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SUMMARY 

 
We examined the possibility of eliciting informative priors for the parameters of a biomass 
production model with emphasis on the intrinsic population growth rate of Atlantic bluefin tuna 
(Thunnus thynnus). We reviewed the literature to propose probability distribution functions for 
the vital rates and used a matrix population model structured by age (Leslie) to compute the 
population growth rate. A generalized biomass production model is applied on two CPUE and 
catch datasets (1976-1996 and 1976-2006) using informative priors. The population growth 
rate prior has a diffuse distribution and is very sensitive to young of the year mortality rate. 
Thus, we compared the performances of this prior with a commonly used prior for tunas 
population growth rate. We noticed satisfactory predicted CPUE for both series and priors. 
Therefore, the choice of relevant prior distributions for the biomass production model seems 
debatable for tunas. 
 

RÉSUMÉ 
 

Ce document étudie la possibilité d'obtenir des priors informatifs pour les paramètres d’un 
modèle de production de la biomasse en soulignant le taux de croissance de population 
intrinsèque du thon rouge de l’Atlantique (Thunnus thynnus). Les publications en la matière ont 
été examinées afin de proposer des fonctions de distribution de la probabilité en vue d'obtenir 
des taux démographiques. Un modèle de population de matrice structuré par âge (Leslie) a été 
utilisé pour calculer le taux de croissance de population. Un modèle de production généralisée 
de la biomasse est appliqué à deux jeux de données de la CPUE et de capture (1976-1996 et 
1976-2006) en utilisant des priors informatifs. Le prior du taux de croissance de population 
présentait une distribution diffuse et est très sensible au taux de mortalité des plus jeunes âges. 
Nous avons donc comparé les résultats de ce prior avec un prior utilisé habituellement pour le 
taux de croissance de la population de thonidés. Nous avons constaté une CPUE prédite 
satisfaisante pour les deux séries et les priors. Le choix des distributions du prior pertinent 
pour le modèle de production de la biomasse semble donc discutable pour les thonidés. 
 

RESUMEN 
 

En este documento se examina la posibilidad de obtener distribuciones previas informativas 
para los parámetros del modelo de producción de biomasa, centrándose en la tasa de 
crecimiento intrínseco de la población de atún rojo del Atlántico (Thunnus thynnus). Se 
examinó la bibliografía para proponer funciones de distribución de la probabilidad para las 
tasas vitales, y se utilizó una matriz de modelo de población estructurado por edad (Leslie) 
para calcular la tasa de crecimiento de la población. Se aplicó un modelo de producción de 
biomasa generalizado a dos CPUE y conjuntos de datos de captura (1976-1996 y 1976-2006) 
utilizando distribuciones informativas previas. La distribución previa de tasa de crecimiento de 
la población presentaba una distribución difusa y era muy sensible a la tasa de mortalidad de 
los juveniles del año. Por tanto, comparamos los resultados de esta distribución previa con una 
distribución previa utilizada comúnmente para la tasa de crecimiento de las poblaciones de 
túnidos. Observamos que las CPUE predichas eran satisfactorias para ambas series y 
distribuciones previas. Por tanto, la elección de las distribuciones previas pertinentes para el 
modelo de producción de biomasa parece discutible para los túnidos. 
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Introduction 
 
Bayesian state-space modelling framework has been widely applied for ecological studies and is now developing 
in a functional way for fisheries stock assessment. These models perform powerful inferences in particular 
because they account for both observation errors and process errors (Punt et Hilborn 1997). Estimations made in 
this context can be relatively imprecise and the use of informative priors can be a way to improve inference 
(McAllister et al. 2001). Besides, informative prior specification allows the incorporation of fisheries-
independent information or fisheries information that is not used in standard stock assessment. We present here 
an application of a generalized biomass dynamic model on the East Atlantic and Mediterranean bluefin tuna 
stock with peculiar attention on the prior specification of the parameter of the intrinsic population growth rate, r. 
Importantly, in Bayesian biomass dynamic models, informative prior distributions could be a way to circumvent 
standard problems, such as the correlation between parameters (especially r and K), the “one-way-trip” (i.e. the 
fact that the CPUE do not display contrast) or the non-stability of catchability coefficients (due to hyper-
depletion / hyper-stability). 
 
Our objectives are thus: (i) to carry out a deep investigation in the literature to propose an informative prior for 
the population growth rate of the East Atlantic and Mediterranean bluefin tuna stock, and to explore the 
possibilities of using this prior in a biomass (ii) to evaluate the performances of a biomass dynamic model, 
within a Bayesian state-space framework, to assess this stock. 
 
