Effect of seawater salinity on pore-size distribution on a poly(styrene)-based resin and its adsorption of diarrhetic shellfish toxins

Fan Lin¹, Sun Geng¹, Qiu Jiangbing¹, Ma Qimin^{1, 2}, Hess Philipp³, Li Aifeng^{1, 2, *}

¹ College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China ² Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China

³ Ifremer, Laboratoire Phycotoxines, 44311 Nantes, France

* Corresponding author : Aifeng Li, tel.: +86 532 66781935 ; email address : lafouc@ouc.edu.cn

Abstract :

In the present study, okadaic acid (OA) and dinophysistoxin-1 (DTX1) were spiked into artificial seawater at low, medium and high estuarine salinities (9‰, 13.5‰ and 27‰). Passive samplers (HP20 resin) used for solid phase adsorption toxin tracking (SPATT) technology were exposed in these seawaters for12-h periods. Adsorption curves well fitted a pseudo-secondary kinetics model. The highest initial sorption rates of both toxins occurred in the seawater of medium salinity, followed by seawater of low and high estuarine salinity. Pore volumes of micropores (< 2 nm) and small mesopores (2 nm < diameter < 10 nm) of HP20 resin decreased after adsorption of toxins in seawater at high and low salinity but not in seawater at medium salinity, which demonstrated that the toxin molecules entered into micropores and mesopores (below 10 m in size) in seawaters of high and low salinity. More toxin or other matrix agglomerates were displayed on the surface of resin deployed in the seawater of medium salinity. Taking into consideration the pore-size distribution and surface images, it appears that intraparticle diffusion governs toxin adsorption in seawater at high salinity while film diffusion mainly controls the adsorption process in seawater at medium salinity. This is the first study to confirm that molecules of OA and DTX1 are able to enter into micropores (< 2 nm) and small mesopores (2 - 10 nm) of HP20 resin in estuarine seawater with high salinity (~27 %).

Highlights

► HP20 resin bags were deployed in three artificial seawaters at different salinity. ► Dynamic adsorption behaviour of OA and DTX1 by these SPATT bags was explored. ► The highest initial sorption rate of toxins occurred in seawater at medium salinity. ► Resin pores below 10 nm in size governed adsorption in natural seawater. ► Toxins were retained by pores in seawaters at high and low salinity.

Keywords : Diarrhetic shellfish toxins (DST), Solid phase adsorption toxin tracking (SPATT), HP20 resin, Salinity, Pore-size distribution, Pseudo-secondary kinetics equation

44 **1. Introduction**

45	Micro-algal toxins potentially threaten mariculture industry and ecosystem health
46	as toxic algal blooms occur frequently and globally in coastal waters [1, 2]. Based on
47	their chemical structures, these micro-algal toxins are classified into total eight groups
48	including the okadaic acid (OA), azaspiracid (AZA), yessotoxin (YTX), pectenotoxin
49	(PTX), brevetoxin, cyclic imine, saxitoxin (STX), and domoic acid (DA) groups.
50	They can be accumulated and transferred along food webs of marine ecosystems
51	including cultivated shellfish [3-5]. Therefore, poisoning events and victims
52	frequently occurred due to consumption of contaminated seafood [6-8]. For example,
53	diarrhetic shellfish poisoning (DSP) as a familiar poisoning event is related to
54	OA-group toxins, including OA and its derivatives dinophysistoxin-1 (DTX1) and
55	epimer DTX2, accumulated by crabs, mussels, etc [9-12]. Although no victims were
56	recorded by DSP events, a link was hypothesized between exposure to OA-group
57	toxins and tumor enhancement [13-14]. Thus, it is very important to monitor and
58	forecast the pollution of micro-algal toxins in mariculture zones in order to protect
59	seafood safety and consumer health.
60	A technology referred to as Solid Phase Adsorption Toxin Tracking (SPATT) was
61	developed to monitor the occurrence of toxic algal blooms and shellfish
62	contamination events in seawater using porous synthetic resin [15]. Various
63	micro-algal toxins were tentatively monitored using the SPATT method for adsorption
64	in the laboratory or in the field [16-20]. The SPATT technology has been shown to
65	provide reliable, sensitive, time-integrated sampling of various micro-algal toxins to

