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Abstract:  
 
Marine benthic ecosystems are difficult to monitor and assess, which is in contrast to modern 
ecosystem-based management requiring detailed information at all important ecological and 
anthropogenic impact levels. Ecosystem management needs to ensure a sustainable exploitation of 
marine resources as well as the protection of sensitive habitats, taking account of potential multiple-
use conflicts and impacts over large spatial scales. The urgent need for large-scale spatial data on 
benthic species and communities resulted in an increasing application of distribution modelling (DM). 
The use of DM techniques enables to employ full spatial coverage data of environmental variables to 
predict benthic spatial distribution patterns. Especially, statistical DMs have opened new possibilities 
for ecosystem management applications, since they are straightforward and the outputs are easy to 
interpret and communicate. Mechanistic modelling techniques, targeting the fundamental niche of 
species, and Bayesian belief networks are the most promising to further improve DM performance in 
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the marine realm. There are many actual and potential management applications of DMs in the marine 
benthic environment, these are (i) early warning systems for species invasion and pest control, (ii) to 
assess distribution probabilities of species to be protected, (iii) uses in monitoring design and spatial 
management frameworks (e.g. MPA designations), and (iv) establishing long-term ecosystem 
management measures (accounting for future climate-driven changes in the ecosystem). It is 
important to acknowledge also the limitations associated with DM applications in a marine 
management context as well as considering new areas for future DM developments. The knowledge of 
explanatory variables, for example, setting the basis for DM, will continue to be further developed: this 
includes both the abiotic (natural and anthropogenic) and the more pressing biotic (e.g. species 
interactions) aspects of the ecosystem. While the response variables on the other hand are often 
focused on species presence and some work undertaken on species abundances, it is equally 
important to consider, e.g. biological traits or benthic ecosystem functions in DM applications. Tools 
such as DMs are suitable to forecast the possible effects of climate change on benthic species 
distribution patterns and hence could help to steer present-day ecosystem management. 
 
 
Keywords: ecosystem approach ; environmental monitoring ; habitat suitability modelling ; 
macrofauna ; mapping ; marine spatial planning (MSP) ; predictive modelling ; species distribution 
modelling 
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1. Introduction 68 

The marine ecosystem is known to be influenced by a combination of physical, chemical and 69 

biological components, which has a direct influence on the integrity of species and habitats. 70 

The successful management of these systems require information from all its ecological 71 

levels. This need for ecological knowledge, the increased anthropogenic pressures on the 72 

marine environment (Halpern et al., 2008, Ban et al., 2010) and the potential for multiple use 73 

conflicts, have led to an increased interest in sea-use planning with particular emphasis placed 74 

on marine spatial planning (MSP) (European Commission, 2008, Douvere and Ehler, 2009). 75 

Ecosystem management is often confronted with fragmented information on the spatial 76 

distribution of marine species and habitats, mainly this is because the marine environments 77 

are more difficult to access, and to monitor, when compared with terrestrial ecosystems 78 

(Robinson et al., 2011).  79 

Recent developments in marine habitat mapping using remote sensing tools, has resulted in an 80 

increased availability of environmental data (Brown et al., 2011). The seabed features of 81 

marine habitats can now be characterised and mapped on relatively large spatial scales. In 82 

addition, satellite-based observation of the oceans and physical models provide information 83 

on a variety of physical parameters such as sea surface temperature or primary production on 84 

a global scale. The ability to visualize the seabed and the overlying water column has led to 85 

an increased interest in the use of habitat maps for marine nature conservation, economic 86 

exploitation and development, and resolving conflicts of multiple uses on the seafloor (e.g. in 87 

support of MSP; Birchenough et al., 2010).  88 

Monitoring the biotic components of the ecosystem is prohibitively expensive and requires an 89 

enormous effort to collect with point source data of species distributions over large spatial 90 

scales. Therefore, predictive methods have become important tools to overcome these issues 91 
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when looking at biotic aspects of the ecosystem components (Guisan and Zimmermann, 2000, 92 

Guisan and Thuiller, 2005). Distribution modelling (DM), which is also known as e.g. species 93 

distribution modelling, habitat suitability modelling, ecological niche modelling or 94 

bioclimatic envelopes, mainly refer to correlative approaches that use full spatial coverage 95 

data of environmental variables to explain and predict patterns of species distribution (Elith 96 

and Graham, 2009). These predictive modelling methods have been mainly used in terrestrial 97 

ecology to study general patterns of species distributions (Hengl et al., 2009), as well as for 98 

addressing conservation- and ecosystem management-related issues such as the delineation of 99 

protected areas (Valavanis et al., 2008, Elsäßer et al., 2013), the risk for species invasions 100 

(Gormley et al., 2011), and the prediction of distribution changes in response to climate 101 

change (Cheung et al., 2009). See also Guisan et al. (2013) for a comprehensive overview on 102 

the use of DMs in support of environmental management for terrestrial systems. The use of 103 

DMs in marine ecosystems is still in its infancy (Degraer et al., 2008), when compared to the 104 

vast number of studies applying DM in the terrestrial realm. Most of the existing DM studies 105 

in the marine environment have shown their application on conservation planning, method 106 

evaluation, theoretical ecology, climate change, species invasions, phylogeography and 107 

impact assessment (Robinson et al., 2011). Commercial fish were especially targeted by 108 

recent studies using DM in marine ecosystems (Venables and Dichmont, 2004, Maxwell et 109 

al., 2009, Moore et al., 2010, Lenoir et al., 2011, Jones et al., 2012). Benthic invertebrates 110 

have also been subject to DM, although their distribution is primarily modelled over local 111 

scales (Ysebaert et al., 2002, Thrush et al., 2003, Ellis et al., 2006, Degraer et al., 2008, 112 

Meißner et al., 2008, Willems et al., 2008, Galparsoro et al., 2009, Valle et al., 2011). There 113 

are some examples from larger scales e.g. Baltic Sea (Gogina et al., 2010b, Gogina and 114 

Zettler, 2010), North Sea (Reiss et al., 2011), Icelandic waters (Meißner et al., 2014) and 115 

worldwide (Ready et al., 2010, Wei et al., 2010, Davies and Guinotte, 2011). The results of 116 
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the above mentioned applications of DMs in the marine realm rendered insight into the 117 

correlative relationships between environmental drivers and benthos species distribution, 118 

allowing for full-coverage predictions of species and community occurrence. These outputs 119 

can be used to guide management decisions.  120 

Nonetheless, ecosystem management and MSP have to incorporate information on a variety 121 

of aspects ranging from the natural environmental conditions to anthropogenic pressures 122 

(Galparsoro et al., 2013, Stelzenmüller et al., 2013), of which the distribution of benthos will 123 

be only one aspect of many layers of information. Thus, this information could be the most 124 

useful in a management context, as the information derived from DM should ideally represent 125 

simple, easily interpretable results preferably with little or at least quantified uncertainty. DM 126 

performance has been shown to depend on a variety of factors such as the modelling approach 127 

(e.g. Elith et al., 2006, Elith and Graham, 2009, Reiss et al., 2011), ecological niche width of 128 

species (e.g. Kadmon et al., 2003, Tsoar et al., 2007), and dispersal range, species interactions 129 

and mobility of species (McPherson and Jetz, 2007). Thus, although highly valuable, caution 130 

and expert guidance indeed is needed when using DM results in an ecosystem management 131 

context. Furthermore, most DM approaches only provides species occurrence probabilities; 132 

this without informing on species abundance or biomass. Scientific expert guidance will 133 

hence remain indispensable to correctly encompass these limitations and uncertainties when 134 

applying DM in an ecosystem management context. Therefore, the main objectives of this 135 

review are: (i) to provide an overview of DM applications in the marine benthic environment 136 

and (ii) to discuss their applications and limitations as a tool to support marine ecosystem 137 

management.  138 

This review follows the consecutive steps in DM, discussing critical assets of using biological 139 

and environmental input data and their incorporation into the different DM methods (Fig. 1). 140 

This paper does not intend to provide a complete overview of the different modelling 141 
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methods, but rather is seeking to emphasise some general applications and limitations of the 142 

models when used for marine benthic environments. We also present several examples where 143 

the applications of DM are relevant for marine ecosystem management, highlighting their 144 

general applicability, but also their limitations in applicability to management-related issues, 145 

e.g. monitoring and spatial planning, as well as their potential for future use (e.g. early 146 

warning systems). 147 

 148 

2. Distribution modelling methods and data requirements 149 

2.1Modelling methods and associated uncertainty 150 

There is a rapidly growing variety of methods used for marine benthic species and community 151 

distribution modelling, including both already widely applied and merely tested techniques. 152 

