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Abstract – The status of an exploited population is ideally determined by monitoring changes in abundance and
distributional range and pattern over time. Area of occupancy is a measure of the current distribution. Unfortunately, for
many populations, scientific abundance and distribution information is not readily available. To evaluate the reliability
of commercial fishing data for deriving occupancy indicators that could serve as proxies for stock abundance, we
investigated four questions: 1) Occupancy changes with stock biomass, but is this change strong enough to make
occupancy a sensitive indicator of population biomass? 2) Fishing boats follow fish, but when does such activity alter
the positive macroecological relationship between occupancy and abundance? 3) When does the activity of pursuing
fish adversely affect occupancy estimates derived from catch and effort data? 4) How does uncertainty in fishing effort
data affect occupancy estimates? Spatial simulations mimicking the dynamics of four deep-water fish species showed
that biomass-occupancy relationships can be weak. Fishers following fish can modify the spatial distribution of target
species, even reversing the sign of the biomass-occupancy relationship in certain cases, and can affect the reliability of
occupancy indicators, which can also be impaired by error in effort data. Using commercial catch and effort data and
abundance indices for deep-sea fish populations to the west of the British Isles it was found that only for roundnose
grenadier might occupancy provide insights into biomass changes. In conclusion, care should be taken when using
occupancy for evaluating range changes in cases where fishing might have modified spatial distributions, uncertain
commercial data are used or when the abundance-occupancy relationship is too flat.

Keywords: Catch per unit effort / Spatial patterns / Macroecology / Fisheries management / Marine Strategy
Framework Directive /MSFD

1 Introduction

The overall status of an exploited population is ideally de-
termined by monitoring changes in abundance and distribution
over time. For many populations, abundance and distribu-
tion information are not readily available because distributions
span large spatial scales and it is difficult and costly to ade-
quately sample their habitats. This is the case for many deep-
sea fish populations, which are not well sampled by surveys
or which rely on commercial data (such as catch and effort
data from fisheries) because they lack survey data altogether
(Large et al. 2013). In light of multiple impacts from over-
exploitation, climate change and habitat degradation, better
methods are needed to reliably evaluate the status and vulner-
ability of such populations from the data that are available or
from those obtainable in cost-effective ways. Evaluating the
status of all exploited marine species has become mandatory
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in Europe with the introduction of the Marine Strategy Frame-
work Directive (MSFD) (EC 2008).

The distribution area of many populations is positively re-
lated to abundance such that, at large population size, more
habitat space is occupied and abundance-occupancy relation-
ships form well known macroecological patterns. Macroe-
cology studies relationships between body mass, population
density and the size and shape of geographic distributions
(Brown and Maurer 1989). Various theories have been put for-
ward to explain abundance-occupancy relationships including:
density-dependent habitat selection (ideal free distribution the-
ory), local vital rates (birth and death), and range position, see
review in Gaston et al. (2000). Furthermore, in the absence
of abundance information, indicators of spatial distribution
have been proposed as a direct measure of population status
(EC 2010). For example, area of occupancy of species and the
larger geographical extent of occupancy, which can include un-
inhabited patches, have been used to assess threat to species as
part of the IUCN red-listing process (Gaston and Fuller 2009).
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Different methods have been explored to measure occupancy
for marine and terrestrial animal populations, such as the pro-
portion of occupied sites within the wider distribution range or
the area above a threshold density, see review in Gaston and
Fuller (2009).

In fisheries ecology, theory and data on abundance-area
relationships have been used to study the contraction of ma-
rine animal populations, whether these correspond to suitable
habitats at low density or the consequences of management
(MacCall 1990; Swain and Sinclair 1994; Fisher and Frank
2004; Blanchard et al. 2005; Frisk et al. 2011). However,
stocks do not necessarily contract to the most suitable habi-
tat (Shackell et al. 2005). A major problem arises when pop-
ulations contract into smaller areas at low abundance because
local density may not decrease, thus increasing the efficiency
with which individuals can be caught.

Fishers themselves have been studied for their spatial be-
haviour and have been shown to move between areas to equal-
ize catch rates (Gillis et al. 1993), although vessel movements
can be constrained by management (Murawski et al. 2005),
economic factors (Gillis and van der Lee 2012) or competi-
tion (Gillis and Peterman 1998). Dynamic coupling between
the spatial distribution of fish and fishers might make fish pop-
ulations increasingly vulnerable to overexploitation and lead
to catch per unit effort (CPUE) not being proportional to stock
abundance, e.g., Gillis and Peterman (1998).

The use of occupancy indicators for management relies on
the data providing an unbiased picture of the underlying popu-
lation distribution. This can be expected for random sampling
designs or spatial grids with random starting points if the sam-
pling intensity is sufficient and the spatial grid is fine enough.
If, however, the spatial distribution of the data collection points
follows the abundance of the population, i.e., sample locations
are denser in higher density areas, a situation referred to as
preferential sampling arises, with the consequence that classi-
cal spatial statistical analyses are biased (Diggle and Menezes
2010; Gelfand et al. 2012). Commercial catch data generally
exhibit preferential sampling characteristics as fishers target
species with heterogeneous spatial distributions. As a conse-
quence, estimated occupancy might be a biased measure of
true occupancy.

