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Abstract:  
 
The French oyster production of Crassostrea gigas is based on two sources of spat: wild-caught (WC) 
and hatchery-produced (HP). Massive mortality related to the ostreid herpesvirus type 1 (OsHV-1) has 
affected both sources in France since 2008. We investigated the mortality in juvenile C. gigas due to 
the horizontal transmission of OsHV-1 within (separated condition) and between (mixed condition) the 
two spat sources in three environments from April to June 2010. In the separated condition, no 
mortality was observed in the HP batches, while the WC batches experienced moderate to high 
mortality (40–80 %). In contrast, the WC and HP batches experienced high mortality in all tested 
environments for the mixed condition. At the beginning of the trial, the HP batches were all negative 
for OsHV-1 DNA detection by real-time PCR, while the WC batches were all positive for OsHV-1 DNA 
detection by real-time PCR, even though the percentage of virus DNA-positive oysters and viral load 
were low. During the experiment, all batches that exhibited mortality were positive for OsHV-1 with a 
high viral load, while OsHV-1 was never detected for the HP batches of the separated condition. 
Together, our results demonstrated that OsHV-1 was horizontally transmitted from the WC oysters to 
the HP oysters. Our study is the first to indicate that the mortality related to OsHV-1 in HP oysters can 
be avoided using ponds or tanks. However, these oysters were always protected from OsHV-1, and 
HP oysters could also experience mortality and spread the disease similar to the WC oysters if such 
care is not used. Finally, the persistence of OsHV-1 at a sub-clinical level in certain oysters supports 
the hypothesis that the virus can be reactivated and cause viral replication. The use of the two spat 
sources is discussed to better understand the spread of the disease among oyster stocks. 
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The production of French Crassostrea gigas oysters is based on two sources of spat: wild-

caught spat, especially from Marennes-Oléron Bay and Arcachon Bay, which are both located 

along the French Atlantic coast, and hatchery-produced spat from commercial hatcheries in 

France. The amount of hatchery-produced spat has increased regularly each year, reaching nearly 

3 billion spat units in 2012. The increasing demand for hatchery-produced oysters is primarily 

driven by triploids. Moreover, the amount of wild-caught spat varies each year depending on 

disease and environmental conditions, as larvae and juveniles are highly susceptible to the 

Ostreid Herpesvirus type 1 (OsHV-1) (Le Deuff et al. 1994; Le Deuff et al. 1996; Renault et al. 

2000; Dégremont 2011). Since 2008, disease investigations have revealed the involvement of 

OsHV-1 in numerous cases of recurrent and massive mortality that have been reported in juvenile 

C. gigas in Europe, Australia, New Zealand and on the western coast of the USA (EFSA 2010; 

Segarra et al. 2010; Cameron and Crane, 2011; Garcia et al. 2011; Burge and Friedman 2012; 

Lynch et al. 2012; Martenot et al. 2012; Peeler et al. 2012; Pernet et al. 2012; Roque et al. 2012; 

Jenkins et al. 2013; Paul-Pont et al. 2013). Similar mortality is also expected in larvae in the wild 

but has not yet been documented. To address the massive mortality related to OsHV-1, two 

strategies have been developed to supply more spat to the French oyster industry. The first has 

been initiated by hatcheries that develop a breeding program for OsHV-1-resistance in C. gigas 

oysters, because this trait could be selected (Dégremont et al. 2010b; Dégremont 2011). The 

second simply increases the number of spat produced by the commercial hatcheries or those 

caught in the wild by oyster farmers who have increased the capacities for spat collection. The 
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latter strategy results in more wild and unselected spat being caught, and this spat could 

potentially be infected with OsHV-1. 
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The transfer of oysters between the growing areas has been stipulated as a major source of 

disease transmission in France and throughout Europe. To better understand the oyster 

production cycle in France, note that wild-caught spat settle on various substrates during the 

summer, primarily along the Atlantic coasts. They are then detached the following winter and 

spring and sold to the oyster farmers. This process involves numerous oyster transfers as the spat 

are moved between growing areas (Goulletquer and Le Moine 2002). Meanwhile, hatchery-

produced oysters are available throughout the year, and most of them are maintained either in a 

nursery or in field conditions before they are sold and then transferred between growing areas. 

