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Introduction
The aquaculture sector is so recent that most cultured fishes might 

be rather considered as exploited captives and only a few of them would 
be on the threshold of becoming domesticated [1]. Indeed, farmed 
fishes are little changed from their wild ancestral form and could usually 
be returned to the wild. However, consistent differences between 
wild and domesticated fish have been reviewed by several authors 
[2-4]. Likely to be the first to be affected, behavioural traits are good 
indicators of the domestication process [5-8]. Among the most studied 
of all, antipredator behaviour has been shown to be very sensitive to 
artificial rearing [9-14], and swimming performances to be poorer 
in domestic stocks [15]. These differences between wild and cultured 
fishes may be partly explained by different previous experiences [16]. 
Farmed fishes are facing conditions that seem to be less challenging 
than natural habitats e.g. structurally simpler environments, food 
easy to catch and absence of predators but they also have to adapt to 
high densities, restricted space, artificial and uniform food, and quite 
frequent handling [17]. 

A way to identify differences between wild and domesticated 
fish i.e., to study the impact of domestication, is to examine their 
behavioural responses to a novel environment. Initial introduction into 
novel environments has been shown to produce in Zebrafish and other 
small teleost fish, behaviors consistent with predator evasion, fear, and/
or anxiety [18]. For example, environment such as a light/dark plus 
maze, based on the tendency of the fish to seek dark backgrounds (or 
avoid light backgrounds) in unfamiliar environments, can be used to 

study these behaviors [18,19]. This device enabled to show behavioural 
differences in Zebrafish lines including ZIRC, AB and WIK, the latter 
of which descends more recently from wild populations in India [20].

European sea bass (Dicentrarchus labrax) is a leading species in 
Mediterranean aquaculture that was recently domesticated.  This explains 
why very little is known on effects of the early step of domestication or 
selection for growth apart from classical traits of commercial interest 
[21,22] and first attempts made to analyse behavioural responses to 
challenges in 12-24 months old fish [23,24]. The present work compared 
wild-caught and domesticated sea bass juveniles swimming activity, 
exploration in T-maze in which one unfamiliar congener of similar size 
was placed at the extremity of one of the two arms, behind a transparent 
Plexiglas® wall precluding olfactory cues. Because natural selection has 
ceased in the domesticated line, we postulated that innate predator 
vigilance in an unfamiliar environment could wane from this latter, 
leading to behavioural responses different from those of wild ones. 
We also intended to test the hypothesis of visual attraction on both 
fish origins induced by the unfamiliar fish after being placed into this 
novel and therefore stressful environment. Indeed, when stressed, a fish 
seeks either to shelter [25-27] or cover behind other group members to 
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reduce the chance of being caught by a predator [28]. It has been shown 
that fish reduces neighbour distance to obtain easier information about 
whether other group members have detected a predator [29] and that 
social interaction plays an important and beneficial role i regulating the 
stress response in cohesive social species such as sturgeon Acipenser 
fulvescens [30]. Since sea bass in the wild, at the juvenile stage, is a 
demersal and gregarious species [31], it could respond similarly. Binary 
choice tests between familiar and unfamiliar congener were already 
performed on several fish species showing that they preferentially 
school with familiar individuals [32-37]. Here we intended to examine 
the attraction induced by an unfamiliar congener. On one hand, there is 
actually little direct evidence for shoal fidelity among wild fish [38-40], 
but on the other hand, in aquaculture, fish are somehow forced to shoal 
with unfamiliar fish because of the stock management that implies 
frequent size grading procedures accompanied with tanks population 
reorganization.  

Thus the following questions were addressed:

(i) Are there differences in exploration and swimming activities 
between wild-caught and domesticated fish in a maze?

(ii) Are wild-caught and/or domesticated sea bass juveniles visually 
attracted by an unfamiliar congener?

Material and Methods
Experimental animals and housing conditions

Domestic sea bass were hatched at the farm Aquanord SA (France), 
transferred on February 23rd, 2009 to the experimental station of 
INTECHMER (Cherbourg) when they were 3 days old (D3) and grown 
in a recirculated system. All parameters were set according to the 
protocol used by Aquanord hatchery except for the temperature that 
was 15.2 ± 0.5°C. The temperature usually reaches 21°C in a sea bass 
hatchery but here it was intentionally maintained at a lower level to 
avoid creating large size differences with the wild stock that was thought 
to be captured later according to the natural hatching conditions.