The French mixed-species deep-water trawl fishery to the
west of the British Isles has three main target species: blue ling
(Molva dypterygia), black scabbardfish (Aphanopus carbo),
and roundnose grenadier (Coryphaenoides rupestris), as well
as a bycatch of deep-water sharks, Centrophorus squamosus
and Centroscymnus coelolepis (Lorance and Dupouy 2001).
These species have different, but overlapping, habitat (depth)
preferences (Ehrich 1983) and life history parameters that
make them more or less susceptible to exploitation. Further,
most of the data available for this fishery are commercial
catch and effort data. Statistical modelling of a subset of haul-
by-haul landings data from the same fishery revealed sea-
sonal and spatial, but also vessel effects on blue ling catches
(Lorance et al. 2010; Augustin et al. 2013). Only the spatial
effects will be considered here.

To evaluate whether commercial catch and effort data from
the deep-water trawl fishery could be used to derive occu-
pancy as a measure of stock dynamics to provide information

for management, we asked four questions: (1) are occupancy
changes strong enough to make this a sensitive indicator of
population biomass? (2) When does spatial targeting by fish-
ing boats alter the positive macroecological relationship be-
tween occupancy and abundance? (3) When does the activity
of pursuing fish adversely affect occupancy indicator estimates
derived from catch and effort data? (4) How does uncertainty
in fishing effort data affect occupancy indicator estimates? We
addressed these questions using spatially explicit multi-species
simulations, considering technical interactions of the three tar-
get species of the deep-water fishery and deep-water sharks
as a bycatch group. Finally, we use the insight gained from the
simulations to interpret occupancy indicators calculated for the
French deep-water trawl fishery to the west of the British Isles.

2 Materials and methods

2.1 Occupancy

Occupancy was estimated as the proportion of the total oc-
cupied area, Ox, in which x-percent of the quantity of CPUE
were found. It was obtained by ordering the spatial data units
(here ICES statistical rectangles) from the largest to the small-
est CPUE value and stopping when x-percent of the total sum
of CPUE was reached. Dividing the sum of the surface areas of
these units by the total area provides an estimate of Ox. To in-
crease precision, a uniform distribution of CPUE within each
spatial unit was assumed. The subscript x in Ox was omitted in
the following simulation study as it was always 75%.

2.2 Spatial simulations

Spatially-explicit simulations on a grid were used to eval-
uate the effects of a fishery targeting species spatial distri-
butions, and catch- and effort-derived occupancy estimates
(Fig. 1a). For this, the spatio-temporal population dynam-
ics of four species intended to mimic the case study species
black scabbardfish, blue ling, roundnose grenadier and deep-
water sharks were simulated separately using surplus produc-
tion models, with growth and carrying capacity varying spa-
tially according to habitat preferences. The spatial distribution
of fishing effort and the resulting species catches were then
simulated as a function of the biomass of the target species
and assuming that the fishing effort distribution could also be
described by an ideal free distribution. Only technical inter-
actions caused by species present in the same grid cell be-
ing fished together were taken into account. Biological inter-
actions were ignored as they are weak among the case study
species: these are predators of large and mobile preys, ex-
cept for roundnose grenadier, which feeds primarily on pelagic
crustaceans and other small preys (Mauchline and Gordon
1984; Hutton et al. 2004). Small blue ling and black scabbard-
fish, of <70 cm, do not occur in the study area, so that only
small roundnose grenadier is susceptible to be preyed upon
by the other species. The contribution of the three species to
the diet of deep-water sharks is minor (Mauchline and Gordon
1983). All simulations of population and fisheries dynamics
were deterministic. A stochastic element was introduced for
simulation runs in which fishing effort was assumed to have
been observed with error (see below).
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Fig. 1. Schematic view of simulation set up. (a) A hierarchy of five processes describes the link between species depth preferences, fishery
dynamics, spatiotemporal catch and effort data and occupancy indicators: ① environmental conditions represented by depth affect local demo-
graphic rates of each species; ② variation in local demography together with dispersal and fishing determine spatiotemporal distributions of
fish biomass; ③ utility of catches drives the spatial distribution of total fishing effort, which in turn impacts fish population dynamics; ④ fishing
effort leads to spatiotemporally distributed catches; ⑤ effort observed with error and catches are used for calculating occupancy indicators.
(b) Diagram of population dynamics and fishery dynamics models showing the links relating data, processes and parameters to the occupancy
indicators.

2.2.1 Population dynamics

The population dynamics model is a spatial version of the
Schaeffer (1954) production model with the addition of a dis-
persal term (① in Fig. 1):

Bs,g,t = Bs,g,t−1 + r∗s,g,t−1Bs,g,t−1

− 1
Vs

∑
g′

∣∣∣Bs,g′,t−1 − Bs,g,t−1

∣∣∣ (r∗s,g′,t−1 − r∗s,g,t−1

)
Δ(g, g′)

−Cs,g,t−1

(1)

where Bs,g,t is the biomass of species s in grid cell g at time
step t, r∗s,g,t−1 is the realised intrinsic growth rate and Cs,g,t

are catches. The realised intrinsic growth rate in a given grid
cell depends on the maximum intrinsic growth rate rs,g, which
in turn depends on habitat suitability (① in Fig. 1), the local
biomass and carrying capacity. We assumed that the slope of
the relationship between Bs,g,t and r∗s,g,t was constant across
grid cells, allowing it to be represented using the mean values
r̄s and K̄s:

r∗s,g,t = rs,g

(
1 − Bs,g,t

Ks,g

)
= rs,g − r̄s

Bs,g,t

K̄s
. (2)

