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Abstract

Résumé

Petitgas P. Aquat. Living Resour., 1993, 6, 201-209.

Schooling fish may aggregate in very high densitics covering very small areas. Thus the probability
of hitting such high-density spots during a large-scale sampling is very low. The sampling fluctuations
of the tail of the histogram are thought to be very significant. The stock bhiomass cstimate and its
precision rely greatly on how preciscly the tail of the histogram can be sampled. In order to acquire
clements for improving survey designs and abundance estimators we study here the relation in space
that the high valucs have with the other values. A disjunctive kriging approach is used. Different
quantiles of the histogram arc coded by indicators. The spatial structure of each indicator and its
spatial covariation with the others are studied by computing experimental indicator variograms and
cross-variograms. Such analysis is applied to dissect finely the spatial structure of a Norwegian herring
stock sampled acoustically. It is shown that when going from low-density arcas to high-density ones,
intcrmediate values are not necessarily crossed. Thus a particular disjunctive kriging model with no
transition in space is well adapted to the herring data. The model is based on the regressions of each
indicator on the one immediately below it. In the modcl one can estimatc the probability for the fish
density to trespass a given cut-off at a given location when knowing that the density trespasses lower
cut-offs at surrounding points. 1t is shown on the data that the high densities are structured and
show small aggregations. Then it is shown that having trespasscd a certain cut-off, i.e. inside the
corresponding areas in space, the high-density aggregations can be considered to be positioned
independently from thc other values. These areas, where the structuring of the high values is not
correlated to the structuring of the other values, are mapped using the fitted disjunctive kriging model.
The implications for survey designing of the existence of such areas and of their geometry are
discussed. Also discussed is the possibility of stratifying the data in spatially uncorrelated boxes when
deriving the biomass estimate and its precision, on the basis of an observed spatial non-correlation
property between the spatial distribution of different quantiles.

Keywords: Spatial distribution, aggregation, abundance estimation, geostatistics, sampling.

Un modéle de krigeage disjonctif pour caractériser les zones riches en poissons pélagiques dans les
échantillonnages d’acoustique.

Les poissons grégaires formant des bancs peuvent se présenter en de trés fortes densités sur de
petites surfaces. Lors d’un échantillonnage prospectif a large maille, la probabilité de rencontrer de
tels gains riches est donc faible. Les fluctuations d’échantillonnage de la qucuc de 'histogramme des
densités sont supposées trés importantes. L’estimateur d’abondance du stock et sa précision dépendent
largement de la précision avec laquelle la qucue de I'histogramme a pu étre échantillonnée. Dans le
but d’augmenter la précision de I’échantillonnage nous étudions les rclations structurales qu’entretien-
nent les fortes valeurs avec leurs voisines plus faibles. L’approche du krigeage disjonctif est misc a
profit. Les quantiles de I'histogramme sont cod¢s par des indicatrices; la structure spatiale de chaque
indicatrice ainsi que sa covariation avec chacune des autres sont étudiécs en calculant des variogrammes
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simples et croisés. Il en résultc une dissection fine de la structurc spatiale. Cette méthodologie est
appliquée a un stock de hareng norvégien. On montre quc partant des zones pauvres et cheminant
vers les zones riches, on ne rencontre pas nécessairement des valeurs intermédiaires. On choisit un
modéle sans transition spatiale pour rendre compte de ceile caractéristique. Il est construit sur Ics
régressions de chaque indicatrice sur I'indicatrice pour la coupure immédiatement inférieure. Dans le
mod¢le on peut estimer la probabilité pour que la densité dépasse un seuil donné en un point donné,
sachant que ceile-ci dépasse des scuils inféricurs en des points proches. On montre sur les données
que les fortes valeurs sont structurées dans P'espace et forment des agrégats. De plus, 4 lintéricur des
zones définics par les valeurs supérieures & un certain scuil, les agrégats de forte densité peuvent étre
considérés comme implantés indépendamment des autres valeurs. Ces zones dans lesquelles la structura-
tion des fortes valeurs n’cst pas corrélée a celles des autres, sont cartographices par krigeage disjonctif.
On discute de I'importance de Dexistence de telles zones ct de leur géométric pour définir un
¢chantillonnage adapté. On discute aussi de la possibilite de stratifier les valeurs en lots indépendants
pour estimer la biomassc ct sa précision aprés avoir observé la propriété de non corrélation précédente.

