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Abstract

We present a detailed study of a global bifurcation occuring in a turbulent von
Karmén swirling flow. In this system, the statistically steady states progressively
display hysteretic behaviour when the Reynolds number is increased above the
transition to turbulence. We examine in detail this hysteresis using asymmetric
forcing conditions—rotating the impellers at different speeds. For very high Rey-
nolds numbers, we study the sensitivity of the hysteresis cycle—using com-
plementary particle image velocimetry and global mechanical measurements—to the
forcing nature, imposing either the torque or the speed of the impellers. New mean
states, displaying multiple quasi-steady states and negative differential responses, are
experimentally observed in torque control. A simple analogy with electrical circuits is
performed to understand the link between multi-stability and negative responses. The
system is compared to other, similar ‘bulk’ systems, to understand some relevant
ingredients of negative differential responses, and studied in the framework of
thermodynamics of long-range interacting systems. The experimental results are
eventually compared to the related problem of Rayleigh—Bénard turbulence.

Keywords: turbulence, instability, negative response, symmetry

* Present affiliation: Aix Marseille Université, CNRS, Centrale Marseille, IRPHE UMR, 7342, F-13384,
Marseille, France

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.
B Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal
citation and DOI.

New Journal of Physics 16 (2014) 063037
1367-2630/14/063037+26$33.00 © 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft


mailto:brice.saint-michel@cea.fr
http://dx.doi.org/10.1088/1367-2630/16/6/063037
http://creativecommons.org/licenses/by/3.0/

New J. Phys. 16 (2014) 063037 B Saint-Michel et al

1. Introduction

Most of the flows present at human or natural scales are turbulent flows, for which the local
(Eulerian) velocity fluctuations follow the Kolmogorov spectrum [1]. The transition from
laminar to turbulent flows is parametrized by the Reynolds number, a non-dimensional number
comparing the inertial and the viscous terms in the Navier—Stokes equations governing the
motion of fluid particles. Intense effort has focused on measuring (and predicting) the onset of
turbulence in various geometries such as plane Couette [2, 3], Taylor Couette [4], channel [3],
pipe [5, 6], and cylinder wake [7] flows. In such flows, the global symmetries of the laminar
flow (time and spatial invariances) are progressively broken for increasing Reynolds numbers
(Re). For large enough Re, all symmetries of the experimental set-up are broken in the
instantaneous flow. Concurrently, a range of scales, the so-called ‘inertial range’ of turbulence,
in which the flow fluctuations exhibit universal statistical properties, develops between the
forcing scale and the Kolmogorov scale, the latter scale decreasing as the Reynolds number
tends to infinity.

Modern turbulence modelling relies on stochastic processes to account for the very high
level of ‘noise’ present in turbulent flows, and is designed to reproduce the statistical properties
observed in experiments: in that respect, this often leads to an ergodic interpretation of the local
flow [1, 8] where the temporal evolution of the physical quantities is statistically steady, and the
noise level is sufficient to explore all the possible states of the turbulent flow. In this situation,
experimental symmetries are recovered in a statistical sense at small scales, and away from the
boundaries [1]. Whether this restoration is also observed for the large scale flow is currently
unknown but is a commonly accepted idea, at least for cylinder wake and pipe flows, despite
being challenged for example by some turbulent Rayleigh—-Bénard experiments exhibiting, in
some particular cases, a symmetry-breaking steady large-scale wind [9].

Additional light has recently been shed on this assumption by a series of experiments in a
von Kéarméan flow geometry, with flow forced by counter-rotating discs fitted with blades. In that
case, the progressive transition to turbulence occurs for Reynolds numbers 1000 < Re < 3300
(depending upon blade curvature) [10]. Past this value, the flow first reaches statistically steady
states restoring the symmetries of the experimental setup and with characteristics reminiscent of
other turbulent flows (Kolmogorov spectrum for local velocity measurements). However, for
Reynolds numbers above Re = 10 000, the turbulent flow undergoes another, global bifurcation,
in which the statistically steady turbulent states undergo a bifurcation and become hysteretic,
breaking at large scales the ergodic hypothesis [10, 11]. This confirms that the symmetry
restoration principles are not always valid for the large-scale flow, or should at least be
considered with great caution. On the other side, this calls for supplementary studies of the large
scale behaviours, to study properties of this special regime and investigate the possible
emergence of universal features.

In this article, we focus on the properties of the hysteresis cycle of the global bifurcation by
studying the response of the flow to a symmetry-breaking field for various Reynolds numbers
lying between Re = 800—corresponding to a non-hysteretic, non-turbulent flow—and
Re = 250000—corresponding to a hysteretic flow which displays all the characteristics of
turbulent flows. In addition, we explore the influence of the nature of the forcing conditions on
the properties of the hysteresis cycle, and on the set of states accessible to the experiment. We
compare our experimental results to other out-of-equilibrium systems and we show that the
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Figure 1. Experimental setup, with blade profile. The rotation sense defined by the
arrow is called (—)

peculiar large scale behaviour we observe mirrors characteristic properties of long-range
interacting systems at thermodynamic equilibrium.

2. Notations and experimental parameters

2.1. Mechanical setup

The experimental set-up used in the article is essentially the same as in [12]: a Plexiglas cylinder
of inner radius R = 100 mm is filled with fluid, which is stirred by two coaxial discs of radius
R = 0.925 mm made of polycarbonate (see figure 1). The discs, fitted with blades of curvature
radius 0.4625 R and height 0.200 R, are separated by a distance 1.4 R (from blade tip to blade
tip) and are driven by two independent synchronous motors of nominal power 1.8 kW. Motors
can function either imposing the speed [12] or the torque to the discs, in both directions of
rotation, called (+) and (—). In this article, we will only consider (unless explicitly stated)
experiments for which the two discs are counter-rotating and pushing the fluid with the concave
face of the blades (clock-wise direction in figure 1) which defines direction (—)

Two sets of experiments have been studied in this article. The first set contains exclusively
speed-control experiments in water—glycerol mixtures of various concentrations allowing a
large span of fluid viscosities v (and therefore, of Reynolds numbers) using impellers with 16
blades. Such experiments have used a lip seal to ensure fluid confinement in the experiment. All
of the experiments of the second set have been performed in water, using both controls (speed
and torque); two EagleBurgmann HJ977/GN balanced end-face mechanical seals providing
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water confinement in the vessel while ensuring limited mechanical friction. In addition, this set
of experiments has been performed under a 2.8 bar pressure for optimal seal working
conditions.

