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are commonly transferred as assumptions from a likelihood estimation procedure into Hessian-based 
variance estimation procedures. The technique is demonstrated on a real dataset and the effects of 
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modelling framework and bootstrap method can be applied to multispecies and multiarea models, for 
clarity the case study described is of a single-species and single-area model. 
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1 Introduction
Statistical models consolidate data from various sources by using them simultaneously to estimate
parameters. The importance of using all data in a single model has been emphasised by several
authors (Demyanov et al. 2006, Methot 1989) and although the benefits are clear, it is certainly
not without problems, including the question of variance estimation, model mis-specification and
weighting of all data sources (Francis 2011, Stefansson 2003, Maunder and Punt 2012). In the
context of complex population dynamics models of exploited marine species, multiple data sources
with widely different properties are routinely used in the estimation process.

Variance estimates of parameters in nonlinear models have commonly been derived from the in-
verted Hessian matrix at the optimum, when the method of least squares (or maximum likelihood)
is employed for parameter estimation. Alternatively the Jacobian matrix of the residuals can be
used. Several conditions need to be satisfied for statistical inference, e.g. confidence statements to
hold in the finite-sample case. First, the model needs to be correct. Second, variance assumptions
i.e. homoscedasticity and knowledge of the ratios of variances in individual data sets, need to be
appropriate.

Methods of estimating variances in fish stock assessment models have been discussed and eval-
uated by many authors including Gavaris et al. (2000), Gavaris and Ianelli (2001), Magnusson
et al. (2012) and Patterson et al. (2001). When the distributional properties of the data are not
well understood or the models are incorrect, Hessian–based approaches have been seen to fail in
several examples in fishery science (Patterson et al. 2001). Although this may seem to contra-
dict the theoretical statements, the assumptions e.g. in Jennrich (1969) include independence of
observations, a unique minimum, identically distributed errors and of course the results are only
asymptotic. Any of these assumptions may fail. It follows that for problems in fishery science one
cannot assume a priori that a Hessian–based method will give reasonable results. For example,
disregarding correlation structure when present has been found to potentially lead to incorrect
conclusions in single–species assessments, sometimes with serious consequences (Myers and Cadi-
gan 1995). Similarly, multimodal likelihood functions have been seen in real applications (Richards
1991) and typically correspond to incorrect model assumptions that are not detected with tra-
ditional analysis (Stefansson 2003) but may potentially be detected if histograms of bootstrap
parameter estimates also become multimodal (see example in Hannesson et al. 2009).

Many of the limitations of the Hessian–based approaches have been met by alternative meth-
ods. In particular models developed using the Bayesian framework (as discussed in eg. Punt and
Hilborn 1997) provide an elegant formulation of uncertainty as posterior distributions of the quan-
tity of interest. In all but trivial cases the posterior distribution must be estimated numerically
with methods such as Markov chain – Monte Carlo. With the commoditization of computers in
conjunction with the development of frameworks such as BUGS (Spiegelhalter et al. 1996) and
ADMB (Fournier et al. 2012), the Bayesian framework has become popular alternative to Hessian–
based uncertainty methods. The attraction of the Bayes inference stems, to some degree, from the
ability to include prior belief/knowledge into the model as explicit distributions. Various sources
(eg. Chen et al. 2000, Millar 2002) suggest, however, that considerable care must be taken when
choosing model priors to avoid misspecification and suggest a suite of robust priors applicable in
fisheries model setting.

Alternative frequentist approaches to Hessian–based parameter variance estimation include
bootstrap methods (Efron 1979, Efron and Tibshirani 1994). The simplest bootstrap method as-
sumes that the data are independent measurements without correlation. However, semi–parametric
approaches have also been developed to sample residuals from a model, possibly from a distribution
(parametric bootstrap) or with a known correlation structure (Davison and Hinkley 1997).

This paper demonstrates a novel use of bootstrapping to address complex and disparate data
issues. The approach is generic, but it has special application to statistical models of (multiple and
interacting) marine populations such as those developed within the Gadget framework. Gadget
is a statistical age–length structured modelling environment originally proposed by Stefansson
and Palsson (1998), combining concepts from several earlier methods (Gavaris 1988, Methot 1989,
Tjelmeland and Bogstad 1989, Bogstad et al. 1992), described in Begley (2004) and subsequently
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used in multiple fisheries applications (e.g. Björnsson and Sigurdsson 2003, Taylor et al. 2007,
Lindstrøm et al. 2009). The protocol used in Gadget to estimate likelihood component weights
and optimise model parameters is described in detail in Taylor et al. (2007) and the weighting
protocol is based on that described in Stefansson (1998) and Stefansson (2003).

In the following sections the development of an elementary sampling unit used in the bootstrap
is described. The methodology is applied to a Gadget model for cod in Icelandic waters (the
standard model from Taylor et al. 2007) and contrasted to a more traditional Hessian–based
approximation of variance.