 
Mater ial and methods 
 
Data series 
 
Because biomass dynamics model cannot reflect of recruitment or juveniles stages, we used two sets of 
abundance index: 
 
 − Standardized CPUE index combined for the Spanish and Moroccan traps from 1981 to 2006. 
 − Standardized CPUE index for the Japanese longline fleet from 1976 to 2006 (Oshima et al. 2009). 

 
These CPUE have been calculated from nominal CPUEs expressed in number of fish. As standardized CPUE 
index in biomass are not available, we chose to use these data, as a first approximation, assuming that trend in 
number of fish and biomass remain similar. However, this assumption will have to be relaxed in future 
applications. 
 
Initially the model is fitted on inflated total catch for East Atlantic bluefin tuna (1976-2006). Considering the 
uncertainties in the catches and to verify the consistency of the model, we also applied the model on a shorter 
time series of catch and CPUE (i.e. 1976-1996) to avoid the last decade during most of the uncertainties took 
place (ICCAT 2005; 2009). 
 
Bayesian state-space model 
 
We applied a generalized biomass dynamic model (Pella & Tomlinson) formulated as a state-space model in a 
Bayesian framework (Meyer et Millar 1999). 
 
Process equation 

𝐵(𝑡 + 1) = �𝐵(𝑡) + 𝑟.𝐵(𝑡) �1 − 𝐵(𝑡)
𝐾
�
𝑚−1

− 𝐶(𝑡)� 𝑒ɛ(𝑡) ;  ɛ(𝑡)~𝑁(0,σ𝜀2)   [1] 

 
r is the intrinsic population growth rate, K the carrying capacity and m the shape parameter. ε(t) is the process 
error at time t, is due to demographic variability. We assumed that errors are multiplicative, independent and 
identically distributed. 
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Initialization 
 
The initial state of the stock is proportional to carrying capacity.  Assuming contrasting stock status in 1976, we 
tested 2 values for α: whether initial biomass is 90% or 50% of carrying capacity. 
 
Observation equation 
 
The observation process connects the state process [1] to CPUE. We assumed CPUE of fleet i at time t, Iobs

i

 

(t) , 
is proportional to the biomass. 

𝐼𝑖𝑜𝑏𝑠(𝑡) = 𝑞𝑖 .𝐵(𝑡). 𝑒𝜏𝑖(𝑡);  𝜏𝑖(𝑡)~𝑁�0,𝜎𝜏,𝑖
2 �   [2] 

 
qi, is the catchability for fleet i. τ i(t) is the observation error at time t (due to measurement errors or change in 
fish catchability). σ²τ,i
 

 is variance of observation error for fleet i 

The Bayesian inference was achieved using JAGS 2.1.0 software; which implement the Gibbs algorithm to 
obtain samples of the posterior distributions of variables of interest (http://www-
fis.iarc.fr/~martyn/software/jags/). Monte-Carlo Markov chains were analysed with R and rjags package and 
convergence diagnostics were realized using Gelman-Rubin diagram (http://cran.r-
project.org/web/packages/rjags/index.html). 
 
Prior distributions 
 
Non-informative priors 
 
Because of lack of information and data, non-informative priors were used for catchability coefficients, 
observation error variance and process error variance. Following Meyer and Millar (1999), we used inverse 
gamma prior for σ²τ and σ²ε and a uniform prior on log(qi
 

). Priors are reported in Table 1. 

Shape parameter 
 
We used for m a uniform prior with 1.1 as lower bound and 3.5 upper bound. Because, m>2 makes little 
(unclear) sense, we also constrained this parameter to be equal to: m=1.1, m=1.5 and m=2 within 3 scenarios. 
 
Carrying capacity 
 
Prior distribution for carrying capacity was simply assumed to follow a Gaussian distribution with mean equal to 
the maximum biomass estimated by VPA with 30% of CV. This corresponds to the estimated biomass in 1958 of 
347816 tons (with a SSB of 323776 tons). 
 
Intrinsic population growth rate 
 
To build an informative prior of r, we used a demographic approach proposed by Mc Allister et al (2001). We 
chose to work with Leslie matrix model. This model is based on two equations: 
 
 − The survival equation 𝑁𝑖+1,𝑡+1 = 𝑁𝑖,𝑡 . 𝑆𝑖Ni, t is the number of age i individuals at time t, and Si the 

survival rate from age i to age i+1. 
 
