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Models based on the multivariate partial least squares (PLS) regression technique are developed for the
retrieval of phytoplankton size structure from measured light absorption spectra (BOUSSOLE site,
northwestern Mediterranean Sea). PLS-models trained with data from the Mediterranean Sea showed
good accuracy in retrieving, over the nine-year BOUSSOLE time series, the concentrations of total
chlorophyll a [Tchl a], of the sum of seven diagnostic pigments and of pigments associated with micro,
nano, and picophytoplankton size classes separately. PLS-models trained using either total particle or
phytoplankton absorption spectra performed similarly, and both reproduced seasonal variations of bio-
mass and size classes derived by high performance liquid chromatography. Satisfactory retrievals were
also obtained using PLS-models trained with a data set including various locations of the world’s oceans,
with however a lower accuracy. These results open the way to an application of this method to absorption
spectra derived from hyperspectral and field satellite radiance measurements. © 2013 Optical Society
of America
OCIS codes: 010.4450, 010.1030, 010.7340, 010.0010.

1. Introduction

Phytoplankton are a major component of ocean’s bio-
geochemical cycles, especially in the epipelagic zone
where they regulate the total amount of carbon and
other elements in the oceans [1]. When analyzing
biogeochemical fluxes in the oceans, however, it
is inadequate to consider phytoplankton as a single
variable (i.e., chlorophyll a) because the various
phytoplankton groups (e.g., diatoms, coccolithophores,
cyanobacteria) have different roles in many marine
biogeochemical processes, such as carbon fixation
and export, nitrogen fixation and silicon uptake [2–4].

This is the rationale for the development of a new
generation of bio-optical products able to identify dif-
ferent phytoplankton types, in order to continuously
analyze changes in algal communities at regional and
global scale [5–7], and in view of refining biogeochem-
icalmodels. Currently, several bio-optical methods are
proposed to analyze and quantify the temporal and
spatial variability of phytoplankton communities in
the world’s oceans. These approaches, using inherent
or apparent optical properties (IOPs and AOPs), focus
on the retrieval of products such as phytoplankton
types [8–10], size classes [11–15], dominant size class
[16–18], phytoplankton size distribution [19,20], or
phytoplankton pigments [21–23].

Many efforts have been dedicated to the develop-
ment of products for the retrieval of the phytoplankton
size structure. Partitioning phytoplankton into their
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micro, nano, and picocomponents [24] is considered a
good ecological indicator [6] with fundamental impli-
cations in a biogeochemical and trophic (food web)
context [25–27]. The rationale is that the cell size
influences many eco-physiological processes such as
the sinking rate and the nutrient uptake [28], or the
pigment packaging within the cell [29,30]. The latter,
in particular, drives modifications in the spectral
characteristics of the light absorption coefficients
[31] that can be actually used as the basis of methods
for the retrieval of the algal community size struc-
ture from space-derived or in situ absorption mea-
surements (see [27,32] and references therein).

A further approach to extract information on the
size structure of algal communities from light ab-
sorption properties is the multivariate partial least
squares (PLS) regression technique [33,34]. This
technique, which is frequently used in chemistry for
spectroscopy analysis, has been only scarcely applied
in oceanography. The first PLS application was
performed about 10 years ago to determine con-
centrations of chlorophyll and phaeo-pigments in
solution from their absorbance spectra [35]. Progres-
sively, the application of the PLS technique was ex-
tended to the retrieval of algal classes abundance
either from fluorescence [36] or absorption spectra
[37–39]. In particular, Stæhr and Cullen [38] showed
the remarkable skill of the PLS technique in predict-
ing the fraction of chlorophyll biomass of the harm-
ful algae Karenia mikimotoi both in controlled and
in natural conditions. On the basis of the observed
low sensitivity of PLS to absorption spectral varia-
tions induced by different irradiances, Stæhr and
Cullen [38] also recommended the PLS for the detec-
tion in the natural environment of phytoplankton
types other than K. mikimotoi, provided that the
algorithm is developed using a large number of sam-
ples in order to achieve retrievals with a high degree
of confidence. These considerations, in addition to
the uncertainties and the various sources of errors
still observed in the application of several current
approaches [32] for the retrieval of phytoplankton
size classes from optical data, are the rationales for

testing the potential of the PLS technique in this
field.

In the framework of the BIOoptics and CARbon
Experiment (BIOCAREX) and BOUée pour l’acquisi-
tion de Séries Optiques à Long termE (BOUSSOLE)
projects, we developed a new algorithm based on
the multivariate PLS technique in order to retrieve
information on phytoplankton pigments and size
structure from a long time series of hyperspectral
absorption measurements performed monthly at
the BOUSSOLE site (northwestern Mediterranean
Sea) since 2003. In view of a possible application
of such a method to various IOPs derived from inver-
sion of AOPs (see [40]), the prediction ability of the
PLS is investigated both for total particle or phyto-
plankton absorption measurements. For the develop-
ment of the PLS models, we used an extensive data
set of phytoplankton and particle light absorption
spectra coupled with high performance liquid
chromatography (HPLC) pigment measurements
collected from the first optical depth of the world’s
oceans. A nine-year time series of measurements
at the BOUSSOLE site is then used for testing the
models. Finally, changes in the phytoplankton com-
munity structure observed from the application of
the newmodels to the entire BOUSSOLE time series
are discussed and compared with those retrieved
from HPLC pigment measurements.