2 Development of an elementary sampling unit
Statistical fisheries models may involve the use of a large number of data from a variety of sources.
Every sample from each data source can be classified according to sampling location and time. A
model such as Gadget operates on certain time-steps and also uses some spatial units. Within any
modelled spatio–temporal unit there will normally be several data samples. For any bootstrap
method the first question is therefore what the sampling unit should be. A unit of measurement
in marine studies tends to be based on a single fish and elementary resampling might bootstrap on
individual fish (as in e.g. Gudmundsdóttir et al. 1988). Doing this assumes that all individually
measured fish are independent which is invalid for several reasons (Hrafnkelsson and Stefansson
2004, Pennington and Volstad 1994). Resampling entire fish samples (as is done by Singh et al.
2011) can potentially be used to account for this intra–haul correlation. Appropriate analyses
of variance can correspondingly be used to evaluate these effects (Helle and Pennington 2004,
De Croos and Stefansson 2011) and when combining samples, alternatives to simple sums or
means may be needed for aggregation (Babak et al. 2007). However, considering samples as units
may not be quite enough, since fish at close geographic locations will also tend to be similar due
to a fine–scale spatial structure which can not be easily modelled (e.g. Stefansson and Palsson
1997b).

In addition to the sampling unit problem, one needs to take into account the variety of data
sources. Biological samples from commercial catches may be collected on a fine temporal and
spatial scale whereas scientific surveys are typically only conducted once or twice a year and
different surveys may or may not overlap spatially. Other data sets such as species composition
of stomach contents or tagging experiments may be collected at completely different resolutions
to age or length data.

Here the proposed sampling unit is based on spatial structure on the Icelandic coastal shelf
developed by Taylor (2003), shown in figure 1 where the area within the gridlines are referred to
as subdivisions. The spatial structure is based mainly on bathymetry, hydrography and species
assemblages with some further disaggregation defined by fishing regulations. In this context an
elementary sampling unit is all data collected inside a subdivision within a time period of inter-
est. In this context subdivisions and elementary sampling units are therefore used interchangeably.
In order to reduce correlations between the elementary sampling units aggregations are made. For
example, to remove within–sample correlations between length groups (Hrafnkelsson and Stefans-
son 2004), only (combinations of) entire length samples are used, rather than lengths of individual
fish. Similarly, data are aggregated within the fairly large spatial areas and the shortest time–step
is at least one month. This should eliminate intra–haul correlations (Pennington and Volstad
1994) and those correlations between age–groups (Myers and Cadigan 1995) which are related to
local shoals or small feeding patches.

To generate input files for Gadget a second aggregation method is applied on the elementary
sampling units, that is all data from a particular subdivision, which varies somewhat depending on
the data source. Some data types, e.g. length distributions, are simply added whereas others, such
as mean length-at-age, may go through a computational mechanism involving age-length keys. A
description of a fisheries data base, which is able to handle data aggregations in this manner, can
be found in Kupca and Sandbeck (2003) and Kupca (2004). Fig. 1

near hereHere the fundamental idea is the aggregation of elementary sampling units in the creation model
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inputs. These sets of elementary sampling units can therefore be sampled (with replacement)
before aggregation, with each resample leading to a new model input data set. A typical model run
for parameter estimation based on such a resampled data set will result in a resampled parameter
estimate. The collection of all such estimates form a bootstrap sample. The procedure could be
called a spatio-temporal block bootstrap with unequal block size.

3 A fisheries example

3.1 The setting
The example marine system used in this paper is based on cod in Icelandic waters (fig. 1) with
an approach very similar to Taylor et al. (2007). The model consists of two stock components of
cod, i.e. mature and immature cod in a single area. Modelling maturity enables the calculation
of spawning stock biomass and allows for different weight–length relationships to be used for
immature and mature fish.

Two fixed station surveys are used to monitor the stock, in spring and autumn, providing
population indices as well as biological samples. Landings information is available from official
data bases and raw biological data (length distributions, age compositions) along with survey
data in the Marine Research Institutes (MRI) databases (see e.g. ICES 2011, Palsson et al. 1989,
Sigurdsson et al. 1997, Taylor et al. 2007, for a description of data and surveys). The technical
details of the model are described in appendix A.

3.2 The data set and parameters
The model is a parametric and deterministic forward population dynamics simulation model. A
single simulation results in a complete population structure, including predictions of all data sets,
as described in Begley (2004) and Taylor et al. (2007) and a corresponding evaluation of a (negative
log–)likelihood function (sums of squares in the present paper).

With the exception of landings data, data sets are only used in the likelihood components. For
simplicity, landings data are used directly in the population models, whereby the populations are
simply reduced in numbers to be in accordance with the corresponding landed weight. Note that
in the approach proposed here the landings data are not resampled.

An overview of the datasets and model parameters used in this case study is shown in Tables
A.1 and A.2 respectively.

3.3 Estimation protocol
The weights on the likelihood components are calculated for each model (i.e. each bootstrap run),
according to the protocol described in appendix A.2.4 with arbitrary starting parameters. This
is a two stage estimation method, where the error variances, within a data set, are estimated by
increasing the weight on that particular component of the total sum of squares, followed by a final
minimisation using those inverse variances as weights. For a full description of this procedure refer
to the appendix.

The bootstrapping approach consists of the following:

• The base data are stored in a standardized data base:

– Time aggregation: 3 months

– Spatial aggregation: subdivision

– Further disaggregation is based on a range of categories including fishing gear, fishing
vessel class, sampling type (e.g. harbour, sea and survey). A full listing of data types
used in the case study can be found in table A.1, these data are stored subdivision
dis-aggregated to allow for use in a bootstrap.
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• To bootstrap the data, the list of subdivisions, depicted in fig. 1, required for the model
is sampled (with replacement) and stored. For a multi–area model one would conduct the
resampling of subdivisions within each area of the model.