 − The reproduction equation  𝑁0,𝑡+1 = � 𝑁𝑖,𝑡

𝐴
𝑖=0 .𝑚𝑖 the number of age 0 individuals depends on mi

 

: 
average number of age zero individuals produced by an individual of age i. 

As matrix form, the model is written[𝑁𝑖]𝑡+1 = 𝐿. [𝑁𝑖]𝑡with [Ni] t

 

�

𝑚0 𝑚𝑖 𝑚𝐴 0
𝑆0 0 . . . 0
0 𝑆𝑖 . . 0
0 0 𝑆𝐴 0

� 

 is the vector of numbers of individuals in age 
group i at time t and L is the Leslie matrix of the form: 

  

http://www-fis.iarc.fr/~martyn/software/jags/�
http://www-fis.iarc.fr/~martyn/software/jags/�
http://cran.r-project.org/web/packages/rjags/index.html�
http://cran.r-project.org/web/packages/rjags/index.html�
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This matrix is constant over time, we can write: [𝑁𝑖]𝑡+𝑛 = 𝐿𝑛 . [𝑁𝑖]𝑡. The matrix coefficients are all positive, it 
can be shown the rate of population growth is 𝑟 = ln(𝜆), with λ the first eigen value of matrix L. From the first 
eigen value computed for 20000 Leslie population matrices, we obtained an empirical distribution of the intrinsic 
growth rate of the population and a probability density function is fitted. 
 
To do so, available information in the literature on various parameters of reproductive biology and life history 
traits of bluefin tuna was collected to perform the probability distribution functions (pdf) of each parameter of 
interest, taking into account knowledge and uncertainties on their distributions (Table 2). 20000 vectors were 
randomly drawn to calculate the different components of Leslie population matrices, i.e., annual survival rate at 
age i Si (age 1 to age 35), survival of age 0 S0 (young-of the year), and expected number of female produced per 
spawner mi
 

 , respectively. 

Expected number of female produced per spawner 
 
mx is the mean number of age 0 female (eggs) produced per a age-x female. It is the product of the sex-ratio sr, 
the annual fecundity fx, and the rate of mature female at age x Ox
 

𝑚𝑥 = 𝑠𝑟. 𝑓𝑥.𝑂𝑥 

:   

 
 Sex-ratio 
 
We considered sr = 0.5 
 
Annual fecundity 
 
fx

 

 is the annual fecundity in number of oocytes per year 

𝑓𝑥 = 𝑁𝑏 . bf.𝑊𝑥 =
𝑇
𝐼𝑖

. bf.𝑊𝑥 

Nb is the number of batches per year which is deduced from the time spent on a spawning ground T and the time 
interval between 2 batch Ii. bf is the relative batch fecundity (i.e. the number of oocytes expelled per grammes of 
body. Wx
 

 is the mean weight of an age-x female during spawning. 

Spawning periodicity: Archival tagging reveals various migratory patterns, with matures individuals absent of 
spawning ground during reproductive events (Galuardi et al. 2010; (Fromentin et Powers 2005). In addition to 
that, non stimulated spawning cannot be obtained in captivity Lioka et al. (2000) We tested 3 hypothesis for 
spawning periodicity: every year, every 2 years and every 3 years by dividing the total fecundity by 2 or 3. 
 
Relative batch fecundity: We examined previous studies and data on the fecundity of bluefin and other tunas: 
(Rodriguez-Roda 1967) (Baglin 1976) (Schaefer 2001) (Farley et Davis 1998), (Schaefer et al. 2005) (Medina et 
al. 2002) (Itano 2000) (Medina et al. 2007). After interactions with fish biologists, we finally retained the most 
recent works of Medina et al (2002 and 2007). We used values of batch fecundity given in these studies for 2 
samples (n=24 and n=48). A Gaussian distribution N(μbf, σbf ) is fitted, we obtained μbf,=61.44 and σbf

 
=48 

Spawning frequency: Spawning frequency is generally estimated from the observation of post-ovulatory 
follicles. Despite uncertainties on the length of the regression period, one can deduced the inter-spawning 
interval from the number of mature females presenting this type of follicles. Table 3 provides estimation of inter-
spawning interval for 6 species of tunas. For bluefin this period is probably around 1.2 (Medina et al. 2007). 
 
