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Abstract

Codends are the rear parts of trawls, which collect the catch and where most

of the selectivity process occurs. Selectivity is the process by which the large

fish are retained while the small ones are released. The codends applied in

many fisheries often consist of only one type of mesh. Therefore it is reason-

able to consider these codends as being axisymmetric. Their shapes depend

mainly on the volume of catch, on the shape of meshes (diamond, square,

hexagonal) and on the number of meshes along and around the codend. The

shape of the codends is of prime importance in order to understand the se-

lectivity process. This paper presents a model of deformation of codends

made up of hexagonal meshes. Two types of hexagonal meshes have been

investigated: the T0 codend where two sides of the hexagons are in axial

planes and the T90 codend where two sides are perpendicular to the codend

axis. The forces involved in this model are twine tension and catch pressure.

A Newton-Raphson scheme has been used to calculate the equilibrium.
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1. Introduction1

Fishing operations target the largest sized fish mostly. The catch of-2

ten contains considerable amounts of undersized fish or non-targeted species.3

This non-target catch could reach one third of the total marine harvest world-4

wide [1].5

In order to reduce this wasteful bycatch, studies of trawl selectivity have6

been carried out at sea. But due to the large number of uncontrollable param-7

eters, numerous trials have to be undertaken in order to reach good quality8

statistics. This leads to expensive studies which are often inconclusive.9

To overcome this uncertainty, it is possible to use predictive models of co-10

dend selectivity. Such models (e.g. PRESEMO [5], [4]) have been developed11

in the last few years and are able to simulate codend selectivity quickly and12

simply. Even though these tools are based on approximations, their results13

are often reliable. However, it is important to know the fish behaviour and14

the mechanical codend behaviour.15

To understand better the codend behaviour, it is essential to gather data16

on the mesh openess along the codend when the catch builds up. This open-17

ing also depends on the design of the codend, i.e. the mesh type (diamond,18

square, hexagonal), the number of meshes around and along, the size of19

meshes. Two numerical models developed in recent years are already able20

to assess codend geometries: O’Neill [8] derives differential equations that21

govern the geometry of axisymmetric codends for a range of different mesh22

shapes, and Priour [11] [13] has developed a more general three-dimensional23

finite element method model of netting deformation. Both of these models24

can take into account the elasticity and flexural rigidity of the twines, the25
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mesh shapes (diamond, square, hexagonal), and the hydrodynamic forces26

that act on the netting material and catch. Their numerical simulations27

were compared by ONeill and Priour [10] and were found to be very similar.28

In a previous paper [14], an axisymmetric model of the codend made up29

of diamond, square or rectangular meshes has been developed by looking30

at the force balance on the twine elements on a meridian along the codend31

length. The advantage of this model over those above is that it is easy to32

implement and its solution does not depend on the use of licensed software.33

The diamond mesh codend is the codend type which has traditionally34

been applied in many trawl fisheries. This type of codend could be modelled35

by numerical models such as those previously described. In recent decades36

there has been a tendency to use netting with thicker twine [6]. In this case37

the use of an ideal diamond shape model is not perfect due to the size of38

the knots. As mentioned by Sistiaga et al. [15], a hexagonal mesh model is39

preferable compared to a diamond mesh model to describe the actual shape40

of the meshes in the codends (Figure 2). This means the knots are sides of41

the hexagon.42

In this present paper this previous model [14], has been extended to43

hexagonal meshes. Two types of hexagonal meshes are investigated: the T044

type, where twines are in axial planes (the angle between this axial plane and45

the axis of the codend is 0◦) and the T90 type where twines are in planes46

perpendicular to the codend axis (the angle between this plane and the axis47

of the codend is 90◦ Figure 1). Although in most fisheries the codends are48

T0 type (the knots are in axial planes), in some cases, e.g. Baltic Sea for cod49

fishery [2], the codends of T90 type are legal (the knots are perpendicular to50
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the codend axis).51

Figure 1: The two types of hexagonal meshes investigated in the paper: the T0 at the

top where some twines are in axial planes and the T90 where some twines are in planes

perpendicular to the codend axis. The two codends are made up of the same piece of

netting (24 by 24 meshes) and the catch covers the same number of meshes (10). The

vertical line is the limit of the catch. Due to axisymmetry only one meridian is calculated

(highlighted row).

