM	none	FRA	O15M					0%							
8a-BoB	BEAM	none	NLD	O15M		0%										
8a-BoB	BEAM	SBcIllart5	BEL	O15M							0%	0%	0%	0%	0%	153%
8a-BoB	BEAM	SBcIllart5	FRA	O10T15M											0%	
8a-BoB	DEM_SEINE	none	FRA	O10T15M												0%
8a-BoB	DEM_SEINE	none	FRA	O15M											0%	0%
8a-BoB	DEM_SEINE	none	NLD	O15M										0%		
8a-BoB	DEM_SEINE	SBcIllart5	FRA	O10T15M												0%
8a-BoB	DREDGE	none	FRA	O10T15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
8a-BoB	DREDGE	none	FRA	O15M	0%	0%	0%	0%	0%			0%			0%	0%
8a-BoB	DREDGE	none	IRL	O15M				0%								
8a-BoB	DREDGE	none	SCO	015M		0%									-004	00/
8a-BoB	DREDGE	SBcIllart5	FRA	O10T15M											0%	
8a-BoB	DREDGE	SBcIllart5	FRA	O15M							00/		00/	00/	0%	_
8a-BoB	GILL	none	ENG	O10T15M					00/	00/	0%	00/	0%	0%	0%	
8a-BoB 8a-BoB	GILL	none	ENG	O15M O10T15M	0%	0%	0%	0%	0% 0%	0% 0%	0% 0%	0% 0%	0% 0%	7% 0%	0% 0%	
8a-BoB	GILL	none	FRA FRA	O15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
8a-BoB	GILL	none	sco	O15M	070	070	070	0%	0%	0%	0%	0%	0%	0%	4%	
8a-BoB	GILL	SBcIllart5	FRA	O10T15M				070	070	070	070	070	070	070	0%	_
8a-BoB	GILL	SBcIllart5	FRA	O15/15/0/											0%	
8a-BoB	LONGLINE	none	ENG	O15M				0%	0%	0%	0%	0%	0%		0.0	
8a-BoB	LONGLINE	none	FRA	O10T15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
8a-BoB	LONGLINE	none	FRA	O15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
8a-BoB	LONGLINE	none	IRL	O15M						0%	0%					
8a-BoB	LONGLINE	none	SCO	O15M		0%					0%	0%	0%		0%	0%
8a-BoB	LONGLINE	SBcIllart5	FRA	O10T15M											0%	0%
8a-BoB	LONGLINE	SBcIllart5	FRA	O15M											0%	0%
8a-BoB	OTTER	none	DNK	O15M	-4%							0%		-27%		
8a-BoB	OTTER	none	ENG	O15M				0%	0%		0%			0%	0%	16%
ва-ВоВ	OTTER	none	FRA	O10T15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
8a-BoB	OTTER	none	FRA	O15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
8a-BoB	OTTER	none	IRL	NONE												
8a-BoB	OTTER	none	IRL	O15M		0%			0%		0%					
8a-BoB	OTTER	none	NIR	O15M										0%		
8a-BoB	OTTER	none	SCO	O15M			0%									
8a-BoB	OTTER	SBcIllart5	FRA	O10T15M											0%	
8a-BoB	OTTER	SBcIllart5	FRA	O15M	-01	-01	-01	-01	-01	-01	-01	-01	-01	-01	0%	_
8a-BoB	PEL_SEINE	none	FRA	O10T15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
8a-BoB	PEL_SEINE	none	FRA	O15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
8a-BoB	PEL_SEINE	SBcIllart5	FRA	O10T15M	00/	00/	-00/	-00/	007	-004	-00/		-00/	00/	0%	_
8a-BoB	PEL_TRAWL	none	DEU	015M	0%	0%	0%	0%	0%	0%	0%	407	0%	0%	0%	
8a-BoB	PEL_TRAWL	none	DNK	015M	-14%	-20%		00/	00/	00/	0%	4% 0%	3%	1%	0%	
8a-BoB	PEL_TRAWL	none	ENG	O15M	0%	0%	0%	0%	0%	0% 0%	0% 0%	0%	0% 0%	0% 0%	0% 0%	
8a-BoB	PEL_TRAWL	none	FRA FRA	O10T15M	0%	0%	0%	0% 0%	0% 0%	0%	0%	0%	0%	0%	0%	
8a-BoB 8a-BoB	PEL_TRAWL PEL_TRAWL	none none	IRL	O15M O15M	0%	0%	0%	0%	0%	0%	0%	0%	U70	0%	0%	
8a-BoB	PEL_TRAWL	none	NIR	O15M	070	376	070	070	076	070	070	070		0%	070	
8a-BoB	PEL_TRAWL	none	NLD	O15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
8a-BoB	PEL_TRAWL	none	SCO	O15M	0%	370	370	0%	370	070	070	070	070	0%	070	070
8a-BoB	PEL_TRAWL	SBcIllart5		O10T15M	010			010						0.0	0%	0%
8a-BoB	PEL_TRAWL	SBcIllart5		O15M											0%	
8a-BoB	POTS	none	DEU	O15M				0%	0%		0%	0%	0%			
8a-BoB	POTS	none	ENG	O15M					0%							
8a-BoB	POTS	none	FRA	O10T15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
8a-BoB	POTS	none	FRA	O15/15/II	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
8a-BoB	POTS	SBcIllart5		O10T15M											0%	
8a-BoB	TRAMMEL	none	ENG	O10T15M									0%			
8a-BoB	TRAMMEL	none	FRA	O10T15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
8a-BoB	TRAMMEL	none	FRA	015M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
8a-BoB	TRAMMEL	SBcIllart5		O10T15M											0%	
8a-BoB	TRAMMEL	SBcIllart5		O15M											0%	0%
8a-BoB	none	none	FRA	O10T15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%		0%
8a-BoB	none	none	FRA	O15M				0%		0%		0%	0%	0%		0%
	none	SBcIllart5		O10T15M												0%

Table 5.10.1.4 – Bay of Biscay – 8b – Percentage difference in effort (kW*days at sea) by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2000-2011 between the data provided in 2012 and 2013. Derogations are sorted by gear, special condition (SPECON), and country (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

REG AREA COD	REG GEAR COD	SPECON	COUNTRY	VESSEL_LENGTH	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
8b-BoB	BEAM	none	BEL	O15M	0%	0%	0%	0%	0%	0%						
8b-BoB	BEAM	none	FRA	O10T15M								0%				0%
8b-BoB	BEAM	none	NLD	O15M		0%										
8b-BoB	BEAM	SBcIllart5	BEL	O15M							0%	0%	0%	0%	1%	11%
8b-BoB	DEM_SEINE	none	FRA	O10T15M											0%	0%
8b-BoB	DEM_SEINE	none	FRA	O15M											0%	0%
8b-BoB	DEM_SEINE	none	NLD	O15M										0%	0%	
8b-BoB	DREDGE	none	FRA	O10T15M		0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
8b-BoB	DREDGE	none	FRA	O15M											0%	0%
8b-BoB	DREDGE	SBcIllart5	FRA	O10T15M											0%	0%
8b-BoB	DREDGE	SBcIllart5	FRA	O15M											0%	
8b-BoB	GILL	none	ENG	O15M						0%	0%	0%				
8b-BoB	GILL	none	FRA	O10T15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
8b-BoB	GILL	none	FRA	O15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
8b-BoB	GILL	none	SCO	O15M					0%				0%		0%	0%
8b-BoB	GILL	SBcIllart5	FRA	O10T15M											0%	0%
8b-BoB	GILL	SBcIllart5	FRA	O15M											0%	0%
8b-BoB	LONGLINE	none	ENG	O15M					0%	0%	0%	0%	0%			
8b-BoB	LONGLINE	none	FRA	O10T15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
8b-BoB	LONGLINE	none	FRA	O15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
8b-BoB	LONGLINE	none	IRL	O15M								0%				
8b-BoB	LONGLINE	none	sco	O15M									0%			
8b-BoB	LONGLINE	SBcIIIart5	FRA	O10T15M											0%	0%
8b-BoB	LONGLINE	SBcIllart5	FRA	O15M											0%	0%
8b-BoB	OTTER	none	ENG	O15M				0%	0%	0%	0%					
8b-BoB	OTTER	none	FRA	O10T15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
8b-BoB	OTTER	none	FRA	O15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
8b-BoB	OTTER	none	IRL	NONE												
8b-BoB	OTTER	none	IRL	O15M			0%				0%					
8b-BoB	OTTER	SBcIllart5	FRA	O10T15M											0%	0%
8b-BoB	OTTER	SBcIllart5	FRA	O15M											0%	0%
8b-BoB	PEL_SEINE	none	FRA	O10T15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
8b-BoB	PEL SEINE	none	FRA	O15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
8b-BoB	PEL TRAWL	none	DEU	O15M							0%					
8b-BoB	PEL TRAWL	none	ENG	O15M					0%	0%				0%		
8b-BoB	PEL_TRAWL	none	FRA	O10T15M	0%	0%	0%	0%		0%	0%	0%	0%	0%	0%	0%
8b-BoB	PEL TRAWL	none	FRA	O15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
8b-BoB	PEL TRAWL	none	IRL	NONE												
8b-BoB	PEL TRAWL	none	IRL	O10T15M		0%	0%									
8b-BoB	PEL_TRAWL	none	IRL	O15M		0%	0%	0%	0%	0%	0%	0%	0%			
8b-BoB	PEL TRAWL	none	NLD	O15M		0%	0%	0%			0%		0%			0%
8b-BoB	PEL TRAWL	SBcIllart5	FRA	O10T15M											0%	0%
8b-BoB	PEL TRAWL	SBcIllart5	FRA	O15M											0%	0%
8b-BoB	POTS	none	FRA	O10T15M	0%	0%		0%	0%	0%	0%	0%	0%	0%	0%	0%
8b-BoB	POTS	none	FRA	O15M	0%	0%	0%	0%	0%	0.0	0%	0%	0.0	0.0	0.0	0.0
8b-BoB	POTS	SBcIllart5		O10T15M	070	070	070	070	070		070	070			0%	0%
8b-BoB	POTS	SBcIllart5	FRA	O15M											0%	0%
8b-BoB	TRAMMEL	none	FRA	O10T15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
8b-BoB	TRAMMEL	none	FRA	O15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
8b-BoB	TRAMMEL	SBcIllart5	FRA	O10T15M	370	370	370	370	370	370	370	370	370	370	0%	0%
8b-BoB	TRAMMEL	SBcIllart5	FRA	O15M											0%	0%
8b-BoB			FRA	O10T15M	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	070	0%
	none	none			0%	U70	U70	0%	U70	0%	U70	0%	0%	0%		0%
8b-BoB 8b-BoB	none	none	FRA	015M	076			U76		0% 0%		U76	076	U76		U76
	none	none	IRL	O15M						U%						00/
8b-BoB	none	SBcIllart5		O10T15M												0%
8b-BoB	none	SBcIllart5	FRA	O15M												0%

Table 5.10.1.5 – Bay of Biscay – 8a - Trend in nominal effort (kW*days at sea) by derogations stated in article 5 of Coun. Reg. 388/2006, 2000-11. Derogations are sorted by gear and special condition (SPECON) (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

REG AREA COD	REG GEAR COD	SPECON	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
										2007		2009	2010		2012
8a-BoB	BEAM	none	178 657	63 451	60 384	57197	131 811	158 898	4104		880			1 111	
Sa-BoB	BEAM	SBcIllart5							241 716	226 017	91 076	108 412	152 849	150 812	136 302
8a-BoB	DEM_SEINE	NONE										6 152	331 067	612 472	99 372
8a-BoB	DEM_SEINE	SBCIIIARTS												215	542 371
8a-BoB	DREDGE	none	260 467	356 757	1 341 184	410 108	414 407	420 148	533 612	468 381	377 579	366 074	90 026	122 145	176 601
8a-BoB	DREDGE	SBcIllart5											22 677	8 443	70 603
8a-BoB	GILL	none	614 761	875 674	4 272 016	1 261 869	1 528 126	2 239 869	2 551 658	1 915 044	1 901 729	1 839 605	1 643 642	1 359 473	1 251 739
8a-BoB	GILL	SBcIllart5											575 670	471 754	776 035
8a-BoB	LONGLINE	none	78 659	108 093	693 116	267 969	338 862	435 629	722 542	656 782	581 690	546 023	613 232	760 410	1 641 289
8a-BoB	LONGLINE	SBcIllart5											72 918	43 375	151 567
8a-BoB	OTTER	none	3 380 516	6 600 266	32 582 546	9 779 033	11 657 243	14 681 996	18 569 212	20 556 678	17 065 302	16 998 359	6 399 281	6 314 254	5 192 484
8a-BoB	OTTER	SBCIllart5											5 344 311	5 556 913	6 069 226
8a-BoB	PEL_SEINE	none	100 552	368 955	1 796 023	395 906	459 144	447 532	591 583	611 037	637 343	637 028	684 055	744 393	558 224
8a-BoB	PEL_SEINE	SBcIllart5											828		588
8a-BoB	PEL_TRAWL	none	5 005 599	5 538 200	10 130 530	3114081	1 211 218	2 970 607	3 265 616	2 489 208	1 236 887	1 004 777	1 433 338	1 087 559	1 282 466
8a-BoB	PEL_TRAWL	SBcIllart5											101 972	108 910	337915
8a-BoB	POTS	none	211 486	151 440	606 445	217 303	343 896	173 870	166 749	138 362	29 251	22 195	619 138	551 436	451 463
8a-BoB	POTS	SBcIllart5											20 990	71 587	134 265
8a-BoB	TRAMMEL	none	184 958	337 411	2 061 054	575 096	965 787	1 615 492	2 530 660	2 961 192	2 471 611	2 471 064	355 544	307 538	249 151
8a-BoB	TRAMMEL	SBcIllart5											1 703 794	1 677 072	1 721 983
8a-BoB	none	none	92 650	122 044	629 641	110 276	103 586	74 578	155 533	172 530	268 115	268 115		70 220	82 250
8a-BoB	none	SECILARTS												4324	
Sum		The second second	10 108 305	14 522 291	54 172 939	16 188 838	17 154 080	23 218 619	29 332 985	30 195 231	24 661 463	24 267 884	20 165 332	20 024 416	20 925 894

Table 5.10.1.6 – Bay of Biscay – 8a - Trend in nominal effort (kW*days at sea) by derogations stated in article 5 of Coun. Reg. 388/2006, 2003-11. Derogations are sorted by gear (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

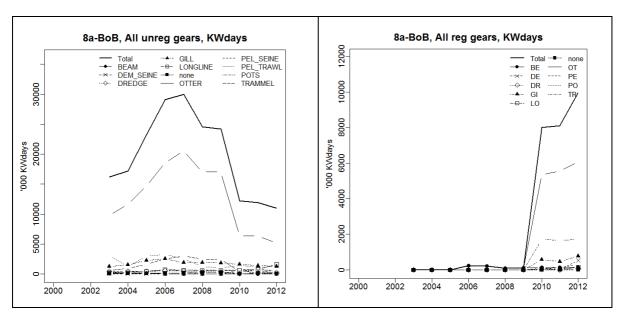

Length Class	REG AREA COD	REG GEAR COD	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
o. 10m.	8a-BoB	BEAM	178 657	63 451	60 384	57197	131 811	158 898	245 820	226 017	91 956	108 412	152 849	151 923	136 302
	8a-BoB	DEM_SEINE										6 152	331 067	612 687	641 743
	8a-BoB	DREDGE	260 467	356 757	1 341 184	410 108	414 407	420 148	533 612	468 381	377 579	366 074	112 703	130 588	247 284
	8a-BoB	GILL	614 761	875 674	4 272 016	1 261 869	1 528 126	2 239 869	2 551 658	1 915 044	1 901 729	1 839 605	2 219 312	1 831 227	2 027 774
	9a-BoB	LONGLINE	78 659	108 093	693 116	267 969	338 862	435 629	722 542	656 782	581 690	546 023	686 150	803 785	1 792 856
	8a-BoB	OTTER	3 380 516	6 600 266	32 582 546	9 779 033	11 657 243	14 681 996	18 569 212	28 556 678	17 065 302	16 998 359	11 743 592	11 871 167	11 261 710
	8a-BoB	PEL_SEINE	100 552	368 955	1 796 023	395 906	459 144	447 532	591 583	611 037	637343	637 028	684 883	744 393	558 812
	8a-BoB	PEL_TRAWL	5 005 599	5 538 200	10 130 530	3 11 4 081	1 211 218	2 970 607	3 265 616	2 489 208	1 236 887	1 004 777	1 535 310	1 196 469	1 620 381
	8a-BoB	POTS	211 486	151 440	606 445	217 303	343 896	173 870	166 749	138 362	29 251	22 195	640 128	623 023	585 728
	8a-BoB	TRAMMEL	184 958	337 411	2 061 054	575 096	965 787	1 615 492	2 530 660	2 961 192	2 471 611	2 471 064	2 059 338	1 984 610	1 971 134
	8a-BoB	none	92 650	122 044	629 641	110 276	103 586	74 578	155 533	172 530	268 115	268 115		74 544	82 250
	Sum o. 10m.		10 108 305	14 522 291	54 172 939	16 188 838	17 154 080	23 218 619	29 332 985	30 195 231	24 661 463	24 267 884	20 165 332	20 024 416	20 925 894

Table 5.10.1.7 – Bay of Biscay – 8b - Trend in nominal effort (kW*days at sea) by derogations stated in article 5 of Coun. Reg. 388/2006, 2000-11. Derogations are sorted by gear and special condition (SPECON) (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

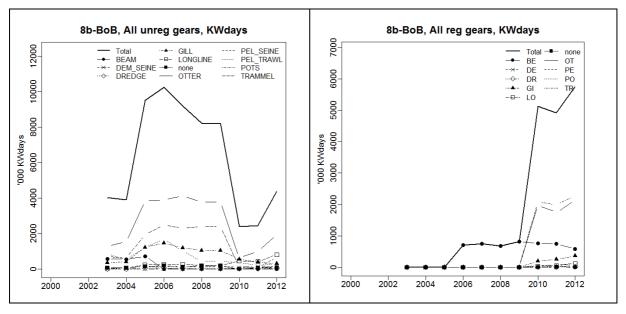

REG AREA COD	REG GEAR COD	SPECON	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
8b-BoB	BEAM	none	734 538	1 691 940	711 429	577 330	550 314	712 933		438				147	440
8b-BoB	BEAM	SBcIllart5							701 274	754 024	684 939	815 860	760 585	747 810	586 698
8b-BoB	DEM_SEINE	none										6 624	61 015	137 008	53 142
8b-BoB	DEM_SEINE	SBdllart5													64 498
8b-BoB	DREDGE	none		263	10 982	2 511	7 536	52 315	64803	36 614	33 423	33 423	29 311	18 220	48 165
8b-BoB	DREDGE	SBcIllart5											3 598	7 395	12 098
8b-BoB	GILL	none	458 112	564 724	1 566 592	352 927	397 885	1 220 030	1 469 576	1 188 235	1 047 736	1 844 466	557682	389 789	304 545
8b-BoB	GILL	SBdllart5											199 718	249 443	364 334
8b-BoB	LONGLINE	none	9 595	71 037	198 859	51 483	71 752	238 019	270 128	258 935	201 233	194 503	460 343	424 089	809 163
8b-BoB	LONGLINE	SBcIllart5											37 755	56 927	121 611
8b-BoB	OTTER	none	1 403 129	1 370 925	5 739 922	1 292 121	1 531 104	3 858 352	3 894 710	4114702	3 789 258	3 781 816	640 861	996 153	1 944 605
8b-BoB	OTTER	SBCIllart5											1 976 798	1 745 826	2 133 113
8b-BoB	PEL_SEINE	none	31 016	80 049	230 590	70 740	81 363	121 441	165 202	134820	132 961	132 961	124892	85 470	652 823
8b-BoB	PEL_TRAWL	none	881 049	785 249	6 040 971	870 687	526 855	1 207 085	1 683 439	1 014 722	437 721	434 056	361 874	203 760	295 210
8b-BoB	PEL_TRAWL	SBdllart5											45 250	75 157	128 099
8b-BoB	POTS	none	18 226	10 288	12 319	26 482	35 213	2 981	34 432	38 021	2 716	2 716	28 349	28 015	14568
8b-BoB	POTS	SBdllart5											24 946	24870	52 304
8b-BoB	TRAMMEL	none	321 889	403 795	1 539 166	702 655	623 795	1 943 385	2 474 068	2 293 981	2 398 241	2 396 111	124 925	87 703	151 012
8b-BoB	TRAMMEL	SBdHart5											2 077 736	1 996 776	2 286 383
8b-BoB	none	none	59 997	92 742	398 353	73 154	75 689	141 764	192 933	106 136	181 700	181 700		76 984	91 180
8b-BoB	none	SBCIIIARTS												8 615	
Sum			3 917 551	5 071 012	16 449 183	4 020 090	3 901 506	9 498 305	10 950 565	9 940 628	8 909 928	9 024 236	7 515 638	7 360 157	10 113 983

Table 5.10.1.8 – Bay of Biscay – 8b - Trend in nominal effort (kW*days at sea) by derogations stated in article 5 of Coun. Reg. 388/2006, 2003-11. Derogations are sorted by gear (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

Length Class	REG AREA COD	REG GEAR COD	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
o. 10m.	8b-BoB	BEAM	734 538	1 691 940	711 429	577 330	550 314	712 933	701 274	754 462	684 939	815 860	760 585	747 957	587138
	8b-BoB	DEM_SEINE										6 624	61 015	137 008	117632
	8b-BoB	DREDGE		263	10 982	2 511	7 536	52 315	64803	36 614	33 423	33 423	32 909	25 615	60 263
	8b-BoB	GILL	458 112	564 724	1 566 592	352 927	397 885	1 220 030	1 469 576	1 188 235	1 047 736	1 044 466	757 400	639 232	668 879
	8b-BoB	LONGLINE	9 595	71 037	198 859	51 483	71 752	238 019	270 128	258 935	201 233	194 503	498 098	481 016	930 774
	8b-BoB	OTTER	1 403 129	1 370 925	5 739 922	1 292 121	1 531 104	3 858 352	3 894 710	4114702	3 789 258	3 781 816	2 617 659	2 741 979	4 077 718
	8b-BoB	PEL_SEINE	31 016	80 049	230 590	70 740	81 363	121 441	165 202	134 820	132 961	132 961	124 892	85 470	652 823
	8b-BoB	PEL_TRAWL	881 049	785 249	6 040 971	870 687	526 855	1 207 085	1 683 439	1 014 722	437 721	434 056	407124	278 917	423 309
	8b-BoB	POTS	18 226	10 288	12 319	26 482	35 213	2 981	34 432	38 021	2 716	2 716	53 295	52 885	66 872
	8b-BoB	TRAMMEL	321 889	403 795	1 539 166	702 655	623 795	1 943 385	2 474 068	2 293 981	2 398 241	2 396 111	2 202 661	2 084 479	2 437 395
	8b-BoB	none	59 997	92 742	398 353	73 154	75 689	141 764	192 933	106 136	181 700	181 700		85 599	91 180
	Sum o 10m		3 017 551	5 071 012	16 449 183	4 020 090	3 901 506	9.498.305	10.950.565	9 940 628	8 909 928	9.024.236	7 515 638	7 360 157	10 113 983

Figures 5.10.1.5 – Bay of Biscay – 8a -Trend in nominal effort (kW*days at sea) sorted by gear for unregulated (without special condition SBcIIIart5) and regulated gears (with special condition SBcIIIart5) by derogations stated in article 5 of Coun. Reg. 388/2006, 2003-2012 (o. 10m length vessels). Data qualities are summarised in section 4 of the report.

Figures 5.10.1.6 – Bay of Biscay – 8b -Trend in nominal effort (kW*days at sea) sorted by gear for unregulated (without special condition SBcIIIart5) and regulated gears (with special condition SBcIIIart5) by derogations stated in article 5 of Coun. Reg. 388/2006, 2003-2012 (o. 10m length vessels). Data qualities are summarised in section 4 of the report.

Information on trend in GT*days at sea and in the number of vessels active in the Bay of Biscay are also presented below in this report by ICES division 8a and 8b.

Table 5.10.1.9 – Bay of Biscay – 8a - Trend in GT*days at sea by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2000-2012. Derogations are sorted by gear, special condition (SPECON), and country (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