This representation simply states that proportional differences
in rs,g, between grid cells are reflected in the carrying capac-
ity, and vice versa. As biomass increases toward the carry-
ing capacity Ks,g = K̄srs,g,t/r̄s, r∗s,g,t goes zero in the usual
manner. Similarly, the maximum intrinsic growth rate rs,g is
approached when local biomass is close to zero. The redis-
tribution of biomass across grid cells (penultimate term in
Eq. (1)) occurs according to the principles of spatial biogeog-
raphy (MacCall 1990). This theory proposes that individuals
will move in response to density-dependent spatial differences
in realised growth, with an ideal free distribution being reached
at equilibrium. This means that in equation (1) individuals
will move to areas with less biomass and/or higher growth
potential, but will do this to a lesser extent if such areas are
further away. Thus, movement is a function of the gradients
of biomass and realised intrinsic growth rates, the haversine
distance Δ(g, g′) between the centre point of grid cell pairs
g and g′, and the viscosity parameter Vs. The haversine dis-
tance is the shortest distance between two points on the surface
of a sphere. The viscosity parameter determines the speed of
dispersal. Highly mobile species that redistribute themselves
quickly (at each time step) when biomass drops in certain ar-
eas have a viscosity close to zero, while slower moving species
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have viscosity closer to one (see Fig. S1 in the Supplementary
information). As viscosity approaches infinity, the dynamics in
each grid cell become isolated from the remaining population
and equation (1) reduces to a localised Schaeffer model.

2.2.2 Fishery dynamics

The dynamics of the spatial distribution of total annual
fleet fishing effort ETOT

t is governed by the utility Ug,t−1 of
each grid cell, and an elasticity parameter λ (③ in Fig. 1):

Eg,t = ETOT
t

(
Ug,t−1

)λ
Σg

(
Ug,t−1

)λ . (3)

To mimic fishers returning to areas where CPUE was high in
the past (Hutton et al. 2004), the utility of each grid cell was
set equal to the catch per unit effort of a list of target species in
the previous time step:

Ug,t =
ΣsεS Cs,g,t

Eg,t
. (4)

The list of target species was modified to model the effects of
different fishery effort allocation behaviours (see scenario de-
scription below). The value of the elasticity parameter λ deter-
mines how closely the spatial distribution of fishing effort fol-
lows that of the utility (CPUE) of the target species. If λ = 1,
the spatial distribution of fishing effort is exactly the same as
for the target species CPUE; if λ > 1, proportionally more ef-
fort is expended in areas with higher CPUE; if 1 > λ > 0, pro-
portionally less effort is expended in areas with higher CPUE;
and if λ = 0, the effort distribution is uniform across grid cells.

Using the spatially distributed effort, the catch per grid cell
is then computed as:

Cs,g,t = qgEg,tBs,g,t (5)

where the catchability qg represents the proportion of the to-
tal area of the grid that is covered by a single unit of effort,
multiplied by an efficiency term (Paloheimo and Dickie 1964).
Catchability is specific to the size of each grid cell (see Param-
eterization below) and assumed constant over time and across
species. As a result, the exploitation rate Hs,g,t is also constant
across species but variable in space:

Hs,g,t =
Cs,g,t

Bs,g,t
= qgEg,t. (6)

To account for difficulties in determining fishing effort, in
certain simulations observed effort eg,t in each grid cell was
simulated assuming a normal random observation error (④ in
Fig. 1):

eg,t ∼ N
(
Eg,t, σ

2
g,t

)
(7)

with the normal distribution parameterised by a constant coef-
ficient of variation CVE = σg,t/Eg,t. Negative observed effort
was set at zero.

Using catches from equation (5) and observed effort from
equation (7), occupancy O75, corresponding to the proportion
of the total area including 75% of CPUE, was estimated (⑤ in
Fig. 1), with one value per time step.

2.2.3 Parameterization

The modelled grid encompassed 49 ICES rectangles (ICES
rectangles are 1◦ longitude by 0.5◦ latitude) corresponding to
the core area of the case study deep-water fishery in recent
years. Grid cell depths were derived from information on mean
fishing depths (Fig. 2a). Model parameter values are sum-
marised (Tables 1 and 2) for baseline runs and those used in
the sensitivity study (see below).

Four simulated species were defined by choosing appropri-
ate values for the mean population growth rate r̄s and the mean
carrying capacity K̄s (Table 2), and a depth preference function
(Fig. 2b). FASTMID has a relatively fast growth rate but low
carrying capacity and is distributed primarily on the continen-
tal slope at intermediate depths; it mimics black scabbardfish.
MEDUPPER has intermediate growth rate and carrying capac-
ity and is primarily distributed on the upper continental slope,
similar to blue ling. SLOWDEEP has a slow growth rate but
high carrying capacity and is found primarily at the lower end
of the simulated depth range, mimicking roundnose grenadier.
SLOWMID, mimicking deep-water sharks, has a slow growth
rate and low carrying capacity and is predominantly found at
mid-slope.

The maximum intrinsic growth rate rs,g was varied be-
tween grid cells to represent differences in habitat suitability.
Habitat suitability is commonly explained by an environmental
factor such as temperature. As deep-sea species have a strong
depth preference (Ehrich 1983), we used depth as a proxy
for habitat suitability, which would be equivalent to habitat
preference in this case. We derived depth preferences based
on the depth effect in a generalised additive model of haul-
by-haul landings data, which is described in detail for blue
ling in Lorance et al. (2010) and for roundnose grenadier and
black scabbardfish in Lorance et al. (2011). Using the mod-
elled depth effect instead of the raw landings data removes ef-
fects caused by the non-random spatial distribution of fishing
effort. The simulated depth preferences were scaled between 0
and 1 (Fig. 2b). Maximum intrinsic growth rates were calcu-
lated for each simulated species by multiplying the average
species specific intrinsic growth rate from Table 2 by the depth
preferences and then rescaling to maintain the correct average
growth rate. Due to lack of information on the speed of fish
movements, the viscosity parameter Vs (Eq. (1)) was set at 1
for all species, implying slow redistribution, but the value was
varied in the sensitivity study.