This model is supposed to represent usual netting where the knots are52

large enough to consider their size as one side of the hexagonal mesh. Obvi-53

ously the six sides of the hexagon are not necessarily equal (Figure 2).54
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Figure 2: Usual netting used at sea [16]. The meshes could be considered as hexagonal:

the knot is a side of the hexagon, as highlighted. If the codend axis is horizontal, at the

top the netting is of the T0 type, while at the bottom it is that of the T90.
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2. The T0 codend55

By assuming axisymmetry, the codend geometry can be determined by56

examining the nodes belonging to one row of twine along the codend length.57

This row is highlighted at the top of figure 1 and in figure 3. This row is58

called the meridian. The approach consists of three steps. Firstly, the initial59

position of these nodes, consistent with the boundary conditions, must be60

defined. Then, the forces acting on these nodes are calculated. Finally, using61

the Newton-Raphson method [13], the equilibrium position of these nodes is62

evaluated.63

The forces that act on the codend are the twine tensions and the hydro-64

dynamic forces. As shown by ONeill and ODonoghue [9], the hydrodynamic65

forces that act on the unblocked netting are negligible in comparison with66

the pressure forces acting on the netting where the catch blocks the meshes.67

Consequently, it is only necessary to consider the twine tensions and the68

pressure forces that act in the region of the catch.69

2.1. Nodes of the T0 codend70

The meridian is such that some nodes of this meridian are in plane XOZ,71

as shown in figure 3. The mesh i (trapeze in figure 3 ) is made up of 672

twines and 4 nodes (ia, ib, ic and id). The nodes ja, jb, jc and jd belong73

to the same mesh ring but they do not belong to the calculated meridian74

(highlighted meridian in figure 3). In figure 3 the node i − 1d belongs to75

the previous mesh (i− 1) and the node i+ 1a belongs to the following mesh76

(i+ 1). The nodes of the calculated meridian with suffix a and d (e.g. ia, id,77

i− 1d, i+ 1a) belong to the plane XOZ (their y coordinates are 0 as shown78
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Figure 3: Definition of nodes of the T0 codend.Two nodes of the mesh i belong to the

plane XOZ (ia and id) and two nodes belong to another radial plane (ib and ic). The

neighbours are ja, jb, jc and jd. The trapeze represents one mesh.

in figure 3). The nodes of the calculated meridian with suffix b and c (e.g.79

ib, ic, i − 1b, i + 1c) do not belong to the plane XOZ, they are in a radial80

plane which gives an angle θ with the plane XOZ. With81

θ =
π

nbr
(1)

where θ is the angle between the two radial planes passing by ia and ib82
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(Rad) and nbr is the number of meshes around.83

The reason is that the neighbouring nodes ja and jd belong to a radial84

plane which gives an angle 2θ with the plane XOZ. This is due to axisym-85

metry. Likewise the nodes jb and jc belong to another radial plane which86

gives an angle −2θ with the plane XOZ. Due to equilibrium, the nodes ib87

and ic have to be in a radial plane just between the radial planes of ja and88

ia.89

From this definition of node positions, we are able to say:90

ia = (iax, 0, iar)

With iax the position of ia along X axis and iar its radial position.91

ib = (ibx, ibr sin θ, ibr cos θ)
92

ic = (icx, icr sin θ, icr cos θ)
93

id = (idx, 0, idr)

Where suffix x refers to the position along the X axis and suffix r to the94

radial position.95

The position of the neighbouring nodes is:96

ja = (iax, iar sin 2θ, iar cos 2θ)
97

jb = (ibx,−ibr sin θ, ibr cos θ)
98

jc = (icx,−icr sin θ, icr cos θ)
99

jd = (idx, idr sin 2θ, idr cos 2θ)

It can be seen from the previous equations that the position of nodes100

on the meridian and of the neighbours depend only on the axial and radial101

positions of the nodes of the meridian (such as iax, iar, ibx, ibr).102
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2.2. Twines of the T0 codend103