Duration of spawning process: Direct observations throw archival tagging tend to reveal that a spawner may stay 
for 2 weeks on a spawning ground (Block and Stevens 2001). We then considered a reasonable value of 14 days 
with 90% of probability that this value stays between 7 and 21. This correspond approximately to a normal 
probability function N(μT, σT ) with μT = 14 et σT 

 
= 4 

Length growth and length-weight conversion factors 
 
Because the growth curve proposed by Restrepo et al (2009) is very close to this of Cort (1991) and because we 
wanted weight-at-age for fish > 20 yrs, we used the mean length at age and standard deviation predicted by 
Restrepo et al. (2009). Values drawn from those distributions are converted in weight with the conversion factors 
used for East Atlantic bluefin. 
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𝑊𝑥 = 2.95. 10−5.𝐿𝑥2.8989 ; 𝐿𝑥~𝑁(𝜇𝑥 ,𝜎𝑥) 
 

Maturity rate 
 
Histological observation of ovaries associated with the count of translucent zones on the ray of the first dorsal fin 
showed that median sexual maturity is reached at 103.6 cm FL. (see Corriero et al. 2003 based on a sample of 
501 BFT females from the western and central Mediterranean). We considered for our study that half of the 
females are mature at 4 years-old and that there are all spawner after. 
 
Survival rates and natural mortalities 
 
Natural mortalities after the first year 
 
Various works investigated some empirical relationships between natural mortalities of adults/ juveniles and 
growth in length/weight (see McGurk 1986) (Lorenzen 1996), (Andersen et Beyer 2006) (McCoy et Gillooly 
2008) (Gislason et al. 2008). We choose to refer to the simple relationship proposed by Lorenzen et al (1996) 
(Figure 1). 
 

𝑀𝑊 = 𝑀𝑢𝑊𝑏 
 
MW is the natural mortality rate at weight W, Mu

 

 is the natural mortality per unit of weight and b is the allometric 
scaling factor. This relationship has been adjusted to data concerning 269 fish populations (adults and juveniles) 
frequenting temperate ecosystems. 

Natural mortality during the first year 
 
Mortality process operating from fecundation to the end of the first year is known to be very high and to mostly 
determine the recruitment success of a given cohort (e.g. Hjort 1926). We worked specifically on a distribution 
for mortality/survival rate of young-of the year. We considered that the age 0 corresponds to the first six months 
of live (from birth to end of December). The mortality rate M0 is the sum of two terms: MHr, mortality rate due to 
hatching rate and My. 
 

𝑀0 = 𝑀𝐻𝑟 + 𝑀𝑦  

mortality of the early stages (larvae and then juveniles). 

 
Hatching rate: For Thunnus thynnus, (Lioka et al. 2000) indicate hatching rates of 83.3% and 88.2%, with 
respectively 57% and 38.3% qualified as “normal hatching”. (Margulies et al. 2007) observed a mean hatching 
rate of 83% (standard deviation 14.7%) on Thunnus albacares but did not give information about larvae viability. 
We retained Lioka et al. results and proposed to considerer that Hr have a Gaussian distribution with mean μHr = 
47.65 and a coefficient of variation of 10%. MHr 

 
is given by: 

𝑀𝐻𝑟 = log �100
𝐻𝑟
�, with 𝐻𝑟~𝑁(𝜇𝐻𝑟,0.1𝜇𝐻𝑟) 

 
Daily mortality rate of larvae: Total mortality between hatching and the end of age 0 is split into daily mortality 
rate Mdx. In the same way as the mortality rate of adult, an empirical relationship was established between the 
daily mortality rate of larvae and their dry weight wd

 
 (Peterson et Wroblewski 1984) (McGurk 1986). 

  𝑀𝑑 = 2.210−4𝑤𝑑−0.855 10-5 g <wd< 7 10-3

  𝑀𝑑 = 5.2610−3𝑤𝑑−0.251.9 g <w
 g 

d <1,4 10'4
 

 g 

We used these relationships to predict an "average" daily mortality of the larvae and juveniles from hatching 
until 180 days after hatching. To estimate the variance around the average mortality rate, we applied (Mangel et 
al. 2009) relationships on McGurk's data, i.e.: 

 
log(𝑀𝑑𝑥) = 𝛼 + 𝛽. log(𝑤𝑑(𝑥)) + 𝑍𝜎with 𝑍𝜎~𝑁(0,𝜎)for wd

    log(𝑀𝑑𝑥) = 𝛼′ + 𝛽′. log(𝑤𝑑(𝑥)) + 𝑍𝜎′with𝑍𝜎′~𝑁(0,𝜎′)for w
< 0.00504 g 

d
 

> 0.00504 g 

The cumulated mortality upon this period is:   𝑀𝑦 = ∑ 𝑀𝑑𝑥180
𝑥=0  
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Moreover, several observations of mortality/survival rates have been achieved in the field and during larval 
rearing. Compilation of the values found in the literature is presented in Table 4. 
 