2. Methods

A. Sampling

Samples used to train models (see Subsection 2.D)
were collected between 1991 and 2004 during 12
oceanographic cruises in different seasons and across
the world’s oceans [Table 1, Fig. 1]. In order to ensure
the homogeneity of the data set with respect to the
processing procedure, additional data from other
publicly available data sets were not used in this
work. The data from the cruises carried out between
1991 and 2001 were described and used in Bricaud
et al. [30] while those from the BIOSOPE cruise
can be found in Bricaud et al. [41]. Information on
the additional data collected during the AOPEX

Table 1. Cruises, Location, Sampling Period, Number of Samples (n) and [Tchl a] range
for the First Optical Depth, for the Data Used to Train Models

Cruise Location Period n [Tchl a] Range mgm−3

EUMELI 3 Tropical North Atlantic Oct. 1991 5 0.073–0.340
FLUPAC Equatorial and subequatorial Pacific Sep.–Oct. 1994 11 0.039–0.236
OLIPAC Equatorial and subequatorial Pacific Nov. 1994 34 0.072–0.291
MINOS Eastern and western Mediterranean Sea May 1996 24 0.028–0.070
ALMOFRONT II Alboran Sea (Mediterranean Sea) Dec. 1997–Jan. 1998 59 0.202–1.185
PROSOPE (upw) Morocco upwelling Sep. 1999 10 2.03–4.04
PROSOPE (Med) Eastern and western Mediterranean Sea Sep.–Oct. 1999 102 0.020–0.221
POMME 1 North Atlantic Feb.–March 2001 116 0.105–0.933
POMME 2 North Atlantic March–May 2001 125 0.254–1.44
POMME 3 North Atlantic Aug.–Oct. 2001 125 0.039–0.395
AOPEX Tyrrhenian Sea (Mediterranean Sea) Aug. 2004 43 0.047–0.092
BIOSOPE South Pacific Nov.–Dec. 2004 62 0.017–1.481
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cruise in August 2004 is available in Antoine et al.
[42]. At the BOUSSOLE site in the Mediterranean
Sea (7°54'E, 43°22'N; Fig. 1), samples for particulate
absorption measurements have been collected
monthly since 2003 [42,43].

All the data considered here were collected in
Case-1 waters as defined by Morel and Prieur [44].
Water collection was performed at various depths of
the 0–400 m water column during up-cast CTD pro-
files of temperature, conductivity, and chlorophyll
fluorescence performed by a CTD-fluorometer ro-
sette system equipped with Niskin bottles. Seawater
samples were collected and filtered for subsequent
determination of phytoplankton pigments and par-
ticulate absorption spectra. Only samples collected
within the first optical depth [45] are analyzed here
in order to minimize the influence of photoacclima-
tion and its possible effects on the pigment packaging
and thus on the spectral shape of the phytoplankton
light absorption [29]. The first optical depth was
computed for each station as being Zeu∕4.6, where the
euphotic depth Zeu is the depth at which the photo-
synthetically available radiation is reduced to 1% of
its value just below the surface. The euphotic depth
was either calculated from radiometric measure-
ments (downward irradiance profiles) or estimated
from the measured chlorophyll profile following
Morel and Maritorena [46]. From a total of 6657
samples, 1211 belong to the first optical depth: 727,
from various areas of the world’s oceans, are used for
model training and 484, from the BOUSSOLE time
series, are used for the test.

B. Algal Pigment Measurements

Algal pigment measurements were carried out by
HPLC. Seawater samples (up to 5.6 L) were filtered
through 25 mm Whatman glass-fiber filters (GF/F),
immediately frozen in liquid nitrogen and sub-
sequently stored in the laboratory at −80°C until

analysis. HPLC procedures are described in Claustre
and Marty [47] for the EUMELI 3 cruise, Ras et al.
[48] for the BIOSOPE cruise, and Vidussi et al. [49]
for all other cruises. The procedure used for the
AOPEX and BOUSSOLE cruises is comparable to
that described by Vidussi et al. [50] (see [42]). Chloro-
phyll a and divinyl-chlorophyll a were fully resolved
for all cruises but EUMELI3. Hereafter, the sum of
chlorophyll a, divinyl-chlorophyll a, and chlorophyl-
lide a concentrations is named total chlorophyll a
concentration and noted [Tchl a].

Seven major diagnostic pigments (DPs) were
selected as being representative of the three phyto-
plankton size classes (micro, nano, and pico
phytoplankton). According to Vidussi et al. [50],
these pigments are fucoxanthin (Fuco), peridinin
(Perid),alloxanthin(Allo),190-butanoyloxyfucoxanthin
(190-BF), 190-hexanoyloxyfucoxanthin (190-HF), zea-
xanthin (Zea), and chlorophyll b + divinyl chlorophyll
b (Chl b�DVChl b). The concentrations of these
biomarker pigments were used to calculate the
biomass proportions associated with micro, nano, and
picophytoplankton size classes [11]:

%microphytoplankton � 100�1.41�Fuco�
� 1.41�Perid��∕DP; (1)

%nanophytoplankton � 100�0.60�Allo�
� 0.35�190 − BF�
� 1.27�190 −HF��∕DP; (2)

%picophytoplankton � 100�0.86�Zea�
� 1.01�Chl b�DVChl b��∕DP;

(3)

Fig. 1. (Color online) Map of the stations where data were collected. Stations are displayed according to their geographical distribution
(square � BOUSSOLE site, circle � Mediterranean Sea, diamond � Atlantic Ocean, triangle � Pacific Ocean) and to the oceanographic
cruise during which they were visited. The map is drawn by the Ocean Data View software (Schlitzer, R., Ocean Data View, http://odv.awi
.de, 2012).
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where DP is the sum of the weighted concentrations of
the seven bio-marker pigments.

The numerical coefficients used to compute the
contribution of the three size classes to the taxo-
nomic structure of the algal community were calcu-
lated by multiple regression on a global data set by
Uitz et al. [11]. They actually represent the average
ratios between [Tchl a] and each marker pigment.
As already noted [11,51], such a distribution of DPs
may yield some errors and uncertainty in the evalu-
ation of the algal size classes because some pigments
can be shared by various phytoplankton groups and
some groups can be found inmore than one size class.
In spite of these possible sources of error and ambi-
guity, this method has been shown to provide reason-
able information on the size structure and taxonomic
composition of algal communities at global scale
[30,41,48,52–54]. Note, however, that slight modifi-
cations in the repartition of pigments within size
classes have been recently proposed by Brewin et al.
[14] and Hirata et al. [21].

A size index (SI) was derived from Eqs. (1)–(3) in
order to assess the variations of the dominant size
class of the phytoplankton communities as [30]:

SI � �1�%picophytoplankton�
� 5�%nanophytoplankton�
� 50�%microphytoplankton��∕100; (4)

where 1, 5, and 50 μm are central size values for each
size class.

