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Abstract

Résumé

Pontual H. de, P. Prouzet, Aquat. Living Resour., 1988, 1, 17-27.

The use of an image analysis microsystem with a specially developed soltware enabled scale image
processing, outline extraction and computation of features which are not available in the conventional
approach of scale analysis. Those parameters (shape factors, moment invariants and elliptic Fourier
cocllicients) were introduced into a discriminant analysis process to test their usefulness in stock
identification. The method was applicd to European stocks originating from Norway (Etne river) and
France (Elorn river). The low misclassification rate obtained indicates that this approach is particularly
promising.

Keywords : Atlantic salmon, scale, numerical analysis, stock identification.

Analyse numérique de la morphologie des écailles pour la discrimination de stocks de saumon atlantique.

L’utilisation d’'un microsystéme d’analyse d'image et d’un logiciel développé pour cette application
permet I'acquisition et le traitement d'images d'écailles, 'extraction de leur contour et le calcul
d’attributs non accessibles par les méthodes classiques d’analyse scalimétrique. Le pouvoir discriminant
de ces attributs (facteurs de forme, moments invariants, cocfficicnts elliptiques de Fourier) est ensuite
évalué. La méthode est appliquée a deux stocks originaires de riviéres européennes, I'Etne (Norvége)
ct I'Elorn (France). Le faible taux d'erreur de classification obtenu permet de conclure a I'intérét de
cette approche.

Mots-clés : Saumon atlantique, écaille, analyse numérique, identification de stocks.

INTRODUCTION

Atlantic salmon (Salmo salar L.) are known to be

A major problem in salmon management is that,
as shown by results from tagging and recovery experi-
ments, different stocks intermingle on feeding grounds

homing fish. They spend 1 to 5 years in the sea
before returning to the native river for spawning. This
geographical isolation results in the subdivision of the
specics into a great number of discrete breeding sub-
units or stocks as defined by Ricker (1972).
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(Went, 1973; Jensen, 1980; Ruggles and Ritter, 1980;
Swain, 1980). Fisherics exploiting stocks characterized
by different reproduction potentials may scriously
deplete or even exterminate the less productive com-
ponents if a suitable fishing rate is applicd to the
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morc productive ones (Ricker, 1958). Identification of
the contributing units and estimation of their relative
proportions is thus a prerequisite to assess the effects
of high sea fisheries on homewater stocks. Though a
wide variety of techniques has been examined (Isshen
et al., 1981), scale characterization based on counting
or measurement of growth rings is most frequently
used (Bilton and Messinger, 1975; Lear and Misra,
1978; Reddin and Misra, 1985). Nevertheless, it pre-
sents some disadvantages and limitations. It may be
sensitive to the scale reader’s interpretation (Bilton et
al., 1983) and though it was shown to be rather
effective in continental classification (Lear and Sande-
man, 1980; Reddin and Burfitt, 1983; Reddin and
Short, 1986), the discrete nature and narrow range of
data used may be insufficient for differentiating
between specific stocks (Shearer, 1983; Sych, 1983).
Jarvis et al. (1978) recently proposcd a new approach
based on scale information. To discriminate between
stocks of walleyes (Stizostedion vitreum vitreum Mit-
chill), they quantified the planar shape of scales by
unrolling the digitized scale outlines and describing
the resultant functions by Fourier series. Different
investigations have sincc been conducted using this
technique on Lake white fish (Coregonus
clupeaformis L.), (Casselman et al., 1981) and walleyes
(Riley and Carline, 1982). A preliminary test on
Atlantic salmon stocks (Pontual et al., 1983) sug-
gested that the technique should be improved to
obtain more reliable results. Actually, the Jarvis’
approach is limited. It is semi-automatic since hand
digitization of the outlinec is required. The Fourier
analysis algorithm used may encounter some dilficul-
tics limiting its use to simple forms. Finally, shape
features such as shape factors and moment invariants
commonly used to quantify shape occurring in biol-
ogy were left out. Thus, the shape analysis system
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used in the present work was designed to overcome
these limitations.

MATERIAL AND METHOD

Data collection

Since they are homing fish, individuals returning to
their native river can be used for stock identification
purposes. The samples thus consisted of scales from
two sea-winter salmon collected in homewaters in
1982 from Etne River, Norway (32 specimens) and
Elorn River, France (30 specimens). In order to con-
trol the within fish variability in scale shape, 3 scales
per fish were selected (eroded and regenerated scales
were systcmatically discarded). Samples were taken
form the standard arca, namely: “on the left hand
side of the first 3-6 rows above the lateral line and
on a line extending from the anterior edge of the anal
fin to the posterior edge of the dorsal fin” (Anon.,
1984). Scales were mounted between two slides after
cleaning with sodium peroxyde.

Image analysis micro system description

Figure 1 shows a diagram of the image analysis
microsystem used for this study. It consists of the
following hardware:

— a macrophotographic stand with transmitted
illumination;

— a Charge Coupled Device (CCD) camera pro-
viding cither a TV signal or a digital signal whose
spatial resolution is 208 horizontal pixels (picture ele-
ments) x 144 vertical pixels and the brightness resolu-
tion is 64 gray levels;
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(1) CC CAMERA
(2)45) TV MONITORS
(3) MICRO COMPUTER

(4) RGB 256 MATRAX
(6) STORAGE UNIT

Figure 1. — Image analysis microsystem.
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Figure 2. — Scheme for analysis of scale morphology to discriminate between salmon stocks.