Mots-clés : Distribution spatiale, agrégation, abondance, cstimation, géostatistique, échantillonnage.

INTRODUCTION

When at sea on an acoustic prospection cruise it is
usual to sail through large arcas very poor in data
then encounter rich areas in which a few extreme
very high values may sometimes be hit, apparently
unexpectedly. If all locations of the fish habitat could
be sampled at once, one would have access to the
true regional histogram. From experience, having hit
sometimes very high values, one may reasonably think
that the regional histogram is very skew with a long
tail, longer than a lognormal. As the few very high
values sampled contribute the most in the estimation
of total abundance of stock, it is very important to
sample efficiently enough both their mean and their
frequency. In spatial (i.e. sampling) terms, the prob-
lem is the following. Because of biological aggrega-
tion, the high densities develop on small areas. Are
these sampled efficiently enough so as to give a precise
image both of the spatial distribution and of the
histogram? If not, the data will give an image too far
from the reality and the statistics of the stock biomass
assessment will be relevant to the data but not to
reality.

This risk is great in pelagic assessments but there
is a solution to reduce it. It is based on the analysis
of the spatial structure. If the spatial distribution
shows time invariant characteristics (for instance the
location of the high-density areas are the same year
after year) one may choose a sampling strategy for
instance like stratified sampling which enables an
over-sampling of the known rich zones in order to
estimate with better precision the tail of the histo-
gram. On the other hand, if the previous strategy is
not possible because of time variability, then the
nature of the acoustic survey is a prospection with
the same sampling effort in all areas and there will
be a risk of missing extremely high values while sur-
veying. If this is the case, a model is needed to
reconstruct the expected but unsampled tail of the

histogram. Such a model must characterize how on
average the high values are spatially related to the
other ones. The purpose of the present study is to
analyse on an example how the different ranges of
values —high, medium, low, (i. e. the different quanti-
Jes of the histogram)-—are related to each other in
space. Results in this field are expected to lead to
design of more efficient sampling strategies as well
as to proposal of adequate non-linear estimators of
abundance.

The non-linear disjunctive kriging approach is fol-
lowed here. The spatial setting of the histogram quan-
tiles is analysed and modelled. A test is presented and
used to help in the choice between two classes of
model: sailing from low-density areas, are high values
encountered without going through intermediate
values or must one sail through intermediate values
before encountering the high ones? In the first case a
model without transitions would be appropriate
whereas in the second, the use of a diffusive model
would be necessary. The disjunctive kriging model
presented in this paper and fitted to acoustic densities
of Norwegian herring has no transitions and is well
adapted to characterize the very sharp transitions
observed in the spatial distribution of fish density.

METHODS

The data: biological aggregation and sampling effici-
ency

The present data set was proposed by Drs. I, Rét-
tingen and K. Foote from the Marine Research Insti-
tute in Bergen (Norway) as a test data set for the
1991 ICES workshop on the “Applicability of spatial
statistical techniques to acoustic survey data” (Anon.,
1991). The surveyed area corresponds to one of the
spawning grounds of the Norwegian herring stock.
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This stock is part of the arcto-herring group (Drage-
sund et al., 1980). The fish gather in this area for a
few months. They do not show in-and-out migratory
movements from the spawning ground once the
spawning migration has ended. They are not thought
to show large-scale movements on the spawning
ground during the spawning season. Thus, during the
spawning season, the large-scale spatial structure on
the grounds is stable. The survey we deal with was
undertaken in February 1990, after the spawning
migration had occurred and it lasted 4 days. Thus,
we may regard the data as an instantancous sample
of a fixed spatial distribution. The data are acoustic
backscattering of herring integrated along depth and
along segments of one nautical mile along the ship’s
track (Elementary Sampling Distance Unit, ESDU).
The integrated echoes are not converted into actual
fish densities.