To finalise this estimations, we however need to know the daily growth in weight from 0 to 180 days. For 
Thunnus albacares, the duration of the yolk sac stage (immediately after hatching) is 56 to 65 hours, the dry 
weight of larvae at this moment was at 22. 10-6 g (Margulies et al. 2007). We used a growth curve in weight 
determined for BFT larvae aged 2-20 days from a sample of 157 individuals collected in the wild (Balearic 
Islands) (Garcia et al. 2006). We assumed that growth in weight is exponential until 60 days after hatching. 
 
  j=0 et j=1 𝑤𝑑(𝑗) = 22.10−6 
  2<j<20  𝑤𝑑(𝑗) = 0.0126 ∗ 𝑗1.851 
  20<j<60  𝑤𝑑(𝑗) = 𝑤𝑑(20). 𝑒(𝑘1∗𝑗) 
 
 k1 is calculated as wd

 

(60) reaches a dry weight determined from the growth curve used for juveniles with a 
hydration coefficient of 85%. (Mangel et al. 2009) 

  60<j<180  𝑤𝑑(𝑗) = 𝑊𝑗𝑢𝑣(𝑗). (1 − ℎ𝑓) 
 
Between 60 and 180 days after hatching, length growth and the average weights of individuals were calculated 
using a relationship derived from otolith readings on individuals between 600 and 1000 grams (La Mesa et al. 
2005) on bluefin tuna. The variability between individuals was taken into account by assuming that the weight is 
distributed according to a normal with a coefficient of variation of 0.1. 
 

𝑊𝑗𝑢𝑣(𝑗)~𝑁(𝑤𝑗𝑢𝑣(𝑗),0.1𝑤𝑗𝑢𝑣(𝑗)) 
with 𝑤𝑗𝑢𝑣(𝑗) = 1.9210−6. �l(𝑗)3,39&𝑓𝑙(𝑗) = 41.20 + 2.37. j 

 
  Wjuvi
   fl(y) fork length y days after hatching (mm) 

 weight of a juvenile (g) 

  j age in days 
 
Because this demographic approach that induced an extensive literature survey led to unexpected outputs (see 
Results section), we also used another prior of r based on the outputs of a meta-analysis of the maximum 
reproductive rate of scombrids species performed by Myers et al (1999). In this case, the prior is a lognormal 
distribution function with a mean of -1.38 and a standard deviation of 0.51 on a log scale. This corresponds to 
0.13 and 0.48 as 10 and 90% quantiles and a mean of 0.29. 
 
 
Results 
 
Prior distribution for population growth rate 
 
Assuming a reproductive event every 3 years, the median of the population growth rate was 0.59 (0.38 for 
standard deviation), i.e. a fitted density function of a Gaussian distribution with a mean at 0.61 and a 62% CV 
(Figure 2). 
 
The median of the population growth rate increased respectively to 0.66 and 0.78 when considering spawning 
every 2 years or every year. According to previous studies on scombrids and expert knowledge, the median of 
this distribution is high, but the distribution of r was also highly sensitive to mortality rate of one-year old fish 
(ie. M0

 

, see Figure 3). Nevertheless, we considered the distribution shown in Figure 2 as a prior distribution for 
the population growth rate of ABFT. The objective is to realize the compatibility of such a prior with the 
abundance indices and catch observed. 

Convergence 
 
For runs on long time series (1976-2006), we first tested 2 priors for r ie r ~ Normal(0.60,0.37) & r ~ 
Lognormal( -1.38,0.51) (Millar & Meyer's prior). MCMC chains achieve stationary distribution after 80000 
iterations except for α (proportion of K at the beginning of the series) = 0.5 and m = 1.1. 
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For runs on short time series (1976 to 1996) we used the same sets of priors and tested 2 possibilities for m=2 & 
m~Uniform. Stationary distribution is achieved after 80000 iterations for all set of parameters. 
 
Demographic parameters posterior distributions 
 
For runs on long time series, median values of r posterior distribution are over 0.4 for model I' - 
r~Normal(0.35,0.2) and around 0.6 for model II - r ~ Normal( 0.60,0.37) (Table 5 and Figure 4). K posterior 
distributions shift to the right of prior distributions with a median value around 400000 tonnes. With a higher 
population growth rate (model II) m values are below 2. If we use a priori a lower value for the population 
growth rate, the median of the distribution shape parameter takes values greater than 2. 
 