~— a micro computer (576 kb memory) with two Software (using Basic language) was specially
disk-drives (1.2 Mb memory each); developed to enable image processing and feature
— a digital-to-analog converter to visualize digi- extraction. The extracted features were then transmig-
tized images; 8 ted to a main computer for statistical pattern recogni-
> tion with the SPAD software package (Lebart et al.,

— two TV monitors for input and output images. 1985).
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Figure 2 shows a diagram of the proccdures used
to process digitized images of scales so as to quantify
shapes and test the potential uscfulness of shape
descriptors to discriminate between stocks. This
scquence consists of the following stages:

— image processing;

— shape quantification or feature extraction;

— statistical analysis,

Image processing

The first step (digitization) is the conversion of a
continuous picture into a discrete form that may be
manipulated by computer. This process consists of
spatial sampling (a digital image is here represented
with a discrete grid of 208 horizontal by 144 vertical
clements) and quantization corresponding to the map-
ping of brightness into integers called gray levels (64
in this study). lllumination characteristics are chosen
so that a digital image of scale typically consists of
two phases: a dark silhouctte on a light background.

The next step (scgmentation) is the selection of a
threshold value allowing to subdivide the image into
two significant regions, scale and background. In this
procedure the brightness valuc of cach pixel is compa-
red to a threshold level and the pixel is assigned to
one of the two regions depending on wether the
threshold value is exceeded or not. This results in a
bilevel picture in which the scale apears like a black
silhouectte on a white background. In most cascs,
automatic threshold sclection is a nontrivial problem.
Indeed, when an image consists of two discernible
regions, a threshold level can be chosen from the
histogram of the distribution of gray levels that typi-
cally presents a bimodal pattern. Concerning salmon
scale pictures, the posterior part of the scale may
have intermediate gray levels creating an additionnal
peak in the histogram. This leads to some difficulties
for automatic thresholding which were solved by
adaptating the technique proposed by Rosenfeld and
de 1a Torre (1983) to trimodal image histogram (Pon-
tual, 1986).

The contour of the scale can ecasily be extracted
from the bilevel picture obtained after the threshold
selection procedure. A convenient algorithm of con-
tour tracing is given in Pavlidis (1982). Outlines are
represented by chain codes (Freeman, 1961; 1974) in
which two successive points are joined by a vector to
which is assigned one symbol corresponding to one
out of eight possible directions. Final coded contours
arc finally stored in memory and later used for shape
feature extraction.

Feature extraction

From the coded contours of scalcs, three types of
shape descriptors arc computed that are commonly
used to describc and comparc shape quantitatively,
particularly those occuring in biology. All of them
are independent of the size (property of similitude),
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translation and/or the rotation of the scale in the field
of the image and translation of the starting point of
the trace of the contour. Indeed, these properties are
required when comparisons have to be done,

Shape factors

The perimeter, arca, maximum length and maxi-
mum width of an object can be easily extracted from
a coded contour (Freeman, 1974). These geometric
paramecters are used to compute dimentionless ratios
or shape factors such as the following ones used in
this study:

F1=Perimeter/square root of the area;

F2 = Pcrimeter/length;

F3 =Perimeter/width;

F4 =Square root of the area/length;

F5=Square root of the arca/width;

F6 =Width/length;

F7=Areajarea of the minimum circumscribed
rectangle.

These shape factors commonly used for pattern
recognition (see for example Jeflries et al, 1984)
measure gross shape propertics such as clongation,
compactness and so on and may be sufficient to
diffcrentiate between quite different forms. However
some of them arc not robust since they may yield
similar numerical values for quite different form
(Young et al., 1974). Morcover, some of their proper-
tics are susceptible to be altered when measured on
digitized object (Rosenfleld and Kak, 1976).

Moment incariants

Let us define a bilevel image of scale by a function
f(x, y) such as:

S (x »)=1
f(xs »)=0

where x, y arc the spatial coordinates of a pixcl P
and A corresponds to the digitized scale. The function
f(x, ¥) which describes this scale can be uniquely
determined by the infinit set of two dimensional cen-
tered moments M, of order (p+4) and converscly
the set M is umquc]y determined by f(x, y). The
moments ﬁ . given by cquation 1 can thercfore be
uscd as shape featurcs (Hu, 1962).

if PeA
if P¢A

M, = J' J(x—:?)"(;*—f)"f(& »axdy (1)
xvy

where x and y arc the coordinates of the center of
gravity of the scale.