The acoustic prospective sampling and a propor-
tional representation of the data are given in figure 1.
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Figure 1. — Proportional representation of the data sampled during
the survey of the Research Vessel *'Eldjarn”, Fecb. 1989 (Institute
of Marine Research, Bergen, Norway).

The maximum value is represented by a circle of a
fixed radius. The radii for the representation of all
other values are deduced by proportionality of the
values to their maximum. The zeros are shown by
black discs. Their frequency in the total set is 52%.
They clearly define the limits of the area of fish
presence and were sampled for this purpose. They do
not represent holes of density inside the area of fish
presence. The histogram of fish density was computed
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Figure 2. — Histogram of the non-zero values.

on the non-zero values (fig. 2). It is highly skewed;
it shows a very long tail. Thus a reflection on the
sampling efficiency of the tail of the histogram is
justified.

The difficulty of estimating the total biomass is
illustrated in figure 3. The figure shows how much
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Figure 3. — Contribution to the arithmetical mean of each quantile,

each quantile of the ranked total data set contributes
to the arithmetic mean of the data. The 13 highest
values, those greater than 10* backscattering units,
represent only 3% of the total set but contribute 45%
of the mean. They also contribute 90% of the variance
of the data. The estimate and its precision are there-
fore highly dependent on the hit or miss of a few
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very high values. If the sampling effort or the sam-
pling strategy are not well adapted to the spatial
structure of the high values, these may not be hit
during a given survey. In this case the data set will
be too regular and the variance value misleading: one
will think wrongly that the low biomass estimate is
precise when this estimate is highly imprecise. We will
now study how the high values are related to the
other values in space.

A disjunctive kriging approach: spatial relation between
quantiles

Each quantile of the histogram is coded by an
indicator. Let us call Z (x) the fish density at point x.
The codification is:

lyms.=1 il Z(X)2z

1;09>.=0 otherwise,

for any cut-off z. The cut-off z defines in space
geometrical sets referred to as A,: inside them Z(x)
has values greater than z (1, ,5,=1); outside them
Z(x) has values lower than z(l,,,»,=0).

We study the spatial setting of the sets defined by
two different cut-offs, for all couples of cut-offs (z, 2').
The spatial sctting of the sets defined by two cut-offs
(z<z') can be described by a conditional probability.
For instance,

P(Z(x+h) =2 |Z(x)<z, Z(x+h)>z)

is the probability that when entering in the domain
of the values greater than z, a value greater than 2’
is encountered. Rivoirard (1993) defined also another
probability for a descending order of the cut-offs, but
we shall only be concerned here with characterizing
the spatial setting of the quantiles for cut-offs in an
ascending order.

Assuming  that the Dbivarjate distribution
(Z(x), Z(x+ h)) is symmetrical, the conditional pro-
bability can be expressed in terms of indicator variog-
rams. Let us denote v, (k) the variogram of the indica-
tor for the cutoff z. y,(h) quantifies the probability
for a vector of length /4 to have one extremity inside
the set A, and the other one outside it:

v,(W=P(Z(x)2z, Z(xth)<z)=y,(—h)
=P(Z(x)<z, Z(x+h)=2z).

Let us denote 7,,-(h) the cross variogram between the
two indicators for the cut-offs z and 2" (z<2). v, (h)
quantifies the probability for a vector of length 4 to
have one extremity inside one of the sets and the
other extremity outside the other set:

V. (=P (Z(x)z2Z, Z(x+hy<z)=7,, (—h)
=P(Z(x)<z, Z(x+h)=z").

P. Petitgas

So we have:
P(Z(x+h)=22[Z(x)<z, Z(x+h)=2)=7,, (W], (h).

