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Abstract

Understanding and predicting population abundance is a major challenge con-

fronting scientists. Several genetic models have been developed using microsat-

ellite markers to estimate the present and ancestral effective population sizes.

However, to get an overview on the evolution of population requires that past

fluctuation of population size be traceable. To address the question, we devel-

oped a new model estimating the past changes of effective population size from

microsatellite by resolving coalescence theory and using approximate likelihoods

in a Monte Carlo Markov Chain approach. The efficiency of the model and its

sensitivity to gene flow and to assumptions on the mutational process were

checked using simulated data and analysis. The model was found especially

useful to provide evidence of transient changes of population size in the past.

The times at which some past demographic events cannot be detected because

they are too ancient and the risk that gene flow may suggest the false detection

of a bottleneck are discussed considering the distribution of coalescence times.

The method was applied on real data sets from several Atlantic salmon popula-

tions. The method called VarEff (Variation of Effective size) was implemented

in the R package VarEff and is made available at https://qgsp.jouy.inra.fr and at

http://cran.r-project.org/web/packages/VarEff.

Introduction

Theresultsfromgeneticsurveysmaybeusedtoinferthedemo-

graphic history of species and populations, and may help to

makeconservationmanagementdecisions.Analyzing thedis-

tributionofDNApolymorphismatseveralgeneticmarkershas

becomethebasis for inferringrelationshipsbetweenindividu-

als or groups of individuals, and has been extensively used to

deriveestimationsofthetimesincedivergencebetweenspecies

or populations. Coalescence theory and the development of

Bayesianapproacheshavemadeitpossibletotakeadvantageof

thecomplete informationavailable insamplesofallelesdrawn

in populations and to derive estimates of various parameters.

One of the main achievements was the possibility to obtain

informationonthepasthistoryofpopulations,especiallyinthe

case of human populations (Shriver et al. 1997; Reich and

Goldstein 1998). The coalescent process introduced by King-

man (1982a,b) provides a mathematical framework which

describes the distribution of gene trees in populations and

helps derive evolutionary relationships. The inheritance

relationships between alleles are represented as a gene gene-

alogy known as the coalescent. Coalescence theory considers

a sample of genes from a population to trace all alleles to a

single ancestral copy, named as the Most Recent Common

Ancestor (MRCA). Several approaches based on coalescence

theory and tools from computational statistics have been

developed in the late 1980s: the moment-matching

approaches (Slatkin and Hudson 1991; Rogers and Har-

pending 1992; Rogers 1995; Shriver et al. 1997), population

decline and growth detection (Cornuet and Luikart 1996;

Weiss and von Haeseler 1998), and likelihood approaches

with varying population size (Griffiths and Tavar�e 1994;

Kuhner et al. 1998). When sequence data are available

(Drummond et al. 2005) building the coalescence tree of

the sampled alleles allows branch lengths of the tree to be

estimated, hence the effective population size from the

mutation rate. It also provides a ‘Bayesian skyline plot’

estimating past population dynamics through time from a
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sample of molecular sequences (Drummond et al. 2005) or

from complete genome sequences of a few individuals (Li

and Durbin 2011). However, genome sequencing remains

very expensive, and less available than microsatellites analy-

sis for most nonmodel species. Inferring demographic

events from microsatellites data was considered by Wilson

and Balding (1998), Beaumont (1999), and more recently

by Wu and Drummond (2011). Applying the ‘skyline plot’

approach to microsatellite polymorphism at dozens of loci

presents several difficulties because the mutational process

of microsatellites only provides poor information on the

coalescence trees, and the calculation of the exact likeli-

hood needs the simulation of very many admissible trees

which requires very long calculation time (e.g., MSVAR

software). The Approximate Bayesian Computation (ABC)

approach was also proposed to investigate population his-

tory from current genetic data (Cornuet et al. 2008; Hoff-

man et al. 2011), but the incidence of priors seemed

stronger using ABC than classical Bayesian method in the

case of unreliable field data that may suggest to set priors

far from reality (Nikolic et al. 2009b).

Here, we address the question using microsatellites and

an approximation of likelihood based on the distribution

of distance frequencies fk between alleles where fk is the fre-

quency of pairs of alleles differing by k microsatellite

motifs. This distribution could be characterized in the case

of a variable past effective population size (Chevalet and

Nikolic 2010). This allowed a new approach to be pro-

posed, which provides different views of the posterior dis-

tribution of past effective population size (means, mode,

median, and quantiles) as well as the complete posterior

distribution at some times. Also, it allows the posterior dis-

tribution of the Time to the MRCA between two alleles

(TMRCA) to be recovered. This property was used to discuss

the risk that a false bottleneck be detected in a population

submitted to immigration, comparing the expected distri-

butions of TMRCA under both hypotheses. The method was

evaluated and discussed in comparison with MSVAR

(Beaumont 1999) which makes use of the same type of

data. It was implemented into an R package VarEff, avail-

able at http://cran.r-project.org/web/packages/VarEff and

at https://qgsp.jouy.inra.fr.

Materials and methods

We detail the genetic and demographic framework used in

the present study, and outline the statistical setting used,

assuming the studied population remained isolated. In

order to discuss the effects of gene flow on the results, we

developed a simple model to illustrate how permanent

immigration may mimic the effect of a recent bottleneck

on the distribution of TMRCA. Details on implementation

and its uses can be found in the VarEff package and at the

Quantitative Genetics Software Platform (https://qgsp.jouy.

inra.fr).

Genetic diversity at microsatellites markers

Mutation models

We consider a general symmetrical Stepwise Mutation

Model, allowing the number of microsatellite motifs to be

changed under mutation by +r or �r with probability mr.

This process is defined by the mutation rate l and by the

characteristic function M(x) = Σr > 0 mr cos (rx). For the

Single Step Mutation model (SSM), m1 = 1, and:

MðxÞ ¼ cosðxÞ: ð1Þ
Two other models are considered, needing an additional

parameter c < 1 to fix them: a special case of the Two

Phase model (Di Rienzo et al. 1994) in which a proportion

c of the mutational events gives rise to a variation of two

motifs so that m1 = 1�c and m2 = c, and the Geometrical

Stepwise Mutation model (Whittaker et al. 2003; Watkins

2006) for which mr = (1 � c)cr�1.

Transformation of data

At any microsatellite locus, the observed diversity is given

by a list of alleles in a sample. Each allele is characterized

by the length of an amplified DNA fragment and is named

i, the number of repeats in excess relative to the shortest

allele of the sample. A sample of n alleles is described by a

list n0, n1, n2,. . ., ni,. . . where ni is the number of alleles

with i repeat motifs. Pure coalescence-based methods use

this complete information (MSVAR, Beaumont 1999).

Instead, we used a transformed version of the data made

up of the frequencies of pairs of alleles at a given dis-

tance (Shriver et al. 1997), i.e., the quantities f0 ¼
1=½nðn� 1Þ�Riniðni � 1Þ and fk ¼ 1=½nðn� 1Þ�Rininiþk for

k 6¼ 0. Theoretically, there is no one-to-one correspon-

dence between the lists (ni) and (fk), but in practice (using

actual diversity data) a single list of ni’s values could be

found to fit the fk’s. Global estimates of effective size can

be derived from homozygosity f0,

h0 ¼ 1

2

� 1
f 20

� 1
�
; ð2Þ

and from the first two moments of fk’s (Pritchard and Feld-

man 1996; Chevalet and Nikolic 2010):

h1 ¼ D1

�
D1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1 þ 1
q �

; withD1 ¼ Rk[ 02 k fk; ð3Þ

h2 ¼ Rk[ 02 k
2 fk: ð4Þ

Modeling population size changes

In order to cope with any kind of population size variation,

not only to continuous growth or decrease, we chose to

664 © 2014 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd 7 (2014) 663–681

Detecting effective size Nikolic and Chevalet



model past changes of population size by step functions

(‘skyline plots’), so that the size remains equal to Ni in suc-

cessive time intervals [gi, gi + 1], 0 ≤ i ≤ J�1 (Pybus et al.