Detailed descriptions and more explicit lists can be found in advanced subject-specific text 153 

books (e.g. Legendre and Legendre, 1998, Zuur et al., 2012), reviews and object-specific 154 

comparative research papers (e.g. Guisan and Zimmermann, 2000, Guisan and Thuiller, 2005, 155 

Franklin, 2010, Robinson et al., 2011). Three major approaches have been used to predict 156 

species distribution patterns: (i) statistical (or correlative) stochastic models that estimate 157 

parameters based on empirical or phenomenological relationships between current distribution 158 

and environmental conditions, (ii) mechanistic (or structural dynamic) models that incorporate 159 

explicit ecological relationships independent of current distribution, with mechanistic 160 

components defined by physiological relevance, and (iii) Bayesian belief networks (see Table 161 

1; Guisan and Zimmermann, 2000, Sagehashi, 2008, Buckley et al., 2010, Stelzenmüller et 162 

al., 2010).  163 

Statistical approaches are probably most often used for DM and a large number of methods 164 

are now available, of which several were successfully applied to marine benthos (Table 1). 165 
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Comparative studies showed that the performance of the different models can vary 166 

considerably, but it is also clear that no single model could be equally appropriate for all 167 

applications (e.g. Reiss et al., 2011, Valle et al., 2013). When deciding on the model selection, 168 

this needs to be adjusted according to the (management) objectives (Fig. 1). Applications of 169 

statistical modelling in marine context include testing hypotheses in relation to the ranges of 170 

species distribution along environmental gradients, generating habitat suitability maps that 171 

predict the specific ecological potential of a habitat (with limitations defined by the data 172 

analysed) and assessing the possible consequences of habitat changes (either natural or 173 

anthropogenic), as part of MSP and conservation management (Degraer et al., 2008, Robinson 174 

et al., 2011).  175 

The main advantage of statistical DM is that they are conceptually simple, descriptive and 176 

require relatively few data on the modelled species, as often species occurrence data may be 177 

sufficient. This simplicity however also entails a higher risk of misinterpretation when it 178 

comes to its application in an ecosystem management context, where the desired information 179 

ideally is a single prediction with little uncertainty (Jones et al., 2013). This uncertainty 180 

originates from various sources inherent to the modelling process, including the biological 181 

and environmental input data (see below), the modelling technique and the prediction itself 182 

(Beale and Lennon, 2012). While in principle the reliability of the prediction can be assessed 183 

by using e.g. the AUC (Area under the Receiver Characteristic Curve), Kappa or the true skill 184 

statistic, the validity of these commonly used performance measures is still arguably (e.g. 185 

Lobo et al., 2008). The measures are influenced inter alia by the quality and nature of absence 186 

data, the testing data and simply by the spatial extent of the modelled area (Guisan and 187 

Thuiller, 2005). For example, a distribution model for a stenotypic species with a restricted 188 

distribution range is bound to get a higher performance index when built on a large spatial 189 

scale with widely ranging environmental gradients (including the narrow range of 190 
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environment where this species is thriving) than when built on a smaller spatial scale. 191 

However, the large-scale model is not better than the small-scale one. Thus, extending the 192 

study area by including non-suitable areas will inevitably result in better performance 193 

indicators without improving the actual distribution predictions (Lobo et al., 2008). 194 

A central aspect of uncertainty during the modelling procedure is to which extent the realised 195 

or the fundamental niche is modelled. Statistical models are using the actual occurrence, 196 

which represents the realised niche at a given time, but do not necessarily perform well when 197 

predicting the fundamental niche. The occurrence of sink-populations for example, where the 198 

species cannot establish a stable population and only survives for a limited time span due to 199 

recruitment from other source populations, may further contribute to the uncertainty of 200 

describing the realised niche (Pulliam, 2000, Hansen, 2011). While the knowledge concerning 201 

the realised niche can satisfactorily be used in e.g. management approaches with a goal to 202 

ensure for an immediate protection of endangered species, the knowledge concerning the 203 

fundamental niche may be essential when predicting future changes in distribution. Besides 204 

the dispersal limitations, the main process that defines the realised niche of a species is the 205 

interaction with other species in the ecosystem. At present, there are only few methods 206 

available to include species interactions in DM. These range from relatively simple qualitative 207 

linkages between species to more complex quantitative linkages including resource stocks 208 

(see examples limited to plant and terrestrial species reviewed in Kissling et al., 2012).  209 

Caution is also needed when the predictions of distribution probability need to be transferred 210 

into a simple binary distribution map to differentiate between modelled absence and presence 211 

of a species as often required by ecosystem management. In this case, a threshold probability 212 

level can be applied to set the cut-off value beyond which a feature is expected to be present. 213 

The common procedure of simply using a probability of 0.5 as a threshold was often found to 214 

be a less suitable choice, while alternative methods can give more reliable results (Liu et al., 215 
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2005, Freeman and Moisen, 2008). The ultimate choice of thresholds should always be based 216 

on the specific management objective, e.g. using a threshold with low sensitivity, if the actual 217 

presence of the species is more important than identifying the full range of potential habitats 218 

(e.g. for delineation of marine protected areas). Freeman and Moisen (2008) therefore 219 

suggested that the DM outputs should initially be provided as continuous probability maps 220 

enabling the application of those threshold levels suitable for the specific management 221 

objectives. 222 

Despite some limitations and the consequent need for cautiousness, statistical DM can 223 

provide essential information regarding the spatial distribution together with a correlative 224 

insight into the environmental drivers restricting the distribution, although it needs to be 225 

emphasised that statistical relationships cannot reveal any causality. Thus, the major 226 

assumption of statistical models that limits an accurate prediction of range dynamics is that 227 

processes setting the limits of the range remain fixed in space and time – and that assumption 228 

will probably not hold when making dynamic predictions (Dormann, 2007, Sinclair et al., 229 

2010).  230 

Most DM studies in the marine environment focused on presence/absence, but a more 231 

quantitative approach by mapping modelled densities (abundance or biomass), would be 232 

considerably more informative (Bučas et al., 2013). ‘Factor ceiling’ (Thrush et al., 2003), 233 

quantile regression (Cade and Noon, 2003, Vaz et al., 2008), and machine-learning methods 234 

recently introduced for DM such as random forest and boosted regression trees (Table 1), are 235 

also considered here. Generally regression methods such as GLM potentially provide 236 

predictive capability and machine-learning methods such as those using regression trees are 237 

often more useful for mapping and description of patterns. While statistical DM can already 238 

be applied in (marine) management, a future coupling of the results of such modelling 239 

exercises with species ecological attributes (e.g. filtration rates, bioturbation modes, etc.) via 240 
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biochemical or sediment transport models, would allow assessing the benthic ecosystem 241 

functioning thereby providing better knowledge for sustainable ecosystem management.  242 

Furthermore, mechanistic models will provide more accurate distribution predictions 243 

(Buckley et al., 2010). Generally, such models include those that translate environmental 244 

conditions into biologically relevant metrics, capture environmental sensitivities of 245 

survivorship and fecundity as well as using energetics to link environmental conditions and 246 

demography (Table 1). The integration of information from mechanistic models has the 247 

potential to improve the reliability of correlative predictions when used in the context of 248 

range-shifting non-indigenous species (Elith et al., 2010). Up to now the application of DM 249 

based on a mechanistic approach that explicitly capture hypothetical biological processes are 250 

rare in the marine realm and their representation in the benthic environment is limited 251 

(Saraiva et al., 2011, Sara et al., 2013). The main reasons here is that there is still relatively 252 

poor knowledge of species interactions among benthic organisms (e.g. Ordonez et al., 2013). 253 

Even trophic interactions can often not be quantified at the detailed level needed for DM, 254 

because benthic invertebrate diet is hardly studied and knowledge on the predation of benthos 255 

by demersal fish often only contains information with low taxonomic resolution. This 256 

strongly promotes the development and expansion of applications of such models and 257 

supports the need for enhanced research into the fundamental ecology of benthic organisms.  258 

Bayesian Belief Networks (BNs) can be classified as the third approach (Stelzenmüller et al., 259 