• The list of resampled subdivisions is then used to extract data (with replacement so the
same data set may be repeated several times in a given bootstrap sample).

• For a single bootstrap Gadget model, the same list of resampled subdivisions is used to
extract each likelihood dataset i.e. length distributions, survey indices and age–length fre-
quencies are extracted from the same spatial definition.

• A Gadget model is fitted to the extracted bootstrap dataset using the estimation procedure
described above.

• The resampling process is repeated until the desired number of bootstrap samples are ex-
tracted.

When resampling, data are forced to remain in the correct year and time–step so resampling
is based on sampling spatially the elementary data units within a given modelled unit of time and
space. Thus, within a modelled spatial unit the bootstrap is a resampling of subdivisions. This
implicitly assumes data contained within each area of the model to be independent and identically
distributed. Indepence is justified by the definition of subdivions. Furthermore treating them as
they were from the same distribution, i.e. bootstrap replicates, appears to have little negative
effect when compared to more traditional methods (Taylor 2002).

The entire estimation procedure is repeated for each bootstrap sample. In particular, since
the estimation procedure includes an iterative reweighting scheme, this reweighting is repeated for
every bootstrap sample. The point of this is that the bootstrap procedure is no longer conditional
on the weights. The procedure as a whole is quite computationally intensive but can easily be run
in parallel, e.g. on a computer cluster.

In stark contrast to this, Hessian–based approaches usually only compute the Hessian at the
final solution. Thus, they completely omit the effect of reweighting likelihood components when
estimating uncertainty. Such methods are thus conditional on the weights obtained in a pre–
estimation stage.

3.4 Application of the bootstrap procedure and its variants
The bootstrap procedure presented here is, as noted earlier, quite computationally demanding as
the number of bootstrap samples increases. In this excercise 1000 bootstrap samples were chosen
as the baseline simulation. This number of iterations was chosen as a practical upper limit, as
a single optimisation run for a Gadget model takes a substantial amount of time. In addition to
the baseline simulation two sensitivity tests are considered in the present case study. Here it is
of considerable interest to study possible reduction in the number of bootstrap samples and other
means to reduce the amount of calculations. An interesting comparison to the baseline simulation
would be to reduce the number of bootstrap samples to 100 samples. A more thorough analysis
of the effects of sample size is described in subsection 3.6.

Another interesting sensitivity test would be a bootstrap procedure conditional on weights
obtained at the pre–estimation stage, i.e. use the same (fixed) likelihood weights throughout the
simulation. The reason for this comparison is twofold, it is computational as the amount of cal-
culations required would be drastically reduced and also in relation to Hessian–based approaches.
One should note however that with this bootstrap the estimation is not the same function of the
data as the procedure where the weighting takes place for each dataset. This may lead to inap-
propriate weights for a given dataset which in turn can, as mentioned earlier, lead to inaccurate
parameter estimates.
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3.5 Hessian–based inference
For illustrative purposes the inferences arising from the bootstrap procedure presented here is
compared to a Hessian–based confidence interval (described by Tinker et al. 2006, and references
therein). In particular central differences were used to calculate the needed second derivatives
used to obtain an estimate of the variance–covariance matrix and a multivariate delta method
(Oehlert 1992) to obtain the confidence interval for derived biomass.

The effects of samples size on the inferences obtained from the inverted Hessian matrix were
studied by an artificial increase in measurements. The timestep length was varied between 1, 2
and the baseline 3 months, with input files being adjusted accordingly. The resulting CVs for the
recruitment parameters were estimated and the effects of the different step lengths contrasted.
Similar analysis was conducted for the proposed bootstrap procedure but is, for the sake of clarity,
only discussed in connection to the Hessian based approach.

3.6 Number of bootstrap samples
With regards to the bootstrap procedure itself this study also examines the effect of the number
of bootstrap samples on the variance and bias estimates using a retrospective bootstrap. For a
sample number n, ranging from 25 to 1000 bootstrap samples, n vectors of parameter estimates
from the baseline bootstrap were sampled with replacement 100 times. From those 100 samples
the coefficient of variation (CV) was calculated for the mean and standard deviation of each
parameter. Uncertainty in bias estimation is harder to quantify in a similar way as parameter bias
is often estimated close to zero.

3.7 Model output
Given the optimised parameter estimates it is possible to output a wide range of descriptors of the
model ecosystem as Gadget operates on and stores the number in each age–length cell for each
time-step of the model. For this study, the estimated parameters along with a derived biomass
trajectory (age 4+) are considered. Comparisons of uncertainty estimates will be, as noted earlier,
made using the three bootstrap variants, i.e. both 1000 and 100 bootstrap simulations with the
iterative reweighting procedure applied to all bootstrap samples and 1000 bootstrap simulations
using fixed weigths, and the Hessian–based approach. A schematic overview of all calculations
performed here is shown in figure 2. Fig. 2

near here

4 Results
Fig. 3
near hereThe simplest model outputs are the point estimates of model parameters. Fig. 3 gives histograms

of bootstrap estimates of several parameters. It compares the distributions of those parameter
estimates from 1000 bootstrap samples, either using reweighting for each dataset or fixed weights,
to those using only 100 samples with reweighting. For each parameter, the point estimate from
the full data set, the median of the bootstrap estimates and 95% confidence intervals from a
hessian-based approximation are indicated. The differences between the point estimate and the
bootstrap mean can be seen to be relatively minor, i.e. there is no obvious sign of an estimation
bias, in all cases except for the length update (see β in eq. 3). It should be noted that the
maturation parameters are correlated, affecting the relationship between the point estimate and
bootstrap mean for the maturation. The different bootstrap methods exhibit similar distribution
of parameter estimates with the exception of the length update where the bootstrap mean based
on the original weights falls closer to the point estimate thus failing to detect bias in the length
update. Fig. 4