2.2. Mechanical measurements, Reynolds number

In the first set of experiments, the mechanical physical quantities f1 and f2 (respectively the
bottom and top impeller speeds) and C, and C, (the torques transmitted to the impellers) are
measured using the monitor voltage outputs of the Yaskawa AC drives controlling the motors.
The measurements of the second set of experiments rely on two Scaime MR12 torque sensors
fixed to the impeller shafts, for more accurate measurements. In all experiments, the speed of
the impellers is used to define the Reynolds number in the experiment, Re:

_7(h+h)R

1%

Re (1)
The first set of experiments achieves Reynolds numbers that are in the range
800 < Re < 185000 and are therefore near the transition reported in [10], whereas the
Reynolds numbers of the second set of experiments are found to be between 100 000 and
400 000, well above the transition of [10]. For all speed imposed experiments, the rotation
frequencies f, and f, of the impellers can be set from 1 Hz to 12 Hz, with a precision better than

0.2% on average whenever fl , f2 > 2 Hz.

For torque imposed experiments, an analogue 16-bit voltage source is used to impose the
torques to the impellers. However, the torque actually transmitted to the impellers, C, and C,,
differs from this target torque due to torque sensor systematic offset and static friction of the
mechanical seals. The static friction is rather sensitive to the tuning of the seals and
experimental conditions; in addition, drifts of this friction have been reported between two
consecutive weeks of experimental acquisitions. Hence, all experiments require frequent
calibrations (one a day), consisting in speed-imposed experiments performed at f = f, with

nine plateaus of the impeller speeds, the bottom impeller being started first (see figure 2). The
mean torque values are then fitted by a quadratic law:

C=C+K,f>, 2)

from which we identify C to the static friction torque. The agreement between experimental
data and this fit is good enough to eliminate both torque sensor bias and static friction, allowing
a ‘true’ measure of the torques C, and C,. Under such conditions, it is possible to assess the
quality of the torque regulation along time: no deviation exceeding 0.5% of the average applied
torque has been observed even in our longest experiments.

2.3. Velocimetry

In addition to mechanical measurements, the second set of experiments includes fluid velocity
measurement using a stereoscopic particle image velocimetry (S-PIV) system provided by
Dantec Dynamics. In this system, a Nd-YAG pulsed laser illuminates particles inside the
cylinder in a vertical plane crossing the centre of the experiment. Two digital cameras are
filming the particles on two perpendicular faces of a square container surrounding the fluid
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Figure 2. Determination of static friction torques C, in a calibration experiment. Red
squares, top impeller torque, and blue circles, bottom impeller torque. Error bars
represent the standard deviation of the torques at the speed plateaus. The static torques
C,=0.11Nm and C, = 0.067 Nm are extrapolated from a quadratic fit of the torque at

fsf =0.

vessel, to limit optical distortions due to air/water interfaces, producing a three-component
velocity field v = (v,_, Vs Vz) in a two-dimensional (r, z) plane covering two azimuths ¢, and
¢, + m. Correlation calculations are performed on 32 X 32 and 16 X 16 pixel windows
representing an area of 4.16 X 4.16 mm” and 2.08 X 2.08 mm®, each time with an overlap

between windows of 50%. Our experiments typically yield 5000 velocity maps on a 59 X 63 or
113 x 122 grid. The time interval between two maps can be adjusted from 1/15 s to 1s.

2.4. Symmetries and physical quantities associated

The experimental set-up is characterized by two symmetries. The first one is the rotational
invariance along the (Oz) axis, called axisymmetry, present for all rotation frequencies and

torques. We will indeed assume that the addition of the blades on the discs has little impact on
this symmetry: PIV measurements (see figure 7) will confirm this assumption in the next
sections. The other symmetry, shown in figure 1, is the R symmetry, which can be viewed as

an upside-down flip of the experiment exchanging the two impellers. Obviously, a perfectly R,
symmetric flow requires f = f, and C, = C,. More generally, this symmetry allows a definition

of four mechanical quantities, two being R symmetric, and two measuring the ‘distance’ to R
symmetry:

_fl_fz y_CI_CZ
f+f C +C,

fzé(fl +fz),c=%(cl+cz),9 3)

Experiments performed at lower Reynolds numbers [10] at imposed speeds show that the
von Kiarmédn flow progressively breaks the symmetries of the mechanical setup: the

instantaneous turbulent flow v (t) is neither R symmetric nor axisymmetric, even for

symmetric forcing conditions. However, such symmetries are restored in a statistical sense
[1, 11] and at large scales when we consider time-averages of a large number (= 600) of PIV
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Figure 3. Evolution of the hysteresis cycle—for impellers with 16 blades—with Re,
from the laminar cases to hysteretic, turbulent flows. Left: purple circles, Re = 800; blue
downwards triangles, Re = 2900; teal squares, Re = 4900. Right: yellow circles,

Re = 9500 (symmetrized); diamonds, Re = 15 500; upwards triangles, Re = 185 000.

velocity maps (see figure 7). These mean flows are known to respect experimental and forcing
symmetries.
To characterize the distance to R, symmetry in the flow, we define the total kinetic angular

momentum / (¢) and its projection on the z axis, I(r):
I(t)

where V is the total volume of the fluid. It is simple to show that R_-symmetric flows produce
distributions of v, cancelling /. This quantity is actually calculated on the two-dimensional grid

1/ m,
V Jv 2zR*f

rdrdz, 4)

of the PIV velocity field. We will once more consider that the values of I obtained are
representative of the whole volume of the cylinder, at least when [ is averaged on several
samples, equivalent to an azimuthal average in our experiment.

3. Evolution of the hysteresis cycle in speed control

3.1. Qualitative aspect of the cycles and the flows

In this section, we will study the global, mechanical response to an asymmetric field in speed
control, making use of the first set of experiments. This study follows the direct visualizations
and the Doppler velocity measurements performed in [10] to describe the transition to
turbulence in the von Karman flow. The experimental results, displayed in figure 3, show for the
lower Reynolds numbers (Re = 800 corresponding to chaotic, yet not turbulent, velocity fields)
a continuous response to an asymmetric field. For slightly higher Reynolds numbers
(Re = 2900), a slight discontinuity of the average response y can be observed for non-zero
asymmetries (0 ~ +0.09), whereas the velocity spectrum of corresponding experiments in [10]
exhibits stronger small-scale fluctuations, with a beginning of power-law decay corresponding
to the inertial range. The discontinuities appear more clearly for Re = 4900, and are respectively
visible for @ = + —0.07 and 8 = +0.13. In this picture, the mechanical response displays no
hysteresis, the velocity fluctuations have saturated (see [10]) and an inertial range is well visible
in the velocity spectra: turbulence in the flow can therefore be considered developed.

For Re > 10000 and 8 = 0, a new statistical state called the bifurcated state has been
evidenced (see figure 7 in [10] for details), showing that bifurcations can be (at least
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statistically) observed in a turbulent flow. Figure 3 (right) reveals, for Re =~ 9500 and
Re =~ 15500, hysteretic asymmetry responses with five superposed branches. The main
difference between these two very similar cycles is that the four non-central branches are
smaller for Re = 9500 with two small outermost branches not crossing 8 = 0, while the cycle at
Re = 15 500 shows five coexisting branches for & = 0. These branches are already present at
Re = 4900 but have extended to € = 0 and beyond with an increase of the Reynolds number,
leading to a strong hysteresis. The discontinuity of the normalized torque (visible in [10], in
figure 7) is therefore already present at lower Reynolds numbers, and results from a continuous
evolution where the branches progressively superpose each other: additional data (not presented
in this article) show that the four external branches are already superposed for Re = 6700.
Eventually, two of the five branches present at Re ~ 15 500 vanish for the highest Reynolds
numbers achievable in our experiment, leading to a ‘typical’ hysteresis cycle for Re > 100 000,
as visible in figure 3. It is extremely similar to the cycle with eight blade impellers (see figure 5

for a Re ~ 250 000 cycle): (bl) and (bz), called bifurcated branches, surround a central,
symmetrical branch called (s).