REG AREA C	OD REG GEAR CO		COUNTRY	2000 65 494	2001 15 381	2002 21 746	2003 15 598	2004 41 119	2005 47 383	2006	2007	2008	2009	2010	2011	2012
8a-BoB	DEAIVI	none	ENG	63 434	12 201	21 /46	13 390	41 113	4/303			548				
8a-BoB			FRA				1 740	4 0 6 7	4 350	1 044					146	
8a-BoB 8a-BoB	BEAM	none	NLD Total	65 494	5 584 20 965	21 746	17 338	45 186	51 733	1 044		548			146	
8a-BoB 8a-BoB	BEAM	SBcIllart5	BEL FRA							84 980	78 171	30 580	37 476	51 580 96	51 331	45 998
8a-BoB	BEAM	SBcIllart5	Total							84 980	78 171	30 580	37 476	51 676	51 331	45 998
8a-BoB	DEM SEINE	none	FRA											121 045	192 333	46 306
8a-BoB	DEIVI_SETIVE	Tione	NLD										2 480	121 043	152 555	40 300
8a-BoB	DEM_SEINE	none	Total										2 480	121 045	192 333	46 306
8a-BoB	DEM_SEINE	SBcIllart5	FRA												12	151 467
8a-BoB	DEM_SEINE	SBcIllart5	Total												12	151 467
8a-BoB	DREDGE	none	FRA	32 808	45 883	216 704	56 639	47 879	60 998	63 565	52 729	39 468	38 281	9 016	12 977	16 524
8a-BoB			IRL	12.11			4 156									
8a-BoB 8a-BoB	DREDGE	none	SCO Total	32 808	45 883	216 704	60 795	47 879	60 998	63 565	52 729	39 468	38 281	9 016	12 977	16 524
				3E 000	45 005	220704	00730	47 073	00 330	00 505	SE / ES	33 400	50 201			
8a-BoB 8a-BoB	DREDGE	SBcIllart5 SBcIllart5	FRA Total											1 944 1 944	952 952	7 271 7 271
od-DUD	DREDGE	SECHIOLO	TOTAL											1 944	932	1211
8a-BoB	GILL	none	ENG					22 584	15 212	58 807	19 279	7817	23 963	37567	39 130	34 343
8a-BoB 8a-BoB			ESP FRA	168 294	202 072	1 018 492	275 154	297 024	458 835	531 454	371 124	402 673	398 498	587 038	463 989	103 797 368 113
8a-BoB			sco				3 302	30 895	43 990	22 249	36 714	54169	19 920	25 475	11 785	15 134
8a-BoB	GILL	none	Total	168 294	202 072	1 018 492	278 456	350 503	518 037	612 510	427 117	464 659	442 381	650 080	514 904	521 387
8a-BoB	GILL	SBclllart5	FRA											151 266	120 581	192 041
8a-BoB	GILL	SBcIllart5	Total											151 266	120 581	192 041
8а-ВоВ	LONGLINE	none	ENG				35 327	37 943	27567	22 450	12 957	5 661				
8a-BoB 8a-BoB			ESP FRA	20 605	24 460	172 976	46 079	44 383	54 037	90 504	87 531	81 705	81 705	85 398	122 373	570 862 157 138
8a-BoB			IRL	20 603	24 460	172 576	40 073	44 303	356	890	07 331	61 703	81 703	63 326	122 373	137 130
8a-BoB 8a-BoB	LONGLINE	none	SCO Total	20 605	24 460	172 976	81 406	82 326	81 960	3 198 117 042	636	7 929 95 295	81 705	4 1 7 1 89 5 6 9	26 339 148 712	958 728 958
Od-DUD	LONGLINE	none	TOTAL	20 603	24 400	1/29/6	81 400	82 320	81 900	117 042	101 124	95 295	81 /05	89 369	148 /12	728 938
8a-BoB	LONGLINE	SBclllart5	FRA											8 554	5 809	15 733
8a-BoB	LONGLINE	SBcIllart5	Total											8 554	5 809	15 733
8a-BoB	OTTER	none	DNK	10 623							6 160		17864			
8a-BoB 8a-BoB			ENG ESP				10 755	4 036		20 419			3 900	1 602	12 863	556 724
8a-BoB			FRA	863 613	1 254 087	6 026 404	1 709 504	2 124 410	2 751 523	3 539 780	3 937 325	3 319 519	3 298 580	1 308 360	1 303 437	906 942
8a-BoB			IRL		81			396								
			NIR		01			350		477			624			
8a-BoB 8a-BoB			NIR SCO										624			3 113
	OTTER	none		874 236	1 254 168	6 026 404	1 720 259	2 128 842	2 751 523	3 560 676	3 943 485	3 319 519	624 3 320 968	1 309 962	1 316 300	3 113 1 466 779
8a-BoB	OTTER	none SBcIllart5	SCO	874 236		6 026 404	1 720 259		2 751 523		3 943 485	3 319 519		1 309 962	1 316 300	
8a-BoB 8a-BoB 8a-BoB 8a-BoB	OTTER OTTER	SBcIllart5 SBcIllart5	SCO Total BEL FRA	874 236		6 026 404	1 720 259		2 751 523		3 943 485	3 319 519		1 049 209	1 071 172	1 466 779 284 1 194 394
8a-BoB 8a-BoB	OTTER	SBcIllart5	SCO Total BEL	874 236		6 026 404	1 720 259		2 751 523		3 943 485	3 319 519				1 466 779 284
8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB	OTTER OTTER	SBcIllart5 SBcIllart5	SCO Total BEL FRA Total		1 254 168			2 128 842		3 560 676			3 320 968	1 049 209 1 049 209	1 071 172 1 071 172	284 1 194 394 1 194 394 831
8a-BoB 8a-BoB 8a-BoB 8a-BoB	OTTER OTTER OTTER	SBcIllart5 SBcIllart5 SBcIllart5	SCO Total BEL FRA Total	874 236 874 236 24 075 24 075		6 026 404 353 076 353 076	1 720 259 1 72 972 72 972 72 972		2 751 523 2 751 523 79 879 79 879		3 943 485 126 012 126 012	3 319 519 135 533 135 533	3 320 968 3 320 968	1 049 209	1 071 172 1 071 172 1 071 172	284 1 194 394 1 194 394
8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB	OTTER OTTER OTTER PEL_SEINE PEL_SEINE	SBcIllart5 SBcIllart5 SBcIllart5 none	BEL FRA Total ESP FRA Total	24 075	1 254 168 1 254 168	353 076	72 972	2 128 842 81 644	79 879	3 560 676 3 560 676	126 012	135 533	3 320 968	1 049 209 1 049 209 112 289 112 289	1 071 172 1 071 172	284 1194394 1194394 1194394 831 99753 100584
8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB	OTTER OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE	SBcIllart5 SBcIllart5 SBcIllart5 none none SBcIllart5	BEL FRA Total ESP FRA Total FRA	24 075	1 254 168 1 254 168	353 076	72 972	2 128 842 81 644	79 879	3 560 676 3 560 676	126 012	135 533	3 320 968 3 320 968	1 049 209 1 049 209 112 289 112 289	1 071 172 1 071 172 1 071 172	1 466 779 284 1 194 394 1 194 394 1 195 394 831 99 753 100 584
8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB	OTTER OTTER OTTER PEL_SEINE PEL_SEINE	SBcIllart5 SBcIllart5 SBcIllart5 none	BEL FRA Total ESP FRA Total	24 075	1 254 168 1 254 168	353 076	72 972	2 128 842 81 644	79 879	3 560 676 3 560 676	126 012	135 533	3 320 968 3 320 968	1 049 209 1 049 209 112 289 112 289	1 071 172 1 071 172 1 071 172	284 1194394 1194394 1194394 831 99753 100584
8a-BoB	OTTER OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE	SBcIllart5 SBcIllart5 SBcIllart5 none none SBcIllart5	SCO Total BEL FRA Total ESP FRA Total FRA Total DEU	24 075 24 075	1 254 168 68 240 68 240	353 076	72 972	2 128 842 81 644	79 879	3 560 676 132 720 132 720 203 520	126 012 126 012	135 533 135 533	3 320 968 135 533 135 533 25 448	1 049 209 1 049 209 112 289 112 289 96 96	1 071 172 1 071 172 1 071 172 127 523 127 523	284 1194394 1194394 1194394 831 99 753 100 584
8a-BoB	OTTER OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE	SBcIllart5 SBcIllart5 none none SBcIllart5 SBcIllart5	SCO Total BEL FRA Total ESP FRA Total FRA Total DEU DNK ENG	24 075	1 254 168 1 254 168	353 076 353 076	72 972 72 972	2128 842 81 644 81 644	79 879 79 879	3 560 676 132 720 132 720	126 012	135 533 135 533	3 320 968 135 533 135 533	1 049 209 1 049 209 112 289 112 289 96	1 071 172 1 071 172 127 523 127 523	284 1194394 1194394 1194394 1195753 100584 128 29 809
8a-BoB	OTTER OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE	SBcIllart5 SBcIllart5 none none SBcIllart5 SBcIllart5	SCO Total BEL FRA Total ESP FRA Total FRA Total DEU DNK ENG ESP	24 075 24 075 40 472	1 254 168 68 240 68 240 12 169	353 076 353 076 267 960	72 972 72 972 39 360 86 974	2128 842 81 644 81 644 166 460 83 912	79 879 79 879 327 390 71 904	3 560 676 132 720 132 720 132 720 17 149 61 750	126 012 126 012 17 669 17 867	135 533 135 533 102 668 65 290	3 320 968 135 533 135 533 25 448 80 888 109 659	1 049 209 1 049 209 1 12 289 112 289 96 46 031 13 036 23 130	1 071 172 1 071 172 1 27 523 1 27 523 1 27 523	1466779 284 1194394 1194394 1194394 119555 100584 128 39 809 1 314
8a-BoB	OTTER OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE	SBcIllart5 SBcIllart5 none none SBcIllart5 SBcIllart5	SCO Total BEL FRA Total ESP FRA Total FRA Total DEU DNIK ENG ESP FRA IRL	24 075 24 075	1 254 168 68 240 68 240	353 076 353 076	72 972 72 972 39 360	2 128 842 81 644 81 644 166 460	79 879 79 879 327 390	3 560 676 132 720 132 720 203 520 171 49	126 012 126 012	135 533 135 533 102 668 65 290	3 320 968 135 533 135 533 25 448 90 999 109 659 153 527 4 372	1 049 209 1 049 209 112 289 112 289 96 96 46 031 13 036	1 071 172 1 071 172 1 27 523 1 27 523 1 27 523	284 1194394 1194394 1194394 1195753 100584 128 29 809
8a-BoB	OTTER OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE	SBcIllart5 SBcIllart5 none none SBcIllart5 SBcIllart5	SCO Total BEL FRA Total ESP FRA Total FRA Total DEU DNK ENG ESP FRA IRL NIR	24 075 24 075 40 472 40 472 543 361 280 146	1 254 168 69 240 68 240 12 169 474 705 49 048	353 076 353 076 267 960 2 653 380 9 013	72 972 72 972 39 360 86 974 511 234 17 502	2 128 842 81 644 81 644 166 460 83 912 170 849 41 571	79 879 79 879 327 390 71 904 490 569 28 516	3 560 676 132 720 132 720 203 520 17 149 61 750 622 968 15 056	126 012 126 012 17867 17867 445 413 11858	135 533 135 533 102 668 65 290 85 125 161 027	3 320 968 135 533 135 533 25 448 90 999 109 659 153 527 4 372 208	1 049 209 1 049 209 1 12 289 112 289 96 96 46 031 19 096 23 130 250 029 6 564	1071172 1071172 127523 127523 127523 12112 3175 14193 203482	1466 779 284 1194 394 1194 394 831 99 753 100 584 128 99 809 1 314 308 445
8a-BoB	OTTER OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_SEINE PEL_SEINE PEL_SEINE	SBcIllart5 SBcIllart5 none none SBcIllart5 SBcIllart5	SCO Total BEL FRA Total ESP FRA Total FRA Total DEU DNIK ENG ESP FRA IRL	24 075 24 075 24 075 40 472	1 254 168 68 240 68 240 12 169	353 076 353 076 267 960 2653 380 9 013 1 152 015	72 972 72 972 39 360 86 974 511 234	2 128 842 81 644 81 644 166 460 83 912 170 849	79 879 79 879 327 390 71 904 490 569	3 560 676 132 720 132 720 203 520 171.49 61 750 622 968	126 012 126 012 126 012 87 669 17 867 445 413	135 533 135 533 102 668 65 290	3 320 968 135 533 135 533 25 448 90 999 109 659 153 527 4 372	1 049 209 1 049 209 112 289 112 289 96 96 46 031 12 036 23 130 250 029	1 071 172 1 071 172 1 27 523 1 27 523 1 27 523	1466 779 284 1194 394 1194 394 831 99 753 100 584 128 99 809 1 314 308 445
8a-BoB	OTTER OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE	SBcIllart5 SBcIllart5 none none SBcIllart5 SBcIllart5	SCO Total BEL FRA Total ESP FRA Total FRA Total DEU DINK ENG ESP FRA IRL NIR NILD	24 075 24 075 40 472 40 472 543 361 280 146	1 254 168 69 240 68 240 12 169 474 705 49 048	353 076 353 076 267 960 2 653 380 9 013	72 972 72 972 39 360 86 974 511 234 17 502 543 843	2 128 842 81 644 81 644 166 460 83 912 170 849 41 571	79 879 79 879 327 390 71 904 490 569 28 516	3 560 676 132 720 132 720 203 520 17 149 61 750 622 968 15 056	126 012 126 012 17867 17867 445 413 11858	135 533 135 533 102 668 65 290 85 125 161 027	3 320 968 135 533 135 533 135 533 25 448 90 989 109 659 153 527 4 372 208 138 260	1 049 209 1 049 209 1 12 289 112 289 96 96 46 031 19 096 23 130 250 029 6 564	1071172 1071172 127523 127523 127523 12112 3175 14193 203482	1466 779 284 1194 394 1194 394 831 99 753 100 584 128 99 809 1 314 308 445
8a-BoB	OTTER OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_SEINE PEL_SEINE PEL_SEINE	SBcllartS SBcllartS Inone Inone SBcllartS SBcllartS Inone	SCO Total BEL FRA Total ESP FRA Total FRA Total DEU DNIK ENG ESP FRA IRL NIR NILD SCO	24 075 24 075 40 472 543 361 280 146 2 022 856	1 254 168 69 240 68 240 12 169 474 705 49 049 2 912 592	353 076 353 076 267 960 2653 380 9 013 1 152 015	72 972 72 972 39 360 86 974 511 234 17 502 543 843 999	2128 842 81 644 81 644 166 460 83 912 170 849 41 571 89 502	79 879 79 879 327 390 71 904 490 569 26 516 423 345	3 560 676 132 720 132 720 203 520 17 148 61 750 622 968 15 056 377 857	126 012 126 012 178 012 97 669 17 867 445 413 11 858 74 323	135 533 135 533 102 668 65 290 85 125 161 027	3 320 968 135 533 135 533 25 448 90 999 109 659 153 527 4 372 208 138 260 5 660	1 049 209 1 049 209 1 12 289 112 289 96 96 46 031 13 036 25 0 029 6 564 75 620	1071172 1071172 127523 127523 127523 12112 12112 12112 14193 203482 242784	1466 779 284 1194 394 1194 394 831 99 753 100 584 128 128 39 809 1314 308 445 5 899
8a-BoB	OTTER OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL	SBdllart5 SBdllart5 SBcllart5 none sBdllart5 SBdllart5 none none	SCO Total BEL FRA Total ESP FRA Total FRA Total DEU DNK ENG ESP FRA IRL NIR NLD SCO Total FRA	24 075 24 075 40 472 543 361 280 146 2 022 856	1 254 168 69 240 68 240 12 169 474 705 49 049 2 912 592	353 076 353 076 267 960 2653 380 9 013 1 152 015	72 972 72 972 39 360 86 974 511 234 17 502 543 843 999	2128 842 81 644 81 644 166 460 83 912 170 849 41 571 89 502	79 879 79 879 327 390 71 904 490 569 26 516 423 345	3 560 676 132 720 132 720 203 520 17 148 61 750 622 968 15 056 377 857	126 012 126 012 178 012 97 669 17 867 445 413 11 858 74 323	135 533 135 533 102 668 65 290 85 125 161 027	3 320 968 135 533 135 533 25 448 90 999 109 659 153 527 4 372 208 138 260 5 660	1 049 209 1 049 209 1 1049 209 112 289 112 289 96 96 46 031 12 096 23 130 250 029 6 564 75 620	1071172 1071172 127523 127523 127523 12112 3175 14193 203482	1466 779 284 1194 394 1194 394 831 397 53 100 584 128 39 909 1 314 308 445 5 899
8a-BoB	OTTER OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL PEL_TRAWL PEL_TRAWL	SBdllart5 SBdllart5 SBdllart5 Inone Inone SBdllart5 SBdllart5 Inone Inone SBdllart5 SBdllart5 SBdllart5 SBdllart5 SBdllart5 SBdllart5	SCO Total BEL FRA Total ESP FRA Total	24 075 24 075 40 472 543 361 280 146 2 022 856	1 254 168 69 240 68 240 12 169 474 705 49 049 2 912 592	353 076 353 076 267 960 2653 380 9 013 1 152 015	72 972 72 972 39 360 86 974 511 234 17 502 543 843 999 1 199 912	2 128 842 81 644 81 644 166 460 83 912 170 849 41 571 89 502 552 294	79 879 79 879 327 390 71 904 490 569 26 516 423 345	3 560 676 132 720 132 720 132 720 203 520 17148 61 750 622 968 15 056 377 857 1 298 299	126 012 126 012 87 659 17 867 445 413 11 858 74 323	135 533 135 533 102 668 66 290 85 125 161 027 301 717 715 827	3 320 968 135 533 135 533 25 448 90 999 109 659 153 527 4 372 208 138 260 5 660	1 049 209 1 049 209 1 112 289 1 112 289 96 96 46 031 1 15 036 23 130 250 029 6 564 75 620	1 071 172 1 071 172 1 27 523 1 27 523 1 27 523 1 21 125 2 3 175 1 4 193 2 0 3 482 9 8 2 2 2 4 2 7 8 4 1 6 2 1 4	1466 779 284 1194 394 1194 394 831 99 753 100 584 128 29 809 1 314 308 445 5 899 355 467
8a-BoB	OTTER OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL	SBcllart5 none SBcllart5 SBcllart5 none Inone Inone SBcllart5 SBcllart5 SBcllart5 SBcllart5 SBcllart5 SBcllart5 SBcllart5	SCO Total BEL FRA Total ESP FRA Total FRA Total FRA Total FRA Total FRA Total FRA Total DEU DNIK ENG ESP FRA IRL NIR NILD SCO Total FRA Total FRA Total	24 075 24 075 40 472 543 361 280 146 2 022 856 2 886 835	1 254 168 68 240 68 240 12 169 474 705 49 049 2 912 592 3 448 508	353 076 353 076 267 960 2 653 380 9 013 1 152 015 4 082 368	72 972 72 972 39 360 86 974 511 234 17 502 543 843 999 1 199 912	2 128 842 81 644 81 644 166 460 83 912 170 849 41 571 89 502 552 294	79 879 79 879 327 390 71 904 490 569 28 516 423 345 1 341 724	3 560 676 132 720 132 720 203 520 17 148 61 750 622 988 15 056 377 857 1 298 299	126 012 126 012 176 012 17867 445 413 11 858 74 323 637 130	135 533 135 533 102 668 65 290 85 125 161 027 715 827	3 320 968 135 533 135 533 135 533 25 448 90 909 103 659 153 527 4 372 208 138 260 5 660 5 18 022	1 049 209 1 049 209 1 112 289 112 289 96 46 031 1 2 036 23 130 250 029 6 564 75 620 414 410 20 694	1071172 1071172 127523 127523 127523 127523 12112 3175 14193 203482 9822 242784 16214	1466 779 284 1194 394 1194 394 831 99 753 100 584 128 39 803 1314 308 445 5 899 355 467
83-B0B	OTTER OTTER OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL PEL_TRAWL PEL_TRAWL POTS	SBcillart5 SBcillart5 Inone Inone SBcillart5 SBcillart5 Inone Inone SBcillart5 Inone	SCO Total BEL FRA Total ESP FRA Total FRA Total FRA Total DEU ESP FRA Total DEU ESP FRA NIC Total FRA Total DEU ENG ESP FRA TOTAL FRA TOTAL FRA TOTAL DEU ENG ESP FRA	24 075 24 075 24 075 40 472 543 361 280 146 2 022 856 2 886 835	1 254 168 69 240 69 240 12 169 474 705 49 049 2 912 592 3 448 508	353 076 353 076 267 960 2 653 380 9 013 1 152 015 4 082 368	72 972 72 972 72 972 39 360 86 974 511 234 17 502 543 843 999 1 199 912	2 128 842 81 644 81 644 166 460 83 912 170 849 41 571 89 502 552 294 9 540 7 423 67 891	79 879 79 879 327 390 71 904 490 569 20 516 423 345 1 341 724	3 560 676 132 720 132 720 132 720 203 520 17 1.48 61 750 62 2968 15 056 377 857 1 298 299 6 150 45 699	126 012 126 012 97 669 17 867 445 413 11 858 74 323 637 130	135 533 135 533 135 533 102 668 65 290 85 125 161 027 715 827 3184 5 260	3 320 968 135 533 135 533 135 533 135 533 135 537 153 527 4 372 208 138 260 5 560 5 18 022	1 049 209 1 049 209 1 112 289 112 289 96 96 46 031 1 3 036 2 3 130 2 50 029 6 564 75 6 20 414 410 2 0 6 94 2 1 33 328	1071172 1071172 127 523 127 523 127 523 127 523 121 12112 3175 14193 203 482 9 822 242 784 16 214 16 214	1466 779 284 1194 394 1194 394 831 397 532 100 584 128 39 809 1 314 308 445 5 899 355 467
8a-BoB	OTTER OTTER OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL PEL_TRAWL PEL_TRAWL PEL_TRAWL POTS	SBdllart5 SBdllart5 SBdllart5 Inone Inone SBdllart5 SBdllart5 Inone Inone SBdllart5 SBdllart5 SBdllart5 SBdllart5 SBdllart5 SBdllart5	SCO Total BEL FRA Total ESP FRA Total FRA Total FRA Total DEU DNIK ENG ESP FRA IRL NIR NILD SCO Total FRA Total Total FRA Total Total	24 075 24 075 40 472 543 361 280 146 2 022 856 2 886 835	1 254 168 68 240 68 240 12 169 474 705 49 049 2 912 592 3 448 508	353 076 353 076 267 960 2 653 380 9 013 1 152 015 4 082 368	72 972 72 972 39 360 86 974 511 234 17 502 543 843 999 1 199 912	2 128 842 81 644 81 644 166 460 83 912 170 849 41 571 89 502 552 294	79 879 79 879 327 390 71 904 490 569 28 516 423 345 1 341 724	3 560 676 132 720 132 720 203 520 17 148 61 750 622 988 15 056 377 857 1 298 299	126 012 126 012 176 012 17867 445 413 11 858 74 323 637 130	135 533 135 533 102 668 65 290 85 125 161 027 715 827	3 320 968 135 533 135 533 135 533 25 448 90 909 103 659 153 527 4 372 208 138 260 5 660 5 18 022	1 049 209 1 049 209 1 112 289 112 289 96 46 031 1 2 036 23 130 250 029 6 564 75 620 414 410 20 694	1071172 1071172 127523 127523 127523 127523 12112 3175 14193 203482 9822 242784 16214	1466 779 284 1194 394 1194 394 831 99 753 100 584 128 39 803 1314 308 445 5 899 355 467
83-B0B	OTTER OTTER OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL PEL_TRAWL PEL_TRAWL POTS	SBdllart5 SBdllart5 Inone Inone SBdllart5 Inone	SCO Total BEL FRA Total ESP FRA Total FRA Total FRA Total FRA Total FRA Total DEU DNIK ENG ESP FRA IRL NLD SCO Total FRA Total DEU ENG FRA Total FRA Total	24 075 24 075 24 075 40 472 543 361 280 146 2 022 856 2 886 835	1 254 168 69 240 69 240 12 169 474 705 49 049 2 912 592 3 448 508	353 076 353 076 267 960 2 653 380 9 013 1 152 015 4 082 368	72 972 72 972 72 972 39 360 86 974 511 234 17 502 543 843 999 1 199 912	2 128 842 81 644 81 644 166 460 83 912 170 849 41 571 89 502 552 294 9 540 7 423 67 891	79 879 79 879 327 390 71 904 490 569 20 516 423 345 1 341 724	3 560 676 132 720 132 720 132 720 203 520 17 1.48 61 750 62 2968 15 056 377 857 1 298 299 6 150 45 699	126 012 126 012 97 669 17 867 445 413 11 858 74 323 637 130	135 533 135 533 135 533 102 668 65 290 85 125 161 027 715 827 3184 5 260	3 320 968 135 533 135 533 135 533 135 533 135 537 153 527 4 372 208 138 260 5 560 5 18 022	1 049 209 1 049 209 1 112 289 1 112 289 96 96 46 031 1 2 096 23 130 250 029 6 564 75 620 41 14 10 20 694 1 33 328 1 33 328	1 071 172 1 071 172 1 127 523 1 127 523 1 127 523 1 127 523 1 12 112 3 175 1 4193 2 03 482 2 242 784 1 6 214 1 6 214 1 11 089 1 11 089 7 8 444	1466 779 284 1194 394 1194 394 831 397 53 100 584 128 99 809 1 314 308 445 5 899 355 467 64 715 64 715 104 635 104 635
8a-BoB	OTTER OTTER OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL PEL_TRAWL PEL_TRAWL PEL_TRAWL POTS	SBcillart5 SBcillart5 Inone Inone SBcillart5 SBcillart5 Inone Inone SBcillart5 SBcillart5 Inone Inone Inone Inone Inone Inone	SCO Total BEL FRA Total ESP FRA Total FRA Total FRA Total DEU DNIK ENG ESP FRA IRL NIR NILD SCO Total FRA Total Total FRA Total Total	24 075 24 075 24 075 40 472 543 361 280 146 2 022 856 2 886 835	1 254 168 69 240 69 240 12 169 474 705 49 049 2 912 592 3 448 508	353 076 353 076 267 960 2 653 380 9 013 1 152 015 4 082 368	72 972 72 972 72 972 39 360 86 974 511 234 17 502 543 843 999 1 199 912	2 128 842 81 644 81 644 166 460 83 912 170 849 41 571 89 502 552 294 9 540 7 423 67 891	79 879 79 879 327 390 71 904 490 569 20 516 423 345 1 341 724	3 560 676 132 720 132 720 132 720 203 520 17 1.48 61 750 62 2968 15 056 377 857 1 298 299 6 150 45 699	126 012 126 012 97 669 17 867 445 413 11 858 74 323 637 130	135 533 135 533 135 533 102 668 65 290 85 125 161 027 715 827 3184 5 260	3 320 968 135 533 135 533 135 533 135 533 135 537 153 527 4 372 208 138 260 5 560 5 18 022	1 049 209 1 049 209 1 112 289 1 12 289 96 46 031 1 3 036 2 3 130 2 5 0 29 6 5 6 4 4 1 4 1 1 0 2 0 6 9 4 2 1 3 3 2 8 1 3 3 2 8	1071172 1071172 127 523 127 523 127 523 121 12112 3175 14 193 203 482 242 784 16 214 16 214 111 089	1466 779 284 1194 394 831 99 753 100 584 128 128 39 809 1 314 308 445 5 899 355 467 64 715 64 715 104 635
8a-BoB	OTTER OTTER OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL PEL_TRAWL PEL_TRAWL POTS	SBdllart5 SBdllart5 Inone Inone SBdllart5 Inone	SCO Total BEL FRA Total ESP FRA Total FRA Total FRA Total FRA Total FRA Total FRA Total DEU DNIK ENG ESP FRA IRL NILD SCO Total FRA Total	24 075 24 075 40 472 543 361 280 146 2 022 856 2 886 835	1 254 168 69 240 68 240 12 169 474 705 49 048 2 912 592 3 448 508	353 076 353 076 267 960 2 653 380 9 013 1 152 015 4 082 368	72 972 72 972 39 360 86 974 511 234 17 552 543 843 999 1 199 912 6 360 53 719 60 079	2 128 842 81 644 81 644 81 644 166 460 83 912 170 849 41 571 89 502 552 294 9 540 7 423 67 891 84 854	79 879 79 879 327 390 71 904 490 569 28 516 423 345 1 341 724 47 060 47 060	3 560 676 132 720 132 720 132 720 203 520 17 149 61 750 62 2 968 15 056 377 857 1 298 299 6 150 45 699 51 849	126 012 126 012 07 669 17 867 445 413 11 858 74 323 637 130 5 190 32 605 37 795	135 533 135 533 135 533 102 668 65 290 85 125 161 027 715 827 715 827	3 320 968 135 533 135 533 135 533 25 448 00 999 109 659 153 527 4 372 208 138 260 5 160 5 18 022	1 049 209 1 049 209 1 112 289 1 112 289 96 96 2 110 289 2 50 029 6 564 75 620 414 410 2 0 694 2 133 328 1 33 328 1 33 328	1071172 1071172 127523 127523 127523 127523 127523 12112 3175 14193 203482 9822 242784 16214 1611089 111089	1466 779 284 1194 394 1194 394 1194 394 1194 394 1195 397 100 584 128 39 809 39 809 39 809 355 467 64 715 64 715 104 635 104 635 113 901 13 901
83-B08	OTTER OTTER OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL PEL_TRAWL PEL_TRAWL POTS POTS POTS	SBcillart5 SBcillart5 SBcillart5 Inone Inone SBcillart5	SCO Total BEL FRA Total ESP FRA Total FRA Total DEU DRIK ENG ESP FRA NILD NIR NILD SCO Total FRA Total FRA Total FRA Total FRA Total FRA Total Total	24 075 24 075 24 075 40 472 543 361 280 146 2 022 856 2 886 835	1 254 168 69 240 69 240 12 169 474 705 49 049 2 912 592 3 448 508	353 076 353 076 267 960 2 653 380 9 013 1 152 015 4 082 368	72 972 72 972 72 972 39 360 86 974 511 234 17 502 543 843 999 1 199 912	2 128 842 81 644 81 644 166 460 83 912 170 849 41 571 89 502 552 294 9 540 7 423 67 891	79 879 79 879 327 390 71 904 490 569 28 516 423 345 1 341 724	3 560 676 132 720 132 720 132 720 203 520 17 1.48 61 750 62 2968 15 056 377 857 1 298 299 6 150 45 699	126 012 126 012 97 669 17 867 445 413 11 858 74 323 637 130	135 533 135 533 135 533 102 668 65 290 85 125 161 027 715 827 3184 5 260 8 444	3 320 968 135 533 135 533 135 533 135 533 135 537 153 527 4 372 208 138 260 5 560 5 18 022	1 049 209 1 049 209 1 112 289 1 112 289 96 96 46 031 1 2 096 23 130 250 029 6 564 75 620 41 14 10 20 694 1 33 328 1 33 328	1071172 1071172 127 523 127 523 127 523 121 12112 9 175 14 193 203 482 242 784 16 214 16 214 111 089 111 089 7 844 7 844	1466 779 284 1194 394 1194 394 1194 394 1194 394 1194 394 128 128 128 128 139 805 1314 308 445 5 899 355 467 64 715 64 715 104 635 104 635 13 901 13 901 13 901
83-BOB	OTTER OTTER OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL PEL_TRAWL PEL_TRAWL POTS POTS POTS TRAMMEL	SBcillart5 SBcillart5 Inone Inone SBcillart5 SBcillart5 Inone Inon	SCO Total BEL FRA Total ESP FRA Total FRA Total FRA Total DEU DNIK ENG ESP FRA IRL NILD SCO Total DEU ENG FRA Total FRA Total DEU ENG FRA Total	24 075 24 075 24 075 40 472 543 361 280 146 2 022 856 2 886 835	1 254 168 68 240 68 240 12 169 474 705 49 048 2 912 592 3 448 508 45 975 45 975	353 076 353 076 267 960 2 653 380 9 013 1 152 015 4 082 368 198 560 198 560	72 972 72 972 72 972 39 360 86 974 511 234 17 502 543 843 999 1199 912 6 360 53 719 60 079	2128 842 81 644 81 644 81 644 166 460 83 912 170 849 41 571 89 502 552 294 9 540 7 423 67 891 84 854	79 879 79 879 79 879 327 390 71 904 490 569 26 516 423 345 1 341 724 47 060 47 060	3 560 676 132 720 132 720 203 520 171.49 61 750 622 968 15 056 377 857 1 298 299 6 150 45 699 51 849	126 012 126 012 126 012 87 669 17 867 445 413 11 858 637 130 5 190 32 605 37 795	135 533 135 533 135 533 102 668 65 290 85 125 161 027 715 827 715 827	3 320 968 135 533 135 533 135 533 135 533 25 448 80 898 109 659 153 527 4 372 208 136 260 5 660 5 18 022 435 546	1 049 209 1 1049 209 1 112 289 1 12 289 96 46 031 1 3 036 2 5 130 2 5 0 029 6 5 6 4 75 6 20 414 410 2 0 6 9 4 2 0 6 9 4 1 3 3 2 8 1 3 3 2 8 2 5 8 1 4 0 0 3 0 4 0 0 3 0	1071172 1071172 127 523 127 523 127 523 127 523 127 523 121 12 12 3175 14193 203 482 242 784 16 214 16 214 111 089 111 089 7 844 7 844	1466 779 284 1194 394 1194 394 1194 394 1194 394 1194 394 128 128 128 1314 398 445 5 899 355 467 64 715 64 715 104 635 104 635 104 635 13 901 13 901 26 100
83-B08	OTTER OTTER OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL PEL_TRAWL PEL_TRAWL POTS POTS POTS TRAMMEL TRAMMEL TRAMMEL	SBdllart5 SBdllart5 Inone Inone SBdllart5 SBdllart5 SBdllart5 SBdllart5 Inone Inone Inone SBdllart5 SBdllart5 SBdllart5 Inone Inone Inone SBdllart5 SBdllart5 SBdllart5 SBdllart5 SBdllart5 SBdllart5 SBdllart5 SBdllart5	SCO Total BEL FRA Total ESP FRA Total FRA Total DEU DRIK ENG ESP FRA NILD SCO Total FRA Total	24 075 24 075 24 075 40 472 543 361 280 146 2 022 856 2 886 835	1 254 168 68 240 68 240 12 169 474 705 49 048 2 912 592 3 448 508 45 975 45 975	353 076 353 076 267 960 2 653 380 9 013 1 152 015 4 082 368 198 560 198 560	72 972 72 972 72 972 39 360 86 974 511 234 17 502 543 843 999 1199 912 6 360 53 719 60 079	2128 842 81 644 81 644 81 644 166 460 83 912 170 849 41 571 89 502 552 294 9 540 7 423 67 891 84 854	79 879 79 879 79 879 327 390 71 904 490 569 26 516 423 345 1 341 724 47 060 47 060	3 560 676 132 720 132 720 203 520 171.49 61 750 622 968 15 056 377 857 1 298 299 6 150 45 699 51 849	126 012 126 012 126 012 87 669 17 867 445 413 11 858 637 130 5 190 32 605 37 795	135 533 135 533 135 533 102 668 65 290 85 125 161 027 715 827 3184 5 260 8 444	3 320 968 135 533 135 533 135 533 135 533 25 448 80 898 109 659 153 527 4 372 208 136 260 5 660 5 18 022 435 546	1 049 209 1 1049 209 1 1049 209 1 112 289 96 96 46 031 1 3 096 2 3 130 2 5 0 6 5 6 4 7 5 6 20 4 14 4 10 2 0 6 9 4 1 3 3 3 2 8 1 3 3 3 2 8 2 5 8 1 2 5 8 1 4 0 0 3 0 4 0 0 3 0 4 0 0 3 0 3 8 8 7 8 1	1071172 1071172 127 523 127 523 127 523 121 523 121 12 112 9 175 14 193 203 482 9 822 242 784 16 214 16 214 111 089 7 844 7 844 7 844 34 867 34 867	1466 779 284 1194 394 831 99 753 100 584 128 128 99 809 1 314 308 445 5 899 355 467 64 715 104 635 104 635 13 901 13 901 26 100 26 100
83-BOB	OTTER OTTER OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL PEL_TRAWL PEL_TRAWL POTS POTS POTS TRAMMEL	SBcillart5 SBcillart5 Inone Inone SBcillart5 SBcillart5 Inone Inon	SCO Total BEL FRA Total ESP FRA Total FRA Total FRA Total DEU DNIK ENG ESP FRA IRL NILD SCO Total DEU ENG FRA Total FRA Total DEU ENG FRA Total	24 075 24 075 24 075 40 472 543 361 280 146 2 022 856 2 886 835	1 254 168 68 240 68 240 12 169 474 705 49 048 2 912 592 3 448 508 45 975 45 975	353 076 353 076 267 960 2 653 380 9 013 1 152 015 4 082 368 198 560 198 560	72 972 72 972 72 972 39 360 86 974 511 234 17 502 543 843 999 1199 912 6 360 53 719 60 079	2128 842 81 644 81 644 81 644 166 460 83 912 170 849 41 571 89 502 552 294 9 540 7 423 67 891 84 854	79 879 79 879 79 879 327 390 71 904 490 569 26 516 423 345 1 341 724 47 060 47 060	3 560 676 132 720 132 720 203 520 171.49 61 750 622 968 15 056 377 857 1 298 299 6 150 45 699 51 849	126 012 126 012 126 012 87 669 17 867 445 413 11 858 637 130 5 190 32 605 37 795	135 533 135 533 135 533 102 668 65 290 85 125 161 027 715 827 3184 5 260 8 444	3 320 968 135 533 135 533 135 533 135 533 25 448 80 898 109 659 153 527 4 372 208 136 260 5 660 5 18 022 435 546	1 049 209 1 1049 209 1 112 289 1 12 289 96 46 031 1 3 036 2 5 130 2 5 0 029 6 5 6 4 75 6 20 414 410 2 0 6 9 4 2 0 6 9 4 1 3 3 2 8 1 3 3 2 8 2 5 8 1 4 0 0 3 0 4 0 0 3 0	1071172 1071172 127 523 127 523 127 523 127 523 127 523 121 12 12 3175 14193 203 482 242 784 16 214 16 214 111 089 111 089 7 844 7 844	1466 779 284 1194 394 1194 394 1194 394 1194 394 1194 394 128 128 128 1314 398 445 5 899 355 467 64 715 64 715 104 635 104 635 13 901 13 901 13 901 26 100
83-B0B	OTTER OTTER OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL PEL_TRAWL PEL_TRAWL POTS POTS POTS TRAMMEL TRAMMEL TRAMMEL	SBdllart5 SBdllart5 Inone Inone SBdllart5 SBdllart5 SBdllart5 SBdllart5 Inone Inone Inone SBdllart5 SBdllart5 SBdllart5 Inone Inone Inone SBdllart5 SBdllart5 SBdllart5 SBdllart5 SBdllart5 SBdllart5 SBdllart5 SBdllart5	SCO Total BEL FRA Total ESP FRA Total FRA Total DEU DEU DEU DEU DEU DEU DEU DEU DEU DE	24 075 24 075 24 075 40 472 543 361 280 146 2 022 856 2 886 835 66 990 66 990 52 478	1 254 168 68 240 68 240 12 169 474 705 49 049 2 912 592 3 448 508 45 975 45 975 89 723 89 723	267 960 267 960 2 653 380 9 013 1 152 015 4 082 368 199 560 199 560	72 972 72 972 72 972 39 360 86 974 511 234 17 502 543 843 999 1 199 912 6 360 53 719 60 079	2 128 842 81 644 81 644 81 644 166 460 83 912 170 849 41 571 89 502 552 294 9 540 7 423 67 891 84 854 175 397 175 397	79 879 79 879 327 390 71 904 490 569 28 516 423 345 1 341 724 47 060 47 060 290 396	3 560 676 132 720 132 720 132 720 203 520 17 1.48 61 750 622 968 15 056 15 056 377 857 1 296 299 6 150 45 699 51 849	126 012 126 012 17 669 17 867 445 413 11 858 74 323 637 130 5 190 32 605 37 795 531 259	135 533 135 533 135 533 102 668 65 290 85 125 161 027 301 717 715 827 3184 5 260 8 444 108 435 546 435 654	3 320 968 135 533 135 533 135 533 135 533 135 533 135 533 135 537 4 372 208 138 260 5 560 5 18 022 5 260 5 260 4 35 546 4 35 546	1 049 209 1 1049 209 1 1049 209 1 112 289 96 96 46 031 1 3 096 2 3 130 2 5 0 6 5 6 4 7 5 6 20 4 14 4 10 2 0 6 9 4 1 3 3 3 2 8 1 3 3 3 2 8 2 5 8 1 2 5 8 1 4 0 0 3 0 4 0 0 3 0 4 0 0 3 0 3 8 8 7 8 1	1071172 1071172 127 523 127 523 127 523 127 523 121 12 112 2175 14 193 203 482 242 784 16 214 16 214 111 089 7 844 7 844 7 844 34 867 368 905 368 905	1466 779 284 1194 394 831 99 753 100 584 128 128 99 809 1 314 308 445 5 899 355 467 64 715 104 635 104 635 13 901 13 901 26 100 26 100
8a-BoB	OTTER OTTER OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL PEL_TRAWL PEL_TRAWL POTS POTS POTS TRAMMEL TRAMMEL TRAMMEL	SBcillart5 SBcillart5 Inone Inone SBcillart5 SBcillart5 Inone Inon	SCO Total BEL FRA Total ESP FRA Total FRA Total FRA Total DEU ENG ESP FRA IRL NIR NLD SCO Total DEU ENG FRA Total FRA Total FRA Total FRA Total	24 075 24 075 24 075 40 472 543 361 280 146 2 022 856 2 886 835	1 254 168 68 240 68 240 12 169 474 705 49 048 2 912 592 3 448 508 45 975 45 975	353 076 353 076 267 960 2 653 380 9 013 1 152 015 4 082 368 198 560 198 560	72 972 72 972 72 972 39 360 86 974 511 234 17 502 543 843 999 1199 912 6 360 53 719 60 079	2128 842 81 644 81 644 81 644 166 460 83 912 170 849 41 571 89 502 552 294 9 540 7 423 67 891 84 854	79 879 79 879 79 879 327 390 71 904 490 569 26 516 423 345 1 341 724 47 060 47 060	3 560 676 132 720 132 720 203 520 171.49 61 750 622 968 15 056 377 857 1 298 299 6 150 45 699 51 849	126 012 126 012 126 012 87 669 17 867 445 413 11 858 637 130 5 190 32 605 37 795	135 533 135 533 135 533 102 668 65 290 85 125 161 027 715 827 3184 5 260 8 444	3 320 968 135 533 135 533 135 533 135 533 25 448 80 898 109 659 153 527 4 372 208 136 260 5 660 5 18 022 435 546	1 049 209 1 1049 209 1 1049 209 1 112 289 96 96 46 031 1 3 096 2 3 130 2 5 0 6 5 6 4 7 5 6 20 4 14 4 10 2 0 6 9 4 1 3 3 3 2 8 1 3 3 3 2 8 2 5 8 1 2 5 8 1 4 0 0 3 0 4 0 0 3 0 4 0 0 3 0 3 8 8 7 8 1	1071172 1071172 127 523 127 523 127 523 121 523 121 12 112 9 175 14 193 203 482 9 822 242 784 16 214 16 214 111 089 7 844 7 844 7 844 34 867 34 867	1466 779 284 1194 394 1194 394 1194 394 1194 394 128 128 128 128 139 809 1314 308 445 5 899 355 467 64 715 104 635 104 635 104 635 13 901 13 901 26 100 26 100 377 620
83-B0B 83-B0B	OTTER OTTER OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL PEL_TRAWL PEL_TRAWL POTS POTS POTS TRAMMEL TRAMMEL TRAMMEL TRAMMEL TRAMMEL TRAMMEL	SBcillart5 SBcillart5 SBcillart5 SBcillart5 SBcillart5 SBcillart5 None None SBcillart5 SBcillart5 None SBcillart5 None SBcillart5 None SBcillart5 SBcillart5 None SBcillart5 None SBcillart5 None	SCO Total BEL FRA Total ESP FRA Total FRA Total FRA Total DEU DNIK ENG ESP FRA IRL NLD SCO Total FRA Total ESP FRA Total FRA Total	24 075 24 075 24 075 40 472 543 361 280 146 2 022 856 2 886 835 66 990 66 990 52 478	1 254 168 69 240 68 240 12 169 474 705 49 048 2 912 592 3 448 508 45 975 45 975 45 975 99 723	353 076 353 076 267 960 2 653 380 9 013 1 152 015 4 082 368 198 560 198 560 479 552	72 972 72 972 72 972 39 360 86 974 511 234 17 502 543 843 999 1 199 912 6 360 53 719 60 079	2 128 842 81 644 81 644 81 644 166 460 83 912 170 849 41 571 89 502 552 294 9 540 7 423 67 891 175 397 175 397	79 879 79 879 79 879 327 390 71 904 490 569 28 516 423 345 1 341 724 47 060 47 060 290 396 290 396	3 560 676 132 720 132 720 132 720 203 520 17 149 61 750 622 968 15 056 377 857 1 298 299 6150 45 699 51 849	126 012 126 012 07 669 17 867 445 413 11 858 74 323 637 130 5 190 32 605 37 795 531 259 23 268	135 533 135 533 135 533 102 668 65 230 85 125 161 027 715 827 715 827 3 184 5 260 8 444	3 320 968 135 533 135 533 25 448 00 909 109 659 153 527 4 372 208 138 260 5 560 5 560 5 260 4 35 546 4 35 546	1 049 209 1 1049 209 1 1049 209 1 112 289 96 96 46 031 1 3 096 2 3 130 2 5 0 6 5 6 4 7 5 6 20 4 14 4 10 2 0 6 9 4 1 3 3 3 2 8 1 3 3 3 2 8 2 5 8 1 2 5 8 1 4 0 0 3 0 4 0 0 3 0 4 0 0 3 0 3 8 8 7 8 1	1071172 1071172 1071172 127523 127523 127523 127523 12112 3175 14193 203482 9822 242784 16214 16214 16244 1634 34867 34867 34867 34867 34867 34867 34867	1466 779 284 1194 394 1194 394 1194 394 1194 394 128 128 128 138 139 808 1314 308 445 5 899 355 467 64 715 104 635 104 635 13 901 13 901 26 100 26 100 377 620 377 620
8a-bob	OTTER OTTER OTTER PEL_SEINE PEL_SEINE PEL_SEINE PEL_SEINE PEL_TRAWL PEL_TRAWL PEL_TRAWL POTS POTS TRAMMEL TRAMMEL TRAMMEL TRAMMEL TRAMMEL TRAMMEL	sBdillart5 sBdillart5 sBdillart5 sBdillart5 sBdillart5 sBdillart5 none none sBdillart5 none sBdillart5 none sBdillart5 sBdillart5 none sBdillart5 sBdillart5 none sBdillart5 sBdillart5 none	SCO Total BEL FRA Total ESP FRA Total	24 075 24 075 24 075 40 472 543 361 280 146 2 022 856 2 886 835 66 990 66 990 52 478	1 254 168 69 240 68 240 12 169 474 705 49 048 2 912 592 3 448 508 45 975 45 975 45 975 99 723	353 076 353 076 267 960 2 653 380 9 013 1 152 015 4 082 368 198 560 198 560 479 552	72 972 72 972 72 972 39 360 86 974 511 234 17 502 543 843 999 1 199 912 6 360 53 719 60 079	2 128 842 81 644 81 644 81 644 166 460 83 912 170 849 41 571 89 502 552 294 9 540 7 423 67 891 175 397 175 397	79 879 79 879 79 879 327 390 71 904 490 569 28 516 423 345 1 341 724 47 060 47 060 290 396 290 396	3 560 676 132 720 132 720 132 720 203 520 17 149 61 750 622 968 15 056 377 857 1 298 299 6150 45 699 51 849	126 012 126 012 07 669 17 867 445 413 11 858 74 323 637 130 5 190 32 605 37 795 531 259 23 268	135 533 135 533 135 533 102 668 65 230 85 125 161 027 715 827 715 827 3 184 5 260 8 444	3 320 968 135 533 135 533 25 448 00 909 109 659 153 527 4 372 208 138 260 5 560 5 560 5 260 4 35 546 4 35 546	1 049 209 1 1049 209 1 1049 209 1 112 289 96 96 46 031 1 3 096 2 3 130 2 5 0 6 5 6 4 7 5 6 20 4 14 4 10 2 0 6 9 4 1 3 3 3 2 8 1 3 3 3 2 8 2 5 8 1 2 5 8 1 4 0 0 3 0 4 0 0 3 0 4 0 0 3 0 3 8 8 7 8 1	1071172 1071172 127523 127523 127523 127523 127523 12112 3175 14193 203482 242784 16214 16214 16214 111089 7844 7844 7844 34867 34867 368905	1466 779 284 1194 394 1194 394 1194 394 1194 394 128 128 128 138 139 808 1314 308 445 5 899 355 467 64 715 104 635 104 635 13 901 13 901 26 100 26 100 377 620 377 620