To make the spatial distribution of fishing effort follow that
of the CPUE of the target species, the elasticity parameter λ
(Eq. (3)) was set at 1. The value was doubled in the sensitivity
study.

The proportion qg of the surface of grid cell g fished by a
single haul (Eq. (5)) was chosen in the following way. First,
the swept area of a single haul was obtained by assuming a
haul duration of 6 h, a trawl width of 28 m, and a towing speed
of 2.5 knots (0.78 km2), which corresponds to the current aver-
age in the French fishery. Next, it was arbitrarily assumed that
the catch efficiency was 0.5 (Blanchard et al. 2008). Finally the
value was divided by the surface area of each grid cell, noting
that grid cell areas get smaller towards the North.

The values chosen for the observation error of fishing ef-
fort CVE varied between the questions that the simulation
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Fig. 2. (a) Map of grid cell depths used in the simulation study. (b) Depth preference curves for simulated species.

Table 1. The four simulated species that mimic deep-water fish species.

Simulated species Growth rate Carrying capacity Habitat Species mimicked

FASTMID Relatively fast Low Continental slope at intermediate depths Black scabbardfish

MEDUPPER Intermediate Intermediate Upper continental slope Blue ling

SLOWDEEP Slow High Lower end of the simulated depth range Roundnose grenadier

SLOWMID Slow Low Mid-slope Deep-water sharks

Table 2. Parameter values for the simulation study (baseline runs and sensitivity runs) of four simulated species mimicking deep-water fish
species.

Parameter Definition Equation Values

baseline: 1 all species
Vs Viscosity of spatial redistribution 1

sensitivity: 0.1 all species

MEDUPPER: 1626

Mean carrying capacity (t) per SLOWDEEP: 2586
K̄s 2

grid cell for species s FASTMID: 1034

SLOWMID: 914

MEDUPPER: 0.24

Mean intrinsic growth SLOWDEEP: 0.15
r̄s 2

rate for species s FASTMID: 0.43

SLOWMID: 0.15

Total fishing effort (number
ET OT

t 3 depends on scenario, see Table 3
of hauls)

baseline: 1
λ Elasticity in utility function 3

sensitivity: 2

Proportion of grid cell g fished
qg 5, 6 1.085 × 10−4 − 1.321 × 10−4

by single haul

Coefficient of variation of normal
CVE 7 0, 0.1, 0.2

observation error for effort
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Table 3. Simulation study details and results. List of fishing effort scenarios, their target species and total effort and estimated slopes β for the
relationship log O(B) = α + β log(B), where B is biomass and O(B) simulated occupancy. The target species determine the spatial distribution
of total fishing effort via the utility function (Eq. (3)). The total fishing effort (number of hauls per time step) is used for equilibrium runs and
as the starting value for scenarios. The dynamics of the four simulated species are defined by their growth rate and carrying capacity (Table 2)
and relative depth distribution (Fig. 2b).

Scenario Target species / Effort change Fishing effort Slope β
Effort distribution FASTMID MEDUPPER SLOWDEEP SLOWMID

SFM-dec FASTMID decrease 87 693 0.015 0.071 0.55 0.616
SMU-dec MEDUPPER decrease 51 299 0.093 –0.017 0.741 0.3
SSD-dec SLOWDEEP decrease 49 187 0.52 0.689 –0.205 0.299
Sall-dec all 4 species decrease 54 130 0.114 0.142 0.114 0.084
Suni-dec uniform effort distribution decrease 54 130 0.044 0.072 0.314 0.043
SFM-inc FASTMID increase 87 693 0.008 0.066 0.931 3.824
SMU-inc MEDUPPER increase 51 299 0.091 –0.016 0.973 0.406
SSD-inc SLOWDEEP increase 49 187 0.588 1.057 –0.11 0.612
Sall-inc all 4 species increase 54 130 0.086 0.084 0.119 0.089
Suni-inc uniform effort distribution increase 54 130 0.048 0.061 0.361 0.044

addressed; for stochastic runs, only one realisation of observed
effort time series was simulated.

Two sensitivity runs were carried out for the viscosity Vs

and elasticity λ parameter values (Table 2). A value of Vs = 0.1
corresponds to fast spatial redistribution between time steps.
When elasticity is λ = 2, proportionally more fishing effort is
allocated to grid cells with higher CPUE of the target species
in the previous time step.

2.2.4 Fishing effort scenarios

Ten fishing effort scenarios were defined (Table 3). Each
scenario consists of a target species, which determines the
spatial distribution of effort via the utility function (Eqs. (3)
and (4)), and the type of change in fishing effort (doubling or
halving) over time. Five target species were considered: FAST-
MID (SFM), MEDUPPER (SMU), SLOWDEEP (SSD), all four
simulated species (Sall), and no target species, i.e., uniform ef-
fort distribution (λ = 0 in Eq. (3), Suni).