This (s) branch is only accessible starting both impellers at the same time and exhibits—on
average—a steady and R symmetric turbulent flow. Each impeller generates a recirculation cell
covering half of the total fluid volume and imposes a global rotation of the aforementioned
volume (see figure 7). At altitude z = 0, a shear layer can be defined in the average, steady flow
(see [12] for details). In this branch, slightly asymmetric experiments display a finite lifetime
before transiting abruptly (and irreversibly) to another steady state corresponding to the (bl) (or

(bz)) branch. The lifetime of these weakly asymmetric steady states diverges when the
asymmetry parameter, 6, tends to zero [13]: the (s) branch is thus called marginally stable.

In contrast, (b,) and (b,) flows are strikingly different, breaking on average the R,

symmetry even when 6 = 0. For 0 = 0, these states can be selected applying transient
asymmetries, starting for example one impeller before the other. A dramatic rise of the mean

torque is also observed in these two branches, up to 3.4 times the torque level of the (s) branch.

The (bz)—selected for example by starting the top impeller first—state consists of one

recirculation cell where the fluid at the centre of the cylinder is pumped by the top impeller for
all altitudes z. In addition, the top impeller imposes a global rotation of all the fluid (see
figure 7). Obviously, the mean flow selected when the bottom impeller is started first is the
image by R_symmetry of such a flow. The hysteresis of these branches reflects the fact that the
top (respectively bottom) impeller is able to pump all the fluid even though the bottom
(respectively top) impeller rotation speed is higher. In these configurations, the impeller that is
pumping the fluid always provides the largest torque, despite a lower rotation rate. This can be
seen in figure 3, noting that the bifurcated branch with y > 0 (y < 0) extends far into the § < 0
(@ > 0) domain.

The impeller blade curvature plays here a key role in the shape of the turbulent asymmetry
response. A thorough study by Ravelet [11, 13] has reported that this response is continuous for
small or null blade curvature, discontinuous with no hysteresis for intermediate curvature, and
eventually hysteretic for high curvature—the impellers of the article falling into the latter

category—in the (—) rotation sense. This study is consistent with the existing literature where
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only straight blades are used (as seen on the sketches and pictures of [14—18]), or curved blades
in the reverse, (+) rotation sense (see [19, 20]). Curved blades imply a larger toroidal flow [13]

which tends to favour hysteresis: to illustrate this, Ravelet used vertical baffles in the cylinder
slowing down the toroidal flow, significantly reducing the hysteresis present in the experiment

[11].

3.2. A more quantitative approach

A finer description of the evolution of the hysteresis loop can be formulated studying the height
Ay and the width A@ of all cycles. These parameters can be mapped to their corresponding
counterparts in the hysteresis cycles of ferromagnetic materials. Under a critical temperature 7,
such materials exhibit spontaneous magnetization in the absence of any external magnetic field:
our cycle height Ay can therefore be seen as the ‘spontaneous magnetization’ of our flow.
Similarly, ferromagnetic spontaneous magnetization cancels for a particular magnetic field
strength referred to as the coercive field: our cycle width A@ is therefore its von Karman
counterpart.

Similarities with magnetic materials have already been evidenced in the other rotation
direction, (+) (see [12] for details). The complex nature of some cycles requires a careful
definition of the cycle height, therefore, two definitions of this height have been considered. The
first definition simply examines if the bifurcated branches (identified as the branches extending
to @ = + 1) extend to @ = 0. If they do, the height is measured as the distance between the two
branches. In the other case, Ay is zero. The second definition of the height is basically the same,

except that the (bl) and (bz) branches are linearly extended to & = 0. Both definitions are

identical in strongly hysteretic cycles, hence, for Re > 7800.

Quite surprisingly, figure 4 reveals a torque asymmetry Ay bifurcating from a very large
value at Re ~ 2900, whereas the coercive field A@ bifurcates from zero at Re ~ 8900, both
quantities following roughly a power-law pass the transition as:

1 1
log (Re) " log (Re)

; )

following a definition of the ‘temperature’ of turbulent flows suggested by Castaing [21]. The
experimental data roughly respect the following theoretical power-laws:

a

1 1
Ay x K — - ,a=—, Re, = 2900, 6
7 log (Re) log (Rel) “ 6 “ ©
1 2
A6 - , = —, Re, = 8900. 7
* log (Re) log (Rez) P 3 “ @

The presence of power laws suggests the presence of a critical transition for two Reynolds
numbers, one of them roughly corresponding to the transition to turbulence, associated with the

emergence of a noticeable region of k> spectrum of the velocity spectrum on previous laser
Doppler velocimetry measurements [13], the other one being observed for even higher
Reynolds numbers. There is at the present time no explanation for the value of the exponents a
and f.
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Figure 4. Height and width of the hysteresis cycle as a function of the Reynolds
number, as defined in figure 3. Left: height of the hysteresis cycle. Cyan diamonds,
impellers with 16 blades, where the outermost branches of the corresponding cycle in
figure 3 have been prolonged to § = 0. Navy diamonds, same set of data, without
prolongation. Orange squares, experiments with eight blade impellers. Right: width of
the hysteresis cycle. Same symbols as before. The dashed lines represent adjustments

using power laws of ‘ 1/log(Re ) — l/log(Rec)‘ (see text).

It is also unknown whether these power laws survive until Re — oo, or if Ay and A€ reach
asymptotic, finite values. In critical phenomena, such power laws are only valid in the vicinity
of the critical temperature, for the exact relations—when they can be derived—between relevant
physical quantities and temperature can be far more complex (see Onsager’s exact solution of
the two-dimensional Ising model for instance). This finite asymptotic regime, if it exists, seems
currently beyond the reach of our experimental setups.

Nevertheless, since the power-laws previously described involve Reynolds dependences
through 1/log Re terms, we will consider in the rest of the article that far from the critical
Reynolds numbers (for Re > 150 000), the cycle characteristics are only weakly dependent on
the values of Re and the number of blades: more specifically, doubling the impeller speed
should not result in more than a 10% variation of the cycle parameters (which can be verified in
figure 4). In addition, the global shape of the hysteresis cycle remains unchanged for such
Reynolds numbers. These assertions have been confirmed by experiments performed in water

[20] and in liquid helium at larger (10*) Reynolds numbers [22].