As a result of the definition of the function f, the
moment M,, obviously mecasures the arca of the
digitized scale, sincc in the discrete form
Moo= Z Zf(x, Y AxAy, with Ax=Ay=1. More-

over from cquatxon 1, the dimension of moment M,
appears to be L“""’+2 L being a length. L can be
characterized by M{Z2 and thercfore, the correspond-
ing nondxmcns:onal momcnts N,, are computed by
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dividing M, by M3, with y=1+(p+q)/2. Hu (1962)
showed that 6 moment invariants for spatial orienta-
tion can be dircctly computed from the moments N,
of order 2 and 3. They are the following:

Hy=N;o+Ny,
Hy=(N,o—Ny,)* +4 N,
H3=(N3o—3N,)*+(3N,; —Ny,)?

Re=(N3o+N,; )2+ (N, +Ny,)?
Hs=(Ng3—3N;;)(N;3o+N,,) (2

X [(N30+Ny3)*—=3(Nyy +No3)?]
+(3N;; —=No3) (N;; +No3)
X[3(N;3o+N;,)?=(Ny; +Ng3)?]
Me=(N20—Np2) [(N30+N,;)>—(Nyy +Ny3)?]
+4N;; (N3o+N,;2) (N3 +Nojy).

These moment invariants y, therefore satisfy the
properties of independence of orientation and size
and have been used in a number of studies dealing
with biological shapes (Butler, 1964; Berman et al.,
1984; Jeflfrics et al., 1984).

These functions may be considered as similar to
the moments of a statistical distribution. According
to Hu (1962) the first two functions may be interpre-
ted as “spread” and “slenderness™, but, in general,
their physical meaning is not easy to evaluate. The g,
usually have a very large dynamic range including
both negative and positive signs. Consequently, Hsia
(1981) suggested using the logarithm of their absolute
values. Thereflore, the six invariants M; used are given
by:

M,=Log|w,|, i=12,...,6.

Elliptic Fourier coefficients

A planar shape can be described to whatever degree
of precision is required using the decomposition of
its outline by way of Fourier series or harmonic
analysis. In this approach, the empiric contour is
partitioned in a series of components called harmonics
whose coefficients may be used as shape descriptors.
The gross shape is determined by harmonics of low
frequency and the addition of successively higher
order harmonics increases the accuracy of shape
description. Different methods of Fourier analysis of
a closed contour have been proposed depending
mainly on the functions uscd to describe the contour
being processed: polar coordinates (Younker and
Erlich, 1977; Jarvis et al., 1978), cumulative change
of a vector tangent to the outline (Zahn and Roskic,
1972), Dual Axis Fouricr Shape Analysis (DAFSA)
where equally spaced points of the contour are repre-
sented by complex numbcrs (Moellering and Rayner,
1983). Anothcr mcthod has been proposed by Kuhl
and Giardina (1982) which uses a dircct procedure to
obtain Fourier coefficients from coded contours of
simple or concave forms and permits complete regene-
ration. Elegant proccdures of normalization relative
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to orientation and size can be done, based on the
intrinsic shape propertics. This technique has becn
compared to others by Rohlf and Archic (1984) to
describe the shape of mosquitoe wings and appeared
to be the most appropriate and powerful. Thus, it
was adopted herc with some slight modifications. A
short description of the arithmetic process is proposed
below. Full details are given in Kuhl and Giardina
(1982) and Pontual (1986).

A closed coded contour can be represented using
two series x(¢), y (t) corresponding to the projections
of the contour on the x-axis and y-axis respectively
while it is being traced as a function of the arc
length (¢) measured from an arbitrary starting point.
Fourier scrics approximation of the x-projcction is
given by:

N
X(0)=Ap+ Y (a,,coszrfrm

n=1

2nnt N
+b,sin T )=A0+ Yy X,

n=1
with
k
a=— 7 A% (3)
2ntn? 2y AL,
(o t, SZnntp_,)
T
k
b,= T Ax,

9 (Sin2nnt,, _Sin2nnt‘,_,)
T T

where N is the number of harmonics used to approxi-
mate x(t), k the number of links in the chain code,
t, the arc length of the first p links, T=1¢, the basic
period of the chain (cquivalent to the perimeter) and
Ax, the change in the x-coordinate as the link p is
traversed. The approximation of the y-projection pro-
file and the corresponding cocfficients ¢, and d, are
found in the same way using the incremental change
in the y-direction. The pair (A,, C,) where C, corre-
sponds to A, for the y-projection denotes the location
of the gecomctric center of the object (see Kuhl and
Giardina, 1982 for cquations giving A, and C,);
Giardina and Kuhl (1977) showed that the points
whosc coordinates are (X,, Y,) describe an cllipse as
t varics. As a conscquence, a closed contour can be
expressed as a summation of N ellipses, N being
the number of harmonics needed to approximate the
empiric contour to the desirable degree of accuracy.
On the basis of this property, Kuhl and Giardina
(1982) proposed normalization procedurcs yiclding
invariant coelficients useful to compare shapes. It is
obvious that cocfficients a,, b,, ¢, and d, vary accord-
ing to the starting point of the trace of the contour,
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the spatial orientation and the size of the object being
processed. For the n-th ellipse the corrected cocffi-
cicnts are given by:

I:a,f b,‘:‘]~ cos®, sind,
oY dar —sin®; cos®,

a, b,,] cosn0,
P x
c, d, sinn 0,

2(ay by +c,dy)
a2 +c2—b2—d?’
cycos0,+d,sin0,
aycos 0, +b,sin0,

—sinnOl:I @

cosn0,
where

0,=0.5arctan

&)