As a first step for all scenarios, the model was run to equi-
librium (100 time steps) keeping total fishing effort constant
at a value corresponding roughly to exploitation at maximum
sustainable yield (MSY) for the single species targets (fourth
column in Table 3). For scenarios targeting all species (Sall) or
none (Suni), the total effort used was a compromise between
the individual species efforts. The biomass for all four species
in each grid cell was initiated by setting it at half the carry-
ing capacity (Table 2), which corresponds to the biomass at
MSY in a surplus production model. Second, total effort was
increased (decreased) over the next 20 time steps depending
on the scenario. For all time series, occupancy O(CPUE) was
estimated as the proportion of the total area covered by 75%
CPUE; the 75% level was shown to be a reliable value in the
case study.

2.2.5 Analysis

To address the four main questions of the study, log-
linear models were used to describe the relationships between

biomass B and occupancy O (Frisk et al. 2011) for the ten fish-
ing effort scenarios (Table 3)

log(O) = α + β log(B) (8)

where α and β are the intercept and slope, respectively. Two-
sided t-tests were used to evaluate whether β was significantly
different from zero at an α-level of 0.05.

For question (1), “Is occupancy a sensitive indicator of
population abundance?”, the slope β̂B of the log-linear rela-
tionship between population biomass B and population occu-
pancy O(B) was estimated for each scenario and simulated
species. Population occupancy O(B) was derived from the sim-
ulated biomass values for each grid cell Bs,g,t. For β̂B slopes
close to 1, occupancy is a sensitive indicator of biomass, while
it is not for values close to 0.

For question (2), “Does fishers following fish alter the
positive macroecological relationship between occupancy and
abundance?”, the sign of the slopes β̂B estimated above was
investigated for fishing effort scenarios with a single or mul-
tiple target species (SFM, SMU, SSD, Sall) for each of the four
simulated species. In particular, it was checked whether the re-
lationship was positive (β̂B > 0), as it should be if fishing did
not alter the form of the relationship. The scenario S uni with
uniform fishing effort distribution provided the unaltered ref-
erence situation.

For question (3), “Does the activity of pursuing fish nega-
tively affect occupancy indicator estimates derived from catch
and effort data?”, log-linear regressions were fitted to popula-
tion biomass B and occupancy estimates obtained from CPUE
values with no observation error O(CPUE0) providing slope
estimates β̂0. For each fishing effort scenario and simulated
species, the sign of the slope β̂0 was compared to the sign of
β̂B obtained above. Again the scenario S uni with uniform fish-
ing effort distribution provided the reference situation.

For question (4), “How does uncertainty in fishing effort
data affect occupancy indicator estimates?”, log-linear regres-
sions were fitted for population biomass and occupancy esti-
mates derived from CPUE values, with three levels of obser-
vation error (CVE = 0: O(CPUE0), CVE = 0.1: O(CPUE0.1),



V.M. Trenkel et al.: Aquat. Living Resour. 26, 319–332 (2013) 325

Fig. 3. Simulated equilibrium total biomass and catches for four simulated species under five fishing effort scenarios (see Table 3). Total effort
was selected to correspond roughly to maximum sustainable yield (MSY) exploitation of the target simulated species of the fishing effort
scenario.

CVE = 0.2: O(CPUE0.2)). The values and signs of the corre-
sponding slope estimates β̂0, β̂0.1, and β̂0.2 were then compared.

2.3 Case study

French logbook effort and landings data for blue ling, black
scabbardfish, roundnose grenadier and deep-water sharks for
the years 1993 to 2010 were extracted from the database
maintained by Ifremer for the area to the northwest of the
British Isles (ICES Divisions Vb and VIa). Fishing effort cor-
responded to hours spent fishing multiplied by vessel power
(kW). Landings and effort data were summed on an annual
basis by ICES rectangle. Only fishing days where deep-water
species represented more than 60% of the total landings were
selected so as to avoid marginal areas that are visited by the
same vessels to target other species. This led to a dataset con-
taining 26 rectangles with data for all years. Because discard
estimates were not available for all years, only landings data
were used. In any case, discards should not affect the occu-
pancy indicators unless they had a spatial structure, for which
there is no evidence.

Owing to a lack of survey data, an index of population
abundance in the study area was derived for each species us-
ing haul-by-haul landings data from part of the French fishery
and the methods described in Lorance et al. (2011) for the
period 2000 to 2009. Briefly, standardised abundance indices
were obtained by fitting generalised additive models to the
landings data (in weight) accounting for vessel, month, depth,
and rectangle effects. The abundance indices are then predic-
tions for a standard vessel in January.

Finally, for each species and year occupancy O75 was
calculated.

3 Results

3.1 Simulation study

3.1.1 Equilibrium results

The equilibrium population biomasses for each species
were similar for all fishing effort scenarios, except scenario
SFM, in which they were lower (Fig. 3, left). Lowest total equi-
librium catches were obtained for scenario SSD, and highest for
scenarios Sall and Suni (Fig. 3, right). Thus, the target species of
the fishing effort scenario had a strong influence on the equi-
librium biomass, total catch and catch composition. Largest
overall equilibrium catches were obtained when fishing effort
was more widely distributed (Sall and Suni), while the highest
population biomass summed over all species resulted from tar-
geting blue ling (SMU).