As already acknowledged, SI is only a rough indi-
cator of the size because of the unique central size
used to represent each size class [30]. Nevertheless,
it is a single parameter able to represent the domi-
nant size of the phytoplankton communities.

C. Spectral Light Absorption Measurements

Particle absorption spectra (ap�λ�) were measured
using the “quantitative filter pad technique” (QFT)
except for the FLUPAC cruise where the “glass-slide
technique” [55] was used. The procedure is exten-
sively described by Antoine et al. [42] for AOPEX
and BOUSSOLE cruises, Bricaud et al. [41] for the
BIOSOPE cruise, and Bricaud et al. [30,56] for all
the other cruises. Briefly, seawater samples (up to
11.2 L) were filtered through 25 mm Whatman
GF/F filters, immediately frozen in liquid nitrogen
and then stored in a −80°C freezer in laboratory until
the analysis. Spectra were measured every 1 nm in
the visible-near infrared range by a spectrophotom-
eter equipped with an integrating sphere. A blank
wet filter was used as a reference. Optical densities
were shifted to 0 in the near infrared, and then trans-
formed into absorption coefficients (in m−1). All spec-
tra were corrected for the path length amplification
effect (β-effect) using the algorithms given by Allali
et al. [57] for samples collected during the OLIPAC,
MINOS, PROSOPE (Mediterranean part), POMME
3, BIOSOPE (oligotrophic and mesotrophic waters)

cruises, and by Bricaud and Stramski [58] for all
the other samples. Absorption spectra collected
during the FLUPAC cruise were not corrected for the
β-effect, which occurs only when the QFT is used.
Finally, the particulate absorption spectra ap�λ�were
decomposed into phytoplankton (aphy�λ�) and nonal-
gal particle (aNAP�λ�) absorption spectra using the
numerical decomposition described by Bricaud and
Stramski [58], except for the samples of the EUMELI
3 and BIOSOPE cruises where the chemical pro-
cedure described by Kishino et al. [59] was used.
In the present study, only the absorption values
between 400 and 700 nm are considered.

D. Retrieval of Phytoplankton Size Structure from
Absorption Spectra

The retrieval of pigment information and size struc-
ture of algal communities in the surface layer of the
BOUSSOLE site from absorption spectra can be
achieved by the development of a model based on
the multivariate PLS regression technique. PLS is
a multivariate analysis technique that relates by
regression a data matrix of predictor variables (X)
to a data matrix of response variables (Y). Basically,
PLS consists of two steps: first, a model explaining
the relations between dependent and independent
variables has to be found (training step). Practically,
the PLS technique decomposes an X matrix using
the dependent variables in order to obtain model
parameters and select the best number of latent
variables (i.e., components) that maximize the
covariance between X and Y variables. Second, the
parameters of the PLS model can be used for the pre-
diction of dependent variables from several indepen-
dent variables of a new data set (testing step) [33,34].

Here we used the fourth-derivative absorption
spectra as the independent variables. The fourth-
derivative analysis introduced by Bidigare et al.
[60] was performed (in the range 400–700 nm) using
a finite approximation algorithm that computes the
changes in curvature of a given spectrum within an
interval Δλ [Δλ � λ2 − λ1, where λ2>λ1; see example
in Fig. 2]. The fourth-derivative was chosen over
the second-derivative because it enables a better sep-
aration of absorption bands and the quantification of

Fig. 2. Example of a smoothed phytoplankton absorption
spectrum (solid curve) of the BOUSSOLE time series and its
fourth-derivative (dashed curve).
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pigments while the second-derivative was observed
to only provide qualitative identification of pigments
[60]. Because the fourth-derivative analysis is sensi-
tive to the signal-to-noise ratio, the “mean filter”
described by Tsai and Philpot [61] was used to
smooth the absorption spectra before computation
of the derivatives. Briefly, this filter assigns themean
value of all points within a sampling interval to the
middle point of the window. In this study Δλ was set
to 8 nm for the derivative analysis and 9 nm was
the size selected for the “mean filter,” according to
the range of optimal values showed in the analysis
performed by Torrecilla et al. [23]. Finally, fourth-
derivative absorption spectra composed of 269 wave-
lengths (from 416 to 684 nm) with 1 nm resolution
were obtained and used.

The weighted concentrations of the seven DPs
associated with the three phytoplankton size classes
(see Subsection 2.B for details) and the total chloro-
phyll a concentrations are used as the dependent
variables. Hence, five response variables were
chosen: concentration of [Tchl a], sum of the concen-
trations of the seven DPs, and sum of the concentra-
tions of the DPs associated with each size class
separately.

The classical approach of the PLS (PLS1), which
applies to a single variable at a time, is used to
develop the models. Models were trained using two
different data sets and tested on the BOUSSOLE
data set. A flowchart summarizes the distribution
and use of all the data in this study (Fig. 3). The
first training data set comprises 716 simultaneous
HPLC pigment and light absorption measurements
(ap�λ� and aphy�λ�) collected during the cruises listed
in Table 1 and includes samples collected at global
scale (hereafter denoted GLOCAL). In order to as-
sess also the performances of regional trained PLS
models, the second training data set is built using
data from the Mediterranean Sea only as collected
during the MINOS, ALMOFRONT II, PROSOPE,
and AOPEX cruises (hereafter denoted MedCAL).
Using these cruises only, the MedCAL data set would
essentially include oligo- to mesotrophic waters
whereas the BOUSSOLE site, on which the model
will be tested, also exhibits eutrophic waters during
the spring phytoplankton bloom. Therefore, a small
number (n � 11) of high-chlorophyll samples from
the BOUSSOLE time series were also included in
the MedCAL data set. These samples, when removed
from the time series, did not substantially change its

Fig. 3. Flowchart displaying distribution and use of HPLC pigment and spectral light absorption data for subsequent training and test of
the PLS regression method.
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temporal trend. Finally, the MedCAL data set in-
cludes 239 simultaneous HPLC pigment and light
absorption measurements (see flowchart in Fig. 3).