The twines can be defined from the node positions. A twine links 2 nodes104

and it is defined as a vector. 3 twine vectors emerge from each node of the105

meridian of mesh i: one in a plane along the axis, one going up and one going106

down. For example for node ib the twine between ib and ic is in the plane107

along the axis and it is called Aib (figure 3), A standing for axial. The twine108

between ib and ia is Dib, with D standing for downward. Finally the twine109

between ib and ja is Uib, with U standing for upward.110

With this definition, the vectors along the twines which emerge from node111

ia are:112

Aia =


i− 1dx − iax

0

i− 1dr − iar

Uia =


ibx − iax
ibr sin θ

ibr cos θ − iar

Dia =


ibx − iax
−ibr sin θ

ibr cos θ − iar

113

The vectors along the twines which emerge from node ib are:114

Aib =


icx − ibx

icr sin θ − ibr sin θ

icr cos θ − ibr cos θ

 Uib =


iax − ibx

iar sin 2θ − ibr sin θ

iar cos 2θ − ibr cos θ

115

Dib =


iax − ibx
−ibr sin θ

iar − ibr cos θ

116

The vectors along the twines which emerge from node ic are:117

Aic =


ibx − icx

ibr sin θ − icr sin θ

ibr cos θ − icr cos θ

 Uic =


idx − icx

idr sin 2θ − icr sin θ

idr cos 2θ − icr cos θ

118
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Dic =


idx − icx
−icr sin θ

idr − icr cos θ

119

The vectors along the twines which emerge from node id are:120

Aid =


i+ 1ax − idx

0

i+ 1ar − idr

Uid =


icx − idx
icr sin θ

icr cos θ − idr

Did =


icx − idx
−icr sin θ

icr cos θ − idr

121

Some of these twine vectors are equal:122

Uia = −Dib
123

Aib = −Aic
124

Dic = −Uid

2.3. Twine tensions on the T0 codend125

With the hypothesis of elastic twines, the force vector coming from twine126

tension for the twine vector Aia is127

TAia =
|Aia| − l0

l0
EA

Aia

|Aia|
with l0 (m) the un-stretched length of the twine and EA (N) the rigidity128

of the twine. When the twine is compressed, the rigidity is null in order to129

take into account the very low resistance of the twine to the compression.130

The other twine tensions have similar expression.131

The force on node ia coming from the twine tension is132

Fia = TAia + TUia + TDia (2)

From the other 3 nodes (ib, ic and id) of the mesh i, the forces have133

similar expression.134
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2.4. Catch pressure135

The hydrodynamic forces that act on the catch exert a pressure force on136

the codend netting that can be described by [13]137

P =
1

2
ρCdV

2 (3)

where P is the pressure due to the catch (N/m2), ρ is the water density138

(1025kg/m3), Cd is the drag coefficient on the catch (Cd = 1.4 [13]), and V139

is the towing speed (m/s).140

For the T0 codend with a catch which covers the nodes ia and ib, the141

surface involved by the pressure of the catch for these two nodes is defined142

by the trapeze in figure 4. This trapeze is in fact a part of a cone. This143

surface is limited along the X axis by the nodes ia and ib and it is limited144

around by an angle of 2π
nbr

or 2θ as defined in equation 1. This part of the145

cone is limited by 2 circles of radius iar and ibr. This means that the axial146

surface of this part of the cone is147

θ|ia2r − ib2r|

This part of the cone is also visible in figure 5. Due to the inclination of148

the cone the radial surface involved is149

θ(iax − ibx)(iar + ibr)

Once the axial and radial surfaces are determined, the forces on the nodes150

ia and ib due to the effect of the pressure of the catch on this part of the151

cone (cf. figures 4 and 5) are:152
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Figure 4: T0 codend. The trapeze defines the surface of netting involved by the catch for

the nodes (ia and ib).

Fax = θ|ia2r − ib2r|
P

2
(4)

153

Fbx = θ|ia2r − ib2r|
P

2
(5)

154

Far = θ(iax − ibx)(iar + ibr)
P

2
(6)

155

Fbr = θ(iax − ibx)(iar + ibr)
P

2
(7)

With156
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Figure 5: Side view of the T0 codend. The trapeze defines the surface of netting involved

by the catch for the nodes (ia and ib).