&, =arctan

Instead of using those corrected coefficients as fea-
tures for pattern recognition, we computed the geo-
metric parameters of the corresponding ellipses. Each
set a,, b, c,, d, characterizes the n-th ellipse which
can also be described by the amplitudes of -its semi-
major and semi-minor axes, respectively A, and B,,
the orientation @, of its major axis with respect to
the major axis A, of the first ellipse and a phasor 0,.
The parameters @, and 0, arc computed from cqua-
tion (5) where @, 0,, a,, by, c; and d, are rcplaced
by ®,, 9,, a*, b*, c* and dF. Parameters A, and B,
are given by:

AZ=(a*cos®,+b*sinD,)?

+(c*cos D, +d*sin®d,)?
(6)

2 _ H 2
B;=(a¥cosa,+b*sina,)

+(c*cosa,+d?*sina,)?

with o, =, + /2.

Invariance for similitude is obtained by dividing A,
and B, by the amplitude A, of the first semi-major
axis. Finally (4 N—3) normalized parameters are
avalaible to describe a contour approximated with N
harmonics. Twenty harmonics were extracted here
since, as shown further, this number is sufficient to
describe very accurately the shape of salmon scales.
The clliptic Fourier coefficicnts utilizable as shape
featurcs were the following:

AyfAs .. .,AnALBAL ...,
By/A,®,, ..., D0 ...,0

Hence, the parameters A,/A; and B,/A, will be
called A, and B, respectively.

This approach quite similar to that proposcd by
Tai et al. (1982) is attractive since it allows to sclect
some independent parameters having a physical
significance.
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Statistical treatment

After extraction of the features, the data matrix
consisted of 186 scale shapes each described by 7
shape factors, 6 moment invariants and twenty har-
monics (77 coefficients). To take into account the
within fish variability in scale shape (Pontual, 1986),
the statistical analysis used the mean vector of the
three vectors (cach corresponding to one scale) of
featurcs available per fish and thercfore the data
matrix was reduced to 62 “mean scales” described by
90 variables.

Our aim was to determine whether numerical analy-
sis of scale morphology might be helpful and informa-
tive to distinguish between salmon stocks. Such an
evaluation is gencrally made using discriminant analy-
sis. Based on the assumptions of multivariate normal
distribution and homoscedasticity, the linecar
approach is the most commonly used and was adopt-
ed hcre. The first step of the analysis consists in
sclecting the subset of variables which best fits the
obscrved data. This procedure avoids taking into
account redundant information and using a number
of variables which excceds the maximum number
(depending on the sample size) allowed to get a signifi-
cant separability. A two group linear discriminant
analysis is in fact a particular case of multiregression
(Lebart et al., 1982) and the selection can thus be
done using a stepwise multiregression procedure. The
best subset of variables is then used to compute the
discriminant function whose objective is here to be
predictive since it may used to allocate individuals
whose origin is not known. The size of the avalaible
samples was too small to split data into two sets,
onc as a base (called training sct) to construct the
discriminant function, the other as a test sample to
evaluate its powerfulness. We thus used the bootstrap
classification method developed by Efron (1982)
which allows to estimate and thus to remove the bias

‘inherent in calculating estimate of the misclassifica-

tion rate on the data sct used to determine the classi-
fication lunction. Notice that this approach, particu-
larly useful when no test samples are avalaible, is
proposcd in the two group linear discriminant analysis
program of SPAD software package (Lebart et al.,
1985). In the performed analyscs, 200 bootstrap sam-
ples were taken from cach original data set (a boot-
strap sample consisted of a sample of n clements
randomly chosen, but with replacement in the original
sample of size n). Four analyses were conducted so
as to evaluate the powerfulness of each type of shape
descriptors. Three more analyses were used to deter-
mine whether shape descriptors taken all together do
or do not increase the performance of discrimination.
The features introduced in each sclection procedure
and the corresponding selected subsets are listed in
table 1. The stepwise multi-regression software used
here did not allow to introduce more than about
30 features (such an operation is indeed rather time
consuming). This created difficulties in optimizing the
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Table 1. — Accuracy of different subscts of features to discrinate between Florn River and Etne River stocks; percentage of individuals

correctly classified with (standard deviation).