Wild sea bass juveniles were captured off the Mediterranean coast 
of France (Harbour of Cap d’Agde, Southern France, 43° 58’ N; 03° 30’ 
19’’ E). A whole school of 560 wild fish observed from the boat was 
collected at low depth (280 cm). Immediately after capture they were 
transported to the experimental station (INTECHMER, Cherbourg) 
where they arrived 24 hours later, on April 15th [41].

Both fish origins (about 400 individuals each) were later grown in 
open water system in two separate 2m3 tanks until the beginning of this 
experiment which started on March 28th 2010. At this date, domesticated 
fish were 390 days old. Wild-caught fish ages were determined on a 
30-individual sample and were of similar age as domesticated fish [41]. 
During the experimental period, light regime was 16:8 LD (light onset 
at 06:00 U.T.+1). In both tanks, temperature, salinity and oxygen level 
were (Mean ± SD), 15.4 ± 0.3°C, 35.0 ± 0.0 g L-1, 5.6 ± 0.3 mg L-1.

Two days before the beginning of observations, wild and 
domesticated fish were anesthetized with 2-phenoxyethanol (0.3 ml 
L-1) and based on previous biometry data, 20 individuals from each 
origin were selected. Total length (mean ± SD) was 11.7 ± 0.6 cm 
in domesticated fish and 11.7 ± 0.5 cm in wild ones (t-test: t=0.02, 
P=0.98); weight was 16.7 ± 3.7 g in domesticated fish and 15.3 ± 2.7 
g in wild ones (t-test: t=-1.33, P=0.19). These individuals were placed 
in two 200 L tanks. Additionally, a stock of 400 domesticated fish of 
same age but from a different tank was used to select 30 individuals of 
similar size and weight (11.8 ± 0.9 cm, 16.4 ± 2.3 g). These fish were 

placed in a third 200 L tank. They were used as unfamiliar attractors in 
the experiment. The three tanks were supplied with water of identical 
characteristics as original tanks. 

Experimental setup

Individuals were tested one by one in a maze constructed from 
opaque white plastic and transparent Plexiglas® (Figure 1). The 
start box (20×10 cm) was separated from the rest of the maze by 
a removable opaque wall. At the end of each arm of the maze, two 
strictly waterproof compartments (20×15 cm) were also separated by 
a not removable transparent wall. The maze which floor was made of 
transparent Plexiglas® was placed on an infrared waterproof casing (1 × 
1 m, Noldus, The Netherland) that enables to record videos at low light 
intensity and to improve video analysis. Shortly before observations, 
the maze was filled with water which level was maintained at 12 cm. 
Temperature, salinity and oxygen level were verified before and after 
the end of observations performed on each fish and were respectively 
16.0 ± 0.5°C, 35.0 ± 0.0 g L-1, 7.8 ± 1.5 mg L-1 before, 16.0 ± 0.5°C, 
35.0 ± 0.0 g L-1, 7.3 ± 1.2 mg L-1 after. Digital camera (Imaging Source 
DMK 21AUO4) with a frame rate of 30 Hz and a resolution of 640×480 
pixels was positioned at 77 cm above the water surface. Two 60 W light 
bulbs were horizontally placed on the walls located on the left and 
right sides of the infrared casing. They were located 100 cm above the 
infrared casing and provided an indirect and homogenous lighting on 
the maze. The light intensity measured at the water surface of the maze 
was 100 Lux. 