2000). In this setting, g0 = 0 and N0 stand for the present

time and the current population size, gi < gi + 1 and NJ

stands for an ancestral population size, assumed constant

for times older than gJ. In the course of calculations, time

scale is changed from generation number to s = gl where g

is generation number and l the mutation rate, and popula-

tion sizes are normalized as h = 4 Nl values. A demo-

graphic history is characterized by 2J + 1 parameters, i.e.,

the J + 1 values,

h ¼ ð4N0l; 4N1l; . . .; 4NJlÞ
and the J time intervals

s ¼ fsi ¼ ðgiþ1 � giþ1Þlg; i ¼ 0; 1; . . .; J � 1:

In the process of estimating past history, such step func-

tions are randomly generated and the likelihood of data is

calculated conditional on the mutation process and on the

demographic hypothesis.

Approximate likelihood

For a given ‘skyline plot’ demographic history defined by

parameters (h, s), Chevalet and Nikolic (2010) showed

how the probability that two microsatellite alleles differ by

k motifs can be rapidly calculated through a numerical

integration (a summary of the rationale of this result is

given in Data S1). Assuming that the L chosen markers are

genetically independent and are submitted to the same

mutational process, the vector �f of mean values of frequen-

cies fk at the different loci is expected to approximately fol-

low a multinormal distribution with means Eðfkjh; s; MÞ
and covariance matrix ð1=LÞVðh; s; MÞ, where the

moments are conditioned on the past demography (h, s)

and on the mutation process (function M). The likelihood

of data was then approximated from this distribution of

the mean values of the observed fk at the different loci. An

un-normalized expression of approximate likelihood is

then reduced to a quadratic:

L�ð�f jh; s; MÞ ¼ � 1

2
Q�ð�f jh; s; MÞ

with:

Q���f jh; s; M� ¼ L
�
�f � Eðf jh; s; MÞ�0V�1�

�f � Eðf jh; s; MÞ�: ð5Þ

Choosing a fixed range [0, df] of k distances, the expecta-

tion Eðf jh; s; MÞ of the vector �f of mean values depends in

a calculable way on the parameters h and s and on the

mutation model. Calculating the matrix V(h, s, M) of vari-

ances and covariances of the fk’s under the same conditions

would require much computation time. Hence, the model

was over-simplified, assuming that V(h, s, M) depended

weakly on parameters and could be replaced by a constant

matrix, based on its sample estimate. In eqn (5), V was

taken as a constant

V ¼ ð1� kÞbV þ kDh; ð6Þ
where 0 < k < 1, bV is the sample estimate and Dh a diago-

nal matrix made up of a heuristic approximation of fk vari-

ances (Chevalet and Nikolic 2010),

VarðfkÞ ’ 0:053 h�1:14 exp �k

ffiffiffi
2

h

r !
based on the h1 estimate of h eqn (3).

Approximate normality is expected from the law of large

numbers, but convergence may be slow. Using simulated

demographic scenarios, approximate normality was indi-

rectly assessed, testing the distribution of the quadratic

form eqn (5) against the Chi-square distribution with

(df + 1) degrees of freedom. In each set of 100 simulated

cases, V was estimated from the whole data set and used as

the true V matrix. Then frequencies in each simulation (i)

were used to calculate the corresponding Qi value, and the

distribution of the 100 Qi values was tested against the cor-

responding Chi-square distribution, using the Kolmogo-

rov–Smirnov test. The corresponding P-values are given in

Table 1.

Table 1. Test of the normality of mean allele distance frequencies.

P-values of the Kolmogorov–Smirnov test of the distribution of the qua-

dratic forms Q eqn (5) against the Chi-square distribution with df + 1

degrees of freedom, which is expected if the mean frequencies of allele

distances follows a multinormal distribution. In the 14 simulated cases

described in Figs 2–4, P-values were calculated from data obtained with

10, 20 and 40 markers, using the ks.test function available in the R

package.

Case References df + 1 L = 40 L = 20 L = 10

Constant

population size

Fig. 3A 20 0.142 0.227 <0.001

Population

expansion

Fig. 2A 10 0.740 0.169 0.239

Fig. 2B 12 0.623 0.114 0.022

Fig. 2C 10 0.192 0.134 <0.001

Fig. 2D 12 0.402 0.124 <0.001

Fig. 2E 10 0.056 0.007 <0.001

Fig. 2F 12 0.058 0.004 <0.001

Present or past

bottleneck

Fig. 3B 15 0.110 0.207 0.013

Fig. 3C 15 0.158 0.035 0.001

Fig. 3D 15 0.712 0.116 0.011

Fig. 3E 15 0.850 0.214 0.822

Fig. 3F 15 0.644 0.574 0.021

Transient increase

in the past

Fig. 4A 15 0.492 0.214 0.323

Fig. 4B 15 0.528 0.051 0.153
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Statistical inference and implementation of the method

Using the approximate expression of likelihood, inference

was based on a Metropolis Hastings Bayesian scheme. Prior

means of h’s are set equal to a single value hp given by the

user, from a single prior value Np of effective size and an

assumed mutation rate l. Since the model is expressed with

functions of the compound parameters h and s, the muta-

tion rate is fixed and behaves as a scale parameter. The

prior distribution of h is assumed to be a multinormal dis-

tribution on the logarithmic scale, characterized by a single

variance. Following a suggestion of Drummond et al.

(2005), correlations qk between ln(hi) and ln(hi + k) can be

introduced in order to avoid too large variations between

successive population sizes. Prior means of s are set equal

to a single value, equal to sp = gJl/J where gJ is the number

of generations since the population departed from an

assumed ancestral size. The prior mean of gJ must be given

by the user. As for h’s, a normal prior distribution is

assumed for the logarithms of the s’s, with another single

variance and independence between time intervals. For the

joint prior distribution, independence is assumed between

h and s. Denoting with p the set of log-parameters ln(h/hp)
and ln(s/sp), and with W their (2J + 1) 9 (2J + 1) prior

variance-covariance matrix, the prior probability of a set of

parameters is then written as

ln
�
P0ðh; sÞ

� ¼ C � 1

2
ln
�
detðWÞ�� 1

2
p0W�1p;

noting that the special form of W makes these calculations

simple and fast. Combining with eqn (5), an un-normal-

ized expression of the log-posterior probability of parame-

ters is:

� 1

2
Q�ð�f jh; s; MÞ � 1

2
p0W�1p:

Statistical inference was performed using the Metropolis

algorithm based on this expression and using normal pro-

posal distributions for the logarithms of parameters as fol-

lows. The move of parameters values from the uth to the

(u + 1)th iteration is obtained as:

puþ1 ¼ pu þ KDZuþ1

where pu stands for the current values, Zu + 1 is a ran-

dom vector of normal standard variates with zero mean

and covariance matrix equal to the identity matrix, D is the

matrix such that W = DD0 is the Choleski decomposition

of W, and K is a scale factor used to adjust the acceptance

rate at a desired value. Implementation of the Metropolis-

Hastings algorithm made use of the metrop function of the

mcmc library (Geyer 2009) available in the R environment

(R Development Group Team 2008, version R 2.10.10 or

later).

The method was implemented in an R package avail-

able at http://cran.r-project.org/web/packages/VarEff. At

the end of a run of VarEff, a list of demographic step

functions is generated. Each one is described by J steps

characterized by population sizes hj (0 ≤ j ≤ J) and

times of size changes sj. This allows the posterior dis-

tribution of past effective size to be recovered at any

time in the past. The functions provided in the package

allow the user to visualize these distributions at differ-

ent times in the past, to extract global statistics from

these distributions (arithmetic and harmonic means,

mode, median, and quantiles) and to derive the poster-

ior distribution of the TMRCA of two random alleles

(eqn A2, Data S1).