66	monitor the occurrence of toxic algal bloom events [21]. Comparative results for
67	several different adsorbents showed that the resin DIAION [®] HP20 has greater
68	adsorption quantity and higher desorption rate of lipophilic toxins [15, 16]. The key
69	role played by the pore-size distribution, especially micropores of resin, for OA-group
70	toxins was hypothesized in our previous study [22]. Utility of SPATT bags packaged
71	by HP20 resin was also demonstrated to successfully monitor microcystins in
72	freshwater [23]. Presently, the range of sorbents for passive sampling of micro-algal
73	toxins was extended and assessed in laboratory and field studies [24]. However, the
74	relationship between the quantity obtained by SPATT bags and toxin content
75	accumulated by shellfish has still not been successfully modelled until now, although
76	some efforts into this direction have been made [25]. Also, knowledge on the
77	adsorption mechanism of toxins by resins and the effect of salinity on the adsorption
78	process is still limited. In the present study, the dynamic adsorption of OA and DTX1
79	toxins by HP20 resin in artificial seawater at different salinity was simulated in
80	laboratory. The pore-size distribution and surface image of resins before and after
81	adsorption toxins were explored to discuss the effect of salt matrix on the dynamic
82	adsorption of toxins by HP20 resin.
83	2. Materials and methods

84 2.1. Chemicals

All reagents and solvents used in the study were HPLC grade. Acetonitrile and methanol were purchased from Merck Ltd. (Whitehouse Station, NJ, USA). Formic acid (FA) and ammonium formate (AF) were purchased from Fisher Scientific (Fair

88	Lawn, NJ, USA). Standard OA and DTX1 were purchased from the Certified
89	Reference Materials Program (CRMP) of the National Research Council of Canada
90	(Halifax, NS, Canada) and Wako Pure Chemical Industries, Ltd. (Osaka, Japan),
91	respectively. Pure water was obtained from a MilliQ water purification system
92	(Millipore Ltd., Bedford, MA, USA) to 18.2 M Ω cm ⁻¹ quality or better.
93	2.2. Adsorbent resin
94	DIAION [®] HP20 was purchased From the Mitsubishi Chemical Corporation
95	(Tokyo, Japan). It is an aromatic type adsorbent based on a cross-linked polystyrene
96	matrix. The manufacturer stated that particles of HP20 resin are 250-600 μ m (more
97	than 90% particles > 250 μ m).
98	2.3. Dynamic adsorption of OA and DTX1 by HP20 resin in artificial seawaters
99	SPATT bags were made of polyester mesh, 40 mm \times 40 mm, and were packed
100	with 3.0 g of dry HP20 resin. They were immersed in methanol for 48 h to activate
101	the HP20 resin. Then they were washed three times using bulk Milli-Q water before
102	storage in pure water for use.
103	According to the manufacturer's statement, 31 g sea salt was dissolved in 1 L of
104	pure water to simulate nature seawater with the content of NaCl, MgSO ₄ \cdot 7H ₂ O,
105	MgCl ₂ ·6H ₂ O, CaCl ₂ ·H ₂ O and KCl at 65.0 \pm 5.0, 15.0 \pm 2.0, 12.0 \pm 2.0, 4.0 \pm 1.0, and
106	1.5 ± 1.4 , respectively. In this study, 31 g, 15.5 g and 10.3 g sea salt were dissolved in
107	1 L of pure water to make the artificial seawater at high, medium, and low salinity,
108	respectively. Salinity of the artificial seawater at high salinity was approximately 27‰,
109	which was lower than that of normal natural seawater. Purified extracts of OA and