Spat from both sources are then capable of spreading pathogens if they are grown in a 

contaminated area. Oysters can be produced in batches to prevent their exposure to the mortality 

risk factors in a controlled environment in the hatchery and nursery, as described in Dégremont et 

al. (2010b) and Dégremont (2011). These systems utilize UV filtration or seawater that has been 

pumped away from the oyster leases and stored for a certain amount of time in ponds. Lastly, 

transfers continue to occur throughout the life of the oysters as stocks are routinely moved within 

the local field grow-out sites, with sites dedicated to spat, juveniles or adults, as well as among 

coastal areas with numerous transfers of adults from Brittany or Normandy to the Charentais 

Sounds and Marennes-Oléron Bay, where most of the oysters are grown in ponds before being 

sold.  

Every year since 2008, massive mortality outbreaks related to OsHV-1 have been 

observed in C. gigas spat. The peak of the disease usually occurs as soon as the seawater 

temperature exceeds 16°C, and other mortality events related to OsHV-1 may still be observed in 
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naïve juveniles when they are transferred to a contaminated area (Dégremont 2013). Therefore, 

the disease reoccurs the next spring in the new generation of hatchery-produced and wild-caught 

spat, regardless of the environmental conditions during the fall and winter, meaning that OsHV-1 

remains persistent in asymptomatic C. gigas or other organisms, as also suggested by Arzul et al. 

(2002) and Peeler et al. (2012). 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

Two approaches were developed to better characterize the risk for the natural transmission 

of OsHV-1 among oyster stocks cultured in France: i) investigating the horizontal transmission of 

OsHV-1 between naïve hatchery-produced oysters and adult oysters that survive a mortality 

outbreak caused by the disease, as described in Dégremont et al. (2013), and ii) investigating the 

transmission between wild-caught and naïve hatchery-produced spat. This study reports the 

second approach. The primary objective of this study is to investigate the natural horizontal 

transmission of OsHV-1 throughout cohabitation trials within and between the two sources of 

spat using several batches per source in controlled conditions (laboratory) and in uncontrolled 

environments (ponds and grow-out field).   

 

MATERIALS AND METHODS 

 

Oyster batches 

Two batches of wild-caught spat were purchased from oyster farmers in March 2010. One 

batch was from the Marennes-Oléron Bay, hereafter referred to as WC1, and the second one was 

from the Arcachon Bay, hereafter referred to as WC2. In France, these two bays account for 
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approximately 80% of the wild-caught production. The two batches were 9 months old, and no 

data were available with regard to their life history, specifically their cumulative mortality at 

reception. 
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Three hatchery-produced batches were used, including two diploids, hereafter referred to 

as HP1 and HP2, and one triploid, hereafter referred to as HP3. All of the HP batches were 

spawned at the Ifremer hatchery in La Tremblade in August 2009. For the diploid batches, the 

parents were sampled in the Marennes-Oléron Bay, and 6 and 7 males were crossed with 19 and 

21 females to produce HP1 and HP2, respectively. For the triploid batch, the spermatozoa 

produced by 14 tetraploid males from the broodstock maintained at the Ifremer hatchery and used 

by the French commercial hatcheries to produce triploids, fertilized oocytes from the same 19 

females used for HP1. The larvae were grown in 30-L tanks for 2-3 weeks. Competent larvae for 

metamorphosis were then settled in 120-L tanks using cultch. When the spat reached 2 mm, they 

were transferred to the Ifremer nursery in Bouin for intensive growth using raw seawater 

enriched with Skeletonema costatum. Lastly, the three hatchery-produced batches were 

transferred to La Tremblade for the survey, and any abnormal mortality was recorded from 

spawning to the beginning of the survey. At the beginning of the experiment, the individual 

weight of the oysters was similar among the five batches and was approximately 1 g.  