Rivoirard (1990, 1993) has characterized different
types of model by the behaviour of the ratio
Y. (B)/y, (h). If it is constant with A, then the sets for
the higher cut-off A,. are fitted inside the sets for the
lower cut-off A, but there is no border effect. The
sets for the higher cut-olf arc not necessarily in the
middle of the sets for the lower cut-off. We are in a
model showing no spatial transition. If the ratio
increases with A, there is a border cffect and we are in
a diffusive model. So the computation of the indicator
variograms and cross variograms serves as a test
to characterize the spatial sctting of the histogram
quantiles. Such a test was used on the herring data.

RESULTS

Fit of a model to the data

Adequacy of the model’s geometrical properties to the
data

The different cut-offs used are chosen on a logarith-
mic scale and are given in table 1. The variograms of
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Figure 4. — Variograms of 4 indicators scaled by their respective
variances (i, (x) is the indicator for the cut-off 10* and n.m. stands
for nautical milcs).

the indicators are shown on figure 4. They are all
structured: this means that the values in each quantile
are aggregated. The range of the variograms decreases
when the cut-off increases (destructuration). Physi-
cally this means that the area of influence around
each point gets smaller and smaller when the value
at the point increases. The variogram ratios are given
in figure 5. All curves have a similar behaviour, The
ratio increases rapidly at short distance, between 0
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Figure 5. — Testing for the existence of border effects. Ratio of the cross-variogram between 2 indicators over the variogram of the indicator
for the lower cut-off (i, (x) is the indicator for the cut-off 10* and n.m. stands for nautical miles).

and 3 nautical miles, then for greater distances it
stabilizes. Thus there is a small border effect of a few
nautical miles. When sailing a distance of a few miles,
the fish density under the boat may change consider-

ably, from one order of magnitude to another on a

log scale. In comparison to the area surveyed, a few
miles is very small. We therefore shall neglect the

small border effect.

Vol. 6, n° 3 - 1533

Table 1. — Four cut-offs on a logarithmic scale and the experimen-
tal probability the fish density has of trespassing them (z represents
the cut-off values, Z represents the random function and P rep-
resents the probability).

z
P(Z (x)22)

10
0.49

104
0.03

103
0.12

102
0.37
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Fizure 6. — Variograms of indicator residuals, R, to R, (n.m. stands for nautical miles).

The data show two geometrical properties: destruc-
turation of the sets with increasing cut-offs and no
spatial transition between cut-offs. Thus the model
with orthogonal indicator residuals (Rivoirard, 1989)
is well adapted to describe the data. We shall now fit
this model to the data and extract from it a quantita-
tive description of the fine spatial structure.

Fit of the model and inference of parameters

The linear regression between an indicator for a
high cut-off z’ on the indicator for a low cut-off z
defines the conditional probability for Z(x) to tre-
spass z' when it is known that Z(x) trespasses z. The
residuals of such regressions play a crucial role in
the model with orthogonal indicator residuals. The
residuals arc defined as follows:

Z(x)=z; _ ]Z(x)?zjrl

T; T,

J j—1

1
R;(x)=

where T;=P(Z(x)2z)=E(l,:.) and where z;_,
and z; are 2 successive cut-offs in ascending order.

Rivoirard (1989) has shown that taking n+1 cut-
offs on Z(x), the n+1 residuals R,(x)=1,
R, (x), .... R,(x) are uncorrelated 2 by 2 and gener-
ate the n+1 indicators:

j
]Z(x)sz':Tj Z Ri(x)'
i=0

The probability T; is known experimentally. The
estimation of the indicator at an unsampled point x,
varies from 0 to 1 and measures the conditional
probability for Z(x) to trespass z; when it is known
at the sampled points what cut-offs Z(x) trespasses.
For estimating the indicator at x,, it is sufficient to
krige separately the j residuals. The estimation of the
indicator relies on the spatial structure of the resid-
uals. For instance, suppose that the structure of the
residual R, (x) is a pure nugget cffect. Its kriging
equals its mean at xg. Thus it is zero and the residual
contributes nothing to the estimation of the indicator.

