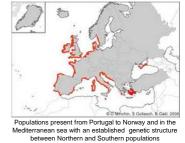
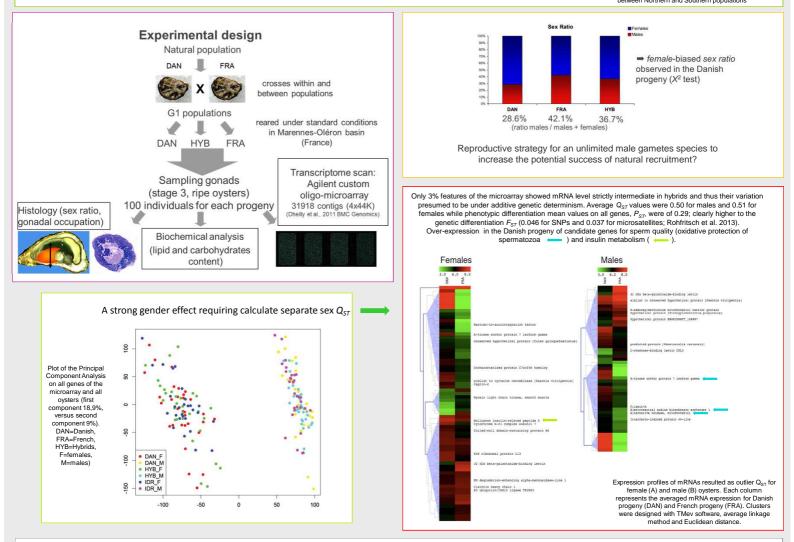

Exploring local reproductive differentiation of Pacific oyster population recently settled in northern Europe by transcriptomic approach


Rossana Sussarellu¹, Arnaud Huvet¹, Christophe Lelong², Fabrice Pernet¹, Virgile Quillen¹, Sylvie Lapègue³, Florence Cornette³, Lasse Fast Jensen⁴, Nicolas Bierne⁵, Pierre Boudry¹


1. Ifremer, UMR 6539, Laboratoire des Sciences de l'Environnement Marin, ZI de la Pointe du Diable, CS 10070, 29280 Plouzané, France; 2. Université de Caen Basse-Normandie, FRE BioMEA, 14032 Caen Cedex, France; 3. Ifremer, Laboratoire de Génétique et Pathologie, 17390 La Tremblade, France; 4. Fisheries and Maritime Museum, DK-6710 Esbjerg V, Denmark; 5. CNRS, UMR ISEM, 34200 Sète, France

Abstract Originating from north-eastern Asia, the Pacific oyster *Crassostrea gigas* has been introduced, mainly for aquaculture purpose, into a large number of countries. Although highly variable, its invasive nature has been reported in an increasing number of coastal areas, notably Northern Europe. We set up a common garden experiment based on the comparison of progenies of Pacific oysters sampled in France, where populations settled since the introduction of the species in the 70's, and Denmark, where established populations were observed since the beginning of 90s. Pure and hybrid progenies, resulting from crosses within and between adults sampled in both populations, were studied for their sex-ratio, condition index, transcriptomics, and biochemical parameters.

A female-biased sex-ratio and a higher condition index, which reflects a greater reproductive effort, were observed in the Danish progeny, both being hypothesized as a possible reproductive strategy to increase the potential success of natural recruitment in this recently settled population. Overall the 31,918 mRNAs assayed, the mean phenotypic differentiation (P_{st}) was 0.29. The degree of differentiation in quantitative traits (Q_{sT}) were estimated on intermediate mRNA levels in hybrid progeny (suggesting additive genetic bases), outliers Q_{sT} estimates between the two progenies were 55 and 52 in male and females respectively, giving a mean value of 0.5. Among the over-expressed genes observed in the Danish progeny, candidate genes for sperm quality and insulin metabolism were found. Carbohydrate and lipid measurements showed higher levels for hybrid progeny suggesting hybrid vigor for these biochemical characters.

Conclusions

-Reproductive strategies to increase the potential success of natural recruitment and favor colonization of new habitats:

A higher quantity of female gametes shown by the female biased sex-ratio

A greater gamete quality would also enhance the chance of success to the fertilization revealed by the over-expression of candidate genes for sperm quality and insulin metabolism.

<u>-Diversifying selection is probably acting on outlier gene expression</u>: Divergence in neutral markers F_{ST} compared to divergence in phenotypic traits is typically used to estimate whatever populations are submitted to genetic drift or selection. The Q_{ST} levels exceed that observed in F_{ST} on the same populations by Rohfritsch et al. (Evol Appl 2013) suggesting an important role of natural selection on traits associated with differentially expressed mRNAs.

