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Abstract : 

The understanding of the dynamics of fishing vessels is of great interest to characterize the spatial 
distribution of the fishing effort and to define sustainable fishing strategies. It is also a prerequisite for 
anticipating changes in fishermen's activity in reaction to management rules, economic context, or 
evolution of exploited resources. Analyzing the trajectories of individual vessels offers promising 
perspectives to describe the activity during fishing trips. A hidden Markov model with two behavioral 
states (steaming and fishing) is developed to infer the sequence of non-observed fishing vessel 
behavior along the vessel trajectory based on Global Positioning System (GPS) records. Conditionally 
to the behavior, vessel velocity is modeled with an autoregressive process. The model parameters and 
the sequence of hidden behavioral states are estimated using an expectation–maximization algorithm, 
coupled with the Viterbi algorithm that captures the most credible joint sequence of hidden states. A 
simulation approach was performed to assess the influence of contrast between the model parameters 
and of the path length on the estimation performances. The model was then fitted to four original GPS 
tracks recorded with a time step of 15 min derived from volunteer fishing vessels operating in the 
Channel within the IFREMER RECOPESCA project. Results showed that the fishing activity performed 
influenced the estimates of the velocity process parameters. Results also suggested future inclusion of 
variables such as tide currents within the ecosystem approach of fisheries. 
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1. INTRODUCTION

The understanding of the dynamics of fishing vessels is an essential tool to characterize

spatial distribution of fishing effort on a fine spatial scale, thus to estimate the impact of

fishing pressure on the marine ecosystem (Poos and Rijnsdorp, 2007; Mills et al., 2007), or

to understand fishermen’s reactions to management measures (Vermard et al., 2008) and to

improve the assessment of the impact of management plans (Lehuta et al., 2013). Another

key issue addressed with models of fishing vessel dynamics concerns the understanding of

the population dynamics derived from the spatio-temporal distribution of vessels targeting

fish populations (Bertrand et al., 2004 ; Poos and Rijnsdorp, 2007).

Modelling the dynamics of fishing vessels is classically approached by statistical analyses of

landing declarations with a low spatial resolution (ICES statistical rectangle) (Hutton et al.,

2004 ; Pelletier and Ferraris, 2000). Recently the mandatory Vessel Monitoring System

(VMS), for legal controls and safety (Kourti et al., 2005), has led to massive acquisition

of fishing vessels’ movement data which offer new means of studying VMS fishermen

spatio-temporal dynamics. Data consist in geographical positions recorded at a more or

less regular time step (less than two hours for mandatory VMS data) with low positioning

errors. In addition to this, IFREMER developed the RECOPESCA project with volunteer

fishermen, whose vessels positions are recorded at a 15 minute time step. Mechanistic

mathematical models have long been used in ecological sciences to analyse movements

and behavior of different tracked animals (Bovet and Benhamou, 1988; Flemming et al.,
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2006). A key issue in behavioral ecology is the identification of the sequence of hidden

(non observed) behaviors from the analysis of the trajectory, such as foraging, research,

migration. Similar questions are investigated in fisheries science, where the identification of

different behaviors adopted by fishing vessels during a fishing trip (route towards fishing

zone, fishing activity...) is of interest to understand what drives fishing activities and fishing

effort dynamics. The associated mathematical models are hierarchically structured. They

first describe a non observed time-behavioral process based on different behavioral states

adopted by the individual and rules for switching from one to the other. The path is then

modelled conditionally to the behavioral state. These models are commonly called State

Space Models (SSM) and (when the sequence of hidden state satisfies the Markov property)

Hidden Markov Models (HMM) and have proved their usefulness for both ecology and

fisheries science (Patterson et al., 2009; Langrock et al., 2012; Jonsen et al., 2013). In animal

ecology, these models are used to describe the path of different animals such as elks (Morales

et al., 2004) or seals (Jonsen et al., 2005), for instance. Similar models are used in fisheries

science to describe fishing vessels activity (Vermard et al., 2010, Walker and Bez, 2010, or

Peel and Good, 2011). So far, in fisheries science, the vessel’s path is described using scalar

speed and turning angles as the modelled variables. These two variables separately using

Gaussian and Wrapped Cauchy distributions, for instance (Vermard et al., 2010).

