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This note attempts to connect the skewness of the probability distribution function (PDF) of 
pressure, which is commonly observed in two-dimensional turbulence, to differences in the 
geometry of the strain and vorticity fields. This paper illustrates analytically the respective roles of 
strain and vorticity in shaping the PDF of pressure, in the particular case of a joint normal 
distribution of velocity gradients. The latter assumption is not valid in general in direct numerical 
simulations (DNS) of two-dimensional turbulence but may apply to geostrophic turbulence in 
presence of a differential rotation c/3 effect). In essence, minus the Laplacian of pressure is the 
difference of squared strain and vorticity, a quantity which is named the generalized centrifugal 
force divergence (GCFD). Square strain and vorticity distributions follow &i-square statistics with 
unequal numbers of degrees of freedom, when one assumes a joint normal distribution of their 
components. Squared strain has two degrees of freedom and squared vorticity only one, thereby 
causing a skewness of the PDF of GCFD and hence of pressure. 

Direct measurements of the pressure field in three- 
dimensional turbulence have confirmed the skewness of the 
distribution between regions of low and high pressure.’ This 
skewness of pressure of the probability distribution function 
(PDF) is generally larger in the case of two-dimensional 
turbulence.” The last reference has analytically established 
for both two and three dimensions, that the pressure PDF has 
exponential tails and is skewed even for a Gaussian velocity 
field. In the present note, a very simple attempt is made at 
connecting the origin of this skewness to intrinsic differences 
of geometry of the strain and vorticity fields in two- 
dimensional turbulence. For both two and three dimensions, 
the pressure field is linked to the competition between strain 
and vorticity through the diagnostic relation 

‘v2p=w2-s27 (1) 

where the gradient operator V, vorticity w, and strain s are 
appropriately defined for the dimension under consideration. 

We shall only consider here the case of two-dimensional 
turbulence and concentrate on the PDF of the variable W 

wl=$- W2, (2) 

instead of the PDF of pressure. 
The quantity W has received considerable attention in 

recent studies of turbulent transport of two-dimensional 
turbulence.3-” In the context of geostrophic turbulence, it has 
been proposed” to name W the centrifugal force divergence 
(since it is the divergence of a force potential and it also 
measures the competition between the centrifugal tendencies 
of strain deformation and the trapping tendencies of spin 
within the vortex cores), and some of its spectral character- 
istics are given in Ref. 6. 

By definition, the strain variance corresponds to the sum 
of the variances of two components, shear and normal strain 
(?=.rT + s$, while vorticity corresponds to a single degree 
of freedom. We have 

au dv a”* 
s’=z-G =-2 W’ 

where ti is the streamfunction of- the flow. One can also 
account for unequal numbers of degrees of freedom in strain 
and vorticity by noting that the symmetric rate-of-strain ten- 
sor contains two independent terms (when taking into ac- 
count incompressibility), while the antisymmetric vorticity 
tensor has only one nonzero term. 

For a homogeneous turbulence, the three variables st, 
s2, and (l/v?)w are uncorrelated and have the same variance 
for a spatial ensemble average: 

(s~s~)=(s,o)=(s~w)=o, 

(sf) = <s;> = $( 2) = cr2. 0) 
This suggests to examine the implications of the simplest 
assumption about their statistics which is a joint normal dis- 
tribution of the three variables. We emphasize that direct 
numerical simulations (DNS) of two-dimensional turbulence 
show that a joint normal assumption is not valid in general, 
but the main purpose of the following derivation is to exam- 
ine the implications of unequal degrees of freedom of strain 
and vorticity on the the PDF of W, using an analytically 
straightforward framework. 

The chi-square statistics of the quantity y =,$ defined as 

X2--XfCX,2f * * %f, (4) 

where the random variables x1 J,,... are normal and inde- 
pendent with the same variance 2, is given by the density 
function7 

(5) 
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where H(y) is the Heaviside function. The distributions of 
squared strain and vorticity correspond respectively to n=2 
and n=l in (5) and are thus 

fv(y=&)=; 

(6) 
e -Y14r"ff(y j. 