Fax (Fbx) the force on the node ia (ib) along the X axis and Far (Fbr)157

the force on the node ia (ib) along the radial. These forces are due to the158

portion of netting between nodes ia and ib. In the same way, if the catch159

covers the netting between nodes ib and ic the forces due to the pressure of160

the catch are161

Fbx = θ|ib2r − ic2r|
P

2
(8)
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Fcx = θ|ib2r − ic2r|
P

2
(9)

162

Fbr = θ(ibx − icx)(ibr + icr)
P

2
(10)

163

Fcr = θ(ibx − icx)(ibr + icr)
P

2
(11)

2.5. Positions and forces in the T0 codend164

It has been seen previously that the unknowns of these equations are only165

iax, iar, ibx, ibr, icx, icr, idx and idr for the mesh i. This means that the166

total unknowns for the whole meridian are167

X = (0dx, 0dr, 1ax, 1ar, ..., iax, iar, ibx, ibr, icx, icr, idx, idr, ..., ndx, ndr)168

This vector of polar positions begins by the node 0d which begins mesh169

1 and it is followed by the four nodes of mesh 1 (1a, 1b, 1c and 1d) and170

finishes with the four nodes of the last mesh n (na, nb, nc and nd). In order171

to use the Newton-Raphson method to find the equilibrium position of the172

meridian, the force vector F must follow the same order:173
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F =



F0dx

F0dr

F1ax

F1ar

.

F iax

Fiar

Fibx

Fibr

Ficx

Ficr

Fidx

Fidr

.

Fndx

Fndr


This means that for each node the polar components of force (Fiax and174

Fiar for node i) have to be calculated from Cartesian components (Fiax,175

Fiay and Fiaz of equation 2) and from the forces already known (equations176

4 to 11).177

For nodes of type a and d the polar components of forces are178

Fiax = Fiax
179

Fiar = Fiaz
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180

Fidx = Fidx
181

Fidr = Fidz

because these nodes are in the plane X0Z and consequently the z coor-182

dinate is also the r coordinate.183

For the nodes of type b and c the polar components of forces are184

Fibx = Fibx
185

Fibr = sin θF iby + cos θF ibz
186

Ficx = Ficx
187

Ficr = sin θF icy + cos θF icz

because these nodes are in a radial plane which gives an angle θ with the188

plane X0Z.189

With these conditions the force vector is190
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F =



F0dx

F0dz

F1ax

F1az

.

F iax

Fiaz

Fibx

sin θF iby + cos θF ibz

Ficx

sin θF icy + cos θF icz

Fidx

Fidz

.

Fndx

Fndz


2.6. Boundary conditions of the T0 codend191

The boundary conditions of the model have to be determined. They are192

the entrance and closure of the codend. At the entrance the radius is given193

and fixed and at the closure the radius must be 0m. This means that for the194

vector position of the nodes, X is such that195

0dx = 0
196

0dr = r0
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197

ndr = 0

The node 0d refers to the entrance and the node nd refers to the closure.198

r0 is the entrance radius.199

2.7. Newton-Raphson solver200

The force components are added at each node in the vector F and the201

Newton-Raphson scheme is used to assess the equilibrium position. This202

method is an iterative method where, for each iteration k, the displacement203

of the nodes hk is calculated by the equation204

hk =
F(Xk)

−F ′(Xk)

where hk is the displacement vector of the nodes (m), F(Xk) is the force205

vector on the nodes (N), and −F ′(Xk) is the stiffness matrix calculated as206

the derivative of F relative to X(N/m).207

The position at the next iteration Xk+1 is then calculated by Xk+1 =208

Xk +hk. This process is repeated until the residual force, F(X), is less than209

a predefined amount.210

It is necessary to determine an initial position of the nodes along the211

codend, which is assumed at this point to be a straight horizontal line aligned212

at the entrance radius except for the last node which is on the axis of the213

codend closure. Thus, the initial shape of the codend is a cylinder.214

2.8. Results215

Figure 1 at the top is the result of this model. The conditions of this216

calculation are217
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• n = 24, number of meshes along218