The primary goal of this paper is to investigate the possibility of describing fishing vessel’s

path with a HMM coupled to an autoregressive (AR) process. Keeping the Markovian

structure for the hidden behavior of the vessel, we propose to describe the vessel’s path,

conditionally to this behavior, via the modelling of vessel’s velocity, using an AR process.

The bivariate velocity process allows the use of a unique Gaussian structure (Gurarie et al.,

2009) instead of two separated distributions for speed and turning angles. This variable

has already been used in animal ecology to describe animal’s path, but, to the best of our
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knowledge, this work represents its first use in fisheries science to describe vessel’s path.

To estimate parameters of the model, a maximum likelihood estimation approach is adopted.

The Baum Welch algorithm is used to estimate parameters and then coupled to the Viterbi

algorithm to estimate the hidden behavior sequence.

We illustrate the strength and limitations of the approach by fitting the model to GPS

records issued from the RECOPESCA project (Leblond et al., 2010), implemented by

IFREMER to improve the assessment of the spatial distribution of catches and fishing.

Although they concern a rather restricted number of fishing vessels, RECOPESCA data

offer several advantages by comparison with mandatory VMS data. First, these data are

recorded with a shorter time step than VMS data (a position every 15 minutes instead of

1 hour). Second, they are recorded with a highly regular time step (15 min +/- 1 min).

The finer time scale allows for a more accurate reconstruction of fishing vessel trajectories

than VMS data. In particular, bias induced by interpolating the trajectory with a straight

line between two records would be lower than with an hour time step between two points

(Skaar et al., 2011). Furthermore, the regularity of recording is essential to formulate the

AR process hypothesis.

The article is structured in the following way. In section 2, we detail the RECOPESCA

data set, followed by the theoretical and methodological framework including the model’s

description, the inference algorithm and the simulation approach to assess the performance

of the method. Results over simulations and real data are presented in section 3. The

ending section proposes a discussion on the adequacy of this modelling approach and some

recommendations for future modelling of vessels dynamics.

4



Environmetrics

2. MATERIAL AND METHODS

2.1. RECOPESCA data

Four trajectories associated with four different fishing vessels operating in the Channel with

different fishing gears are considered to illustrate our modelling approach (see Table 1).

These four trajectories were extracted from the RECOPESCA data base. For each trajectory,

GPS positions in port and at sea were available. As the analysis only focus on fishing vessel

movement during fishing trips, we first removed positions in port based on logbooks (landings

declarations). The positions were recorded at a regular time step (plus or minus 1 minute).

Selected trips last more than 12 hours, ensuring enough observed positions for parameters

identification. These four vessels belong to the demersal fishery for which the research of fish

aggregations observed in pelagic fisheries (such as thuna fisheries, Walker and Bez, 2010) does

not exist. Hence only two behaviors are assumed along their path, ’steaming’ for cruising

and ’fishing’ when they operate their gear.

Despite their differences, common characteristics are assumed for these trajectories : 1)

movement is mainly in a straight line with no turning direction privileged ; 2) when cruising,

vessel goes faster than when fishing ; 3) at a 15 minutes time step, there is mainly persistence

in a state (states occur in sequence). While animals usually show a more erratic movement

when foraging than when cruising (Morales et al., 2004), for fishing vessels, the fishing phase

can be either erratic or not depending on the operated gear. For instance, it is sometimes

erratic for dredging whereas it is more linear for trammelling or otter trawling. Therefore,

this erratic behavior might not always be appropriate to distinguish between fishing and

cruising states.

[Table 1 about here.]
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2.2. Describing the path with the velocity process

The observed vessel’s path, X0, . . . Xt is considered via a decomposition of the associated

velocity process on its two dimensions V p and V r.

V p is called the ”persistence” speed, and corresponds to the tendency to maintain previous

direction. V r is called the ”rotational” speed, and corresponds to the tendency to turn. These

two quantities are derived as follows :

V p
t = Vt cos(ψt) (1)

V r
t = Vt sin(ψt) (2)

where Vt is the average speed derived from positions Xt−1 and Xt, and ψt is the turning

angle derived from Xt−2, Xt−1 and Xt, with ψ1 = 0. Variables 1 and 2 model jointly scalar

speed and turning angles instead one different distribution for each of them (like in and

Walker and Bez, 2010). The bivariate velocity can be modelled using a unique Gaussian

structure (Gurarie et al., 2009), that is presented on the next section.