110	DTX1 toxins (10 mL) through solid-phase extraction (SPE) were dissolved in
111	different salinity matrix and were added into the corresponding artificial seawater.
112	The initial concentrations of OA and DTX1 toxins in the adsorption system were 2.70
113	and 3.92 ng/mL, respectively. Three SPATT bags of HP20 resin were separately put
114	into the different artificial seawater strengths using a weight to hold them in the
115	middle of the container. The adsorption system was stirred continuously at 145 rpm
116	by a magnetic stirring apparatus at $25 \pm 1^{\circ}$ C in order to make toxins well-distributed.
117	Sampling time point was set at 0, 10, 20, 30, 45, 60, 90, 120, 240, 480 and 720
118	min. Triplicate of 1.5 mL seawater was taken from the adsorption system at every
119	sampling time point, respectively. These samples were purified by the Oasis [®] HLB
120	SPE cartridge (3cc, 60mg). 2 mL of methanol and 2 mL of water was successively
121	used to activate and equilibrate the cartridges, respectively, before loading 1.5 mL of
122	samples. Aliquots (2 mL) of 5% methanol (methanol/water, 5/95, v/v) were used to
123	wash and methanol (2 mL) was used to elute toxins. Finally, the eluate was dried by
124	nitrogen gas and reconstituted in 1.5 mL of methanol. Then, the samples were filtered
125	by 0.22 μm organic membrane and analyzed using LC-MS/MS. Meanwhile, the same
126	SPATT bags were deployed in different artificial seawater without micro-algal toxins
127	in a 1 L flask as blank control experiment.

128 2.4. LC-MS/MS analysis for OA and DTX1

129 An Agilent 6430 tandem quadrupole mass spectrometer equipped with an

130 Agilent 1290 HPLC (Palo Alta, CA, USA) using an ESI interface was used to analyze

131 all samples here. Chromatographic separation was achieved on a 50×2.1 mm i.d.,

132	3μ m, Luna C18 column (Phenomenex) maintained at 35° C. The mobile phase
133	gradient was composed by solvent A (water) and solvent B (95% acetonitrile), each
134	containing 50 mM formic acid and 2 mM ammonium formate. A gradient was run
135	from 25% to 100% B over 7 min, holding for 3 min and back to 25% B to
136	re-equilibration for 2 min for the next run. Flow rate was set at 300 μ L/min and the
137	injection volume was 5 μ L. MS detection was carried out with positive ionization
138	mode. Multiple reaction monitoring (MRM) acquisition mode was used for qualitative
139	and quantitative analysis for OA (m/z 827.5 -> $809.4 / 791.3 / 723.4$) and DTX1 (m/z
140	841.5 -> 823.5 / 805.5 / 737.4).
141	2.5. Measure for surface area and porosity of resin
142	HP20 resin was taken out from the SPATT bag after exposure in the adsorption
143	experiments. The resin was freeze-dried using a lyophilizer at -40°C. Pore volume and
144	pore-size distribution were determined by a gas sorption system (Micrometrics,
145	ASAP [®] 2020, USA) using nitrogen as adsorbate. About 100 mg of resin was degassed
146	at 105°C until the pressure increase rate was lower than 1.3 Pa/min within a 0.5-min
147	test interval. Helium was used as a backfill gas. In total, 106 adsorption points and 54
148	desorption points were collected from 5.63×10^{-7} to 0.995 P/P0.
149	2.6. Scanning electron microscopy for HP20 resin
150	The surface texture of HP20 resin in different artificial seawater spiked with or
151	without OA and DTX1 toxins were characterized by a scanning electron microscope
152	(SEM) (Hitachi, S-4800, Japan). All resin samples were freeze-dried under vacuum
153	and then were fixed on aluminum stubs and coated with gold before observation using

154	SEM.
134	SENT.

155 **3. Results and Discussion**

156 3.1. Dynamic adsorption behavior of OA and DTX1 toxins by HP20 resin in different