Trial Original Selected Training set Bootstrap estimations
n features subset Elorn R. Etne R. Total Elorn R. Etne R. Total
1 Shape FI1 F3F4F6 100.0 100.0 100.0 99.1 98.4 98.1
factors (3.2 {1.4) (.7
2 Moments M1 M3 68.7 72.6 75.0 68.5 71.6
invariants (7.8) (7.2) (6.1)
3 A2 Al10, B1 - BI0 A6 A9 B3 B10 93.7 95.2 96.1 92.7 94.3
(3.8) 3.7 (3.0)
4 A2 A8, Bl —B38 A2 A3 A7BI 90.6 90.3 86.8 89.2 88.1
®2->98,02-08 ¢4 (4.8) (4.0) 3.5)
5 F1 = F7, M1 = M6 F1 F3F5 100.0 100.0 100.0 99.5 99.4 99.5
A2 A8, Bt » B8 A6 AT A8 (1.5) (0.5) 0.7
6 F1 = F7, M1 = M6 FI F3F5 M3 100.0 100.0 100.0 99.1 99.8 99.5
A2-— A8, Bl - B8 A6 A7 A8 (1.6) (0.0) (0.7)
7 F1 = F7, M1 - M6 F1 F3 F5 M3 100.0 100.0 100.0 99.2 99.4 99.3
A2 A8, Bl - B8 A6 AT A8 B3 (0.6) (0.5) (0.4)

sclection procedure and explains why cight or ten
harmonics including or not the parameters @, and 0,
were used when Fourier descriptors were involved.

RESULTS

One advantage of shape description by means of
Fourier scrics is that of feasible regeneration which
allows to evaluate the quality of the approximation.
Figure 3 shows the results of such an operation. Five
to eight harmonics are sufficient to reconstruct the
empiric contour with a good precision. Addition of
higher order components permits to include more
local information such as protuberances. Twenty har-
monics generate a smooth version of the original
contour and addition of higher frequencies might be
considered as addition of noise partly attributable to
the digitization procedure. Figure 4 shows a represen-
tation of the relative contributions of the successive
harmonics which rapidly decrease with increasing [re-
quencics. This is not surprising since it means that
the processed signal presents simple characteristics.
This is indeed the case with salmon scales whose
shapes are not particularly complex.

Results of the different discriminant analyses are
summarized in table 1. Performance may be evaluated
and compared using the so-called re-substitution
method (training sct columns) which has been pre-
viously reported to be biased giving in most cases
underestimations of misclassification rates. Thercfore,
it is more suitable to examine the corresponding boot-
strap cstimates. Their associated standard deviations
indicate their degree of precision which increases with
decreasing values. They may be used to calculate
confidence intervals. Thus, the most powerful subsets
are those which yicld a high value of the estimated
percentage of individuals correctly classified, asso-
ciated with low standard devialions. The rcsults of
trials 1 to 4 suggest that the most discriminating
features arc shape factors (trial 1) and amplitudes of

the first ten harmonics (trial 3). Moment invariants
and Fourier parameters 6, and ®, do not appear as
very informative for stock identification. Neverthe-
less, the best results are obtained by sclecting data
among the three available types of features, i. e. shape
factors, moment invariants and amplitudes of the first
cight harmonics (trial 5 to 7 where estimated rates of
correct classification arc higher than 99%). This fact
is clearly shown by comparing the individual group
membership probabilities lor trials 1 (shape factor
only) and 6 (three types of features) (table 2). One
can sce that some scales (Elorn river 10 and 27 for
cxample), arc correctly classified in both analysis but
with a very less significant probability in trial 1 where
features were selected only among shape factors. Con-
sequently, cven if the discriminant scores do not
appear significantly different (they are both very
high), the selected subsct 6 has to be considered as the
most powerful. Conversely, there are no significant
differences between trials 5, 6 and 7 and trial 5 would
have been chosen to perform predictive analysis since
the discrimant function that minimizes the misclassif-
ication rate with the fewest number of featurcs is
considered as the most successful one,

DISCUSSION

A previous paper using Fourier coefficients that
were not invariant for similitude, i. e. size-dependent,
showed variations due to age and origin (Pontual et
al., 1983). Purc shape descriptors have been found
to be as much or even more informative than the
corresponding  size-dependent features (Pontual,
1986). They were thus used assuming that removing
the size effect which is susceptible to vary with the
change in environmental and climatic conditions,
should endow morphological features with a higher
degree of temporal stability. This is one of the advan-
tagces of the technique proposed since the conventional
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Figure 3. — Reconstruction of a scale outline based on 1, 3, 5, 8, 12 and 20 harmonics.

scale characters whose expression depends on
environmental conditions (Reddin, 1981) have been
shown to be sensitive to their fluctuations (Reddin
and Short, 1986).

The continuous nature of shape information is
another factor of powerfulness. Actually, only a small
number of conventional scale character are usable.
Counts of circuli are used instead of measurements
because of their too large associated standard
deviations yielding overlap between classes (Reddin,
1982). River zone information is useless as far as
the discrimination is susceptible to involve hatchery

reared smolts (Lear and Sandeman, 1980). That is
why the technique described by Reddin and Burfitt
(1983) only uses two features which consist of counts
of circuli in winter and summer zones in the first
sea year area. Though rather efficient in continental
classification, this method is obviously too discrete to
give valid and reliable results when the purpose is to
identify a number of specify stocks in a mixed stock
fishery (Shearer, 1983; Sych, 1983).