Experimental protocol

Before the beginning of observations, the position of the unfamiliar 
congener was randomly determined for each individual on the left or 
right arm of the maze. The first tested fish was gently collected from 
the tank using a net and immediately placed in a bucket closed by a 
cover then placed in the maze start-box. After a 5min acclimatization 
period, the wall was removed and the video capture started. The maze 
was filmed during 20 min. In order to test all individuals, 4 days were 
required. On the first day, five domesticated fish were consecutively 
tested in the morning and five wild fish were tested in the afternoon. 
On the second day, this protocol was reversed and so on for the 
third and fourth days. The water was entirely renewed between wild 
and domesticated individual batches. The unfamiliar fish used as the 
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Figure 1: Schematic representation of the T-maze apparatus and virtual zones 
delimitation on the bottom of the maze defined for the video recordings analysis.
Dotted lines are transparent Plexiglas® walls, continuous lines are white opaque 
plastic. The bottom of the maze is made of transparent Plexiglas®. 
1. Start-box closed by a removable opaque wall; 2. Post-Start; 3. Pre-left: area 
located on the right side of the left area; 4. Pre-right: area located on the left side 
of the right area; 5. left area located near the compartment where congener was 
placed; 6. right area located near the compartment where congener was placed; 
7. left and right compartments closed by a waterproof transparent Plexiglas® 
wall where congener was placed.
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attractor was changed every hour to minimize stress due to confinement 
and handling.

Video analyses

The video recordings were analysed using the software EthoVision 
XT 5 (Noldus, The Netherland), which allowed six virtual zones to be 
defined in the maze (Figure 1) and to track the fish swimming behaviour.

Each video was also viewed to measure the time spent oriented 
toward the congener vs. toward the empty compartment when the fish 
was located near the empty compartment (OpCong).

Behavioural variables 

Different variables of interest were chosen to analyse the fish 
behaviour:

-The time spent in each zone expressed in seconds (s): Start-Box 
(Start), Post-Start (PostStart), zone near the congener (ZCong), zone 
opposite to ZCong (OpCong), zone located near ZCong (PreCong), 
zone located near OpCong (PreOpCong).

-The orientation toward the congener or toward the empty 
compartment when the fish was located in OpCong. 

-The fish absolute angular velocity expressed in degree per second 
(Vang in° s-1) was calculated by the software as followed:

Vangn=RTAn/tn–tn-1 where RTAn is the relative turn angle for sample 
n and tn–tn-1 , the time difference between the current and previous 
sample. Here the rate of change in direction is unsigned. The turn angle 
is calculated as the difference between two subsequent values for head 
direction. This variable was an indicator of the amount of turning per 
unit time and quantified the swimming path complexity.

-The distance travelled by each fish in the maze (Dtot in mm)

-The velocity mean expressed in body length per second (Vel in BL s-1)

-The time spent in immobility (Im in s) 

The last three variables quantified the fish swimming activity level 
in the maze for each sequence.

Statistical analysis 

All variables were compared using parametric analysis of 
variances (ANOVA) after verification of distribution normality and 
homoscedasticity [42]. When data did not fulfil these requirements, 
non parametric tests were used. Significant ANOVA were followed by 
a post-hoc multiple comparison test (Newman–Keuls). All statistical 
analyses were conducted using Statistica 8 (Statsoft, USA), and for all 
tests, the significant threshold was p<0.05. 

For the fish spatial distribution (time spent in each zone), since zones 
were not independent, ANOVA with Origin (wild and domesticated 
fish) as independent variable was performed for each of the three 
following zones: ZCong, OpCong, Start. Then a null model of space use 
was tested: the fish spatial distribution was compared to a theoretical 
homogeneous distribution in ZCong, OpCong and Start (12,5% in each 
zone) by a Kolmogorov–Smirnov test. Other zones (PostStart, PreCong 
and PreOpCong), accordingly to their surfaces represented 75%. 

The time spent in ZCong was compared to time spent in Opcong in 
both fish origins using a Mann-Withney test.

The time spent oriented toward the congener zone was compared to 
the time spent oriented toward the empty compartment when the fish 

was located in OpCong using a Wilcoxon matched pair test inside each 
fish origin (wild and domesticated). The same comparison between 
wild and domesticated fish was done using a Mann-Whitney test.

Principal components analysis was used to search for individual 
variability in zone exploration among wild and domesticated fish. 

All variables related to swimming activity were compared by 
ANOVA with fish origin (wild and domesticated) independent variable.