 

Ploidy analyses 

The DNA ploidy level of the juveniles was determined using flow cytometry (FC) with 

DAPI (4,6-Diamidino-2-phenylindole) staining. For each batch, 100 spat were randomly sampled 

and individually analyzed. The nuclei were extracted from small pieces (1 mm2) of gills, mixed 
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with 2 µl of trout red blood cells (TRBC, Coulter DNA Reference Calibrator, 629972) as an 

internal standard solution, and stained with DAPI at a concentration of 2 µg/ml in a 2-ml final 

solution. FC was performed on a PA II flow cytometer (Partec) with the following conditions: 

excitation-100 W mercury lamp, UG 1 (290–410 nm, 3 mm), chromatic beam splitter (TK 420), 

emission-beam splitter (TK 420, TK 560), and barrier filter (CG 455) for the DAPI signals. The 

peak positions and the coefficients of variation (CV) were calculated automatically (PARTEC 

PAS II software package). At least 2000 nuclei were analyzed from each sample. The ratio 

between the fluorescence channels of the nuclei and the internal peaks is characteristic of the 

DNA ploidy level, which is equal to 0.4 for diploids and 0.6 for triploids. 
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Experimental design 

The experiment was conducted from April 1st 2010 to June 30th 2010. Three sites in La 

Tremblade, all located within an area of 300 meters in diameter (N 45°47’55”; W 1°9’4”), were 

used for the survey: the Ifremer’s laboratory, the Ifremer’s ponds, and the field (Fig. 1). At each 

site, two temperature probes (Progesplus, 59780 Willems, France) recorded the seawater 

temperature every 30 minutes. 

In the field, three bags per batch of 200 oysters each were attached to iron racks, which is 

the cultural practice used by most French oyster farmers (Table 1). Numerous oyster leases 

surround our experimental site. 

In the ponds, each batch was grown alone in one pond with three bags containing 200 

oysters each, which corresponds to the separated condition, i.e. the cohabitation trial among 

oysters within the batch. Another pond received three hatchery-produced batches and the wild-
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caught batch WC1, which corresponds to the mixed condition, i.e. the cohabitation trial between 

batches. Unfortunately, the WC2 batch could not be tested in the mixed condition due to the lack 

of ponds. Three bags were used for the mixed condition, each containing four smaller bags of 50 

oysters per batch, to obtain a total of 600 oysters in the pond as for the separated condition (Table 

1). The ponds were naturally alimented by seawater during the spring tides when the tidal 

coefficient exceeds 85. The average depth of each pond was approximately 70 cm for a volume 

of 250 m3. 
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The WC2 batch was not tested in the laboratory due to the lack of space. Three 50-L tanks 

were used per batch for the separated condition, each containing 200 oysters. For the mixed 

condition, three tanks containing 50 oysters per batch were used for the hatchery-produced 

batches and the WC1 batch, as in the pond condition. Flow-through seawater enriched with 

Skeletonema costatum was renewed hourly and constantly filtered and UV-treated to protect the 

oysters from the external mortality risks factors, particularly OsHV-1. All tanks were carefully 

cleaned twice per week. 

Lastly, extreme care was used to avoid accidental contamination among the tanks or 

among the ponds by changing gloves or waders between each tank or pond. Unfortunately, one 

tank containing HP2 oysters was contaminated with the seawater of another tank containing WC1 

oysters on April 30th, while abnormal mortality was recorded for the WC1 oysters. The HP2 

oysters in this tank exhibited high mortality a few days later (90%) and were excluded from the 

studies. 

 

Mortality survey 
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Dead and live oysters were counted once per week in the laboratory and pond conditions 

and every two weeks in the field condition until the end of the experiment on June 30th. Dead 

oysters were not removed, except for those sampled for the disease diagnoses. 
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OsHV-1 DNA detection and quantification 

Since 2008, the disease diagnoses revealed that most of the mortality outbreaks reported 

in spat C. gigas are due to OsHV-1, and no other relevant pathogens were found (Guichard et al. 