It is worth noting here that the velocity defined by equations 1 and 2 is equivalent to the

(linearly interpolated) observed trajectory (see the appendix for the explicit relation).

2.3. An AR process ruled by a HMM

The vessel’s behavior is modelled by a hidden stochastic discrete time process noted

St
0 := S0, ..., St, where St is the state of the vessel at time t, and takes values in the set

of behavioral states noted S = {1, . . . , I}.

This process is assumed to be a homogeneous Markov chain of first order with a transition

matrix Π = (Πik)i,k∈S , i.e :

Πik = P(St = k|St−1
0 ) = P(St = k|St−1 = i)
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In our specific study, only two states are considered, S = {1, 2}, 1 standing for steaming, 2

for fishing.

The initial distribution is assumed to be known and set to P(S0 = 1) = 1 (the vessel is

steaming when leaving the harbour).

Conditionally to this hidden Markov chain, the vectorial speed process is modelled

by a mixture of two dimensional AR processes (with respect to its decomposition in

equations (1) and (2)) and can be summarized as follows :

V p
t+1|(St+1 = i) = ηp,i + µp,iV

p
t + σp,iϵp,t (3)

V r
t+1|(St+1 = i) = ηr,i + µr,iV

r
t + σr,iϵr,t (4)

V p
1 = V1, V r

1 = 0, ϵ·,t ∼ N (0, 1)

where, for each component (V p or V r) and state (1 or 2) :

– η is a level parameter.

– µ is an autocorrelation parameter. Its existence is justified considering data from the

four different trips (see Figure 1 for autocorrelation plots of trips A-D). It’s important

to note that it is well defined because of the time step regularity.

– σ2 is a shape parameter, it is the noise of the innovation process.

As in Gurarie et al. (2009), processes (3) and (4) are assumed to be independent. Even if

this assumption seems unrealistic, data reveal a weak empirical correlation between those

two variables.

It is known that an AR process as in (3) and (4) has a stationary distribution if |µ| < 1

(Shumway and Stoffer, 2000). In this case the expectation and the variance of the process V
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satisfy asymptotically :

E(V ) =
η

1− µ
(5)

V(V ) =
σ2

1− µ2
(6)

These asymptotic equalities can be useful in order to interpret characteristics of the velocity

process. If the vessel stays long enough in a given behavior, the expectation for V p and V r

could be derived from equations (5) and (6). These asymptotic equalities can then be used

as first approximations for the expectation and the variance of the process in a given state.

[Figure 1 about here.]

2.4. Inference

The inference procedure consists in the estimation of both parameters and a reconstruction

of the sequence of hidden states from observed positions. It requires two steps 1) performing

parameter estimation using the Baum Welch algorithm, 2) estimating the most likely

sequence of states using the Viterbi algorithm.

Considering I states, the set of parameters to be estimated for this model is

Θ = {Πi·, ηp,i, ηr,i, µp,i, µr,i σp,i, σr,i }i∈S

When J = 2, 14 parameters are estimated (2 for the transition matrix, and 3× 2× 2 for

AR processes parameters). Computing the likelihood function in this case is not possible

within a reasonable time as the computation of the likelihood requires the integration over

all possible hidden sequences (2#Observations possible paths). A classical approach is to find

Maximum Likelihood Estimators (MLE) Θ̂ via the Baum Welch algorithm, which is the

8



Environmetrics

Expectation Maximization (EM) algorithm derived for Hidden Markov Models (Rabiner,

1989 ; McLachlan and Krishnan, 1997).

Considering the model described above, both the Expectation (E) step and the Maximization

(M) step can be computed analytically (details and proof are given in the appendix, and R

codes (R Core Team, 2013) to perform the inference are available on demand).

The convergence criterion is reached when the log likelihood increase is less than 0.01. A

known problem of the EM algorithm is that, given a starting point, one can converge towards

a local maximum of the likelihood. To ensure a global maximum is found, the algorithm was

performed from 100 different starting points, keeping the result with the largest likelihood

as Θ̂.