Table 5.10.1.10 – Bay of Biscay – 8b - Trend in GT*days at sea by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2000-2012. Derogations are sorted by gear, special condition (SPECON), and country (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

Bb-BoB BEAM SBciliart5 Total	246 721 246 721 21 909 3 116 25 025 - - 3 405 3 405 513 513 513	25 25 251746 251746 43 928 43 928 1 550 1 550 809	70 70 194 669 194 669 104 23 852 448 24 404 20 995 20 995 26 2 4 474 4 736
Bit Bear Beam B	21 909 3 116 25 025 - 3 405 3 405 513 513 162 668 3 662	251 746 251 746 43 928 43 928	194 669 194 669 104 23 852 448 24 404 20 995 20 995 262 4 474
Sh-BoB BEAM ShellartS Total	21 909 3 116 25 025 - 3 405 3 405 513 513 162 668 3 662	251 746 43 928 43 928 	194 669 104 23 852 448 24 404 20 995 20 995 262 4 474
Bit Bob Bit	21 909 3 116 25 025 - - 3 405 3 405 513 513 162 668 3 662	43 928 43 928 - - 1 550 1 550 809	104 23 852 448 24 404 20 995 20 995 262 4 474
Bit	3 116 25 025 - 3 405 3 405 513 513 162 668 3 662	1 550 1 550 809	23 852 448 24 404 20 995 20 995 262 4 474
Bb-BoB DEM_SEINE none Total	3 116 25 025 - 3 405 3 405 513 513 162 668 3 662	1 550 1 550 809	24 404 20 995 20 995 262 4 474
Bb-Bob DEM_SEINE SBdillart5 FRA	3 405 3 405 513 513 162 668 3 662	1 550 1 550	20 995 20 995 262 4 474
Bb-Bob DREDGE None ESP Sb-Bob DREDGE None Total - 24 2444 279 977 7562 7898 3831 4195 4195	3 405 513 513 162 668 3 662	1 550 809	20 995 262 4 474
Bb-BoB DREDGE none ESP FRA 24 2444 279 977 7562 7898 3831 4195 4195	3 405 513 513 162 668 3 662	1 550 809	262 4 474
Bb-BoB FRA 24 2444 279 977 7562 7898 3831 4195 4195	3 405 513 513 162 668 3 662	1 550 809	4 474
Bb-BoB DREDGE None Total - 24 2444 279 977 7.562 7.898 3.831 4.195 4.195	3 405 513 513 162 668 3 662	1 550 809	
Sb-BoB GILL SBcIllartS FRA Sb-BoB GILL SBcIllartS FRA Sb-BoB GILL SBcIllartS Total Sb-BoB GILL SBcIllartS FRA Sb-BoB GILL SbcIllartS GallartS Ga	513 162 668 3 662		
Sb-BoB GILL SBcIllartS FRA Sb-BoB GILL SBcIllartS FRA Sb-BoB GILL SBcIllartS Total Sb-BoB GILL SBcIllartS FRA Sb-BoB GILL SbcIllartS GallartS Ga	513 162 668 3 662		1 781
Bb-BoB ESP FRA 76 138 94 196 378 328 73 564 76 740 199 742 209 516 181 784 182 323	3 662		1 781
Seb-Bob Franch	3 662		
Bb-BoB SCO 1524 1456	3 662	93 898	58 914 62 761
Bb-BoB GILL SBdIllart5 FRA	166 330	451	02 701
SB-B0B GILL SBdHartS Total		94 349	121 675
Bb-BoB	28 799	34174	45 208
Bb-BoB ESP	28 799	34 174	45 208
Sb-BoB FRA 1943 11901 60 892 11163 11176 30 294 34170 35 334 24 677 24 677			404.074
8b-BoB SCO 550 8b-BoB LONGLINE none Total 1 943 11 901 60 892 11 163 15 944 31 285 37 787 43 828 27 259 24 677 8b-BoB LONGLINE SBdillart5 FRA In 1943 In 1943 <td>89 333</td> <td>90 663</td> <td>191 071 63 770</td>	89 333	90 663	191 071 63 770
8b-BoB LONGLINE none Total 1 943 11 901 60 892 11 163 15 944 31 285 37 787 43 828 27 259 24 677 8b-BoB LONGLINE SBdlliart5 FRA			
	89 333	90 663	254 841
	4 439	6 705	12 110
	4 439	6 705	12 110
8b-BoB OTTER none ENG 13549 42681 28110 31001		4 786	10 668
8b-BoB ESP			1 132 888
8b-BoB FRA 350 727 302 879 1 368 396 295 996 321 613 729 816 729 838 814 028 772 189 770 900 8b-BoB IRL 2 520 1450	142 103	249 768	180 412
	142 103	254 554	1 323 968
8b-BoB OTTER SBdllart5 BEL			747
	378 130 378 130	296 298 296 298	395 077 395 077
ALD-D. DELCENT AND FOO			407.404
8b-BoB PEL_SEINE none ESP	23 314	14 786	197 401 30 027
8b-BoB PEL_SEINE none Total 5.799 26.459 68.080 23.108 41.802 34.345 56.725 28.751 26.699 26.699	23 314	14 786	227 428
8b-BoB			
8b-BoB ENG 33162 6 093 23 279 8b-BuB ESP			1 982
8b-BoB FRA 200 327 184 181 1 542 444 182 704 85 132 251 242 383 614 247 545 112 229 108 524	88 266	59 344	96 555
8b-BoB IRL 18 343 16 186 26 140 53 739 45 144 26 261 16 751 8 752 8b-BoB NLD 35 892 34 126 2 180 26 250 9 668		6 548	
8b-BoB PEL_TRAWI none Total 200 327 238 416 1 592 756 211 024 172 033 302 479 448 205 264 296 1 30 649 1 31 803	88 266	65 892	98 537
8b-BoB PEL_TRAWL SBdillart5 FRA	9 008	11 120	19 838
8b-BoB PEL_TRAWL SBcillart5 Total	9 008	11 120	19 838
8b-8oB POTS none ESP			246
8b-BoB POTS none Total 3761 1731 5920 5913 5910 2106 3877 5674 306 306 8b-BoB POTS none Total 3761 1731 5920 5913 5910 2106 3877 5674 306 306	2 208 2 208	2 630 2 630	1 451 1 697
8b-BoB POTS SBdlliart5 FRA 8b-BoB POTS SBdlliart5 Total	3 383	2 478 2 478	6 415 6 415
N. D. TRAUME			705
8b-BoB TRAMMEL none ESP 50.00 15.00	23 479	20 151	785 49 844
8b-BoB TRAMMEL none Total 70 964 86 134 436 524 157 116 156 696 363 199 402 465 375 874 373 502 373 038	23 479	20 151	50 629
	367 288	373 075	436 472
8b-B0B TRAMMEL SBcillart5 Total	367 288	373 075	436 472
8b-8oB none none ESP			40 841
8b-BoB FRA 50 707 54 330 205 660 49 925 51 452 69 122 24 471 14 195 21 166 21 166 8b-BoB IRL 15 840		8 645	
8b-BoB none none Total 50.707 54.330 205.660 49.925 51.452 84.962 24.471 14.195 21.166 21.166			
8b-BoB none SBCIIIARTS FRA		8 645	40 841
8b-BoB none SBCIIIARTS Total · · · · · · · · · · · · · · · · · · ·	-	8 645	40 841

Table 5.10.1.11 – Bay of Biscay – 8a - Trend in Number of vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2000-2012. Derogations are sorted by gear, special condition (SPECON), and country (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

REG AREA COD	REG GEAR COD	SPECON	COUNTRY	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
8a-BoB	BEAM	none	BEL	4	4	7	11	19	20							
8a-BoB			ENG									1				
8a-BoB			FRA				1	4	1	1					2	
8a-BoB 8a-BoB	BEAM	none	NLD Total	4	6	7	12	23	21	1		1			2	
od DOD	DEAN	none	10001	-			12	23	21							
8a-BoB	BEAM	SBcIllart5	BEL							18	20	14	18	13	15	14
8a-BoB			FRA											1		
8a-BoB	BEAM	SBcIllart5	Total							18	20	14	18	14	15	14
8a-BoB	DEM_SEINE	NONE	FRA											5	5	2
8a-BOB	DEM_SEINE	NONE	NLD										1	5	3	2
	DEM_SEINE	none	Total										1	5	5	2
	DEM_SEINE	SBCIIIART5													1	5
8a-BoB	DEM_SEINE	SBCIIIART5	Total												1	5
8a-BoB	DREDGE	none	FRA	166	143	169	193	117	136	80	84	102	92	61	61	56
8a-BoB	DILLOGE	Horic	IRL	100	2-10	203	4	221	200			101	72	01	0.2	
8a-BoB			sco		3											
8a-BoB	DREDGE	none	Total	166	146	169	197	117	136	80	84	102	92	61	61	56
8a-BoB	DREDGE	SBcIIIart5	FRA											9	10	27
8a-BoB	DREDGE	SBcIllart5	Total											9	10	27
															10	
8a-BoB	GILL	none	ENG					1	1	3	3	3	3	3	1	3
8a-BoB			ESP													8
8a-BoB 8a-BoB			FRA SCO	67	53	79	48	63	67	92	72 1	75	74	36	36	23 1
8a-BoB 8a-BoB	GILL	none	Total	67	53	79	49	2 66	69	96	76	79	78	40	38	35
				, , , , , , , , , , , , , , , , , , ,	- 55		3	- 50	33			.,,		0	50	- 5.5
8a-BoB	GILL	SBcIllart5	FRA											20	18	23
8a-BoB	GILL	SBcIllart5	Total											20	18	23
8a-BoB 8a-BoB	LONGLINE	none	ENG ESP				2	2	3	2	2	1				111
8a-BOB			FRA	16	17	21	18	28	29	55	50	49	33	41	38	34
8a-BoB			IRL						1	1						
8a-BoB			sco		1					1	1	2		1	2	1
8a-BoB	LONGLINE	none	Total	16	18	21	20	30	33	59	53	52	33	42	40	146
8a-BoB	LONGLINE	SBcIllart5	FRA											8	7	16
8a-BoB	LONGLINE	SBcIllart5	Total											8	7	16
8a-BoB	OTTER	none	DNK	2							1		2			
8a-BoB			ENG				2	2		2			2	1	2	
8a-BoB 8a-BoB			ESP FRA	202	238	210	230	276	326	470	457	334	276	128	117	10 94
8a-BoB			IRL	202	1	1	250	1	326	1	437	334	276	120	11/	54
8a-BoB			NIR										1			
8a-BoB			sco			1										1
8a-BoB	OTTER	none	Total	204	239	212	232	279	326	473	458	334	281	129	119	105
8a-BoB	OTTER	SBcIllart5	BEL													1
04-505	OTTER	Spaniares	FRA											85	77	95
8a-BoB	OTTER	SBcIllart5	Total											85	77	95
8a-BoB 8a-BoB	PEL_SEINE	none	ESP FRA	10	2.0	20	17	20	10	10	10	2.0	1.0	10	21	2
	PEL_SEINE	none	Total	10 10	14	20 20	17 17	26 26	18	18 18	18 18	14	14	13 13	21 21	21
				10		LU		LU	10	10	10			10		
8a-BoB	PEL_SEINE	SBcIllart5	FRA											1		1
8a-BoB	PEL_SEINE	SBcIllart5	Total											1		1
8a-BoB 8a-BoB	PEL_TRAWL	none	DEU	4	2	3	3	3	4	4	9	2	1	2	2	1
8a-BoB			ENG	-			3	4	3	2	2	3	4	3	2	-
8a-BoB			ESP													1
8a-BoB			FRA	244	128	63	100	103	104	77	76	21	27	35	38	38
8a-BoB 8a-BoB			IRL	2	2	8	3	1	2	2	1		1	1		2
8a-BoB 8a-BoB			NIR	12	13	11	10	4	6	8	2	3	2	2	1	
8a-BoB			SCO	2			1						1			
8a-BoB	PEL_TRAWL	none	Total	268	148	85	120	115	119	94	90	30	38	44	44	42
8a-BoB 8a-BoB	PEL_TRAWL	SBcIllart5	FRA Total											12	8	15
ua-DUD	FEL_INAVVL	Speniares	ıvtar											12	8	15
8a-BoB	POTS	none	DEU				1	1		2	2	1				
8a-BoB			ENG					1								
8a-BoB			FRA	13	16	15	19	16	12	16	11	4	4	40	39	27
8a-BoB	POTS	none	Total	13	16	15	20	18	12	18	13	5	4	40	39	27
8a-BoB	POTS	SBcIllart5	FRA											0	0	10
	POTS	SBcIllart5	Total											4	9	13 13
8a-BoB	TRAMMEL	none	ENG									1				
8a-BoB			FRA	32	37	43	42	62	67	87	109	116	131	23	21	15
8a-BoB	TRAMMEL	none	Total	32	37	43	42	62	67	87	109	117	131	23	21	15
8a-BoB	TDAMAGE	SBcIllart5	FRA											72	70	70
		, committee														70
8a-BoB	TRAMMEL	SBcIllart5	Total											72	70	
8a-BoB		SBcIllart5	Total											72	70	
8a-BoB		sBcillart5	ESP											72		11
8a-BoB 8a-BoB	none	none	ESP FRA	59	65	61	52	41	41	41	41	59	59	72	38	11
8a-BoB	TRAMMEL		ESP	59 59	65 65	61 61	52 52	41 41	41 41	41 41	41 41	59 59	59 59	-		
8a-BoB 8a-BoB 8a-BoB	TRAMMEL none none	none	ESP FRA Total											-	38	11
8a-BoB 8a-BoB 8a-BoB	none	none	ESP FRA Total											-	38	11

Table 5.10.1.12 – Bay of Biscay – 8b - Trend in Number of vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2000-2012. Derogations are sorted by gear, special condition (SPECON), and country (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

REG AREA COI	D REG GEAR COL	SPECON	COUNTRY	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
8b-BoB 8b-BoB	BEAM	none	BEL FRA	14	19	20	17	19	23		1				1	1
8b-BoB 8b-BoB	BEAM	none	NLD Total	44	8 27	20	47	40	22							
				14	21	20	17	19	23		1				1	1
8b-BoB	BEAM BEAM	SBcIllart5 SBcIllart5	BEL Total							16 16	19 19	14	18 18	13 13	15 15	13 13
8b-BoB	DEM SEINE		ESP													
8b-BoB	DEIM_SEIINE	none	FRA											4	5	1 3
8b-BoB 8b-BoB	DEM_SEINE	none	NLD Total										1	5	5	1 5
													_			
8b-BoB 8b-BoB	DEM_SEINE DEM_SEINE	SBcIllart5 SBcIllart5	FRA Total													4
8b-BoB	DREDGE	none	ESP													1
8b-BoB		none	FRA		1	2	1	8	28	19	24	31	31	17	23	20
8b-BoB	DREDGE	none	Total		1	2	1	8	28	19	24	31	31	17	23	21
8b-BoB	DREDGE	SBcIllart5	FRA											5	8	10
8b-BoB	DREDGE	SBcIllart5	Total											5	8	10
8b-BoB 8b-BoB	GILL	none	ENG ESP						1	1	1					9
8b-BoB			FRA	25	45	39	32	31	56	60	55	55	56	28	20	16
8b-BoB 8b-BoB	GILL	none	SCO Total	25	45	39	32	32	57	61	56	1 56	56	29	21	25
ol- n - n	CILL															
8b-BoB 8b-BoB	GILL	SBcIllart5 SBcIllart5	FRA Total											19 19	17 17	23 23
8b-BoB	LONGLINE	none	ENG					1	1	1	1	1				
8b-BoB	LONGLINE	none	ESP													106
8b-BoB 8b-BoB			FRA IRL	4	8	17	12	11	26	35	25 1	24	15	31	27	21
8b-BoB	LONGUNE		sco				40	40	07	25		1		-	07	407
8b-BoB	LONGLINE	none	Total	4	8	17	12	12	27	36	27	26	15	31	27	127
8b-BoB 8b-BoB	LONGLINE	SBcIllart5	FRA Total											7	9 9	17 17
05-505	LONGENAE	3BCIIIai C3	Total												,	17
8b-BoB 8b-BoB	OTTER	none	ENG ESP				2	2	2	2					1	1 15
8b-BoB 8b-BoB			FRA IRL	86	62	68 2	64	74	123	155 1	138	135	158	44	39	33
8b-BoB	OTTER	NONE	Total	86	62	70	66	76	125	158	138	135	158	44	40	49
8b-BoB	OTTER	SBcIllart5	BEL													1
			FRA											45	48	62
8b-BoB	OTTER	SBcIllart5	Total											45	48	62
8b-BoB 8b-BoB	PEL_SEINE	none	ESP FRA	4	14	10	9	10	8	13	7	7	7	6	6	83
8b-BoB	PEL_SEINE	none	Total	4	14	10	9	10	8	13	7	7	7	6	6	89
8b-BoB	PEL TRAWL	none	DEU							1						
8b-BoB	_		ENG					2	1				2			2
8b-BoB 8b-BoB			ESP FRA	106	82	91	94	93	158	178	80	32	44	22	23	1 16
8b-BoB 8b-BoB			IRL NLD		3	10 3	2	2	3	2	2	1			1	
8b-BoB	PEL_TRAWL	none	Total	106	87	104	97	97	162	182	82	34	46	22	24	17
8b-BoB	PEL_TRAWL	SBcIllart5	FRA											7	9	11
8b-BoB	PEL_TRAWL	SBcIllart5	Total											7	9	11
8b-BoB	POTS	none	ESP													3
8b-BoB 8b-BoB	POTS	none	FRA Total	2	2	1	3	5 5	2	11 11	5 5	2	2 2	11 11	11 11	5 8
8b-BoB 8b-BoB	POTS	SBcIllart5 SBcIllart5	FRA Total											4	6 6	6 6
8b-BoB	TRAMMEI	none	ESP													3
8b-BoB	TRAMMEL	none	FRA	38	36	46	46	54	66	90	103	111	104	12	13	7
8b-BoB	TRAMMEL	none	Total	38	36	46	46	54	66	90	103	111	104	12	13	10
8b-BoB	TRAMMEL	SBcIllart5	FRA											61	67	77
8b-BoB	TRAMMEL	SBcIllart5	Total											61	67	77
8b-BoB	none	none	ESP	00	0.1	00	70	70	0.5	0.2	47	C1	C1		20	30
8b-BoB 8b-BoB			FRA IRL	93	81	98	79	76	95 1	81	47	61	61		29	
8b-BoB	none	NONE	Total	93	81	98	79	76	96	81	47	61	61		29	30
8b-BoB	none	SBCIIIARTS													4	
8b-BoB	none	SBCIIIART5	fotal												4	

5.10.2 ToR 1.b Fishing capacity in GT of relevant vessels by Member State and fisheries

Fishing capacity in GT is only available for Belgian vessels since 2003 consequently trend in fishing capacity GT is only represented for the Belgium beam trawl fleet. STECF 13-13 observed a relative stability of Fishing capacity on the period for these fleet in the two ICES division 8a and 8b.

STECF 13-13 noted that fishing capacity was provided by Spain in 2012 in GT and for French in 2012 but in kW as this field is asked as kW or GT depending of the area and then has difficulties to be filled in.

Table 5.10.2.1 – Bay of Biscay 8a - Trend in Fishing capacity (GT) concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2000-2012. Derogations are sorted by gear, special condition (SPECON), and country (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

REG AREA COD	REG GEAR COD	SPECON	COUNTRY	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
8a-BoB	BEAM	none	BEL				3 955	6 945	7 526							
8a-BoB	BEAM	SBcIllart5	BEL							6 611	7 237	5 118	6 957	4 9 4 6	5 661	5 197
8a-BoB	OTTER	SBCIllart5	BEL													284

Table 5.10.2.2 – Bay of Biscay – 8b - Trend in Fishing capacity (GT) concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2000-2012. Derogations are sorted by gear, special condition (SPECON), and country (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

REG AREA COD	REG GEAR COD	SPECON	COUNTRY	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
8b-BoB	BEAM	none	BEL				6 295	6 944	8 226							
8b-BoB	BEAM	SBcIllart5	BEL							5 781	6 871	5 118	6 591	4 9 4 6	5 661	4913
8b-BoB	OTTER	SBCIIIart5	BEL													284

5.10.3 ToR 1.c Catches (landings and discards) of common sole in weight and numbers at age by fisheries

The following section provides quantities of common sole landings by fisheries for the ICES division 8a and 8b. Discard estimates are scarce. Discards estimates available are presented below with their coverage index. They have been most calculated only for Belgium beam trawl fleet since 2009 until 2011. No sole discards estimates are available in 2012. Some discards estimates have been calculated for 2010 and 2011 for other fleets but presented commonly bad coverage index and are, as well, dubious in some cases. So care is required in the use of these data to draw firm conclusions about catch composition. STECF 13-13 notes that information collected on discards is incomplete, so the apparent absence of discards in the figures for a given species/gear does not necessarily mean zero discards.

Apart from the Belgium beam trawl fleet (2% of the catches in 8a and 20% in 8b) <u>almost all sole landings are French</u>. Spanish fleets have few sole landings. The main French fleets involve in common sole catches in 8a are the trammel net fleet (62%, increasing on the period), the otter trawl fleet (34% in 2012, stable on the period), and the gill net fleet (2%, decreasing on the period). The main French fleets involve in common sole catches in 8b are the trammel net fleet (60%, increasing on the period), the otter trawl fleet (16%, stable on the period) and the gill net fleet (2%, decreasing on the period).

The catches (landings and discards) of sole in weight and numbers at age by fisheries are scarce and are almost available only for Belgium beam trawl fleet on the period. This information could be finding in the appendixes.

Table 5.10.3.1 – Bay of Biscay – 8a - Trend in total landings (t) for common sole for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2003-2012. Derogations are sorted by gear (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

Length Class	SPECIES	REG_AREA	REG_GEAR	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
o. 10m.	SOL	8a-BoB	BEAM	23	27	33	67	73	16	38	36	20	35
			DEM_SEINE								0	1	1
			DREDGE	2	2	2	2	3	2	2	0	1	0
			GILL	142	185	222	189	119	127	127	95	56	31
			LONGLINE		4	10	8	0	0	0	2	0	0
			OTTER	522	567	592	693	712	564	561	491	551	513
			PEL_SEINE				0						
			PEL_TRAWL	2	0	0	0	1	5	5	1	4	2
			POTS	0			0				0	2	0
			TRAMMEL	489	616	787	1 008	932	1 124	1 124	795	1 171	944
			none				5	0	0	0		0	
Sum o.10m.				1 181	1 401	1 647	1 972	1 841	1 839	1 857	1 422	1 805	1 525

Table 5.10.3.2 – Bay of Biscay – 8a – Discards estimates (t) and their coverage index for common sole for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2003-2012. Derogations are sorted by gear and SPECON (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

Length Class	SPECIES	REG_AREA	REG_GEAR	SPECON	2009 L	2009 D	2009 R	2009 DQI	2010 L	2010 D	2010 R	2010 DQI	2011 L	2011 D	2011 R	2011 DQI	2012 L	2012 D	2012 R	2012 DQI
o. 10m.	SOL	8a-BoB	BEAM	none									0							
			BEAM	SBcIllart5	38	1	0,025	Α	36	2	0,060	Α	19	0	0,023	Α	35			
			GILL	none	127				7	-	0,000	C	6				6			
			GILL	SBcIllart5					88	0	0,001	C	50				25			
			OTTER	none	561				125	5 877	0,979	C	153				100			
			OTTER	SBcIllart5					366	210	0,365	С	398				413			
			TRAMMEL	none	1124				22	0	0,001	В	17	0	0,010	В	6			
			TRAMMEL	SBcIllart5					773	0	0,000	С	1 154	7	0,006	С	938			

Table 5.10.3.3 – Bay of Biscay – 8b - Trend in total landings (t) for common sole for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2003-2012. Derogations are sorted by gear (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

Length Class	SPECIES	REG_AREA	REG_GEAR	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
o. 10m.	SOL	8b-BoB	BEAM	273	292	316	313	325	271	324	416	365	351
			DEM_SEINE									0	0
			DREDGE	0		0	0	0	0	0	0	1	0
			GILL	102	108	164	81	37	32	32	23	43	34
			LONGLINE	0	5	0	1	0	0	0	1	1	1
			OTTER	194	179	273	197	236	213	212	304	309	262
			PEL_SEINE		0						0	0	
			PEL_TRAWL	0	0	1	0	0	0	0	2	1	5
			POTS				0	0			0	0	3
			TRAMMEL	502	526	862	831	812	956	953	819	1 073	1 049
			none	0	1	0		0	0	0		2	0
Sum o.10m.				1 072	1 112	1 618	1 424	1 411	1 472	1 521	1 565	1 795	1 706

Table 5.10.3.4 – Bay of Biscay – 8b – Discards estimates (t) and their coverage index for common sole for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2003-2012. Derogations are sorted by gear and SPECON (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

Length Class	SPECIES	REG_AREA	REG_GEAR	SPECON	2009 L	2009 D	2009 R	2009 DQI	2010 L	2010 D	2010 R	2010 DQI	2011 L	2011 D	2011 R	2011 DQI	2012 L	2012 D	2012 R	2012 DQI
o. 10m.	\$OL	8b-BoB	BEAM	none									0				0			
			BEAM	SBcIllart5	324	8	0,025	Α	416	26	0,060	Α	364	8	0,023	Α	351			
			GILL	none	32				3	5	0,618	C	2				1			
			GILL	SBcIllart5					20	3	0,112	C	41				33			
			OTTER	none	212				24				32				16			
			OTTER	SBcIllart5					280	177	0,388	C	278				246			
			TRAMMEL	none	953				13	0	0,002	Α	7	0	0,062	Α	2			
			TRAMMEL	SBcIllart5					806	1	0,001	Α	1 066	39	0,035	В	1 047			

Table 5.10.3.5 – Bay of Biscay – 8a - Trend in total landings (t) and discards (t) for common sole (SOL) for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2003-2012. Derogations are sorted by gear, special conditions (SPECON) and country (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

					200	13	200	34	200	5	200	6	200	07	200	38	2009)	20	110	201	1	201	2
SPECIES	REG_AREA	REG_GEAR	SPECON	COUNTRY	L	D	L	D	L	D	L	D	L	D	L	D	L	D	L	D	L	D	L	D
SOL	8a-BoB	BEAM	none	BEL	23		27		32															
				ENG											0									
				FRA	0		1		1		0										0			
		BEAM	none	Total	23		27		33		0		-		0			-		-	0	-		
		25411	00 111 15	0.51									700		4.0				0.0		40		0.5	
		BEAM	SBcIllart5	FRA							67		73		16		38	1	36 0	2	19	0	35	
		BEAM	SBcIllart5				-				67		73		16		38	1	36	0 2	19	0	35	
		DUNIVI	3DCINGTO	Total	-		-	-	-		07	-	73	-	10	-	30		30	- 2	10	0	- 55	-
		DEM_SEINE	none	FRA															0		1			
		DEM_SEINE		Total	-		-	-	-	-			-	-	-	-	-	-	0	-	1	-		-
		DEM_SEINE																					1	
		DEM_SEINE	SBcIllart5	Total	-	•	-	-	-	-	•	÷	-	-		÷		-		-	-	-	1	-
			none	FRA	2		2	-	2	-	2		3		2		2		0		0		0	
		DREDGE	none	Total	2	•	2	-	2	-	2	-	5	-	2	-	2	-	U	-	0	-	U	-
		DREDGE	SBcIllart5	FRA															0		0		0	
			SBcIllart5				-	-	-				-	-		-		-	0	-	0	-	0	-
		GILL	none	ENG									0		0		0							
				FRA	142		185		222		189		119		127		127		7	-	6		6	
		GILL	none	Total	142		185		222		189		119	-	127	-	127		7		6	-	6	
		GILL	SBcIllart5	EDA															88	0	50		25	
			SBcIllart5							-									88	0	50		25	
		OILL	Section	Total																	30		2.0	
		LONGLINE	none	FRA			4		10		8		0		0		0		0		0		0	
		LONGLINE		Total	-		4	-	10	-	8		0	-	0	-	0	-	0	-	0	-	0	-
			SBcIIIart5																2					
		LONGLINE	SBcIllart5	Total			-	-					-	-	-	-		-	2	-	-	-		-
		OTTED		cen																			0	
		OTTER	none	ESP FRA	522		567		592		693		712		564		561		125	5 877	153		0 100	
		OTTER	none	Total	522		567		592		693		712	-	564		561		125	5 877	153		100	
		OTTER	SBcIllart5	FRA															366	210	398		413	
		OTTER	SBcIllart5	Total	-		-	-	-	-	-		-	-	-	-	-	-	366	210	398	-	413	-
			none	FRA							0													
		PEL_SEINE	none	Total	-	•	-	•	-	•	0	•	-	-	-			-		-	-	-	-	
		PEL_TRAWL	none	FRA	2		0		0		0		1		5		5		0		2		0	
		PEL_TRAWL		Total	2		0		0		0		1		5		5		0	-	2		0	
		PEL_TRAWL																	1		2		2	
		PEL_TRAWL	SBcIllart5	Total						-				-	-				1		2	-	2	
		DOTO		CD.																				
			none none	FRA Total	0						0								0		2		0	
		1013	none	rotal	U		Ė				U					Ė			-			Ė	U	
		POTS	SBcIllart5	FRA															0		0		0	
			SBcIllart5				-						-	-		-			0	-	0	-	0	-
			none	FRA	489		616		787		1 008		932		1 124		1 124		22	0	17	0	6	
		TRAMMEL	none	Total	489		616	-	787		1 008	•	932	-	1 124		1 124		22	0	17	0	6	
		TRAMMEL	SBcIllart5	EDA															773	0	1154	7	938	
		TRAMMEL																	773	0	1154	7	938	
		· ACMANIAITE	Speniard	· oui															775		1104	,	330	
		none	none	FRA							5		0		0		0				0			
			none	Total			-	-			5		0	-	0	-	0	-	-		0	-	-	-
			SBcIllart5																		0			
			SBcIllart5	Total		-	-	-		-		•	-	-	-	-		-	-	-	0	-	-	-
	8a-BoB	Total (all)			1 181		1 401		1 647		1 972		1 841	-	1 839		1 857	1	1 422	6 090	1 805	7	1 525	

Table 5.10.3.6 – Bay of Biscay – 8b - Trend in total landings (t) and discards (t) for common sole (SOL) for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2003-2012. Derogations are sorted by gear, special conditions (SPECON) and country (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

					200	13	200	14	200)5	200	16	200	07	200	18	200	19	20	10	20	11	201	12
SPECIES	REG_AREA	REG_GEAR	SPECON	COUNTRY	L	D	L	D	L	D	L	D	L	D	L	D	L	D	L	D	L	D	L	D
SOL	8b-BoB	BEAM	none	BEL	273		292		316															
				FRA																	0		0	
		BEAM	none	Total	273		292		316					-	-	-					0	-	0	-
		BEAM	SBcIllart5	BEL							313		325		271		324	8	416	26	364	8	351	
		BEAM	SBcIllart5	Total		-		-		-	313	-	325	-	271	-	324	8	416	26	364	8	351	-
																						_		
		DEM_SEINE		FRA																	0			
		DEM_SEINE	none	Total	-	-		-	-	-	-	-		-	-	-	-	-	-	-	0	-	-	-
		DEM_SEINE																					0	
		DEM_SEINE	Seciliants	rotar	•	-		-		-				-		-		-			-		0	-
		DREDGE	nono	FRA	0				0		0		0		0		0		0		0		0	
				Total	0				0		0		0		0		0		0		0		0	
		DNEDGE	lione	10(0)	0		•		0	-	0	-	0	-	,	-	0	-	0	-		-	,	-
		DREDGE	SBcIllart5	FRΔ															0		1		0	
			SBcIllart5																0		1		0	
		GILL	none	ESP																			0	
				FRA	102		108		164		81		37		32		32		3	5	2		1	
		GILL		Total	102	-	108		164	-	81	-	37		32	-	32	-	3	5	2	-	1	
			SBcHlart5																20	3	41		33	
		GILL	SBcIllart5	Total	-	-		-		-	-	-		-		-	-	-	20	3	41	-	33	-
				FRA	0		5		0		1		0		0		0		0		0		1	
		LONGLINE	none	Total	0		5	-	0		1	-	0	-	0		0		0	-	0	-	1	
			SBcIllart5																0		1		1	
		LONGLINE	SBcIllart5	Total	-	-				-	-	-		-		-		•	0	-	1		1	-
		OTTER		ECD.																			2	
		OTTER		ESP FRA	194		179		273		197		236		213		212		24		32		13	
		OTTER		Total	194		179		273		197		236		213		212		24		32		16	
		OTTEN	lione	10(01	134		117		213		157	-	230		213	-	212	-	24		32		10	
		OTTER	SBcIllart5	FRA															280	177	278		246	
			SBcIllart5							-		-				-		-	280	177	278	-	246	-
		PEL_SEINE	none	FRA			0												0		0			
				Total			0					-			-				0	-	0	-	-	-
		PEL_TRAWL	none	FRA	0		0		1		0		0		0		0		0		0		0	
		PEL_TRAWL	none	Total	0	-	0	-	1	-	0	-	0	-	0	-	0	-	0	-	0	-	0	-
			SBcIllart5																2		1		5	
		PEL_TRAWL	SBcIllart5	Total	-	-	-	-	-	-	-	-		-		-		-	2	-	1	-	5	
		DOTE		EDA.							_		_						_					
				FRA Total							0		0						0		0			
		POTS	none	Total				-			U		U			-	-	-	U		U	-	-	
		POTS	SBcIllart5	FRΔ															0		0		3	
			SBcIllart5													-			0		0		3	
		. 5.0	- Jeman W	. 5.0.															L .					
		TRAMMEL	none	ESP																			0	
				FRA	502		526		862		831		812		956		953		13	0	7	0	2	
		TRAMMEL		Total	502		526		862		831		812		956		953		13	0	7	0	2	
		TRAMMEL	SBcIllart5	FRA															806	1	1 066	39	1 047	
			SBcIllart5							-		-				-		-	806	1	1 066	39	1 047	-
		none	none	ESP																			0	
				FRA	0		1		0				0		0		0							
		none	none	Total	0	-	1	-	0	-	-	-	0	-	0	-	0	-	-	-	-	-	0	-
			SBcIllart5																		2			
			SBcIllart5	Total		-				-		-		-		-		-	-	-	2	-	-	-
	8b-BoB	Total (all)			1 072	-	1 112	-	1 618	-	1 424	-	1 411	-	1 472	-	1 521	8	1 565	212	1 795	47	1 706	-

5.10.4 ToR 1.c Catches (landings and discards) of non-sole species in weight and numbers at age by fisheries

The following section provides quantities of associated species of common sole landings by fisheries for the ICES division 8a and 8b. Discard estimates are scarce. Discards estimates available are presented below with their coverage index. They have been most calculated only for Belgium beam trawl fleet since 2009 until 2012. Some discards estimates have been calculated for 2010 and 2011 for other fleets but presented commonly bad coverage index and are, as well, dubious in some cases. So care is required in the use of these data to draw firm conclusions about catch composition. STECF 13-13 notes that information collected on discards is incomplete, so the apparent absence of discards in the figures for a given species/gear does not necessarily mean zero discards.