The models were trained with PLS including
leave-one-out (LOO) cross-validated predictions.
Briefly, LOO validation computes a model by remov-
ing one data point at a time from the training data
set and uses the fitted model to predict the value
of the left out data point. The LOO cross-validation
is used here to estimate the expected accuracy level
of the predictive model. In order to determine the
optimal number of components that minimized the
error of prediction, the root mean square error of pre-
diction (RMSEP) between LOO predicted and HPLC
measured values was computed and the best number
of components was selected for the lowest RMSEP
value [62]. When the lowest RMSEP value occurred
with a high number of components, to avoid over-
fitting, the number of components after which the

error of prediction did not significantly decrease was
considered as optimal [63]. PLS models were tested
using the BOUSSOLE data set (see flowchart in
Fig. 3) and their performances in predicting pigment
information and size classes at the BOUSSOLE site
were evaluated using the coefficient of determination
(r2), the RMSEP and the systematic error (BIAS).
RMSEP and BIAS were computed as follows:

RMSEP �
�Xn

i�1

�xi − x̄i�2∕n
�1∕2

�5�

and

BIAS �
Xn
i�1

�x̄i − xi�∕n (6)

where xi was the measured value and x̄i the value
predicted by the models.

All the PLS analyses presented in this study
were carried out by the “pls” package [63] for the free
statistical software R (www.r‑project.org).

3. Results and Discussion

A. Size Characteristics of Algal Communities

The main bio-optical characteristics of the data sets
used in the present study are reported and discussed
by Antoine et al. [42] for the BOUSSOLE and the
AOPEX cruises and by Bricaud et al. [30,41] for all
the other cruises in Table 1. Here, we describe only
the variations in the size structure of the algal com-
munities when relevant to the results of the PLS
application. To address this question, the variations
of the size index (SI) as a function of [Tchl a] are
analyzed.

The variations of the SI as a function of [Tchl a] for
the cruises listed in Table 1 and for the BOUSSOLE
data set are shown in Fig. 4. The previous study of

Fig. 4. (Color online) Variations of the size index (SI) derived
from the relative contributions of micro, nano, and picophyto-
plankton [Eqs. (1)–(4)] as a function of [Tchl a] for BOUSSOLE,
compared to various areas.

Table 2. PLS Parameters of ap �λ�-and aphy�λ�-Models Trained Using HPLC Pigment Measurements and Absorption Spectral Values Included
in the MedCAL Data Set (n � 239), from Left to Right: Number of Components (N), RMSEP (mgm−3), Explained Variance (%) for Independent

[r2X (%)] and Dependent [r 2Y (%)] Variablesa

LOO Prediction

N RMSEP r2X (%) r2Y (%) r2 b a

ap�λ� Models
Tchl a 4 0.1038 96.12 98.63 0.97 0.99 0.005
DP 3 0.0879 95.40 97.99 0.97 0.98 0.006
Micro 4 0.1031 96.10 95.20 0.85 0.90 0.014
Nano 4 0.0789 95.50 94.88 0.84 0.87 0.012
Pico 6 0.0221 97.64 95.76 0.87 0.88 0.006

aphy�λ� Models
Tchl a 3 0.1086 95.63 98.56 0.96 1.00 0.004
DP 2 0.0857 95.18 97.12 0.97 0.98 0.007
Micro 4 0.1085 96.31 96.56 0.84 0.91 0.010
Nano 4 0.0832 96.24 95.06 0.82 0.86 0.010
Pico 5 0.0207 97.29 95.62 0.88 0.88 0.010
aStatistical parameters for linear regressions between leave-one-out (LOO) predicted and measured pigment concentrations:

determination coefficient (r2), regression slope (b) and y-intercept (a).
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Bricaud et al. [30] stated that, despite a general trend
of covariation of SI with [Tchl a], the world’s oceans
are characterized by a different distribution of the
three algal size classes for a given [Tchl a]. These
results were then confirmed when data from the
South Pacific Ocean (BIOSOPE cruise) were added
to the data set and the dominant algal size in the
clearest waters was revealed to be three times larger
than those found for the same [Tchl a] level in
the Mediterranean Sea [41]. The minimum [Tchl a]
value during the nine-year BOUSSOLE time
series was 0.047 mgm−3 (Fig. 4), which is slightly
larger than [Tchl a] measured in extremely clear,
picophytoplankton-dominated, Mediterranean waters
observed during the PROSOPE cruise [30], or during
other surveys in the Ligurian Sea [64] and other
Mediterranean areas [50,54]. Nanophytoplankton
was the dominant size class even in the clearest
waters of the BOUSSOLE site (SI values close to
10 μm). This is a typical community structure
observed also for samples from other areas of the
Mediterranean Sea (see [30] for details) while, at
similar [Tchl a], picophytoplankton is more present
in the Atlantic and Pacific Oceans. The contribution
of microphytoplankton increased with [Tchl a] at
BOUSSOLE and SI values were similar to those
found in the Mediterranean Sea, but generally
higher than those observed in the North Atlantic
[Fig. 4]. Samples with the highest [Tchl a] (up to
5 mgm−3) were dominated by microphytoplankton,
with SI values up to 42 μm, similar to those observed
for the diatom-dominated waters of the Morocco
upwelling [30]. These atypical eutrophic conditions
for the Mediterranean Sea, observed at BOUSSOLE
especially in 2005, have been recently reported by
Marty and Chiavérini [65] in the Ligurian Sea at
the Dyfamed station (near the BOUSSOLE site) as
an effect of a more intense winter mixing compared
to other years. Spring blooms characterized by nano-
phytoplankton (18–21 μm) were also observed at
BOUSSOLE, as already reported in the same area
during the bloom period at the Dyfamed time
series [64].

The above observations suggest that the distribu-
tion of the three size classes at the BOUSSOLE site
is, for a given [Tchl a], consistent with most of the
Mediterranean samples, whereas major differences
appear with respect to the Atlantic and Pacific
Oceans. However, some particularities of the BOUS-
SOLE site with respect to other sampled areas of
theMediterranean Sea have to be taken into account,
i.e., the absence of very clear picophytoplankton-
dominated waters and the presence of eutrophic con-
ditions and nanophytoplankton-dominated [Tchl a]
maxima.