2010). BNs differ fundamentally from classical statistical DM methods. BNs estimate the 260 

probability that a hypothesis is true given the data, and defines that probability as the degree 261 

of belief in the likelihood of an event to occur (Table 1). Classical statistical approaches 262 

estimate the probability of the data given a hypothesis, where the probability is defined as the 263 

relative frequency of an observation (Franklin, 2009). BNs are models that graphically and 264 

probabilistically represent correlative and causal relationships among variables, and the most 265 
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clear strength is that probabilities in the model can be combined and quantified using 266 

empirical data, statistical associations, mathematical representations, and probabilistic 267 

quantities derived from expert knowledge (McCann et al., 2006). Within such frameworks 268 

uncertainty can be accounted for to a large extent and the assessment of “what if” scenarios 269 

for planning objectives makes these a promising tool for marine ecosystem management. 270 

In conclusion, while widely applied statistical methods have indeed been successfully applied 271 

in marine management, DM tools such as mechanistic models and Bayesian belief networks 272 

are at the brink of taking DM in a marine management setting to a next step in DM 273 

performance and power. 274 

 275 

2.2 Biological data 276 

Most studies focus on single species, but also functional traits (e.g. filter feeders), indices of 277 

biodiversity (e.g. species richness, rarefaction), global community descriptors (e.g. overall 278 

biomass or abundance) or community distributions. All of these faunal characteristics are 279 

possible response variables for DM. Single species modelling already proofed to be useful in 280 

a management context by predicting the distribution of key species (e.g. Galparsoro et al., 281 

2012, Rengstorf et al., 2012). 282 

Besides its input as response variable, biological data may however also function as a 283 

predictor variable to construct statistical models, which is far less explored in the marine 284 

environment. This section focuses on the three most prominent issues associated with the 285 

performance of DM in the marine environment. The main issues are associated with: (i) data 286 

sufficiency, (ii) spatial and temporal bias and (iii) spatial and temporal scale.  287 
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Adequate spatial coverage for modelling species distributions calls for a sufficient biological 288 

sampling. The sampling effort of biological data still is time and costly in the marine context 289 

when compared to the terrestrial realm. As a consequence, sampling effort of marine 290 

biological data generally has a relatively low spatial resolution and is often biased towards 291 

shallow sites close to the coast (Phillips et al., 2009, Robinson et al., 2011) and driven 292 

towards politically, socially and economically interesting areas (e.g. important fishing 293 

grounds, marine protected areas). Most shortcomings in the model quality are based on 294 

paucity of data, spatial inaccuracy and lack of valid absences (Guisan et al., 2006a). There has 295 

been evidence that predictions based on few records do not perform equally well when 296 

compared to those predictions undertaken on a large dataset. This can be explained mainly 297 

because: (1) the uncertainty levels are dependent on parameter estimates (means, medians, 298 

etc.) and hence increase with decreasing sample size, (2) the outliers gain more importance, 299 

(3) the species ecological niches are highly complex in dimensions and small sample sizes are 300 

insufficient to allow for a description of a species niche over various environmental and 301 

biological gradients, particularly because (4) species niches are often skewed or multi-modal 302 

shaped (Wisz et al., 2008 and references therein). Further, data sufficiency depends on the 303 

purpose/complexity of the model (Guisan et al., 2006a, Wisz et al., 2008). Qualitative 304 

sampling as often is the case in marine benthos research (e.g. trawling for epibenthos), 305 

restricts the type of the response to presence/absence or presence-only, unavoidably resulting 306 

in the prediction of the probability of occurrence. Responses such as abundance or biomass 307 

reveal more information than occurrence predictions only (see above), but they have higher 308 

requirements on data quality that are less frequently met in the marine realm (Vierod et al., 309 

2014). 310 

The spatial bias is particularly problematic if presence-only or pseudo-absence/background 311 

data are used for modelling (Wisz and Guisan, 2009, Lobo et al., 2010). This may result in an 312 



14 
 

environmental bias which may lead to inaccurate models because of the difference in the 313 

observed occurrence of species and background sampling (Robinson et al., 2011). Real 314 

absence data are often lacking in the marine environment although they would contribute to 315 

model accuracy (Phillips et al., 2009) and would allow an evaluation of the predictions, i.e. 316 

standard measures for model evaluation (e.g. Kappa, AUC) do not work for presence-only 317 

data (sensu Guisan et al., 2006b). Especially for benthic systems, the use of presumed absence 318 

data (i.e. the species was not found in the sample) can also be misleading, since often the 319 

standard benthos sampling does not allow drawing final conclusions about the absence of a 320 

species because of limited sample sizes, lack of appropriate replication or limited efficiency 321 

of the sampling gear. However, techniques to evaluate the goodness of fit for presence-only-322 

based prediction such as the Boyce index (Boyce et al., 2002) are under development (see 323 

Hirzel et al., 2006, Skov et al., 2008). Besides the spatial bias, data often contain a temporal 324 

bias too. Marine data are difficult to gather and DM input data are hence often taken from 325 

varying data sources over different years and sampling seasons. According to Guisan et al. 326 

(2006b), models using spatially and temporally heterogeneous samples contain an unknown 327 

level of bias and error. 328 

Detailed knowledge on species-specific biological characteristics is fundamental for DM as 329 

these too may affect model accuracy (Reiss et al., 2011). Predictors for spatial distribution 330 

differ as large-scale environmental predictors such as hydrography, current regime and 331 

climate are more important for the mobile megafauna (e.g. Guisan and Thuiller, 2005) or 332 

large and sessile filter feeders (e.g. Buhl-Mortensen et al., 2010), while local environmental 333 

predictors with a more pronounced small-scale heterogeneity (e.g. sediment characteristics) 334 

might be of greater importance for smaller sedentary infaunal or less mobile species. There is 335 

further evidence that biological factors and interactions might become more important locally 336 

than on larger scales (e.g. landscape scale) (Gogina et al., 2010a, Nyström Sandman et al., 337 
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2013). As introduced in section 2.1, biological predictor variables are mostly not or 338 

insufficiently taken into account in DM (Elith and Graham, 2009). However, distribution of 339 

habitat forming species, migratory behaviour, dispersal range, species aggregation and 340 

interactions are of specific importance in modelling the distribution of a species (Guisan et al., 341 

2006b, Kissling et al., 2012). The use of biological predictors alongside the classically used 342 

physico-chemical variables is likely to increase DM performance. Compared to the terrestrial 343 

ecosystem, most marine species either have mobile adult stages (megafauna, fish) or mobile 344 

early life stages (pelagic larvae) and their dispersal ranges can be large given the major 345 

physical continuity in the marine ecosystem (Guisan et al., 2006b, Reiss et al., 2011, 346 

Robinson et al., 2011). Consequently, the role of environmental factors determining the 347 

distribution may even change during the life history of a species (e.g. De la Moriniere et al., 348 

2003). During the pelagic larval phase hydrographic parameters of the water column might be 349 

most important, while the benthic phase might be more influenced by parameters acting more 350 

directly on the seafloor. The inclusion of such dispersion features, influencing species 351 

distribution patterns by neighbouring spatial dependencies, i.e. spatial autocorrelation, will 352 

again add to the DM performance (Legendre, 1993, Guisan et al., 2006b, Gogina et al., 2010a, 353 

Robinson et al., 2011).  354 

DM performance would further profit from the incorporation of species interactions (Soberón, 355 

2007), constituting the biological base of ecological functioning (May, 1983). Hence, species 356 

distributions are not solely shaped by the environmental setting but to a large extent by 357 

biological factors. Besides environmental conditions, particularly trophic interactions are the 358 

main forcing factors for the occurrence, distribution and behaviour of organisms (MacArthur, 359 

1955, Cohen, 1978, Pimm, 1982). The lack of knowledge on marine benthic interactions (e.g. 360 

trophic interactions) however hampers their incorporation into DMs. The fact that most 361 

marine benthic species feed on a variety of different food sources or prey species (omnivory) 362 
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(Link, 2002), as such hampering an unequivocal quantification of trophic linkages, further 363 

complicates its incorporation into DM; this in contrary to e.g. species-specific pollinator-plant 364 

interactions in terrestrial systems. 365 

Finally, the biological factors themselves may affect environmental predictors, as species may 366 

change their own and the other species habitat as ‘ecosystem engineers’ (Jones et al., 1994, 367 

Pulliam, 2000). For example, species that occur gregariously or colonially may significantly 368 

change the surrounding habitat and associated species (e.g. Buhl-Mortensen et al., 2010, 369 

Rabaut et al., 2010, Quattrini et al., 2012). Hence, DM of life-history or biological traits such 370 

as e.g. reproduction, mobility, maturity, bioturbation and feeding modes, deserves more 371 

attention as these traits are significant determinants of ecological functioning of benthic 372 

systems, and consequently important descriptors for a sustainable management of marine 373 

services and goods (Tillin et al., 2006, Bremner, 2008, Braeckman et al., 2014). 374 