• nbp = 10, number of meshes affected by the catch219

• nbr = 24, number of meshes around220

• l0 = 0.015m, length of un-stretched twines in the axial plane221

• m0 = 0.015m, length of un-stretched twines out of the axial plane222

• EA = 450N/m, stiffness of twines223

• V = 1.0m/s, towing speed224

• r0 = 0.1m, entrance radius225

To clarify the difference between l0 and m0 it is pointed out that at the226

top of figure 2, l0 refers to the length of knots while m0 refers to the length227

of twines.228

In the following example of figure 6 a netting which attempts to represent229

the netting of figure 2 has been used.230

In this case231

• n = 50, number of meshes along232

• nbp = 5, 10, 20, number of meshes affected by the catch233

• nbr = 50, number of meshes around234

• l0 = 0.025m, length of un-stretched twines in the axial plane (knot)235

• m0 = 0.050m, length of un-stretched twines out of the axial plane236

(twine)237
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Figure 6: T0 codend made of usual netting shown in figure 2. The netting is 50 by 50

meshes. The knot is 2.5cm long when the twine is 5cm long. The catch covers 5 meshes

at the top, 10 in the middle and 20 at the bottom. This figure must be compared to figure

9, where the same piece of netting is used but turned 90deg.

• EA = 68000N/m, stiffness of twines238

• V = 1.5m/s, towing speed239

• r0 = 0.25m, entrance radius240

The calculation also finds for a catch covering 10 meshes241
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• The traction on entrance = 1507.53N242

• The drag on the catch = 1507.54N243

• The maximal radius = 0.636m244

• The thickness of the catch = 0.818m245

• The length of the codend = 6.616m246

• The surface of the netting in contact with the catch = 3.592m2
247

• The volume inside the netting in contact with the catch = 0.832m3
248

It can be seen that, as expected, the reaction on the entrance equals the249

drag on the catch. This equality can be explained by mechanical considera-250

tions: the external forces involved in the model are only the reaction at the251

entrance and the drag on the catch. Due to equilibrium, the sum of these252

two forces must be null, in other words, their amplitude must be equal.253

2.9. Verification with the 3D model254

In a previous study [12] we developed a 3D model for hexagonal mesh255

netting. A comparison has been made between these two models.256

In the present model and in the 3D model [12] the conditions are identical257

and are258

• n = 25, number of meshes along259

• nbp = 16, number of meshes affected by the catch260

• nbr = 50, number of meshes around261
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• l0 = 0.015m, length of un-stretched twines in the axial plane262

• m0 = 0.015m, length of un-stretched twines out of the axial plane263

• EA = 450N/m, stiffness of twines264

• V = 1.0m/s, towing speed265

• r0 = 0.20m, entrance radius266

Figure 7 shows a graphic comparison between the two shapes.267

Figure 7: The top figure is from the present model and the bottom is from a 3D one. The

shapes are pretty similar.

The calculation also finds268

• The traction on entrance is 79.1N for the present model and 76.8N for269

the 3D model270

• The maximal radius is 0.227m for the present model and 0.227m for271

the 3D model272
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• The thickness of the catch is 0.585m for the present model and 0.585m273

for the 3D model274

The two models are in pretty good accordance.275

2.10. Verification with the maximal diameter of the diamond codend276

In the case of the codend made up of diamond meshes and which is277

completely full and long enough, there is an analytical value for the maximal278

diameter of the codend [10]279

Rmax =
2nbrl0

π
√

6

In the case of the diamond codend with280

• n = 30, number of meshes along281

• nbp = 30, number of meshes affected by the catch282

• nbr = 30, number of meshes around283

• m0 = 0.04m, length of twines284

The maximal radius is Rmax = 0.3119m285

To model this codend with the present model, the length of the twine286

along the axial plane has been reduced to a very small value 0.000004m.287

This gives the present T0 model the following conditions288

• n = 30, number of meshes along289

• nbp = 30, number of meshes affected by the catch290

• nbr = 30, number of meshes around291
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• l0 = 0.000004m, length of un-stretched twines in the axial plane292