Detecting changes of past population size

A global criterion, the imbalance index (i = ln h2 – ln h0,
Kimmel et al. 1998), was used to check population size

changes. In addition, we devised a new criterion based

on the estimated population sizes in the past, during

some interval of time. Using estimates ~h1~h2. . .~hk of pop-

ulation size at several times in some period, we consid-

ered the ratio (RN) of the range of estimated

population sizes during the period, to the arithmetic

mean of ~hk’s:

RN ¼ maxð~h1~h2...~hkÞ �minð~h1~h2...~hkÞ
meanð~h1~h2...~hkÞ

: ð7Þ

In the following, RN values were based on the medians

of posterior distributions.

Modeling the effects of gene flow

Confounding effects between recent population size

decrease (bottleneck) and gene flow has been reported sev-

eral times. To help understand how both phenomena may

affect estimation of population size changes, we considered

the incidence of a simple migration model on the distribu-

tion of the TMRCA of two alleles. Calculations are detailed

in Data S2. For an isolated population, there is a direct link

between the function describing the change with time of

population size and the distribution of the TMRCA of two

alleles (eqn A2 in Data S1). Plugging in it the expected dis-

tribution of TMRCA under immigration (eqn A3 in

Data S2) generates a function h(s) describing a change

with time of population size. Assuming the sampled popu-

lation has a constant effective size N, but receives immi-

grants at a rate m each generation from a much larger

population of size N/e, one would predict from eqn (A5)

(Data S2) that it underwent a bottleneck gb generations

ago, with:
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gb
2N

ffi 1

1þ 4Nm
ln
1

�
þ ln

1þ 4Nm

4Nm

� �
: ð8Þ

Data sets

Simulated data sets

Several scenarios of population demography were simu-

lated to test the efficiency of the method at estimating effec-

tive population size and at detecting past demographic

variations. As a rule, samples of 40 diploid individuals were

drawn at different times when the analysis was performed.

In general, 40 independent microsatellite markers were

generated according to the Single Step Model; simulated

population sizes were in the range between 100 and 10 000

and mutation rates were adjusted between 0.01 and 0.001

to reach the considered h values. Main scenarios were repli-

cated 100 times, so as to account for the effects of drift on

the precision of estimators and to allow comparison with

standard ones for constant population size. Details about

scenarios are given in the legends of Figures. An in-house

forward software was used, that allows population size

changes and gene flow between several populations to be

simulated, and that makes it possible to consider various

stepwise mutation models.

Atlantic salmon data sets

We used the genetic data set analyzed by Nikolic et al.

(2009a), composed of 367 wild adult anadromous Atlantic

salmon (i.e., adults migrate from the sea to breed in fresh-

water) from North-West France (Oir and Scorff) and

North-East of Scotland (Spey and Shin) sampled in 2005

and earlier in 1988 except for Shin sampled in 1992. These

individuals have been genotyped with 37 nuclear microsat-

ellites and the mutation rate detected was 0.0003 (Nikolic

et al. 2009b). Concerning the census sizes we used the ones

reported in Nikolic et al. (2009a).

Results

We first provide technical results on the behavior of the

algorithm implemented in VarEff (choice of priors, conver-

gence). Then, we evaluate the efficiency of the method to

estimate past demography in cases when population size

has undergone transient changes and compare it with

MSVAR. Most results were derived from a set of simulated

data, as described in the Figures. Finally, we apply the

method to the salmon data set.

Technical considerations

Tuning parameters and priors

Running the MCMC chain requires tuning some parame-

ters and checking the effects of priors. Prior values are

required to set the range of admissible parameter values.

Since the global h estimates give the order of magnitude

of population size, the prior for population size (Np)

must be adjusted to the given mutation rate. We propose

to set Np equal to h1/(4l), since h1 eqn (3) generally

takes an intermediate value between h0 and h2 eqns (2)

and (4). Choosing a valuable time horizon (gJ) is also

important. It is the time before which population size is

assumed constant in the model. Choosing it too small

would prevent the method to search for ancient varia-

tions and cause biases for recent sizes. Prior knowledge

about the history of the population must be used to set a

reasonable gJ value. For the population size and the time

intervals between jumps of the step functions, a variance

must be given to fix the prior distribution of the loga-

rithms of these parameters. A value of 3 turned out to be

a good choice for both parameters. This value allows for

searches with 20- to 40-fold relative variations of popula-

tion sizes and time intervals. Larger values may prevent

the algorithm to converge.

Some other parameters must be fixed: they are not

subject to estimation but may have some impact on the

efficiency of the method. We found that computing time

was roughly proportional to the product J*df where J is

the number of population size changes and df is the larg-

est difference between allele lengths. Trials run with small

J (between 2 and 5) or large J (>10) did not prove that

using larger values provided better results. Since the cal-

culation time is proportional to J, we found that it was

more efficient to run simulations with a limited number

of population size changes (J = 4–5) than to use large J

values. The range df of allele distances must include sig-

nificant distances found in the sample showing for exam-

ple a frequency larger than 0.005. Including the largest

distances may be useful to detect past events, but often

leads to include distances with zero frequency, a case that

makes unrealistic the assumption of normality of the

mean frequency distribution. A correlation q between the

successive population sizes generated by the proposal dis-

tribution must be given. Trials did not prove this param-

eter to be of main importance, except if a large value of

the number of steps J is used. Using a large q prevents

the method to search for large variations of past effective

size. Using a very large value (q = 0.99) is a way to con-

straint the method to search for a constant population

size. A heuristic parameter k is introduced in the calcula-

tion of an approximate likelihood, to balance the

observed covariance structure by a theoretical diagonal

variance matrix eqn (6) and avoid numerical instability.

The effect of this parameter on the accuracy of estima-

tions was checked in the case of constant population size.

Such a result is illustrated in the Figure S1, for the mode

and median estimates of population size, and it suggests

using for k a value near 0.5.

© 2014 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd 7 (2014) 663–681 667
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Complexity and convergence

The complexity of the algorithm is roughly proportional to

the product J*df, and is independent of the number L of

markers and of sample size. In general, convergence seemed

to be obtained with metrop (Geyer 2009) parameters

(nbatch = 10 000, blen = 1, nspac = 10) after a burnin per-

iod of 10 000 steps. Smoother results were obtained, aver-

aging results over several steps (blen = 10). However, it

may be better to increase nspac, the space between sampled

states, to 100 or 500, so as to get rid of autocorrelations

between steps. Convergence was assessed comparing several

series of simulations with the test of Gelman and Rubin

(1992). This test can be applied to the series of (h, s) values

output from the VarEff function, or to the series of esti-

mated population sizes at a number of times.

The time needed to get a sound result, using metrop indi-

ces (10 000, 10, 10) or (10 000, 1, 100) for a total of 106

steps was about 90–160 min on a PC (Intel Core2 Quad

CPU Q6600 at 2.40 Ghz processor, Windows operating

system). This makes our method much faster thanMSVAR,

which is dependent on the number of markers. For exam-

ple (Table 2), it took about 10–16 h with the same com-

puter to analyze the same data sets with rather short chains

(20 000 output lines and 10 000 iterations between them).