2011). Although Vibrio splendidus could be associated with mortality events in C. gigas (Lacoste 

et al. 2001; Le Roux et al. 2002), routine tools to discriminate virulent from non-virulent strains 

of V. splendidus are lacking. Furthermore, V. splendidus is more likely to be ubiquitous because 

correlations between the mortality and the presence or the bacterial load of V. splendidus were 

weak, negative and not significant in contrast to OsHV-1 during a mortality outbreak in juvenile 

C. gigas (Dégremont, 2011). Therefore, this research only examined OsHV-1 DNA. 

At the beginning of the experiment, 50 oysters per batch were sampled for OsHV-1 

detection and quantification. Additionally, 5 moribund oysters and 12 live oysters per batch, per 

site, and per condition were sampled during the mortality peaks and at the end of the experiment, 

respectively. 

The OsHV-1 DNA was detected and quantified in each sampled oyster using a highly 

sensitive real-time PCR technique developed by Pépin et al. (2008). Briefly, DNA was extracted 

from 25 mg of fresh oyster tissue (mantle) using the QiagenQiamp® tissue mini kit, and 20 ng of 

DNA was used for the real-time PCR (Stratagene) with the following conditions: initial 

denaturation for 10 min at 95 °C, followed by 40 cycles of 95 °C for 30 s, 60 °C for 1 min, and 
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72 °C for 45 s. The primer pairs used to detect the viral DNA were described in Webb et al. 

(2007) for targeting the OsHV-1 DNA polymerase sequence. All results were expressed as the 

viral DNA copy number per mg of oyster tissue. 
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Statistical analyses 

The cumulative mortality on June 30th was analyzed per site using the GENMOD 

procedure SAS® software version 9 with a logit transformation and a binomial distribution. The 

logistic regression models used were the following:   

Logit (Yij) = log (Yij/(1-Yij)) = µ + batch i + condition j + batch i x condition j 

where Yij is the probability of an unfavorable response (dead for the mortality) in the laboratory 

or the pond for the ith batch in the jth condition (mixed and separated), and µ is the intercept. 

Logit (Yi) = log (Yi/(1-Yi)) = µ + batch i  

where Yi is the probability of an unfavorable response in the field for the ith batch, and µ is the 

intercept. 

Multiple comparisons were conducted using the least squares means statement and the SLICE 

option, which allows for the testing of the condition factor for each batch or the batch factor for 

each condition when a significant interaction is found between both factors. Thus, the statistical 

test is more powerful than rerunning the analysis within the batch because the degrees of freedom 

are not reduced (Littell et al. 2002). 
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RESULTS 214 
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DNA ploidy determination 

FC measurements of the DNA ploidy level showed that all batches used in this study were 

effectively of the expected DNA ploidy level. All wild-caught spat (WC1 and WC2), as well as 

all spat from HP1 and HP2 were of the expected normal diploid ploidy levels. This characteristic 

was evidenced by the single peak and a ratio of fluorescence of 0.4, which is typical of diploid 

nuclei. Similarly, all HP3 spat were triploid, as evidenced by the single triploid peak and a ratio 

of fluorescence of 0.6. 

 

Seawater temperature 

The seawater temperatures at the three sites are shown in Fig. 2. The temperature ranged 

from 11 to 15°C at the beginning of the experiment and reached 21 to 27°C at the end of June. 

The seawater in the ponds was highly variable on April 22nd or May 4th due to the renewal of the 

seawater, which only occurs during the spring tide, combined with the weather conditions due to 

the small volume of the pond.  

  

Mortality 

In the field, batches HP2 and WC1 were the first to exhibit mortality at a low level 

(<30%) in May. During the first two weeks of June, massive mortality was reported for all 
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batches (Fig. 3). The mean mortality (± standard deviation) on June 30th was 67 ± 14%, ranging 

from 52 to 88% (Table 2). A significant difference in the mortality among the batches was found 

(P < 0.01), with the lowest mortality for the WC batches (54%), intermediate mortality for HP1 

and HP3 (70%), and the highest mortality for HP2 (88%). 
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 In the pond, no abnormal mortality was reported for the three HP batches throughout the 

experiment, while high mortality (39-82%) occurred for the two WC batches for the separated 

condition, primarily between April 29th and May 12th (Fig. 4a and Table 2). A major mortality 

outbreak (94%) was also observed during this period for all batches in the mixed condition (Fig. 