4. Influence of the forcing nature at high Reynolds numbers

This section is based on the second set of experiments. It will focus on the influence of the
forcing nature on the—statistically—steady states reached when an asymmetric field is imposed
in the experiment, both in speed and torque controls. It is indeed always possible to report the
average values of the response (respectively y in speed control and @ in torque control) to an
imposed asymmetry (respectively € in speed control, or y in torque control) in the same y,
diagram. PIV and mechanical measurements will be used to complete the characterization of the
steady states sketched in previous work [23] using only mechanical measurements.
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Figure 5. Left: mean reduced torque asymmetry y—teal stars—as a function of & for all
the steady states accessible in speed control, for experiments performed at f = 4 Hz

(Re =~ 250 000). The centre branch, (s) is marginally stable, and the external branches
(b,) and (b,) are hysteretic. The arrows indicate the various transitions observed

between steady states: the centre branch cannot be accessed from another branch, and is
therefore marginally stable. The hatched region represents a y range never explored by
the flow. Right: reduced mean angular momentum / for the three branches in speed
control. Blue circles, experiments at a rotation speed of f = 4 Hz, and orange diamonds,
experiments at f = 5Hz. The y axis has been inverted to emphasize the similarities
between I and y.

4.1. Speed control and torque control

4.1.1. Comparison between PIV and global measures in speed control. As already stated in
the previous section, speed-control turbulent flows are statistically steady and display a large
hysteresis cycle in the (}/, 9) plane, composed of three continuous branches separated by a
forbidden zone—a range of y values—where no steady state is reached. This zone is represented
by a hatched region in figure 5. It is also possible to visualize the hysteresis cycle using the
mean angular momentum / as a response to the asymmetric field 6. Figure 5 highlights the
similarities between such cycles: I and y seeming almost proportional to each other, the hysteresis
cycle plotted with I being only weakly dependent on the impeller rotation frequency f.

We can evaluate such a similarity by plotting I as a function of y. Figure 6 confirms an
affine relation between these quantities: I = ay + b, witha = 3.6 + 0.1 and b = 0.037 + 0.01.
The offset observed at I = 0 is interpreted as a residual mechanical asymmetry which is not
accounted for in the calibrations. This relation is actually valid for both directions of rotation of
the discs at high Reynolds numbers. This simple link between PIV and mechanical
measurements is very useful considering the time required for PIV data processing compared
to mechanical measurements, and the limited duration of PIV experiments. This link also
indicates that the results of [12] can be extended to torque measurements.

4.1.2. Corresponding torque experiments. In torque control experiments, the lower and upper
torques C, and C, (and therefore y) are imposed while the speed of the impellers f and f; is free

to evolve. The actual values of C, and C, (and, therefore, of y) are unknown before a calibration

assessing the friction torques and the sensor bias is performed. First, torque control experiments
have been conducted for values of y corresponding to the speed control steady states. For two

values of , corresponding to & = 0 (s) and @ = 0 (b,), the velocity maps are extremely similar

10
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Figure 6. Mean reduced angular momentum / as a function of the torque asymmetry y
in speed control. Red circles: experiments are performed in the rotation direction
described in figure 1, and leave gaps between the central and extremal values. For this
particular rotation direction, the y-axis is reversed. Values of I in the gap can be
evaluated by computing the same relation in the other rotation direction (teal diamonds)
for which the y-axis is not reversed. Both senses exhibit a very similar, affine relation.

(see figure 7): the minor residual differences are attributed to uncertainties on the exact values of
y and @ for both controls.

The 6, y steady states produced in torque control (see figure 11 for a superposition) are
very well superposed with their speed control counterpart, but the mean impeller speed of the

steady (b, ) and (b,) states is lower than in the (s) branch. However, since the Reynolds number

dependence of the shape of the y, 8 diagram is slow for this Reynolds number range, we will
suppose that, out of the ‘forbidden zone’, both controls yield steady states spanning the same

‘master’ (y, 9) curve. Dimensional analysis based on the difference of mean torques C observed
in speed control provides an estimation of this speed ratio, yielding:

£, [C
W20 34 = 1.84. (8)
) C)

The experimental ratio f(s) /f(b) for torque control experiments is 1.86, consistent with our

predictions.

4.1.3. Forbidden zone experiments. The main difference between torque control and speed
control resides in the ability to choose values of y corresponding to the speed control

‘forbidden’ zone. Starting from a R_ symmetric flow in the (s) branch, we can progressively
increase the value of y. First, the flow remains steady, with a slightly increased f and decreased

f,untily = 3.5 X 107 (see figure 8(a)). Then, small jumps of the speed of the impellers are
observed, as depicted in figure 8(b): on each of these events, the faster impeller suddenly slows
down. A local maximum of the slower impeller speed follows two impeller revolutions later,
after which the impellers return to their initial speeds. These jumps have a characteristic
duration of 3 s (20 impeller rotations), and thus break the statistical time invariance of the flow.
We can interpret the figure 8(b) time series as a general system remaining most of the time in an

attracting state corresponding to (s) and escaping from time to time this attractor during
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Figure 7. Mean turbulent flows v / ( 2nRf ) produced by stereoscopic PIV for a turbulent

experiment: Re ~ 250 000. From left to right, mean flow in torque control, mean flow
in speed control, and difference between the mean flows. Top: flows in the symmetric

branch () for @ ~ 0, and bottom, flows in the bifurcated branch (b, ) for @ = 0. Arrows,
poloidal velocity (vr, vz), and colours, azimuthal velocity v;. The arrow scale used for the
(s) flow is different from the one used for (b,) flows for clarity. The frequency used to

normalize v in torque control is the mean impeller speed f during the experiment. Sign
conventions imply that positive values of v, always represent a net movement towards

the observer. The measurements made at azimuth ¢, + 7 are represented in the r < 0
part of the velocity map.

excursions (named after the similar excursions of the magnetic field observed in the von
Kdrman sodium experiment [24]) towards another unknown attracting state named (i,), or
intermediate attracting state. Increasing the value of y increases the number of excursions
towards (il), until the impeller speeds f and f, are nearly periodic.

For y > 0.026, a new type of event is visible, as seen in figure 8(c): both impellers
drastically slow down, reach a minimum speed at the same time, and speed up again, the least-
forced impeller reaching afterwards a local speed maximum. Still increasing y, our experiments

reveal a multi-stability between multiple attracting states (s), (il), and a slow quasi-steady state
corresponding to (bl). This regime is clearly visible in figure 8(d) where we can observe an ( il)
event exceeding 13 s (or 75 impeller revolutions). For larger values of y (figure 8(e)), a ‘rare
event’ regime is observed, exhibiting very long periods of (bl) (up to 1-2 h) interspersed with
sudden accelerations of both impellers towards the (il) and (s) states of relatively short duration,
generally lasting from 10 to 40s. This variable duration suggests a different nature than the
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Figure 8. Time series of torque control experiments for various values of y. Dark teal
line, bottom impeller. Orange line, top impeller. Left panels, 600 s of experimental data.
Right panels, 20 s zoom on characteristic events (when such events occur) delimited by

the dotted line on the left panels. (a), steady experiment corresponding to (s) for
y=—6.1 x 107 (b), small excursions observed for y = 0.014; (c), threshold of big
excursions for y = 0.026; (d), multi-stable experiment for y = 0.045; (e), rare events for
y = 0.054; (f), steady (b) experiment for y = 0.059.

excursions from (s) to (b,) which always lasted the same amount of time. Eventually, for y

values corresponding to the speed control (bl) steady states, steadiness is restored, as already
stated in section 4.1.2.