٠

157 *artificial seawater*

158	Chemical structures of OA and DTX1 toxins are shown in Fig. 1. These
159	polyether toxins can be dissolved in seawater due to salt matrix but not in freshwater
160	because of their hydrophobic property. It is very difficult to arrange duplicate SPATT
161	bags for each sampling time point because of limits of toxins and experimental space.
162	The dynamic adsorption quantity of toxins on SPATT bags was calculated by the
163	concentration discrepancy between two adjacent samplings from seawater. The
164	chromatograms of OA and DTX1 toxins acquired by different transitions using
165	LC-MS/MS are shown in Fig. 2. Retention times of OA and DTX1 toxins were 5.0
166	and 6.0 min, respectively, under these chromatographic conditions. The
167	chromatograms demonstrated that no obvious matrix interferences were found due to
168	potential remaining salt matrix in the seawater samples purified by SPE cartridges.
169	Limits of quantification (LOQ, signal / noise = 10) of the LC-MS/MS method for
170	standard OA and DTX1 were measured as 0.23 and 0.07 ng/mL (injection volume 5
171	μ L), respectively, using the S/N values of the lowest transitions of OA (827.5 ->
172	791.3) and DTX1 (841.5 -> 805.5).
173	Dynamic adsorption curves of OA and DTX1 toxins adsorbed by HP20 resin in
174	different artificial seawater are shown in Fig. 3. The curves showed that OA and
175	DTX1 toxins could be adsorbed fast by HP20 resin in three different artificial

176	seawaters. The adsorption curves were close to linear type in the first 90-min time
177	period. Relatively, the adsorption rates of OA and DTX1 toxins were the slowest in
178	seawater at high salinity over the first 120-min; then they exceeded those in the
179	seawater of low salinity after this period. Totally the adsorption rates of toxins in the
180	seawater of medium salinity were the fastest in whole exposure period and there were
181	no detectable toxins in this seawater after 480-min adsorption. The adsorption curves
182	were simulated by five different dynamic adsorption models including the Elovich
183	equation, double constant equation, parabolic diffusion equation, first-order kinetics
184	equation and pseudo-secondary kinetics equation. The determination coefficient (R^2)
185	demonstrated that the dynamic adsorption curves could be well fitted by the
186	pseudo-secondary kinetics equation (Table 1). Values of R^2 fitted by the
187	pseudo-secondary kinetics equation decreased with the salinity in three different
188	artificial seawaters, which demonstrated that the salinity of seawater slightly reduced
189	the fit quality of the model.
190	Initial sorption rate h (ng/(g·min)) and equilibrium sorption quantity Q_e (ng/g)
191	could be calculated using the pseudo-secondary kinetics equation using $h= 1/a$ and
192	$Q_e=1/b[26]$. The highest initial sorption rate occurred in the artificial seawater at
193	medium salinity, followed by the treatment with low and high salinity (Table 2). This
194	discrepancy showed that the salt matrix effectively reduced the initial sorption rates of
195	OA and DTX1 toxins by HP20 resin. The initial sorption rate of OA was also less
196	than that of DTX1 in three different artificial seawaters, which had been reported and
197	explained by the extra methyl group of DTX1 in our previous study [22]. Average

198	linear sorption rates of OA and DTX1 toxins by HP20 resin were also directly
199	calculated using the adsorption quantity divided by time period (Fig. 4). Average
200	adsorption rates of OA and DTX1 in the seawater of low salinity slightly exceeded
201	that in seawater of medium salinity in the early 10-min period. After this period the
202	average adsorption rates in artificial seawater of medium salinity were the fastest,
203	followed by the treatments of low and high salinity. This discrepancy of average
204	linear adsorption rates also demonstrated that the salinity of seawater affected the
205	dynamic adsorption behavior of lipophilic toxins by HP20 resin. Meanwhile, the
206	average adsorption rates of OA in different seawater salinities were lower than those
207	of DTX1 due to the difference of chemical structure. However, the equilibrium
208	sorption quantities of OA and DTX1 toxins calculated by the pseudo-secondary
209	kinetics equation increased with the salinity in three different artificial seawaters
210	although the experimental sorption quantities were similar in all treatments (Table 2).
211	The concentrations of OA (2.70ng/mL) and DTX1 (3.92 ng/mL) used in this
212	study were several hundreds of times higher than the dissolved OA concentration
213	ranging from 4.24 to 9.64 ng/L in coastal seawater of Qingdao City, China [27].
214	Theoretically the experimental quantities of OA and DTX1 were 900 and 1307 ng/g
215	resin, respectively, if the toxins spiked into seawater were completely adsorbed by
216	resin in the whole experimental period. The adsorption percentage of OA and DTX1
217	spiked into three different seawaters was over 96% and 98%, respectively, when the
218	adsorption experiment was finished in the study. These high percentages demonstrated
219	that OA and DTX1 toxins were almost completely adsorbed by SPATT bags in the