2 

Thus even in the case of joint normal distribution of velocity pI 10~= 

gradients, the PDFs of squared vorticity and squared strain 
are quite distinct because of their unequal number of degrees 
of freedom. Positive values of W are dominated by strain 
statistics while negative values correspond to large vorticity, 
thereby leading to a skewed distribution. 

lo-' 

We note the PDFs that appear in (6) are identical to the 
generic forms of PDF tails found by Ref. 2, when the leading -30 -25 -20 -15 -10 -5 0 5 10 15 
singularity of the pressure generating function is either a 
square root or a simple pole. The PDF of W=x-y is readily w/~2 > 
obtained from the PDF of x and y : 

fwW= ~+-f,(W-y)f,(-YPY. -03 

We have 

FIG. 1. PDFs of the generalized centrifugal force divergence W= -V2p: (a) 
as observed in a numerical simulation with small intermittency (continuous 
line); (b) as given by analytical expression i7) (dashed line); (c) for a Gauss- 
ian distribution with equal variance (dotted line). The abscissa is normalized 
by 2 which is defined by (3). 

and the moments of W are 

(W)=% 
(W2)= 12&r, 

(iv3)/( wy= - 1.15, 

(w4)/(w”)‘=9. 

Figure 1 illustrates the PDF of W found in a direct nu- 
merical simulation of geostrophic turbulence (continuous 
line)” for a resolution of (256)2X4 and for a case of moderate 
intermittency, as measured by the kurtosis of vorticity which 
is of 3.4. On the same figure are displayed the analytical 
expression (7) of the PDF (dashed line) and a Gaussian PDF 
(dotted line) which variance is equal to (8b). For the numeri- 
cal simulation of Fig. 1, we find a skewness of -1.33 and a 
kurtosis of 13, which are reasonably close to the values given 
in (8). The example given in Fig. 1 stems form a numerical 
realization of geostrophic turbulence,6 in presence of a dif- 
ferential rotation (/3 effect) which significantly curbs the 
level of intermittency of this geophysical example of nearly 
two-dimensional turbulence. The numerically observed low 
level of intermittency actually motivated the present study of 
the PDF of W for a joint normal distribution of strain and 
vorticity components. Numerical simulations with increasing 
levels of intermittency (corresponding to weaker /3 effects) 
reveal that the amplitudes of both the negative skewness and 

kurtosis continuously grow, while tails of the PDF progres- 
sively become longer and extend beyond the analytical PDF 
given in (7). Intermittency appears to enhance the statistical 
trends already present for a joint normal distribution of ve- 
locity gradients. Furthermore, strong intermittency can dra- 
matically amplify these tendencies, e.g., we found for a 
simulation with a kurtosis of 50 of vorticity that the skew- 
ness and kurtosis of W were, respectively, -23 and 1100. 

In summary, we have shown that even for the case of a 
joint normal distribution of velocity gradients, the distribu- 
tion of the generalized centrifugal force divergence (GCFD) 
will be skewed because of differences in dimensions of the 
strain and vorticity fields in two-dimensional turbulence. The 
GCFD is a reduced quadratic form ( W=st +s:- w’) which 
has a signature of (2,1), i.e., it has two positive squared terms 
and one negative square term. This property ensures that W 
will have exponential tails and a skewed distribution. The 
simple arguments given above do not generalize straightfor- 
wardly to the case of three dimensions, since squared strain 
no longer follows a chi-statistic of independent variables, 
even when one assumes a joint normal distribution of veloc- 
ity gradients. This results from the incompressibility con- 
straint (cz= l~ii=O, “ij being the rate-of-strain tensor) and 
the GCFD is thus no longer a reduced quadratic form of 
independent variables for a three-dimensional flow. 

Finally, the skewness of the pressure field p is directly 
connected to the skewness of W in two dimensions. This is 
readily shown by using the analytical results of Ref. 2 for 
Gaussian velocity fields. Their relation (18) expresses the 
third moment of p as an integral in Fourier wave-number 
space of a negative definite term: 
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FIG. 2. Pdfs of the pressure field p: (a) as observed in the same numerical 
simulation than Fig. l(a) (continuous line); (b) for a Gaussian distribution 
with equal variance (dotted line). 

(P”)= -8J‘ (dk,)(dk,)(dk,)f(k,jf(k,)f(k,) 
sin2( 13~~) sin”( Qz3) sin2( 8sr) -- 

xkTk2kz (k,-k,)’ (k2-kz (k3-k# ’ (9) 

where f(k)mE(k)lk, E(k) being the spectrum of the turbu- 
lence. Since relations (1) and (2) imply in Fourier space that 

W(k)=+k’p(k), an analogous computation for (W3) would 
produce as integrand the numerator of the integrand of (9), 
which would therefore also be negative definite. Thus one 
can state that the skewness of pressure distribution is essen- 
tially a consequence of the skewness of W . Figure 2 illus- 
trates the pressure PDF found in the same numerical simula- 
tion than that of Fig. l(a), and for which the skewness of p is 
-1.4. 
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