4b). A significant interaction was found between the batches and the conditions (P = 0.02). At the 

batch level, the mortality was significantly higher for the mixed condition than for the separated 

condition for all batches except for WC1 (Table 2). At the condition level, a significant difference 

of mortality among the batches was only found for the separated condition (P < 0.01), with a 

lower mortality for the HP batches. The mixed condition did not show significant differences (P 

= 0.67).  

 Similarly, same results were found in the laboratory. Mortality was primarily observed 

during the first two weeks of May, but it only occurred for all replicates containing the WC1 for 

the separated condition (Fig. 5a). For the mixed condition and the same period, only one tank 

exhibited high mortality (81%), ranging from 57% for WC1 to 100% for HP2 (Fig. 5b). Because 

mortality was not observed for the two tanks in the mixed condition, the mean mortality for this 

condition dropped to 27%, and the standard deviation within batches was high. The batches and 

the condition showed a significant interaction (P < 0.0001). At the batch level, the mortality was 

always significantly higher in the mixed condition than in the separated condition except for the 

WC1. At the condition level, the mortality significantly differed among the batches of both 
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conditions, with a higher mortality for the WC1 batch in the separated condition and lower 

mortality for the WC1 batch in the mixed condition (P < 0.0001) (Table 2). 
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OsHV-1 DNA detection and quantification 

At deployment, OsHV-1 DNA was not detected in any of the 150 HP oysters screened on 

April 1st, while 2% and 14% of the WC2 and WC1 oysters, respectively, were found to be 

positive but contain a low viral load (< 10+4 DNA copy per mg of fresh tissue)(Table 3). 

Irrespective of the site, condition or batch, all oysters sampled that were moribund during 

the mortality event were positive for a very high viral load, exceeding 10+6 DNA copies per mg 

of fresh oyster tissue. 

At the endpoint, OsHV-1 was not detected in any of the HP batches for the separated 

condition in the laboratory or the pond on June 30th (Table 3). OsHV-1 was detected at a low 

viral load in 8% of the WC2 oysters in the pond as well as in 33% of the HP3 and 9% of the 

WC1 in the mixed condition in the laboratory. Lastly, a low level of OsHV-1 (< 10+4 DNA copies 

per mg of fresh tissue) was also detected approximately 25% of the oysters in all batches from the 

field on June 30th.  

 

DISCUSSION 

The two types of spats (wild versus hatchery) used in this work were assumed to be 

representative of their respective origin in France. WC1 and WC2 originated from the Arcachon 

and Marennes-Oléron Bays, respectively, which account for 80% of the annual wild-caught spat 
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production in France on average. Additionally, the C. gigas populations in France were not 

genetically differentiated (Rohfritsch et al., 2013). Alternatively, diploid HP batches were 

produced using genitors sampled in the Marennes-Oléron Bay, while triploids were produced 

using tetraploid males from the same broodstock used by the French commercial hatcheries. The 

incidence and the kinetics of the mortality, combined with the detection of high viral loads (> 

10+6 DNA copies per mg) in moribund oysters, strongly support that OsHV-1 was the main cause 

of the mortality, as reported in previous studies (Pépin et al. 2008; Sauvage et al. 2009; Oden et 

al. 2011; Dégremont et al. 2013). A high variation in mortality and in resistance to OsHV-1 is 

common among C. gigas batches, as evidenced by Sauvage et al. (2009), Dégremont et al. 

(2010c) and Dégremont (2011). This variation explains the variation in mortality observed 

among the three HP batches in the present study in the field or in the mixed condition in the 

laboratory (Figs. 3 and 5b). The main objective of this study was not to compare the HP batches, 

but to study the horizontal transmission of OsHV-1 throughout cohabitation trials within batches 

and between WC and HP batches. 
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Low and chronic mortality was observed in May for WC1 and HP2 in the field (Fig. 3). 