near hereBoxplots can be used to illustrate bootstrapped trajectories of various abundance or biomass
measures. The estimate of the 4+ biomass is shown in fig. 4. It is seen that the main variation
appears, in absolute terms, in the initial and final years, while only the final year shows considerable
amount of variation in terms of CV. The initial and final years are of course considerably different
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from the intermediate ones, but in different ways. The number of fish in the initial year are part of
the estimation procedure and therefore of a different nature when compared to subsequent years.
Further, the survey starts in 1985 (with the model starting in 1984), which makes the initial
conditions somewhat poorly determined. The final years are on the other hand poorly determined
since there is relatively little information in the objective function for the younger year classes as
they have only been surveyed for a few years. Fig. 5

near hereThe same effects are seen for estimated recruitment at age 1 (fig. 5) where there is less variation
in the earlier and intermediate years than the later years. As for the other parameters the Hessian–
based confidence estimates are considerably smaller than those obtained using bootstrap methods.
The CV of the Hessian–based approach roughly followed the same pattern as for those arising from
the various bootstrap approaches but were generally around 12% of the corresponding bootstrap
CV. Fig. 6

near hereIn figure 6 CVs for the mean and standard deviation of the model parameters are shown as
function of the number of bootstrap samples, n, where the separate panels show different groups
of parameters. The CV–estimates appear to fall close to 1√

n
, as shown in the figure, and that most

of them are less than 15% for 100 bootstrap samples. The initial conditions, that is the numbers
at age in 1984, had a somewhat higher CV for the mean and standard deviation as the other
parameter groups. The initial numbers at age 8 and 9 in 1984 in particular, showed a considerably
higher CV for all sample sizes. Those two age groups were, as noted earlier, poorly determined,
and had a very low estimate compared to other intial numbers, as the corresponding year classes
were only present in the data for the first few years of the model.

Hardly any biases were observed in this analysis. Notable exceptions were the length update
parameter, shown in figure 3, and the first two years the 4+ biomass appeared to have a measurable
bias. This was only detected in the bootstrap simulations where the iterative reweighting scheme
was applied to all bootstrap samples. The fixed weight run and the Hessian–based approach failed
to detect these differences. Fig. 7

near hereThe effects of the number of timesteps within a year can been seen in figure 7. There the CV
of recruitment is illustrated as a function the number of (intra–year) timesteps in the model. The
number of timesteps appears to be inversely proportional to the CV size. These effects were not,
when varying the timestep, observed when conducting similar analysis using the bootstrap.

5 Discussion
This paper has presented a novel bootstrap method suitable for models of population dynam-
ics. Several modifications and alternatives to the original bootstrap methodology (Efron 1979,
Efron and Tibshirani 1994) have been presented. For example, to account for correlations in
simple non–replacement sampling schemes (as used for most questionnaires or “sample surveys”),
without–replacement bootstraps and with–replacement bootstraps have been suggested along with
somewhat more general resampling procedures for complex survey data (McCarthy and Snowden
1985, Gross 1980, Rao and Wu 1988, Sitter 1992). Theoretical assumptions and derivations behind
these approaches do not easily extend to the present situation with disparate data sets, composite
likelihoods in the estimation phase and last but not least the highly nonlinear population dynam-
ics models used as a basis for obtaining predicted values and error sums of squares or likelihood
functions. The “trick” in the current proposal is not a theoretical development but the method-
ology of having the bootstrap sampling unit yi as a collection of all relevant datasets sufficiently
aggregated such that they can be assumed to be independent.

Some of the modifications of the original bootstrap have been developed for marine surveys
(Smith 1997) but this has been intended to reflect e.g. the sampling design used for the surveys
and simple estimation of quantities such as a stratified mean. In the present setting the data need
to go through an aggregation procedure to be used in a nonlinear population dynamics model and
it is the output of this model which is of interest, not variances in the input. Thus there is a need
for the bootstrap to mimic this aggregation procedure for the full data from raw data or finer-scale
aggregates. This is the case with any population dynamics or assessment model, used in fisheries
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or other areas of resource harvesting particularly in a multispecies and multi–area context.
The methodology proposed here is certainly computationally intensive. However this is also

the case for many other methods. For example, the MCMC evaluation of a Bayesian posterior
involves a simulation of a correlated time–series whose stationary distribution is the posterior. This
process is not trivially parallelizable over an arbitrary grid of computers (some of the difficulties
are described in Wilkinson 2006). In comparison the bootstrap approach described here is fairly
trivially distributed onto a computer cluster.

To make the bootstrap proposed here more feasible one could reduce the number of resampled
datasets. Using 100 bootstrap replicates instead of 1000 yields satisfactory results in terms of
variance estimation, allowing a drastic reduction in the computing time needed. Conditioning on
the weights from the original sample could further reduce the time needed but, judging by the
results presented here, possible estimation biases may be harder to detect.