Once the MLE step is performed, the Viterbi algorithm is used to derive the most probable

sequence of states, accounting for Markovian properties of the whole hidden sequence. A

parametric bootstrap procedure is used to assess the variance of Θ̂. The MLE is used

to simulate M new trajectories as bootstrap samples on which MLE (Θ̂m)1≤m≤M are re-

estimated, given these M re-estimations, empirical 95 % confidence intervals are obtained

for each parameter (getting central 95% values, McLachlan and Krishnan, 1997; Efron and

Tibshirani, 1993). To estimate the uncertainty over the state sequence estimation, the Viterbi

algorithm is computed on the derived velocity process using each MLE θ̂m. Formally, the

Viterbi algorithm computes

Ŝm = argmaxs0...sT

(
p(s0 . . . sT , X0 . . . XT |Θ̂m)

)
(7)

The empirical probability of being in state 2 at time t is then computed as
#{m,Ŝm

t =2}
M

.

Working on real data, state 2 (standing for ”fishing”) is attributed to the estimated state

with the lowest mean for scalar speed, due to the fact that the vessel goes slower in that

case.

The bootstrap is the most time consuming part of the estimation.
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2.5. Simulations

The performance of the estimation method is assessed through simulations of trajectories

based on various scenarios mimicking different levels of contrast in the movement

characteristics of the two behavioral states. For the model with two different states

(14 parameters), parameters used for simulation are restricted to values consistent with

characteristics of the observed trajectories. For instance, we noticed that

1) ηr,1 = ηr,2 = 0 : the movement of vessels is mainly in a straight line, both while

steaming and fishing, and does not privilege any turning direction, which implies the

level parameter to be null ;

2) ηp,1
1−µp,1

>
ηp,2

1−µp,2
: the asymptotic component of persistent speed should be greater when

steaming than when fishing ;

3) diagonal terms Π11 and Π22 of the transition matrix Π are large. This matrix is common

to all scenarios and set to Π =

0.9 0.1

0.1 0.9

.

Trips are simulated following nine scenarios with various degrees of mixture between states

and with different lengths (number of time steps) (see Table 2 for detailed values).

Scenario 1 is the baseline scenario. The difference between ηp,1 (= 6) and ηp,2 (= 1)

is large, as well as difference in autocorrelation parameters (”Steaming” state is

uncorrelated while ”Fishing” state is positively correlated).

Scenario 2-3 ηp,2 increases from 1 (scenario 1) to 2 (scenario 2) and 3 (scenario 3),

resulting in an increase of the asymptotic expectation of V p in state 2. Therefore the

contrast in the expected asymptotic speed between state 1 and 2 decreases.

Scenario 4-5 µp,2 increases from 0.5 (scenario 1) to 0.6 (scenario 4) and 0.8 (scenario 5),

resulting in an increase of the asymptotic expectation of V p in state 2. Therefore the

contrast in the expected asymptotic speed between state 1 and 2 decreases. Moreover,

the asymptotic variance of process V p increase in state 2.
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Scenario 6-7 In scenario 6, σ2
p,1 and σ2

r,1 increase from 1 and 0.5 (scenario 1) to 2 and 1

respectively, resulting to a higher asymptotic variance in state 1. In scenario 7, σ2
p,2 and

σ2
r,2 increase from 0.5 and 0.1 (scenario 1) to 1 and 0.5 respectively, resulting to a higher

asymptotic variance in state 2.

Scenario 8-9 The length of the observation is shortened from 400 points (scenario 1) to

100 points in scenario 8 and 50 points in scenario 9. Lengths of 400 and 50 points would

represent respectively 100 and 12 hours data considered and were the maximal and the

minimal length of trajectories considered.

[Table 2 about here.]

3. RESULTS

3.1. Results on simulations

For each set of parameters, 100 trajectories are simulated, thus providing 100 parameter

estimates. Examples of velocity process obtained with parameters of scenarii 1, 3, 4 and 7

are represented using scatter plots on Figure 2. These scatter plots highlight the different

degrees of mixture between the two states, depending on the scenario.

Knowing the true value of each parameter, estimation errors are computed and summarized

using box plots (Figure 3). Results are shown only for process V p, as trends are similar on

process V r. Moreover, as the true sequence of behavioural states is known, a misclassification

rate is also computed and displayed using box plots (Figure 4).