 375 

2.3 Environmental data and anthropogenic pressures 376 

Environmental data constitute the fundamental basis of DM. For marine ecosystems the 377 

availability of large scale environmental data has significantly improved in the last decade, 378 

because of increasing research activities by using habitat mapping and remote sensing 379 

techniques e.g. to develop seabed habitat classifications based on the relation between benthic 380 

organisms and the seabed environment such as EUNIS (Davies et al., 2004, Galparsoro et al., 381 

2012). These environmental predictors however tend to be temporally more dynamic in the 382 

marine realm compared to terrestrial systems, with a significant short-term (e.g. currents) or 383 

seasonal variability (e.g. temperature, primary production), which makes their application in 384 

DM challenging (Franklin, 2009).  385 
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To be useful in a modelling context, the selected environmental predictors should ideally 386 

represent limiting factors, resources or disturbances (natural or anthropogenic) causally linked 387 

to the species and its habitat (Guisan and Zimmermann, 2000, Guisan and Thuiller, 2005, 388 

Elith and Leathwick, 2009). Causal predictors used to model benthos distribution are e.g. 389 

temperature, salinity or primary production (Table 2), whereas others rather represent 390 

surrogate factors such as e.g. water depth or in some cases substratum, which may be indirect 391 

proxies integrating several predictor variables. The causality of the relationships between 392 

benthos and the marine environment are however often not understood in detail, mainly 393 

because most of our understanding is based on correlative approaches and experimental 394 

studies are scarce, which may reflect the poor representation of mechanistic DM in the marine 395 

environment (see 2.1). DM, especially those based on statistical approaches, should hence be 396 

considered an indicator of possible causalities rather than an identifier of such cause-effect 397 

relationships, and should hence trigger further fundamental research on cause-effect 398 

relationships. 399 

When zooming into environmental predictors, substratum or bottom type is one of the key 400 

features driving the presence of benthic marine organisms and it has therefore often been used 401 

to predict the distribution of bottom fauna. For soft bottom sediments, grain size composition 402 

is commonly used (e.g. Ysebaert et al., 2002, Degraer et al., 2008), while more specific 403 

sediment parameters such as sediment sorting, porosity or cohesiveness are rarely measured in 404 

the field and are consequently not often used in marine DM. For hard bottoms such as 405 

bedrock, boulder and gravel fields, the fraction of gravel or boulders based on visual 406 

inspection and size and orientation of rocks or the space available between rocks are more 407 

relevant descriptors. Several techniques ranging from direct observations to remote sensing, 408 

including acoustic techniques, may be used to qualify the substratum type (Brown et al., 409 

2011). Shallow sediments in areas experiencing high water dynamics or ice scouring may 410 
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change after storms or the winter season. Below 100 m depth, sediments are normally stable. 411 

However, the hydrographic conditions around underwater canyons and seamounts as well as 412 

strong tidal driven currents or internal waves may still generate sediment transportation also 413 

in deep waters. Except for local studies where substratum data can be collected, modelling 414 

large sea expanses requires collating and harmonising data from various studies undertaken at 415 

different times. A key requirement of such data assemblages is hence to provide users with a 416 

confidence map, which enables them to use the data with full awareness of its reliability.  417 

The characteristics of soft bottom substrates are often closely related to the local 418 

hydrodynamic regime and as such might rather act as an indirect proxy for the hydrodynamic 419 

predictors than being a truly independent predictor. On a larger scale, the bathymetry is an 420 

essential predictor for the composition of bottom communities. The bathymetry however also 421 

has a direct bearing on physical parameters acting on the seabed such as substratum, light, 422 

wave energy, salinity and temperature. Depth can hence also be used as an indirect proxy for 423 

causal drivers. Thus, the selection of functionally more relevant predictors should be 424 

prioritised over indirect proxies (Elith and Leathwick, 2009), but especially in marine 425 

environments DM is often by necessity driven by those predictors, which are readily 426 

available.   427 

Bathymetry derivates, i.e. seafloor morphological characteristics such as slope, aspect or 428 

rugosity, further include crucial environmental descriptors that have proven useful to identify 429 

suitable habitat (Buhl-Mortensen et al., 2009, Galparsoro et al., 2009). The value of these 430 

derivates is however highly dependent on the spatial resolution of the bathymetric information 431 

(Rengstorf et al., 2012).  432 

Other major oceanographic drivers for marine species distribution comprise e.g. light energy, 433 

hydrodynamic energy, salinity and temperature, and of more local importance variables such 434 
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as the oxygen concentration, nutrients, etc. The impact of light onto the benthos is particularly 435 

straightforward as it determines the depth to which benthic macrophytes (kelp, seaweeds, 436 

seagrass) can grow or photosynthetic primary production can occur (Carlström et al., 2009, 437 

Knudby et al., 2013, Saulquin et al., 2013). The same goes for salinity which is particularly 438 

important in shallow and estuarine environments where freshwater input may be substantial. 439 

The salinity gradient within the Baltic Sea is a good example of how salinity steers the 440 

distribution of species (Zettler et al., 2014). The effect of hydrodynamic energy from waves 441 

and currents exerted on the seabed and benthos, is more complex (Galparsoro et al., 2013), yet 442 

fundamental to the seabed stability and substratum composition (including deposited and 443 

suspended food particles for benthic organisms). Whilst extreme events can dramatically 444 

modify the seabed (e.g. heavy storms), they usually act on the seabed by a regular action 445 

which is best characterised by parameters computed on long time spans (Dolbeth et al., 2007). 446 

The inclusion of hydrodynamics into DM is most relevant for rocky substrata, since the 447 

composition of mobile sediments typically reflect the local hydrodynamic regime and can be 448 

considered as a surrogate variable for hydrodynamics. Seabed energy parameters are derived 449 

from hydrodynamic models. Although they are often of low spatial resolution with respect to 450 

seabed heterogeneity, especially in the coastal zone, a lot of progress is currently being made 451 

(e.g. Chen et al., 2009). Unfortunately, information on currents and particle transport in the 452 

benthic boundary layer – most relevant for benthic organisms – is poor and highly demanding 453 

to map and monitor. Temperature finally takes a special position because of its large scale 454 

structuring relevance (Glémarec, 1973) combined with its central position within the 455 

ecological impact of climate change. Together with salinity, it defines the hydrographic 456 

setting which is used to define different water masses and depth zones. It further strongly 457 

affects oxygen concentration and consumption in the benthic environment where hypoxia is 458 

often related to year maxima in bottom water temperature (Quiñones-Rivera et al., 2010). 459 
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From a DM perspective, sea surface temperature may be a good proxy for the entire column 460 

where the water column can be considered homogenous, i.e. mixed waters (Méléder et al., 461 

2010). Other factors which may be relevant locally such as the oxygen conditions at the 462 

seabed (Reijonen et al., 2008) or the influence of pelagic environment variables such as 463 

primary production (Holt et al., 2012) in the surroundings of the benthic samples locations, 464 

may also be examined where appropriate. 465 

Anthropogenic impacts may also be considered environmental predictors in a DM context, 466 

although many impacts are relevant mainly on a local scale. The use of DM to map and 467 

monitor animal and plant distributions has become increasingly important in the context of 468 

awareness of environmental change (natural and anthropogenic) and its ecological 469 

consequences (Miller, 2010). Key activities which can have a significant impacts on marine 470 

ecosystems at the regional or local scale include (recreational) fisheries, dredging, renewable 471 

energy developments, industrial and sewage effluents, hypersaline water discharge from 472 

desalination plants, aquaculture, diseases, coastal engineering (habitat alteration) and point-473 

source pollution (Halpern et al., 2008). Many of these activities primarily affect intertidal and 474 

nearshore ecosystems rather than offshore or deep-sea ecosystems, which suggests that 475 

predictive modelling and cumulative estimates of impacts are often conservative particularly 476 

for nearshore areas. The analytical process of DM provides flexible tools for regional and 477 

global efforts to allocate conservation resources, to implement ecosystem-based management 478 

and to inform MSP, education, and basic research (Halpern et al., 2008). Among the impacts 479 

with a large spatial extent, acidification (or climate change), fisheries and eutrophication are 480 

probably the most important ones. Bottom trawling is one of the most widespread sources of 481 

physical disturbance on habitats and organisms on continental shelves throughout the world 482 

(Jackson et al., 2001, Kaiser et al., 2002). Vessel Monitoring Systems (VMS), introduced for 483 

fisheries recording and control, is now widely implemented and increasingly used as a proxy 484 
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for fisheries activity and hence impact from bottom gears. Yet, several approaches have been 485 

developed to analyse VMS data, all having their strengths and weaknesses (Lee et al., 2010, 486 