Table 5.10.4.1 – Bay of Biscay – 8a - Trend in total landings (t) for major associated species of common sole for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2003-2012. Derogations are sorted by gear (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

Length Class	SPECIES	REG AREA	REG GEAR	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
o. 10m.	ANF	8a-BoB	BEAM	4	3	8	18	8	2	7	7	4	5
			DEM_SEINE								0	1	0
			DREDGE	1	1	1	0	0	1	1		0	
			GILL	209	304	314	281	305	276	293	135	198	286
			LONGLINE	0	1	0	2	0	0	0	0	0	2
			OTTER	3 090	3 386	3 265	3 316	3 673	3 074	3 061	563	1 766	1 538
			PEL_TRAWL	40	37	0	1	2	4	4	6	10	2
			POTS	0		0	0	0			0	0	0
			TRAMMEL	166	245	207	302	222	293	293	10	90	70
			none				3	0	0	0			5
Sum o.10m.				3 510	3 977	3 796	3 921	4 211	3 651	3 660	721	2 069	1 909
Length Class				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
o. 10m.	HKE	8a-BoB	BEAM	2	2	6	2	1	0	0	0	0	0
			DEM_SEINE	_	_	_	_	_	_	_	30	28	47
			DREDGE	3	0	2	3	1	1	1	1	0	0
			GILL	1 464	1 404	2 207	1 115	698	1 871	1 843	5 059	5 983	6 745
			LONGLINE	3	2	0	1	1	2	2	63	340	1 573
			OTTER	1 150	1 095	1 274	1 048	1 413	1 850	1 838	1 241	1 227	2 128
			PEL_SEINE	0	0	0	0					1	0
			PEL_TRAWL	280	47	176	151	238	14	14	114	463	854
			POTS				40	407			1	1	0
			TRAMMEL	81	98	52	42	107	67	67	40	27	28
			none				1	2	0	0		0	288
Sum o.10m.				2 983	2 647	3 718	2 363	2 462	3 805	3 765	6 549	8 071	11 663
Length Class	SPECIES	REG_AREA	REG_GEAR	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
o. 10m.	NEP	8a-BoB	BEAM	2	4	7	1	1		0		0	
			DREDGE	0	0	2	0	0	1	1	2		
			GILL	1	2	0	1	1	3	3	0	1	0
			OTTER	2 139	2 346	2 846	2 579	2 578	2 455	2 446	2 393	2 744	1 675
			PEL_TRAWL	5		0	2	3	34	34	2	18	5
			POTS	1	2	0					3	4	3
											-	-	
			TRAMMEL	0	1	1	5	0	0	0	3	1	1
			TRAMMEL none	0			5 0	0	0	0			1
				0									1
Sum o.10m.			none	0 2148			0	0	0	0			1 685
	encore	DEC ADEA	none none	2148	2 355	2 856	0 0 2 589	0 0 2 584	0 0 2 494	0 0 2 485	2 402	2 769	1 685
Length Class			none none REG_GEAR	2148	2 355	2 856	0 0 2 589 2006	0 0 2 584 2007	0	0 0 2 485 2009	2 402 2010	2 769	1 685
	SPECIES	REG_AREA 8a-BoB	none none REG_GEAR BEAM	2148	2 355	2 856	0 0 2 589	0 0 2 584	0 0 2 494	0 0 2 485	2 402 2010	2 769 2011	1 685 2012
Length Class			none none REG_GEAR BEAM DEM_SEINE	2148 2003 0	2 355 2004	2 856 2005	0 0 2 589 2006	0 0 2 584 2007	0 0 2 494 2008	0 0 2 485 2009	2 402 2010 0 66	2 769 2011 0 111	1 685 2012 0 116
Length Class			none none REG_GEAR BEAM DEM_SEINE DREDGE	2148 2003 0	2 355 2004 0	2856 2005 0	0 0 2 589 2006 0	0 0 2 584 2007 1	0 0 2 494 2008	0 0 2 485 2009 0	2 402 2010 0 66	2769 2011 0 111	2012 0 116
Length Class			none none REG_GEAR BEAM DEM_SEINE DREDGE GILL	2148 2003 0 2 51	2 355 2004 0 2 33	2 856 2005 0	0 0 2 589 2006 0 1 54	0 0 2 584 2007 1 0 42	0 0 2 494 2008	0 0 2 485 2009 0 0 34	2 402 2010 0 66 0 36	2769 2011 0 111 0 30	2012 0 116 0 44
Length Class			REG_GEAR BEAM DEM_SEINE DREDGE GILL LONGLINE	2148 2003 0 2 51 8	2 355 2004 0 2 33 63	2 856 2005 0 1 43 69	0 0 2 589 2006 0 1 54 148	0 0 2 584 2007 1 0 42 294	0 0 2 494 2008 0 34 167	0 0 2 485 2009 0 0 34 167	2 402 2010 0 66 0 36 142	2769 2011 0 111 0 30 182	2012 0 116 0 44 186
Length Class			REG_GEAR BEAM DEM_SEINE DREDGE GILL LONGLINE OTTER	2148 2003 0 2 51	2 355 2004 0 2 33	2 856 2005 0	0 0 2 589 2006 0 1 54 148 308	0 0 2 584 2007 1 0 42	0 0 2 494 2008	0 0 2 485 2009 0 0 34	2 402 2010 0 66 0 36	2769 2011 0 111 0 30 182 432	2012 0 116 0 44
Length Class			REG_GEAR BEAM DEM_SEINE DREDGE GILL LONGLINE OTTER PEL_SEINE	2148 2003 0 2 51 8 284	2355 2004 0 2 33 63 331	2856 2005 0 1 43 69 430	2589 2006 0 1 54 148 308 0	0 0 2 584 2007 1 0 42 294 265	0 0 2 494 2008 0 34 167 167	0 0 2 485 2009 0 0 34 167 166	2402 2010 0 66 0 36 142 347	2769 2011 0 111 0 30 182 432 0	2012 0 116 0 44 186 379
Length Class			REG_GEAR BEAM DEM_SEINE DREDGE GILL LONGLINE OTTER PEL_SEINE PEL_TRAWL	2148 2003 0 2 51 8	2 355 2004 0 2 33 63	2 856 2005 0 1 43 69	0 0 2 589 2006 0 1 54 148 308	0 0 2 584 2007 1 0 42 294	0 0 2 494 2008 0 34 167	0 0 2 485 2009 0 0 34 167	2402 2010 0 66 0 36 142 347	2769 2011 0 111 0 30 182 432 0 72	2012 0 116 0 44 186 379
Length Class			REG_GEAR BEAM DEM_SEINE DREDGE GILL LONGLINE OTTER PEL_SEINE PEL_TRAWL POTS	2148 2003 0 2 51 8 284 219	2 355 2004 0 2 33 63 331 75	2856 2005 0 1 43 69 430 108	2589 2006 0 1 54 148 308 0 57	0 0 2 584 2007 1 0 42 294 265	0 0 2 494 2008 0 34 167 167	0 0 2 485 2009 0 0 34 167 166	2402 2010 0 66 0 36 142 347 121 1	2769 2011 0 111 0 30 182 432 0 72 27	2012 0 116 0 44 186 379
Length Class			REG_GEAR BEAM DEM_SEINE DREDGE GILL LONGLINE OTTER PEL_SEINE PEL_TRAWL	2148 2003 0 2 51 8 284	2355 2004 0 2 33 63 331	2856 2005 0 1 43 69 430	2589 2006 0 1 54 148 308 0	0 0 2 584 2007 1 0 42 294 265	0 0 2 494 2008 0 34 167 167	0 0 2 485 2009 0 0 34 167 166	2402 2010 0 66 0 36 142 347	2769 2011 0 111 0 30 182 432 0 72	2012 0 116 0 44 186 379

Table 5.10.4.2 – Bay of Biscay – 8a – Discards estimates (t) and their coverage index for major associated species of common sole for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2003-2012. Derogations are sorted by gear and SPECON (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

Length Class	SPECIES	REG_AREA	REG_GEAR	SPECON	2009 L	2009 D	2009 R	2009 DQI	2010 L	2010 D	2010 R	2010 DQI	2011 L	2011 D	2011 R	2011 DQI	2012 L	2012 D	2012 R	2012 DQI
o. 10m.	ANF	8a-BoB	BEAM	none																
			BEAM	SBcIllart5	7	3	0,262	Α	7	2	0,210	Α	4	1	0,131	Α	5	1	0,141	Α
			OTTER	none	3 061				435	5	0,012	В	1 376	41	0,029	С	1 147			
			OTTER	SBcIllart5					128	92	0,419	С	390	1	0,003	C	391			
			TRAMMEL	none	293				5	1	0,170	С	59	1	0,013	В	22			
			TRAMMEL	SBcIllart5					4	1	0,221	С	31	5	0,150	В	48			
Length Class	SDECIES	REG AREA	REG GEAR	SDECON	2009 L	2009 D	2000 R	2009 DQI	2010 L	2010 D	2010 R	2010 DQI	2011 L	2011 D	2011 R	2011 DQI	2012 L	2012 D	2012 R	2012 DQI
	HKE	8a-BoB	BEAM	none	2003 E	2003 D	2003 H	2003 DQ1	2010 L	2010 D	2010 11	2010 0 Q1	2011 L	2011 0	2011 11	2011 0 Q1	2012 [2012 0	2012 11	ZOIZ DQI
0.20	IIIL	00 000	BEAM	SBcIllart5	0	0	0,498	Α	0	0	0,453	Α	0	1	0,832	Α	0	1	0,874	Α
			GILL	none	1 843		-,		4 421	704	0,137	С	5 433	49	0,009	С	5 415	<u> </u>	-,	
			GILL	SBcIllart5					639	14	0,022	C	550				1 329			
			OTTER	none	1 838				575	58	0,092	С	708	446	0,386	С	1 473			
			OTTER	SBcIllart5					666	4 841	0,879	С	519	139	0,211	С	655			
			PEL_TRAWL	none	14				110	7	0,062	С	405				744			
			PEL_TRAWL	SBcIllart5					4	1	0,206	С	58				109			
			TRAMMEL	none	67				4	53	0,929	С	1	0	0,112	С	2			
			TRAMMEL	SBcHlart5					36	22	0,377	С	25	1	0,041	C	26			
Length Class	SPECIES	REG AREA	REG GEAR	SPECON	2009 L	2009 D	2009 R	2009 DQI	2010 L	2010 D	2010 R	2010 DQI	2011 L	2011 D	2011 R	2011 DQI	2012 L	2012 D	2012 R	2012 DQI
	NEP	8a-BoB	OTTER	none	2 446				1 220	12 361	0,910	C	1 420			,	666			
			OTTER	SBcIllart5					1 173				1 325				1 010			
Length Class	CDECIEC	DEC ADEA	DEC CEAR	SPECON	2009 L	2000 D	2000 D	2009 DQI	2010 L	2010 D	2040.0	2010 DQI	2011 L	2044 D	2044 B	2011 DQI	2012 L	2042 D	2042 B	2012 DQI
		8a-BoB	BEAM		2009 L	2009 D	2009 K	2009 DQI	2010 L	2010 D	2010 K	ZUIU DQI	2011 L	2011 D	ZUII K	ZULL DQI	2012 L	2012 D	2012 K	ZUIZ DQI
0. 10111.	WHG	84-BAR	BEAM	none SBcIllart5	0	0	0,500	Α	0	0	0,322	Α	0	0	0,667	Α	0	1	0,765	Α
			GILL	none	34	U	0,300	А	16			C	13	U	0,007	А	16		0,703	А
			GILL	SBcHlart5	34				20	685 4	0,977 0,180	C	17				28			
			OTTER	none	166				125	535	0,180	C	177				145			
			OTTER	SBcIllart5	100				223	955	0,811	C	255				234			
			TRAMMEL	none	41				6	555	0,474	C	3	10	0,780	В	4			
			TRAMMEL	SBcIllart5	41				21	29	0,582	C	42	179	0,809	C	41			

Table 5.10.4.3 – Bay of Biscay – 8b - Trend in total landings (t) for major associated species of common sole for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2003-2012. Derogations are sorted by gear (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

Length Class	SPECIES	REG_AREA	REG_GEAR	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
o. 10m.	ANF	8b-BoB	BEAM	113	6	172	121	134	186	188	172	191	196
			DEM_SEINE									1	0
			DREDGE			0	0					0	
			GILL	44	100	167	196	267	265	265	21	61	22
			LONGLINE		0	0	0	0	0	0	0	1	0
			OTTER	179	219	327	270	204	332	332	54	188	624
			PEL_SEINE										11
			PEL_TRAWL	2	1	0	0	1	0	0	0	0	1
			POTS				0	0					
			TRAMMEL	60	107	148	135	158	183	183	12	30	35
			none		0	0							5
Sum o.10m.				398	433	815	723	763	967	968	260	471	895
Length Class	SPECIES	REG AREA	REG_GEAR	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	HKE	8b-BoB	BEAM	12	10	9	8	1	3	6	5	5	3
			DEM_SEINE			-		_			7	12	18
			DREDGE	0		0	0	0	0	0	1	0	0
			GILL	168	201	683	262	328	642	642	1 039	674	1 111
			LONGLINE	32	20	34	56	77	52	52	385	480	418
			OTTER	258	139	442	222	493	636	634	396	239	1 031
			PEL_SEINE	0	0			0	0	0	1	1	0
			PEL_TRAWL	14	1	41	10	33	37	37	34	14	13
			POTS		_		0	0			5	8	4
			TRAMMEL	37	26	53	43	88	91	90	137	154	137
			none		1	1		2	2	2		1	2
Sum o.10m.				520	399	1 263	600	1 023	1 464	1 464	2 009	1 588	2 737
Length Class	SPECIES	REG_AREA	REG_GEAR	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
o. 10m.	NEP	8b-BoB	BEAM	1		1	5	2	1	1	3	3	1
			DREDGE			0	0	0			0		0
			GILL		0		0		0	0	0		
			OTTER	190	160	276	328	223	204	204	171	221	150
			PEL_TRAWL			0		0			0	1	2
			POTS					0			0		
			TRAMMEL			0	0	0	0	0	1	0	0
Sum o.10m.				191	160	278	334	225	205	205	176	225	153
Length Class	SPECIES	REG_AREA	REG_GEAR	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
o. 10m.	WHG	8b-BoB	BEAM	1	0	2	1	3	1	2	3	1	3
			DEM_SEINE								19	32	39
							_	0	0	0	0	0	0
			DREDGE	0		0	0						
			DREDGE GILL	0 11	6	0 11	10	10	20	20	10	4	11
					6				20 3	20 3	10 14	4 14	11 18
			GILL	11		11	10	10					
			GILL LONGLINE	11 1	1	11 41	10 4	10 8	3	3	14	14	18
			GILL LONGLINE OTTER	11 1 65	1 87	11 41 180	10 4 175	10 8 312	3 163	3 163	14 88	14 134	18 172
			GILL LONGLINE OTTER PEL_TRAWL	11 1 65	1 87	11 41 180	10 4 175	10 8 312 67	3 163	3 163	14 88 35	14 134 5	18 172 2
			GILL LONGLINE OTTER PEL_TRAWL POTS	11 1 65 18	1 87 5	11 41 180 22	10 4 175 30	10 8 312 67 0	3 163 20	3 163 20	14 88 35 0	14 134 5 0	18 172 2 0

Table 5.10.4.4 – Bay of Biscay – 8b – Discards estimates (t) and their coverage index for major associated species of common sole for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2003-2012. Derogations are sorted by gear and SPECON (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

Length Class	SPECIES	REG_AREA	REG_GEAR	SPECON	2009 L	2009 D	2009 R	2009 DQI	2010 L	2010 D	2010 R	2010 DQI	2011 L	2011 D	2011 R	2011 DQI	2012 L	2012 D	2012 R	2012 DQI
o. 10m.	ANF	8b-BoB	BEAM	none																
			BEAM	SBcIllart5	188	67	0,262	Α	172	46	0,210	Α	191	29	0,131	Α	196	32	0,141	Α
			TRAMMEL	none	183				4	0	0,092	Α	3	0	0,078	С	3			
			TRAMMEL	SBcIllart5					8	0	0,046	В	28	1	0,038	С	32			
Length Class	SUECIES	DEC ADEA	DEC CEAD	SDECON	2000 1	2000 D	2000 B	3000 DOI	2010.1	2010 D	2010 B	2010 DOL	2011.1	2011 D	2011 D	2011 DQI	2012.1	2012 D	2012 B	2012 DOL
o. 10m.	HKE	8b-BoB	BEAM	none	2003 L	2009 D	2009 N	2009 DQI	2010 L	2010 D	2010 N	2010 DQ1	2011 L	2011 D	2011 N	ZULL DQI	2012 L	2012 D	2012 N	ZOIZ DQI
0.10	IIIL	00 000	BEAM	SBcIllart5	6	6	0,499	Α	5	4	0,458	Α	5	23	0,832	Α	3	17	0,874	Α
			GILL	none	642				898	100	0,101	С	551	3	0,005	С	982			
			GILL	SBcIllart5					141	20	0,123	С	122	2	0,014	С	129			
			OTTER	none	634				67	278	0,806	С	54				824			
			OTTER	SBcIllart5					329	234	0,416	С	185				207			
			TRAMMEL	none	90				5	6	0,533	Α	14	4	0,214	С	5			
			TRAMMEL	SBcIllart5					132	1	0,010	В	140	48	0,256	c	132			
Length Class	SPECIES	REG AREA																		
o. 10m.	NEP	8b-BoB	No disc	ards estima	tes avail	lable														
Length Class	SPECIES	REG_AREA	REG_GEAR	SPECON	2009 L	2009 D	2009 R	2009 DQI	2010 L	2010 D	2010 R	2010 DQI	2011 L	2011 D	2011 R	2011 DQI	2012 L	2012 D	2012 R	2012 DQI
o. 10m.	WHG	8b-BoB	BEAM	none																
			BEAM	SBcIllart5	2	2	0,500	Α	3	1	0,323	Α	1	3	0,667	Α	3	8	0,765	Α
			GILL	none	20				9	4	0,338	Α	2				4			
			GILL	SBcIllart5					2	1	0,350	В	1				7			
			OTTER	none	163				24				33				84			
			OTTER	SBcIllart5					64	366	0,850	С	101				88			
			TRAMMEL	none	46				0	2	0,857	Α	1	0	0,308	В	0			
			TRAMMEL	SBcIllart5					20	179	0,900	Α	34	35	0,509	Α	37			

The following section provides figures about quantities of sole and other major associated species' landings by fisheries. Discard estimates are scarce. They have been most calculated only for Belgium beam trawl fleet since 2009 until 2012 (2011 for sole). Some discards estimates have been calculated for 2010 and 2011 for other fleets but presented commonly bad coverage index and are, as well, dubious in some cases. So care is required in the use of these data to draw firm conclusions about catch composition. STECF 13-13 notes that information collected on discards is incomplete, so the apparent absence of discards in the figures for a given species/gear does not necessarily mean zero discards.

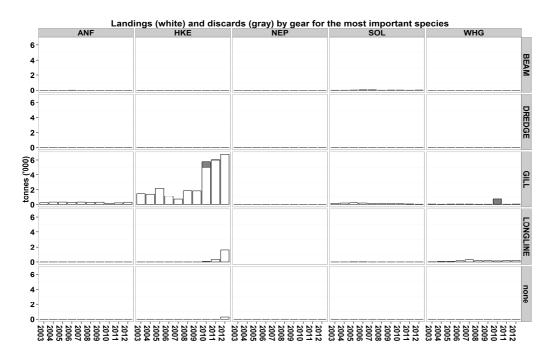


Fig. 5.10.4.1 – Bay of Biscay – 8a - Trend in total landings and discards estimates (t) for common sole and major associated species for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006, 2003-2012. Derogations are sorted by gear (o. 10m length vessels). Note that information collected on discards is incomplete, so the apparent absence of discards in the figures for a given species/gear does not necessarily mean zero discards. Data qualities are summarised in Section 4 of the report.

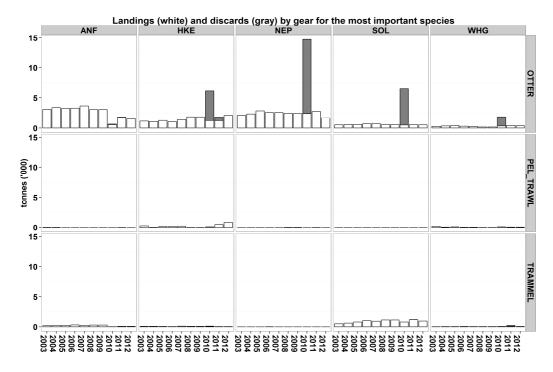


Fig. 5.10.4.1 (continue) – Bay of Biscay – 8a - Trend in total landings and discards estimates (t) for common sole and major associated species for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006, 2003-2012. Derogations are sorted by gear (o. 10m length vessels). Note that information collected on discards is incomplete, so the apparent absence of discards in the figures for a given species/gear does not necessarily mean zero discards. Data qualities are summarised in Section 4 of the report.

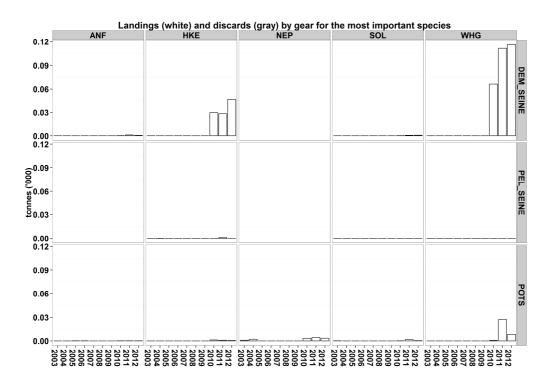


Fig. 5.10.4.1 (continue) – Bay of Biscay – 8a - Trend in total landings and discards estimates (t) for common sole and major associated species for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006, 2003-2012. Derogations are sorted by gear (o. 10m length vessels). Note that information collected on discards is incomplete, so the apparent absence of discards in the figures for a given species/gear does not necessarily mean zero discards. Data qualities are summarised in Section 9 of the report.

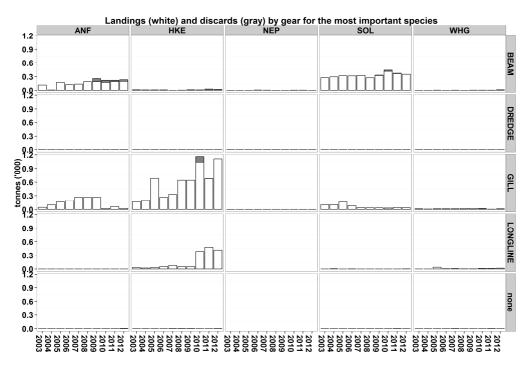


Fig. 5.10.4.2 – Bay of Biscay – 8b - Trend in total landings and discards estimates (t) for common sole and major associated species for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006, 2003-2012. Derogations are sorted by gear (o. 10m length vessels). Note that information collected on discards is incomplete, so the apparent absence of discards in the figures for a given species/gear does not necessarily mean zero discards. Data qualities are summarised in Section 4 of the report.

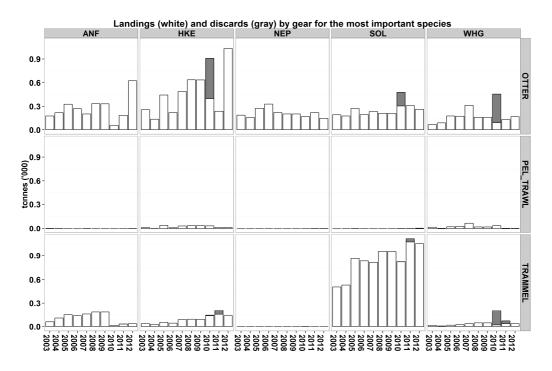
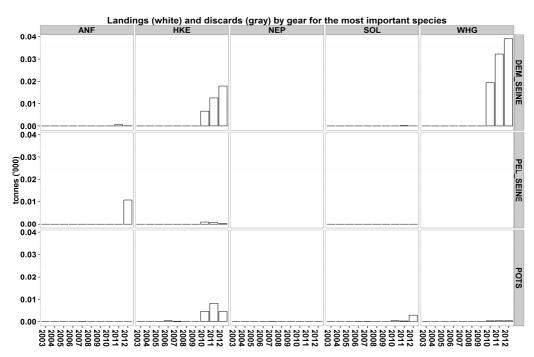



Fig. 5.10.4.2 (continue) – Bay of Biscay – 8b - Trend in total landings and discards estimates (t) for common sole and major associated species for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006, 2003-2012. Derogations are sorted by gear (o. 10m length vessels). Note that information collected on discards is incomplete, so the apparent absence of discards in the figures for a given species/gear does not necessarily mean zero discards. Data qualities are summarised in Section 4 of the report.

5.10.4.2 (continue) – Bay of Biscay – 8b - Trend in total landings and discards estimates (t) for common sole and major associated species for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006, 2003-2012. Derogations are sorted by gear (o. 10m length vessels). Note that information collected on discards is incomplete, so the apparent absence of discards in the figures for a given species/gear does not necessarily mean zero discards. Data qualities are summarised in Section 4 of the report.

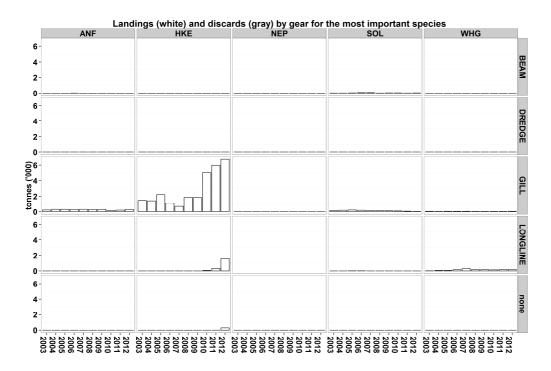


Fig. 5.10.4.3 – Bay of Biscay – 8a - Trend in total landings (t) for common sole and major associated species for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006, 2003-2012. Derogations are sorted by gear (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

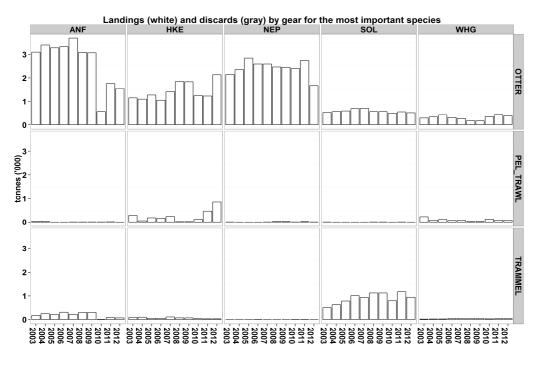


Fig. 5.10.4.3 (continue) – Bay of Biscay – 8a - Trend in total landings (t) for common sole and major associated species for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006, 2003-2012. Derogations are sorted by gear (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

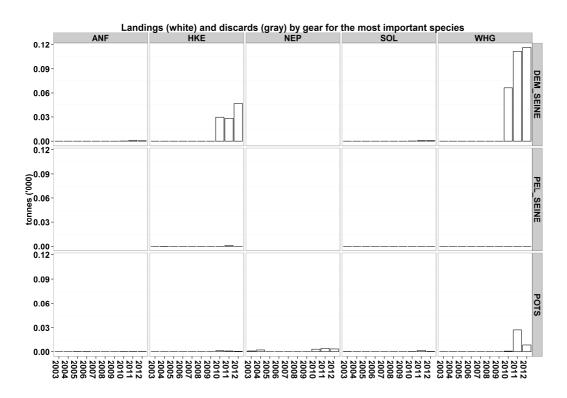


Fig. 5.10.4.3 (continue) – Bay of Biscay – 8a - Trend in total landings (t) for common sole and major associated species for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006, 2003-2012. Derogations are sorted by gear (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

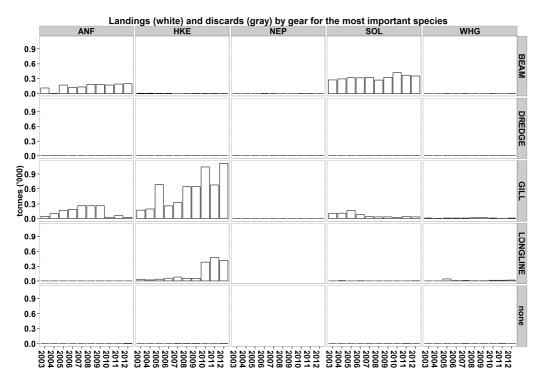


Fig. 5.10.4.4 – Bay of Biscay – 8b - Trend in total landings (t) for common sole and major associated species for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006, 2003-2012. Derogations are sorted by gear (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

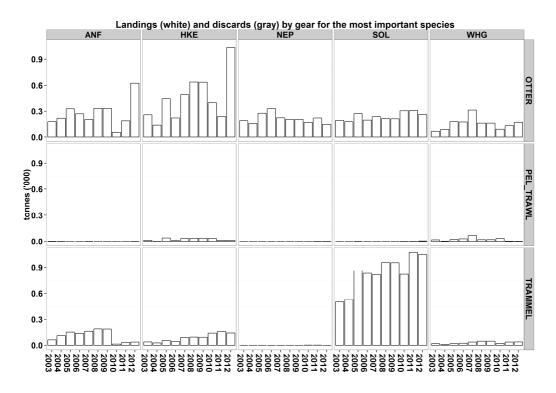


Fig. 5.10.4.4 (continue) – Bay of Biscay – 8b - Trend in total landings (t) for common sole and major associated species for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006, 2003-2012. Derogations are sorted by gear (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

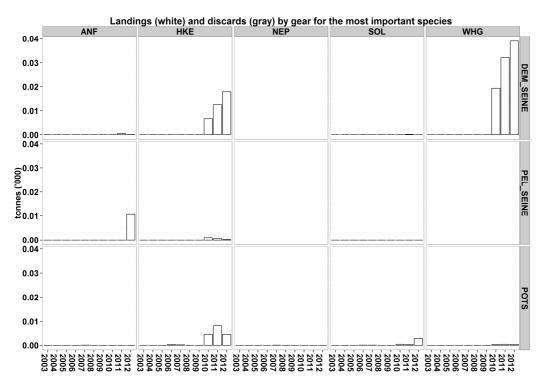


Fig. 5.10.4.4 (continue) – Bay of Biscay – 8b - Trend in total landings (t) for common sole and major associated species for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006, 2003-2012. Derogations are sorted by gear (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

Table 5.10.4.5 Bay of Biscay -8a- Trend in total landings (t) and discards (t) for AnglerFish (ANF) for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2003-2012. Derogations are sorted by gear, special conditions (SPECON) and country (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