• m0 = 0.04m, length of un-stretched twines out of the axial plane293

• EA = 68000N/m, stiffness of twines294

• V = 1.0m/s, towing speed295

• r0 = 0.25m, entrance radius296

the present model gives a maximal radius of Rmax = 0.311908m. This297

value is very close to the expected one (0.3119m).298
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3. The T90 codend299

By assuming axisymmetry, the codend geometry can be determined by300

examining the nodes belonging to one row of twine along the codend length.301

This row is highlighted at the bottom of figure 1 and in figure 8 and it is302

called the meridian.303

Figure 8: Definition of nodes of the T90 codend. The nodes along the meridian are i1 to

im. The top neighbours are j1 to jn while the bottom neighbours are k1 to km. Nodes

k are symmetric to i in relation to the plane XOZ and the nodes j to k cover 1 mesh

around. The trapeze represents one mesh.

As mentioned previously (chapter 2), it is only necessary to consider the304

twine tensions and the pressure forces that act in the region of the catch.305
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3.1. Nodes of the T90 codend306

The meridian consists of nodes from i1 to im. The node i1 is at the307

entrance while im is the last node. The row of nodes from j1 to jm is just308

above the meridian in figure 8, while the row of nodes from k1 to km is just309

below the meridian. Consequently the distance between nodes j4 and k4310

covers just one mesh around. This is true for nodes j and k with the same311

suffix (4, 5 ...).312

A mesh around covers an angle θ which is313

θ =
2π

nbr
(12)

where nbr is the number of meshes around.314

The nodes j with an odd suffix ( j5, j7 ...) are not noted in figure 8,315

because they are not used in the following. The plane XOZ is chosen in316

order to be in the middle of the nodes i and k.317

This means that if318

i4 = (i4x, i4y, i4z)

319

k4 = (i4x,−i4y, i4z)

Consequently the angle between node k4 and the plane XOZ is such that:320

tan β4 =
i4y

i4z

It follows that the angle between the plane XOZ and the node j4 is321

θ − β4.322

This gives for node j4323
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j4 = (i4x, i4r sin(θ − β4), i4r cos(θ − β4))

With i4r the radius of node i4:324

i4r =
√
i42
y + i42

z325

Accordingly, once the Cartesian coordinates of node i4 are known the326

coordinates of k4 and j4 are also known. This is true whatever the suffix of327

node i.328

If the number of meshes along is n, the suffix of the last node m is329

m = 2n+ 1

3.2. Twines of the T90 codend330

The twines can be defined from node positions. A twine links 2 nodes331

and it is defined as a vector.332

3 twine vectors emerge from each node of the meridian: one around the333

codend, one backward and one forward. For example for node i5, the twine334

between i5 and i4 is backward and it is called Bi5 (figure 8), B for backward.335

The twine between i5 and i6 is Fi5, with F for forward. Finally the twine336

between i5 and k5 is Ai5, with A for around.337

According to this definition, the vectors along the twines which emerge338

from node i4 are:339

340

Bi4 =


i3x − i4x
i3y − i4y
i3z − i4z

 Fi4 =


i5x − i4x
i5y − i4y
i5z − i4z

 Ai4 =


j4x − i4x
j4y − i4y
j4z − i4z

341

342
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According to this definition, the vectors along the twines which emerge343

from node i5 are:344

345

Bi5 =


i3x − i5x
i3y − i5y
i3z − i5z

 Fi5 =


i5x − i5x
i5y − i5y
i5z − i5z

 Ai5 =


k5x − i5x
k5y − i5y
k5z − i5z

346

347

Some of these twine vectors are equal:348

Bi4 = −Fi3
349

Bi5 = −Fi4
350

Bi6 = −Fi5

3.3. Twine tensions on the T90 codend351

Following the same scheme of chapter 2.3, the force vectors coming from352

twine tension are calculated and consequently the forces on nodes. For ex-353

ample in the case of the twine vector Ai4, the force vector is354

TAi4 =
|Ai4| − l0

l0
EA

Ai4

|Ai4|

and the force on node i4 is355

Fi4 = TAi4 + TBi4 + TFi4 (13)