This result could be easily explained by the activation of the replication of OsHV-1, which 

started as soon as the temperature reached approximately 14 to 16°C, combined with a relatively 

higher susceptibility of HP2 to viral infection compared to the other HP batches. The kinetics of 

the mortality related to OsHV-1 according to the seawater temperature pattern agrees with the 

results found in the cohabitation trial regarding transmission between infected adults and naïve 

juvenile C. gigas (Dégremont et al. 2013). For instance, acute mortality was observed 10 to 12 

days later when the temperature reached and remained above 16°C, regardless of the site where 

the oysters were grown (Fig. 2), supporting the important role of the seawater temperature in 
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mortality related to OsHV-1 (Garcia et al. 2011). This value of the seawater temperature is in 

agreement with several studies that clearly showed the lower threshold of 16°C, beyond which 

disease transmission and mortality related to OsHV-1 occur (Dégremont 2013; Dégremont et al. 

2013; Petton et al. 2013). The mortality event lasted over two weeks, and no other mortality 

event was reported until the end of the experiment (Figs. 3, 4 and 5), which is characteristic of the 

OsHV-1 mortality pattern. 
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 The major findings of this study concern the role of the origin of the batch, i.e. hatchery-

produced and wild-caught spat or contaminated and disease-free animals, on the transmission of 

the disease, as well as the possibility to grow oysters without mortality due to OsHV-1. At the 

beginning of the experiment, OsHV-1 was not detected in any of the 150 oysters screened among 

the three HP batches (diploids and triploids), which agrees with all of our OsHV-1 screening on 

HP oysters performed since 2009 (more than a 1000 individuals screened) (Dégremont 2011 & 

2013; Dégremont et al. 2013). In contrast, both WC batches were found to be infected with 

OsHV-1, even though the prevalence and viral load were low. This finding indicates that WC 

oysters were infected in their respective native areas, where mortality related to OsHV-1 usually 

occurs. Furthermore, this finding revealed a latent stage of the virus, as recently observed in 

adults (Dundon et al. 2011; Dégremont et al. 2013). With regard to the mortality events, no 

mortality was observed throughout the experiment when a HP batch was grown alone in a tank or 

in a pond (Figs 4a and 5a), suggesting that HP spat could be free of OsHV-1 and subsequently 

mortality-free if grown in a safe environment. However, such culture areas are limited due to the 

range expansion of the virus throughout Europe, the USA, New Zealand and Australia (EFSA 

2010; Cameron and Crane, 2011; Garcia et al. 2011; Burge and Friedman 2012; Jenkins et al. 

2013; Paul-Pont et al. 2013). This, the feasibility of this approach is questionable. Moreover, the 
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Marennes-Oléron Bay is characterized by several thousand ponds, which could be used for this 

purpose. In contrast, WC batches always exhibited mortality, even when they were grown alone 

in a tank or in a pond. Additionally, both origins exhibited mortality when a WC batch and HP 

batches were grown together, although this phenomenon was only observed for one of the three 

tanks in the laboratory (Figs. 4b and 5b).  The small number of WC oysters used for this 

condition combined with the low percentage of OsHV-1 infected animals at reception of the 

batch could explain this result. Together, our results suggested that OsHV-1 was horizontally 

transmitted from the WC batch to the HP batches in the mixed conditions in the laboratory and 

pond, and this transmission occurred quickly because the mortality began at nearly the same time 

in the various groups tested. This report is the first of such a transmission from naturally infected 

wild-caught spat to naïve hatchery-produced spat. Our study provides new information on the 

spread of the disease; to date, the horizontal transmission of OsHV-1 has only been demonstrated 

from unselected and asymptomatic adults to naïve spat (Dégremont et al. 2013), and all other 

studies have described the transmission of a homogenate prepared from infected oysters to larvae 

(Le Deuff et al. 1994; Burge and Friedman 2012) or between healthy and experimentally infected 

oysters under cohabitation conditions (Schikorski et al. 2011). 
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 The mortality was higher for the WC1 batch at the mixed condition than for the separated 

conditions in the pond and the laboratory, as well as for all batches in the mixed condition in the 

pond and the laboratory in comparison to the field (Table 2). This finding confirmed that the 

mortality related to OsHV-1 is more likely and intense in confinement than in an open 

environment, as demonstrated by Garcia et al. (2011). Thus, the concentration of OsHV-1 

particles could have been higher due to the small volume of the tank or the pond combined with 
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the flow-through system, exceeding the threshold of resistance for some oysters in this condition 