BEAA BEAA BEAA DEN DEN DEN DEN DEN GILL GILL GILL GILL LON	EAM EAM EAM EM_SEINE EM_SEINE EM_SEINE REDGE REDGE ILL ILL ILL	none SBCIIIart5 SBCIIIart5 none SBCIIIart5 SBCIIIart5 none none	FRA Total FRA	1 4 1 0 1 1 209		2 3 -		2 8 -		0 0 18 18		- 8 8 8		1 1 1 1		7 7 -	- 3 3	7 7 0 0	2 2	4 4 1 1	- 1 1	5 5 0 0
BEA BEA BEA DEN DEN DEN DEN GILL GILL GILL GILL GILL LON	EAM EAM EAM EM_SEINE EM_SEINE EM_SEINE EM_SEINE ILL ILL ILL	none SBcIllart5 SBcIllart5 none SBcIllart5 none none SBcIllart5 SBcIllart5 SBcIllart5 SBcIllart5	ENG FRA Total BEL Total FRA Total FRA Total FRA Total FRA ENG ENG ENG ESP FRA SCO	1 4 - - 1 0 1		- 1		- 1	-	18 18	-	-		1 1 1		7 7 -	3	7 7 0	2	4 4 1 1	_	5 5 0 0
BEAA BEAA BEAA BEAA BEAA BEAA BEAA BEAA	EAM EAM EM_SEINE EM_SEINE EM_SEINE EM_SEINE EM_SEINE ILL ILL ILL	none SBclllart5 none SBclllart5 SBclllart5 none none none SBclllart5 none none	FRA Total BEL Total FRA Total FRA Total FRA Total FRA ENG ENG ESP FRA SCO	- - 1 0 1				-	-	18 18	-	-		1 1 1		7 7 -	3	7 7 0	2	4 4 1 1	_	5 5 0 0
BEAA BEAA BEAA BEAA BEAA BEAA BEAA BEAA	EAM EAM EM_SEINE EM_SEINE EM_SEINE EM_SEINE EM_SEINE ILL ILL ILL	sections sec	BEL Total FRA Total FRA Total FRA Total FRA IRL Total ENG ESP FRA SCO	- - 1 0 1				-	-	18 18	-	-		1	-	7 7 -	3	7 7 0	2	4 4 1 1	_	5 5 0 0
BEAA BEAA BEAA BEAA BEAA BEAA BEAA BEAA	EAM EAM EM_SEINE EM_SEINE EM_SEINE EM_SEINE EM_SEINE ILL ILL ILL	sections sec	BEL Total FRA Total FRA Total FRA Total FRA IRL Total ENG ESP FRA SCO	- - 1 0 1	-			-		18 18	-	-		1	-	7 7 -	3	7 7 0	2	4 4 1 1	_	5 5 0 0
BEAA BEAA BEAA BEAA BEAA BEAA BEAA BEAA	EAM EAM EM_SEINE EM_SEINE EM_SEINE EM_SEINE EM_SEINE ILL ILL ILL	SBcIllart5 SBcIllart5 none SBcIllart5 SBcIllart5 none none none SBcIllart5	BEL Total FRA Total FRA Total FRA IRL Total ENG ESP FRA SCO	- - 1 0 1	-				-	18	-	-	-	1	-	7 7 -	3	7 7 0	2	4 4 1 1	_	5 5 0 0
DEN. DEN. DEN. DEN. DEN. GILL GILL GILL LON.	EAM EM_SEINE EM_SEINE EM_SEINE EM_SEINE EM_SEINE ILL ILL ILL ILL	SBcIllart5 none SBcIllart5 SBcIllart5 none none none	FRA Total FRA Total FRA IRL Total ENG ESP FRA SCO	- 1 0 1	-	- 1	-	- 1	-	18	-	-		-	-	-		7		1 1	_	0 0
DEN. DEN. DEN. DEN. DEN. GILL GILL GILL LON.	EAM EM_SEINE EM_SEINE EM_SEINE EM_SEINE EM_SEINE ILL ILL ILL ILL	SBcIllart5 none SBcIllart5 SBcIllart5 none none none	FRA Total FRA Total FRA IRL Total ENG ESP FRA SCO	- 1 0 1	-	- 1	-	- 1	-	18	-	-		-		-		7		1 1	_	0 0
DEN DEN DEN DEN DEN GILL GILL GILL GILL GILL	EM_SEINE EM_SEINE EM_SEINE EM_SEINE REDGE ILL ILL ILL	none SBcIllart5 SBcIllart5 none none SBcIllart5	FRA Total FRA Total FRA IRL Total ENG ESP FRA SCO	- 1 0 1	-	- 1	-	- 1		-	-	-	-	-	-	-	-	0	-	1 1	-	0
DEN	EM_SEINE EM_SEINE REDGE REDGE ILL ILL ILL ILL	sections of the section of the secti	FRA Total FRA IRL Total ENG ESP FRA SCO	1 0 1	-	- 1		- 1	-	-	-	-	-	-	-		-		-	1	-	0
DEN	EM_SEINE EM_SEINE REDGE REDGE ILL ILL ILL ILL	sections of the section of the secti	FRA Total FRA IRL Total ENG ESP FRA SCO	1 0 1	-	- 1		- 1		-	-	-	-	-	-		-		-	1	-	0
DEN. DRE DRE GILL GILL GILL GILL LON	EM_SEINE EM_SEINE REDGE REDGE ILL ILL ILL	SBcIllart5 SBcIllart5 none none SBcIllart5	FRA Total FRA IRL Total ENG ESP FRA SCO	1 0 1	-	- 1		- 1	-	-	-	-		-			-	-	-	-	-	0
DRE DRE GILL GILL GILL LON	EM_SEINE REDGE REDGE	none none none specification	FRA IRL Total ENG ESP FRA SCO	1 0 1	-	1			-		-		-		-	-	-	-	-		-	
DRE DRE GILL GILL GILL GILL LON	EM_SEINE REDGE REDGE	none none none specification	FRA IRL Total ENG ESP FRA SCO	1 0 1		1			-		-		-		-	•		-	-		-	
DRE DRE GILL GILL GILL GILL LON	EM_SEINE REDGE REDGE	none none none specification	FRA IRL Total ENG ESP FRA SCO	1 0 1		1							-			•	-	-	-		-	
DRE GILL GILL GILL GILL GILL LON	REDGE REDGE ILL ILL ILL	none none none SBalliart5	FRA IRL Total ENG ESP FRA SCO	1 0 1	-	1																
GILL GILL GILL GILL GILL LON	REDGE ILL ILL ILL	none none selliart5	ENG ESP FRA SCO	209	-		-			0		0								0		
GILL GILL GILL GILL GILL LON	REDGE ILL ILL ILL	none none selliart5	ENG ESP FRA SCO	209	-					U						1						
GILL	ILL ILL	none none SBdllart5	ENG ESP FRA SCO	209		1	-	1						1		1			_			
GILL	ILL ILL	none none SBdllart5	ENG ESP FRA SCO	209		1		1														
GILI GILI LON	ILL ILL	none SBcIllart5	ESP FRA SCO					I		0	-	0	-	1	-	1	-	-	-	0	-	
GILI GILI LON	ILL ILL	none SBcIllart5	ESP FRA SCO																			
GILL GILL LON	ILL	none SBdHart5	FRA SCO			1				31		11		0		32		81		99		142
GILL GILL LON	ILL	none SBdHart5	FRA SCO			1																5
GILL GILL LON	ILL	none SBdHart5	SCO			304		314		222		227		194		193		51		94		46
GILL GILL LON	ILL	none SBcIllart5								27		67		82		67		2				0
GILL GILL LON	ILL	SBcIllart5		209	-	304		314	-	281	-	305	-	276	-	293	-	134	-	193		193
LON	ILL			203		304		314		201		303		270		233		134		133		199
LON	ILL		ED 4																	-		
LON		SBcIllart5																1		5		93
	ONGLINE		Total	-		-		-	-	-	-	-	-	-		-		1	-	5	-	93
	ONGLINE																					
ION		none	ENG	0																		
ION			ESP																			1
LON			FRA	0		1		0		2		0		0		0		0		0		1
	ONGLINE		Total	0		1	-	0		2	-	0	-	0		0		0		0	-	2
												-		-		-						
1.08	ONGLINE	SBcIllart5	EDA															0		0		
							-			-		-	-					0	-	0		
LON	JINGLINE	SBcIllart5	rutar	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	-	-	-	-
-																						
011	TTER		ENG		-															2	-	
			ESP		_																	93
			FRA	3 090		3 386		3 265		3 316		3 673		3 074		3 061		435	5	1 374	41	1 055
ОТТ	TTER	none	Total	3 090	-	3 386	-	3 265		3 316	-	3 673	-	3 074	-	3 061		435	5	1 376	41	1 147
отт	TTER	SBcIllart5	FRA															128	92	390	1	391
отт	TTER	SBcIllart5	Total	-	-	-	-	-		-	-	-	-		-	-		128	92	390	1	391
PEI	EL_TRAWL	none	ESP																			1
i rec			FRA	40		37		0		1		2		4		4		6		10		0
DE:	TI TRALE							_														
PEL	EL_TRAWL	none	Total	40		37		0		1	-	2		4		4	-	6	-	10	-	2
	EL_TRAWL																			0		0
PEL	EL_TRAWL	\$Bclllart5	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	-	0
																				<u></u>		
POT	OTS	none	FRA	0				0		0		0						0		0		0
POT			Total	0	I -	-	-	0	-	0	-	0	- 1	-	-	-	-	0	-	0	-	0
POT	OTS	SBcIllart5	FRΔ																			0
POT		SBcIllart5																				0
POI	013	эвинан	rotai		-			-				-							_			U
			FRA	166		245		207		302		222		293		293		5	1	59	1	22
TRA	RAMMEL	none	Total	166	-	245		207	-	302	-	222	-	293		293	-	5	1	59	1	22
TR△	RAMMEL	SBcIllart5	FRA															4	1	31	5	48
		SBcIllart5				-		-		-				-		-		4	1	31	5	48
non	nne	none	ESP																			5
HON	JI IC		FRA							3		0		0		0						J
																						-
non	niie	none	Total		<u> </u>	-	-		-	3	-	0	-	0	-	0	-	-	-	-	-	5
8a-BoB Tota	otal (all)			3 510		3 977		3 796		3 921		4 211		3 651		3 660	3	721		2 069	49	1 909

Table 5.10.4.6 Bay of Biscay – 8b- Trend in total landings (t) and discards (t) for AnglerFish (ANF) for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2003-2012. Derogations are sorted by gear, special conditions (SPECON) and country (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

CIES	REG AREA	REG_GEAR	SPECON	COUNTRY		103	_	104		105		006		007		08		09		10		11		012
_		_			L	D	L	D	L	D	L	D	L	D	L	D	L	D	L	D	L	D	L	1
		BEAM		BEL	113		6		172															1
		BEAM	none	Total	113	-	6	-	172	-	-	-	-			-	-	-		-		-	-	
																								1
		BEAM	SBcIllart5	BEL							121		134		186		188	67	172	46	191	29	196	4
		BEAM	SBcIllart5	Total	-	-	-	-	-	-	121	-	134	-	186	-	188	67	172	46	191	29	196	4
																								1
		DEM_SEINE		ESP																			0	4
				FRA																	1			4
_		DEM_SEINE	none	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	0	4
																								1
		DREDGE		FRA					0		0													4
_		DREDGE	none	Total	-	-	-	-	0	-	0	-	-	-	-	-	-	-	-	-	-	-	-	4
																								4
		DREDGE	SBcIllart5																		0			4
-		DREDGE	SBcIllart5	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	· .	-	-	0	-	-	4
																								4
		GILL		ENG							16		7											4
				ESP	,		4.7.		4.5-		4.7.		0.55		0.00		0.7-						3	1
				FRA	44		100		167		180		260		265		265		20		60		13	4
		CIII		SCO	6.0		100		167		100		267		200		265		0				1.0	+
		GILL	none	Total	44	-	100	-	167	-	196	-	267	-	265	-	265	-	20	-	60	-	16	4
		CILL	CD all 1 + =	ED A															4		4		-	+
		GILL	SBcIllart5																1	-	1		7	4
		GILL	SBcIllart5	ıotaı		-	-		-	-	-	-		-	-	-	-	-	1	Ė	1		7	+
		LONGUNE		ECD.																				+
-		LONGLINE		ESP																			0	+
		LONGUNE		FRA			0		0		0		0		0		0		0		1			+
		LONGLINE	none	Total	-	-	0	-	0	-	0	-	0	-	0	-	0	-	0	-	1	-	0	+
-		OTTER		ENIC																	-			+
		OTTER		ENG ESP																	5		4	+
				FRA	179		219		327		270		204		332		332		18		100		363 85	1
				IRL	113		213		327		270		204		332		332		10		0		0.5	h
		OTTER	none	Total	179		219		327		270		204		332		332		18		106		452	t
		OTTEN	none	Tutai	173		213	-	327	-	270	-	204	-	332	-	332	-	10	-	100	-	432	t
		OTTER	SBcIllart5	FRA															36		82		172	t
		OTTER	SBcIllart5					-			-		-		-			-	36		82		172	Ť
		OTTEN	Speriares	Total															30		02		172	t
		PEL_SEINE	none	ESP																			10	Ť
		T EE_SENVE		FRA																			0	t
		PEL_SEINE		Total		-				-	-		-	-	-	-	-	-	-			-	11	Ť
		T EE_SENTE	none	Total																				t
		PEL_TRAWL	none	ESP																			1	Ť
				FRA	2		1		0		0		1		0		0		0		0		0	t
		PEL_TRAWL		Total	2	-	1	-	0	-	0	-	1	-	0	-	0		0		0	-	1	Ť
																								t
		PEL_TRAWL	SBcIllart5	FRA																			1	f
		PEL_TRAWL				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	1	t
																								Ť
		POTS	none	FRA							0		0											İ
		POTS		Total	-	-	-	-	-	-	0	-	0	-	-	-	-	-	-	-	-	-	-	Í
																								J
		TRAMMEL	none	ESP																			1	Ī
				FRA	60		107		148		135		158		183		183		4	0	3	0	2	I
		TRAMMEL	none	Total	60	-	107	-	148	-	135	-	158	-	183	-	183	-	4	0	3	0	3	J
																								J
		TRAMMEL	SBcIllart5	FRA															8	0	28	1	32	J
		TRAMMEL	SBcIllart5	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8	0	28	1	32	J
																								J
		none	none	ESP																			5	ĵ
				FRA			0		0															
		none	none	Total	-	-	0	-	0	-	-	-	-	-	-	-	-	-	-	-	-	-	5	J
																								J
—	8b-BoB	Total (all)			398		433		815		723		763	1 -	967		968	67	260	47	471	30	895	T

Table 5.10.4.7 Bay of Biscay - 8a- Trend in total landings (t) and discards (t) for European Hake (HKE) for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2003-2012. Derogations are sorted by gear, special conditions (SPECON) and country (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

Note											_				_				_						_
	SPECIES	REG_AREA	REG_GEAR	SPECON	COUNTRY																				
MAIN	UVE	9a-Ren	BEAM	none	D.C.I		U		U		יי	L	ע	L	ע	L	U	L	ע	L	ט	L	U	-	ע
	HKE	ва-вив	BEAIVI			U				U						0									
March Solicy March Solicy Sol						2		1		6		0													
Section Sect			BEAM	none			-		-		-		-	-	-	0	-	-	-	-		-	-		-
STATE STAT																									
STATE STATE PROPERTY TABLE STATE S			BEAM	SBdllart5	BEL							2		1		0		0	0	0	0	0	1	0	1
CALL STATE S					FRA															0	-				
CRIA_STREE			BEAM	SBcIllart5	Total	-	-	-	-	-	-	2	-	1	-	0	-	0	0	0	0	0	1	0	1
CRIA_STREE																									
CENT_CLUENT Section Pack																									
PRA_SIME			DEM_SEINE	none	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	30	-	28	-	10	-
PRA_SIME			DELL SELVE	00.00.05	554																			0.0	
DECORE 1999 196. 2 0 2 2 2 2 1 1 1 0 0 1 0 0 1 0 0																									
Delication Minimary Personal Fabrica Personal			DEIAI ZEINE	SBUIIBITO	iotai	-		-	•	-		•	-	-	•	-		-		-	-			36	
Delication Minimary Personal Fabrica Personal			DREDGE	none	FRΔ	3		0		2		3		1		1		1		1		n		n	
SECOLATION STATES							-		-				-		-		-		-		-		-		
BREDGE Studies Fabrill																									
CALL			DREDGE	SBclllart5	FRA																			0	
Section Sect			DREDGE	SBcIllart5	Total	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	0	-
Section Sect																									
			GILL					29		33		11		0		0		0		0	0	0	0		
GILL ORDAN TRAIN 1464 139 69 6 0 20 0 0 40 3 73 120 GILL ORDAN TRAIN 1464 1464 2397 1315 688 3277 1869 7462 7462 756 69 1207 GILL STREET FRA. 1 1 1 1 1 1 1 1 1						4 4		4.053				1.055				4.05:		40:-		4.055		E 055		1	
STATE Concess Teach 1.958 3. 2001 3. 2007																							49		
GILL SEGILATS PRACE GILL STREIMUTS Total GI			CIII	none																			- 40		
GILL SIGNATOR Incided - - - - - - - - -			OILL	110116	rotal	1 464	-	1 /10/1	-	2 207	-	1 115	-	698	-	18/1	-	1843	-	4 421	70/1	5 483	19	5 /115	
GILL SIGNATOR Incided - - - - - - - - -			GILL	SBdHart5	FRA															639	14	550		1 329	
CONCINE NONE ENG									-			-	-		-			-							
CONCINE CONC																									
FRA. 3 2 0 0 1 2 2 5 5 50 20 655			LONGLINE	none	ENG									0											
CONSIDER																								908	
CONSIGNED Section Total 3 2 0 0 1 1 2 2 2 66 349 1577 0					FRA	3		2		0		0		1		2		2		53		302		665	
CONSUME Section FRA					sco							1		0		0				10		39			
COMPANIES Societants Total Companies Compani			LONGLINE	none	Total	3	-	2	-	0	-	1	-	1	-	2	-	2	-	62	-	340	-	1 572	-
COMPANIES Societants Total Companies Compani																									
OTTER NONE (NG SP)																									
SSP			LONGLINE	SBalliarts	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	0	-	1	-
SSP			OTTED	nono	ENIC																	2	-		
PEL_SENSE Section Text Section Text Tex			OTTER																			- 2	•	836	
OTTER None Total 150 1095 1274 1048 1413 1850 1088 - 975 58 708 446 1473 - 1475						1 150		1 095		1 274		1 048		1 413		1.850		1.838		575	58	705	440	1	
OTTER SeciliarIS FIRA PEL SENVE none FIRA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			OTTER				-						-				-		-						
OTTER Section Total																									
PEL_SEINE none FRA 0 0 0 0 0 0 0 0 0			OTTER	SBcIllart5	FRA															666	4841	519	139	655	
PEL_SEINE Selliants FRA			OTTER	SBcIllart5	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	666	4841	519	139	655	
PEL_SEINE Selliants FRA																									
PEL_SENE Socilarts FRA																									
PEL_SENIC SBCHILATS Total			PEL_SEINE	none	Total	0	-	0	-	0	-	0	-	-	-		-	-	-		-	1	-	-	-
PEL_SENIC SBCHILATS Total			DEL CEINIC	CD-III#F	EDA.																				
PEL_TRAWL none ENG						-	_			_		_		_		-		_			_	_			
FRA 280 47 176 151 238 14 13 80 7 385 742			T EL_SENAL	Spanara	roui																				
FRA 280 47 176 151 238 14 13 80 7 385 742			PEL_TRAWL	none	ENG													0		27	-	3			
PEL_TRAWL none Total 280 - 47 - 176 - 151 - 288 - 14 - 14 - 110 7 405 - 744 -						280		47		176		151		238		14					7			742	
PEL_TRAWL Section Se																					-				
PELTRAWIL Section Se			PEL_TRAWL	none	Total	280	-	47	-	176		151	-	238	-	14		14	-	110	7	405	-	744	<u> • </u>
PELTRAWIL Section Se			DEL TO	an 111	50.4																				
POTS none FRA																									
POTS none Total			PEL_IRAWL	seculart2	ı otaı	-	-	-		-		-	-	-		-		-	-	4	1	58		109	
POTS none Total			POTS	none	FRA															1		1		n	
POTS SBCIIIart5 FRA									-	-			-		-	-		-			-				
POTS SBCIILATS TOTAL																								Ť	
POTS SECILATS TOTAL			POTS	SBdllart5	FRA															0		0		0	
FRA 81 98 52 42 107 67 67 67 4 53 1 0 2				SBcIllart5	Total	-	-	-		-		-	-	-				-	-		-	0			
FRA 81 98 52 42 107 67 67 67 4 53 1 0 2																									
TRAMMEL none Total 81 - 98 - 52 - 42 - 107 - 67 - 67 - 4 53 1 0 2 - TRAMMEL SECILATS FRA TRAMMEL SECILATS FRA none none ESP none none Total 1 - 2 - 0 - 0 - 0 0 - 288 - none secilats FRA none Secilatis FRA non			TRAMMEL																						
TRAMMEL SBdllart5 FRA																							_		
TRAMMEL Secilaris Total			TRAMMEL	none	Total	81	-	98	-	52		42	-	107	-	67	Ŀ	67	-	4	53	1	0	2	ŀ
TRAMMEL Secilaris Total																									
none none ESP																									
FRA			IKAMMEL	sBcillart5	lotal	•		-		•		•	-	-		•		•	-	36	22	25	1	26	-
FRA			none	none	ECD																			200	
None None Total 1 - 2 - 0 - 0 0 - 288			none									1		2		0		0				n		288	
none SBdllart5 FRA			none																			_		288	
none SBcillart5 Total																Ů								200	
none SBcillart5 Total			none	SBcIllart5	FRA																	0			
													-		-				-			_	-	-	-
						2 983	-	2 647		3 718		2 363		2 462		3 805		3 765	0	6 549	5 700	_	636	11 663	1

Table 5.10.4.8 Bay of Biscay – 8b- Trend in total landings (t) and discards (t) for European Hake (HKE) for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2003-2012. Derogations are sorted by gear, special conditions (SPECON) and country (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

CIES	REG_AREA	REG_GEAR	SPECON	COUNTRY		D 103		04 D	200	J5 D	L 20	006 D	200 L	D D	200 L	B D	200 L	D D	201	LU D	201 L	11 D	20:	112
	8b-BoB	BEAM	none	BEL	12	ь	10	ь	L	Ь.	<u> </u>	ь	-	D		U	L	U	L	U	L	ь	L	+
	OD-DOD	BEAM	none	Total	12		10		9				-											+
		BEAIVI	попе	Total	12	-	10	-	, ,	-	<u> </u>	-	-		-		-		-	-	-	-		٠
		BEAM	SBdllart5	BEL							8		1		3		6	6	5	4	5	23	3	
		BEAM	SBcIllart5				-			-	8		1		3		6	6	5	4	5	23	3	t
															-		-				-			Ť
		DEM_SEINE	none	ESP																			0	Ť
		_		FRA															7		12		9	1
		DEM_SEINE	none	Total	-	-		-	-	-			-	-					7		12	-	9	T
																								T
		DEM_SEINE	SBcIllart5	FRA																			8	Ι
		DEM_SEINE	SBcIllart5	Total		-	-	-	-	-	-	-	-	-	•	-		-	-	-	-	-	8	1
			none	FRA	0				0		0		0		0		0		0		0		0	4
		DREDGE	none	Total	0	-	-	-	0	-	0	-	0	-	0	-	0		0	-	0	-	0	1
																								4
		DREDGE	SBcIllart5																0		0		0	1
		DREDGE	SBcIllart5	Total	-	-	-	-	-	-		-	-	-	-		-		0	-	0		0	4
																								1
		GILL	none	ENG					4		0													4
				ESP	160		200		670		262		200		C **		C **		000	00	554	_	285	+
				FRA	168		201		679		262		328		642		642		889	99	551	3	697	4
		GIII	none	SCO	160		201		600		262		220		640		640		10	100	EF1	2	900	+
۱		GILL	none	Total	168		201		683		262		328		642		642		898	100	551	3	982	#
		GILL	SBcIllart5	FRA															141	20	122	2	129	+
		GILL	SBcIllart5																141	20	122	2	129	#
		JILL	Sperman	· our															141	20	144	-	143	†
		LONGLINE	none	ESP																			72	t
				FRA	32		20		34		56		77		52		52		364		473		284	†
		LONGLINE	none	Total	32	-	20	-	34	-	56		77		52		52		364		473		356	Ť
																								Ť
		LONGLINE	SBcIllart5	FRA															21		7		62	T
		LONGLINE				-	-	-	-	-		-	-	-	-	-	-	-	21	-	7	-	62	T
																								I
		OTTER	none	ENG																			1	Ι
				ESP																			788	4
				FRA	258		139		442		222		493		636		634		67	278	54		34	1
		OTTER	none	Total	258	-	139	-	442	-	222	-	493	-	636	-	634		67	278	54	-	824	4
			an	an .																	100			\perp
		OTTER	SBcIllart5																329	234	185		207	+
		OTTER	SBcIllart5	rotar	•				-	-			-	-					329	234	185		207	+
		PEL_SEINE	none	ESP																			0	+
		FEL_SETIVE	none	FRA	0		0						0		0		0		1		1		0	+
		PEL_SEINE	none	Total	0	-	0	-	-	-	-		0	-	0	-	0	_	1	-	1	_	0	t
		TEL_SEINE	none	rotar															1					t
		PEL_TRAWL	none	FRA	14		1		41		10		33		37		37		30		13		9	t
		PEL_TRAWL		Total	14		1		41	-	10		33		37		37		30		13		9	Ť
																								Ť
		PEL_TRAWL	SBcIllart5	FRA															5		2		4	Ī
		PEL_TRAWL				-		-		-	-							-	5	-	2	-	4	1
																								I
		POTS	none	FRA							0		0						4		6		4	1
		POTS	none	Total	-	-	-	-		-	0	-	0	-	•	-	•	-	4		6	-	4	_[
																								4
			SBclllart5																1		2		1	1
		POTS	SBcIllart5	Total		-	-			-	-	-		-				-	1	-	2	-	1	4
		WO - 1 1		500																				1
		TRAMMEL	none	ESP							-												0	4
		TDANCE		FRA	37		26		53		43		88		91		90		5	6	14	4	4	+
		TRAMMEL	none	Total	37	-	26	-	53	-	43	-	88	-	91		90	-	5	6	14	4	5	+
		TRAMMEL	SBcIllart5	ERA															132	1	140	48	132	4
			SBcillart5			-	-		-		-		-	-	-		-		132	1	140	48	132	t
۱		INSIMILE	Spendie	rotai									-	-					132	1	140	40	132	#
		none	none	ESP																			2	t
				FRA			1		1				2		2		2				1		-	+
		none	none	Total			1		1				2		2		2				1		2	T
																								t
		none	SBcIIIart5	FRA																	0			Ť
		none	SBcIllart5		-	-	-	-		-	-	-	-	-	-	-		-	-	-	0	-		Ť
٠									1 263			_	1 023		1 464		1 464	_		_				4

Table 5.10.4.9 Bay of Biscay – 8a- Trend in total landings (t) and discards (t) for Norway Lobster (NEP) for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2003-2012. Derogations are sorted by gear, special conditions (SPECON) and country (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

CDECIEC	DEC ADEA	REG_GEAR	CDECON	COLINITRY	200	13	200	14	200	15	200	6	200	07	20	08	20)9	2	010	20:	11	201	12
SPECIES	REG_AREA	KEG_GEAK	SPECON	COUNTRY	L	D	L	D	L	D	L	D	L	D	L	D	L	D	L	D	L	D	L	D
NEP	8a-BoB	BEAM	none	BEL					0															
				FRA	2		4		7															
		BEAM	none	Total	2	-	4	-	7	-		-	-	-	-	-	-	-	-	-	-	-	-	-
		$\overline{}$	SBdllart5								1		1				0				0			
		BEAM	SBcIllart5	Total	-	-	-	-	-	-	1	-	1	-	-		0	-	-		0	-	-	-
		DREDGE		FRA	0		0		2		0		0		1		1		2					
		DREDGE	none	Total	0	-	0	-	2	-	0	-	0	-	1	-	1	-	2	-	-	-	-	-
		GILL	none	FRA	1		2		0		1		1		3		3		0		0		0	
		GILL	none	Total	1	-	2		0	-	1	-	1		3		3	-	0	-	0		0	
			SBdHart5																0		1		0	
		GILL	SBcIllart5	Total	-	-	-	-	-	-	· ·	-	-	-	-	-	-	-	0	-	1	-	0	-
		OTTER		FRA	2 139		2 346		2 8 4 6		2 579		2 5 7 8		2 455		2 446		1 220	12 361	1 420		663	
				IRL																		_	2	_
		OTTER	none	Total	2 139	-	2 346	-	2 8 4 6	-	2 579	-	2 578	-	2 455	-	2 446	-	1 220	12 361	1 420	-	666	-
		OTTER	SBdllart5	EDA															1 173		1 325		1 010	
		OTTER	SBcIllart5												-				1173		1 325		1 010	
		OTTEN	Section	rotar															11/5		1 020		1010	
		PEL_TRAWL	none	FRA	5				0		2		3		34		34		1		17		0	
		PEL_TRAWL		Total	5				0		2		3		34		34		1		17		0	
		PEL TRAWL	SBcIllart5	FRA															1		1		5	
		PEL_TRAWL			-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	1	-	5	-
		POTS	none	FRA	1		2		0										3		4		3	
		POTS	none	Total	1	-	2	-	0	-		-	-	-	-	-	-	-	3	-	4	-	3	-
			SBdllart5																0					
		POTS	SBcIllart5	Total			-		-			-		-		-		-	0	-		-		-
		TRAMMEL	none	FRA	0		1		1		5		0		0		0		2		1		1	
				Total	0		1		1		5		0		0		0		2		1		1	
		IKAMMEL	none	rotar	U	-	1		1	-	3	-	0	-	U		U	-		-	1	-	1	-
		TRAMMEL	SBdllart5	EDA															0		0		0	
			SBcillart5		-	-	_		_		l .			_			_		0		0		0	
		INAWWIEL	Spuilato	TULAT	-	-	_	-		-	-	-	-	-	-	-	-	-	- 0	-	U	-	U	-
		none	none	FRA							0		0		0		0							
				Total	-				-		0		0		0		0						-	
		Total (all)			2 148		2 355		2 856		2 588		2 584		2 494		2 485		2 402	12 361	2 769		1 685	

Table 5.10.4.10 Bay of Biscay – 8b- Trend in total landings (t) and discards (t) for Norway Lobster (NEP) for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2003-2012. Derogations are sorted by gear, special conditions (SPECON) and country (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

DECIES	REG AREA	REG_GEAR	SPECON	COUNTRY	20	103	20	004	20	05	_	06	20	007		08	20)09	20	110	_	111	20	012
FECILS					L	D	L	D	L	D	L	D	L	D	L	D	L	D	L	D	L	D	L	D
EP	8b-BoB	BEAM	none	BEL	1				1															
		BEAM	none	Total	1	-			1	-	-	-				-	-			-			-	
																								Г
		BEAM	SBcIllart5	BEL							5		2		1		1		3		3		1	П
		BEAM	SBcIllart5	Total	-	-	-	-	-	-	5	-	2	-	1	-	1	-	3	-	3	-	1	-
																								П
		DREDGE	none	FRA					0		0		0										0	
		DREDGE	none	Total	-	-	-	-	0	-	0	-	0	-	-	-	-	-	-	-	-	-	0	-
		DREDGE	SBcIllart5	FRA															0					П
		DREDGE	SBcIllart5	Total		-				-		-				-			0		-			1
		GILL	none	FRA			0				0				0		0							
		GILL		Total		-	0				0	-		-	0	-	0	-		-	-	-		1-
																								Г
		GILL	SBcIllart5	FRA															0					
		GILL	SBcIllart5	Total	-	-	-	-		-	-	-	-	-	-	-	-	-	0	-	-	-	-	-
		OTTER	none	ENG																	0			\top
				ESP																			0	
				FRA	190		160		276		328		223		204		204		3		15		4	П
				IRL																	4		4	
		OTTER	none	Total	190	-	160		276	-	328	-	223		204	-	204		3	-	19	-	8	T-
																								Т
		OTTER	SBcIllart5	FRA															169		202		141	
			SBcIllart5		-	-				-		-				-			169		202	-	141	١.
		PEL_TRAWL	none	FRA					0				0								0			\top
		PEL_TRAWL		Total					0	-			0			-					0			1.
		_																						
		PEL_TRAWL	SBcIIIart5	FRA															0		1		2	т
		PEL_TRAWL				-						-		-		-		-	0	-	1	-	2	-
																								т
		POTS	none	FRA									0						0					
		POTS	none	Total	-	-				-		-	0			-			0			-		١.
																								\top
		TRAMMEL	none	FRA					0		0		0		0		0		0		0			
				Total					0		0		0		0		0		0		0			T.
											Ť				Ť		Ť				Ť			t
		TRAMMEL	SBcIllart5	FRA															1		0		0	П
			SBcIllart5		-	-			-	-		-				-			1		0	-	0	t.
		Total (all)	- Jonares		191		160		278		334		225		205		205	1	176		225		153	\vdash

Table 5.10.4.11 Bay of Biscay – 8a- Trend in total landings (t) and discards (t) for Whiting (WHG) for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2003-2012. Derogations are sorted by gear, special conditions (SPECON) and country (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

	1	I		_	20	0.2	20	0.4	20	ns.	20	106	20	107	20	no	20	inn		010	20	11	20	12
SPECIES	REG_AREA	REG_GEAR	SPECON	COUNTRY		D D	L L	04 D	L	D D	L	D	L ZU	D	1	D D	1	D	L	D D	L	D D	L	D D
WHG	8a-BoB	BEAM	none	BEL	0		0		0		_				Ť									Ť
				FRA	0		0		0															
		BEAM	none	Total	0	-	0		0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			SBcIllart5								0		1				0	0	0	0	0	0	0	1
		BEAM	SBcIllart5	Total	-	-	-	-	-	-	0	-	1	-	-		0	0	0	0	0	0	0	1
		DEM_SEINE	nono	FRA															66		111		15	
		DEM_SEINE		Total	-	-	-		-		-		-	-	-			_	66		111	-	15	
		DEIII_DEIIVE	iioiie	Total																			-10	
		DEM_SEINE	SBcIllart5	FRA																	0		101	
		DEM_SEINE	SBcIllart5	Total		-	-		-	-	-	-	-	-	-		-	-			0	-	101	-
																								\Box
				FRA	2		2		1		1		0		0		0		0		0		0	
		DREDGE	none	Total	2	-	2		1	-	1	-	0	-	0	-	0	-	0		0	-	0	-
		DREDGE	SBcIllart5	EDA															0				0	
			SBcIllart5		-		-			-	-	-	-	-				-	0		-	-	0	
		GILL	none	ESP																			0	
				FRA	51		33		43		54		42		34		34		16	685	13		15	
		GILL	none	Total	51	-	33	-	43	-	54		42	-	34	-	34	-	16	685	13	-	16	-
		CILL	CD-UI	ED A															20		17		20	
			SBcIllart5 SBcIllart5				-			-	-		-	-					20	4	17		28 28	
		GILL	3BCIIIa1C3	Total		-	-	-	-	-		-	-						20	4	17	-	20	
		LONGLINE	none	FRA	8		63		69		148		294		167		167		140		181		176	
				Total	8	-	63		69	-	148	-	294	-	167		167	-	140		181	-	176	-
			SBcIllart5																2		0		10	
		LONGLINE	SBcIllart5	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	0	-	10	-
		OTTER		ECD.																			14	
		OTTER	none	ESP FRA	284		331		430		308		265		167		166		125	535	177		131	-
		OTTER	none	Total	284	-	331		430	-	308	-	265	-	167	-	166	-	125	535	177	-	145	-
		OTTER	SBcIllart5	FRA															223	955	255		234	
		OTTER	SBcIllart5	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	223	955	255	-	234	-
			none	FRA	-		-		_	-	0		-				-		-		0			
		PEL_SEINE	none	Total	-	-	-	-	-	-	- 0	-	-	-	-	-	-	-	-	-	U	-	-	
		PEL_TRAWL	none	FRA	219		75		108		57		66		25		23		119		68		29	
		PEL_TRAWL		Total	219	-	75	-	108	-	57		66	-	25	-	23	-	119	-	68	-	29	-
		PEL_TRAWL																	2		4		42	
		PEL_TRAWL	SBcIllart5	Total	-	-	-	-	-	-	-			-	-	-	-	-	2		4	-	42	-
		POTS	none	FRA															1		27		8	
				Total															1		27		8	
																							Ť	
		POTS	SBcIllart5	FRA															0		0		0	
		POTS	SBcIllart5	Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	-	0	-	0	-
				FRA	17		24		25		51		36		41		41		6	5	3	10	4	
		TRAMMEL	none	Total	17	-	24	-	25	-	51	-	36	-	41		41		6	5	3	10	4	-
		TRAMMEL	SBcIllart5	FRA															21	29	42	179	41	
			SBcIllart5			-				-				-				-	21	29	42	179	41	-
																						-		
		none	none	ESP																			0	
				FRA							0		1		0		0				1			
		none	none	Total	-	-	-	-	-	-	0	-	1	-	0	-	0	-	-	-	1	-	0	-
		nono	CD AU - 45	EDA																				
			SBcIllart5 SBcIllart5				-			_	-			_						-	0	-		
	8a-BoB	Total (all)	Speniarca	, otal	582		528		675		620		705		435		432	0	740	2 214	901	189	851	1
	_0 000	. sea. (any			JUL		ULU		0.0		020		100		700		702		140	2214	001	100	001	

Table 5.10.4.12 Bay of Biscay – 8b- Trend in total landings (t) and discards (t) for Whiting (WHG) for vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2003-2012. Derogations are sorted by gear, special conditions (SPECON) and country (o. 10m length vessels). Data qualities are summarised in Section 4 of the report.