Efficiency and detection of population size changes

Relative efficiency of global size estimates (constant popula-

tion size)

Simulated data were generated under the simplest case of

constant effective population size. The diploid population

size was set to 1000, the mutation rate adjusted to get h val-

ues of 1, 4, 12, and 40, and simulations were performed

according to the Single Step Mutation model for microsat-

ellites (SSM model, eqn 1). For each run, seven estimates

of h were derived: three global estimates eqns (2)–(4) and
four estimates of population size at 10 times in the past. At

each time, four statistics were derived from the posterior

distribution of population size: the arithmetic and har-

monic means, the mode, and the median. The Mode esti-

mate, for example, was the average of the modes of the

posterior distributions of h at times 0.025, 0.05, . . ., 0.225

and 0.25 in the past (reduced time). Efficiencies were mea-

sured as the ratio
ffiffiffiffiffiffiffiffiffiffi
MSE

p
=h of the square root of the Mean

Square Error of the estimate to the true h value (Fig. 1).

These efficiencies can be compared to that of h2 eqn (4),

for which the SSM theory provides the expected value

(Pritchard and Feldman 1996):

Varðĥ2Þ ¼ 4h2 þ h
3

: ð9Þ

The Figure S2 illustrates the behavior of estimates at sev-

eral times in the past, when the population size is constant

with h = 40.

Detecting past variations of population size

Fourteen demographic scenarios (described in the legends

of Figs 2–4) were simulated 100 times in order to check the

ability of the method to detect the effects of population

expansion, of current or past bottleneck, and of a transient

increase of population size in the past. For these 14 simu-

lated cases the means and standard deviations of imbalance

index (i = ln h2 – ln h0, Kimmel et al. 1998) are given in

Table 3. In order to detect a change in past population size,

we also calculated the ratio RN eqn (7) from present time

back to some ancient time and derived its distribution over

the 100 replicates. It turned out that the condition

RN > 0.10 was a good indicator of a significant change of

population size over the period. Table 3 gives the frequency

Table 2. Comparison of MSVAR and VarEff results. MSVAR and VarEff

were run on the same data, for six cases corresponding to population

expansion and to recent or ancient transient past decrease or increase

of population size, as defined in the mentioned Figures. N0 stands for

size at sampling time, Na for the ancestral size and Tf for the time since

the beginning of population size changes (denoted also as gJ in the

Materials and methods section). For nonmonotone history, Ni and time

stand for an intermediate population size and the corresponding time

(generation number).

Case N0 Ni (time) Na Tf Calculation time

Current expansion

Fig. 2C

Theory 5000 NA 500 300

MSVAR 5400 NA 410 415 12 h 35 min

VarEff 2100 NA 540 680 1 h 10 min

Past expansion

Figs 2D and 5

Theory 5000 5000 (700) 500 2500

MSVAR 6100 NA 290 2500 12 h 20 min

VarEff 5500 5000 630 2000 1 h 25 min

Recent bottleneck

Figs 3C and 6C

Theory 1000 100 (250) 10 000 300

MSVAR 1300 NA 625 2 10 h 30 min

VarEff 950 260 (260) 1450 1000 2 h 40 min

Past bottleneck

Figs 3D and 6D

Theory 1000 100 (450) 1000 500

MSVAR 1070 NA 590 140 15 h 30 min

VarEff 1380 270 (400) 1500 1500 2 h 40 min

Recent transient increase

Fig. 4B

Theory 500 2500 (350) 500 600

MSVAR 330 NA 870 9 10 h

VarEff 570 1480 (420) 400 1500 1 h 30 min

Ancient transient increase

Fig. 4D

Theory 500 2500 (650) 500 900

MSVAR 400 NA 710 220 13 h

VarEff 520 1600 (810) 640 2500 1 h 35 min
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of cases for which the ratio RN was <0.10, for several peri-
ods over which RN was calculated. Figures 2–4 show the

mean estimates over 100 replicates of past population effec-

tive size in the different scenarios: arithmetic means,

modes, and medians of posterior distribution. Figures S3–
S5 show the variation of these estimates across replications.

Posterior distribution of past effective size. We report also re-

sults concerning single simulations to illustrate the ability

of the method to get a detailed view of posterior distribu-

tions. Figures 5 and 6, using the additional functions

included in the package, illustrate these possibilities. For a

number of cases of expansion, bottleneck and transient

increase, MSVAR was run on the same data. Table 2 shows

the comparison of results obtained from both methods.

Migration scheme. Figure 7 illustrates the application of the

method in the case of a population submitted to permanent

immigration from a larger population, according to the

model outlined in Data S2. Results show how the popula-

tion sizes of the sampled population or of the external pop-

ulation were recovered depending on the 4Nm parameter

and on the time in the past.

Atlantic salmon data sets

The method was used to estimate the current and past

effective sizes of wild Atlantic salmon populations sampled

in two countries, France (Oir and Scorff) and Scotland

(Shin and Spey) in 1988, 1992 and 2005 (Nikolic et al.

2009a). Estimations of sizes were searched for from sam-

pling time to 5000 generation ago. The results revealed a

large past ancestral size (median around 50 000–90 000)

and a lower current size (Fig. 8, Table 4), assuming a

mutation rate of 0.0003 (Nikolic et al. 2009b). The general

patterns of effective size (Fig. 8) were similar for the four

populations, except for the 1988 sample of river Spey.

Deriving the posterior distribution of the Time to the Most

Recent Common Ancestor (TMRCA) of a pair of alleles from

the distribution of effective size (eqn A2 in Data S1) con-

firmed that these populations underwent a bottleneck

Figure 1 Efficiencies of population size estimates. Efficiencies of seven population size estimates, as function of the genetic diversity (h = 1, 4, 12,

and 40) and of the number of markers (10, 20, and 40). Abscissa: T_0, T_1, and T_2 indicate the precision of the global estimates h0, h1, and h2 based

on the analysis of 100 replicates of the drift process, T_2.theo provides the theoretical accuracy of h2. Mode, Harm.Mean, Median, and Arith.Mean,

respectively, stand for the averages of the mode, the harmonic mean, the median and the arithmetic mean of the posterior distributions of past effec-

tive population size at 10 times in the past, in the range 0–0.25 (reduced time unit). Ordinates: Efficiencies are measured as the ratios
ffiffiffiffiffiffiffiffiffiffi
MSE

p
=h of the

square root of the Mean Square Error (MSE) of the estimate to the true h value. Black diamonds: 10 markers; Red squares: 20 markers; Blue triangles:

40 markers.
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around 300–1500 generations ago. According to Fig. 8A,

the times (gb generations ago) of the bottleneck were esti-

mated, for Oir 2005 (gb = 900), Oir 1988 (gb = 700), Scorff

2005 (gb = 1300), Scorff 1988 (gb = 1000), Shin 2005

(gb = 300), Shin 1992 (gb = 500), Spey 2005 (gb = 500)

and for Spey 1988 (gb = 1500).

Discussion

The estimation method

Technical efficiency

A first observation is that the present method behaves as

well as the best known estimates in the case of constant

population size, getting the same dependence of precision

on marker diversity and on the number of markers. For a

constant population size, estimates given by h0 based on

current heterozygosity and by the mode of the posterior

distribution turned out to be the best ones (Fig. 1). Except

for a low variability (h = 1), the harmonic mean and the

median showed similar efficiency, while the arithmetic

mean was generally less efficient and more sensible to a

reduction of the number of markers.

The method is based on an approximation of the likeli-

hood of the mean values of allele distance frequencies by a

multivariate normal. Table 1 shows how the value of this

approximation depends on the number of markers. It must

also be stressed that the approximation becomes weaker if

markers are less variable (lower theta values). Increasing

the number of markers would then be necessary but not

always sufficient. The approximation may become quite

weak if the number of markers is low or if some frequencies

are very low. Deriving the distribution of means over mark-

ers of allele distance frequencies assumes that all the mark-

ers follow the same mutational process. It is often difficult

to consider that differences between allele frequencies pro-

files are due to different mutational processes, because the

variation expected from drift eqn (9) is extremely large.

Applying some normalization between markers to make

the frequency profiles more regular could in fact hide the

natural variations and bias inferences. However, markers

may be less regular than in the simulations, and checking

the dependency of results on the choice of markers may be

required. If hundreds of markers are available, as for

human populations (Rosenberg et al. 2002; Tishkoff et al.