4.2. The quasi-steady states

4.2.1. PIV characterization. 'The velocity maps corresponding to the steady ( ) and (b) states
have already been described in figure 7. However, the nature of the ( ) mean velocity field is

unknown, and the quasi-steady mean (s) and (b, ) velocity fields might differ from their steady

counterparts. Hence, conditional mean fields have been computed using post-synchronized PIV
and mechanical measures, for an experiment with y = 0.028 (between figure 8(c) and (d)). The

averaging condition is based on the 1 Hz filtered signal of the reduced speed asymmetry, 0 (t),
using a kernel-smoothing density estimation. In such regions, the probability density function
(pdf) of 6 (t) displays multiple peaks separated by local minima defining the & boundaries of the
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Figure 9. Top left: pdf of the filtered signal of 6 (t) using a kernel-smoothing density
estimate, for a y = 0.028 experiment of average Reynolds number Re ~ 400 000. The
local minima define boundaries of € ranges identified with the quasi-steady states (bl),

(i1) and (s), used for conditional averaging of velocity fields. Top right: conditional
average flow corresponding to the (s) quasi-steady state. Bottom left: conditional

average velocity field corresponding to (i,). Bottom right, conditional average (bl)
velocity. Following the decision made in figure 7, the scale used for the arrows
corresponding to the (bl) velocity map is smaller than those used for both (i1) and (s)
The conventions used for the sign of r and the choice of colours for v, are explained in
figure 7.

(s), (il) and (b]) used for conditional averaging (see figure 9 for an example). Surprisingly,
while y is manifestly positive, the two peaks corresponding to (il) are both located in 6 < 0
regionsg(il) peaking around 8 = — 0.085 and (bl) near 6 = —0.235—and thus tend to decrease
the average, experimental value of  in the forbidden region. Such diminution of the average ¢
feels however natural if we consider our transition from pure (s) to pure (bl) in torque control to

be a continuous process: connecting the branches of figure 5 in such a way necessarily requires
to decrease € while increasing y.
Following these conventions, it is possible to extract the three conditional flows

corresponding to the quasi-steady states. The (s) state (figure 9, top right) presents two
circulation cells but breaks R symmetry with a larger lower circulation cell: this velocity map
is very similar to the steady states observed for small € in the (+) rotation sense of [12]. The (bl)
conditional flow bears similarities to the (bl) steady flow described in figure 7: the bottom

impeller generates a single pumping cell, drawing the fluid at low r to eject it at larger values of
r. However, the impeller is unable to impose a global rotation of the whole fluid volume: for

14
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Figure 10. Comparison between the synthetic intermediate mean velocity field v’ (left)
defined as a linear combination of the conditional average fields v, and v, of a multi-
stable experiment minimizing the distance with the intermediate velocity field v, and the
actual intermediate average velocity v, (centre). The right panel plots ' — v and shows a
non-negligible residual difference, in particular for v,. Same graphic conventions as in

figures 7 and 9.

low r values, the fluid seems to rotate in the inverse direction corresponding to the least-forced
impeller. The intermediate (il) conditional average flow is peculiar: whereas all the fluid is

pumped—for y > 0 by the lower impeller, the azimuthal flow exhibits two rotation cells
separated by a V shaped shear layer. It is therefore tempting to consider such a flow to be a

simple mix between the (s) and the (b,) conditional flows, (i,) only resulting from an
accumulation of transitions between (i) and (b, ). Hence, figure 10 compares the PIV average

velocity field v from the intermediate state to the synthetic field ¥’ computed from a linear
combination of v, and v, and minimizing the distance D to the experimental conditional mean
field:

D=

v —v|=min,, L (av, + By, = v,) - (av, + By, — v,) rdrdz. ©)
Figure 10 shows that the synthetic field v’ can reproduce some of the features of the
intermediate velocity field, but not all of them: a significant difference in the shape of the

azimuthal velocity (especially at high r and z) can be observed. Minor differences in the
poloidal velocity can also be found, the synthetic flow producing a higher vertical average flow

than its ‘true’ counterpart. Thus, the (i) quasi-steady state is new and distinct from (s) and (b).

4.2.2. Position on the hysteresis cycle. The local maxima of the distribution of @
corresponding to (s), (z) and (b) for unsteady experiments can be superposed to the y, 8
diagram of figure 5 to evaluate the relative positions of the steady (s) and (b) branches, their

unsteady counterpart, and the intermediate branches. Figure 11 shows a synthetic plot of our
dynamics: the forbidden zone in speed control is associated with negative slopes of the average
value of @ in torque control, which is itself associated with the emergence of the multiple peaks

of the pdf of 6. In addition, the (b) and (s) unsteady branches (respectively blue and red
triangles) behave like extensions of the steady (b) and (s) branches, validating our interpretation

of these maxima. Whereas 6,, the abscissa of the (b) local maximum, seems to restore positive
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Figure 11. Full diagram of the steady and unsteady experiments in speed and torque
control on the 8, y plane. Teal stars, reminder of the speed control hysteresis cycle.
Grey circles, mean value of @ for all torque control experiments. Red (pointing

upwards) triangles, local maximum of € corresponding to (s) in unsteady torque control
experiments. Green diamonds, intermediate (i ) local maximum of #. Blue (pointing

downwards) triangles, (b) local maxima. The hatched areas represent the speed control
forbidden zone.

slopes d0,/dy, the corresponding values for (i ) and (to a lesser extent) (s) still exhibit negative
slopes. Finally, the location of the intermediate branches is still unclear and seems to span from
an unknown location near the steady (s) centre branch to the border of the (b) steady branch.

4.3. Dynamics between quasi-steady states

4.3.1. Excursion and transition patterns. Even though the flow is in a turbulent regime, with
many degrees of freedom, the transitions in between states observed in figure 8 are reminiscent
of low-dimensional dynamics. To verify this assertion, we may extract mean transition and
excursion profiles from our measurements. To do so, the temporal recordings of the impeller
speeds have been filtered to 1 Hz. An algorithm is then used to detect either local extrema or
inflection points of the most-forced impeller to respectively detect excursions, as seen in
figures 8(b) and (c), and transitions, as seen in figures 8(d) and (e). The times 7, of these events
can be used to superpose all the events from both impellers (see figure 12 in order to verify the
quality of such a superposition), and to build an average transition profile (represented by the
thick black lines of figure 12). From this study, two conclusions can be deduced: the general
transition and excursion scenario is always the same, the superposition of all events being
particularly effective for the transitions, with a very representative average transition profile
defining a preferred ‘path’ characteristic of low dimensional systems subject to noise. This
assumption holds for the excursions, where a larger dispersion might be observed on the

superposed signals. Finally, we notice that the (s) - (bz) mean transition profile is very

different from the (b,) — (s) profile: the transition paths from (s) — (b,) and (b,) — (s) are

not symmetric to each other.