BEA	ADEA DEC CE	AR SPECC	N COUNTRY	, 20	003	20	004	20	105	20	006	20	007	20	108	20	109	20)10	20	11	20	12
BEA	AKEA KEG_GE	AR SPECC	COUNTRY	L	D	L	D	L	D	L	D	L	D	L	D	L	D	L	D	L	D	L	D
BEA	B BEAM	none	BEL	1		0		2															
BEA DEM DEM DEM DEM DRE	BEAM	none	Total	1	-	0	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BEA DEM DEM DEM DEM DRE DRE DRE DRE																							
DEM DEM DEM DEM DEM DRE DRE DRE DRE GILL GILL GILL CON LON LON OTT OTT OTT PEL PEL PEL PEL POT	BEAM		rt5 BEL							1		3		1		2	2	3	1	1	3	3	8
DEM DEM DEM DEM DEM DEM DRE DRE DRE GILL GILL GILL LON LON LON LON POTT OTT OTT PEL PEL PEL PPL PPT POT POT POT POT POT POT POT POT POT	BEAM	SBcIlla	rt5 Total			-		-	-	1	-	3	-	1	-	2	2	3	1	1	3	3	8
DEM DEM DEM DEM DEM DEM DRE DRE DRE GILL GILL GILL LON LON LON LON POTT OTT OTT PEL PEL PEL PPL PPT POT POT POT POT POT POT POT POT POT				_																			
DEM DEM DEM DRE	DEM_SE	INE none	FRA															14		32		23	
DEM DEM DEM DRE			NLD															5					
DEN DRE DRE DRE DRE DRE GILL GILL GILL LON LON LON OTT OTT OTT PEL PEL PEL PEL PPT POT POT POT TRA TRA	DEM_SI	INE none	Total		-	-	-	-	-	-	-	-	-	-	-	-	-	19	-	32	-	23	-
DEN DRE DRE DRE DRE DRE GILL GILL GILL LON LON LON OTT OTT OTT PEL PEL PEL PEL PPT POT POT POT TRA TRA	DEM C	INIT CD-III	rt5 FRA																			16	
DRE		EINE SBUITS										-										16	
DRE DRE DRE DRE GILL GILL GILL GILL LON LON OTT OTT OTT PEL PEL PEL PEL POT POT POT	DEIVI_31	THAE SPORE	ii G Total	1	<u> </u>			· ·	-	-							-		-			10	-
DRE DRE DRE DRE GILL GILL GILL GILL LON LON OTT OTT OTT PEL PEL PEL PEL POT POT POT	DREDGE	none	FRA	0				0		0		0		0		0		0				0	
DRE DRE GILL GILL GILL LON LON LON OTT OTT OTT PEL PEL PEL PPL PPL PT POT POT TRA TRA	DREDGI		Total	0				0		0		0		0		0		0				0	
DRE GILL GILL GILL GILL GILL LON LON LON OTT OTT OTT PEL PEL PEL PEL POT POT POT TRA TRA	J.II.E.D G.	- III	1000	Ť				Ť		Ť		Ť		Ť		Ť		Ť				_	
DRE GILL GILL GILL GILL GILL LON LON LON OTT OTT OTT PEL PEL PEL PEL POT POT POT TRA TRA	DREDGE	SBcIlla	rt5 FRA															0		0		0	
GILL GILL GILL GILL GILL GILL LON LON LON OTT OTT OTT PEL PEL PEL PEL POT POT POT TRA TRA	DREDGI		rt5 Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	-	0	-	0	-
GILL GILL GILL LON LON LON OTT OTT OTT PEL PEL PEL POT POT POT TRA TRA																							
GILL GILL LON LON LON OTT OTT OTT PEL PEL PEL POT POT POT	GILL	none	FRA	11		6		11		10		10		20		20		9	4	2		4	
GILL LON LON LON OTT OTT OTT OTT PEL PEL PEL PDT POT POT POT	GILL	none	Total	11	-	6	-	11	-	10	-	10	-	20	-	20	-	9	4	2	-	4	-
GILL LON LON LON OTT OTT OTT OTT PEL PEL PEL PDT POT POT POT																							
LON LON LON OTT OTT OTT PEL PEL PPL PPL PTL POT POT			rt5 FRA															2	1	1		7	
LON LON LON OTT OTT OTT PEL PEL PEL POT POT POT TRA	GILL	SBcIlla	rt5 Total	٠.	٠.					-		-	-	-		-	-	2	1	1		7	-
LON LON LON OTT OTT OTT PEL PEL PEL POT POT POT TRA																							
DOTE OTT OTT OTT PEL PEL PEL POT POT POT TRA	LONGLI		FRA	1		1		41		4		8		3		3		13		14		7	
OTT OTT OTT OTT PEL PEL PEL POT POT POT TRA	LONGLI	NE none	Total	1		1		41	-	4	-	8	-	3	-	3	-	13	-	14	-	7	•
OTT OTT OTT OTT PEL PEL PEL POT POT POT TRA	LONGLI	NE CDAIL	rt5 FRA															2		0		11	
OTT OTT OTT OTT OTT PEL PEL PEL POT POT POT	LONGLI		rt5 Total		١.													2		0		11	
OTT OTT OTT OTT PEL PEL PEL POT POT TRA	LONGLI	INE SECTION	ii G Total		-	-		-						-		-	-	-	-			11	-
OTT OTT OTT OTT PEL PEL PEL POT POT TRA	OTTER	none	ESP																			72	
PEL PEL POT POT POT TRA			FRA	65		87		180		175		312		163		163		24		33		12	
PEL PEL PEL POT POT POT POT TRA	OTTER	none	Total	65	-	87	-	180	-	175	-	312	-	163	-	163	-	24	-	33	-	84	-
PEL PEL PEL POT POT POT POT TRA																							
PEL PEL PEL POT POT POT TRA	OTTER	SBdHa	rt5 FRA															64	366	101		88	
PEL_ PEL_ POT POT POT TRA TRA	OTTER	SBcIlla	rt5 Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	64	366	101	-	88	-
PEL_ PEL_ POT POT POT TRA TRA																							
PEL PEL POT POT POT TRA	PEL_TRA		FRA	18		5		22		30		67		20		20		35		3		0	
PEL POT POT POT TRA	PEL_TR/	AWL none	Total	18	-	5	1	22		30	1	67	-	20	-	20		35	-	3	-	0	-
PEL POT POT POT TRA	DEL TO	A SAUL CD -IV	HE FD*															_		-		-	
POT POT POT TRA	PEL_TRA	AWL SBOIR	rt5 FRA									_						0		2		2	
POT POT TRA	PEL_18/	STATE SECURE	II O I O LOI															0		2		2	
POT POT TRA	POTS	none	FRA									0						0		0			
POT POT	POTS	none	Total	-	1.			-		-	-	0	-	-	-	-	-	0	-	0	-	-	-
POT TRA TRA																							
TRA TRA	POTS	SBdHa	rt5 FRA															0		0		0	
TRA	POTS	SBcIlla	rt5 Total	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	-	0	-	0	-
TRA																							
	TRAMM		FRA	17		7		17		23		36		46		46		0	2	1	0	0	
TRA	TRAMM	IEL none	Total	17	-	7		17		23	-	36	-	46	-	46	-	0	2	1	0	0	-
TRA			45 5D:																4		-	0=	
	TRAMM		rt5 FRA															20	179	34	35	37	
TRA	TRAMM	IEL SBCIlla	rt5 Total	l ·	1	-	-	-	-	-	-	-	-	-	-	-	-	20	179	34	35	37	-
non	none	none	ESP																			1	
Horr	Tione	none	FRA	0		0						2		0		0				1		1	
non	none	none	Total	0	1.	0						2		0		0				1		1	-
	_	_		112		106		272		243		438		255		255	2	190	554	226	39	283	8

5.10.5 ToR 2 Information on small boats (<10m)

5.10.5.1 Fishing effort of small boats by Member State

An overview of the fishing effort of small boats by Member State, gear and SPECON for the ICES division 8a and 8b is presented below. Comparison with the large vessels (>10m) is, as well, proposed.

Almost all effort of small boats is French. No Spanish nor Belgium data are available for small boats.

Small boats represent, the last three years, almost 20% of the effort deployed by the large vessels in 8a and 10% in 8b. Relative stability is observed for the last three years. Main fleets involved in 8a are the longline fleet, the pots fleet, the gill and trammel net fleets and the otter trawl fleet. In 8b, the main fleets are the gill and trammel net fleets, the longline fleet and the pots fleet.

The effort data available for small boats before 2010 seem to be incomplete and the "none" gear category represent a large part of this effort. So care is required in the use of these data to draw firm conclusions about trends of effort of small boats before 2010.

Table 5.10.5.1.1 - Bay of Biscay -8a - Overview of fishing effort in kW*days by fisheries for vessels <10m, comparison with the vessels >=10m, 2003- 2012.

Length Class	REG AREA COD	REG GEAR COD	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
o. 10m.	Sum o. 10m.		16 188 838	17 154 080	23 218 619	29 332 985	30 195 231	24 661 463	24 267 804	20 165 332	20 024 416	20 925 894
u. 10m.	8a-BoB	BEAM					2 552			2 376	352	1 320
	8a-BoB	DREDGE	130 847	112 020	151 406	211 597	119 511	87 829	87 829	93 547	84 866	178 770
	8a-BoB	GILL	530 977	477 770	521 942	667 053	673 044	420 628	420 628	1 003 414	847 894	759 362
	8a-BoB	LONGLINE	167 404	215 468	322 477	763 802	879 977	439 161	439 161	1 202 923	1 156 425	1 072 205
	8a-BoB	OTTER	262 946	271 622	286 328	471 349	496 698	274 566	274 566	537 787	534 402	491 967
	8a-BoB	PEL_SEINE	572			990	4 070			1 059	2 507	135
	8a-BoB	PEL_TRAWL	18 611	2 131	4 753	5 254		1 419	1 419	72 779	54 653	164 960
	8a-BoB	POTS	128 570	99 366	122 577	281 297	335 691	244 027	244 027	742 131	786 223	842 154
	8a-BoB	TRAMMEL	264 123	293 150	403 805	653 788	726 655	558 403	558 403	343 896	348 578	322 189
	8a-BoB	none	774 301	711 793	674 676	665 668	830 807	759 604	759 604		158 845	
	Sum u. 10m		2 278 351	2 183 320	2 487 964	3 720 798	4 069 005	2 785 637	2 785 637	3 999 912	3 974 745	3 833 062
	% u.10m		14%	13%	11%	13%	13%	11%	11%	20%	20%	18%

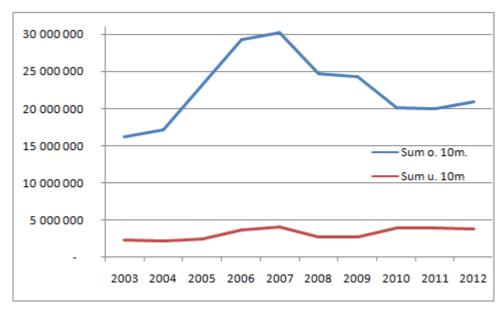


Figure 5.10.5.1.1 – Bay of Biscay – 8a – Overview of fishing effort in kW*days by <10m and >=10m vessels, 2003-2012.

Table 5.10.5.1.2 – Bay of Biscay – 8b – Overview of fishing effort in kW*days by fisheries for vessels <10m, comparison with the vessels >=10m, 2003- 2012.

Length Class	REG AREA COD	REG GEAR COD	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
o. 10m.	Sum o. 10m.		4 020 090	3 901 506	9 498 305	10 950 565	9 940 628	8 909 928	9 024 236	7 515 638	7 360 157	10 113 983
u. 10m.	8b-BoB	DREDGE		1 804	5 500	6 859	2 741	2 118	2 100	25 048	28 716	14 825
	8b-BoB	GILL	298 567	268 817	352 259	307 297	300 720	301 690	301 690	359 179	310 881	379 396
	8b-BoB	LONGLINE	69 311	77 924	52 621	70 753	73 665	95 834	95 730	88 463	126 485	197 647
	8b-BoB	OTTER	4 568	28 601	31 766	28 532	38 190	15 737	15 737	7 087	3 942	2 096
	8b-BoB	PEL_SEINE								705	4 230	2 585
	8b-BoB	PEL_TRAWL			1 890	2 155	198			10 898	4 172	14 250
	8b-BoB	POTS	7 922	15 057	9 182	24 967	24 376	6 753	6 753	105 023	121 021	117 988
	8b-BoB	TRAMMEL	78 539	82 380	84 760	155 626	149 630	193 300	193 300	263 329	267 340	276 240
	8b-BoB	none	65 912	86 194	87 607	107 822	65 968	71 801	71 801		258 790	
	Sum u. 10m		524 819	560 777	625 585	704 011	655 488	687 233	687 111	859 732	1 125 577	1 005 027
	% u.10m		13%	14%	7%	6%	7%	8%	8%	11%	15%	10%

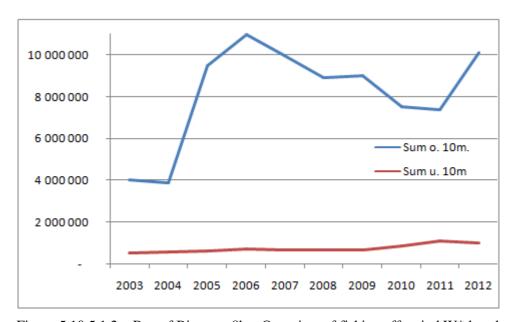


Figure 5.10.5.1.2 – Bay of Biscay – 8b – Overview of fishing effort in kW*days by <10m and >=10m vessels, 2003- 2012.

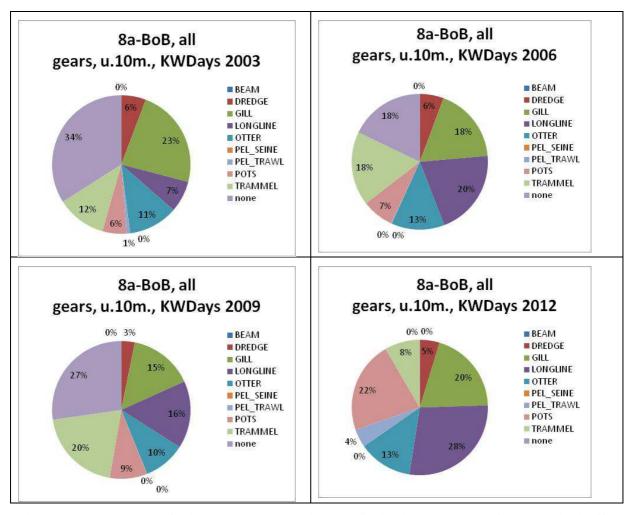


Figure 5.10.5.1.3 Bay of Biscay – 8a, Trend in the distribution per gear of the nominal effort (KWDays) for vessels <10m., 2003, 2006, 2009 and 2012.



Figure 5.10.5.1.4 Bay of Biscay – 8b, Trend in the distribution per gear of the nominal effort (KWDays) for vessels <10m., 2003, 2006, 2009 and 2012.

Table 5.10.5.1.3 – Bay of Biscay – 8a - Trend in nominal effort (kW*days at sea) by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2000-2012. Derogations are sorted by gear, special condition (SPECON), and country (u. 10m length vessels). Data qualities are summarised in Section 4 of the report.

REG AREA C	OD REG GEAR CO	DSPECON	COUNTRY	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
8a-BoB	BEAM	none	FRA								2 552			2 376	352	1 320
8a-BoB	Total	none									2 552			2 376	352	1 320
0 - D - D	DDED OF	1	ED.4	100 500	400,000	000 700	100.047	440.000	454 400	044 507	440.544	07.000	07.000	00.477	04.000	400.000
8a-BoB	DREDGE	none	FRA	109 502	102 903	326 739	130 847	112 020	151 406	211 597	119 511	87 829	87 829	90 477	84 206	168 998
8a-BoB	Total	none		109 502	102 903	326 739	130 847	112 020	151 406	211 597	119 511	87 829	87 829	90 477	84 206	168 998
8a-BoB	DREDGE	SBcIllart5	FRA											3 070	660	9 772
8a-BoB	Total	SBcIllart5												3 070	660	9 772
8a-BoB	GILL	none	FRA	270 237	325 359	1 394 120	530 977	477 770	521 942	667 053	673 044	420 628	420 628	897 110	690 117	722 851
8a-BoB	Total	none		270 237	325 359	1 394 120	530 977	477 770	521 942	667 053	673 044	420 628	420 628	897 110	690 117	722 851
8a-BoB	GILL	SBdllart5	FRA											106 304	157 777	36 511
8a-BoB	Total	SBcIllart5												106 304	157 777	36 511
8a-BoB	LONGLINE	none	FRA	95 673	89 129	436 609	167 404	215 468	322 477	763 802	879 977	439 161	439 161	1 179 563	1 098 648	1 011 852
8a-BoB	Total	none	The	95 673	89 129	436 609	167 404	215 468	322 477	763 802	879 977	439 161	439 161	1 179 563	1 098 648	1 011 852
	, 5 (4)			00 01 0	00 120	400 003	101 104	210 400	322 711	. 03 002	310 011	700 101	100 101	. 110 303	. 000 040	. 011 032
8a-BoB	LONGLINE	SBdHart5	FRA											23 360	57 777	60 353
8a-BoB	Total	\$Bclllart5												23 360	57 777	60 353
8а-ВоВ	OTTER	none	FRA	234 456	292 644	1 168 369	262 946	271 622	286 328	471 349	496 698	274 566	274 566	396 595	388 428	469 747
8a-BoB	Total	none		234 456	292 644	1 168 369	262 946	271 622	286 328	471 349	496 698	274 566	274 566	396 595	388 428	469 747
8a-BoB	OTTER	SBdllart5												141 192	145 974	22 220
8a-BoB	Total	SBcIllart5												141 192	145 974	22 220
8a-BoB	PEL_SEINE	none	FRA				572			990	4 070			1 059	2 507	135
8a-BoB	Total	none		-	-		572			990	4 070			1 059	2 507	135
8a-BoB	PEL_TRAWL	none	FRA	3 234	16 084	170 025	18 611	2 131	4 753	5 254		1 419	1 419	70 283	53 964	136 696
8a-BoB	Total	none		3 234	16 084	170 025	18 611	2 131	4 753	5 254		1 419	1 419	70 283	53 964	136 696
	1															
8a-BoB	PEL_TRAWL	SBcIllart5												2 496	689	28 264
8a-BoB	Total	SBcIllart5												2 496	689	28 264
8a-BoB	POTS	none	FRA	88 512	83 130	403 162	128 570	99 366	122 577	281 297	335 691	244 027	244 027	734 696	757 161	828 204
8a-BoB	Total	none		88 512	83 130	403 162	128 570	99 366	122 577	281 297	335 691	244 027	244 027	734 696	757 161	828 204
8а-ВоВ	POTS	SBdHart5	FRA											7 435	29 062	13 950
8a-BoB	Total	SBcIllart5												7 435	29 062	13 950
8a-BoB	TRAMMEL	none	FRA	127 754	143 299	896 535	264 123	293 150	403 805	653 788	726 655	558 403	558 403	304 466	275 906	290 364
8a-BoB	Total	none		127 754	143 299	896 535	264 123	293 150	403 805	653 788	726 655	558 403	558 403	304 466	275 906	290 364
8a-BoB	TRAMMEL	SBcIllart5	FRA											39 430	72 672	31 825
8a-BoB	Total	SBcIllart5												39 430	72 672	31 825
8a-BoB	none	none	FRA	825 608	898 857	4 063 327	774 301	711 793	674 676	665 668	830 807	759 604	759 604		152 175	
8а-ВоВ	Total	none		825 608	898 857	4 063 327	774 301	711 793	674 676	665 668	830 807	759 604	759 604		152 175	
8a-BoB	none	SBdHart5	FRA												6 670	
8a-BoB	Total	SBcIllart5													6 670	

Table 5.10.5.1.4 – Bay of Biscay – 8b - Trend in nominal effort (kW*days at sea) by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2000-2012. Derogations are sorted by gear, special condition (SPECON), and country (u. 10m length vessels). Data qualities are summarised in Section 4 of the report.

REG AREA CO	D REG GEAR COD	SPECON	COUNTRY	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
8b-BoB	DREDGE	none	ENG									18				
		none	FRA	16 580	11 365	59 193		1 804	5 500	6 859	2 741	2 100	2 100	24196	28 716	13 476
8b-BoB	Total	none		16 580	11 365	59 193		1 804	5 500	6 859	2 741	2 118	2 100	24 196	28 716	13 476
8b-BoB	DREDGE	SBdllart5	FRA											852		1 349
8b-BoB	Total	SBcIllart5												852		1 349
00-000	Total	3DCIIIa1C3												UJZ		1 345
8b-BoB	GILL	none	ENG							76	50					
		none	FRA	210 461	278 995	865 295	298 567	268 817	352 259	307 221	300 670	301 690	301 690	294 270	289 009	327 223
8b-BoB	Total	none		210 461	278 995	865 295	298 567	268 817	352 259	307 297	300 720	301 690	301 690	294 270	289 009	327 223
8b-BoB	GILL	SBdllart5									_		-	64 909	21 872	52 173
8b-BoB	Total	\$Bclllart5												64 909	21 872	52 173
8b-BoB	LONGLINE	none	ENG									104				
		none	FRA	42 176	62 071	95 124	69 311	77 924	52 621	70 753	73 665	95 730	95 730	88 463	126 485	188 146
8b-BoB	Total	none		42 176	62 071	95 124	69 311	77 924	52 621	70 753	73 665	95 834	95 730	88 463	126 485	188 146
8b-BoB	LONGLINE	SBdllart5	FRA													9 501
8b-BoB	Total	\$Bclllart5														9 501
8b-BoB	OTTER	none	FRA	6 787			4 568	28 601	31 766	28 532	38 190	15 737	15 737	7 087	3 942	2 096
8b-BoB	Total	none		6 787			4 568	28 601	31 766	28 532	38 190	15 737	15 737	7 087	3 942	2 096
	10.01			0 101			4 300	20 001	31100	20 332	30 130	13 131	10 101	1 001	3 3 4 2	2 000
8b-BoB	PEL_SEINE	none	FRA	5 028	10 816									705	4 230	
8b-BoB	Total	none		5 028	10 816									705	4 230	
8b-BoB	PEL_SEINE	SBdllart5														2 585
8b-BoB	Total	SBcIllart5														2 585
8b-BoB	PEL TRAWL	none	FRA	545					1 890	2 155	198			10 898	4 172	14 250
8b-BoB	Total	none		545					1 890	2 155	198			10 898	4 172	14 250
8b-BoB	POTS	none	ENG							592				59		
		none	FRA		4 212		7 922	15 057	9 182	24 375	24 376	6 753	6 753	104964	121 021	107 936
8b-BoB	Total	none			4 212		7 922	15 057	9 182	24 967	24 376	6 753	6 753	105 023	121 021	107 936
8b-BoB	POTS	SBcIllart5	FRA													10 052
8b-BoB	Total	SBcIllart5														10 052
																10 002
8b-BoB	TRAMMEL	none	FRA	41 999	55 099	198 972	78 539	82 380	84 760	155 626	149 630	193 300	193 300	156 110	184 901	169 929
8b-BoB	Total	none		41 999	55 099	198 972	78 539	82 380	84 760	155 626	149 630	193 300	193 300	156 110	184 901	169 929
-1 -																
8b-BoB	TRAMMEL	SBcIllart5	FRA											107 219	82 439	106 311
8b-BoB	Total	\$Bclllart5												107 219	82 439	106 311
8b-BoB	none	none	FRA	87 067	86 816	254 769	65 912	86 194	87 607	107 822	65 968	71 801	71 801		258 636	
8b-BoB	Total	none		87 067	86 816	254 769	65 912	86 194	87 607	107 822	65 968	71 801	71 801		258 636	
					55 5.0		55.12								300 000	
8b-BoB	none	SBcIllart5	FRA												154	
8b-BoB	Total	\$Bclllart5													154	

Table 5.10.5.1.5 – Bay of Biscay – 8a - Trend in Number of vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2000-2012. Derogations are sorted by gear, special condition (SPECON), and country (u. 10m length vessels). Data qualities are summarised in Section 4 of the report.

REG AREA COD	REG GEAR COD	SPECON	COUNTRY	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
8a-BoB	BEAM	none	FRA								1			1	1	1
8a-BoB	Total	none									1			1	1	1
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												·		
8а-ВоВ	DREDGE	none	FRA	43	36	44	52	27	32	38	25	15	15	23	14	40
8a-BoB	Total	none		43	36	44	52	27	32	38	25	15	15	23	14	40
																\top
8a-BoB	DREDGE	SBclllart5	FRA											2	1	2
8a-BoB	Total	SBcIllart5												2	1	2
8а-ВоВ	GILL	none	FRA	15	22	23	24	30	29	49	48	35	35	58	57	48
8а-ВоВ	Total	none		15	22	23	24	30	29	49	48	35	35	58	57	48
8a-BoB	GILL	SBcIllart5	FRA											5	7	2
8a-BoB	Total	SBcIllart5												5	7	2
8a-BoB	LONGLINE	none	FRA	23	20	36	52	55	62	150	153	91	90	171	168	161
8a-BoB	Total	none		23	20	36	52	55	62	150	153	91	90	171	168	161
8a-BoB	LONGLINE	SBcIllart5	FRA											3	7	5
8a-BoB	Total	SBcIllart5												3	7	5
8a-BoB	OTTER	none	FRA	24	18	23	16	19	14	36	50	27	27	28	31	37
8a-BoB	Total	none		24	18	23	16	19	14	36	50	27	27	28	31	37
														_		
8a-BoB	OTTER	SBcIllart5	FRA											9	10	3
8a-BoB	Total	SBcIllart5												9	10	3
8a-BoB	PEL_SEINE	none	FRA				1			2	1			1	2	1
8a-BoB	Total	none			-		1			2	1			1	2	1
04 202	10001	none		-	-									<u> </u>		
8a-BoB	PEL_TRAWL	none	FRA	4	2	2	2	1	1	4		1	1	123	50	85
8a-BoB	Total	none		4	2	2	2	1	1	4		1	1	123	50	85
8a-BoB	PEL_TRAWL	SBcIllart5	FRA											5	2	2
8a-BoB	Total	SBcIllart5												5	2	2
																\top
8a-BoB	POTS	none	FRA	14	15	20	22	25	26	58	66	49	49	130	135	129
8а-ВоВ	Total	none		14	15	20	22	25	26	58	66	49	49	130	135	129
8а-ВоВ	POTS	SBcIllart5	FRA											3	5	2
8a-BoB	Total	SBcIllart5												3	5	2
8a-BoB	TRAMMEL	none	FRA	14	18	20	23	31	29	56	78	68	65	32	29	31
8a-BoB	Total	none		14	18	20	23	31	29	56	78	68	65	32	29	31
8a-BoB	TRAMMEL	SBcIllart5	FRA											2	4	3
8a-BoB	Total	SBcIllart5												2	4	3
0- B-B			5D.4	100	000		000	0.45	067	000	00.1	044	041		4.65	
8a-BoB	none	none	FRA	408	383	415	383	345	367	320	364	311	311		149	
8a-BoB	Total	none		408	383	415	383	345	367	320	364	311	311		149	
Oo DoD	nana	CD-UL45	EDA.												-	
8a-BoB	none	SBcIllart5	FKA												7	
8a-BoB	Total	SBcIllart5													7	

Table 5.10.5.1.6 – Bay of Biscay – 8b - Trend in Number of vessels concerned by existing derogations stated in article 5 of Coun. Reg. 388/2006 and Member State, 2000-2012. Derogations are sorted by gear, special condition (SPECON), and country (u. 10m length vessels). Data qualities are summarised in Section 4 of the report.

REG AREA COD	REG GEAR COD	SPECON	COUNTRY	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
8b-BoB	DREDGE	none	ENG		•							1				
		none	FRA	3	4	2		1	3	2	2	1	1	3	7	7
8b-BoB	Total	none		3	4	2		1	3	2	2	2	1	3	7	7
-1																
8b-BoB	DREDGE	SBcIllart5	FRA											1		1
8b-BoB	Total	SBcIllart5												1		1
8b-BoB	GILL	none	ENG							2	1					
00 000	0122	none	FRA	49	37	33	32	34	27	28	33	21	21	28	24	20
8b-BoB	Total	none		49	37	33	32	34	27	30	34	21	21	28	24	20
8b-BoB	GILL	SBcIllart5	FRA											2	2	4
8b-BoB	Total	SBcIllart5												2	2	4
8b-BoB	LONGLINE	none	ENG									1				
01 0 0		none	FRA	21	16	14	16	20	15	18	17	19	18	27	31	30
8b-BoB	Total	none		21	16	14	16	20	15	18	17	20	18	27	31	30
8b-BoB	LONGLINE	SBcIllart5	FRΔ													2
8b-BoB	Total	SBcIllart5	1111-1													2
8b-BoB	OTTER	none	FRA	1			1	2	3	3	3	2	2	3	1	2
8b-BoB	Total	none		1			1	2	3	3	3	2	2	3	1	2
8b-BoB	PEL_SEINE	none	FRA	3	1									1	1	
8b-BoB	Total	none		3	1									1	1	
-1																
8b-BoB	PEL_SEINE	SBcIllart5	FRA													1
8b-BoB	Total	SBcIllart5														1
8b-BoB	PEL_TRAWL	none	FRA	2					1	7	1			14	8	12
8b-BoB	Total	none		2					1	7	1			14	8	12
8b-BoB	POTS	none	ENG							1				1		
		none	FRA		1		2	2	1	2	2	4	4	37	45	46
8b-BoB	Total	none		-	1	-	2	2	1	3	2	4	4	38	45	46
8b-BoB	POTS	SBcIllart5	FRA													2
8b-BoB	Total	SBcIllart5														2
ol- p-p	TD 4 A A A C		ED A	40	45	40	40	45	_	45	45	4.	4.1	45		0.
8b-BoB	TRAMMEL	none	FRA	19	15	13	12	10	7	13	13	14	14	15	32	21
8b-BoB	Total	none		19	15	13	12	10	7	13	13	14	14	15	32	21
8b-BoB	TRAMMEL	SBcIllart5	FRA											4	3	6
8b-BoB	Total	SBcIllart5												4	3	6
															_	
8b-BoB	none	none	FRA	133	111	99	75	59	81	64	40	42	42		65	
8b-BoB	Total	none		133	111	99	75	59	81	64	40	42	42		65	
8b-BoB	none	SBcIllart5	FRA												1	
8b-BoB	Total	SBcIllart5													1	

5.10.5.2 Catches (landings and discards) of common sole and associated species by small boats by Member State

An overview of the landings of common sole and associated species of small boats by Member State and gear for the ICES division 8a and 8b is presented below. Comparison with the large vessels (>10m) is, as well, proposed.

Almost all landings of common sole of small boats are French. No Spanish nor Belgium data are available for small boats.

Small boats represent the last three years almost 15% of the total landings of sole of the large vessels in 8a and 2% in 8b. Main fleets contributing to these catches in 8a are the gill and trammel net fleets and the otter trawl fleet. In 8b, the main fleets are the gill and trammel net fleets.

The landings data available for small boats before 2010 seem to be incomplete and the "none" gear category represent a large part of this effort. So care is required in the use of these data to draw firm conclusions about trends of landings of small boats before 2010.

Table 5.10.5.2.1 – Bay of Biscay – 8a – Overview of landings (t) of sole and associated species sorted by gear, for vessels <10m, compare with vessels >=10m, 2003- 2012.