3.4. Catch pressure356

In the case of the T90 codend and of a catch which covers the portion of357

netting between nodes i4 and i5, as seen previously (chapter 2.4)358
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Fi4x = θ|i42
r − i52

r|
P

2
(14)

Fi5x = θ|i42
r − i52

r|
P

2
359

Fi4r = θ(i4x − i5x)(i4r + i5r)
P

2
360

Fi5r = θ(i4x − i5x)(i4r + i5r)
P

2

With361

Fi4x (Fi5x) the force on node i4 (i5) along the X axis, Fi4r (Fi5r) the362

force on node i4 (i5) along the radial and P determined by equation 3. These363

forces are due to the portion of netting between nodes i4 and i5. In the same364

way, if the catch covers the netting between nodes i5 and i6, the forces due365

to the pressure of the catch are366

Fi5x = θ|i52
r − i62

r|
P

2
367

Fi6x = θ|i52
r − i62

r|
P

2
368

Fi5r = θ(i5x − i6x)(i5r + i6r)
P

2
369

Fi6r = θ(i5x − i6x)(i5r + i6r)
P

2

From these radial forces (Fi4r) it is necessary to calculate the Cartesian370

force components (Fi4y and Fi4z) as it has been done for forces due to twine371

tension. Since the angle β4 is already known372

Fi4y = Fi4r sin β4 (15)
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Fi4z = Fi4r cos β4 (16)

and373

Fi5y = Fi5r sin β5
374

Fi5z = Fi5r cos β5

3.5. Positions and forces in the T90 codend375

It has been seen previously that the unknowns of these equations are only376

the Cartesian coordinates of the nodes along the meridian (i4x, i4y, i4z, i5x,377

i5y, i5z...). This means that the total unknowns for the whole meridian is378

X = (i1x, i1y, i1z, ..., i4x, i4y, i4z, ..., inx, iny, inz)379

This vector of Cartesian positions begins with the node at the entrance380

(i1x, i1y and i1z) and finishes with the node on the cod-line (n1x, n1y and381

n1z). In order to use the Newton-Raphson method for finding the equilibrium382

position of the meridian, the force vector F must have the same order:383

31



F =



F1x

F1y

F1z

.

F4x

F4y

F4z

.

Fnx

Fny

Fnz


This means that for each node the Cartesian components of force (F4x,384

F4y and Fi4z for node i4) have to be calculated from Cartesian components385

(i4x, i4y and i4z) already known (equations 13, 14, 15, 16).386

3.6. Boundary conditions of the T90 codend387

The boundary conditions of the model have to be determined. They are388

the entrance and closure of the codend. At the entrance the radius is given389

and fixed (to r0) and at the closure the radius must be 0m:390

i1x = 0
391

i1r = r0
392

ndr = 0

If we accept that the length between i1 to k1 is only l0393
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i1y =
l0
2

394

i1z =

√
r20 − (

l0
2

)2

3.7. Newton-Raphson solver395

The force components are added at each node in vector F and the Newton-396

Raphson scheme is used to assess the equilibrium position. This method is an397

iterative method where, for each iteration k, the displacement of the nodes398

hk is calculated by the equation399

hk =
F(Xk)

−F ′(Xk)

where hk is the displacement vector of the nodes (m), F(Xk) is the force400

vector on the nodes (N), and −F ′(Xk) is the stiffness matrix calculated as401

the derivative of F relative to X(N/m).402

The position at the next iteration Xk+1 is then calculated by Xk+1 =403

Xk +hk. This process is repeated until the residual force, F(X), is less than404

a predefined amount.405

It is necessary to determine an initial position of the nodes along the406

codend, which is assumed at this point to be a straight horizontal line aligned407

on the entrance radius except for the last node which is on the axis for the408

closure of the codend. Thus, the initial shape of the codend is a cylinder.409

3.8. Results410

Figure 1 at the bottom is the result of this model. The conditions of this411

calculation are412
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• n = 24, number of meshes along413