When compared to the bootstrap the Hessian–based approximation appears to underestimate
the uncertainty by a factor of 8. This may seem contrary to previous results. Magnusson et al.
(2012), using a simple catch–at–age simulation model, concluded that MCMC–method and the
Hessian–based approach performed similarly. And recently in Stewart et al. (2012) an MCMC
and a Hessian–based approach performed similarly for real applications. The notable difference
between the model described here and the aforementioned approaches is the objective function used
here and total number of data points (defined in appendix A.2.4) used in the estimation process.
The objective function consists of simple sums of squares that ignores potential correlations and
tends to exagerate the confidence level in the Hessian–approach as the number of datapoints
increases. This is illustrated in figure 7 where it appears that the main factor in determining the
size of the CV is the number of datapoints in the input files. Scale changes, such as aggregating
data to larger lengthgroups or increasing the size of the plus group by lowering the modelled
maximum age, would in this case increase the size of the CV by simply reducing the number of
datapoints. In contrast, to the approach used here, a multinomial model, where the degrees of
freedom are estimated, is often employed on catch at age (eg. Trenkel et al. 2012) but length
distributions, in the case of Icelandic cod, have serious distributional problems (Hrafnkelsson and
Stefansson 2004). Future work on the model could potentially evaluate different distributional
assumptions similar to those suggested above using the proposed bootstrap approach.

In this particular case study there were no discernible biases detected. Thus the consequences
of the Hessian–based approach appear to be mostly restricted to narrower confidence intervals.
However it is reasonable to assume that inconsistencies arising from conflicting data sources (eg.
in Stefansson 2003, Schnute and Hilborn 1993) would not be detected without analysing the effects
of their relative weights. On the other hand, incorrect variance estimates may directly affect how
annual catches are set. This occurs for example if a harvest control rule were to be based on
a probabilistic measure such as a that of a biomass not falling below a threshold or a TAC not
deviating too much from a target.

It is of considerable interest to compare the proposed bootstrap method to MCMC methods
used in the Bayesian framework. This is however outside of the scope of this study as it would
require a considerable effort to adapt the Gadget framework to the Bayesian one. Future work
could potentially focus on the evaluation of the two methodologies both on simulated datasets and
for real applications similar as was done in Hannesson et al. (2009).

It is reassuring that the modelled years in which the greatest uncertainty is found are those
where it is expected i.e. the initial year and then increasing towards the end of the modelled time
period. The first year is the most data poor with no survey data or age–length compositions and
towards the end of the time period there are fewer cohorts with data available for most ages.

The method described here is designed to alleviate several known problems with other methods
of uncertainty estimation. Several issues remain, however. For example if a model is too “stiff”
through fixing parameters or other assumptions, then this may not be detected here except in
special cases. These considerations could be explored by different models, e.g. split the commercial
fleet component by gears, which can be implemented within the Gadget framework. On a related
note there is also a balance to be found between estimation errors due to too small size classes and
distribution error caused by too large size classes (Vandermeer 1978). It is therefore of interest to
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investigate the effects of the choice of scale such as size class width but also time step (Drouineau
et al. 2009). The relative merits of these models can then be evaluated using an approach similar
to the one proposed here. Similarly different modelling approaches, such as the different data
weighting discussed in Francis (2011) or Hu and Zidek (2002), can be also be compared using the
bootstrap technique presented here. Ultimately, each reweighting scheme is a different method
for obtaining a point estimate and the bootstrap is a perfectly general method to obtain variance
estimates.

When designing an aggregated data base to be used for modelling several issues need to be
taken into account. The most important statistical condition on the choice of the “data units” is
that correlations between them should be minimal. On the other hand there also needs to be a fair
number of them within each model area if the bootstrap mechanism is to provide some variation
in results. For a given measurement type one can in many cases investigate spatial correlation
or variograms to determine the distances at which those become negligible (Petitgas 2001). This
can not easily be done for many data types, however (age-length tables, tagging experiments
etc). In fact, the original reasoning for the areas used in this paper was ecological (Stefansson
and Palsson 1997a, Taylor 2003) rather than based on spatial correlation, and it is likely that in
most real situations data will be aggregated according either to such criteria or pragmatically into
“statistical rectangles” of some form.

Simple bootstrap resampling usually assumes that the elementary data units, {y1, . . . ,yn},
behave like idependently and identically distributed samples. Data in fisheries tends to be collected
in a somewhat stratified manner, ranging from formal stratification to attempts to “spread out”
sampling, across gears, time and space. In the present setup this is simply ignored. This can be
justified when the data are aggregated in a simple manner (through sums or averages) anyway
since the bootstrap method then mimics the computation accordingly and/or when there are a
large number of data units which can be viewed as representing a population of such units. In cases
when one or a few of the subdivisions represent e.g. a spawning area and the intended analysis is
stratified accordingly, this approach can clearly not be used since then the bootstrap resampling
does not reflect the computational method in use. When such issues arise, whether with respect
to fishing gear, space or other units, an appropriate approach is to include these elements in the
model. For example the likelihood function can incorporate the various fishing gears, modelling
each selectivity separately. The resampling then takes place separately for each gear.
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Figure 1: The spatial structure of data storage on the Icelandic coastal shelf along with 200m
(broken line) and 500m depth (pointed line) contours. These areas are referred to as “subdivisions”.
A given timeperiod, timestep size and subdivision is referred to as a “elementary sampling unit”.
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Figure 2: A flowchart of the calculations performed. Boxes indicate action and unbounded text
possible uncertainty estimation variants or decisions.