(C)(A) (E)

(D)(B) (F)

Figure 2 Estimates of population size under expansion. Cases A, C, and E: estimates of current and past population size during expansion. Cases B,

D, and F: estimates of current and past population size, from samples performed some time after expansion had finished. Cases A and B: slow expan-

sion, from size 500 to 5000 in 900 generations. Cases C and D: medium expansion rate, from size 500 to 5000 in 270 generations. Cases E and F:

fast expansion, from size 500 to 5000 in 90 generations. The 100 simulations were run using a mutation rate of 0.003 and estimations were based

on 40 independent markers. Abscissa: time in the past from 0 to 9 (reduced time scale). Ordinates: estimates of past population sizes (theta scale)

from arithmetic means (red), medians (black) and modes (blue) of posterior distributions. The simulated demography is shown in green.
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2009), one could sample subsets of about 50 markers and

check the stability of results across sets of markers. This

would be approximately equivalent to the repeated scenar-

ios considered above and could allow the times of impor-

tant size change to be detected from the variation over

repetitions of size estimates. Compared to approaches

aimed at considering the full exact likelihood of data, either

through an MCMC approach (Wilson and Balding 1998;

Beaumont 1999; Wu and Drummond 2011) for microsatel-

lite markers or through an analytical derivation of

likelihood for small samples (Lohse et al. 2011, for the

infinite-sites model) the present approach is based on

simplifications and does not take account of variable muta-

tion rates. However, it allows the effects of priors and of

the mutation model on past population sizes estimation to

be easily tested, because calculations are very fast permit-

ting alternative models to be compared.

Detection efficiency of past population size

The most interesting feature of the method is its ability to

recover the dynamics of size variations and to detect tran-

sient changes, not only general tendencies such as mono-

tone growth or decline of population size. Under changing

population size, the median of the posterior distribution

was found to be the most robust estimator. The harmonic

and the arithmetic means were sensible to extreme small

and large values that are generated by the simulation, for

recent and ancient times, respectively. The occurrence of

bimodal posterior distribution of effective size makes esti-

mating size through the mode sensible to a shift between

local modes. As a consequence, the times when population

size has undergone a change may be strongly biased when

using the mode. The present method seems quite more use-

ful than a single criterion like an imbalance index (Table 3)

that does not seem able to detect transient changes, except

in very sharp situations. The strong current bottleneck

(Fig. 3B) and past important expansions (Fig. 2B,D,F)

resulted in highly significant imbalance indices and were

well detected. On the contrary, except for slow growth

(Fig. 2A), using imbalance indices did not allow the cur-

rently growing populations (Fig. 2C,E), or the transient

past increase of population size (Fig. 4) to be detected. In

contrast the present method provided good evidence of

these events, for example using the RN ratio (eqn 7,

Table 3) and deciding that population size has changed if

RN > 0.10. For expansion cases (Fig. 2), this test was

always very significant provided the period of time used to

calculate RN is long enough. For past bottlenecks, the

(E)

(A)

(F)

(B) (C) (D)

Figure 3 Estimates of population size after a bottleneck. Populations were simulated assuming a population size of 1000 except during a bottleneck

with population size reduced to 100 during 100 generations. Mutation rate was set to 0.01, so that h values were equal to 40 except in the bottle-

neck stage when it was 4. The population was analyzed before the bottleneck (case A), at the end of the bottleneck (case B) and at times 2, 4, 20,

and 40 after the bottleneck (cases C–F). Estimations were based on 40 independent markers. Abscissa: time in the past, in reduced scale genera-

tion 9 mutation rate, from 0 to 20 in cases A–D, and from 0 to 50 in cases E and F. Ordinates: estimates of past population sizes (in the reduced h

scale) from arithmetic means (red), medians (black), and modes (blue) of posterior distributions. The simulated demography is shown in green.
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method seemed very efficient when population size

remained small after the bottleneck (Fig. 3B), would miss

detection with a probability of about 0.20 for relatively

ancient bottleneck (Fig. 2C,D), and lack efficiency for quite

ancient events (Fig. 2E,F). In the case of a transient past

expansion (Fig. 4A,B), a quite good efficiency was also

observed. It may also be noted that considering several

periods to calculate RN, may allow the time when a tran-

sient change occurred to be evaluated, although these times

seemed often overestimated. In the case of a constant pop-

ulation size, the observed values of Pr(RN < 0.10) from

0.82 to 1.0 are estimates of the power of the test.

Provided past events of population size changes are not

too ancient and strong enough the method provided a

good view on past demography. However, it was observed

that under current expansion, the present size could not be

recovered (Fig. 2A,C,E). The signal of expansion was clear

but the current population size was underestimated, the

larger the expansion rate the larger the bias. Estimates of

effective sizes in the recent past suggested that population

had reached a plateau. In these cases, using MSVAR pro-

vided more valuable estimates of present population size

(Table 2). If the analysis was carried out after the popula-

tion reached a new plateau (cases B, D, and F where a delay

between 2 and 3 in the reduced time scale was applied), Va-

rEff provided a correct picture of the actual history,

although the time when expansion occurred seemed over-

estimated. The different rates of expansion assumed in the

simulations led to similar profiles of estimated sizes, with

low differentiation between expansion rates. In all the cases,

the ancient small population size was correctly estimated,

especially when using the median estimate. Conversely,

MSVAR failed in these cases to provide correct estimates.

Large overestimations of the current size and of the time

since expansion were obtained, while ancestral population

sizes were underestimated (Table 2). The increase of uncer-

tainty for the mode and the median VarEff estimates corre-

sponded to the times when population size had undergone

its expansion (Figure S3). This burst of uncertainty was

observed in the period when the population underwent

demographic change, hence was lasting longer for slow

expansion (Figure S3B) than for fast expansion (Fig-

ure S3F). The precision on the current size was roughly

equal to that given by the h2 estimate for constant sizes

(A) (B)

(C) (D)

Figure 4 Detection of a past transient increase of population size. The simulated populations involve a fivefold increase of size from 500 to 2500 dur-

ing 450 generations. The assumed mutation rate was set to 0.01 and estimations were based on 40 independent markers. Cases A and C: analysis

made 100 generations after population had recovered its ancestral size (A: mean results from 100 simulations; C: results obtained from a single simu-

lation). Cases B and D: analysis made 400 generations after population had recovered its ancestral size (B: results obtained from a single simulation;

D: results obtained from a single simulation). Abscissa: time in generations. Ordinates: estimates of past population sizes from arithmetic means

(red), medians (black) and modes (blue) of posterior distributions. The simulated demography is shown in green.
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(Fig. 1), while precision on the ancestral size was about

50% lower.

Detecting past bottlenecks relied on the chance of

observing pairs of alleles that had coalesced during it.

In the cases of Fig. 3, this corresponded to pairs of

alleles whose TMRCA was between G1, the time when

population recovered its ancestral size N0, and G2, the

time when the size was reduced to N1 (N0 = 1000,

N1 = 100, G1 = 200 and G2 = 300 in Fig. 3C). The

probability that TMRCA is less than G1 is equal to the

inbreeding index F1 ’ 1� exp
�� G1

2N0

�
. The probability

that TMRCA is between G1 and G2 is then equal to

(1�F1) times the probability that coalescence occurred

before G2�G1 generations in the population of size N1,

i.e., F2 ’ 1� exp
�� G2�G1

2N1

�
. The probabilities that a

pair of alleles has coalesced after, during and before

the bottleneck are therefore, respectively, F1, (1�F1) F2,

Figure 5 Posterior distribution of effective population size in the past after exponential expansion. The Figure provides detailed results for one of the

100 simulated cases of Fig. 2D. (D1) median estimates; (D2) two-dimensional joint distribution of past time and past effective size; (D3) detailed pos-

terior distributions of population size at the present time and at three times in the past. Abscissa: (D1 and D2) reduced past time; (D3) decimal loga-

rithms of population size (theta units). Ordinates: (D1) median of the posterior size distribution (in black, theta units), the simulated demography is

shown in green; (D2) decimal logarithm of population size (theta units); (D3) densities of the posterior distribution of the logarithm of population size

(theta units): at the present time (black), and at reduced times 2 (blue), 4 (red), and 8 (green) in the past. Colored arrows in box D1 indicate the times

when the distributions were calculated.