220	experimental period. Therefore, the calculated equilibrium sorption quantities of OA
221	and DTX1 in the artificial seawater increased with salinity because the salinity
222	reduced the fit of the equation for adsorption. This point has been demonstrated by the
223	values of determination coefficient R^2 . Totally, the dynamic adsorption process could
224	be well fitted by the pseudo-secondary kinetics equation which suggests that either
225	film diffusion or intra-particle diffusion controls the overall rate of adsorption [26].
226	Usually the dynamic adsorption process simultaneously depends on the large specific
227	surface area and small size pores in the adsorbent. It means that the film diffusion
228	governs adsorption process if the specific surface area plays dominant role; reversely
229	it means the intra-particle diffusion governs the adsorption process. The intra-particle
230	diffusion was hypothesized to govern the capacity and equilibration rate of toxin
231	adsorption by HP20 resin in seawater of micro-algal cultures [16]. The important
232	roles caused by micropores (< 2 nm) of HP20 resin in 90% methanol solution were
233	also suggested in our previous study [22]. The dynamic adsorption behaviors of OA
234	and DTX1 toxins by HP20 resin in different seawaters also comply with this rule in
235	this study.
236	3.2. Change of pore-size distribution of HP20 resin after adsorption for toxins
237	In order to explore the mechanism by which salt affects the dynamic adsorption
238	of toxins by resin, the pore-size distribution of HP20 resin deployed in seawater with

- or without OA/DTX1 toxins was characterized. Results showed that no obvious
- change of the pore volumes of size between 10-20 nm was found in HP20 resin
- 241 deployed in three different seawaters with or without toxins (Fig. 5). However, the

242	pore volumes of micropores (diameter < 2 nm) and small mesopores (2 nm $<$ diameter
243	< 10 nm) decreased after toxins were adsorbed onto HP20 resin in the artificial
244	seawaters at high salinity and low salinity, which demonstrated that toxin molecules
245	entered into these small size pores. Inconsistently, the pore volumes of micropores did
246	not change whether the resin adsorbed toxins or not, and the pore volumes of small
247	mesopores (2 - 10 nm) also did not change obviously and consistently in the artificial
248	seawater at medium salinity. This phenomenon testified that the toxin molecules did
249	not enter into the micropores and small mesopores (2 - 10 nm) in the seawater of
250	medium salinity. Interestingly, the pore volumes of micropores or mesopores (2 - 10
251	nm) of HP20 resin deployed in the artificial seawater of high salinity without toxins
252	were higher than those in the artificial seawater of low salinity without toxins, which
253	showed that solely the salt matrix of seawater also changed the pore size distribution
254	of resin. Possibly, salt matrix would reconstruct these pores in some big pores of
255	HP20 resin. The largest BET surface area of HP20 resin before adsorption toxins
256	occurred in the seawater at high salinity, followed by the treatments of low and
257	medium salinity (Table 3), which demonstrated that the salt matrix changed the
258	surface area of resin. Consistently, the surface areas of resins decreased after they
259	adsorbed toxins in three different seawaters. However, the average pore volume of
260	resin deployed in the seawater at medium salinity increased after it adsorbed toxins,
261	which also demonstrated that toxin molecules did not enter into these pores of resin.
262	Therefore, the HP20 resin deployed in the seawater at medium salinity displayed the
263	highest initial sorption rate because only film diffusion governed the adsorption

264 process.