B. Retrieval of Phytoplankton Community Structure from
the MedCAL Data Set

In the following sections, we present and compare
the performances of PLS-models trained using either
the total particle or the phytoplankton light absorp-

Fig. 5. (Color online) Cross-validated LOO predictions (in
mgm−3, n � 239) of the five variables ([Tchl a], DP, Micro, Nano,
and Pico) as derived by the PLS models trained using HPLC
pigment measurements and ap�λ� (left column) or aphy�λ� (right
column) values included in the MedCAL data set (see
Subsection 2.D for details) versus measured concentrations. The
solid lines indicate the 1∶1 ratio, the dashed lines show linear
regressions between predicted and measured concentrations.
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tion spectra (hereafter referred to as ap�λ�- and
aphy�λ�-models) included in the MedCAL data set.

1. Selection of PLS-Models
The results of the PLS-models trained using the
particle and phytoplankton absorption spectra in-
cluded in the MedCAL data set are summarized in
Table 2. The optimal number of components that
minimized the error of prediction was different be-
tween the ap�λ�- and aphy�λ�-models and among the
predicted variables. For the ap�λ�-models, four PLS
components were generally found to be optimal, as
they explained more than 95% of the variance of
the dependent variables, except for the picophyto-
plankton size class, which required six components
(Table 2). In the case of the aphy�λ�-models, a lower
number of components was generally found to be
optimal for the variables: two and three components
were revealed to be sufficient for [Tchl a] and DP
variables, while at least four PLS components were
required to minimize the prediction error for the var-
iables micro, nano, and pico (Table 2). These optimal
numbers of components explained more than 95% of
the variance both for the independent and dependent
variables of all the five models (Table 2).

The cross-validated predictions for the ap�λ�- and
aphy�λ�-models are shown in Figure 5 and the main
parameters of the regression lines are reported in
Table 2. In the plots showing predictions versus
observations for the five variables (Fig. 5), predicted
values are close to the 1∶1 line, even if a high scatter
can be observed for the cross predictions of the DPs
associated with the phytoplankton size classes. All
regression slopes (b) display values higher than 0.87
and 0.86 for the ap�λ�- and aphy�λ�-models, respec-
tively. In the case of the [Tchl a] and DP variables,
b values are the highest, close to 1. The determina-
tion coefficients (r2) are high (r2 > 0.82) for all
variables, and they reach values up to 0.97 for the
cross predictions of [Tchl a] and DP. The PLS
ap�λ�- and aphy�λ�-models are therefore able to predict

adequately all the variables used in this study,
although the prediction accuracy is lower for the
three variables associated with the algal size struc-
ture than it is for [Tchl a] and DP.

2. MedCAL-Trained Model Results
In this section, we compare the ability of the Med-
CAL trained PLS ap�λ�- and aphy�λ�-models (Table 2)
in predicting the pigment concentrations and retriev-
ing the algal size structure from the BOUSSOLE
time series of particle and phytoplankton absorption
spectra (n � 484). The parameters of linear regres-
sions between predicted and measured pigment
concentrations, the RMSEP and the BIAS values
used to assess and compare the accuracy of the PLS
models are reported in Table 3. Due to the large
ranges of variation of [Tchl a] and pigment concen-
trations (three orders of magnitude), regressions
between predicted and measured pigment concen-
trations are displayed in log–log scale in Fig. 6 for
predictions obtained by ap�λ�- and aphy�λ�-models
(left and right columns, respectively).

The most accurate predictions are obtained for
[Tchl a] and the total DPs concentrations (r2 �
0.91). All predicted values are close to the identity
line (1∶1) across the range of measured variables
(Figs. 6(a)–6(d)), as shown by regression slopes close
to 1 (b > 0.98, Table 3). More importantly, both ap�λ�-
and aphy�λ�-models showed their ability in predicting
the concentrations of the DPs associated with the
micro, nano, and picophytoplankton size classes
(Fig. 6). The predicted values are significantly corre-
lated with the measured values (r2 > 0.52) and the
points are close to the identity line 1∶1 as confirmed
by the regression slopes (b > 0.90, Table 3). Analysis
of the RMSEP and BIAS values reveals that the pre-
diction accuracy is different among the variables but
substantially unchanged between ap�λ�- and aphy�λ�-
models (Table 3). Actually, both these models show
varying prediction ability according to the pigment
concentration. Indeed, the analysis in logarithm

Table 3. Statistical Parameters of Comparison between the HPLC Measured and PLS Pigment Concentrations Predicted by the
ap �λ�- and aphy�λ�-Models Trained with the MedCAL Data Set and Tested on the BOUSSOLE Time Series (n � 484)a

BOUSSOLE Prediction

r2 b a RMSEP BIAS

ap�λ� Models
Tchl a 0.91 0.98 0.06 0.1690 0.0518
DP 0.91 1.03 0.04 0.1383 0.0510
Micro 0.75 0.91 0.06 0.1389 0.0477
Nano 0.66 0.98 0.04 0.1234 0.0378
Pico 0.54 0.94 0.01 0.0460 0.0039

aphy�λ� Models
Tchl a 0.91 0.98 0.06 0.1681 0.0540
DP 0.91 1.02 0.05 0.1393 0.0550
Micro 0.75 0.90 0.04 0.1322 0.0297
Nano 0.65 0.97 0.04 0.1250 0.0355
Pico 0.52 0.93 0.01 0.0470 0.0030
aThe various parameters are, from left to right: determination coefficient (r2), regression slope (b), y-intercept (a), RMSEP

(mgm−3) and systematic error (BIAS, in mgm−3).
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scale of the regressions between predicted and mea-
sured concentrations (Fig. 6) shows a tendency of
the models to underestimate very low (close to zero)
concentrations, especially for [Tchl a], DP, nano, and
pico. An opposite trend is observed for the lowest
predicted fractions of microphytoplankton, which
appear generally overestimated by both the ap�λ�-
(Fig 6(e)) and aphy�λ�- (Fig. 6(f)) models.