Lambert et al., 2012). The lack of freely accessible VMS data e.g. across state boundaries, 487 

however currently hampers its applicability within DM (Hintzen et al., 2012).  488 

 489 

3. Application of distribution modelling  490 

The potential applications of DM in an ecosystem management context are manifold, ranging 491 

from marine protected areas (MPA) delineation to incorporation into complex marine spatial 492 

management frameworks (Gimpel et al., 2013, Stelzenmüller et al., 2013). This review 493 

focuses on four main applications where DM already plays an important role in marine 494 

systems or provides promising new management applications (Fig. 1). 495 

 496 

3.1 Marine spatial planning 497 

As shown in the introduction, the incorporation of the ecosystem-based approach into e.g. 498 

MSP requires that all aspects of value associated with marine biodiversity are incorporated 499 

into the decision-making process (Rees et al., 2010), which is called ecosystem-based marine 500 

spatial management (EB-MSM, sensu Katsanevakis et al. (2011)). A key goal of EB-MSM is 501 

to maintain the delivery of ecosystem services, which must be based upon ecological 502 

principles that articulate the scientifically-recognised attributes of healthy functioning 503 

ecosystems (Foley et al., 2010). These authors have proposed four main ecological principles: 504 

maintaining or restoring native species diversity, habitat diversity and heterogeneity, key 505 

species, and connectivity. Hence, it is critical to understand the heterogeneity of biological 506 

communities and their key components (e.g. most important predators, habitat-forming 507 
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species), and key processes (e.g. population connectivity, interaction webs, biogeochemistry) 508 

that maintain them, as well as human uses (Crowder and Norse, 2008). The successful 509 

development and implementation of EB-MSM hence necessitates the use of best available 510 

science. As stated by Katsanevakis et al. (2011), new tools, such as e.g. geospatial analysis, 511 

remote sensing and molecular techniques have broadened the understanding of the linkages 512 

between marine habitats and population dynamics, and between spatio-temporal dynamics 513 

and the functioning of marine ecosystems (Crowder and Norse, 2008). Hence, DM does play 514 

and will continue playing a key role in MSP and EB-MSM. 515 

The spatially explicit nature of the DM makes this approach of special interest for different 516 

aspects of the MSP. Scientific knowledge obtained from DM approaches could be applied in 517 

different ways in the MSP process, as it has been used to map the potential distribution of 518 

biological resources (see examples for habitat suitability of lobster from Wilson et al., 2007, 519 

Galparsoro et al., 2009), fish habitat modelling and evaluation (Koubbi et al., 2006, Monk et 520 

al., 2011), species of special interest for conservation, such as gorgonians (Bryan and 521 

Metaxas, 2007, Etnoyer and Morgan, 2007), marine mammals (Panigada et al., 2008) or 522 

seabirds (Skov et al., 2008), selection of suitable areas for aquaculture and farming (Cho et 523 

al., 2012), conservation of biodiversity by providing information on the ecological 524 

requirements of species at risk (Hare et al., 2012, Millar and Blouin-Demers, 2012). DM and 525 

mapping hence support conservation planning, marine protected area selection and 526 

management plan development, mapping suitable sites for re-introductions and restoration 527 

(Bos et al., 2005, Bekkby et al., 2008, Valle et al., 2011). The most extended application of 528 

DM in marine systems most probably is in planning for MPAs and designating essential fish 529 

habitats (see examples in Leathwick et al., 2008, Valavanis et al., 2008, Maxwell et al., 2009). 530 

When combined with climate change scenarios, DM results can further reveal estimations of 531 

the expected changes in protection efficiency of designated MPAs (Gormley et al., 2013). 532 
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Hence, DM results can be used to estimate (or have an approximation of) the potential impact 533 

of certain human activities and hence to provide advice for an ecologically-sound allocation 534 

of these activities (considering also the type of impact: habitat physical destruction, 535 

hydrological or temperature regime modification, etc.). DM may thus facilitate minimizing 536 

environmental impact and maximizing the socio-economic benefit of marine goods and 537 

services (Salomidi et al., 2012); aspects that are basic to the MSP. 538 

DM greatly assists in defining management objectives and improving the understanding of 539 

species ecology (Robinson et al., 2011). Their applications provide highly useful information 540 

(Guisan and Thuiller, 2005), among others: ecological hypotheses to be tested (Leathwick et 541 

al., 2008), unsurveyed sites of high potential occurrence for rare species to be determined 542 

(Engler et al., 2004, Guisan et al., 2006a), species invasion and proliferation to be assessed 543 

(Beerling et al., 1995, Peterson, 2003). Their output, the habitat suitability map, could support 544 

conservation planning and marine protected area selection and support management plans for 545 

species recovery by mapping suitable sites for reintroduction, as mentioned before. 546 

 547 

3.2 Monitoring designs 548 

The main purpose of DM is to inter- or extrapolate from point observations in space and time 549 

to predict the occurrences in an area where no survey data are available or the coverage is 550 

limited. DM predictions hence complement the monitoring, but equally, the predictions can 551 

also be used to guide the monitoring strategy development (Bijleveld et al., 2012, Crall et al., 552 

2013, Van Hoey et al., 2013). The latter is especially important for marine environments, 553 

where the logistical effort and the costs for monitoring are substantially higher compared to 554 

monitoring in terrestrial environments. The monitoring data used for DM in marine waters are 555 

often based on heterogeneous data sources, where no specific design could be set up prior to 556 
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the sampling (Degraer et al., 2008). In such cases, there is an increased higher risk of 557 

predictions, biased particularly toward sites which were sampled more intensively (local 558 

project-based sampling) or logistical easily accessible (coastal areas). In other cases, the 559 

number of samples is limited because monitoring programmes often have multiple objectives, 560 

each with their own data needs and hence possibly compromising the optimal sampling 561 

design. Bijleveld et al. (2012) demonstrated that combining grid and random sampling is the 562 

most effective design in addressing a multitude of management applications including 563 

mapping of species distributions. 564 

The benthic fauna is monitored for various purposes, e.g. to detect general patterns of 565 

distribution with surveillance monitoring or to assess the effects of specific anthropogenic 566 

usages with operational monitoring (Gray and Elliott, 2009). In recent years, monitoring 567 

programmes on an appropriate spatial and temporal scale became specifically needed for the 568 

implementation of ecosystem-oriented management regulations such as the European Marine 569 

Strategy Framework Directive (MSFD), in which the central aim is to achieve Good 570 

Environmental Status for marine ecosystems (European Commission, 2010). The concerned 571 

biodiversity assessment criteria are largely related to e.g. species populations and habitat 572 

spatial extent, population structure and benthic habitat condition (Rice et al., 2012). When 573 

monitoring of species population dynamics, sampling effort can be reallocated to distribution 574 

‘hot spots’ identified with DM based on a regular sampling strategy, as illustrated for the 575 

bivalve Ensis directus (Houziaux et al., 2011). DM predictions of species are furthermore 576 

useful to monitor the difference between the potential distribution area and the currently 577 

occupied area, which is essential for the evaluation of species/habitat area extent (Galparsoro 578 

et al., 2009, Maxwell et al., 2009). While DM cannot replace the actual monitoring, its 579 

predictions can be used to construct time- and cost-effective marine monitoring strategies for 580 

impact and ecological status assessments (Van Hoey et al., 2013). Such knowledge is 581 
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essential to determine the locations and amount of samples needed to efficiently evaluate the 582 

ecological status. One central aspect of assessing the ecological status is defining reference 583 

conditions or baselines, which can be very difficult for marine benthic communities in regions 584 

with elevated and varied anthropogenic pressures. Although modelling approaches for 585 

hindcasting to a time before the impact were suggested as alternative methods when pristine 586 

areas are not available (Borja et al., 2013), DM has probably only little to contribute to 587 

baseline definition, since necessary historical environmental data are not available in most 588 

cases. However, for those species which are used as indicators for baseline conditions, DM 589 

can be applied to forecast the changes in distribution in relation to large-scale environmental 590 

changes such as global warming (Hering et al., 2010). This knowledge is especially important 591 

since management action would be unsuccessful, if the cause of change is related to these 592 

large-scale climatic effects, which cannot be targeted by local management. 593 

However, most monitoring programs in marine benthic environments are tasked with 594 

assessing benthic habitat condition (e.g. within Water framework Directive (WFD) and 595 