These values are sensibly different if the last 10 years are not considered in the time series (Table 6 and Figure 
5). With model I' median values of r remain around 0.3. The posterior distribution of K in this case is shifted to 
the right (median value of around 320 000 tons). Finally, the posterior distribution of the shape parameter 
indicates that the most probable values fall to 1.5. 
 
Consideration of shorter time series (until 1996) leads to estimate lower values for the parameters r, K & MSY. 
The time series of catches between 1996 and 2006 has a strong influence on our results. 
 
Fitted values and stock status 
 
The biomass estimated by the model from the long time series are larger than those estimated from shorter time 
series (1976-1996). Therefore, if we chose the example of 1996 estimated fishing mortality is 2-3 times higher if 
one considers the estimates made on the shortened time series (Figures 6 and 7). 
 
The CPUE predicted by the model are more satisfactory for the Japanese longlines than the traps and the model 
is roughly able to track the trends. However, the predicted CPUE are unable to reproduce the year-to-year signal 
(as the VPA) and the 95% confidence intervals are very large for both series, indicating large uncertainties 
(Figures 8 and 9). 
 
Discussion 
 
• Eliciting prior 
 
In a Bayesian dynamic model, r is often derived from statistical analyses or meta-analyses stemming from stock 
assessment models (see e.g., Meyer and Millar 1999). However, such an approach tends to move the hidden 
assumptions into the building of the prior. For instance, the meta-analysis on r performed by Myers et al. (1998) 
assumed that the stock-recruitment relationships of the studied stocks are known or can be inferred from the 
data. The value of r commonly used in simulations or modelling approaches for large pelagic fish is ~0.3. 
However, this value is highly debatable as soon as we look in depth the biological or the modelling assumptions 
that are made. Therefore, we chose to build a prior of r based on using all the biological information available. 
Unfortunately, the outputs appear unrealistic as bluefin tuna would have a higher growth rate than commonly 
assumed for anchovy. Actually the problem totally relies on the uncertainty about M0 (which is true for all the 
fish species) and which is not solved in Mangel et al.’s (2009) approach. A way to circumvent this problem 
would have been to postulate a stock-recruitment relationship, so that we would not have to estimate M0

 

. 
Unfortunately, this remedy does not look better in the case of EBFT. 

• Convergence 
 
For runs on long time series, our results tend to indicate an incompatibility between the prior distributions of the 
population growth rate, some values of m (the shape parameter) and the 1976-2006 CPUE data. Indeed, a 
relatively low population growth rate (0.3) and m = 1.1 did not allow the model to converge. 
 
• Short time series (1976-1996) versus long time series (1976-2006) 
 
Running the model on a shorter time series confirm the problem of compatibility between CPUE and catch data 
with the priors on r, m and K. In the case of shorter time series, we find more “reasonable” (i.e. expected) 
posterior distributions of the r. 
The diagnosis in 1996 led to believe that the stock is strongly overfished and that a major reduction in catches is 
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needed. However, this is in contradiction with the high catch levels between 1996 and 2006 (between 30,000 
tonnes to 40,000 for non-inflated catch and between 40,000 and 50,000 tonnes for inflated catch) because, as we 
said, this parametrisation of the biomass dynamic model cannot handle this high catch volume. The only way of 
the model to deal with these catches is to estimate large values of r and K (and thus high BMSY

 

), probably 
because the CPUE series did not display any strong contrast. Although these gears target approximately the same 
age classes, their signals are not similar and this probably makes problem for the estimation of the parameters of 
the biomass dynamics models. The traps catch tuna during their migration while the long-line target a mix of 
individuals (i.e., potentially migratory and resident individuals in feeding areas). It is also not excluded that the 
standardization of CPUE traps should involve oceanographic conditions that may affect the migration routes of 
tuna to reflect the size of the migrant stock. 
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Table 1. Priors distribution. 

Parameters Prior 

r 
Normal (0.60; 0.37) 

Lognormal (-1.38,0.51) 

K Normal (347815.98, 104344) 

m Uniform (1.1 , 3.5) 

σ²ε Inverse Gamma (0.01 , 0.01 ) 

qi log(qi ) ~ Uniform (log(10⁻6) , log(10-1)) 

σ²τ,i Inverse Gamma (0.01 , 0.01 ) 
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Table 2. Parameters and pdf used for intrinsic population growth rate informative prior. 
 