These observations suggest that in order to obtain
an accurate retrieval of biomass and size structure of
the algal communities at the BOUSSOLE site, both
ap�λ�- and aphy�λ�-models trained using the Mediter-
ranean data set can be used interchangeably. It must
be kept in mind, however, that only the particle ab-
sorption spectra were directly measured from sea-
water samples while the phytoplankton absorption
spectra were computed by numerical decomposition
[58]. Practically, the numerical decomposition leads
to the estimation of the phytoplankton light absorp-
tion by the removal of an estimated contribution of
the nonalgal particle (NAP) absorption represented
with an exponential model. This exponential charac-
teristic yields a fourth-derivative of NAP absorption
characterized by exponential shape and magnitude
close to zero, so that the fourth-derivative spectral
features of particle and phytoplankton light absorp-
tion are very similar. Therefore, aphy�λ�-models might
show higher performances than observed here if
nonalgal absorption was measured instead of being
estimated. However, the errors observed for pre-
dicted pigment concentrations in the clearest waters
can be related to a reduction in efficiency of the
fourth-derivative tool rather than to uncertainties
in the aphy�λ� estimation as these prediction errors
were observed both for ap�λ� and aphy�λ�. This uncer-
tainty in the pigment prediction may be driven
by a reduced capability of the fourth-derivative
analysis in highlighting the spectral absorption sig-
natures of the DPs associated with a size class when
close to zero. Another possible source of error is
the presence, in the absorption spectrum of the
algal community, of the signatures of non-taxonomic
pigments. These signatures that are also present
in the fourth-derivative absorption spectra, could
actually overlap the absorption bands of DPs
associated with size classes and alter, therefore,
the correlation between the magnitude of the fourth
derivative pigment band and the concentration of
a pigment [60].

C. Retrieval of Phytoplankton Community Structure from
the GLOCAL Data Set

Here we present the models trained using HPLC pig-
ment and absorption data included in the GLOCAL
data set and we discuss their prediction ability using
the BOUSSOLE time series. As the previous results
showed similar performances for the ap�λ�- and
aphy�λ�-models, we focus only on the results obtained
from phytoplankton absorption spectra.

Four PLS components were found to be optimal
for modeling and explaining ∼95% of the variance

Fig. 6. Relationships between the predicted and measured con-
centrations (in mgm−3) of the five variables (Tchl a, DP, Micro,
Nano, and Pico) for the BOUSSOLE data set. A few predicted
negative values are disregarded. Pigment concentrations are
predicted by the PLS models trained using HPLC pigment
measurements and ap�λ� (left column) or aphy�λ� values (right
column) included in the MedCAL data set. The 1∶1 ratio is shown
as a solid line.
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of [Tchl a] and DP (Table 4). A high number of com-
ponents (seven at least) was required to minimize
the prediction error of the three variables (micro,
nano, and pico) associated with the phytoplankton
size classes and to account for more than 80% of the
variance of the data set (Table 4). Similar to the
aphy�λ�-models trained with the MedCAL data set,

the cross-validated predictions (Fig. 7; Table 4)
showed high determination coefficients and regres-
sion slopes, which are, respectively characterized
by values higher than 0.89 and 0.91 (except for
picophytoplankton where they are lower, 0.76
and 0.77).

As for the MedCAL PLS models, the models
trained with the GLOCAL data set and tested on
the BOUSSOLE data also showed a good capability
in predicting the algal biomass and total DPs content
at the BOUSSOLE site (Table 5). The RMSEP and
BIAS values reveal that the accuracy of [Tchl a]
predicted by the GLOCAL PLS-model (Table 5) is
very similar to that observed for the MedCAL one
(Table 3). However, the prediction of DP is slightly
more accurate and less biased when the MedCAL
PLS-model is used instead of the GLOCAL one.
More importantly, the GLOCAL PLS models are
less efficient in retrieving the size structure of the
BOUSSOLE algal communities (Fig. 8) than Med-
CAL PLS-models. The predicted values are actually
correlated with the measured values (r2 > 0.42,
Table 5), but the predictions are systematically over-
estimated for microphytoplankton (Fig. 8(c)) and
underestimated for the nano and picophytoplankton
size classes (Figs. 8(d) and 8(e)).

As the PLS models utilize the spectral signatures
of DPs to retrieve their concentrations, one would ex-
pect that the signature of a pigment does not vary
regionally, so that the PLS could perform similarly
regardless of the location of the data used for the
training. In order to explore this issue, a comparison
between the fourth-derivative absorption spectra
collected at the BOUSSOLE site and those sampled
from the Mediterranean Sea, the Atlantic and Pacific
Oceans has been performed. For each location, we
split the fourth-derivative spectra into four groups ac-
cording to the level of biomass ([Tchl a] in mgm−3:
Tchla ≤ 0.1; 0.1 < Tchla ≤ 0.5; 0.5 < Tchla ≤ 1;
Tchla > 1) and then we compared the respective
averages of fourth-derivative spectra within each
level. As the results are similar for all the biomass lev-
els, only the fourth-derivative absorption spectra for
Tchla ≤ 0.1 mgm−3 and 0.1 < Tchla ≤ 0.5 mgm−3

are shown as examples (Fig. 9).
These comparisons show that the amplitude

and position of the bands of the fourth-derivative

Table 4. PLS Parameters of aphy�λ�-Models Trained Using HPLC Pigment Measurements and Absorption Spectral Values Included in the
GLOCAL Data Set (n � 716), from Left to Right: Number of Components (N), RMSEP (mgm−3), Explained Variance (%) for Independent

[r2X (%)] and Dependent [r2Y (%)] Variablesa

LOO Prediction

aphy�λ� Models N RMSEP r2X (%) r2Y (%) r2 b a

Tchl a 4 0.1145 88.88 94.96 0.94 0.94 0.02
DP 4 0.1025 89.32 95.14 0.94 0.95 0.02
Micro 7 0.0813 93.59 94.73 0.93 0.94 0.01
Nano 8 0.0618 94.85 91.74 0.89 0.91 0.01
Pico 8 0.0306 95.08 80.15 0.76 0.77 0.02
aStatistical parameters for linear regressions between leave-one-out (LOO) predicted and measured pigment concentrations:

determination coefficient (r2), regression slope (b) and y-intercept (a).