This situation is therefore very different from magnetic field reversals that have been
observed in similar conditions (comparable Reynolds and ), using a swirling flow of liquid
metal under asymmetric, @ # 0 forcing conditions [24]. In such magnetic cases, the transition
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Figure 12. The four types of events observed in our experiment. Left panels, most-
forced impeller temporal recording (therefore, top impeller for y > 0 and bottom
impeller for y < 0), and right, least-forced impeller. From top to bottom: transitions

from (s) to (b,) (thin lines) for y = —0.089, and mean profile of the 195 events (thick
black line); transitions from (b,) to () (thin lines), and mean profile (thick black line)
for the same experiment; big excursions between (s), (iz) and (bz) for a y = —0.067,

and mean profile for the 63 events; small excursions between (s) and (i) for an

experiment at y = 0.019, with 79 reported events. Only 25 of the events, selected at
random, have been plotted.

path from positive to negative magnetic field value are symmetric with the transition path from
negative to positive, a behaviour that can be reproduced by a model of two coupled stochastic
equations [25]. Therefore, even if our hydrodynamical experiment shows signatures of low
dimensional systems, it may be necessary to include more than two coupled stochastic
equations to model its behaviour.

4.3.2. Distribution of residence time. Experiments with rare ‘bursts’ of impeller speeds
(figure 8(e)) reveal large variations of the residence times in the slow state between bursts. For
such experiments, increasing y is equivalent to increase the characteristic time between events,
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Figure 13. Survival distribution (see (10)) of the residence time (expressed as multiples
of mean impeller rotation time) in the slow state (bl) for unsteady experiments with

approximately 100 ‘rare’ events. Blue circles, experimental data; red dashed line, simple
exponential fit; solid line, exponential fit with two characteristic times. Left, experiment
for y = —0.094. Right, experiment for y = 0.049.

for it naturally diverges at y values corresponding to the steady (b) branch. However, the

distribution of times around this characteristic value can indicate the origin of such bursts:
reversals of the flow with an exponential distribution have been outlined for a similar von
Karman experiment [19], allowing an interpretation of this multi-stability once again in terms of
stochastic processes, more specifically Kramers escape time processes [26]. The quasi-steady
states observed in [19] can thus be seen as finite-size potential wells between which a particle
with noise may alternatively jump. A particularly convenient way of characterizing exponential
distributions relies on survival functions, defined as inverse cumulative functions:

Surv(r) =1 — /tp(t’)dt’, (10)
0

where p is the pdf of the residence time. The semi-logarithmic plot of survival functions
therefore shows a straight line for any exponential distribution and does not require the use of
bins. Figure 13 displays the two typical residence time distributions observed in our
experiments: while the first one fits the model almost perfectly, the other one—generally

observed at asymmetries very close to the steady branch (b)—exhibits another distribution with

two characteristic times, a ‘short’ time and a ‘long’ time. Such distributions are surprising,
knowing that all transitions have the same characteristic shape, and should therefore not make
any distinction between ‘short-life’ and ‘long-life’ transitions.

5. Discussion

This article describes the influence of the Reynolds number and the control nature on a
hysteresis cycle originating from a global bifurcation of statistically steady states in a turbulent
flow, as previously studied in [11]. Both of these ‘control parameters’ affect the hysteresis
cycle, but in two different manners.

5.1. Influence of the Reynolds number on the hysteresis cycle

Section 3 examines the influence, in speed control (described in [11]), of the shape of the
hysteresis cycle with the Reynolds number. Whereas the velocity measurements performed in
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[10] indicated that the transition to turbulence was attained for Re = 3300, the appearance of
the memory effect (or hysteresis) in the experiment arises for higher Reynolds numbers,
5000 < Re < 6700. Such an effect results from two processes: the appearance of local
discontinuities of the reduced torque difference Ay, creating five continuous branches of steady
states which progressively grow until they reach € = 0, a necessary condition to be visible on
the figure of [10].

The main characteristics of the cycle (width and height), evaluated at various Reynolds

numbers, reveal power law dependence in ‘1 /log(Re ) — 1 /log(Rec)‘ both for Ay and A@
reminiscent of the susceptibility divergence observed in [12] in the other direction of rotation,
(+) also reminiscent of critical phenomena. However, the thresholds in Ay and A6 being

different, it is difficult to link the appearance of the hysteresis cycle with only one bifurcation
(or transition).

5.2. Influence of the control nature on the steady states

Section 4 reports the effect of the nature of the forcing on the hysteresis cycle for high Reynolds
numbers. The forcing nature has only limited effect on control parameters accessible to both
speed and torque-imposed experiments: both controls exhibit the same steady states with very
similar average velocity fields. The main difference between the two controls rather resides in
the set of accessible experimental conditions: torque control experiments may be performed in a
speed control ‘forbidden zone’. Such torque control experiments are no longer steady, revealing
multiple peaks of the conjugate asymmetry response—6—associated with three quasi-steady
states described using S-PIV. Two of them have been defined by continuity of the speed-control

steady states, (b) and (), but a third quasi-steady state—{(i }—emerges, is able to last up to 100

impeller rotations, and does not correspond to a linear combination of (b) and (s) steady states.

Preliminary experiments using laser Doppler anemometry are currently being conducted to
question the origin of such unsteady regimes. Inertial-scale sensitivity to the forcing type could
indeed break Kolmogorov’s hypothesis of universality of the inertial range.

Additionally, the dynamics between these steady states is akin to low-dimensional models
of stochastic processes, with excursions and transition between quasi-steady states following
reproducible, well-defined paths which can be viewed as extremal trajectories in an unknown
potential energy surface. Furthermore, experiments conducted in the ‘rare event’ region reveal
exponential distribution of residence time in the slow (b) state: transitions from (b) to (i ) and (s)

therefore result from a random process with no memory, as would a simple Kramers escape
time process [26].

5.2.1. A very simple model of the flow. It is tempting to draw an analogy between the von
Karmén flow and an electrical system. Our experiment is subject to a permanent flux of kinetic
angular momentum, which is injected at a rate C,—because of the kinetic momentum theorem
—by the bottom impeller and transported by the flow to the top impeller where it is absorbed at
a rate C, [27]. The difference C, — C, ‘leaks’ through the side wall boundary layer. Kinetic
angular momentum cannot be dissipated and cannot diverge in the bulk of the flow: hence, this
quantity behaves like the total number of charges ¢ in an electrical circuit.
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Figure 14. Sketch of an electronic circuit, analogue of the von Kdrméan flow.