16



Autumn survey
 selection

Spring survey
 selection Catch selection Length update Growth Maturation

0

5

10

0

50

100

0

50

100

150

100 sam
ples

1000 sam
ples

F
ixed w

eights

−
6

−
5

−
4

−
3

−
6.5

−
6.0

−
5.5

−
5.0

−
4.5

−
4.0

−
11.6

−
11.2

−
10.8

−
10.4

2.5

5.0

7.5

10.0

12.5
85.0

87.5

90.0

92.5

95.0

40 50 60 70 80 90

Figure 3: Histograms of the estimated fleet selection parameter af for the three fleets (October
survey, March survey, Commercial catch), β the parameter defining the length update matrix, k the
growth rate and the maturity l50. The parameter estimates were obtained from 1000 bootstrap
samples, compared to a smaller number of bootstrap samples, 100, where for the two number
of samples iterative weighting applied to all bootstrap samples. This is then all compared to
1000 bootstrap samples where in the parameter estimation the weighted likelihood function is
conditioned on the original weights. The point estimate (black broken line) and bootstrap mean
(black solid line) along with 95% confidence bound obtained from a Hessian–based approximation
to the variance covariance matrix (red solid lines) are indicated.
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Figure 4: Boxplot (top panel) of the end of year biomass for cod of age 4 and older estimated
on 1000 bootstrap samples, both using iterative weighting for each sample and using the fixed
weights for all samples, compared to 100 bootstrap samples. The fixed weights were obtained
using iterative weighting for the original dataset. The point estimate is indicated by the central
red line through the boxes. The box indicates the interquartile range and the whiskers 95%
confidence intervals. Any further outlying data points are indicated as points. Bottom panel
shows the estimated CV for the age 4+ biomass using the same methods as above.
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Figure 5: Boxplot (top panel) of the number of recruits (age 1) in each year estimated by 1000
and 100 bootstrap models compared to 1000 bootstraps with fixed weights and a Hessian–based
approximation to the 95% confidence interval. The point estimate indicated by a central red line
through the boxes. Bottom panel shows the estimated CV for the recruitment using the same
methods as above.
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Figure 6: Results of a restrospective bootstrap sampling on the parameter estimates from the 1000
bootstrap samples, with iterative weighting applied to all samples. This retrospective bootstrap
studies the variation of the mean and standard deviation of each parameter estimate by calculating
the coefficient of variation (CV) as function of the number of bootstrap samples, n, of both the
mean and standard deviation (SD). A point on the graph shows the CV of the mean (panels on
the left hand side) or SD (panels on the right hand side) for a particular parameter and number
of samples, n. The different panels contain the CVs of the initial number at age (νa in eq. 6),
“Other” variables i.e. the variables which are shown in figure 3, and yearly recruitment shown in
figure 5 (Ry in eq. 5). CV of the initial number at ages 8 and 9 are illustrated with solid and
broken lines respectively. For comparison 1/

√
n is shown (red solid line) on all panels.
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number of intra–year timesteps are increased. The bottom panel shows the ratio of the CV of the
model with 3 month timesteps to the models with 2 months and 1 month steps.
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A Model description

A.1 Simulation model
The following describes the technical details of the Gadget model used in this case study. The
model was previously described in Taylor et al. (2007) along with a statistical assessment of its fit to
data. In the model the simulated quantity is the number of individuals, Nalsyt, at age a = 1 . . . 12,
in a lengthgroup l, representing lengths ranging between 4 and 140 cm in 2 cm lengthgroups, stock
component s where s = 0, 1 denotes the mature and immmature stock component respectively, at
year y which is divided into quarters t = 1 . . . 4. The length of the timestep is denoted ∆t. The
population is governed by the following equations:

Nalsy,t+1 =
∑
l′

Gl
′

l

[
(Nal′syt − Cfal′st)e−Ma∆t + Ial′syt

]
if t < 4

Na+1,ls,y+1,1 =
∑
l′

Gl
′

l

[
(Nal′sy,4 − Cfal′s,4)e−Ma∆t + Ial′sy,4

]
if t = 4 and a < 12

Na,ls,y+1,1 =
∑
l′

Gl
′

l (Nal′sy,4 − Cfal′sy,4 +Na−1,l′sy,4 − Cf,a−1,l′sy,4)e−Ma∆t if t = 4 and a = 12

(1)
where Gl

′

l is the proportion in lengthgroup l that has grown l′ − l lengthgroups in ∆t, Cfalsyt
denotes the catches by fleet f ∈ {S,A,C}, S,A and C denote the spring and autumn surveys
and commercial fleets respectively1, Ma the natural mortality at age a and Ialsyt denotes the
movement from the immmature to the mature stock components. A short note on notation, here
l is used interchangeably as either the lengthgroup or the midpoint of the length interval for that
particular lengthgroup, depending on the context.

A.1.1 Growth

Growth in length is modeled as a two–stage process, an average length update in ∆t and a growth
dispersion around the mean update (as described in Stefansson 2005). The average length update
per time step is set according to a simplified form of the Von Bertanlanffy equation:

∆l = (l∞ − l)(1− e−k∆t) (2)

where l∞ is the terminal length and k is the annual growth rate. In the second step the growth is
dispersed according to a beta–binomial distribution parameterised by the following equation:

Gl
′

l =
Γ(n+ 1)

Γ((l′ − l) + 1)

Γ((l′ − l) + α)Γ(n− (l′ − l) + β)

Γ(n− (l′ − l) + 1)Γ(n+ α+ β)

Γ(α+ β)

Γ(α)Γ(β)
(3)

where α is subject to

α =
β∆l

n−∆l
(4)

where n denotes the maximum length group growth and (l′− l) the number of lengthgroups grown.