Results
Spatial distribution

All the fish tested left the start box after the wall was removed i.e., 
none of the fish spent 100% of the time in Start or in PostStart zones. 
Wild-caught and domesticated fish spent most of the time in ZCong 
(mean ± SE, 41 ± 7% and 38 ± 8% respectively, Figure 2), the difference 
being not significant (F(1,36)=0.11, P=0.73). They also time spent similar 
times in OpCong (20 ± 5% in wild fish and 24 ± 7% in domesticated 
ones, F(1,36)=0.21, P=0.65). The observed fish spatial distributions 
were different from the theoretical homogeneous spatial distributions 
(D=0.52, p<0.01 for ZCong, Opcong and Start).

When wild and domesticated fish were located in OpCong, they 
were oriented significantly more toward ZCong than OpCong (84 ± 2% 
and 63 ± 44% for wild and domesticated fish respectively, Z=2.3, P=0.02 
in both cases) and there was no Origin effect for both orientations.

Individual variability

PCA showed that the first two components accounted for 94% of the 
variability of the data (Figure 3). The first component was related to two 
variables: the negative pole to high values of OpCong (contribution to 
the first component was 0.40 and the correlation was -0.81), the positive 
one to high values of ZCong (contribution to the first component was 
0.55 and the correlation was 0.94). As already shown in the previous 
section, PCA confirmed that most of the individuals were characterized 
by high values of ZCong (Figure 3) [43]. It represented 70% of wild fish 
and 50% of domesticated ones. There were also 20% of domesticated 
fish and 15% of wild ones associated to high value of OpCong (Figure 
3); 20% of domesticated fish and 5% of wild ones associated to high 
values of Start (Figure 3). At last, 10% of wild fish associated to both 
Start and ZCong (W5 and W16, Figure 3) while 5% of both origins were 
associated to ZCong and OpCong (D11 and W8, Figure 3).
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Start: Start Box, PostStart: area located after Start, ZCong: reward zone near 
the congene, OpCong: zone opposite to the reward zone, PreCong: zone 
located just before ZCong, PreOpCong: zone located just before OpCong.
Figure 2: Proportion of time spent (mean ± S.E., in %) by a fish in each zone 
of the maze.
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Swimming activity

There was no difference for any swimming variables but Vang was 
higher in domesticated fish than in wild ones (mean ± SE, 451 ± 24 and 
335 ± 36 °s-1, F(1,38)=6.4, P=0.01) and  wild fish spent significantly more 
time immobile than domesticated ones (mean ± SE, 73 ± 13% and 68 ± 
16% respectively, F(1,38)=5.3, P=0.02). 

Discussion
The aim of this study was to assess for domestication effect on 

juvenile sea bass swimming activity, exploration and visual attraction 
to an unfamiliar congener. This was approached by comparing wild-
caught and domesticated fish individually tested in a maze. The results 
showed a few behavioural differences between fish origins and a similar 
attraction to an unfamiliar congener.

A few behavioural differences were found between wild-caught 
and domesticated fish of similar size and age. Angular velocity was 
higher in domesticated fish, immobility higher in wild fish This 
difference between wild and domesticated fish demonstrated an impact 
of domestication on swimming activity. The difference in immobility 
could be linked to a decrease of the vigilance threshold [44] induced by 
the environment experienced by cultured fish that is strikingly different 
from that experienced by their wild counterparts e.g. the physical 
environment is much simpler, space is restricted and migration is 
not possible, it is less challenging in that good quality food is readily 
available and fishes are protected against predators [2,5,45]. On the 
contrary wild fish behaviour could indicate higher vigilance and then 
uncertainty in a novel environment such as a maze. Other studies on 
the same species have shown similar immobility differences between 
wild and domesticated fish at an early stage [41] and at a later stage 
[46]. In the present study, angular velocity was lower in wild fish than 
domesticated ones while the opposite tendency was observed in the 
previous cited studies. However, the values recorded in the present 
work were much lower than those recorded previously. Angular velocity 
difference between wild and domesticated sea bass has also been shown 
to be reversed in relation to aging [41]. In both cases, the fish remained 
motionless with its head oriented to the unfamiliar congener located 
behind the transparent wall.