Jarvis’ approach for scale shape analysis is based
on Fourier series decomposition of hand digitized
contours. Our results suggest that the computation
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Hgure 4. — Average amplitude of Fouricr features (a) A,
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for the first 20 harmonics computed on 186 scales.

of different types ol shape descriptors may be more
relevant. Actually, when Fourier cocfficients are used
alone, discrimination between the involved groups
may require a great number of features which is not
suitable from a statistical point of view. This dilficulty
might be overcome by introducing a small number of
shape descriptors (such as shape factors) susceptible
to differentiate between gross shapes whercas Fourier
componcnts arc used when refinements to the descrip-
tion are required. The number of components to be
employed largely depends on the sensitivity necessary
to detect differences in the scale shape patterns to
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Table 2. — Group membership probabilities: training set of trials
n* 1 and 6.

Etne R. Trial Trial

Elorn. R. Trial Trial

scale n° n°l n° 6 scale n° n°1 n° 6
1 1.000 1.000 1 0.994 1.000
2 1.000 1.000 2 0.954 1.000
3 0.882 1.000 3 1.000 1.000
4 0.948 0.959 4 1.000 1.000
5 0.956 0.985 5 0.979 1.000
6 0.999 1.000 6 0.755 0.911
7 0.997 1.000 7 0.974 1.000
8 0.998 1.000 8 0.904 1.000
9 0.991 1.000 9 0.962 1.000
10 0.989 1.000 10 0.562 0.968
t1 0.951 0.993 11 1.000 0.996
12 0.995 1.000 12 1.000 1.000
13 0.999 1.000 13 1.000 1.000
14 0.945 1.000 14 1.000 1.000
15 1.000 1.000 15 1.000 1.000
16 1.000 1.000 16 1.000 1.000
17 0.901 1.000 17 0.995 1.000
18 0.960 0.993 18 0.998 1.000
19 0.996 1.000 19 0.998 1.000
20 1.000 1.000 20 0.978 1.000
21 1.000 1.000 21 1.000 1.000
22 0.999 1.000 22 0.966 1.000
23 0.946 1.000 23 0.996 0.997
24 1.000 1.000 24 1.000 1.000
25 0.999 1.000 25 0.995 1.000
26 0.881 0.999 26 0.998 1.000
27 1.000 1.000 27 0.507 0.999
28 1.000 1.000 28 0.996 1.000
29 0.836 1.000 29 1.000 1.000
30 0.897 1.000 30 1.000 1.000
31 0.988 1.000 - - -
32 0.999 1.000 - - -

differentiate. But, as noticed by Bird ez al. (1986) the
potential powerfulness of shape analysis is all the
more obvious as variations are found in the lower
harmonic frequencies which indicates differences in
overall shape. In this way, we had no a priori kno-
ledge concerning the number of harmonics needed to
detect differences between the two involved popula-
tions and that is why, although twenty harmonics
were extracted as suggested by Jarvis et al. (1978),
only the first eight ones were used in the discriminant
procedure since they were found to be sufficient to
yicld high level of correct classification.

A limitation of the method is the difficulty to relate
the shape quantification to some fundamental proper-
ties of the analysed scale. In the present study, the
two involved stocks show differences in terms of com-
pactness and circularity. This appears when compar-
ing the mean values of shape factors F1 and F6
respectively which indicate that scales from Etne river
are less compact and more clongated than those from
Elorn river. A morc precise interpretation is difficult
because the physical meaning of a given numerical
value taken by a given shape descriptor such as
Fourier cocfficient or invariant moment is in most
cases somewhat unclear. Morcover, because a simple
change in form does not result in simple change in
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shape paramecter as pointed out by Bookstein et al.
(1982), this approach cannot be used to devise an a
priori model of scale shape development. But, as
noticed by Rohlf and Ferson (1983), if the purpose
is to find some descriptors whose variations are suffi-
cient to distinguish between given groups, this limita-
tion is not a real problem.

Discriminant analysis yiclding estimated misclassi-
fication rate lower than 1% can be considered as very
successful. This high degree of efficiency and the
capability, with an appropriate image processing
equipment, of rapidly examining large samples auto-
matically suggest that numerical analysis of scale mor-
phology could provide a useful tool for fishery man-
agement. Nevertheless, further research is needed to
investigate such a promising area. From a technical
point of view, the reported experiment involved only
two stocks and performance have to be evaluated
when a great number of components are mixed. It
would be also quite interesting to see how the tech-
nique allocates fish independent of the data base used
for the construction of the classification rule and
compare the results with those given by the bootstrap
estimation method. This would require to process a
greater number of scales in cach studicd stock. More-
over, such tests may require the use of a discriminant

H. de Pontual and P. Prouzet

procedure different from that used in the present
study such as for example the quadratic approach.
Because it is not based on the assumption of homo-
scedasticity, this technique has been proposed for
studies using conventional scale analysis (Reddin and
Burfitt, 1983) instead of the linear discriminant analy-
sis first used by Lear and Sandeman (1980) which
gave a lower elficiency on a yet less complex data
base. Finally, optimizing the feature selection proce-
dure is an essential requirement since this step
obviously conditions the performance of the resulting
classification. This will be all the more necessary as
slight differences will have to be recognized which
might require to investigate the potential uscfulness
of a greater number of Fourier components than that
used in the present work. From a biological point of
view, much has to be done especially to understand
the biological bascs of the observed variations in
scale shape as well between as within stocks. Such
knowledge might be very useful to settle realistic and
efficient strategies for investigation of mixed stock
fisherics. Such problems extend beyond the scope of
this paper and are discussed with the rcsults of a
more general study on salmon stock discrimination
based on scale shape analysis (Pontual and Prouzet,
1987).