MSFD) and ascertaining benthic changes over time. In conclusion, although the use of DM 596 

can help directing monitoring effort towards inter alia important habitats or species or 597 

designing efficient monitoring programmes,  it is clear that the DM will never be able to 598 

replace the actual monitoring programmes (Valle et al., 2013).  599 

 600 

3.3 Non-indigenous species 601 

The introduction of non-indigenous species is of specific concern for marine ecosystem 602 

management, because these species can considerably affect marine ecosystems and 603 

biodiversity by e.g. altering native communities, and may even cause severe economic 604 

damage when the species become invasive (Olenin et al., 2011). The non-indigenous green 605 
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algae species of the genus Caulerpa for example have now spread throughout major parts of 606 

the Mediterranean Sea (Meinesz et al., 2001). The non-indigenous and invasive Pacific oyster 607 

(Crassostrea gigas) has been shown to affect blue mussel (Mytilus edulis) beds in the Wadden 608 

Sea and elsewhere (Diederich, 2005, Markert et al., 2010, Jones et al., 2013). Once 609 

established it is difficult if not impossible, to extirpate or manage the spread of non-610 

indigenous species. Therefore, early warning systems are currently in the focus of marine 611 

management strategies and suitable monitoring schemes for non-indigenous species in the 612 

marine ecosystems need to be implemented. Non-indigenous species-targeted DMs may play 613 

an important role here.  614 

A common approach to the risk of invasion is to model the ecological niche of a species based 615 

on the occurrence within its native distribution and then to apply this model in other regions 616 

to identify potential (vulnerable) habitats. In the terrestrial environment, Thuiller et al. (2005) 617 

have used climate niche modelling results of endemic species from Africa to predict the 618 

potential global distribution of introductions of these species. Thus, the vulnerable habitats 619 

can be determined even before the potentially invasive species are invading the region. 620 

Monitoring schemes within an early warning system could use this information to focus the 621 

monitoring effort on these vulnerable habitats. However, such approach only poorly accounts 622 

for the early phases of introduction into marine environments, which are often associated with 623 

the major shipping pathways (e.g. harbours). Next to precautionary management measures, 624 

this might be the only stage (in marine environments) where management action can be 625 

successful in regulating the introduction of non-indigenous species.  626 

Given the vast number of potential invaders in marine ecosystems, DMs may further serve as 627 

a tool to distinguish species with little potential from those with higher potential to invade a 628 

specific region and to prioritize management and monitoring efforts (Simberloff et al., 2005). 629 

This might be an unrealistic approach for marine environments, because the availability of 630 
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environmental data on a global scale still is a problem for a wide application of DMs in 631 

marine benthic environments. Thus, the lack of sufficient environmental data hampers the 632 

potential use in early warning approaches, for which environmental data are not only needed 633 

for the invaded, but also for the native region. To our knowledge no case study on marine 634 

benthos using DMs in such a context was carried out so far. 635 

Although species distribution models calibrated for the native range of a species and 636 

extrapolated to regions where the species occur as an invasive species is common practice in 637 

terrestrial environments, it is based on the assumption that the invasive species conserve their 638 

ecological niche in the invaded region. In most cases, this might be a reasonable assumption, 639 

but it was already shown that a shift of the climate niche occurred between native and non-640 

native ranges of plant species (Broennimann et al., 2007). In this case, only the earliest 641 

colonisation pattern was predicted correctly, which at least highlights the value of DMs for 642 

early warning systems. 643 

The spatial spreading of non-indigenous species can also be modelled using occurrence data 644 

of the invaded ecosystem. Of course, this approach can only be applied when the species 645 

already colonised the ecosystem and, thus, cannot be used within early warning strategies. It 646 

can however still provide valuable information about the ecological niche of the non-647 

indigenous species and hence its possible future spatial extent (Verween et al., 2007, Azzurro 648 

et al., 2013, Jones et al., 2013, Neumann et al., 2013). Although such approach may 649 

successfully predict the distribution of the invader, one should be cautious because of the 650 

inherent violation of the basic assumption of DMs that the species is in equilibrium with its 651 

environment (Václavík and Meentemeyer, 2012). On the one hand, the invasive species might 652 

not have colonised all of the suitable habitats simply because of a lack of time for a wide 653 

dispersal, which would lead to an underestimation of the potential distribution. On the other 654 

hand, the current species distribution might have been supported by unusual environmental 655 
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conditions for a short time period. Thus, under ‘normal’ conditions the species might not be 656 

able to survive in these regions and the model outputs would result in an overestimation of 657 

distribution.  658 

  659 

3.4 Future scenario predictions 660 

Another major challenge for ecosystem management is to account for possible future changes 661 

of the environment in the management strategies. Climate scenario effects for example are 662 

currently in the focus of research efforts (e.g. Richardson et al., 2012). The physical effects of 663 

climate change in marine environments mainly comprise shifts in temperature and salinity, 664 

alteration of hydrodynamics, sea level rise and ocean acidification (IPCC, 2013). Benthic 665 

systems are directly or indirectly affected by these changes, which may result in changes in 666 

spatial distribution of species (Birchenough et al., 2011, Valle et al., 2014). Especially the 667 

implementation of long-term ecosystem management measures, e.g. MPA designations, may 668 

benefit from a DM-based estimate of future changes in the ecosystem.  669 

DMs provide a useful tool to predict the spatial distributional consequences of expected 670 

environmental changes such as climate change. In the terrestrial realm different IPCC 671 

scenarios of climate change have been widely used to predict the future distribution of several 672 

species and the consequences for ecosystem functioning and environmental management (e.g. 673 

Heikkinen et al., 2006, Pompe et al., 2008, Richardson et al., 2010, Falk and Mellert, 2011). 674 

Future climate scenarios were also recently used to predict distribution shifts of marine 675 

benthic species (Cheung et al., 2012, Jones et al., 2013). Predictions of environmental 676 

changes based on IPCC scenarios are now indeed widely accessible for terrestrial and partly 677 

for marine environments, even on a global scale (Tyberghein et al., 2012). Nevertheless, the 678 

dominant environmental factors influencing the benthos are acting on the sea floor, for which 679 



29 
 

large scale data on the effects of climate change are still meagre. Especially for deep sea 680 

habitats, the conditions at the sea floor differ substantially from the surface water and detailed 681 

hydrographic models focusing on the sea floor or entire water column parameters are often 682 

restricted in their spatial extent (e.g. Ådlandsvik, 2008, Holt et al., 2010). The same however 683 

also holds true, yet to a lower extent, for shallower habitats where especially the effects of 684 

changes in hydrodynamics (e.g. storminess) and sea level rise onto the benthic physical 685 

conditions are less straightforward, as such hampering large scale applications of DM in 686 

predicting climate change driven distribution shifts of benthic species (see Ready et al., 2010). 687 

With an increasing use of DMs in predicting consequences of climate change, a growing 688 

concern has emerged to improve the knowledge of uncertainty factors and to increase the 689 

reliability of predictions (Thuiller et al., 2004, Botkin et al., 2007). This is even more 690 

important in the context of climate change since an additional source of variability arises with 691 

the use of modelled climate scenarios. Widespread disagreement in the distribution 692 

predictions were found between DM methods when applied to extreme climate change 693 

scenarios (Elith et al., 2010). Furthermore, major uncertainties related to prognostic species 694 

distribution modelling are that relevant processes such as species interactions, habitat change, 695 

and rapid evolutionary changes are not included in most of the modelling approaches (see 696 

above). Using DM for predicting future changes is associated with an unavoidable degree of 697 

uncertainty (Wenger et al., 2013) and should always be done with precaution in an ecosystem 698 

management context: they should be interpreted as indications of possible future changes. 699 

These uncertainties may however partly be addressed by using multi-model procedures where 700 

the predictions of a variety of different models are taken into account to improve the 701 

robustness of the prediction. These methods are relevant both in DM and in modelling of 702 

climate change scenarios (Araujo and New, 2007, Jones et al., 2013). The further 703 

incorporation of dispersal dynamics and species interactions into DMs will be specifically 704 
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important to improve the robustness and reliability of climate change impact predictions (e.g. 705 

Cheung et al., 2008).  706 

Despite their relatively high level of uncertainty, DMs are among the best available tools to 707 

forecast the possible effects of climate change on benthic species distribution patterns and 708 

hence to steer present-day ecosystem management. Predictions of the expected changes in 709 

species distribution can be used inter alia to focus monitoring programs towards the most 710 

sensitive regions or to identify key indicator species for long-term climate change monitoring 711 