3.1.2 Is occupancy a sensitive indicator
of population biomass?

For the scenarios with uniformly distributed fishing effort,
the slope estimates β̂B of the log-linear relationships between
population biomass B and population occupancy O(B) ranged
from 0.043 to 0.361 (Table 3); increasing (Suni-inc) and decreas-
ing (Suni-dec) total effort scenarios resulted in very similar slope
estimates for each species. Introducing targeting of one or all
species increased the slopes for all species except for the tar-
get species of the scenario and for SLOWDEEP in the sce-
narios targeting all species (Sall-inc and Sall-dec) (Table 3); the
interquartile range of slope estimates β̂B spanned from 0.058
to 0.528. Slope values close to zero indicate low sensitivity of
occupancy as an indicator of biomass change.
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Fig. 4. Simulated true abundance-occupancy relationships for simulated species FASTMID, MEDUPPER and SLOWDEEP when they are the
target species of the fishery (see Table 3 for fishing effort scenarios, continuous line) and when effort distribution is uniform (dashed line). All
simulations are run to equilibrium, with fishing effort corresponding roughly to MSY followed by two fishing effort scenarios: halving of total
fishing effort or doubling over 20 time steps. Dots indicate the first simulation time step and arrows the last. Sensitivity runs are shown in grey:
squares λ = 2; plus signs Vs = 0.1 (see Table 2 for parameter definitions).

3.1.3 Does fishers following fish alter the positive
macroecological relationship between occupancy
and abundance?

The estimated slopes β̂B of the log-linear relationships be-
tween population biomass B et population occupancy O(B)
were positive for all fishing effort scenarios and all simulated
species except for species MEDUPPER for scenario SMU and
SLOWDEEP for scenario SSD, for which they were negative
(Table 3). This confirms that the positive macroecological re-
lationship between occupancy and abundance can be altered,
but only for some single species targets.

To show the alterations, Figure 4 presents the relation-
ships for simulated species FASTMID, MEDUPPER and
SLOWDEEP for the scenarios in which each species was the
target species, i.e., scenarios SFM, SMU and SSD respectively.
For each species, the positive relationship resulting from a uni-
form effort distribution, scenario Suni, is shown as a reference.
The alterations to the shapes of the relationships caused by dif-
ferent fishing effort scenarios can be summarised as follows.
First, occupancy levels for MEDUPPER and SLOWDEEP
in scenarios SMU and SSD, respectively, were always (at all
time steps) higher than in scenario Suni, both for increas-
ing (Fig. 4b,c) and decreasing effort (Fig. 4e,f). Second, total

species biomass for FASTMID (Fig. 4a,d) and SLOWDEEP
(Fig. 4c,f) was higher for scenario Suni at all time steps com-
pared with scenarios SFM and SSD respectively. Third, scenar-
ios SMU and SSD led to negative relationships between log-
biomass and log-occupancy for MEDUPPER (Fig. 4b,e) and
SLOWDEEP (Fig. 4c,f), respectively. In contrast, for scenario
Suni, all relationships were positive for all species, as expected.
A negative relationship between total biomass and occupancy
means that a species becomes less vulnerable to fishing as it
becomes more spread when population biomass decreases.

The results of the two sensitivity runs are also shown
(Fig. 4). Dividing the viscosity parameter Vs by ten, which
increases redistribution speed, did not have any impact. In
contrast, doubling the elasticity parameter λ by two, which
meant fishing effort was more concentrated in high CPUE ar-
eas, led to transient effects and differently shaped occupancy-
abundance relationships during the early time steps.

3.1.4 Does pursuing fish adversely affect occupancy
indicator estimates derived from catch and effort
data?

The estimated slopes β̂0 of the log-linear relationship
between population biomass and CPUE-derived occupancy
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Fig. 5. Time series of scaled population occupancy O(B) and CPUE-
derived occupancy O(CPUE0) (CVE = 0) for four simulated species
and five fishing effort scenarios with total fishing effort doubling from
time step 1 to 20 (see Table 3). Simulated species: FASTMID (©),
MEDUPPER (�), SLOWDEEP (+), SLOWMID (X).

O(CPUE0) were positive for all fishing effort scenarios and
all species except for the target species of single target sce-
narios, i.e., FASTMID for scenario SFM−dec (decreasing ef-
fort) and SLOWMID for scenario SFM-inc (increasing effort),
MEDUPPER for scenario SMU and SLOWDEEP for scenario
SSD, for which they were negative (not shown). Thus for sim-
ulated species FASTMID and SLOWMID, the occupancy es-
timates derived from catch and effort information led to an al-
teration in the abundance-occupancy relationship, even in the
absence of any observation error for effort. This means that the
time trends of CPUE-derived occupancy estimates could be
misleading as a proxy for abundance time trends in certain cir-
cumstances. For example, in scenario SFM-inc, occupancy esti-
mates for SLOWMID were increasing while in the underlying
simulated population they were decreasing (Fig. 5).

3.1.5 Does uncertainty in fishing effort affect occupancy
indicator estimates?

To answer this question, the estimated slopes β̂0.1and β̂0.2
of the relationships between log-transformed biomass and oc-
cupancy estimates for two levels of effort observation error
(CVE = 0.1 and CVE = 0.2) were compared with the results
obtained for no observation error β̂0. Introducing observation
error in effort led to some relationships not having a slope sig-
nificantly different from 0 (p-value >0.05), in particular for
scenarios with MEDUPPER as the target species (Fig. 6), but

also in one case for the scenario with uniform effort distribu-
tion Suni-dec. The number of non-significant slopes was four for
CVE = 0.1 and five for CVE = 0.2. Thus, if fishing effort is
only known with some error, an apparent stability in estimated
occupancy might mask underlying changes in population oc-
cupancy and thus population biomass.