Sr Sex-ratio 𝑆𝑟 = 0.5 

 

f Annual fecundity at age 
x (oocytes) x 𝑓𝑥 = 𝑏𝑓.

𝑇
𝐹

.𝑊𝑥  

 W Weight at age x (g) x 𝑊𝑥 = 2.95.10−5.𝐿𝑥2.8989 

L Fork length at age x 
(cm) 

x 𝐿𝑥~𝑁(𝜇𝐿𝑥 ,𝜎𝐿𝑥) 

bf Batch fecundity 
(oocytes.g-1 𝑏𝑓~𝑁(𝜇𝑏𝑓,𝜎𝑏𝑓); μ) bf=61.44 σbf,

F 

=48 

Interspawning interval 
(day) 𝐹 = 1.2 

T Time on spawning 
ground (day) 𝑇~𝑁(𝜇𝑇 ,𝜎𝑇); μT=14 σT,

 

=4 

O Maturity rate at age x x 𝑂𝑥 = [0,0,0,0.5,1,1,1, . . . .1,1] 
 

M Mortality rate at age 0 
(year

0 
-1 𝑀0 = 𝑀𝐻𝑟 + 𝑀𝑦 ) 

 M Mortality at hatching 
rate 

Hr 𝑀𝐻𝑟 = log(100 𝐻𝑟⁄ ) ;  𝐻𝑟~𝑁(𝜇𝐻𝑟 ,𝜎𝐻𝑟); μHr=47.65 σHr,

 

=4.76 

M Accumulated mortality 
from hatching to 180 
days after hatching 

larv 
𝑀𝑦 = �𝑀𝑑𝑗

180

𝑗=0

 

 Md Daily mortality rate 
from 0 to 180 days after 

hatching (day

j 

-1

if 𝑤𝑑(𝑗) < 0.00504log(𝑀𝑑𝑗) = 𝛼 + 𝛽. log(𝑤𝑑(𝑗)) + 𝑍𝜎with 

𝑍𝜎~𝑁(0,𝜎); α=log(2.2 10) 
-4

 
), β=-0.85, σ= 0.80 

if 𝑤𝑑(𝑗) < 0.00504log(𝑀𝑑𝑗) = 𝛼′ + 𝛽′. log(𝑤𝑑(𝑗)) +
𝑍𝜎′with𝑍𝜎′~𝑁(0,𝜎′); α'=log(5.26 10-3

 

) β'=-0.25  

wd Individual dry weight j 
days after hatching (g) 

(j)  j=0 et j=1  𝑤𝑑(𝑗) = 22.10−6 

 2<j<20   𝑤𝑑(𝑗) = 0.0126 ∗ 𝑗1.851 

 20<j<60   𝑤𝑑(𝑗) = 𝑤𝑑(20).𝑒(𝑘1∗𝑗)  

 61<j<180  𝑤𝑑(𝑗) = 𝑊𝑗𝑢𝑣(𝑗). (1− ℎ𝑓) 

 k Exponential growth 
scaling factor 𝑘1 = 0.2085992 

 h Hydratation factor for 
juveniles 

f ℎ𝑓 = 0.85 

 Wjuv Juvenile wet weight j 
days after hatching (g) 

(j) 𝑊𝑗𝑢𝑣(𝑗)~𝑁(𝑤𝑗𝑢𝑣(𝑗),0.1𝑤𝑗𝑢𝑣(𝑗))𝑤𝑗𝑢𝑣(𝑗) = 1.9210−6. �l(𝑗)3,39 

 fl(j) Juvenile fork length j 
days after hatching 

(mm) 
𝑓𝑙(𝑗) = 41.20 + 2.37. j 

 
M Natural mortality rate 

at from age 1 to A 
(year

x 

-1
𝑀𝑥 = 𝑀𝑢.𝑊𝑥

𝑏  
) 

 M Mortality rate at unit 
weight (an

u 
-1 𝑀𝑢~𝑁(𝜇𝑀𝑢,𝜎𝑀𝑢); μ) mu=3.13 σMu,

b 

=0.2 

Allometric scaling factor 𝑏~𝑁(𝜇𝑏,𝜎𝑏); μb= -0.309 σb=0.027 
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Table 3. Average interval between spawning for various tuna (Tiews 1963) (Schaefer et al. 2005). 
 