Aquat. Living Resour.
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Table 2. — Residuals of the linear regressions of indicators for
successive cut-offs. R;(x) is the residual of the regression of the
indicator for the cut-off z;(1; 5. ) on the indicator for the imme-

ciate lower cut-off z;_, (72

R, R, R, Ry R, Ry R, R, Ry R
z, 10 50 100 200 500 1000 2000 5000 10000
22, 0 10 S0 100 200 500 1000 2000 S000

There is no spatial information in it for the prediction.
We shall now focus on the structures of the residuals
fitted on the data.

Ten cut-offs are considered on the histogram for
fitting the modzl: 0, 10, 50, 1CJ, 2CJ, 5CJ, 1CI, 2 €2,
5600, 10C3). There are ten residuals, Ry (x) to Ry (x).
They are given in table 2. The variograms of the
residuals R, (x) to Ry(x) are computed along the
transects and are shown on figures 6 and 7. The para-
meters of the fitted spherical models are given in

Tabli2 3. — Parameters of the spherical models fitted on the variograms of the residuals.

Nesidual R, R, Ry R, 498 Re I, Ry Ry
Nugget ¢, 0.20 0.50 0.28 0.60 1.50 2.50 4.00 20.00 70.00
Sill ¢ 1.30 0.12 0.14 0.10 0.70 ~ 0.70 1.09 5.00 30.00
Ranzs (n.m) 35 7 8 2 5 2 2 2 5
coflctcy) % 13.3 81.3 67.5 85.7 €3.2 78.1 £3.0 €0.0 70.0
Vol. 6, n° 3 - 1873
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Figure 8. — Estimation by disjunctive kriging of the gcometrical
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table 3. The consistency of the different fits is discus-
sed in Petitgas (1991) as the different models for the
residuals are not independent from each other and
must satisly some relation. For the residuals R, to
R, the variograms show a progressive destructura-
tion (the range decreases and the sill increases). For
the residuals R to Ry, the variograms show a stabi-
lization of their parameters: the range varies from 2
to 5 nautical miles, the nugget value stays near 80%
of the variance. The residuals Rg to Ry are not very
structured and we shall consider them to be pure
nugget effects. Physically, this means that when enter-
ing the sets Agy, where the fish density is greater
than 500, it is not possible to predict where the fish
density may trespass greater cut-offs nor to predict
the value of the cut-off. The densities higher than 10*
arc a little aggregated (their indicator variogram is
structured), they form small grains that are located
independently from the other valucs within A;q,. On
the other hand, the limits of A, may be estimated
well because the residuals R, to Ry are structured.

The values greater than 500 represent 90% of the
herring biomass. The geometrical sets defined by the
cut-off 500 correspond to what could be called the
herring orebody. The geometry of the orebody may
be predicted correctly from the sampled data, but not
the local densities within it. Thus, the estimation of
the mean density is imprecise. The indicator 1, )5 500
was estimated by kriging and the geometrical sets
Asgo are represented in figure 8.

P. Petitgas

DISCUSSION-CONCLUSION

The quantiles of the herring histogram had a par-
ticular spatial setting that was well described by a
model with orthogonal indicator residuals. The
geometrical sets defined by increasing cut-offs showed
progressive destructuration, As the cut-offs increased,
the sets were shown to be fitted in cach other without
border effects. Bigh values could occur near low
values without transition. The fit of the model revea-
led that once in the rich areas, one could no longer
predict either the value the fish densitly could trespass
or where this might happen. This result leads one to
reflect on the nced for an appropriate abundance
estimator as well as for an appropriate survey design.