Table 3. Testing past population changes. Tests were calculated on 14 series of 100 simulated populations, as described in Figs 2–4. Imbalance index

i: the natural logarithm of the ratio of estimates of population size from heterozygosity and from the second moment of allele distance frequencies.

RN: the ratio of the range to the mean of point estimates of population size (median of the posterior distribution) in some period, from sampling time

back to the specified past time. In each case, Pr(RN < 0.10) was estimated from the distribution in the 100 simulations.

Case Reference

Imbalance

index i

Standard

deviation of i Pr(RN < 0.10) (estimation)

Period: 0–2 0–5 0–10 0–20

Constant population size Fig. 3A �0.009 0.153 1.00 0.98 0.94 0.82

Period: 0–1.2 0–2.2 0–4.5 0–9

Population expansion Fig. 2A �0.669 0.090 0.93 0.14 0.00 0.00

Fig. 2B �0.743 0.067 0.99 0.96 0.19 0.00

Fig. 2C �0.472 0.136 0.15 0.00 0.00 0.00

Fig. 2D �0.756 0.085 1.00 0.43 0.00 0.00

Fig. 2E �0.236 0.161 0.57 0.17 0.00 0.00

Fig. 2F �0.748 0.085 1.00 0.63 0.00 0.00

Period: 0–2 0–5 0–10 0–20

Present or past bottleneck Fig. 3B 1.204 0.214 0.14 0.00 0.00 0.00

Fig. 3C 0.130 0.181 0.28 0.20 0.18 0.16

Fig. 3D �0.058 0.181 0.70 0.29 0.20 0.18

Period: 0–5 0–12 0–25 0–50

Fig. 3E �0.129 0.150 0.97 0.74 0.49 0.41

Fig. 3F �0.082 0.161 0.96 0.86 0.74 0.71

Period: 0–3.6 0–7.5 0–15 0–30

Transient increase in the past Fig. 4A �0.101 0.139 0.04 0.03 0.01 0.00

Fig. 4B 0.082 0.156 0.49 0.31 0.21 0.18
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and (1�F1) (1�F2). These values are approximately

(0.10, 0.36, 0.54), (0.18, 0.32, 0.50), (0.63, 0.15, 0.22)

and (0.86, 0.06, 0.08) for Fig. 3C, D, E, and F, respec-

tively. Detecting the bottleneck depends on the chance

to sample a sufficient number of pairs of alleles corre-

sponding to the second class: the bottleneck must be

strong enough (large F2 value) and not too old (small

or intermediate F1). For the same reason, accessing the

ancient population size, before the bottleneck event, is

possible only if it is not too ancient. Also, it must not

be too strong: for a large F2 value the number of

alleles derived from the ancestral population is greatly

reduced, to about 2/F2 – 1 ≃ 4 in Fig. 3 (Chevalet

2000). This may explain why the ancestral population

size seemed underestimated even for a quite ancient

bottleneck (Fig. 3E). Using MSVAR in these cases sug-

gested a very recent and very fast increase of popula-

tion size from an ancestral smaller population size,

indicating for example the doubling of population size

in the last two generations, for a recent bottleneck

(Table 2, Fig. 6C). When the bottleneck is very ancient

(Fig. 3F), no signal could be detected, which is

expected since a new mutation-drift equilibrium was

recovered. The precision on the current population size

remained correct, while it was roughly halved for the

ancestral population size (Figure S4). In case B in

which the population was observed during the bottle-

neck, a large increase of uncertainty arose for the per-

iod when the population underwent its change.

Transient increases of population sizes were also

detected, although the transient size seemed underesti-

mated, with a sharper underestimation when analyses were

performed a long time after the population had recovered

its ancestral small size (Fig. 4). Detecting an increase of

population size from allelic diversity requires that novel

diversity be detected, i.e., that new alleles reached measur-

able frequencies. A very short period with a large popula-

tion size would just result in allele frequencies being

unchanged, so that no signal could be observed when look-

ing at genetic diversity. If the population size is rapidly set

Figure 6 Posterior distribution of effective population size in the past after a bottleneck. The Figure provides detailed results for one of the 100 simu-

lated cases of Fig. 3. (C1–C3) Outlines of the posterior distributions, as in Fig. 5, for a sample taken 200 generations after the bottleneck; (D1–D3)

outlines of the posterior distributions, as in Fig. 5, for a sample taken 400 generations after the bottleneck. Abscissa: (C1, C2, D1, and D2) past time

in reduced time; (C3 and D3) decimal logarithms of reduced population size (theta’s). Ordinates: (C1 and D1) median of the posterior distribution of

the logarithm of population size [log(theta), in black], the simulated demography is shown in green; (C2 and D2) decimal logarithm of population size

log(theta); (C3 and D3) densities of the posterior distribution of the logarithm of population size (theta units) at the present time (black), and in the

past: at times 2 (blue), 4 (red), and 8 (green) for (C3) and at times 4 (blue), 6 (red) and 10 (green) for (D3). Colored arrows in C1 and D1 indicate the

times when the distributions were calculated.
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from N0 to a new larger N1 value, new mutations can accu-

mulate to eventually reach new mutation-drift equilibrium.

A rough quantitative evaluation of such effects can be

derived using the Infinite Allele Model for which diversity

is characterized by the frequency of heterozygotes. Before

the increase (time G2), the equilibrium heterozygosity was

H0 = 4N0l/(1 + 4N0l). From this time G2 to the time G1

when the population recovered its ancestral size N0, the

expected heterozygosity raised from H0 to

H� ¼ ð1� uÞH0 þ uH1, where H1 = 4N1l/(1 + 4N1l) is

the equilibrium heterozygosity with size N1 and where

u ¼ 1� exp
�� 1þ4N1l

2N1
ðG2 � G1Þ

�
is a measure of the

approach to the mutation-drift equilibrium at size N1.

Detecting the event requires that the increase H*�H0 be

significant, hence that both H1�H0 and φ be large

enough. In addition, the time G1 must also be large

enough, so that a sufficient proportion of coalescence

events involve new alleles generated during the burst of

population size. The lack of time needed to let new

mutations spread in the population may also explain the

inability of the method to provide reliable estimates of

the current size of a population in fast exponential

expansion (Fig. 2A,C,E). In these cases, allele frequencies

remain almost unchanged and estimations rely on the

frequencies achieved some time ago. The recovery of the

ancient size seemed correctly estimated, but as observed

for expansion scenarios (Fig. 2), the past time when

population size began its expansion seemed overesti-

mated, with a larger error when estimation was carried

Figure 7 Effects of migrations on effective population size estimation.

The posterior distribution of past effective size estimated from samples

within a small population (h = 2) submitted to immigration from a lar-

ger population (h = 20), for three rates of immigration (4Nm = 0.25, 1,

and 10). Ordinates: logarithm of population size (theta units); the blue

lines correspond to the actual sizes of the small and the large popula-

tions. Abscissa: time in the past (reduced time scale).