Length Clas	ss REG AREA COI	REG GEAR COI	SPECIES	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
o. 10m.	Sum_o10m		SOL	1 181	1 401	1 647	1 972	1 841	1 839	1 857	1 422	1 805	1 525
u. 10m.	8a-BoB	DREDGE	SOL				0	0	0	0	0	0	0
	8a-BoB	GILL	SOL	23	22	24	23	30	5	5	142	81	85
	8а-ВоВ	LONGLINE	SOL	0	0		0	0	0	0	2	5	1
	8a-BoB	OTTER	SOL	33	37	26	58	71	22	22	72	69	102
	8a-BoB	PEL_SEINE	SOL									0	
	8a-BoB	PEL_TRAWL	SOL				0				0	0	12
	8a-BoB	POTS	SOL	0			0	0	0	0	5	2	2
	8a-BoB	TRAMMEL	SOL	26	45	49	96	117	88	88	33	93	44
	8a-BoB	none	SOL		1							0	
	Sum_u10m			83	105	99	176	219	115	115	254	250	246
	% u.10m			7%	7%	6%	9%	12%	6%	6%	18%	14%	16%
o. 10m.	Sum_o10m		ANF	3 510	3 977	3 796	3 921	4 211	3 651	3 660	721	2 069	1 909
u. 10m.	8a-BoB	DREDGE	ANF				0	0	0	0			
	8a-BoB	GILL	ANF	24	32	10	8	3	2	2	12	11	4
	8a-BoB	LONGLINE	ANF	0			0		0	0	1	1	0
	8a-BoB	OTTER	ANF	0	1	1	2	0	0	0	2	1	0
	8a-BoB	PEL SEINE	ANF				0						
	8a-BoB	POTS	ANF		0	0	0	0	0	0	0	0	0
	8a-BoB	TRAMMEL	ANF	10	12	53	45	29	17	17	4	6	2
	Sum u10m			34	45	64	55	32	19	19	19	20	6
	% u.10m			1%	1%	2%	1%	1%	1%	1%	3%	1%	0%
o. 10m.	Sum o10m		HKE	2 983	2 647	3 718	2 363	2 462	3 805	3 765	6 549	8 071	11 663
u. 10m.	8a-BoB	DREDGE	HKE	2 000	2011	0.10	2 000	L 10L	0 000	0.100	0	0	11 000
d. Ioiii.	8a-BoB	GILL	HKE	56	53	38	74	58	51	51	86	30	33
	8a-BoB	LONGLINE	HKE	0	0	0	0	0	0	0	4	2	4
	8a-BoB	OTTER	HKE	9	5	7	12	56	27	27	27	17	10
	8a-BoB	PEL TRAWL	HKE	0			0				0		1
	8a-BoB	POTS	HKE	Ů		0		0			1	1	1
	8a-BoB	TRAMMEL	HKE	11	9	7	6	10	18	18	10	2	2
	Sum u10m	TI WHITE E	TINE	77	67	52	92	124	95	95	129	52	50
	% u.10m			3%	3%	1%	4%	5%	3%	3%	2%	1%	0%
o. 10m.	Sum_o10m		NEP	2 148	2 355	2 856	2 589	2 584	2 494	2 485	2 402	2 769	1 685
	8a-BoB	DREDGE	_	2 140	2 333	2 030	2 303	2 304	2 434	2 403		2 703	1 003
u. 10m.		+	NEP NEP			0	0				0	1	0
	8a-BoB	GILL	NEP	0 4	7	21	1.4	9			17	1 19	
	8a-BoB 8a-BoB	POTS	NEP	4	,	21	14	,			0	2	12
		ILO19	INEF				1 1				U	- 4	
		TDAMMEL	NIED								0		
	8a-BoB	TRAMMEL	NEP		7	21		٥	0	0	3	0	1
	Sum_u10m	TRAMMEL	NEP	4	7	21	15				20	22	15
o 10ee	Sum_u10m % u.10m	TRAMMEL		0%	0%	1%	15 1%	0%	0%	0%	20 1%	22 1%	15 1%
o. 10m.	Sum_u10m % u.10m Sum_o10m		WHG				15	0% 705			20 1% 740	22 1% 901	
o. 10m. u. 10m.	Sum_u10m % u.10m Sum_o10m 8a-BoB	DREDGE	WHG WHG	0% 582	0% 528	1% 675	15 1% 620	0% 705 0	0% 435	0% 432	20 1% 740	22 1% 901	15 1% 851
	Sum_u10m % u.10m Sum_o10m 8a-BoB 8a-BoB	DREDGE GILL	WHG WHG WHG	0 % 582 9	0% 528	1% 675	15 1% 620	0 % 705 0 9	0 % 435 8	0 % 432 8	20 1% 740 0 31	22 1% 901 0 36	15 1% 851 37
	Sum_u10m % u.10m Sum_o10m 8a-BoB 8a-BoB 8a-BoB	DREDGE GILL LONGLINE	WHG WHG WHG WHG	0% 582 9	0% 528 10 30	1% 675 16 32	15 1% 620 25 33	0% 705 0 9 38	0% 435 8 10	8 10	20 1% 740 0 31 69	22 1% 901 0 36 67	15 1% 851 37 106
	Sum_u10m % u.10m Sum_o10m 8a-BoB 8a-BoB 8a-BoB 8a-BoB	DREDGE GILL LONGLINE OTTER	WHG WHG WHG WHG	0 % 582 9	0% 528	1% 675	15 1% 620	0 % 705 0 9	0 % 435 8	0 % 432 8	20 1% 740 0 31 69 14	22 1% 901 0 36	15 1% 851 37
	Sum_u10m % u.10m Sum_o10m 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB	DREDGE GILL LONGLINE OTTER PEL_SEINE	WHG WHG WHG WHG WHG	9 3 1	0% 528 10 30	1% 675 16 32	15 1% 620 25 33 5	0% 705 0 9 38	0% 435 8 10	8 10	20 1% 740 0 31 69 14	22 1% 901 0 36 67 19	15 1% 851 37 106 23
	Sum_u10m % u.10m Sum_o10m 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB	DREDGE GILL LONGLINE OTTER PEL_SEINE PEL_TRAWL	WHG WHG WHG WHG WHG WHG	0% 582 9	0% 528 10 30	1% 675 16 32 2	15 1% 620 25 33	0% 705 0 9 38 3	0% 435 8 10	8 10	20 1% 740 0 31 69 14 0	22 1% 901 0 36 67 19	15 1% 851 37 106 23
	Sum_u10m % u.10m Sum_o10m 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB	DREDGE GILL LONGLINE OTTER PEL_SEINE PEL_TRAWL POTS	WHG WHG WHG WHG WHG WHG WHG	9 3 1	0% 528 10 30 2	1% 675 16 32 2	15 1% 620 25 33 5	0% 705 0 9 38 3	0% 435 8 10	8 10 1	20 1% 740 0 31 69 14 0 0	22 1% 901 0 36 67 19 0 3	15 1% 851 37 106 23 2 4
	Sum_u10m % u.10m Sum_o10m 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB	DREDGE GILL LONGLINE OTTER PEL_SEINE PEL_TRAWL POTS TRAMMEL	WHG	9 3 1	0% 528 10 30 2	1% 675 16 32 2	15 1% 620 25 33 5	0% 705 0 9 38 3	0% 435 8 10	8 10	20 1% 740 0 31 69 14 0	22 1% 901 0 36 67 19	15 1% 851 37 106 23
	Sum_u10m % u.10m Sum_o10m 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB 8a-BoB	DREDGE GILL LONGLINE OTTER PEL_SEINE PEL_TRAWL POTS	WHG WHG WHG WHG WHG WHG WHG	9 3 1	0% 528 10 30 2	1% 675 16 32 2	15 1% 620 25 33 5	0% 705 0 9 38 3 0 5	0% 435 8 10	8 10 1	20 1% 740 0 31 69 14 0 0	22 1% 901 0 36 67 19 0 3	15 1% 851 37 106 23 2

Table 5.10.5.2.2 – Bay of Biscay – 8b– Overview of landings (t) of sole and associated species sorted by gear, for vessels <10m, compare with vessels >=10m, 2003- 2012.

Length Class	REG AREA COD	REG GEAR COD	SPECIES	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
o. 10m.	Sum_o10m		SOL	1 072	1 112	1 618	1 424	1 411	1 472	1 521	1 565	1 795	1 706
u. 10m.	8b-BoB	DREDGE	SOL									0	
	8b-BoB	GILL	SOL	3	7	4	5	2	2	2	12	6	10
	8b-BoB	LONGLINE	SOL	0		0	0				0	0	0
	8b-BoB	OTTER	SOL		1	1	1	2	1	1	0	0	0
	8b-BoB	PEL_TRAWL	SOL				0						
	8b-BoB	POTS	SOL					0			0	0	0
	8b-BoB	TRAMMEL	SOL	9	6	1	7	3	14	14	29	22	19
	8b-BoB	none	SOL						0	0		0	
	Sum_u10m			12	14	7	12	6	18	18	42	29	29
	% u.10m			1%	1%	0%	1%	0%	1%	1%	3%	2%	2%
o. 10m.	Sum_o10m		ANF	398	433	815	723	763	967	968	260	471	895
u. 10m.	8b-BoB	GILL	ANF	0	0	0	0	0	0	0	0	0	0
	8b-BoB	LONGLINE	ANF	0				0					
	8b-BoB	OTTER	ANF		0								
	8b-BoB	TRAMMEL	ANF	0		0	0		0	0	1	1	4
	Sum_u10m			0	0	0	0	0	0	0	1	2	4
	% u.10m			0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
o. 10m.	Sum_o10m		HKE	520	399	1 263	600	1 023	1 464	1 464	2 009	1 588	2 737
u. 10m.	8b-BoB	GILL	HKE	3	2	1	2	2	7	7	20	7	14
	8b-BoB	LONGLINE	HKE	17	20	8	12	27	30	30	41	83	79
	8b-BoB	OTTER	HKE		0	1	0	2	3	3	0	0	0
	8b-BoB	PEL_TRAWL	HKE								0		
	8b-BoB	POTS	HKE									1	0
	8b-BoB	TRAMMEL	HKE	1	0	0	1	0	2	2	5	5	5
	8b-BoB	none	HKE									0	
	Sum_u10m			21	23	10	16	31	43	43	67	96	98
	% u.10m			4%	6%	1%	3%	3%	3%	3%	3%	6%	4%
o. 10m.	Sum_o10m		NEP	191	160	278	334	225	205	205	176	225	153
u. 10m.	8b-BoB	GILL	NEP								0	0	
	8b-BoB	POTS	NEP										0
	8b-BoB	TRAMMEL	NEP								0		
	Sum_u10m			0	0	0	0	0	0	0	0	0	0
	% u.10m			0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
o. 10m.	Sum_o10m		WHG	112	106	272	243	438	255	255	190	226	283
u. 10m.	8b-BoB	DREDGE	WHG					0					
	8b-BoB	GILL	WHG	0	0	0	0	0	0	0	1	0	1
	8b-BoB	LONGLINE	WHG	0	0	0	5	17	16	16	0	1	1
	8b-BoB	OTTER	WHG		0	0	0	1	0	0	0		
	8b-BoB	TRAMMEL	WHG	0	0	0	0	0	1	1	1	1	1
	Sum_u10m			0	0	0	5	18	17	17	2	1	3
	% u.10m			0%	0%	0%	2%	4%	7%	7%	1%	1%	1%

Table 5.10.5.2.3 Bay of Biscay -8a - Trend in total landings (t) and discards (t) for SOL for vessels <10m. sorted by gear, special condition (SPECON) and country (u. 10m length vessels), 2000-2012. Data qualities are summarised in Section 4 of the report.

		250 6512 602			2	003	2	004	2	005	20	006	20	07	2	008	20	009	20:	LO	20	11	201	12
SPECIES	REG AREA COD	REG GEAR COD	SPECON	COUNTRY	L	D	L	D	L	D	L	D	L	D	L	D	L	D	L	D	L	D	L	D
SOL	8a-BoB	DREDGE	none	FRA							0	-	0	-	0	-	0	-	0	-	0	-	0	-
	8a-BoB	Total	none		-	-	-	-	-	-	0	-	0	-	0	-	0	-	0	-	0	-	0	-
	8a-BoB	DREDGE	SBcIllart5	FRA															0	-				
	8a-BoB	Total	SBcIllart5		-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	-	-	-	-	-
	8a-BoB	GILL	none	FRA	23	-	22	-	24	-	23	-	30	-	5	-	5	-	29	78	28	-	80	-
	8a-BoB	Total	none		23	-	22	-	24	-	23	-	30	-	5	-	5	-	29	78	28	-	80	-
	8a-BoB	GILL	SBcIllart5	FRA															113	0	53	-	6	-
	8a-BoB	Total	SBcIllart5		-	-	-	-	-	-	-	-	-	-	-	-	-	-	113	0	53	-	6	-
	8a-BoB	LONGLINE	none	FRA	0		0				0	-	0	-	0	-	0	_	1		1	-	1	
	8a-BoB	Total	none	IRA	0	-	0	-	-	-	0	-	0	-	0	-	0	-	1	-	1	-	1	-
	04 000	i Utai	lione		-		- 0				0				0		0	-	1		1	-		
	8a-BoB	LONGLINE	SBcIIIart5	FRA															1	-	3	-		
	8a-BoB	Total	SBcIllart5	7.2.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	3	-		-
																			_					
	8a-BoB	OTTER	none	FRA	33		37		26	-	58	-	71	-	22	-	22	-	19	-	22	-	99	
	8a-BoB	Total	none		33	-	37	-	26	-	58	-	71	-	22	-	22	-	19	-	22	-	99	-
	8a-BoB	OTTER	SBcIllart5	FRA															53	-	47	-	4	-
	8a-BoB	Total	SBcIllart5		-	-	-	-	-	-	-	-	-	-	-	-	-	-	53	-	47	-	4	-
	8a-BoB	PEL_SEINE	none	FRA																	0	-		
	8a-BoB	Total	none		-	-			-	-	-	-	-	-	-	-	-	-	-	-	0	-	-	•
	8a-BoB	PEL_TRAWL	none	FRA							0	-							0	-	0	-	2	-
	8a-BoB	Total	none		-	-	-	-	-	-	0	-	-	-	-	-	-	-	0		0	-	2	-
	8a-BoB	PEL_TRAWL	SBcIIIart5	FRA																			10	-
	8a-BoB	Total	SBcIllart5	FRA					-	-	-	-		-	-		-	-	-		-	-	10	-
	04-000	Total	3Bullatu		+ -	-	<u> </u>	· ·	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	10	
	8a-BoB	POTS	none	FRA	0	-					0	-	0	-	0	-	0	-	3	-	1	-	2	-
	8a-BoB	Total	none		0	-	-			-	0	-	0		0	-	0	-	3	-	1	-	2	-
	8a-BoB	POTS	SBcIllart5	FRA															2	-	0	-		
	8a-BoB	Total	SBcIllart5		-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	0	-	-	-
	8a-BoB	TRAMMEL	none	FRA	26	-	45	-	49	-	96	-	117	-	88	-	88	-	25	-	26	-	35	-
	8a-BoB	Total	none		26	-	45	-	49	-	96	-	117	-	88	-	88	-	25	-	26	-	35	
																							\perp	
	8a-BoB	TRAMMEL	SBcIllart5	FRA															8	-	67	-	9	-
	8a-BoB	Total	SBcIllart5		-	-	-	-	-	-	-	-	-	-	-	-	-	-	8	-	67	-	9	-
	8a-BoB	none	none	FRA	_		1	-													0	-		
	8a-BoB	Total	SBcIllart5		-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	0	-	-	-
	0- P-P	T-4-1 (-ID					405		- 00		470		0.40		445		445		054	70	050		0.10	
	8a-BoB	Total (all)			83	-	105	-	99	-	176	-	219	-	115	-	115	-	254	78	250	-	246	

Table 5.10.5.2.4 Bay of Biscay – 8b - Trend in total landings (t) and discards (t) for SOL for vessels <10m. sorted by gear, special condition (SPECON) and country (u. 10m length vessels), 2000-2012. Data qualities are summarised in Section 4 of the report.

		255 5542 502			2	2003	2	004	2	2005	2	006	2	2007	2	008	2009		2010		20	11	20	012
SPECIES	REG AREA COD	REG GEAR COD	SPECON	COUNTRY	L	D	L	D	L	D	L	D	L	D	L	D	L	D	L	D	L	D	L	D
SOL	8b-BoB	DREDGE	none	FRA																	0	-		
	8b-BoB	Total	none		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	-	-	-
	8b-BoB	GILL	none	FRA	3	-	7	-	4	-	5	-	2	-	2	-	2	-	6	-	5	-	6	-
	8b-BoB	Total	none		3	-	7	-	4	-	5	-	2	-	2	-	2	-	6	-	5	-	6	-
	8b-BoB	GILL	SBcIllart5	FRA															7	-	1	-	4	-
	8b-BoB	Total	SBcIllart5		-	-	-	-	-	-	-	-	-	-	-	-	-	-	7	-	1	-	4	-
	8b-BoB	LONGLINE	none	FRA	0	-			0	-	0	-							0	-	0	-	0	-
	8b-BoB	Total	none		0	-	-	-	0	-	0	-	-	-	-	-	-	-	0	-	0	-	0	-
	8b-BoB	OTTER	none	FRA			1	-	1	-	1	-	2	-	1	-	1	-	0	-	0	-	0	-
	8b-BoB	Total	none		-	-	1	-	1	-	1	-	2	-	1	-	1	-	0	-	0	-	0	-
					_				_		_				-									
	8b-BoB	PEL_TRAWL	none	FRA							0	-												_
	8b-BoB	Total	none		-	-	-	-	-	-	0	-	-	-	-	-	-	-	-	-	-	-	-	-
	8b-BoB	POTS	none	FRA	-								0	-					0		0		0	
	8b-BoB	Total	none	FRA	-					-		_	0	-					n		n	-	0	-
	0D-000	Total	lione		+ -	-	-	-	-	-	-	-	0	-	-	-	-	-	0	-	0	-	- 0	-
	8b-BoB	TRAMMEL	none	FRA	9	l .	6		1	l .	7	_	3	١.	14		14	-	10	5	8	0	8	l .
	8b-BoB	Total	none		9	-	6		1	-	7	-	3	-	14	-	14	-	10	5	8	0	8	-
	0.0 0.00	T O CO.	110110						_				_						1 20					
	8b-BoB	TRAMMEL	SBcIllart5	FRA															19	1	13	0	10	-
	8b-BoB	Total	SBcIllart5		-	-	-	-	-	-	-	-	-	-	-	-	-	-	19	1	13	0	10	-
	8b-BoB	none	none	FRA											0	-	0	-			0	-		
	8b-BoB	Total	SBcIllart5		-	-	-	-	-	-	-	-	-	-	0	-	0	-	-	-	0	-	-	-
	8b-BoB	Total (all)			12		14	-	7		12		6		18		18		42	6	29	0	29	

5.10.6 ToR 3 Spatio-temporal patterns in effective effort by fisheries

Figures 5.10.6.1 to 5.10.6.11 show the spatial distribution of the effective fishing effort for all the different fisheries operating in the Bay of Biscay during the period 2003 to 2012. The pattern seems similar for the whole period for most of the fleets.

The effort is mostly distributed all across the gulf with somewhat higher values close to the estuaries (Gironde, baie de vilaine).

For trammel and otter, that are the two fisheries for which the effort increased between 2003 and 2007, the spatial effort allocation seems to follow the same trends, starting mainly in south Brittany and increasing in all the area in the following years.

The demersal seine fishery started in 2009 and increased since 2010.

Spanish fleets, included in the 2012 figures, operate mainly in the >12milles' ICES rectangles.

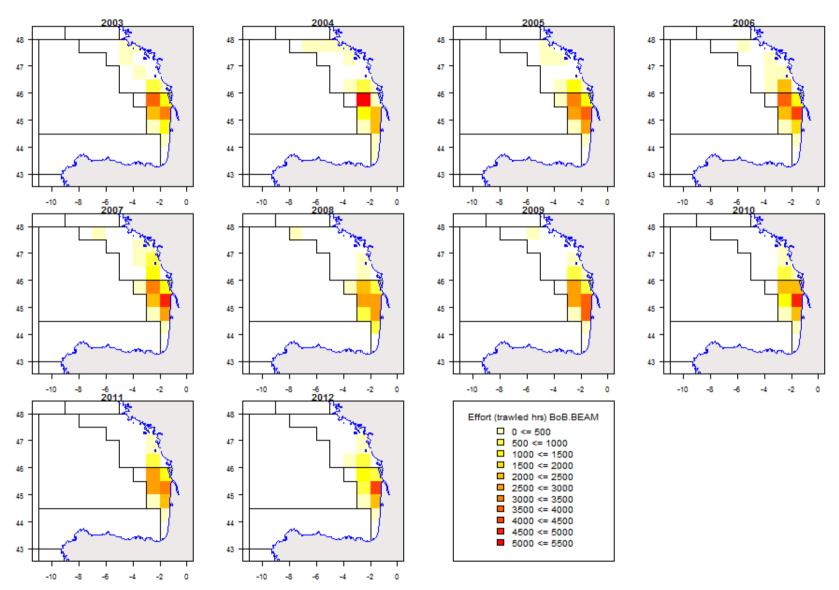


Figure 5.10.6.1. Bay of Biscay. Spatial distribution of effective fishing effort (fished hours) by ICES statistical rectangle for the Beam trawl gear, 2003-2012.

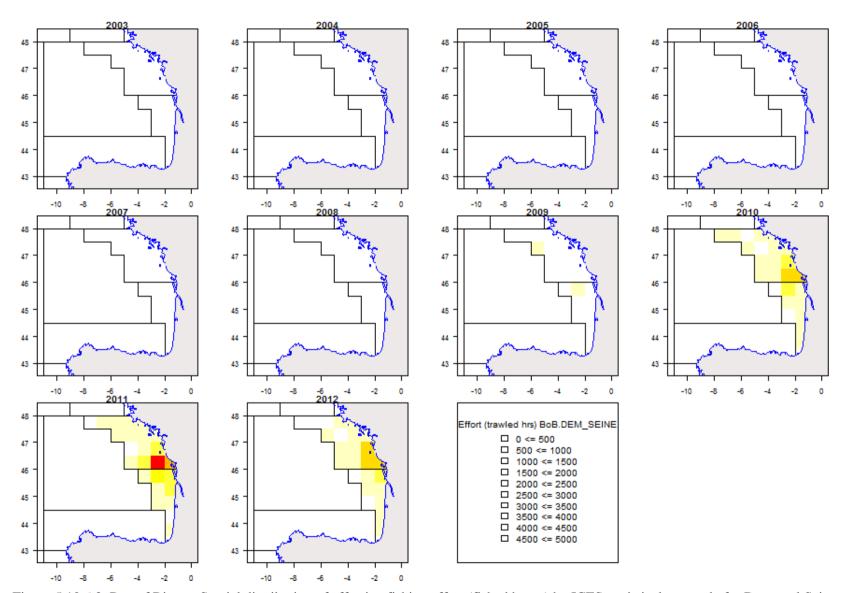


Figure 5.10.6.2. Bay of Biscay. Spatial distribution of effective fishing effort (fished hours) by ICES statistical rectangle for Demersal Seine gear, 2003-2012.

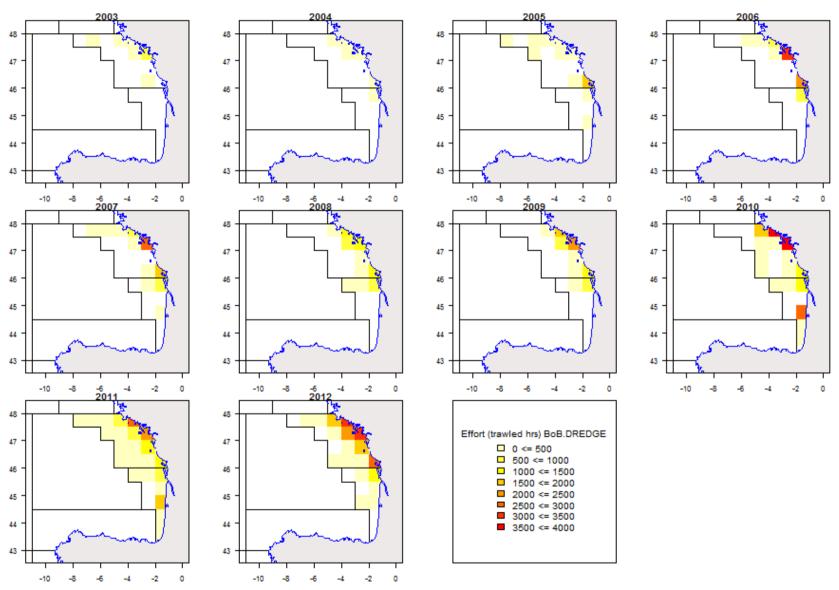


Figure 5.10.6.3. Bay of Biscay. Spatial distribution of effective fishing effort (fished hours) by ICES statistical rectangle for Dredge gear, 2003-2012.

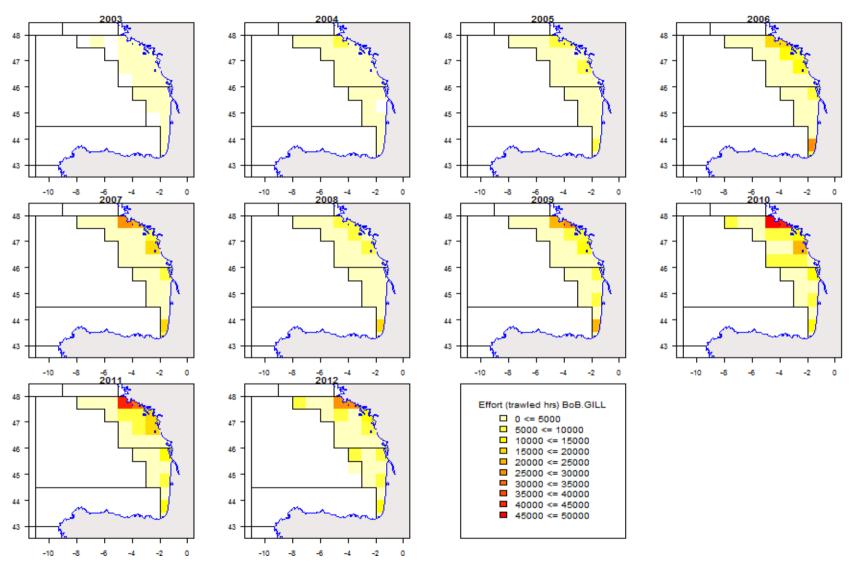


Figure 5.10.6.4. Bay of Biscay. Spatial distribution of effective fishing effort (fished hours) by ICES statistical rectangle for Gill net gear, 2003-2012.

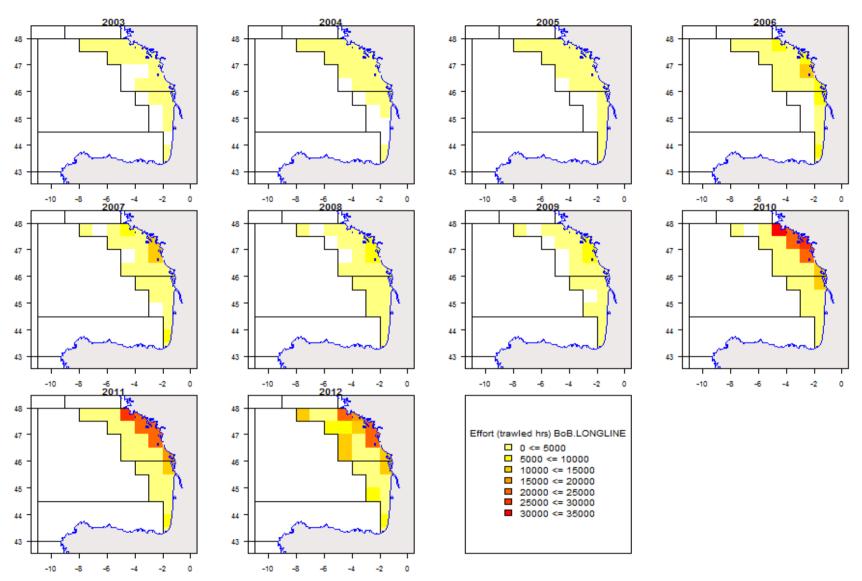


Figure 5.10.6.5. Bay of Biscay. Spatial distribution of effective fishing effort (fished hours) by ICES statistical rectangle for Longline gear, 2003-2012.

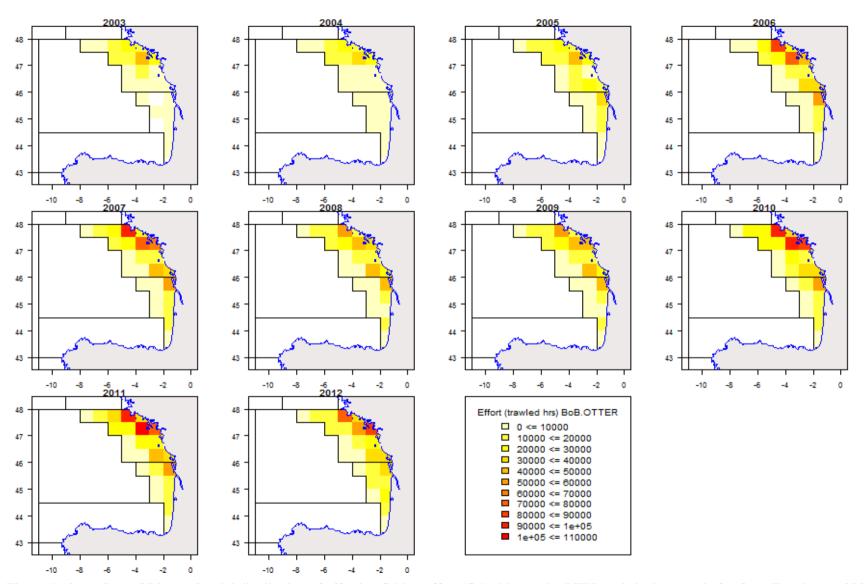


Figure 5.10.6.6. Bay of Biscay. Spatial distribution of effective fishing effort (fished hours) by ICES statistical rectangle for Otter Trawl gear, 2003-2012.

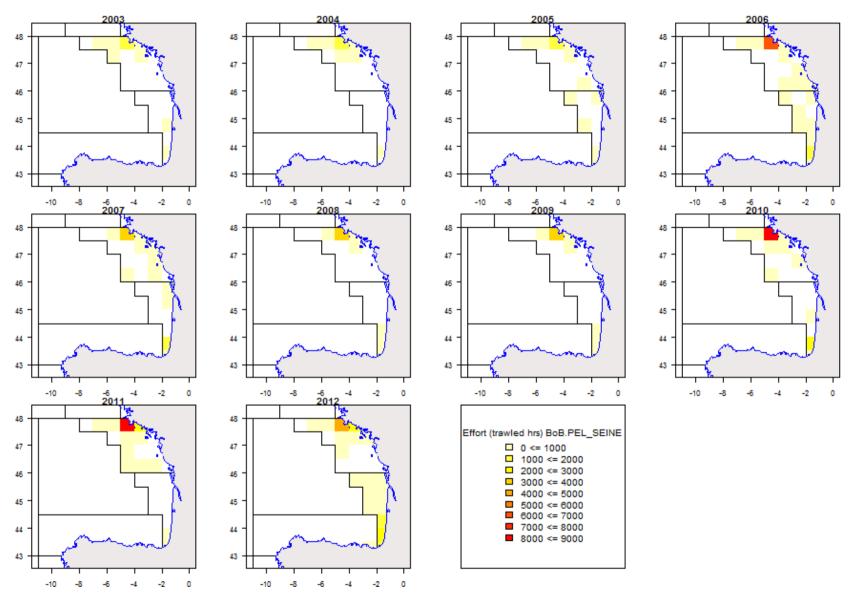


Figure 5.10.6.7. Bay of Biscay. Spatial distribution of effective fishing effort (fished hours) by ICES statistical rectangle for Pelagic Seine gear, 2003-2012.

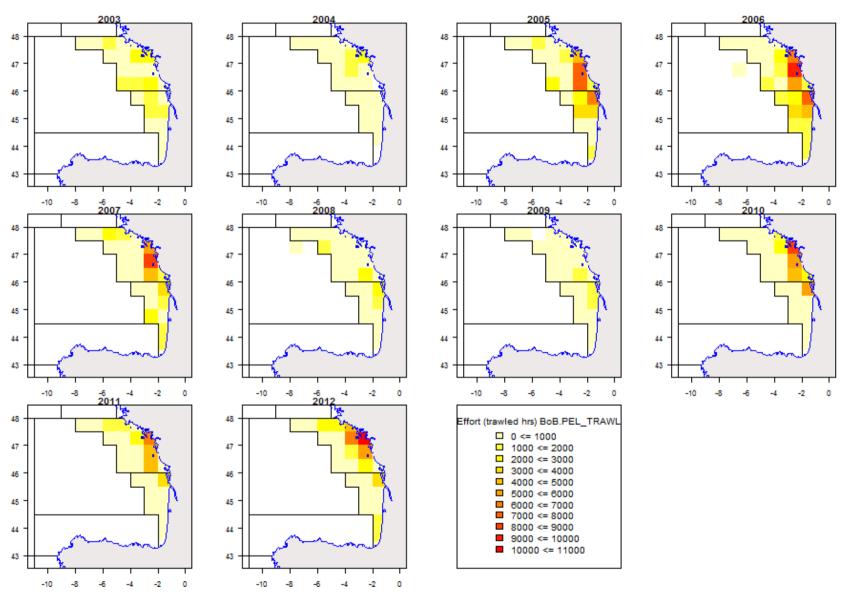


Figure 5.10.6.8. Bay of Biscay. Spatial distribution of effective fishing effort (fished hours) by ICES statistical rectangle for Pelagic Trawl gear, 2003-2012.

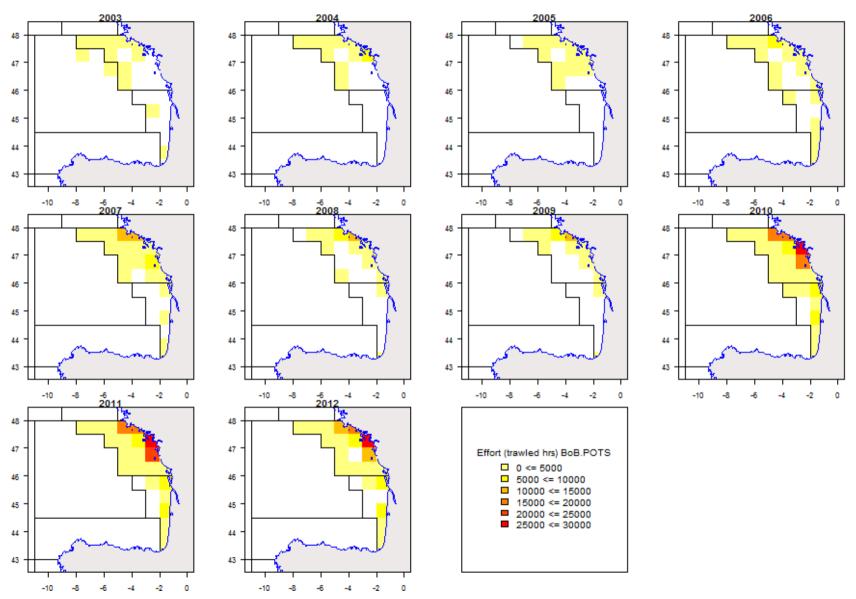


Figure 5.10.6.9. Bay of Biscay. Spatial distribution of effective fishing effort (fished hours) by ICES statistical rectangle for Pot gear, 2003-2012.

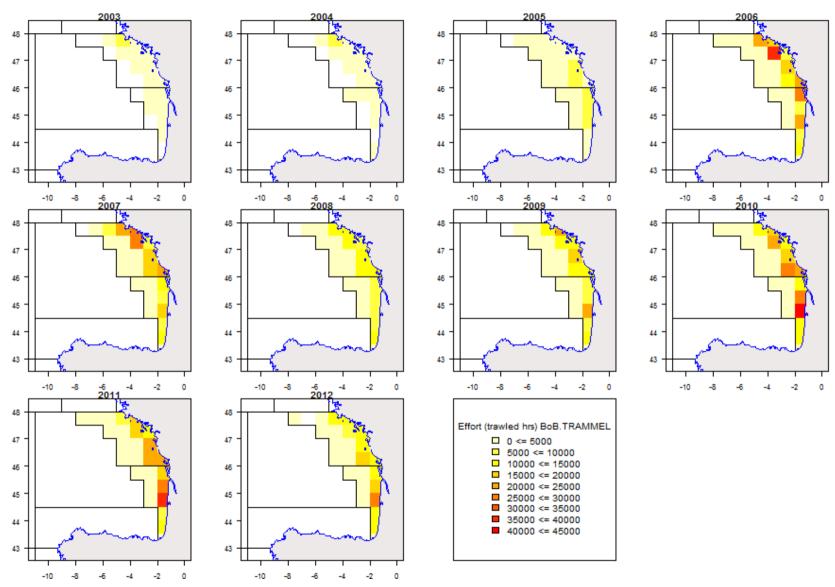


Figure 5.10.6.10. Bay of Biscay. Spatial distribution of effective fishing effort (trawled hours) by ICES statistical rectangle for Trammel net gear, 2003-2012.