In contrast, the kinetic energy, the usual hydrodynamical quantity, is not conserved in our
experiment. The von Karman flow dissipates mechanical energy very efficiently, for it is
introduced at a rate P = 2x (C1 S+ szz) by the motors. In this picture, the z-component of the
rotation vector of the impellers, 2zf, and —2xf,, serves as analogue of the electrical potential.
The cylinder wall, which has a 0 rotation rate, plays the role of the electrical ground.

In torque control, our experiment can therefore be modelled as an electrical circuit which
can develop electrical potential instability for forced currents /; and I, (the equivalents of the
applied torques C, and C,) through two of its poles (the third one being tied to ground). We have
presented in figure 14 a sketch of this circuit. The left pole (the analogue of the bottom impeller)
permanently injects a current /,, which is extracted at a rate /, at the right pole (or, equivalently,
the top impeller). Two capacitors of capacities ¢, and ¢, represent the ability of the fluid next to
the impellers to store angular momentum and allow the rotation rates of the impellers to
increase. The two resistors of resistances 7, and r, represent the capacity of the flow to transport
angular momentum away from turbine 1 and towards turbine 2. Finally, a last resistor 7

represents the leak of angular momentum to the cylinder wall.
In the permanent regime, I, = I, — I, plays the role of the torque difference provided by the

impellers on the flow, Cy. Close to the permanent regime with y = 0, V, = (V1 + V2) / 2 can be

seen as the difference of impeller speeds f&. The actual ‘characteristic curve’ of all the dipoles
in our model is obviously not known and is at the core of the understanding of the problem of
fluid mechanics. In the following, we will only perform a small-signal analysis of the circuit in
which we will only consider small perturbations of the flow around a working point (we assume
that at least one working point exists), for which we will consider the responses to be linear. We
will denote the small-signal quantities as the lower-case equivalent of their permanent regime
counterparts. We will consider perturbations verifying i, = 0 and i, = O: the external sources
are not affected by our perturbations (in our hydrodynamical experiment, this corresponds to a
perfect torque regulation).
Decomposing the perturbations in the Fourier space at pulsation @, one obtains:

v, = (1 +j}1cla))v1, (1)
v, = (1 +j}5c2w) Vs, (12)
v/ih+ W

(13)

Vv, = .
U+ U+ Un
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The system is overdetermined: it can nevertheless be solved w satisfies the dispersion relation:
1 1 1 1 1
—+—+—= + . (14)
r A ”1(1 +j;;cla)) rz(l +j€cza))

We will consider the case of low-frequency perturbations, which verify ‘rlcla)‘ < 1 and
|,c,w| < 1. The first-order solution of equation (14) then reads:
J

w=————.
’"l(cl + Cz)

(15)

Infinitesimal perturbations of v, will therefore behave as:

t

vy (t) x exp( — 7) (16)
i +¢)

Such perturbations are stable unless the leak resistance 7, is negative. This condition can be

verified in a differential sense if 0V, /0l is negative around the chosen working state. Following

our analogy, an equivalent condition in our turbulent flow is:

X = 00/dy < 0, (17)

which is the case on average and in the intermediate branch (z) Hence, perturbations grow until
nonlinear terms of the equation become significant, leading to ‘spontaneous’ jumps in the
hydrodynamical experiment. The symmetry of this perturbation implies that v; and v, are of the
same sign: thus, the equivalent mechanical perturbation will be antisymmetric with a possible
delay between impellers depending on the relative values of r,c, and r,c,. This model is certainly
too simplified, since it cannot take into account the inherent turbulent out-of-equilibrium noise,
but it still captures several key features of the actual experiment.

5.2.2. Link with other negative differential responses. In the previous section, our results
assumed that negative differential responses existed in electrical components around a working
point (VA, I,). Such components exist: tunnel diodes [28, 29] exhibit negative differential
resistances. This phenomenon is also observed in complex fluids, for example in
Taylor—Couette geometries [30, 31] where the differential response to shear can become
negative. All these systems can work under conjugate conditions:

e von Kédrméan flows can impose impeller speed asymmetry @ or shaft torque y.
e clectrical dipoles can be examined under imposed voltage u or current i.

e Taylor—Couette flows can either impose cylinder speed or torque. Imposing the cylinder
speed difference Av = v, — v, is analogous to imposing the shear rate ¢ and fixing the
impeller torque constrains the shear stress 7.

Therefore, von Karmén torque control, electrical dipoles under imposed current and
Taylor—Couette experiments with constrained shear rate should yield similar results in our
description. The experiment of Bonn et al [30] and the current controlled negative differential
resistances, studied by [29], are closest to our experiment: in addition to displaying negative
differential responses of the same nature as our flow, they are ‘bulk’ experiments in which
spatial instabilities can be observed. In contrast with electrical components and our von Kérmén
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flow, neither of the two control parameters in the Taylor—Couette flow is a flux of a conserved
quantity which cannot diverge in the bulk. Hence, the electrical analogy is the most relevant.

In all cases, the product of the two controls is closely linked to the definition of the injected
power P to the experiment. For a von Karman experiment, we have:

P =2z(fC+f,C) (18)

=27fC (1 + 70). (19)

The injected power involves, in this particular case, 6y, which varies respectively as a function
of 0 in speed control, or y in torque control. Still, the shape of the hysteresis cycle is only
weakly dependent on the values of the Reynolds number in this range of experiments, and
nothing (at least theoretically) prevents us from performing experiments at fixed fC to examine
the dependence of # as a function of 6, in a modified speed control, and y, in a modified torque
control. In this case, the injected power ¥ is, up to some additive constant, defined by the
product y6. This relation is much simpler in the case of the electrical dipole, for which the
simple relation:

P = ui (20)

links the two imposed quantities. Eventually, for Taylor—Couette geometries, the initial relation
is somewhat the same as for a von Karman flow (defined at 18) but with a different final result.
It can be shown, in the case where only one cylinder is rotating, and assuming that the shear
stress does not depend on r, that:

P =2z (f.C) 21)

e [Te(r)ar, (22)

which is again the product of the ‘conjugate’ imposed quantities.

The negative differential responses of [30] are observed imposing the shear rate, and are
associated with a hysteresis cycle when the shear stress is imposed with sudden jumps of the
shear rate. In addition, the steady states near the jumps tend to display finite lifetime, as do our

experiments near the edge of the (s) and (b) branches in speed control [13]. The negative

differential zone is in this case associated with a shear banding transition. The electrical dipoles
of [29] have been predicted to display hysteresis for imposed voltage, vanishing at imposed
current: the negative differential resistances are in that case associated with unsteady filaments
of high current surrounded by low-current regions. Such filaments in a von Karmén experiment
could result in the presence of portions of the fluid rotating with a different angular speed than

the rest of the fluid. Bifurcated (b) quasi-steady states might show such domains, two tori of

opposite global rotation being observed in these cases. Hence, our flow and these bulk dipoles
have many common points, the main difference between them being the noise level and nature.