Box plots results highlight performances of the parameters estimation method and the

Viterbi algorithm, which are now detailed for the different simulation scenarios :

Scenario 1-3 For all parameters, the width of the box plots increases from scenarios 1

to 3, revealing that an increase proximity between ηp,1 and ηp,2 has a negative impact

on the estimation of all parameters (Figure 3). Moreover, the misclassification rate of
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the states estimation is also increased. Even if it remains low for scenarios 1 and 2, it

increases for scenario 3 (more than 50% of states estimation have a misclassification rate

greater than 0.15, Figure 4). Looking at Figure 2, this large misclassification rate can be

explained by the large degree of mixture between states in scenario 3.

Scenario 1, 4-5 When ηp,1 and ηp,2 are not changed, the increase of µp,2 increases

estimation’s uncertainty over level and autocorrelation parameters η and µ (Figure 3).

The misclassification rate also increases, with a low increase for scenario 4, and a larger

one for scenario 5 (Figure 4). Indeed, there is an increase in the degree of mixture between

states from scenario 1 to scenarios 4 and 5 (see Figure 2 for scenario 4).

Scenario 1, 6-7 In scenario 6, increasing noise parameters σ2
p,1 in state 1 increases lightly

the uncertainty for the estimations of level and noise parameters ηp,1 and σ
2
p,1. The same

trend can be noticed in scenario 7 when noise parameters in state 2 increase (Figure

3). The misclassification rate remains stable between scenario 1 and 6, but increases for

scenario 7 as the processes in both states have in this case same noise parameters (Figure

4). Indeed, there is an increasing in the degree of mixture between states from scenario

1 to scenario 7 (Figure 2).

Scenario 1,8-9 When the length is shortened, estimation’s uncertainty increases for all

parameters, the increase becomes larger from scenario 8 (100 points) to scenario 9 (50

points) (Figure 3). Moreover, the misclassification rate is also impacted, getting worse as

the observation’s length gets shorter (Figure 4). Looking at estimates of Π̂22 (for instance,

the same can happen for Π̂11), it is worth noting that in scenario 9, this parameter is

sometimes estimated close to 0. This results in the identification of only one behavioral

state, and then a large misclassification rate.

More generally, it is worth noting that for all scenarios, estimations are unbiased. Moreover,

except for scenario 7 where noise parameters are equal in both states, the variance of

estimators is greater for state 1 parameters than for state 2 parameters, as the noise
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parameter is larger in the first state (σ2
p,1 > σ2

p,2).

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

3.2. Results on data

The four observed trajectories with estimated probabilities of fishing at each observed

position of the vessel (with a focus on a particular section of trip B) are represented on

Figure 5. Velocities associated to these trajectories are represented using scatter plots on

Figure 6. One can see that the uncertainty in distinguishing the behavior of fishing from

steaming is low for all trips, as the estimated probability of fishing is most of the time 0 or

1 (see Figure 6). However, misidentification between fishing and steaming might occur at

certain turning points (see Figure 5).

Estimations for the 14 parameters, estimated proportion of time spent fishing and mean

scalar speed in each behavioral state are presented on Figure 7. As expected, parameters

Π11 and Π22 are high on those four trips showing a persistence to stay in a given activity.

Parameters ηr are estimated quite close to 0, except on trip A. In this case, ηr,1 is slightly

negative, stemming from the tendency of this vessel to always turn in the same direction

during this trip.

Results obtained for parameters estimates can be linked, for each trip, to the velocity scatter

plot.

For trip A, estimated steaming and fishing states are clearly separated on scatter plot of

velocity (Figure 6), steaming being concentrated at high values for V p (large value of ηp,1)

and fishing being more dispersed at lower values of V p (smaller value of ηp,2). Steaming

represents 20% of the vessel’s activity and takes place at high speeds (mean around 8.4
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knots), while fishing represents 80% of the vessel’s activity, it occurs at a lower speed (mean

of 2.6 knots) and is rather erratic.

For trips B and C have a similar estimated fishing state pattern, which is really concentrated

(Figure 6). Indeed, in those two cases, parameters µ.,2 and σ2
.,2 are small, resulting in a

process (while fishing) with a small variance. Fishing then occurs at constant speed and is in

a straight line. The steaming state are estimated with large noise parameters (σ2
.,1 have large

values), then, as expected after simulation analysis, parameters estimates for this behavioral

state are more uncertain.