• nbp = 10, number of meshes affected by the catch414

• nbr = 24, number of meshes around415

• l0 = 0.015m, length of un-stretched twines normal to the axial plane416

• m0 = 0.015m, length of un-stretched twines out of the axial plane417

• EA = 450N/m, stiffness of twines418

• V = 1.0m/s, towing speed419

• r0 = 0.1m, entrance radius420

To clarify the difference between l0 and m0 it is pointed out that the421

bottom of figure 2, l0 refers to the length of knots while m0 refers to the422

length of twines.423

In the following figure 9, a netting which attempts to represent the netting424

of figure 2 has been used.425

In this case426

• n = 50, number of meshes along427

• nbp = 5, 10, 20, number of meshes affected by the catch428

• nbr = 50, number of meshes around429

• l0 = 0.025m, length of un-stretched twines normal to the axial plane430

(knot)431
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• m0 = 0.050m, length of un-stretched twines out of the axial plane432

(twine)433

• EA = 68000N/m, stiffness of twines434

• V = 1.5m/s, towing speed435

• r0 = 0.25m, entrance radius436

The calculation also finds for a catch covering 10 meshes437

• The traction on entrance = 2009.77N438

• The drag on the catch = 2009.77N439

• The maximal radius = 0.646m440

• The thickness of the catch = 0.528m441

• The length of the codend = 4.489m442

• The surface of the netting in contact with the catch = 2.597m2
443

• The volume inside the netting in contact with the catch = 0.542m3
444

As expected and explained previously (chapter 2.8) the reaction at the445

entrance equals the drag on the catch.446

3.9. Verification with the maximal diameter of the diamond codend447

To model the full codend described in chapter 2.10 with the present model,448

the length of the twine normal to the axial plane has been reduced to a very449

small value 0.000004m. This gives for the present T90 model the following450

conditions451
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• n = 30, number of meshes along452

• nbp = 30, number of meshes affected by the catch453

• nbr = 30, number of meshes around454

• l0 = 0.000004m, length of un-stretched twines normal to the axial plane455

• m0 = 0.04m, length of un-stretched twines out of the axial plane456

• EA = 68000N/m, stiffness of twines457

• V = 1.0m/s, towing speed458

• r0 = 0.25m, entrance radius459

the present model gives a maximal radius of Rmax = 0.311947m. This460

value is very close to the expected one (0.3119m).461
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Figure 9: T90 codend made up of the usual netting shown in figure 2. The netting is 50

by 50 meshes. The knot is 2.5cm long when the twine is 5cm long. The catch covers 5

meshes at the top, 10 in the middle and 20 at the bottom. This figure must be compared

to figure 6, where the same piece of netting is used but it has been turned 90deg.
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4. Discussion and conclusion462

A model of codends made up of hexagonal meshes has been developed.463

This model is based on the approximation that the cod-ends are axisymmetric464

and that the twines are elastic. This model is not a complex 3D model as465

developed by Priour [13] and does not depend on a licensed software as used466

by O’Neill [8].467

The comparison of results obtained by this model with an analytical so-468

lution or a 3D model is relatively good: the difference is less than 1% for the469

dimension and less than 3% on the drag.470

The hypothesis that twines are fully compressible, which means that they471

have no resistance when compressed has been used. This hypothesis is prob-472

ably debatable in the case of an usual netting where some twines are quite473

large, especially the knot. This point could be solved by letting the user474

decide about the compressibility of the twines.475

The drag on the netting has not been taken into account because, gener-476

ally speaking, this drag is considered negligible in relation to the drag on the477

catch. For a very small catch we suppose that this point is also debatable.478

Future work could verify this aspect.479

The entrance diameter is constant and could be determined by the user480

in the present model. In a real trawl this point is questionable, and it would481

be more accurate to remove the constraint from this diameter. In this case,482

the twines emerge horizontally from the entrance contrary to figure 6.483

The Newton-Raphson method has been used to solve the equilibrium of484

the cod-end, the Newmark scheme could also be used. The Newmark scheme485

does not use the Jacobian and is therefore easier to implement.486
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We suggest that these models of hexagonal mesh codends could be used487

in scientific studies: For example the theoretical investigation of codend per-488

formance, experimentally examined by Madsen [7] or Herrmann [3], could be489

undertaken by combining the present models with the use of a codend size490

selection simulator like PRESEMO.491
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