3.2 Case study

The distribution of French fishing effort during the period
1989−2010 was spatially heterogeneous and changed some-
what over the study period, with an overall decrease in level
(Supplementary information Fig. S2).

A positive relationship between log-transformed occu-
pancy O75 and the log-transformed abundance index was only
found for roundnose grenadier, though the relationship was
only just significant at an α-level of 0.1 (Fig. 7). For black
scabbardfish, blue ling and deep-water sharks, though the
slopes were not significantly different from zero, the pattern
resembled that obtained in the simulation study for scenario
SMU-dec, for which SLOWDEEP had the largest positive slope
and MEDUPPER the smallest (negative) one (Table 3).

In terms of time trends, O75 was stable for black scabbard-
fish, changed abruptly in the early 2000s for blue ling and de-
creased steadily from the mid-2000s for roundnose grenadier
(Fig. 8). For deep-water sharks, estimated occupancy increased
sharply at the beginning of the time series and decreased at
the end. Blue ling generally had the smallest occupancy value
of all species, indicating the highest aggregative spatial distri-
bution, most likely because the landings reflected the fishery
targeting blue ling spawning aggregations (see discussion).

4 Discussion

Spatially explicit simulations were carried out to determine
whether occupancy indicators derived from commercial catch
and effort data might provide reliable indications of popula-
tion status for deep-water species exploited to the west of the
British Isles.

First, an investigation was made of the extent to which oc-
cupancy might change when population biomass changes us-
ing the slope of the log-log relationship that corresponds to
the exponent of the non-linear relationship. Non-linear rela-
tionships between CPUE and abundance have been charac-
terised by “hyperdepletion”, where the CPUE drops faster with
depletion than abundance, and “hyperstability”, where CPUE
drops more slowly than abundance (Hilborn and Walters 1992;
Wilberg et al. 2010). Hyperstability has been associated with
stock, gear type and fleet behaviour (Harley et al. 2001).
MacCall (1990) argues from the ideal free distribution the-
ory of Fretwell and Lucas (1969) that the response of the fish
stock to depletion is to shrink in size towards a core suitable
area. Following the ideal free distribution theory in the sim-
ulation study, it was assumed that each species had spatially
distinct population growth rates leading to spatial differences
in population density. In the simulation study, for all species
and all fishing effort scenarios (including for Suni with fishing
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Fig. 6. Scaled population occupancy O(B) and CPUE-derived occupancy for four simulated species for low (O(CPUE0.1); CVE = 0.1) and high
effort observation error: O(CPUE0.2), CVE = 0.2; as a function of total biomass for fishing effort scenario SMU-dec (scenarios are described in
Table 3).

Fig. 7. Relationship between estimated log-transformed occupancy O75 and log-transformed population abundance index for the deep-water
case study for the period 2000–2009. The lines are linear regression fits.

effort uniformly distributed) changes in occupancy were rela-
tively small, even when biomass doubled or was divided by
two in scenarios Suni-dec and Suni-inc, respectively (Fig. 4).
The slopes of the log-linear biomass–occupancy relationship
ranged from –0.205 to 3.823 (interquartile range: 0.058–
0.528). This range of values is slightly larger than the range
of slope values (0.023–0.177) found by Frisk et al. (2011),
who fitted log-linear models to occupancy and abundance esti-
mates derived from survey data for 32 demersal fish and crus-
tacean species on Georges Bank. Hence, the results suggest

that occupancy might not be a sensitive proxy for population
biomass. In addition, they could also indicate a certain degree
of hyperstability. These conclusions apply even without ac-
counting for the possibility that fishers following fish could
reverse the abundance-occupancy relationship.

Second, it was investigated whether fishers following fish
could alter the positive macroecological relationship between
occupancy and abundance. The simulation results showed that
this was indeed possible: for the simulated species MEDUP-
PER, mimicking blue ling, and SLOWDEEP, mimicking
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Fig. 8. Time series for estimated occupancy O75 for the deep-water
case study.

roundnose grenadier, negative relationships were found for the
scenarios where fishers followed the distribution of the two
species exactly. These results where robust to the assumption
that fish redistributed faster across grid cells (implemented
by reducing the viscosity parameter for all species). In con-
trast, allocating more effort to areas with higher CPUE (imple-
mented by doubling the elasticity parameter) led to transient
effects with differently shaped distributions at the start of the
simulation period.

Third, the question was examined of whether pursuing fish
could adversely affect occupancy estimates derived from catch
and effort data. The simulation results showed that this was
possible, but again only for certain simulated species and cer-
tain fishing effort scenarios.

Fourth, the simulations were used to study the impact of
observation error in effort data. The main effect was that esti-
mated occupancy and biomass could become uncoupled, im-
plying that occupancy was no longer a proxy indicator for
biomass. The existence of observation error could explain the
three non-significant slopes in the case study. In the simula-
tion study, it was assumed that effort was known with error but
that the effect would be the same if catches or both catches and
effort were uncertain.