For Trip D, estimated steaming and fishing states are more mixed. Parameters estimates

show a small uncertainty for fishing and a larger uncertainty for steaming. Trip D has

more than 400 observed positions, therefore, given the results of the simulation analysis, the

uncertainty of state 1 estimated parameter can be associated to a large noise in the process

(large values for σ2
.,1). Moreover, state 2 is here characterized by a parameter µp,2 really

close to 1, traducing a highly autocorrelated V p process in state 2. The fit of the model to

trip D is questionable. Behaviors are mixed along the whole trajectory and seem unrealistic

in terms of steaming/fishing (Figure 5). Figure 8 presents the scalar speed process for this

particular trip. It shows that scalar speed does not discriminate the two states : both fishing

and steaming present high speed values. However it is not realistic considering the vessel can

operate an otter trawl at 10 knots. Actually, the 2 states are likely separated out based on the

magnitude of autocorrelation in the V p process, state 2 being highly autocorrelated (µp,2 ≈ 1

with a small noise (low σ2
p,2, and state 1 being less autocorrelated and with a larger noise

parameter (larger σp,1). On Figure 8, the autocorrelated process corresponds to a portion of

sine waves, the other state is noise.

To conclude, the four trips have different patterns, trip A has an erratic fishing activity at low

speed, trip B and C have a similar constant fishing activity pattern, with a constant speed

and a steady course, and trip D is a mix between strongly autocorrelated speed patterns and
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brutal changes.

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]

4. DISCUSSIONS AND PERSPECTIVES

This paper provides a first application of an AR process coupled with a hidden Markov

chain to describe the movement of fishing vessels. This approach allows to model the

bivariate velocity process (which fully describe the trajectory) with a unique Gaussian

structure instead of two separated distributions as it was done before (Vermard et al.,

2010; Walker and Bez, 2010). The AR process allows a general framework with Gaussian

properties and interpretable parameters. In this paper, it is shown how the velocity process

viewed as an AR process can be used in this point of view, in order to analyse fishing

vessels trajectories. Indeed results over the four studied vessel’s highlight differences

inter-trajectories (different types of vessels and fishing activities Biseau, 1998) and intra-

trajectories (between steaming and fishing) in terms of time series characteristics (means,

variance, autocorrelation) that can also be translated in terms of physical patterns (fast,

slow, erratic, steady). However, as for all time series study, one has to question how to

interpret the estimated autocorrelation. In this study, the trip of a 22 meters bottom trawler

is disentangled into two states, one associated to highly autocorrelated persistent speed

(µp,2 ≃ 1) and one associated one associated to a less correlated persistent speed. It is to

wonder whether the estimated autocorrelation is of interest for the user’s purpose (here,

knowing when the vessel is fishing) or whether it is the expression of an external factor
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that does not reveal the hidden behavior. In the case of the trip D presented here, the

autocorrelated pattern might be the consequence of external factors (surface currents for

instance) that should be removed to accurately identify the steaming/fishing sequences.

The model considered here has two states, steaming and fishing, that could be similar to

a ”migrating”/”foraging” pattern adopted for animals (Jonsen et al., 2007), whereas a

three-states model can be used (Vermard et al., 2010; Walker and Bez, 2010). This was

made possible thanks to a pre-treatment of the data that consists in removing positions in

port but also because each studied fishing vessel operates with suitable gears that do not

require research or stopping phase. If a two-states model is realistic here it could be more

relevant in other cases to adopt a three or more states for trips during which several gears

can be operated or several métiers can be practised . A model with ”transition” states can

also be adopted to deal with problems due to time step acquisition, and specifying different

parameters for each fishery (Peel and Good, 2011). It is to note that increasing the number

a state would not add any difficulty to the method presented here (Jonsen et al., 2013). A

challenging alternative to these choices would be to consider a state space model where the

number of states is a parameter to infer.

The parameter estimation is performed using the Baum Welch algorithm and the

reconstruction of the hidden state sequence is achieved thanks to the Viterbi algorithm.