(Cheung et al., 2012). 712 

 713 

4. Recommendations 714 

Distribution models provide valuable full-coverage information on the distribution of marine 715 

benthic species, communities and related entities inhabiting an environment that is usually 716 

difficult to assess and enables the prediction of distribution changes. On the one hand, DM 717 

enables ecosystem managers to utilise spatial information that cannot be generated otherwise 718 

to a similar level of spatial resolution. On the other hand, the level of uncertainty is 719 

correspondingly high and large scale data for quality control are often insufficient. Thus, 720 

although DM is considered to increasingly constitute an essential tool for current and future 721 

ecosystem management, careful usage and interpretation are essential when applying the DM 722 

outputs in a management context. 723 

1. Management approaches can only be successful if there is a causal link between the 724 

management objective and the implemented measure. However, the most commonly used 725 

statistical DM the does not necessarily identify cause-effect relationships, which are crucial in 726 

a management context. Bayesian Belief Networks is a promising method which considers 727 
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both, correlative and causal relationships, and provides good estimate of model uncertainty, 728 

(Stelzenmüller et al. 2010). Its application to the marine benthic realm is however rare up to 729 

now.  730 

2. The statistical approaches used in DM are particularly effective in spatial interpolation, 731 

where proxy environmental predictors can be suitable to predict the present distribution 732 

patterns. However, for spatio-temporal extrapolation, e.g. predicting species distributions in a 733 

new area (e.g. early warning systems for invasive species) or time (e.g. climate change 734 

studies), cause-effect relationships need to be better understood. Therefore, corresponding 735 

predictions from correlative DMs have to be used with precaution, and multi-modelling 736 

approaches that incorporate models of species migration, combinations of correlative DM 737 

with dynamic ecosystem models and spatially explicit population dynamics models will need 738 

to be developed (Franklin, 2010).  739 

3. Potential causal environmental predictors are often not even included in correlative DMs 740 

due to mainly lack of data availability. Especially for marine benthic ecosystems, some 741 

relevant predictors are often only available at a local scale (e.g. bottom water temperature, 742 

sediment characteristics), which hampers the large scale application of DM. The early 743 

warning approaches for the assessment of the potential spread of non-indigenous species are 744 

specifically data demanding and large scale environmental data are essential for these 745 

approaches. Initiatives such as Bio-ORACLE (Tyberghein et al., 2012), MyOcean 746 

(Buongiorno Nardelli et al., 2013) and MARSPEC (Sbrocco and Barber, 2013), are providing 747 

the first steps towards the availability of large scale environmental predictors, which are 748 

necessary for marine DM applications and will undoubtedly enable further developments.  749 

4. Often, mechanistic models are used to predict the physico-chemical nature of the area that 750 

is then used as explanatory variable(s) in statistical DM (or in cases used as expert judgement) 751 
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to describe or predict the biological response. The development of mechanistic DM 752 

approaches based on functional traits, physiological constraints and dispersal capacity, are 753 

particularly appropriate to address issues such as long-term sustainability of exploitation 754 

activities, evaluation of alternative rearing and management strategies, risk of dystrophic 755 

crises and algal blooms, effects of range-shifting and species, or even forecasting the impact 756 

of future climate (Buckley et al., 2010, Elith et al., 2010), although costly to design, calibrate 757 

and validate. The prior use of correlative modelling techniques can in turn guide and optimise 758 

the application of the mechanistic models by suggesting particular traits or processes to 759 

consider and suggesting spatial limits of necessary runs (Vincenzi et al., 2011).  760 

5. One major drawback in using correlative DM is with regards the missing incorporation of 761 

biological factors (such as feeding interactions, dispersal range and migratory behaviour) into 762 

the modelling procedure. Although some methods are available to account for these factors, 763 

e.g. trophic interactions (Kissling et al., 2012), the major scope for an increased knowledge of 764 

marine benthic ecosystems is delaying a further progress in marine DM. It is clear that more 765 

efforts including basic autecological research are required to sufficiently cover the biological 766 

factors in DMs.  767 

6. Biological Traits Analysis (BTA) recently facilitated assessing the functional diversity and 768 

roles of benthic species in marine ecosystems (e.g. Bremner, 2008, Darr et al., 2014b). This 769 

type of approaches uses the information on selected ecological traits expressed by species to 770 

characterise the ecological functioning of the assemblages, and has been highlighted as a valid 771 

approach in the assessment and management of marine benthic systems (Bremner, 2008, Frid 772 

et al., 2008). The combination of distinct relationships between species and both abiotic and 773 

biotic predictors with species autecological capacity (e.g. filtration rates) could help to model 774 

temporal and spatial ecosystem functioning with high resolution accuracy. This approach 775 

assumes that modelled distribution of benthic assets is expressed not only as probability of 776 
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occurrence but rather as quantitative predictions (e.g. abundance or biomass). Recent studies 777 

(Wei et al., 2010, Vincenzi et al., 2011, Darr et al., 2014a) have demonstrated that the 778 

combination of multivariate predictors and machine-learning algorithms (e.g. Random Forest) 779 

is better when compared to conventional regression models, especially when the aim is to 780 

model quantitative response variable (species abundance, biomass or certain biological traits 781 

expressed in these units, potential yield of aquaculture etc.). Generally, these models are most 782 

useful for purposes of spatial planning and identification of areas with different degree of 783 

suitability e.g. for farming or endangered species. New case studies from different 784 

environments with application of these methods are urgently needed, which will help to 785 

obtain more technical experience, improve model performance and efficiency for 786 

management purposes.  787 

 788 

In this review, it should be clear that despite the uncertainties and limitations mentioned, DM 789 

play an important role in marine ecosystem management and its potential applications are 790 

manifold. DM is already very useful, will become even more useful in the future as current 791 

weaknesses will be tackled with new technical developments, but the application of DM in 792 

marine management will always require scientific expert advice. Thus, generic 793 

standardisation and automated applications of DM for management purposes cannot be 794 

recommended as the choice of DM methods and prediction attributes need to be aligned with 795 

the specific management objectives and applications (Fig. 1). DM results should of course be 796 

used with caution in decision making by environmental managers. Despite the increasing 797 

number of applications and the improvement of the methods used, DMs still have their 798 

limitations (Guisan and Thuiller, 2005), especially in bridging between the managerial quest 799 

for simplicity and the integration of ecological theory (Austin, 2002). This actually may 800 
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stimulate further development of DM to minimise this gap between management requirements 801 

and scientific integrity. 802 
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Figures 1330 

Figure 1: Conceptual diagram showing the components of statistical distribution modelling 1331 

and the overall linkages for the management applications. The arrows indicate the direction of 1332 

input of data/information, while the limitations and problematic issues for the biological input 1333 

data, the environmental predictors and the distribution modelling procedure are listed in the 1334 

consecutive boxes. The management objectives in this figure provide the overarching 1335 

framework on which the selection of DM method and prediction attributes is depending on.  1336 

 1337 
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Table 1: Common methods used for distribution modelling (* ‘p’- presence only data; ‘p/a’– presence/absence data; ** ‘++ - known application 

for management in marine settings; ‘+’ - known application in marine benthos; ‘-‘ - no published relevant applications). 

Modelling 
technique 

Description Data 
requirements* 

Pros and cons Marine 
application** 

Exemplary 
references 

GLM 

Generalized 

Linear      

Model 

Based on analysis of variance and co-variance; various 

distributions and link functions used subject to the 

distribution features of both predictors and response 

variables (binomial for binary, Poisson for count data, 

negative binomial for overdispersed count data, logit for 

probability of binary response etc.); from simple to 

multivariate regression. 

p/a; both categorical 

and continuous 

predictors 

Variety of handled distributions, common, 

straightforward interpretation, high predictive 

power; model selection uncertainty and 

autocorrelation should be accounted for; the 

greater the flexibility (e.g. number of 

polynomials) the higher is the risk to overfit 

the data. 

++ (Ysebaert et al., 

2002, Valavanis et 

al., 2008, Gogina et 

al., 2010b) 

GAM  

Generalized 

Additive  

Model 

Straightforward extension of GLM where scatterplot 

smoothing functions (locally weighted mean) are used to 

build a sum of a set of arbitrary functions. 

p/a Overfitting risk, complexity of interpretation 

suggest the use o suggest the use of sequence 

of non-parametric GAM to determine the 

dominant relationships and then apply 

parametric GLM for fine model fitting and 

prediction. 