The simulation results are, of course, contingent on the
modelling assumptions made. Model parameter values were
chosen to reflect the real situation as much as possible in terms
of species specific spatial population dynamics, the location
of the study area and the spatial resolution. However, a num-
ber of assumptions were more arbitrary. The sensitivity of
the results was evaluated by varying the value of the elastic-
ity and the viscosity parameters. Further, the utility function
(Eq. (4)), which determines the spatial distribution of fishing
effort, was a simple function of the catch per unit effort for
the target species in the previous time step. Among other op-
tions that have been suggested (Hilborn 2007), profit defined as
sales revenue minus variable costs would also be suitable. The

two quantities to be considered would be species dependent
sales prices and location dependent costs. The four considered
deep-water species have comparable sales prices, while vari-
able costs can be assumed to increase with increasing distance
from the harbour, which in the case of the French deep-water
fishery is located on the Scottish west coast, so at similar dis-
tances. Thus, including profits in the utility function should
not change the simulation results much. The way habitat pref-
erence was modelled using depth as a proxy was somewhat
ad hoc. Also, habitat preference was assumed constant over
time (within and between years) even though it is well known
that, for example, blue ling has several distinct spawning ar-
eas (Large et al. 2010) and mature individuals will therefore
carry out spawning migrations in spring. What is not known
is whether those individuals return to the same location af-
ter spawning. No spawning aggregations occur for black scab-
bardfish because their spawning area is outside the study area
around Madeira (Neves et al. 2009). Individuals are thought to
emigrate south after spending a few years in the study area,
but whether this migration occurs continuously or over a short
season is unknown. Roundnose grenadier is considered to have
poor swimming capabilities, and individuals in spawning con-
dition are found throughout the study area during most of the
year (Lorance et al. 2008). Deep-water sharks are good swim-
mers and highly mobile (Lorance and Trenkel 2006); seg-
regations in sexual stages reflect some migrations related to
reproduction (T. Moura pers. comm.). Thus, assuming con-
stant habitat preferences throughout the year is reasonable for
three of the considered species, but not blue ling.

In the case study, a positive relationship between log-
abundance and log-occupancy was only found for roundnose
grenadier. The non-significant slopes for the other species
could be the result of uncertainty in effort or catch data: an
interpretation supported by the simulation study. An alterna-
tive explanation for the noisier relationships lies in the abun-
dance index, whose uncertainty was ignored in the log-linear
regressions. The order of magnitude of slopes and the rank of
species slopes agreed well with the simulation study, in par-
ticular with scenario SMU with MEDUPPER (mimicking blue
ling) as target species, and decreasing effort. Until the prac-
tice was prohibited in 2010, blue ling aggregations were tar-
geted during the spawning season in spring. Since 2003, the
combination of TAC reduction and effort regulation have led
to a decrease in fishing effort. This decrease in effort could
explain the agreement between the relative slopes of the four
species and the results of scenario SMU-dec. Assuming that this
scenario describes the situation in recent years, the observed
decrease in occupancy of roundnose grenadier would indicate
a decrease in stock biomass. Given the expected weak rela-
tionship between abundance and occupancy changes for black
scabbardfish, roundnose grenadier and deep-water sharks as
indicated by the simulation study, and the uncertain estimates,
it seems hazardous to interpret their temporal changes in the
case study. However, for sharks, the strong increase in occu-
pancy in the early 1990s and the strong decrease in 2010 can
be explained. In the early 1990s, the landings of the two deep-
water species studied here were mixed with other species.
So the increase in occupancy is actually an increase in data
quality. To protect deep-water sharks from overexploitation
in 2010, the quota for targeted fishing of deep-water sharks
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was set at 0 with an allowance for a bycatch of 10% of 2009
landings (3% in 2011, subsequently none). Thus, the appar-
ent decrease is a result of shark catches no longer being fully
recorded.

For the case study, effort and landings logbook data with
the resolution of an ICES statistical rectangle were used.
Higher spatial resolution and possibly precision in effort data
might be made possible by using vessel monitoring data
(VMS). In this case, landings or catches in each rectangle
would need to be apportioned to the effort data, inevitably
making assumptions about the spatial distribution of each
species. Further studies are needed to evaluate whether such
higher resolution data would modify our findings.

In conclusion, with respect to using fisheries derived occu-
pancy indicators for management, this study indicates that care
should be taken as both weak relationships and species tar-
geting might adversely impact the performance of occupancy
indicators. Nevertheless, occupancy indicators are required for
management in the context of the European Marine Strategy
Framework Directive (MSFD) where distribution range and

pattern of selected species impacted by human activities are
needed to assess the environmental status of MSFD descrip-
tor 1 “biodiversity”. In fish communities, such species include
those that have already become rare or vulnerable to fishing,
primarily large, long-lived, low abundance species that are sel-
dom or never caught by scientific surveys. The main data for
these species may be fishery-dependent, either through catch
statistics, on-board observations or fishers reporting under par-
ticipatory monitoring. In all cases, our study provides insight
into the caution needed when interpreting spatial indicators,
and suggests that understanding species-specific relationships
between actual (unknown) and observed abundance and occu-
pancy is necessary to assess and interpret distributional ranges
and patterns.
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Fig. S1. Hypothetical example to illustrate the effect of the viscosity parameter Vs in equation (1) (Bs, g, t = Bs, g, t−1 + r∗s, g, t−1 Bs, g, t−1 −
1

Vs

∑
g′

∣∣∣∣Bs,g′ ,t−1−Bs, g, t−1

∣∣∣∣
(
r∗

s, g′ , t−1
−r∗s, g, t−1

)
Δ(g, g′) − Cs, g, t−1). The black line gives the biomass distribution across 10 grid cells on a line at time t (high to

low biomass gradient from left to right opposite to the growth rate gradient). The biomass distribution for different values of Vs at the following
time step t + 1 is shown in colour.
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Fig. S2. Spatial distribution of French fishing effort (days trawling × vessel power) from logbook data. All maps are on the same percentile
scale.
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