as shown by Dégremont et al. (2013). 
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OsHV-1 was detected in both WC batches from April 2010. Similar reports have been 

presented for numerous wild-caught batches (SMEL 2012). This finding suggests that the WC 

batches were infected with OsHV-1 either in Marennes-Oléron Bay or Arcachon Bay during the 

summer and fall of 2009. In both sites, the spawning season occurred during the summer 2009, 

and the resulting larvae and spat could have been exposed to OsHV-1 particles and might have 

been infected. Depending on the intensity of the viral challenge, a part of the cohorts might have 

died due to OsHV-1 during the summer and fall of 2009, when the seawater temperature 

exceeded 16°C. Another group may have survived and remained asymptomatic carriers of the 

virus, and a last group might not have been in contact with the virus. Furthermore, our results 

showed a higher mortality for the hatchery-produced batches than the wild-caught batches in the 

field, as well as for the mixed condition in the pond and laboratory (Table 2). Even if a strong 

genetic basis for mortality in juvenile C. gigas exists and the selected oysters were also resistant 

to OsHV-1 (Dégremont et al. 2010a; Dégremont 2011), oysters of the WC batches are more 

likely to be survivors of the primary infection in 2009. Thus, the WC and HP batches would 

likely have exhibited comparable cumulative mortalities. To strengthen this hypothesis, 

Dégremont et al. (2010b) showed that the survival rate of survivors was higher than in oysters 

protected from the mortality risk factors.  

The use of specific pathogen-free animals, such as the three HP batches for which OsHV-

1 was not detected at the beginning of the experiment, was advantageous over the use of wild-

caught spat for growth in an area where the pathogen has not yet been introduced. Nevertheless, 

the utilization of such animals in areas where the disease is present usually leads to massive 
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mortality, such as that reported in the present study, but also in other oyster species, as 

demonstrated for C. virginica with Perkinsus marinus and C. ariakensis with Bonamia ostreae 

(Albright et al. 2007; Carnegie et al. 2008). Additionally, naïve WC spat would also benefit from 

an OsHV-1-free environment; not just naïve HP spat, but all WC spat should be considered as 

infected with OsHV-1, because the disease was detected in all areas where these animals are 

caught in the wild in France. Extreme care should then be taken with these animals to prevent the 

introduction of OsHV-1 into national and international pathogen-free areas, such as hatcheries, 

nurseries, ponds, or open sites. 
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Moreover, management strategies exist to limit the spread of the disease, its intensity, and 

the reservoir host. The mortality could be significantly reduced via selective breeding to improve 

the OsHV-1 resistance, decrease the oyster mortality, reduce the reservoir host, and limit 

horizontal transmission (Dégremont et al. 2010a; Dégremont 2011; Dégremont et al. 2013). This 

approach can be easily implemented for hatchery production, as it is now broadly used by some 

French commercial hatcheries. Establishing a control strategy for wild-caught spat remains more 

difficult because the genetic background includes cultured and wild diploid oyster populations. 

The development of a restoration program is one possibility that could help to introduce genetic 

resistance in these populations via the production of numerous disease-resistant strains in 

hatcheries, which would then be introduced in the field. Of course, such approaches require 

particular considerations, such as (1) a massive introduction of disease-resistant oysters in 

comparison to wild and cultured stocks at least several years in a row, (2) massive mortality due 

to OsHV-1 each year to obtain a constant selective pressure on the oyster stocks, (3) the 

significant reduction of the gene flow through the transfer of unselected oysters into the 

environment and (4) the identification of the spatial and temporal variability of disease refuges, 
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which would undeniably impact the development of resistance, as demonstrated in C. virginica 

for MSX and Dermo (Ford et al. 2012). If these issues are not addressed, restoration programs 

will have a limited impact, as demonstrated for C. virginica in the Yeocomico River (Carlsson et 

al. 2008).   
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CONCLUSIONS 

The results of our study indicated that French wild-caught spat are infected with OsHV-1 and 

remain asymptomatic carriers until the environmental conditions favor the disease. The use of 

such oysters allows the spread of the disease in disease-free areas or disease-free animals, 

especially for unselected oysters. Unselected hatchery-produced spat could be protected from the 

mortality due to OsHV-1 when they are grown separate from infected stock, and disease-free 

water is used. Indeed, not using UV or using water pumped during a major mortality event in the 

field could contaminate the HP oysters with OsHV-1. Importantly, the HP oysters were always 

protected from the mortality risk factor in the present study, and care must be taken when oyster 

farmers use such animals, as they may have been grown in an area where OsHV-1 is present. 
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535 