A.1.2 Recruitment and initial abundance

A fairly simple model is used for recruitment in this exercise. Recruitment enters to the population
according to:

N1l0yt′ = Rypl (5)

where t′ denotes the recruitment time-step and Ry is the yearly recruitment. pl is the proportion
in lengthgroup l that is recruited which is determined by a normal density with mean according
to the growth model and variance σ2

y.

1The survey fleets catches are given a nominal catch to allow for survey age and length distribution predictions.
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Equally simple is the formulation of initial abundance in numbers for each age group in length-
group l is:

Nals11 = νaql (6)

where νa is the initial number at age a in the initial year and ql the proportion at lengthgroup l
which is determined by a normal density with a mean according to the growth model in equation
2 and variance σ2

a.

A.1.3 Maturation

Two stage maturity is modeled and represented by the two stock components. The movement
between the two components is formulated as

Ialsyt =


∑
l′ Nal′0y,t−1 ×ml

l′ if s = 1 and t > 1∑
l′ Nal′0y−1,4 ×ml

l′ if s = 1 and t = 1
−
∑
l′ Nal′0y,t−1 ×ml

l′ if s = 0 and t > 1
−
∑
l′ Nal′0y−1,4 ×ml

l′ if s = 0 and t = 1

(7)

where s = 0, as noted above, denotes the immature stock component. and ml
l′ is the proportion

of immatures that mature between the lengths l and l′ defined as:

ml
l′ =

−αGll′(l − l′)e−λ(l′−l50)

1 + e−λ(l′−l50)
(8)

A.1.4 Fleet operations

Catches are simulated based on reported total landings and a length based suitability function for
each of the three fleets, commercial fleet and the autumn and spring survey. Total landings are
assumed to be known and the total biomass is simply offset by the landed catch. The catches for
lengthgroup l , fleet f at year y and time-step t are calculated as

Cflsyt = Eft
Sf (l)NlsytWls∑

s′
∑
l′ Sf (l′)Nl′s′ytWl′s′

(9)

where Eft is the landed biomass at time t and Sf (l) is the suitability of lengthgroup l by fleet f
defined as:

Sf (l) =
1

1 + e(−af−bf l)
(10)

The weight, Wsl, at lengthgroup l is calculated according to the following stock component
specific length – weight relationship:

Wsl = µse
ωsl (11)

A.2 Observation model
In Gadget data are assimilated using a weighted log–likelihood function. Here four types of data
enter the likelihood, length-based survey indices, length distributions from survey and commercial
fleets, age – length distribution from the survey and commerical fleets and maturity at length for
3 year olds.

A.2.1 Survey indices

The survey indices are defined as the total number of fish caught in a survey within a certain
length interval. The intervals used here are 16 – 25 cm, 26 – 38 cm and larger than 38 cm. These
intervals are chosen such that they roughly represent age 1, age 2 and age 3+.

For each length range g the survey index is compared to the modelled abundance at year y
and time-step t using:

lSI
gf =

∑
y

∑
t

(log Igfy − (log qf + log N̂gyt))
2 (12)
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where
N̂gyt =

∑
l∈g

∑
a

∑
s

Nalsyt

The above formulation assumes that the length-based indices are independent and uniform selec-
tivity by survey gear. This is seen as a fair assumption as little correlation is observed in the data
for the first two lengthgroups. With regards to survey selectivity this has been estimated to be
fairly constant during the model time period (Gudmundsson 2013). For further implementation
details see Taylor et al. (2007).

A.2.2 Maturity at length

Length at maturity comparison uses the number of mature cod that are age 3 observed in the
Icelandic ground fish survey. The observed proportions are compared to the modelled proportion
using sum of squares:

lM =
∑
y

∑
t

∑
l

(πlyt − π̂lyt)2 (13)

where
πlyt =

∑
aOal1yt∑

a

∑
l′
∑
sOalsyt

and
π̂lyt =

∑
aNal1yt∑

a

∑
l′
∑
sNalsyt

i.e. the observed and modelled proportions mature respectively in length group l, year y and
timestep t.

A.2.3 Fleet data

Length distributions are compared using 2 cm lengthgroups for both commercial and survey fleets
using

lLD
f =

∑
y

∑
t

∑
l

(πlyt − π̂lyt)2 (14)

where f denotes the fleet where data was sampled from and

πlyt =

∑
a

∑
sOalsyt∑

a

∑
l′
∑
sOalsyt

and
π̂lyt =

∑
a

∑
sNalsyt∑

a

∑
l′
∑
sNalsyt

i.e the observed and modelled proportions in lengthgroup l respectively at year y and timestep t.
Similarly age – length data are compared using 4 cm length groups:

lAL
f =

∑
y

∑
t

∑
a

∑
l

∑
s

(πfalsyt − π̂falsyt)2 (15)

where
πalyt =

∑
sOalsyt∑

a

∑
l′
∑
sOalsyt

and
π̂alyt =

∑
sNalsyt∑

a

∑
l′
∑
sNalsyt
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A.2.4 Iterative re–weighting

The total objective function used the modelling process combines equations 12 to 15 using the
following formula:

lT =
∑
g

∑
f∈{S,A}

wSI
gf l

SI
gf +

∑
f∈{S,A,C}

(
wLD
f lLD

f + wAL
f lAL

f

)
+ wMlM (16)

where f = S,A or C denotes the spring survey, autumn survey and commercial fleets respectively
and w’s are the weights assigned to each likelihood components.