(A)
(B)

(C)

Figure 8 Estimations of Atlantic salmon’s effective population sizes from Oir, Scorff, Shin, and Spey rivers at two sample dates (1988 or 1992 and

2005). (A) Estimates of population sizes from the posterior medians, from year 2005 to 5000 generations ago. (B) Zoom on the last 1000 generations

(posterior medians). (C) Zoom on the last 1000 generations (posterior harmonic means). Each line is associated to a population: Oir 2005 (Oir05)

black line, Oir 1988 (Oir88) black dashed line; Scorff 2005 (Scorff05) in dark gray line, Scorff 1988 (Scorff88) in dark gray dashed line; Shin 2005

(Shin05) in light blue line, Shin 1992 (Shin92) in light blue dashed line; Spey 2005 (Spey05) in light gray line, and Spey 1988 (Spey88) in light gray

dashed line.
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out later (case B versus A, and D versus B). In the cases

shown in Fig. 4B,D, using MSVAR provided valuable

estimates of present population size, and suggested that

population underwent a decrease from a larger ancestral

population size. As in the cases of past bottlenecks, tran-

sient past sizes are ‘hidden’ to the MSVAR approach that

strongly relies on the assumption of a monotone size

evolution, and MSVAR suggested then very fast popula-

tion change. For VarEff, the precision on present size

remained good, while it was lowered for ancestral sizes,

as observed in the case of a bottleneck (Figure S5).

Sensitivity to gene flow

The population model refers to a single isolated popula-

tion. If the population is in contact with an external gene

pool, coalescence events between alleles may happen out-

side the population. The method is based on eqn (A4)

(Data S2), hence it returns estimates of a function N(t)

meant as the past size of an isolated population from which

alleles were sampled. When data are not drawn from an

isolated population, the estimated function N(t) should be

re-interpreted. For the simple migration model illustrated

in Fig. 7, analytical calculations (Data S2) show that the

distribution of coalescence time depends on two parame-

ters: 4Nm (where m is the proportion of immigrant

gametes per generation) and the ratio e of the considered

population size N to the size of the larger external popula-

tion. Figure 7 shows what happened when applying the

present method to such data, considering several values of

the migration rate: when 4Nm is small, the estimated popu-

lation size remained in the order of magnitude of the true

N while increasing with m. For larger values, the studied

population seemed to ‘vanish’ some time ago, the larger

the 4Nm value, the most recent this artifactual event. Look-

ing at the complete posterior distribution indicated a

bimodal distribution with a second local mode correspond-

ing to the size of the large external population. For large

4Nm values, results were very close to those expected for a

sample drawn in the external large population. According

to eqn (8), the predicted times of these apparent past

changes of effective size are 3.1, 1.5, and 0.22 for the three

cases, respectively, which is in good agreement with Fig. 7.

This analysis provides an explanation for the wrong detec-

tion of strong bottleneck by a program like MSVAR when

analyzing data generated according to an island model with

constant population sizes, and we could propose an estima-

tion for the time when a false bottleneck it detected

eqn (8). Like MSVAR, our method is based on estimated

distributions of coalescence times of alleles. In the case of

immigration, similar alleles (at low k distance) drawn from

the population derive mostly from an allele within the pop-

ulation, i.e., during the ‘scattering phase’ (Wakeley 1999).

Distant alleles are likely to have coalesced in the large exter-T
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nal population (the ‘collecting phase’), as soon as one of

them was an immigrant. This leads to a bimodal distribu-

tion of coalescence times between two alleles, and hence a

bimodal distribution of past population size when coales-

cence times are turned into population sizes. As pointed

out in several works (Nielsen and Wakeley 2001; Ptak and

Przeworski 2002; Nielsen and Beaumont 2009; Chikhi et al.

2010; Peter et al. 2010), about the same distribution of coa-

lescence time holds for alleles drawn in a population after a

bottleneck. If these alleles did not coalesce since the begin-

ning of the bottleneck, their coalescence has occurred when

population size was larger. Although both kinds of events

(coalescence during or before the bottleneck) do not occur

in the same periods of time, the variability across markers

may cause overlaps in the predicted time of the bottleneck

and lead to bimodal population size distributions as shown

for example in Fig. 6 in a case of bottleneck.

Sensitivity to mutation models

Detecting past variations of effective size is also sensible to

the assumed mutation model. For example, if markers fol-

low a geometrical model of mutation (Whittaker et al.

2003; Watkins 2006), the expected value of the imbalance

index is increased, suggesting a past bottleneck: with a c

parameter value of 0.5 [corresponding to a mean value

1/(1�c) = 2 of the number r of steps for each mutation

event] imbalance indices are 1.55, 1.22, 1.01 and 0.89 for a

constant population size h equal to 1, 4, 8, and 12, respec-

tively. A general approach to the question was proposed by

Wu and Drummond (2011) who considered more realistic

mutation models and could take account of marker specific

mutation processes. Although less general, the much faster

VarEff method allows various mutation models to be con-

sidered and some trials were performed to check its sensi-

tivity. For constant population size, using data simulated

under the Single Step Model (SSM) but assuming a more

complicated model to perform estimation (allowing for a

Two Phase Mutation model or for a Geometrical model),

the current population size was underestimated and

ancient size estimate was even smaller, suggesting past

expansion. Conversely, assuming SSM in the analysis of

data that were generated under a more complicated muta-

tion model led to an overestimation of ancient population

size and suggested the false detection of a current bottle-

neck, as predicted by the behavior of imbalance indices. A

look at the fit of the model to data (the mean value of the

quadratic departure of observations from the model,

eqn 5) allowed in general the right model to be identified

as that with the best fit. Simulating bottlenecks led to

similar biases for ancient population sizes, but estimates of

current population sizes were only weakly sensitive to the

assumed mutation model. This may be understood since

detection of current bottleneck relies mostly on the

variation of allele frequencies in the last generations. It

depends more on drift than on mutations, while inference

on ancient frequency distributions is strongly dependent

on the mutational process. The impact of using a different

model for data generation and analysis remained qualita-

tive. From a practical point of view, it may be suggested to

run the estimation using several mutation models, check

the fitness of models to data, and test the robustness of

results across equally fitted models. The analysis was per-

formed for the salmon populations and suggested that SSM

provided the best fit in most cases. However, for some pop-

ulations the Two Phase Model or the Geometrical model,

with a small c value of 0.2, gave a slightly better fit, suggest-

ing that the ancestral population sizes given in Table 4 and

Fig. 8 might be slightly overestimated.

The history of Atlantic salmon populations

During the last 30 years, the decline of wild salmon on

both sides of the North Atlantic (Parrish et al. 1998; Jons-

son and Jonsson 2004) has affected populations to differing

degrees (Hawkins 2000). Owing to their homing behavior,

salmonids are an ideal species for assessing the influence of

population structure on Ne estimations. The VarEff model

was applied on European wild Atlantic salmon populations

for which the genetic diversity and structure have been pre-

viously studied (Nikolic et al. 2009a). The four populations

studied are pressured by different factors and are therefore

subject to varying conservation and management strategies.

Because their characteristics are well understood (Baglin-

i�ere and Champigneulle 1986; Butler 2004; Baglini�ere et al.

2005; Butler et al. 2008) and they have large differences in

abundance, they provide a useful opportunity to evaluate

tools for estimating Ne.

The results obtained by VarEff (Table 4) are consistent

with other coalescent models with estimates of the current

and ancestral effective sizes nearer to those given by

MSVAR than to those given by DIYABC (Nikolic et al.

2009a). The shape of effective sizes’ fluctuations from sam-

pling to ancestral times revealed a homogeneous history for

the Atlantic salmon populations from France and Scotland

with a recent bottleneck. The Oir and Scorff older samples

(1988) had lower effective sizes than recent samples (2005).