Fig. 1. Location of the three sites (F field, P ponds, L laboratory) on the Seudre River, Marennes-
Oléron Bay, France  
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Fig. 2. Seawater temperature (°C) at the three sites throughout the experiment. The arrows 

indicate the onset of a significant mortality event. 
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Fig. 3. Kinetics of the mortality for the three hatchery-produced batches (HP1 to HP3, solid lines) 

and the two wild-caught batches (WC1 and WC2, dashed lines) in the field from April to June 

2010.  
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Fig. 4. Kinetics of the mortality for the three hatchery-produced batches (HP1 to HP3, solid lines) 

and the two wild-caught batches (WC1 and WC2, dashed lines) in the pond from April to June 

2010 for the separated (a) and mixed conditions (b).  
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Fig. 5. Kinetics of the mortality for the three hatchery-produced batches (HP1 to HP3, solid lines) 

and the wild-caught batch WC1 (dashed line) in the laboratory from April to June 2010 for the 
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separated (a) and mixed conditions (b). For the latter, the graph only shows the kinetics of the 

mortality in the tank where mortality was observed. 
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Table 1. Summary of the batches and conditions tested 558 

 

Site Conditiona Batch tested 

Number of 

replicates 

per batch 

Number of 

oysters per 

replicate 

 
Fieldb Mixed 

HP1, HP2, HP3, 

WC1, WC2 
3 bags 200 

      

 
Pond Separated  

HP1, HP2, HP3, 

WC1, WC2 
3 bags  200 

 
 Mixed  

HP1, HP2, HP3, 

WC1 
3 bags  50 

      

 
Laboratory Separated  

HP1, HP2, HP3, 

WC1 
3 tanks 200 

 
 Mixed  

HP1, HP2, HP3, 

WC1 
3 tanks 50 

a “Separated” indicates that only one batch was placed in the pond or tank, i.e. within-batch 

cohabitation trial, while “mixed” means that all batches were placed in the pond or tank, i.e. 

between-batches cohabitation trials.  
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b the separated condition was not tested because the batches could not be physically separated in 

the field condition. 
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Table 2. Cumulative mortality (%) (mean and standard deviation among the replicates) of each 

batch in each condition and each site on June 30th 

Condition Batch Laboratorya Pond Field 

Mixed HP1 27 ± 46 95 ± 9 71 ± 4 

 HP2 33 ± 26 100 ± 0 88 ± 9 

 HP3 26 ± 43 98 ± 2 68 ± 23 

 WC1 19 ± 32 81 ± 16 56 ± 4 

 WC2   52 ± 7 

     

Separated HP1 0 ± 0 1 ± 1  

 HP2 1 ± 1 3 ± 2  

 HP3 1 ± 1 2 ± 1  

 WC1 40 ± 2 39 ± 40  

 WC2  82 ± 1  

a To obtain the mortality rates for the tank representing the mixed condition for which a mortality 

outbreak was observed, the mortality rates should be multiplied by 3. 
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Table 3. Number of detected positive for OsHV-1 screening in living animals for each batch in 

each condition and each site on June 30th 

   Endpoint 

Condition Batch at deployment Laboratorya Pond Field 

Mixed HP1 0/50 0/12-0/12 0/5 3/12 

 HP2 0/50 0/12-ad ad 4/12 

 HP3 0/50 0/12-2/6 0/1 7/12 

 WC1 7/50 0/12-1/12 0/12 1/12 

 WC2 1/50   2/12 

      

Separated HP1  0/12 0/12  

 HP2  0/12 0/12  

 HP3  0/12 0/12  

 WC1  0/12 0/12  

 WC2   1/12  

a first number is given for the replicates without mortality, and the second numbers for the 

replicate with mortality. 
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574   ad: all dead. 