The weights, wi, are necessary for several reasons. First of all it is used to prevent some
components from dominating the likelihood function. Another would be to reduce the effect of
low quality data. It can be used as an a priori estimates of the variance in each subset of the
data.

Assigning likelihood weigths is not a trivial matter, has in the past been the most time consum-
ing part of a Gadget model. Commonly this has been done using some form of ’expert judgement’.
General heuristics have recently been developed to estimated these weights objectively. Here the
iterative re–weighting heuristic introduced by Stefansson (2003), and subsequently implemented
in Taylor et al. (2007), is used.

The general idea behind the iterative re-weighing is to assign the inverse variance of the fit-
ted residuals as component weights. The variances, and hence the final weights, are calculated
according to the following algorithm:

1. Calculate the initial sums of squares (SS) given the initial parameterization for all likelihood
components. Assign the inverse SS as the initial weight for all likelihood components.

2. For each likelihood component, do an optimization run with the initial SS for that component
set to 10000. Then estimate the residual variance using the resulting SS of that component
divided by the degrees of freedom (df∗), i.e. σ̂2 = SS

df∗ .

3. After the optimization set the final weight for all components as the inverse of the estimated
variance from the step above (weight = 1/σ̂2).

The number of non-zero data-points (df∗) is used as a proxy for the degrees of freedom. While
this may be a satisfactory proxy for larger datasets it could be a gross overestimate of the degrees
of freedom for smaller datasets. In particular, if the survey indices are weighed on their own while
the yearly recruitment is estimated they could be over-fitted. In general problems such as these
can be solved with component grouping, that is in step 2 the likelihood components that should
behave similarly, such as survey indices, should be heavily weighted and optimized together. This
approach is used here for the spring and autumn survey indices.

A.3 Fit to data
A detailed discussion of the model fit to the datasets listed in Table A.1 is beyond the scope of this
discussion. This analysis can be found in Taylor et al. (2007). However for illustrative purposes
a comparison between survey indices is shown in Figure A.1. The model appears to follow the
general features of the survey indices, in particular the age 3+ groups. The indices representing
age one are in general seen to be more variable than for the latter groups.
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Figure A.1: Survey indices (points) by year compared to the model fit (lines) split by season
and length groups. The length groups roughly represent the one, two and older agegroups. 95%
confidence intervals from a loess smoother are shown for comparison.
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Origin Timespan Length
group size

Num. data-
points

Likelihood
function

Length distributions:
March Survey 1st quarter, 1985 – 2003 2 cm 1292 See eq. 14
October Survey 4th quarter, 1995 – 2003 2 cm 558 See eq. 14
Commercial catches All quarters, 1984 – 2003 2 cm 5202 See eq. 14

Age – length frequencies
March Survey 1st quarter, 1989 – 2003 4 cm 6120 See eq. 15
October Survey 4th quarter, 1995 – 2003 4 cm 3348 See eq. 15
Commercial catches All quarters, 1984 – 2003 4 cm 31042 See eq. 15

Survey indices
March Survey 1st quarter, 1985 – 2003 – 57 See eq. 12
October Survey 4th quarter, 1995 – 2003 – 24 See eq. 12

Ratio of immature:mature at age 3 by length group
March Survey 1st quarter, 1985 – 2003 2 cm 1672 See eq. 13

Table A.1: Overview of the likelihood data used in the model. Survey indices are calculated
from the length distributions and are disaggregated (“sliced”) into three groups which correspond
roughly to age 1, age 2 and age 3+ (as in Taylor et al. 2007). Number of datapoints refer to
aggregated data used as inputs in the Gadget model and represent the original dataset. All data
can obtained from the Marine Research Institute, Iceland.
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Description Notation Comments Formula
Natural mortality Ma Fixed at 0.2 for ages 3 to 9 while

0.5, 0.35 for the first two ages and
0.3, 0.5 and 0.7 for ages 10 – 12

See eq. 1

Growth function k l∞ is fixed at 120 cm See eq. 2
Growth implementation β n is fixed at 15 lengthgroups See eq. 3
Fleet selection af bf fixed at 0.09 for the survey fleets

while 0.19 for the commercial fleet
See eq. 10

Maturity ogive λ, l50 l50 in cm See eq. 7
Number of recruits by year Ry y ∈ [1984, 2003]. σ2

y, i.e. variance in
recruitment length, based on length
distributions obtained in the spring
survey

See eq. 5

Initial abundance at ages 2 – 11
in 1984

ηa a ∈ [2, 11]. σ2
a, i.e. variance in ini-

tial length at age a, based on length
distributions obtained in the spring
survey

See eq. 6

Survey catchability qf Intercept term in a log–linear rela-
tionship with abundance. The slope
term is assumed to be 1 for all in-
dices

See eq. 12

Length–weight relationship µs, ωs Different values by stock compo-
nent, estimated outside of the model

See eq. 11

Table A.2: An overview of the estimated parameters in the model. For those parameters with
fixed values a description of how these values were derived can be found in Taylor et al. (2007)
and references therein.
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