Fig. 7. (Color online) Cross-validated predictions (in mgm−3;
n � 716) of the 5 variables ([Tchl a], DP, Micro, Nano, and Pico)
versus measured concentrations. LOO predictions result from
the PLS models trained with HPLC pigment concentrations and
aphy�λ� values included in the GLOCAL data set (see Subsec-
tion 2.D for details). The solid lines indicate the 1∶1 ratio, the
dashed lines show linear regressions between predicted and
measured concentrations.
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absorption peaks for BOUSSOLE are close to those
of Mediterranean samples (Figs. 9(a) and 9(b)),
whereas they reveal differences with those from the
Atlantic and Pacific Oceans [Figs. 9(c)–9(f)]. We
observed a shift of the pigment absorption bands
to higher or lower wavelengths in the Atlantic and
Pacific Oceans, respectively, compared to Mediterra-
nean data: this effect can be essentially attributed
to the displacement of the band center of a given

pigment that can occur between different algal
groups [66], possibly as a result of different inter-
actions between pigments and proteins. More impor-
tantly, we observed a remarkable variation in the
amplitudes of pigment absorption bands between the
Mediterranean data (BOUSSOLE included) those
from other regions (Fig. 9). At the first-order, the
amplitudes of these bands are ruled, for a given sam-
ple, by the concentrations of the various pigments.
However, they are also driven by the variations in
algal size and intracellular pigment concentrations,
which occur even within a narrow chlorophyll range:
for instance, the ultra-oligotrophic waters collected
in the Pacific Ocean (BIOSOPE cruise) are character-
ized by larger algal cells in comparison to other areas
with similar chlorophyll ranges [41], which leads to a
higher package effect and lower absorption bands
per unit of pigment concentration (Fig. 9). In addi-
tion, the level of package effect is influenced by the
incident irradiance, as the photoacclimation state
of algal cells rules their intracellular pigment con-
centration. The variety of locations and sampling
periods actually emphasizes these physiological
variations in the phytoplankton populations, and
consequently yields modifications in the spectral
absorption characteristics. Therefore training the
PLS-models with regional data sets actually reduces
these sources of variability, leading to a more accu-
rate retrieval of the algal size structure.

D. Comparison between HPLC- and PLS-Derived
Variations over the BOUSSOLE Time Series

Temporal variations of chlorophyll a concentra-
tion [Tchl a], the total DPs and the concentrations
of DPs associated with the three phytoplankton
size classes (micro, nano, and picophytoplankton)
as derived from HPLC measurements and from the
MedCAL PLS models (see Table 2) are displayed in
Fig. 10. The model-predicted concentrations of the
different variables well reproduce those obtained
from HPLC pigment measurements over the entire
BOUSSOLE time series.

More importantly, even the short-term and sea-
sonal fluctuations of algal biomass and size classes
as retrieved from the nine-year series of HPLC
pigment measurements are well reproduced by the
MedCAL trained PLS-models (Fig. 11). As ap�λ� and
aphy�λ� PLS models showed similar performances,

Table 5. Statistical Parameters of Comparison between the HPLC Measured and PLS Pigment Concentrations Predicted by the
aphy�λ�-Models Trained with the GLOCAL Data Set and Tested on the BOUSSOLE Time Series (n � 484)a

BOUSSOLE Prediction

aphy�λ� Models r2 b a RMSEP BIAS

Tchl a 0.91 1.01 0.05 0.1669 0.0565
DP 0.93 1.08 0.04 0.1402 0.0660
Micro 0.70 1.18 0.12 0.2353 0.1367
Nano 0.48 0.44 0.04 0.1266 −0.0358
Pico 0.42 0.60 0.01 0.0440 −0.0100
aThe various parameters are, from left to right: determination coefficient (r2), regression slope (b), y-intercept (a), RMSEP

(mgm−3) and systematic error (BIAS, in mgm−3).

Fig. 8. Comparison between the predicted and measured concen-
trations (in mgm−3) of the five variables (Tchl a, DP, Micro, Nano,
and Pico) for the BOUSSOLE data set. A few predicted negative
values are disregarded. Predicted concentrations are obtained
by the PLS models trained using HPLC pigment measurements
and aphy�λ� values included in the GLOCAL data set. The 1∶1 ratio
is shown as a solid line.
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Fig. 11 displays the annual cycle retrieved from
HPLC pigment analysis and from the ap�λ� PLS
models only. The algal biomass shows relatively
marked seasonal variations at the BOUSSOLE site
(Figs. 11(a) and 11(b)). According to previous observa-
tions in the Mediterranean Sea [64,67,68], maximal
[Tchl a] occurs at the end of winter and during spring.
The spring phytoplankton bloom starts generally at
the beginning of March and ends at the end of May
and the maximal [Tchl a] concentrations occur from
mid-March to mid-April. The period from June to
the beginning of October is generally characterized
by very low concentrations of [Tchl a], while a
progressive increase can be observed in wintertime.
The absolute concentrations of DP and pigments
associated with size classes change in accordance with
the algal biomass (Fig. 11). However, some seasonal
divergences between the three size classes can be ob-
served. For example, microphytoplankton is strongly
present at the BOUSSOLE site especially from the
end of winter to the end of spring (Figs. 11(e) and
11(f)). Its maximal occurrence is between mid-March

and mid-April during the spring bloom, then it
decreases to very low concentrations during the rest
of the year. The absolute abundances of nano and
picophytoplankton generally follow the seasonal
trend of the biomass (Fig. 11). After a recurrent maxi-
mal abundance in late winter and early spring, a
significant increase can be observed in summer and
from October to December.