++ (Valavanis et al., 

2008, Bergström et 

al., 2013) 

MARS 

Multivariate 

Adaptive 

Regression 

Splines 

Non-parametric regression technique combines linear 

regression, mathematical construction of splines and binary 

response cursive partitioning to model (non-)linear 

relationships between environmental variables and species 

occurrence, coefficients differ across levels of predictor 

variables. 

p/a; continuous and 

categorical data 

Flexible, easy to interpret, automatically 

models non-linearities and interactions 

between variables, do not give as good fits as 

boosted trees methods. 

++ (Meißner et al., 

2008, Reiss et al., 

2011) 
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MAXENT 

Maximum 

Entropy 

Estimates the target probability by finding the probability 

distribution of maximum entropy (of minimum information 

content) under the constrains that the expected value of 

each predictor matches its empirical average. 

p Superior performance among presence-only 

algorithms. 

++ (Phillips et al., 

2009, Reiss et al., 

2011) 

BIOCLIM 

Envelop models 

Finds mean and standard deviation for each environmental 

variable to calculate bioclimatic envelopes. 

p Output is the categorical probability of 

occurrence, often shows poor performance. 

++ (Reiss et al., 2011) 

Quantile 

regression 

Serves to model the function for the depicted quintile of the 

response, e.g. to estimate the factors constraining the 

population, without strict distributional assumptions and 

specifications on link between the variance of response and 

its mean. 

p/a Alternative to ordinary least-square 

regression methods able to reveal hidden bias 

and existing important processes not covered 

by measured variables.  

- (Cade and Noon, 

2003, Vaz et al., 

2008) 

ANN   

Artificial 

Neural 

Networks 

Non-linear mapping structures based on hundreds of 

simulated neurons connected together as brain’s neurons, 

learn from experience (not programming), behavior is 

defined by the way its individual computing elements are 

connected and by the strength of those connections 

(weights); can be trained to recognize patterns, classify 

data, and forecast future events. 

p/a Largely universal and assumption-free 

approach for any data, however this is a 

‘black box’ approach therefore it is difficult 

to interpret ecological relationships. 

- (Lek and Guegan, 

1999, Valavanis et 

al., 2008) 

GARP  

Genetic 

Algorithm for 

Rule-set 

Prediction 

Uses a machine-learning genetic algorithm such as 

regression adaptation and range specification to select a set 

of rules that best predicts the distribution of species. 

p/a Argued to give accurate assessment of 

distribution for organisms capable of 

dispersal; ‘black box’ algorithm, no way to 

analyze contributions of individual predictors 

to the model, hard to interpret. 

+ (Stockwell and 

Peters, 1999, Reiss 

et al., 2011) 
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GDM 

Generalized 

Dissimilarity 

Modelling 

Designed to model spatial turnover in community 

composition, combines matrix regression and generalized 

linear modelling, allowing it to model non-linear responses 

to the environment that capture ecologically realistic 

relationships between dissimilarity and ecological distance. 

p/a Community-modelling method – based on 

that important subtle environmental trends 

may only be apparent in the response of 

multiple species and rare species are hard to 

model otherwise. 

- (Elith et al., 2006) 

ENFA 

Ecological 

Niche Factor 

Analysis 

Compares statistical distributions of predictors for presence 

locations with that of wider geographic area. Factors are 

successively extracted by maximizing ratio of the variance 

of the global distribution to that of species distribution. 

p Resulting factors have ecological meaning of 

‘marginality’ and ‘specialization’. Requires 

good survey coverage for accurate prediction. 

- (Valavanis et al., 

2008, Galparsoro et 

al., 2009, Valle et 

al., 2011) 

CART 

Classification 

and Regression 

Tree 

Non-parametric decision tree learning technique based on 

recursive binary partitioning; a set of nodes expressed in 

terms of predictors defines the predicted value of the 

response variable at the end of the leaf. Splits are 

determined by minimizing the sum of squared residuals or 

the misclassification rate within the resulting groups. 

p/a Appropriate for all types of variables, 

minimum assumptions about the model form; 

but erroneous near region boundaries, small 

data change may lead to significant model 

change, data fragmentation. 

++ (Pesch et al., 2008) 

RF  

Random Forest 

Uses collection of decision tree models to achieve top 

predictive performance 

p/a    +  (Wei et al., 2010, 

Reiss et al., 2011) 

BRT   

Boosted 

Regression 

Trees 

Boosting algorithm uses iterative forward stage wise 

modelling. Final model is developed by progressively 

adding simple CART trees by re-weighting data to 

emphasize cases poorly predicted by previous trees. 

p/a Ability to handle different types of variables 

and missing values, fitting interactions 

between predictors, immunity to extreme 

outliers. 

+ (Leathwick et al., 

2008) 
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BNs     

Bayesian Belief 

Networks  

Estimates the probability that a hypothesis is true given the 

data, and defines that probability as the degree of belief in 

the likelihood of an event. Classical statistical approaches 

estimates the probability of the data given a hypothesis, and 

the probability is defined as the relative frequency of an 

observation. 

p/a; all kinds of data 

(nominal, ordinal, 

continuous), e.g. 

multiple sets of 

geospatial data 

Probabilities can be combined and quantified 

using empirical data, statistical associations, 

mathematical representations, and 

probabilistic quantities derived from expert 

knowledge. 

-  (McCann et al., 

2006, Stelzenmüller 

et al., 2010) 

Mechanistic 

models 

Translate environmental conditions into biologically 

relevant metrics, capture environmental sensitivities of 

survivorship and fecundity and use energetic to link 

environmental conditions and demography (1) 

incorporating models of species migration - ability of a 

species to occupy suitable habitat in new locations; (2) 

linking models of landscape disturbance and succession to 

models of habitat suitability; (3) fully linking models of 

habitat suitability, habitat dynamics and spatially explicit 

population dynamics. 

p/a Integration of information from mechanistic 

models has the potential to improve the 

reliability of correlative predictions e.g. in the 

context of range-shifting/invasive species; 

approach is only feasible if the life history 

parameters and habitat requirements of the 

species are well understood. 

- (Elith et al., 2006, 

Buckley et al., 

2010, Franklin, 

2010)  

Ordination 

methods  

 

Detect interrelationships in species/communities and 

environmental data; unconstrained ordination methods for 

the analysis of community data based on Euclidean 

distance PCA (principal component analysis), DCA 

(detrended correspondence analysis), RDA (redundancy 

analysis), methods that perform weighted linear mapping 

based on χ2 distances between predictors and dependent 

(species) variables, e.g. CCA canonical correspondence 

analysis; (n)MDS multidimensional scaling. 

p/a, community 

data, environmental 

data 

Not strictly used for SMD, but provides 

knowledge about how environmental factors 

shape benthic habitats and communities. 

++ (Buhl-Mortensen et 

al., 2009, Gogina et 

al., 2010a, Moore et 

al., 2010)  
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Table 2: Environmental variables relevant for DM of marine benthos 

Environmental variable Common types of measurement        Remarks 

Substratum 

 

 

 Swath techniques: 

‐ Backscatter from multibeam echosounder  

‐ Side scan sonar mosaics 

 Samples: point measurements (grab or corer)  

 Visual mapping: camera/video 

 Reliability depends on ground truth sampling density  

 Can be used in a stand-alone way to provide interpolated maps (e.g. grain size 

distribution)  

 Used to ground truth swath techniques rather than per se (hard to discriminate fine 

sediment categories) 

Sea surface temperature   Satellite, point measurements, hydrodynamic models  Seldom relevant to bottom fauna except in shallow waters 

 Used to identify major biogeographic regions 

Bottom temperature  Hydrodynamic models validated by point measurements 

 

 Resolution in space and time is often coarse, however new detailed models have 

been developed 

 Many observations needed to cover variability 

Salinity  Hydrodynamic models  

 Point measurements 

 Coarse resolution often not relevant to benthos 

 Many observations needed to cover seasonal variability in shallow coastal areas 

Depth  Point measurements 

 Swath bathymetry (see ‘Substratum’ above) 

 DTM (Digital Terrain/Elevation Model) obtained from assembling raster and point 

clouds sources 

Light energy  Satellite imagery 

 Point measurements (e.g. Secchi depth) 

 Two parameters can be retrieved: 

‐ Fraction of incident light  

‐ Energy in mol photons reaching seabed 

Primary production 

(water column) 

 Satellite imagery 

 Hydrodynamic models 

 Only surface waters covered by satellite imaging 

 Coarse resolution in space and time of model output 

 

Hydrodynamics  Hydrodynamic models (e.g. (tidal) currents, bottom shear 

stress) 

 Acoustic Doppler Current Profiler (ADCP) 

 Often coarse resolution in space and time of model output 

 Local application only for ADCP 
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Figure 1  