Fish from both origins spent most of the time in the zone near the 
congener. This study demonstrated therefore a visual attraction in both 
wild-caught and domesticated fish induced by an unfamiliar congener 
of similar size. Placed into a novel and therefore stressful environment, 
fish from both origins seem to benefit from the presence of an unfamiliar 
congener which was associated with a decrease of the swimming 
activity. It could be related to the fact that social or gregarious species 
may greatly benefit from social interaction. Group behaviour has 
already been shown to increase growth as a result of social facilitation 
[47,48] and to reduce predation risk [49]. The vigilance decreases when 
neighbour distance decreases because information about whether other 
group members have detected a predator is easier to obtain from nearer 
individuals [29]. Such gregarious behaviour is widespread among 
fishes, with many species forming non-random shoals according to 
species, size, parasite load and familiarity [39,50-54]. The present work 
showed that gregarious behaviour could also occur very fast even when 
fish are not with familiar conspecifics. In natural habitats shoals may 
encounter one another frequently, and field observations suggest that 
transfer of individuals between shoals may be substantial [38-40,55]. 
This reinforces the idea that the decision to shoal or not strongly 
depends on the context encountered by the fish which is in accordance 
with Hamilton’s theory of the selfish herd [28]. For example, European 
minnows Phoxinus phoxinus shoal to obtain shelter, but only when 
there is insufficient physical structure available [56]. Placed in a T-maze 
without shelter, most of the tested individuals pitched on gregarious 
behaviour even though the congener was unfamiliar. This could be 
also linked to the fact that social interaction can play an important 
and beneficial role in regulating the stress response in cohesive social 
species [30]. Domestication did not impact this behaviour. However, 
some individuals from both origins spent more time on the opposite 
side of the congener but mostly oriented toward it while a few others 
spent most of the time in the start-box. Previous studies have shown 
that in accordance with the observed behaviour, individuals can be 
divided into coping style categories [57,58] or been arranged along a 
behaviour gradient, such as the bold–shy continuum [59]. In the present 
work, a few individuals went out the start-box and decided thereafter 
to return to it where they remained till the end of video recording. It 
could be related to a shy personality trait and/or a subordinate status. 
Indeed, it is well known that staying alone could be a better strategy 
for subordinates [60] allowing them to have a lower probability of 
suffering injury in an escalated contest [61]. Fish that spent most of 
the time on the opposite side of the congener were visually attracted to 
the unfamiliar conspecific but made the choice to maintain maximum 
distance to it. Finally, individuals that spent the larger proportion of 
time near the congener could be considered as bold fish. However, this 
hypothesis needs to be confirmed by further research designed to test 
these behavioural tendencies in several contexts to match the definition 
of personality traits [62].   

This preliminary experiment provided evidence for a gregarious 
behaviour in juvenile sea bass i.e. attraction to an unfamiliar congener, 
on the basis of visual cues alone. It also demonstrated individual 
variability including fish choosing to shelter in the start-box and fish 
visually attracted to the congener but maintaining maximum distance 
to it. These findings are in accordance with the life history of sea bass 
that develop a schooling life style at juvenile stage [63]. Domestication 
does not seem to impact this behaviour which is not surprising 
because farmed fish are often raised under high rearing density all 
along the production process and submitted to frequent population 
reorganization i.e. pooled with unfamiliar congeners. At the same time, 
swimming behaviour was impacted by domestication.
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These findings may have implications for restocking programs 
that often fail because of the dramatic level of mortality of newly 
released individuals [64] which are immediately placed in a novel 
and variable environment and exposed to predation risk [65]. The 
gregarious behaviour of domesticated fish in our study, similar to those 
of their wild-caught congeners may facilitate the fish shoaling (with 
unfamiliar congeners) when released in the wild which is crucial for 
predator avoidance. At last, these findings could also be useful to design 
cognition experiments on this species. Indeed, in these experiments, 
fish were trained to solve different tasks that were rewarded [66-68]. 
The use of an unfamiliar fish (on the basis of visual cues only) as a 
reward in such experiments seems to be particularly well adapted and 
more relevant than food.   
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