Discrepancies are, however, observed in some
instances between the pigment predictions and
observations. This is particularly the case of nano
and picophytoplankton (Fig. 11). Although the HPLC-
measured seasonal fluctuations of these two algal
classes are fully reproduced by PLS, their concentra-
tions are on several occasions largely overestimated
by the model during winter. Such an overestimation
is also evidenced for microphytoplankton from June
to December (Figs. 11(e) and 11(f)). However, it must
be kept in mind that at this time of the year the c
oncentrations of pigments associated with micro-
phytoplankton are generally close to zero and, there-
fore, as discussed in the previous sections, the PLS

Fig. 9. (Color online) Comparison between fourth-derivatives of phytoplankton absorption spectra sampled at the BOUSSOLE site and
those from: (a), (b) the Mediterranean Sea; (c), (d) the Atlantic Ocean; (e), (f) the Pacific Ocean. For each area, the averages of all samples
with Tchla ≤ 0.1 mgm−3 (left column) and of all samples with 0.1 < Tchla ≤ 0.5 mgm−3 (right column) are reported. nB, nM , nA, and nP

are the number of spectra used to calculate the average spectrum for each region (BOUSSOLE, theMediterranean Sea, the Atlantic Ocean,
and the Pacific Ocean, respectively).
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technique coupled with the fourth-derivative analysis
of absorption spectra shows a lower prediction accu-
racy than for higher concentrations. In spite of this,
the consistency between the seasonal and annual

evolutions of algal biomass and size classes retrieved
from PLS-models and HPLC pigment measurements
emphasizes the potential of the PLSmodels presented
for the retrieval and analysis of the temporal changes

Fig. 10. (Color online) Entire BOUSSOLE time series (January 2003–May 2011) of pigment concentrations as derived from HPLC
pigment measurements (blue line) and from PLS models trained using ap�λ� (red line) or aphy�λ� (green line) values included in the
MedCAL data set. A few predicted negative values are replaced by zero. The plot shows the time series for: (a) [Tchl a], (b) DP, (c) Micro,
(d) Nano, and (e) Pico.
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in the phytoplankton community structure using
particle or phytoplankton light absorption, especially
in absence of HPLC measurements.

4. Conclusions

The retrieval of algal biomass and size structure
from in vivo hyperspectral absorption measurements
can be achieved by application of the multivariate
PLS regression technique. As expected, PLS models
trained using a regional data set, including data
from the Mediterranean Sea only (MedCAL), pro-
vided the best prediction over the BOUSSOLE time
series.

Satisfactory [Tchl a] and DP predictions emerged
also from PLS models trained using a data set as-
sembled from various locations in the world’s oceans
(GLOCAL). However, the retrieval of size classes
by these models was less efficient because of the
larger variability in band position and amplitude
observed between the fourth-derivative spectra of
the Mediterranean communities (BOUSSOLE in-
cluded) in comparison with those of the Atlantic and
Pacific Oceans. In spite of this, we suggest that
future works should test the performances of such
models on data from different locations in the
world’s oceans rather than from a single site. So,
the applicability of GLOCAL PLS models in detecting
phytoplankton size classes could effectively be
evaluated.

The prediction abilities of the ap�λ�- and aphy�λ�-
models are very similar. However, it must be kept
in mind that phytoplankton absorption spectra were
obtained by numerical decomposition [58] in the
present study. This suggests that better perfor-
mances on the retrieval of the algal size structure
might be achieved by PLS if measured phytoplank-
ton absorption spectra (e.g., using chemical pigment
extraction from filters [59]) are used. The use of the
particle absorption measurements has the advan-
tage (compared to the HPLC pigment analysis) that
continuous profiling systems for measuring in situ
hyperspectral absorption are becoming accessible
(e.g., HOBILABS a-sphere andWET Labs ac-s). This,
actually, leads to a faster retrieval of the algal size
structure and to the possibility to detect the phyto-
plankton community structure with a fine vertical
resolution within the water column. Nevertheless,
HPLC pigment analysis remains indispensable for
the validation of results.

In addition, the similar performances of the
PLS technique for particle and phytoplankton
absorption trained-models actually emphasize that
such a technique could be applied to the absorp-
tion coefficients as inverted from AOPs such as the
reflectance or the remote sensing reflectance. Never-
theless, the application of the PLS to IOPs derived
from satellite ocean-color observations might largely
depend on the uncertainties of the retrievals driven
by inaccurate radiometric and atmospheric correc-
tions as error sources [43] or more importantly on
the limited availability of hyperspectral imagery.
In regard to this, hyperspectral sensors have been
recently launched onboard satellites (HICO, see
[69,70]) or are planned in the near future (e.g.,
NASA’s PACE mission, www.decadal.gsfc.nasa.gov).

Fig. 11. (Color online) Annual cycle of [Tchl a], DP, Micro, Nano,
and Pico concentrations, over the period January 2003–May 2011,
as derived from: HPLC pigment measurements (left column) and
ap�λ�-PLS models trained with the MedCAL data set (right
column). A few predicted negative values are replaced by zero.
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The advantage of using hyperspectral data for
increasing the accuracy of the taxonomic and algal
size structure retrievals is intuitive and has been
evidenced in several studies [22,23,71–73]. In addi-
tion, derivative analysis [60] provides a deep evalu-
ation of the smallest variations in the spectral
shape of hyperspectral IOPs and AOPs. Despite a
basic noise that may occur during the measurement
process, small spectral modifications are induced
by the variations in pigment composition and con-
centration, and thus in the taxonomic and size
composition of the algal communities [66,74]. There-
fore, the efforts pursued to improve the retrieval
of IOPs from hyperspectral reflectance data (e.g.,
BIOCAREX and BOUSSOLE projects) actually
increase the chance to achieve a more accurate
retrieval of the phytoplankton community structure
and use the PLS method as an effective tool for
monitoring continuously the changes in the algal
community structure.

This study is a contribution to the BIOCAREX
project, which was funded by the Agence Nationale
de la Recherche (ANR), and to the BOUSSOLE pro-
ject. Multiple organizations funded the BOUSSOLE
project and provided technical and logistic support:
European Space Agency (ESA), Centre National
d’Etudes Spatiales (CNES), Centre National de la
Recherche Scientifique (CNRS), National Aeronau-
tics and Space Administration (NASA), Institut Na-
tional des Sciences de l’Univers (INSU), Université
Pierre et Marie Curie (UPMC), Observatoire Océan-
ologique de Villefranche sur Mer (OOV). The authors
are grateful to the members of the BOUSSOLE
technical staff (http://www.obs‑vlfr.fr/Boussole/html/
people/tech_staff.php) for lab analyses and monthly
cruises development, and to the captains and crews
of the research vessels (Téthys-II, Le Suroît, Antea,
Europe) for ship measurements and sampling. The
training data set was previously acquired in the
frame of several projects funded by the PROOF
French program (EUMELI, EPOPE, FRONTAL,
PROSOPE, POMME) and the LEFE-CYBER French
program (BIOSOPE).
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