The previous analysis tells us that higher densities
than the onc sampled could have existed that were
not sampled. Thus, if one takes the data arithmetical
mean as an abundance estimate, the imprecision of
this estimate could be far greater than the one that is
computable from the data, as this estimate is very
sensitive to the hit or miss of high values. Because
the sumpling fluctuations may be very high both on
the frequency and on the values of the tail of the
histogram, a model is needed to take into account
the presence of high densities even if thcy were not
sampled. It is thought that such a model would not
only need to state how the high values are organized
in space amongst the other values, but also would
need to statec a physical relation between histogram
skewness and variogram destructurations.

As in the rich arcas the high values are indepen-
dently positioned from the other values, one is led to
think that the high values may be treated separately
from the rest of the values in the estimation method.
Simmonds et al. (1991) discuss extensively the possi-
bility to stratify the data on the data values themsel-
ves. This can be criticised as many classes will lcad
to a zero variance for the estimate. Johannesson and
Mitson (1983) had suggested that only a few classes
be considered because they argued these would have
an ecological meaning. We cffectively observed here
a spatial non-correlation property of the histogram
tail which could justify stratification of the data using
the sample values. Gerlotto and Stequert (1983) had
uscd such characteristics for simulation purposes.
From the present study, it is our thinking that the
average biomass could be estimated in two steps: the
mean of the histogram tail requires a model-based
estimator whereas the mcan of the other values can
be estimated by a simple arithmetic mean.

If time—invariant characteristics of the spatial
distribution can be cxhibited, these may serve for
designing future surveys. The existence, the dimen-
sions and the number of arcas where high values
occur unpredictably are thought to be important
pieces of information. In the present case on
Norwegian spring —spawning herring, there are three
separate areas (fig. &) inside which the last quantile
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(Z (x)>10%*) is located independently from the others.
These areas are of large dimensions and their cumu-
lated surfaces represent 34% of the total area surveyed
(P(Z(x)=10*)=0.34). Thus the regular sampling
design goes through them often and can be said to
be adapted to the geometry of the interesting areas.
Other stocks or the same stock during another season
may show another spatial splitting of the areas where
the high values occur independently from the others.
These areas could be of small dimensions, there could
be many or few. Such geometric disposition in space
of the interesting areas Lo survcy may require more
adaptive sampling strategics.

The sampling effort in the interesting areas can be
calibrated on the spatial structure of the high values
which contribute the most to the biomass estimate.
The variogram range of the indicator of the high
values quantifies the mean width of the high-value
aggregates. This parameter could serve to calibrate
the sampling effort, i.e. the inter-transect distance. If
the inter-transect distance approximates the range, all
aggregates are theoretically visited by the sampling.
Thus the tail of the histogram is better known. In the
present case study, the inter-transect distance approx-
imated the along transect range. After a discussion
on anisotropy, the sampling was thought well adapted
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both to the structure and to the setting of the high
values (Petitgas, 1991).

The geometrical properties of the fitted model could
be general for pelagic fishes. It is indeed a general
rule (Taylor, 1961) that for aggregated spatial distri-
butions gencrating skewed statistical distributions like
the ones we deal with, the local variance is a power
function of the local mean. The fact that the last
quantile appeared independently positioned from the
others within specific arcas could be related to the
fact that the local variance is very high in these areas,
too high for one to detect correlation. It is possible
that our result is a spatial way of expressing Taylor’s
power law. If so, one could in general be able to
exhibit a cut-off z and define areas where the last
quantile appears uncorrelated to the others. A map
of these interesting areas like figure 8 would serve to
estimate the number of separated sets as well as their
surfaces and thus help define an appropriate survey
design.

Lastly, the existence of these areas where the high
values occur in an aggregated fashion but without
correlation with their surroundings leads one to inter-
pret rich areas for pelagic fishes as areas where very
high densities may occur, i. e. areas of potentially high
densities, rather than areas where the fish density is
on average high.
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