In order to compare results, the estimation was also made in a Bayesian framework (not

shown here), with MCMC methods, using the Jags software, and estimates showed similar

results. Actually, there are several techniques to estimate parameters in Hidden Markov

Models (see Jonsen et al., 2013). Considering the AR process presented here, the Baum

Welch algorithm does not need numerical techniques as the equations associated have

analytic solutions. This allows to code the algorithm entirely without any toolbox, which
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is, in our opinion, an advantage, even if this might not be faster (Zucchini and MacDonald,

2009). The uncertainty of estimates is computed using bootstrap methods instead of Fisher

matrix, that could be given as an output of the algorithm. Bootstrap methods might be

longer to compute (it’s the most time-consuming part of the algorithm) but it does not

rely on asymptotic assumptions which would not stand here for at least 3 of the 4 trips

presented (Efron and Tibshirani, 1993; Zucchini and MacDonald, 2009).

A simulation approach is performed to assess the performance of the model and the

accuracy of the estimation for various realistic set of parameters values (called scenarios).

The importance of the duration of observation is also established : the longer the trajectory,

the better the estimation. Then, when dealing with small vessels as they might not have long

trips enough to enable good estimation. Moreover, the simulation approach showed problems

to identify two behaviors when the contrast between them is too small. In practice, it implies

that two ”similar” activities (for instance dredging and trawling) might not be distinguished.

An interesting point of the model presented here is its link with continuous time models.

It is known that an AR process (with µ > 0) is a discrete version of the continuous time

Ornstein Ulhenbeck process (OUP), as long as the time step is regular ((Johnson et al.,

2008)). Indeed this model can be seen as an OUP sampled at discrete time coupled with a

HMM. The OUP is known to be the solution of a specific stochastic differential equation

(SDE). SDEs are a general and challenging tool to model spatial trajectories (Brillinger,

2010), as its continuous time property allows to deal with irregularity in data but also to

integrate spatially continuous covariates that rule the individual dynamics. This is a line of

research we wish to plore further to circumvent modelling difficulties of VMS mandatory

data.
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Figure 1.Autocorrelation function plots for trips A to D.
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Figure 2. Simulated velocity processes for scenarios 1, 3, 4, and 7 (see Table 2). The persistent speed V p is represented along the x
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. Black dots are for fishing, white dots for steaming.
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Figure 3.Box plots of estimation errors (estimated value minus the true value of each parameter, on the y axis) obtained for the 9

simulation scenarios (x axis) presented in Table 2. Only estimation errors for process V p are presented, white and grey box plots are

for parameters estimates in steaming and fishing respectively. The whiskers represent here at most 1.5 times the interquartile range.

Outliers are not plotted.
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Figure 5.Estimated probabilities of being in state 2 (fishing) for each trip (A, B, C and D) is plotted, from 0 (white dots) to 1 (black

dots). A zoom is made over a specific zone of trip B. Estimations for trip D can not be interpreted as steaming/fishing.
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Trip Duration Vessel’s length Gear
A 22h 12m Dredges
B 14h 12m Otter Trawl
C 13h 13m Trammel nets
D 107h 22m Otter Trawl

Table 1. Technical details of the four studied trajectories
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η µ σ2 E V
n

Scenario 1 2 1 2 1 2 1 2 1 2

1
p

(
6 1
0 0

)
(
0 0.5
0 0.2

) (
1 0.5
0.5 0.1

) 6 2

1 0.7
0.5 0.1

400

r 0 0

2
p

(
6 2
0 0

)
6 4

r 0 0

3
p

(
6 3
0 0

)
6 6

r 0 0

4
p (

6 1
0 0

) (
0 0.6
0 0.2

) (
1 0.5
0.5 0.1

) 6 2.5
0 0

1 0.8
0.5 0.1

400
r

5
p

(
0 0.8
0 0.2

)
6 5
0 0

1 1.4
0.5 0.1r

6
p (

6 1
0 0

) (
0 0.5
0 0.2

) (
2 0.5
1 0.1

)
6 2
0 0

2 0.7
1 0.1

400
r

7
p

(
1 1
0.5 0.5

)
1 1.3
0.5 0.5r

8
p (

6 1
0 0

) (
0 0.5
0 0.2

) (
1 0.5
0.5 0.1

)
6 2
0 0

1 0.7
0.5 0.1

100
r

9
p

50
r

Table 2. Parameters values for each simulation scenario. The matrix Π is identical for all
scenarios. Expectation and variance indicated are calculated from equations (5) and (6), and
rounded to first digit. They are asymptotic and must be considered as indicators of how the
parameters affect the different processes. n is the number of observations along the simulated

trajectories.
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