Species Number of days 

Katsuwonis pelamis 1.18 

Thunnus albacares 1.52 

Thunnus maccoyii 1.1 

Thunnus obsesus 1.09 

Thunnus orientalis 3.3 

Thunnus thynnus 1.2 
 
 
Table 4. Different Daily mortality rates observed in the field. 
 

Reference Species  Age in days Mortality (day-1

Scott et al 1993 

) 

T. thynnus de 3 à 10 0,2 

Lang et al 1994 T. albacares de 3 à 14 
0,16 (July) 0,41 

(September) 

Davies et al 1991 T. maccoyii 11 0,68 

  12 0,97 

Satoh et al 2008 T. orientalis 5 1,66 

  6 2,41 

  7 2,75 

  8 0,06 

  9 1,74 

  10 NA 

  11 1,52 

  12 1,52 
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Table 5. Median and standard deviation of posterior distributions of parameters of interest estimated by model I 
and model II for runs on long time series (1976-2006). 
 

 Model II r ~ Normal( 0.60,0.37) Model I r ~ Lognormal( -1.38,0.51) 

  m=2,  
α=0.9 

m=2,  
α=0.5 

 m~Unif,  
α=0.9 

 m~Unif, 
α=0.5 

m=2, 
α=0.9 

m=2,  
α=0.5 

 m~Unif,  
α=0.9 

 m~Unif, 
α=0.5 

m med   1.8 1.93   2.41 2.46 

m sd   0.49 0.51   0.53 0.53 

r med 0.64 0.67 0.69 0.68 0.45 0.48 0.38 0.40 

r sd 0.17 0.17 0.27 0.27 0.15 0.15 0.16 0.16 

K med 400500 397000 405200 411300 454000 453200 455800 457600 

K sd 86200 84800 86900 85300 84500 85800 82100 82000 

 
 
 
Table 6. Median and standard deviation of parameters of interest for runs on short time series (1976-1996). 
 

 Model II Normal( 0.60,0.37) Model I r ~ Lognormal( -1.38,0.51) 

 
 m=2,  
α=0.9 

m=2,  
α=0.5 

 m~Unif,  
α=0.9 

 m~Unif, 
α=0.5 

m=2,  
α=0.9 

m=2,  
α=0.5 

 m~Unif,  
α=0.9 

 m~Unif, 
α=0.5 

m med   1.64 1.63   2.11 2.12 

m sd   0.62 0.63   0.64 0.63 

r med 0.34 0.52 0.42 0.45 0.23 0.29 0.23 0.23 

r sd 0.20 0.25 0.29 0.28 0.10 0.13 0.12 0.12 

K med 341058 341622 368433 374968 374656 393850 377509 405150 

K sd 94238 90305 87264 95751 79595 74534 84017 91160 

MSY med 26796 24969 23593 25361 21272 16964 20920 23018 

MSY sd 14650 11275 13408 12445 8285 6698 9448 9904 

BMSY med 170529 151832 170574 172893 187328 175044 189541 203655 

BMSY sd 47119 40135 44432 46586 39797 33126 42429 46001 

FMSY med 0.17 0.17 0.14 0.15 0.12 0.10 0.11 0.11 

FMSY sd 0.10 0.08 0.08 0.09 0.05 0.04 0.05 0.05 
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Figure 1. Data and empirical relationship between log(M) y-axis & log(W) x-axis in Lorenzen et al 1996. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Histogram of empirical distribution of the potential population growth of Atlantic bluefin tuna. red line 
represents the gaussian pdf fitted to this distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Probability densities of empirical distributions of potential population growth rate with M0, mortality 
rate at age 0, varying from 10 to 16, ie survival rate for the first year between 10-3 and 10-5 %. 
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Figure 4. Posterior density and prior density (dark red) for runs on time series 1976-2006 with model II and 
model I. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Posterior and prior densities (dark red) for runs on time series 1976-1996 with model I. 
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Figure 6. Median values and quantiles 5 and 95% of the posterior distribution of estimated biomass and fishing 
mortality for rune on the period 1976-2006. 
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Figure 7. Median values and quantiles 5 and 95% of the posterior distribution of estimated biomass for the 
period 1976-1996. 
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Figure 8. Observed and fitted CPUE distribution (median, 5 & 95% quantiles) for Japanese longline and 
Moroccan/ Spanish trap for the period 1976-2006. 
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Figure 9. Observed and fitted CPUE distribution (median, 5 & 95% quantiles) for Japanese longline and 
Moroccan/ Spanish trap for the period 1976-1996. 
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