Acknowledgements

We would like to thank Mrs Bouroche for her helpful comments concerning the traduction of this paper.

REFERENCES

Anonymous, 1984, Atlantic salmon scale reading. Inter-
national Council for Exploration of the Sca. Report of
the Atlantic salmon scale reading workshop. Aberdeen,
Scotland 23-28 April 1984.

Berman M., J. R., Green, K. Sherman, 1984. Application
of image analysis to the marine ecosystem studies. Int.
Coun. Explor, Sea. C.M. 1984/L:8.

Bilton H. T., M., Flain, F. Lucas, P. Kearton, R. Gard,
1983. Tests on the accuracy of ageing New Zealand
Quinnat salmon (Oncorhynchus tschawytscha) from their
scales. Can. Techn. Rep. Fish. Aquat. Sci. n° 1199.

Bilton H. T., H. B. Messinger, 1975. Identification of Major
British Columbia and Alaska runs of age 1.2 and 1.3
sockeye from their scale characters. Int. North Pacific
Fish. Comm. Bull., 32, 109-129.

Bird J. L., D. T. Eppler, D. M. Checkley, 1986. Compari-
sons of herring otholiths using Fourier shape analysis.
Can. J. Fish. Aquat. Sci., 43, 1228-1234.

Bookstein F, L., R. E. Stauss, J. M. Humphries, B.
Chernoff, R. L. Elder, G. R. Smith, 1982. A comment
upon the use of Fouricr methods in systematics. System-
atic Zool., 31, 85-92,

Butler J. W., M. K. Butler, A. Stroud, 1964. Automatic
classification of chromosomes. In: Data acquisition and

processing in biology and medecine K. Enslein Ed.,
Pergamon Press.

Casselman J. M., J. J. Collins, E. J. Crossman, P. E,
Isshen, G. R. Spangler, 1981, Lake white fish (Coregonus
clupeaformis) stocks of the Ontario waters of Lake
Huron. Can. J. Fish. Aquat. Sci., 38, 1772-1789.

Efron B., 1982. The Jacknife, the Bootstrap and others
resampling plans. Regional conference series in applied
mathematics. Society for industrial and applied mathem-
atics. Philadelphia Pensylvania, 19103, 92 p.

Freeman H., 1961, On the encoding of arbitrary geometric
configurations, IRE transactions on computers, Vol. EC-
10, 421-432.

Freeman H., 1974. Computer processing of line drawing
images. Computing surveys, 6, 57-97.

Giardina C. R., F. P. Kuhl, 1977. Accuracy of curve
approximation by harmonically related vectors with
elliptic loci. Computer graphics and image processing,
6, 277-285.

Hsia T. C., 1981. A note on invariant moments in image
processing. IEEE Transactions on systems, man and cyber-
netics, Vol. SMC-11, 831-834.

Hu M. K., 1962. Visual pattern recognition by moment
invariants. IRE Transactions on information theory,
Vol. IT-8, 831-834.



Numerical analysis of scale morphology

Isshen P, E., H. E. Booke, J. M. Casselman, J. M.
Mec Glade, N. R. Payne, F. M. Utter, 1981. Stock identif-
ication: materials and methods. Can. J. Fish. Aquat. Sci.,
38, 1838-1855.

Jarvis R. S., H. F. Klodowski, S. P. Sheldon, 1978. New
method of quantifying scale shape and an application
to stock identification in walleye (Stizostedion vitreum).
Transact. Amer. Fish. Soc., 107, 528-534.

Jelfries H. P., M. S. Berman, A. D. Poularikas, C. Katsinis,
I. Melas, K. Sherman, L. Bivins, 1984. Automated sizing,
counting and identification of zooplancton by pattern
recognition. Mar. Biol., 78, 329-334.

Jensen J. M., 1980. Recaptures from international tagging
experiments at West Greenland. Rapp. P.-v. Réun. Cons.
int. Explor. Mer, 176, 114-121.

Kuhl F. P, C. R. Giardina, 1982. Elliptic Fourier features
of a closed contour. Computer graphics and image pro-
cessing, 18, 236-258.

Lear W. H., R. K. Misra, 1978. Clinal variation in scale
characters of Atlantic salmon (salmo salar) based on
discriminant function analysis. J. Fish. Res. Bd Canada,
35, 43-47.

Lear W. H., E. J. Sandeman, 1980. Use of scale characters
and discriminant functions for identifying the continental
origin of Atlantic salmon. Rapp. P.-v. Réun. Cons. int.
Explor, Mer, 176, 68-75.

Lebart L., A. Morineau, J. P. Fenelon, 1982. Traitement
des données statistiques. Méthodes et programmes.
Dunod, Paris.

Lebart L., A. Morineau and collaborators, 1985. SPAD:
Systéme YPortable pour I'’Analyse de Données. CESIA,
Paris, 257 p.