On the contrary, Shin and Spey older samples had higher

effective sizes than recent samples. The populations were

subject to a global decrease in wild salmon stocks coming

from a common larger ancestor population (around

50 000–90 000 effective individuals) dating back to the last

glaciations. Regarding the median estimates, a bottleneck is

suggested about 300–1500 generations ago.
Comparison of census sizes to estimated current effective

sizes showed sharp differences between populations

(Table 4). Using the harmonic mean to estimate effective
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sizes, the disparity increased from the past samples to the

current samples. From 1988 to 2005, Oir population

showed an increase of current effective sizes while census

sizes were decreasing. Spey and Shin populations have a

current effective size lower than census size from past

(1988 and 1992) to 2005. The ratios (N/N0) of census size

(N) to effective size at sample time (N0) were <1 for the

French populations and larger than 1 for the Scottish pop-

ulations suggesting a better status for the Scottish popula-

tions. Considering the harmonic mean values of effective

size, the French populations seem more impacted than the

Scottish ones and a very recent decrease was revealed in the

last generations. According to the harmonic mean esti-

mates, these decreases occurred these last five decades

(since 1950) and were detected in both samples from the

four populations. They were of about 30–50% for Oir, 30–
45% for Scorff, 9–10% for Shin, and 4–6% for Spey, reveal-

ing a much higher drop in France than in Scotland.

The observed ancient bottleneck which might date back

to the last glaciations could also be interpreted under an

immigration model, according to which the different popu-

lations could be impacted by recurrent immigration from a

common large metapopulation. Under this model eqn (8),

estimates of current (at sampling time) and past effective

sizes (Table 4) and of the times when the ancient bottle-

neck is detected (Fig. 8) allow the order of magnitude of

immigration rates m to be derived. Suggested values of m

are, respectively, about 0.0022 and 0.0014 for Oir and Scor-

ff rivers for both samples. On the contrary, Scottish rivers

give contrasted results, with a value of about 0.0034 for the

2005 Spey and 1992 Shin samples, but a quite lower value

of 0.0006 for the 1988 Spey sample, and an increased rate

of 0.007 for the 2005 Shin sample.

Gene flow may reduce the differentiation between popu-

lations and conversely the resident forms may increase their

differentiation because the sea acts as a barrier to dispersal.

The homing behavior of Salmon (Skaala and Naevdal 1989;

Debowski and Bartel 1995) prevents important gene flow

so that the species tends to be structured into genetically

distinct populations of a geographical area to another or a

watershed to another, indicating the possibility of local

adaptation. Straying, leading to the contribution to repro-

duction in subsequent generations and promoting gene

flow remains limited. Generally, it is considered that the

homing is very strong in Atlantic salmon and the percent-

age of strayers varies between 2% and 6% (Stabell 1984;

Quinn 1993; Altukhov et al. 2000; Jonsson et al. 2003).

Natural gene flow may not be a real problem in salmon but

the artificial gene flow must be one modifying the evolu-

tion of coalescent effective size. An introduction of non-

native unknown Scottish juveniles into Scorff shifted the

bottleneck and led to an artificial increase of the effective

size, as demonstrated in our simulations to test the effects

of migrations on effective population size estimation

(Fig. 7). Oir population is in the same case with the intro-

duction of juveniles since the 1990s from the S�elune River

considered as the pool source watershed. In the Shin river,

the long-term artificial stock enhancement program using

fish of native origin has been set up to mitigate the block-

ing of freshwater habitat by hydroelectric dams in the

1950s and have reduced genetic variability of Shin popula-

tion, which led to underestimate current effective size. The

same holds for the Spey population, where fish of native

origin were used since the 1970s. Analyzing the two Spey

samples also showed strong differences between their

demographic histories (Table 4, Fig. 8), corresponding to

temporal genetic differentiation. The 2005 Spey sample was

taken from the upper catchment, where spring running fish

are known to originate (Laughton 1991). The 1988 samples

came from several months, mainly July, August and Sep-

tember, while 2005 samples came from 1 month. Large

populations in rivers such as the Spey are known to contain

genetically distinct population units (sub-stocks), which

differ in the timing of their return migration (Stewart et al.

2002; Jordan et al. 2005). The Spey 1988 sample could rep-

resent several sub-stock of spring running fish while the

2005 sample would correspond to one stock, explaining the

higher effective size of the past Spey population. Since the

gain or loss of variability is used to trace the history of a

population, any forces that were not included in this model

must be considered to recover a correct interpretation of

results.

Generally, the most important factor reducing the effec-

tive size and genetic variability are fluctuating population

size in different generations, followed by variation in family

size, variation of mating system (i.e., polygynous versus

polyandrous), and variation in sex-ratio of breeding indi-

viduals (Frankham 1995; Hedrick and Kalinowski 2000).

Nikolic et al. (2009a) tried to explain the high genetic vari-

ability observed in populations with a small census size

(Oir and Scorff) by two hypotheses: (i) these populations

underwent a very recent bottleneck 25–100 generations ago
and (ii) the high proportions of eggs fertilized by parr in

Oir and Scorff (Baglini�ere and Maisse 1985; Baglini�ere

et al. 1993) make precocious mature parr contribute signif-

icantly to the genetic variability, as reported in almonds by

Garcia-Vazquez et al. (2001) and by Johns and Hutchings

(2001, 2002). According to the present study, the most

drastic bottleneck underwent by the wild Atlantic salmon

occurred hundreds of generations ago and was followed by

another decrease these last decades in France, which favors

the second hypothesis. The precocious mature parr con-

tribute to enlarge the effective population size, which may

explain the higher effective size at the sample time N0 in

the French populations (Oir and Scorff) compared to their

census size N (Table 4). Regarding this disparity in Oir,
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between current effective (N0) and census (N) size changes

from 1988 to 2005 (increased effective size versus lowered

census size), an increase of precocious mature parr is sug-

gested in the Oir population. The precocious mature parr

seem highly active in the French populations probably to

balance the negative anthropic impacts. These new biologi-

cal strategies may have to be measured within different

watersheds in France to list the different degrees of estab-

lishment. This process could increase the genetic differenti-

ation between populations from a watershed to another,

indicating the possibility of local adaptation but also reduc-

ing the gene pool of the species.

Conclusion

As the catastrophic loss of biodiversity continues unabated,

guidelines for how extinction risk is related to population

size Ne should be a high priority in conservation biology

(Shaffer et al. 2000; Hare et al. 2011). For evolutionary

matters, the effective population size is a prime concern.

Therefore, there is a need to develop efficient methods

aimed at detecting past variations of effective population

size. Here, we have proposed a new fast method (VarEff)

based on microsatellite data, which remain valuable mark-

ers to assess genetic diversity in natural populations, for

which complete genome sequence analysis is not yet avail-

able on a large scale. Due to their high mutation rate, mi-

crosatellites allow recent history to be investigated and

provide complementary views. The VarEff model relies on

an approximation of the likelihood of data from which a

fast algorithm allows size variations to be efficiently

detected, without any prior hypothesis about the demo-

graphic history such as monotone growth or decline. The

approximation relies on the strong hypothesis that markers

share the same mutation process and the same mutation

rate. This limit could be overcome considering several sets

of dozens of markers, provided many ones (hundreds) are

available, and testing the robustness of results. Among its

advantages over methods like MSVAR (Beaumont 1999), it

was found that results did not depend much on priors, and

that their dependence on the assumed mutation model

could be explored. Trials with various hypotheses allow the

robustness of qualitative results to be checked, and the fit-

ness of alternative models may help choose the best model.

However, a deeper analysis of the influence of mutation

models on results might be worth further works, following

for example the analysis of Wu and Drummond (2011)

even if their approach is very time consuming. We have

given some insight into some sources of erroneous conclu-

sion about recent changes of effective population size. For

example, we showed how choosing an inappropriate

mutation model, or ignoring the effects of gene flow may

mimic a bottleneck. Presently, the method allows mutation

models to be compared, and extensions to evolutionary

schemes involving migration between several populations

could be developed, providing an alternative efficient

approach to those based on ABC (DIYABC, Cornuet et al.

2008).
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