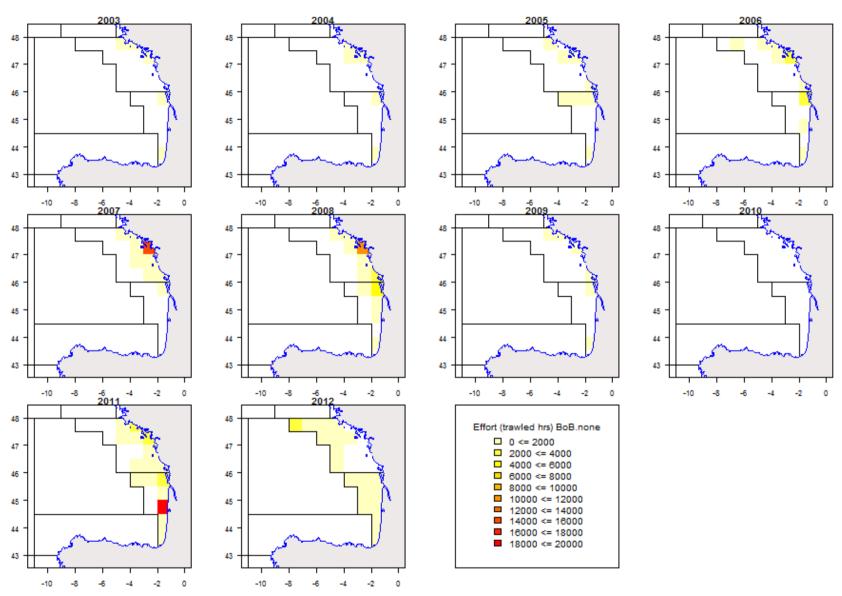


Figure 5.10.6.11. Bay of Biscay. Spatial distribution of effective fishing effort (trawled hours) by ICES statistical rectangle for none gear, 2003-2012.

5.10.7 ToR 4 Comments on data quality and any unexpected evolutions of the trends in catches and effort by Member State and fisheries

No further comment, see sections before where comments on data quality and any unexpected evolutions of the trends in catches and effort by Member State and fisheries have been made.

5.10.8 ToR 5 Correlation between partial sole mortality and fishing effort by Member State and fisheries

Fisheries specific data are broken down considering the specific condition SBCIIIART5 which is only provided for 2010 -2012 for French vessels and since 2006 for Belgian vessels, introducing a shift for the main gear type from the "none" category to the SPECON "SBCIIIART5" (Tables 5.10.8.1-2).

Discard estimates are scarce (information collected on discards is incomplete) and have been dubious in certain cases. Therefore, only landings are correlated against the fisheries specific fishing effort. Results are presented in the tables and figures below.

Note that only \sim 40% of the total F in Div. 8a and 8b is represented in the tables and figures below. So care is required in the use of these data to draw firm conclusions.

The STECF EWG 13-13 has estimated partial fishing mortalities of stock of Bay of Biscay sole for all identified regulated and non-regulated gear groups by Member States and correlated them against fishing effort. The major fisheries are presented below (Tables 5.10.8.1-2). The presented parameters r (value of Pearson's coefficient of correlation) as well as a p value to quantify the statistical significance (≤ 0.05) allows conclusions about the quality of the correlation between the partial F and fisheries specific fishing effort.

Recently the listed fisheries in areas 8a and 8b together do contribute by more than 75% to the total fishing mortality. The relevant fisheries are the beam trawl fishery by Belgium and the trammel net, gill net and otter trawl fisheries by France.

STECF EWG 13-13 notes that the correlations between the summed partial Fs for landings of the major fisheries and their estimated fishing efforts are significant in area 8a but most of them are insignificant in area 8b except trammel net fishery by France. As the analyses do not include discards and the time series lack Spanish fisheries, STECF EWG 13-13 does not further interpret the fisheries specific correlations between partial F and fishing effort.

Table 5.10.8.1 Bay of Biscay sole area ICES Div. 8a. The upper left part of the table lists estimated F trajectories from the management plan and the ICES 2013 sole assessment, while the lower left part lists partial Fs for landings of fisheries using major gears (o. 10m length vessels), specon assigns the licensed part of the fisheries. The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs of all effort regulated gears to the overall F estimate of the stock. Note that Spanish data are only available for 2012.

2007 Freduction by 20 p	percent, 2010	F reduction	n by 15%, ui	ntil F<0.27,	Fmsy=0.26	5								Effort kW days r	unning previ	ious year ba	seline									
				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		
plan					0,363	0,452	0,422	0,330	0,330	0,330	0,281	0,281	0,281													
reduction F plan										0,00	-0,15	-0,15	-0,15													
Festimated				0,479	0,363	0,452	0,422	0,431	0,456	0,416	0,369	0,373	0,463	Effort estimated	15145751	16511985	22121595	28411105	29741623	23770281	23616435	19872501	19862605	19577322		
reduction F estimated								-0,05	0	-0,09	-0,19	-0,18	0,02								-0,01	-0,16	0,00	-0,01		
														EFFORT												2003-2012
Fpar				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	r	p n
BEL	BEAM	none	landings	0,00271	0,00241	0,00323									41337	105779	123376								0,351	0,772
BEL	BEAM	SBclllart5	landings				0,00589	0,00720	0,00170	0,00438	0,00333	0,00155	0,00370					241716	226017	91076	108412	152261	150812	136302	0,768	0,044
ENG	BEAM	none	landings						0,00000											880						
ENG	GILL	none	landings					0,00000	0,00000	0,00000						48409	32606	121744	39301	18347	44662	60023	63140	52447		
ESP	OTTER	none	landings										0,00005											675020		
FRA	BEAM	none	landings	0,00002	0,00006	0,00007	0,00003					0,00003			15860	26032	35522	4104					1111			
FRA	BEAM	SBclllart5	landings								0,00001											588				
FRA	DEM_SEINE	none	landings								0,00001	0,00005										331067	612472	99372		
FRA	DEM_SEINE	SBcIllart5	landings										0,00009										215	542371		
FRA	DREDGE	none	landings	0,00023	0,00014	0,00024	0,00020	0,00034	0,00023	0,00021	0,00001	0,00002	0,00001		395354	414407	420148	533612	468381	377579	366074	90026	122145	176601		
FRA	DREDGE	SBcIllart5	landings								0,00001	0,00002	0,00003									22677	8443	70603		
FRA	GILL	none	landings	0,01659	0,01678	0,02213	0,01661	0,01179	0,01346	0,01443	0,00066	0,00046	0,00065		1254706	1420988	2128437	2396764	1821041	1790230	1765262	1534146	1274483	981798	0,622	0,055
FRA	GILL	SBclllart5	landings								0,00819	0,00404	0,00270									575670	471754	776035	-0,405	0,735
FRA	LONGLINE	none	landings		0,00041	0,00098	0,00071	0,00000	0,00001	0,00001	0,00001	0,00003	0,00001		183650	241134	365723	656098	621551	546023	546023	603895	701468	710982	-0,503	0,138
FRA	LONGLINE	SBcIllart5	landings								0,00020											72918	43375	151567		
FRA	none	none	landings				0,00043	0,00001	0,00002	0,00003		0,00000			110276	103586	74578	155533	172530	268115	268115		70220			
FRA	none	SBcIllart5	landings									0,00001											4324			
FRA	OTTER	none	landings	0,06083	0,05140	0,05896	0,06102	0,07036	0,05982	0,06394	0,01167	0,01233	0,01071		9749134	11645225	14681996	18526531	20544828	17065302	16945895	6396041	6287764	4506741	0,891	0,001
FRA	OTTER	SBclllart5	landings								0,03404	0,03207	0,04424									5344311	5556913	6068276	0,904	0,281
FRA	PEL_SEINE	none	landings				0,00000								395906	459144	447532	591583	611037	637343	637028	684055	744393	556022		
FRA	PEL_TRAWL	none	landings	0,00024	0,00000	0,00002	0,00004	0,00011	0,00052	0,00055	0,00002	0,00017	0,00001		2221241	768951	2022315	2499642	2148883	482127	441705	1203385	1033030	1178408	-0,516	0,127
FRA	PEL_TRAWL	SBclllart5	landings								0,00011	0,00015	0,00016									101972	108910	337915		
FRA	POTS	none	landings	0,00002			0,00000				0,00000	0,00013	0,00000		203191	312543	173870	153118	126862	22195	22195	619138	551436	451463		
FRA	POTS	SBclllart5	landings								0,00001	0,00001	0,00003									20990	71587	134265		
FRA	TRAMMEL	none	landings	0,05703	0,05592	0,07839	0,08872	0,09205	0,11927	0,12815	0,00205	0,00138	0,00064		575096	965787	1615492	2530660	2961192	2471064	2471064	355544	307538	249151	0,899	0,000
FRA	TRAMMEL	SBcIllart5	landings								0,07191	0,09291	0,10055									1703794	1677072	1721983	0,151	0,903
Sum				0,13767	0,12712	0,16402	0,17365	0,18186	0,19503	0,21170	0,13224	0,14536	0,16358		15145751	16511985	22121595	28411105	29741623	23770281	23616435	19872501	19862605	19577322	0,695	0,026
check sum Fpar/F				0,29	0,35	0,36	0,41	0,42	0,43	0,51	0,36	0,39	0,35													

Table 5.10.8.2 Bay of Biscay sole area ICES Div. 8b. The upper left part of the table lists estimated F trajectories from the management plan and the ICES 2013 sole assessment, while the lower left part lists partial Fs for landings of fisheries using major gears (o. 10m length vessels), specon assigns the licensed part of the fisheries. The right part of the table lists the respective trends in fishing effort (kW days at sea) as well as the correlation parameters between the partial Fs and the fisheries specific fishing effort. A complete set of all partial Fs of fisheries is downloadable from the meeting's internet site. The ratio of the sum of Fpar/F indicates the relative contribution of the partial Fs of all effort regulated gears to the overall F estimate of the stock. Note that Spanish data are only available for 2012.

2007 F	reduction by	20 percent	, 2010 Fred	duction by 1	L5%, until I	F<0.27, Fm:	sy=0.26							Effort kW days run	ining previous	year baseline	2								
				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	
olar	1				0,363	0,452	0,422	0,330	0,330	0,330	0,281	0,281	0,281												
duc	tion F plan									0,00	-0,15	-0,15	-0,15												
estii	mated			0,479	0,363	0,452	0,422	0,431	0,456	0,416	0,369	0,373	0,463	Effort estimated	3926319	3607880	9308575	10727762	9863994	8868476	8970332	7499913	7340434	9072952	
educ	tion F estimat	ted						-0,05	0	-0,09	-0,19	-0,18	0,02								0,01	-0,16	-0,02	0,24	
														EFFORT											2003-20
ar				2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	kW days at sea	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	р
L	BEAM	none	landings	0,03178	0,02653	0,03151									577330	550314	712933								0,592 0,596
L	BEAM	SBcIllart5	landings				0,02760	0,03212	0,02872	0,03693	0,03866	0,02935	0,03761					701274	754024	684939	815860	760585	747810	586698	0,055 0,907
Р	GILL	none	landings										0,00004											104564	
Р	none	none	landings										0,00000											91180	
P	OTTER	none	landings										0,00024											1293234	
SP.	TRAMMEL	none	landings										0,00002											3792	
RΑ	BEAM	none	landings									0,00002	0,00000						438				147	440	
kΑ	DEM SEINE	none	landings									0.00001										52079	137008	51302	
RΑ			landings										0,00000											64490	
RΑ	DREDGE	none	landings	0,00002		0,00003	0,00001	0,00000	0,00000	0,00000	0,00001	0,00001	0,00001		2511	7536	52315	64803	36614	33423	33423	29311	18220	47724	
RA	DREDGE	SBcIllart5	landings								0.00001	0,00005	0,00001									3598	7395	12098	
RΑ	GILL	none	landings	0.01195	0.00980	0.01637	0.00712	0,00363	0.00338	0.00363	0.00027	0.00015	0.00010		352927	394579	1217137	1429468	1173159	1044466	1044466	550893	388953	199981	
RA	GILL	SBcIllart5	landings								0,00185	0,00331	0,00350									199718	249443	364334	0,800 0,410
RA	LONGLINE	none	landings	0.00000	0.00049	0,00001	0.00012	0.00001	0.00000	0.00000	0.00003	0.00003	0.00006		51483	59324	235437	260702	236924	194503	194503	460343	424089	301524	-0,398 0,255
RΑ	LONGLINE	SBcIllart5	landings									0,00004	0.00009									37755	56927	121611	
RΑ	none	none	landings	0,00000	0,00008	0,00003		0,00000	0,00000	0,00000					73154	75689	116764	192933	106136	181700	181700		76984		
RΑ	none	SBcIllart5	landings									0,00016											8615		
RΑ	OTTER	none	landings	0,02260	0,01621	0,02715	0,01735	0,02328	0,02262	0,02419	0,00224	0,00256	0,00143		1254536	1413043	3780100	3828101	4114702	3789258	3781816	640861	985186	626927	
RΑ	OTTER	SBcIllart5	landings								0,02605		0,02644									1976798	1745826	2130614	0,949 0,204
RA		none	landings		0,00000						0,00000	0,00000			70740	81363	121441	165202	134820	132961	132961	124892	85470	151911	
	PEL TRAWL		landings	0,00001	0,00000	0,00014	0,00002	0,00005	0,00003	0,00003		0,00000	0,00001		814501	367024	1126082	1576779	975175	406269	386776	361874	195840	293078	
	PEL_TRAWL		landings								-		0,00058									45250	75157	128099	
RΑ	POTS	none	landings				0,00000	0,00000			0,00000	0,00000			26482	35213	2981	34432	38021	2716	2716	28349	28015	13444	
RΑ	POTS		landings				,	,			0,00003	0,00002	0,00030									24946	24870	52304	
RA.	TRAMMEL	none	landings	0.05858	0.04775	0,08588	0.07315	0.08025	0,10138	0.10856	-		0,00025		702655	623795	1943385	2474068	2293981	2398241	2396111	124925	87703	147220	
RA.		SBcIllart5		2,20000	2,2 1110	1,10000	2,21020	-,	.,_0100	1,20000	0.07499	-	0,11227			120100		2 1000		21.02.02		2077736	1996776	2286383	0,847 0,357
um				0.12494	0,10086	0.16112	0.12537	0.13934	0.15613	0.17334		0,14455			3926319	3607880	9308575	10727762	9863994	8868476	8970332	7499913	7340434	9072952	0,587 0,074
	sum Fpar/F			0,26	0,28	0,36	-	0,32	-	0,42	0,39	0,39	0,40		5520025	2227000	2230070	20.27702	2220324	5555476	55.0052		. 5 . 5 4 5 4	5072502	5,55. 0,074

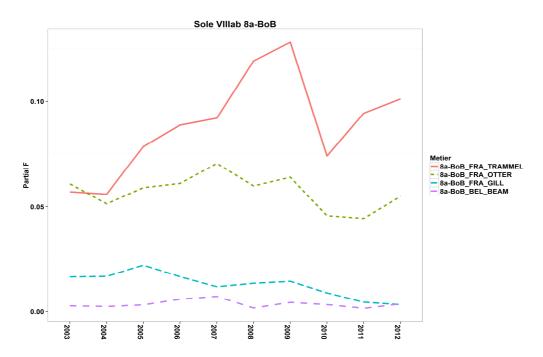


Fig. 5.10.8.1. Time series of sole partial fishing mortalities (based on partitioning the F from ICES assessment (ICES, 2013)) by the major fisheries in the Bay of Biscay sole area ICES Div. 8a 2003-2012 (o. 10m length vessels). Discard estimates are scarce (information collected on discards is incomplete) and have been dubious in certain cases. Therefore, only sole partial fishing mortalities based on landings are represented below. Note that Spanish data are only available for 2012.

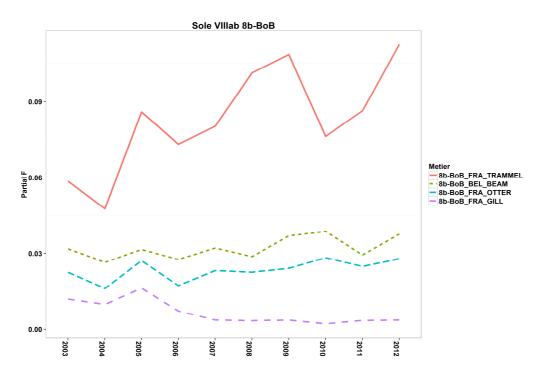


Fig. 5.10.8.2. Time series of sole partial fishing mortalities (based on partitioning the F from ICES assessment (ICES, 2013)) by the major fisheries in the Bay of Biscay sole area ICES Div. 8b 2003-2012 (o. 10m length vessels). Discard estimates are scarce (information collected on discards is incomplete) and have been dubious in certain cases. Therefore, only sole partial fishing mortalities based on landings are represented below. Note that Spanish data are only available for 2012.

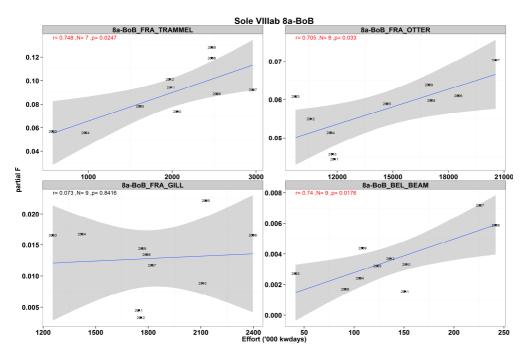


Fig. 5.10.8.3. Sole partial fishing mortality (based on partitioning the F from ICES assessment (ICES, 2013)) over effort ('000 kWd) in the Bay of Biscay sole area ICES Div. 8a of major fisheries, 2003-2012 (o. 10m length vessels). The years represent data points, the line a linear fit through the points and the grey the confidence bounds on the linear fit (+-2SE, 95%). Discard estimates are scarce (information collected on discards is incomplete) and have been dubious in certain cases. Therefore, only landings are correlated against the fisheries specific fishing effort. Note that Spanish data are only available for 2012.

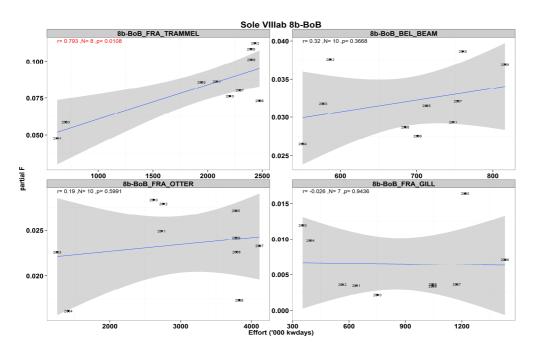


Fig. 5.10.8.4. Sole partial fishing mortality (based on partitioning the F from ICES assessment (ICES, 2013)) over effort ('000 kWd) in the Bay of Biscay sole area ICES Div. 8b of major fisheries, 2003-2012 (o. 10m length vessels). The years represent data points, the line a linear fit through the points and the grey the confidence bounds on the linear fit (+-2SE, 95%). **Discard estimates are scarce (information collected on discards is incomplete) and have been dubious in certain cases.** Therefore, only landings are correlated against the fisheries specific fishing effort. Note that Spanish data are only available for 2012.

6 REFERENCES

- Castro, J., Marín, M., Costas, G., Abad, E., Punzón, A., Pereiro, J. and Vázquez, A. 2011. Atlas de las flotas de pesca españolas de aguas europeas atlánticas. Temas de Oceanografía, nº 4. Instituto Español de Oceanografía. Ministerio de Ciencia e Innovación. 215 pp.
- Castro, J., Punzón, A., Pierce, G.J., Marín, M. and Abad, E. 2010. Identification of métiers of the Northern Spanish coastal bottom pair trawl fleet by using the partitioning method CLARA. Fisheries Research 102: 184-190.
- Eero M., Köster F.W. and Vinther M. 2012. Why is the Eastern Baltic cod recovering? Marine Policy 36 (2012): 235–240
- Fernandes, A., Jardim, E., Pestana, G., 2010. Discards raising procedures for Portuguese trawl fleet revision of methodologies applied in previous years. Working document presented at Benchmark Workshop on Roundfish (WKROUND), 9 16 February 2010, Copenhagen, Denmark. ICES CM 2010/ACOM:36, 183 pp.
- Gerritsen, H.D., McGrath, D. and Lordan, C., 2006. A simple method for comparing age-length keys reveals significant regional differences within a single stock of haddock (Melanogrammus aeglefinus). ICES J. Mar. Sci., 63(3): 1096-1100.
- Houghton R. G. and Flatman S. 1981. The exploitation pattern, density-dependent catchability, and growth of cod (Gadus morhua) in the west-central North Sea. J. Cons. int. Explor. Mer (1981) 39 (3): 271-287
- Houghton R. G. and Flatman S. 1981. The exploitation pattern, density-dependent catchability, and growth of cod (Gadus morhua) in the west-central North Sea. J. Cons. int. Explor. Mer (1981) 39 (3): 271-287

ICES CM 2006/ACFM:24

ICES CM 2012/ACOM:10.

- ICES. 2000. Report of the Study Group on Baltic Cod Age Reading (SGBCAR). ICES CM 2000/H:01
- ICES. 2006. Report of the Baltic Fisheries Assessment Working Group (WGBFAS).
- ICES. 2009. Report of the Working Group on the Assessment of Southern Shelf Stocks of Hake, Monk and Megrim (WGHMM), 5 11 May 2009, ICES Headquarters, Copenhagen. ICES CM 2009/ACOM:08. 537 pp.
- ICES. 2010a. Report of the Benchmark Workshop on Roundfish (WKROUND), 9–16 February 2010, Copenhagen, Denmark. ICES CM 2010/ACOM:36. 183 pp.
- ICES. 2010b. Report of the Working Group on the Assessment of Southern Shelf stocks of Hake, Monk and Megrim (WGHMM), 5 11 May 2010, Bilbao, Spain. ICES CM 2010/ACOM:11. 571 pp.
- ICES. 2011. Report of the Working Group on the Assessment of Southern Shelf stocks of Hake, Monk and Megrim (WGHMM), 5 11 May 2011, ICES Headquarters, Copenhagen. ICES CM 2011/ACOM:11.625 pp.
- ICES. 2012. Report of the Baltic Fisheries Assessment Working Group 2012 (WGBFAS).

- ICES. 2012. Report of the Working Group on the Assessment of Southern Shelf Stocks of Hake, Monk and Megrim (WGHMM), 10-16 May 2012, ICES Headquarters, Copenhagen. ICES CM 2012/ACOM:11. 599 pp.
- ICES. 2013. Report of the Baltic Fisheries Assessment Working Group (WGBFAS). ICES CM 2013/ACOM:10
- Jardim, E., Alpoim, R., Silva, C., Fernandes, A. C., Chaves, C., Dias, M., Prista, N., Costa, A. M., 2011. Portuguese data provided to WGHMM for stock assessment in 2011. Working Document presented at the ICES Working Group on the Assessment of Southern Shelf Stocks of Hake, Monk and Megrim (WGHMM), 5-11 May 2011, ICES Headquarters, Copenhagen, Denmark. ICES CM 2011/ACOM: 11, 625 pp.
- Jul-Larsen E., Kolding J., Overå R., Nielsen J. R., van Zwieten P. A. M. 2003. Management, Co-Management or No Management? Major Dilemmas in Southern African Freshwater Fisheries,
 1. Synthesis Report. FAO Fisheries Technical Paper 426/1, FAO 2003, ISBN 92-5-104919-X,
 127p.
- Marchal P., Nielsen J. R., Hovgård H. and Lassen H. 2001. Time changes in fishing power in the Danish cod fisheries of the Baltic Sea. ICES J. Mar. Sci. 58 (1): 298-310
- Neis B., Felt L., Scheider D. C., Haedrich R. L., Fischer J. and Hutchings J. A. 1999. Fisheries assessment: what can be learned from interviewing resource users? Can. J. Fish. Aquat. Sci. 56: 1949-1963
- Prista, N., Jardim, E., Fernandes, A. C., 2011. Portuguese onboard sampling protocols: contribution to the standardization of bottom otter trawl and set gears. Presentation to the Study Group on Practical Implementation of Discard Sampling Plans (SGPIDS), 27 June 1 July 2011, ICES Headquarters, Copenhagen, Denmark. ICES CM 2011/ACOM: 50, 116 pp.
- Punzon, A., Hernández, C., Abad, E., Castro, J., Perez, N., and Trujillo, V. 2010. Spanish otter trawl fisheries in the Cantabrian Sea. ICES Journal of Marine Science 67: 1604–1616.

7 EWG 13-06 PART 1 AND EWG 13-13 PART 2: LIST OF PARTICIPANTS

x=present, y=by correspondence

Name	Address	<u>Email</u>	Part 1	Part 2
STECF				
Members				
Ulrich Rescan, Clara	DTU-Aqua Charlottenlund Castle, 2920 Charlottenlund, Denmark	<u>clu@difres.dk</u>	<u>X</u>	
Vanhee, Willy	ILVO Hospitaalstraat, 8400 Oostende, Belgium	wvanhee@pandora.be	<u>X</u>	<u>X</u>
Invited	Gostende, Bergrum			
Experts				
Van der Kamp,	IMARES Haringkade 1, 1976 CP,	peter.vanderkamp@wur.nl	X	X
Peter HJ	IJmuiden, Netherlands			
Carlshamre, Sofia	SLU- Inst. of Marine Research, Turistgatan 5, 453 30 Lysekil, Sweden	sofia.carlshamre@slu.se	X	X
Davie, Sarah	Marine Institute, Rinville, Oranmore, Ireland	sarah.davie@marine.ie	X	X
Raid, Tiit	Estonian Marine Institute, University of Tartu, Estonia	tiit.raid@ut.ee	X	X
Dolder, Paul	Cefas Pakefield Road NR33 0HT Lowestoft, United Kingdom	paul.dolder@cefas.co.uk	X	X
Silva, Cristina	INRB-L/IPIMAR Av. de Brasília, 1449-006 Lisboa, Portugal	csilva@ipma.pt	X	Y
Holmes, Steven	Fisheries Research Services, Victoria Road, Aberdeen, United Kingdom	s.holmes@marlab.ac.uk	X	
Zolubas, Tomas	Fisheries Service under Ministry of Agriculture, Naujoji uosto 8 ^a , LT- 92119 Klaipeda,Lithuania	TomasZ@zum.lt	X	X
Kempf, Alexander	Institute of Sea Fisheries, Palmaille 9, 22767 Hamburg, Germany	alexander.kempf@vti.bund.de	X	X
Demaneche, Sebastiene	IFREMER B.P. 70, 29280, Plouzané, France	sdemanec@ifremer.fr	X	X
Gonzales Herraiz, Isabel	Instituto Español de Oceanografía, Paseo Marítimo, Alcalde Francisco Vázquez, 10, 15001 A Coruña, Spain	isabel.herraiz@co.ieo.es	X	X
O'Hea, Brendan	Marine Institute, Rinville, Oranmore, Ireland	brendan.ohea@marine.ie	X	Y
Ozernaja, Olga	Institute of Food Safety, Animal Health and Environment "BIOR", 8 Daugavgrivas Str., Riga, LV-1048, Latvia	olga.ozernaja@bior.gov.lv	X	X
Zeng, Fanyan	Fisheries Research Services, Victoria Road, Aberdeen, United Kingdom	Fanyan.Zeng@scotland.gsi.gov.uk	X	X
Mitrakis, Nikolaos	Via Antonio Sist, 21020 Taino VA, Italy	mitrakis@gmail.com	X	
Kovsars, Maksims	Fish Resources Research department (BIOR), Latvia	Maksims.Kovsars@bior.gov.lv		X
Pastoors, Martin	IMARES Haringkade 1, 1976 CP, IJmuiden, Netherlands	martin.pastoors@wur.nl		X
Gil Herrera, Juan	Instituto Español de Oceanografía - C.O. de Cádiz, Spain	juan.gil@cd.ieo.es		X
Vermard, Youen	IFREMER 150, Quai Gambetta, 62200 Boulogne sur mer, France	youen.vermard@ifremer.fr	Y	X
Radtke, Krzysztof	Sea Fisheries Institute, Poland	krzysztof.radtke@mir.gdynia.pl		X

JRC Expert				
Rätz Hans-	Joint Research Centre (IPSC),	hans-joachim.raetz@jrc.ec.europa.eu	X	X
Joachim (chair)	Maritime Affairs Unit, Via E. Fermi,			
	2749, 21027 Ispra (Varese), Italy			
Holmes, Steven	Joint Research Centre (IPSC),	steven.holmes@jrc.ec.europa.eu		X
	STECF secretariat			
European				
Commission				
Edgars	European Commission Rue Jozef II-	Edgars.GOLDMANIS@ec.europa.eu	<u>X</u>	
Goldmanis	99, 1000 Brussels, Belgium			
Rätz Hans-	Joint Research Centre (IPSC),	hans-joachim.raetz@jrc.ec.europa.eu	X	X
Joachim (chair)	STECF secretariat			
Holmes, Steven	Joint Research Centre (IPSC),	steven.holmes@jrc.ec.europa.eu		X
	STECF secretariat			
Observers				
none				

¹ - Information on STECF members and invited experts' affiliations is displayed for information only. In some instances the details given below for STECF members may differ from that provided in Commission COMMISSION DECISION of 27 October 2010 on the appointment of members of the STECF (2010/C 292/04) as some members' employment details may have changed or have been subject to organisational changes in their main place of employment. In any case, as outlined in Article 13 of the Commission Decision (2005/629/EU and 2010/74/EU) on STECF, Members of the STECF, invited experts, and JRC experts shall act independently of Member States or stakeholders. In the context of the STECF work, the committee members and other experts do not represent the institutions/bodies they are affiliated to in their daily jobs. STECF members and invited experts make declarations of commitment (yearly for STECF members) to act independently in the public interest of the European Union. STECF members and experts also declare at each meeting of the STECF and of its Expert Working Groups any specific interest which might be considered prejudicial to their independence in relation to specific items on the agenda. These declarations are displayed on the public meeting's website if experts explicitly authorized the JRC to do so in accordance with EU legislation protection personnel data. For more information: https://stecf.jrc.ec.europa.eu/adm-declarations http://stecf.jrc.ec.europa.eu/web/stecf/aboutand stecf/cv.

8 LIST OF BACKGROUND DOCUMENTS

Background documents are published on the meeting's web site on:

http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313

List of background documents:

- 1. EWG-13-13 Doc 1 Declarations of invited and JRC experts.
- 2. EWG-13-13 Doc 2 Digital appendixes (EXCEL spreadsheets) to the present report: Fisheries specific parameters (fishing effort, landings, discards, landings and discards at age, catch per unit of effort, spatial effective effort, ranking by catch and landings, partial fishing mortality by fisheries and correlations with fishing effort).

European Commission

EUR XXXX EN – Joint Research Centre – Institute for the Protection and Security of the Citizen

Title: Scientific, Technical and Economic Committee for Fisheries, Evaluation of Fishing Effort Regimes in European Waters - Part 1 (STECF-13-21).

STECF members: Casey, J., Abella, J. A., Andersen, J., Bailey, N., Bertignac, M., Cardinale, M., Curtis, H., Daskalov, G., Delaney, A., Döring, R., Garcia Rodriguez, M., Gascuel, D., Graham, N., Gustavsson, T., Jennings, S., Kenny, A., Kirkegaard, E., Kraak, S., Kuikka, S., Malvarosa, L., Martin, P., Motova, A., Murua, H., Nord, J., Nowakowski, P., Prellezo, R., Sala, A., Scarcella, G., Somarakis, S., Stransky, C., Theret, F., Ulrich, C., Vanhee, W. & Van Oostenbrugge, H.

EWG-13-13 members: Vanhee, W., Van der Kamp, P., Carlshamre, S., Davie, S., Raid, T., Dolder, P., Zolubas, T., Kempf, A., Demaneche, S., Gonzales Herraiz, I., Ozernaja, O., Zeng, F., Kovsars, M., Pastoors, M., Gil Herrera, J., Vermard, Y., Radtke, K., Holmes, S., Rätz H.-J.

Luxembourg: Publications Office of the European Union

2013 - 863 pp. - 21 x 29.7 cm

EUR - Scientific and Technical Research series - ISSN 1831-9424 (online), ISSN 1018-5593 (print)

ISBN XXXXXXX

doi:XXXXXXXXXXXXXXX

Abstract

STECF notes that it has extensively addressed the ToR regarding the requested fishing effort regime evaluations in the

- 1. Eastern and Western Baltic,
- 2. the Kattegat,
- 3. the Skagerrak, North Sea, European waters in ICES Div.2 and the Eastern Channel,
- to the West of Scotland,
- Irish Sea,
- 6. Celtic Sea,
- 7. Atlantic waters off the Iberian Peninsula,
- 8. Western Channel,
- 9. Western Waters and Deep Sea
- and the Bay of Biscay,

i.e. updated estimates of trends in fishing effort, landings and discards by species, CPUE and LPUE by fisheries and species, and partial fishing mortalities for effort regulated and non-regulated fisheries by Member States. Few ToR could not be accomplished due to time constraints and/or data deficiencies. It is noted that compilations of fisheries specific data by fishing effort management regime and Member State are provided as electronic appendixes and can be downloaded at http://stecf.jrc.ec.europa.eu/web/stecf/ewg1313 in order to facilitate transparent dissemination of the information and further use.

Due to the complexity of the fisheries information provided, interested users are advised to consult the data quality notes and data notations provided in the present report.

How to obtain EU publications

Our priced publications are available from EU Bookshop (http://bookshop.europa.eu), where you can place an order with the sales agent of your choice.

The Publications Office has a worldwide network of sales agents. You can obtain their contact details by sending a fax to (352) 29 29-42758.

As the Commission's in-house science service, the Joint Research Centre's mission is to provide EU policies with independent, evidence-based scientific and technical support throughout the whole policy cycle. Working in close cooperation with policy Directorates-General, the JRC addresses key societal challenges while stimulating innovation through developing new standards, methods and tools, and sharing and transferring its know-how to the Member States and international community.

.....

The Scientific, Technical and Economic Committee for Fisheries (STECF) has been established by the European Commission. The STECF is being consulted at regular intervals on matters pertaining to the conservation and management of living aquatic resources, including biological, economic, environmental, social and technical considerations.