Moellering H., J. N. Rayner, 1984. The Dual Axis Fourier
Shape Analysis of closed cartographic forms. Carto-
graphic J., 19, 53-59.

Pavlidis T., 1982. Algorithms for graphics and image pro-
cessing, Springer Verlag, 416 p.

Pontual H. de, 1986. Essais de discrimination de stockcs
dc saumon atlantique (salmo salar) par reconnaissance
de 1a forme de leurs écailles. Thése de doctorat, Univer-
sité¢ P. et M. Curie (Paris-VI), 167 p.

Pontual 1. de, P. Prouzet, 1987. Atlantic salmon, salmo
salar L., stock discrimination by scale shape analysis.
Aquacult. fish. manag., 18, 277-289.

Pontual H. de, P. Prouzet, C. Liacopoulos, 1983. Essai
de différenciation de deux stocks de saumon atlantique
(Salmo salar, 1..) par reconnaissance de la forme de leurs
¢cailles. Int. Coun. Explor. Sca, C.M. 1983/M:18.

Reddin D. G., 1981. Stock identification. Int. Coun.
Explor. Sea, C.M. 1981/M:2, 23-41,

Reddin D. G., 1982. Some general information on discrimi-
nant functions and accuracy for identifying North Ameri-
can and Europcan Atlantic salmon caught at West
Greenland. Int. Coun. Explor. Sea, C.M. 1982/M:15.

Redding D. G., R. F. Burfitt, 1983. An update: the use of
scale characters and multivariate analysis to discriminate
between Atlantic salmon (Salmo salar) of North Ameri-
can and European origin caught at West Greenland. Int.
Coun. Explor. Sea, C.M. 1983/M:11.

Reddin D. G., R. K. Misra, 1985. Hotelling’s T to identify
the origin of Atlantic salmon (Salmo salar) in a mixed
stock fishery. Can. J. Fish. Aquat. Sci., 42, 250-255.

27

Reddin D. G., P. B. Short, 1986. Identification of North
American and European Atlantic salmon (Salmo
salar L..) caught at West Greenland in 1985, Int. Coun,
Explor. Sea, C.M. 1986/M:9.

Ricker W. E., 1958. Maximum sustained yicld from fluctu-
ating environments and mixed stocks. J. Fish. Res. Bd
Canada, 18, 991-1066.

Ricker W. E., 1972, Hereditary and environmental factors
affecting certain salmonid populations. In; The stock
concept of Pacific salmon, R. C. Simon, P. A. Larkin
Ed., H. R. MacMillan Lectures in Fisheries, University
of British Columbia, Vancouver, British Columbia,
19-160.

Riley L. M., R. F. Carline, 1982. Evaluation of scale shape
for identification of walleye stock from Western Lake
Erié. Transact. Amer, Fish. Soc., 111, 736-741.

Rohlf F. J., J. W. Archie, 1984. A comparison of Fourier
methods for description of wing shape in mosquitoes
(Diptera: Culicidac). Systematic zool. 33, 302-317.

Rohlf F. J., S. Ferson, 1983. Image analysis. In: Numerical
taxonomy, J. Felstein Ed., Springer verlag, 583-599.

Rosenfeld A., A. C. Kak, 1976. Digital picture processing.
Academic Press, New York, 457 p.

Rosenfeld A., P. de 1a Torre, 1983. Histogram concavity
analysis as an aid in threshold selection. IEEE
Transactions on systems, man and cybernetics, Vol.
SMC-13, 231-235,

Ruggles C. P, J. A, Ritter, 1980. Review of North Ameri-
can smolt tagging to assess the Atlantic salmon [ishery
off West Greenland. Rapp. P.-v. Réun. Cons. int. Explor.
Mer, 176, 82-92.

Shearer W. M., 1983. The use of scale characteristics and
multivariate analysis to distinguish between stocks of
fish. Int. Coun. Explor. Sca, C.M. 1983/M:21.

Swain A., 1980. Tagging of salmon smolts in Europcan
rivers with special references to recaptures off West
Greenland in 1972 and earlier years. Rapp. P.-v. Réun.
Cons. int. Explor. Mer, 176, 93-113.

Sych R., 1983. Attempts of using the scale characteristics
for scparation of some Baltic salmon and sea trout
stocks. Int. Coun. Explor. Sca, C.M. 1983/M:29, 43-79.

Tai II. T., C. C. Li, S. H. Chiang, 1982. Application of
Fourier shape descriptors to classification of fine
particules. 6th International Conference on Pattern
Recognition, Munich, Germany, 19-22.

Went A. E. 1., 1973. Movements of Salmo salar (L.) to
and from Irish waters. J. Fish. Biol., 5, 659-671.

Young I. T., J. E. Walker, J. E. Bowie, 1974. An analysis
technique for biological shape. Information and Control,
25, 357-370.

Younker J. L., R. Ehrlich, 1977. Fourier biometrics: har-
monic amplitudes as multivariate shape descriptors. Sys-
tematic Zool., 26, 336-342.

Zahn C. T., R. Z. Roskies, 1972. Fourier descriptors for
plane closed curves. JEEE Transactions on computers,
Vol. C-21, 269-281.