5.2.3. Possible link with ensemble inequivalence. Classical thermodynamics states, with
ensemble equivalence, that a system with fixed energy density—thus, described in the
microcanonical ensemble—will behave the same manner as a system at imposed temperature—
in the canonical ensemble: in particular, the set of thermodynamically stable states are the same
in both ensembles. This result assumes that the (two-particle) potential interaction possesses a
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short-range property, decreasing at least with a power law of exponent greater than the system
dimensionality. Long-range interacting systems, in contrast, do not respect this condition and
lead to violation of statistical ensemble equivalence [32, 33]. This section will first explain the
origin of such a difference, to evaluate afterwards the relevance of the analogy for a von
Karmén turbulent flow.

In thermodynamics, the condition of positivity of the specific heat is linked to a general
property of the entropy:

cv=(§—;), (23)
\4

1 2(0%)

—=-71=|. (24)
c, de” ),

The entropy s is generally considered an increasing, concave function of the internal energy e,
imposing a positive specific heat. In canonical ensemble ¢, is also linked to the fluctuations of
the average energy density, namely:

¢, = (&) = (e) 0. (25)

Still, convex intruders in the entropy—energy relation might exist. Assuming additivity of the
entropy S and internal energy U, such intruders spontaneously generate first-order phase
transitions, implying that specific heats remain positive in both ensembles. Long-range
interacting systems, in contrast, can sustain negative specific heats, providing distinct sets of
stable equilibrium positions in the two ensembles. Interestingly, the very definition of ¢, linking
in a partial derivative e, fixed in microcanonical ensemble, and 7, fixed in canonical ensemble,
is once again a (possibly negative) differential response.

Changing the nature of the command in our von Karman experiment could represent, in
this picture, an ensemble switching between micro-canonical and canonical ensembles, the
former being played by torque control, and the latter by speed control, assuming that the
underlying physics of our von Kidrméan flow involves some sort of long-range interactions.
Evidence supporting this assumption can be found in two-dimensional [34] and more recently
in three dimensional axisymmetric flows [35]. A major difference limits, though, such a
comparison: there is currently no variational formulation of turbulence from which extremal
quantities could be derived. This absence probably originates from the out-of-equilibrium
nature of turbulence, which is another aspect not accounted for in this analogy: the multi-
stability observed inside our hysteresis cycle cannot be accounted for in an equilibrium
description.

5.2.4. Comparison with turbulent Rayleigh—Bénard convection. The duality between controls,
observed here in a turbulent flow, might also be present in another turbulent classical
experiment, namely Rayleigh-Bénard convection. In the turbulent regime, Rayleigh—Bénard
convection exhibits hysteresis of the response—the Nusselt number, quantifying the importance
of convective heat flux through the cell—for very large values of the control parameter—the
Rayleigh number, expressing the non-dimensional temperature difference between the
boundary plates [36]. Reversals and cessation of the turbulent large-scale wind have already
been observed both in two and three-dimensional turbulent convection experiments and
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numerical simulations (see, for example, [37, 38] for details). They seem to be good candidates
for counterparts of the hysteretic states, in the same manner as our up and down transitions are

counterparts of the steady () and (b) hysteretic states in the von Kdrmén flow. However, such

events have, according to the existing literature, almost no impact on the Nusselt number for a
fixed Rayleigh number; the literature rather attributes the difference between the branches to
changes in the nature of the boundary layer [39]. In addition, all these Rayleigh-Bénard
experiments have been conducted with the same boundary conditions: smooth, perfectly
conducting plates (imposed Rayleigh number). Switching from ‘speed’ to ‘torque’ control in
Rayleigh—-Bénard experiments would require imposing the conjugate quantity of the
temperature gradient AT of the cell with respect to the injected power £, in other words an
imposed entropy flux injected at the boundary plates. Rayleigh—-Bénard convection has been
studied for imposed heat-flux, or Nusselt number, an approximation of imposed entropy flux,
but experimental results are scarce in this domain: approaching experiments with poorly
conducting plates [40] show neither boundary-layer multistability nor difference with well-
conducting copper plates. Our results call for more experiments in this domain, especially since
rough boundary conditions have been reported to promote multi-stability of the boundary layer
affecting the Nusselt number in recent experiments [41].

6. Conclusion

In this article, we have studied the continuous evolution of the response y to an imposed
symmetry-breaking field € with the Reynolds number, below and above the transition to
turbulence. The particular shape of the impellers progressively creates torque discontinuities
growing to become progressively hysteretic. Interestingly, up to five branches might coexist,
some of which disappear for Reynolds numbers above the critical Reynolds number of the onset
of turbulence (identified as the onset of a Kolmogorov spectrum). The main characteristics of
the cycles (width and height) respectively decrease and increase monotonically with Re with
possible power-law behaviour.

In addition, we have discussed the influence of the nature of the forcing on the hysteresis
cycle for high Reynolds numbers: in contrast with speed control, torque control experiments
connect the three hysteretic branches continuously, displaying negative differential responses
00/0y, closely linked to a multi-stability emerging in the experiment, as evidenced by an
electrical toy-model of the flow. This dynamics can be seen as a time counterpart of the spatial
heterogeneities observed in other out-of-equilibrium systems where the noise has thermal
origins (shear banding fluids and bulk solid state electrical components), which also display
negative differential responses.

Ensemble inequivalence results may explain why the negative responses observed in our
flow can be sustained, assuming that the change of the control is equivalent to switching
between statistical ensembles. In this framework, microcanonical systems may exhibit
intermittent dynamics [42] or spatial heterogeneities [43].

Two approaches are possible to compare our results to other turbulent flows. First, it is
possible to find other turbulent flows where conjugate controls can be managed. A direct
comparison of our results with turbulent Rayleigh—Bénard convection—where hysteresis
between multiple turbulent states has been observed at large Rayleigh numbers—would require
experiments at imposed Nusselt number. To the best of our knowledge, such experiments are
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uncommon [40] and have not evidenced any type of multi-stability. Such multi-stability has
however been observed at very high Rayleigh numbers for rough boundary plates [41]; it is
obviously very difficult to express the difference between rough and smooth plates in terms of
our ‘conjugate’ forcing framework. Pipe flows also allow conjugate controls: experiments at
imposed flow-rate have been conducted, and have not reported [44] any difference with the
classical case of pressure control.

Another way to compare our results with other, more loosely connected turbulent flows,
would be to investigate the small scale evidence of the large-scale (and forcing) fluctuations in
the experiment. These fluctuations are already known to challenge the ‘universal’ nature of the
Kolmogorov constants in the inertial range [45]. More specifically, small-scale signatures of our
multi-stability may be found both in our experiment and other experiments displaying less
obvious forms of hysteresis and multi-stability for varying boundary conditions. This could be
the case in Rayleigh—Bénard convection (see [41]) or also for flows past hydrofoils where the
hysteresis cycle of stall vanishes, being replaced by a multi-stable region, for thicker hydrofoils
[46].
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