265	In order to testify the discrepancy of adsorption behavior in different seawaters,
266	the surface images of resin deployed in artificial seawaters were characterized by
267	SEM. Results showed that the surface of resins deployed in three different seawaters
268	without toxins were very clean (Fig. 6), which demonstrated that the salt matrix did
269	not change resin surface. Some agglomerates emerged on the surface of resins
270	exposed to algal extracts in seawaters of medium and low salinity, but not on the
271	surface of resin adsorbed toxins in the seawater of high salinity (Fig. 6). More
272	agglomerates occurred on the surface of resin deployed in the seawater at medium
273	salinity comparatively to the seawater at low salinity. To our knowledge we could not
274	explain the occurrence of agglomerates on the surface of resin deployed in the low
275	salinity seawater. However, the SEM results testified that the toxins were mainly
276	adsorbed onto the surface of resin deployed in the seawater at medium salinity
277	(~13.5‰), which could explain the highest initial sorption rate due to the film
278	diffusion related with surface adsorption.
279	Based on the findings of this study, it could be safely concluded that the
280	intra-particle diffusion governs the adsorption process of HP20 resin for toxins in
281	estuarine seawater with high salinity while film diffusion controls the adsorption
282	process in seawater at medium salinity (~13.5‰). Also, the adsorption process of
283	HP20 resin for toxins is dependent on both film diffusion and intra-particle diffusion
284	in seawater of low salinity (~9‰). The different adsorption mechanisms for HP20
285	resin in seawaters with different salinity suggest that the adsorption behavior of toxins

by SPATT deployments in estuaries with low salinity should be different to those in 286 287 natural seawater.

288 4. Conclusions

288	4. Conclusions
289	In this study, purified extract containing OA and DTX1 toxins from
290	Prorocentrum lima was spiked into three artificial seawaters at different salinity (27‰,
291	13.5‰ and 9‰) and SPATT samplers of HP20 resin were deployed in these seawaters
292	for 720-min exposure. Adsorption curves of toxins in seawater of three different
293	salinities well fitted the pseudo-secondary kinetics equation. However, the pore-size
294	distribution and specific surface area of HP20 resins deployed in seawater with or
295	without toxins were affected and not linearly related to the salinity of seawater.
296	According to the findings of this study, it is confirmed that the molecules of OA and
297	DTX1 are able to enter into the micropores and small mesopores (2 - 10 nm) of HP20
298	resin in estuarine seawater at high salinity (~27‰). The intra-particle diffusion
299	governs the adsorption process of HP20 resin for toxins in seawater with high salinity
300	(~27‰), while film diffusion controls the adsorption process in seawater at medium
301	salinity (~13.5‰). Further studies should clarify whether the effect of salinity on
302	adsorption kinetics is sufficiently significant at the naturally low concentrations of
303	toxins in seawater to play a role during daily or weekly monitoring.
304	Supplementary materials
305	Extraction and purification methods for OA and DTX1 toxins could be found in

306 the supplementary file.

307 Acknowledgement

- 308 This work was funded by the Administration of Quality Supervision, Inspection
- and Quarantine, People's Republic of China (201310141), and the National Natural
- 310 Science Foundation of China (41276103).

311 **Conflict of interest statement**

312 All authors declare that there are no conflicts of interest.

313 **References**

- 314 [1] L. Botes, A.J. Smit, P.A. Cook, The potential threat of algal blooms to the abalone
- 315 (*Haliotis midae*) mariculture industry situated around the South African coast,
- 316 Harmful Algae 2 (2003) 247-259.
- 317 [2] T.G. Park, W.A. Lim, Y.T. Park, C.K. Lee, H.J. Jeong, Economic impact,
- management and mitigation of red tides in Korea, Harmful Algae 30S1 (2013)
 S131-S143.
- 320 [3] L.F. Leandro, G.J. Teegarden, P.B. Roth, Z. Wang, G.J. Doucette, The copepod
- 321 *Calanus finmarchicus*: A potential vector for trophic transfer of the marine algal
 322 biotoxin, domoic acid, J. Exp. Mar. Biol. Ecol. 382 (2010) 88-95.
- 323 [4] R.W.M. Kwong, W.-X. Wang, P.K.S. Lam, P.K.N. Yu, The uptake, distribution and
- 324 elimination of paralytic shellfish toxins in mussels and fish exposed to toxic
- dinoflagellates, Aquat. Toxicol. 80 (2006) 82-91.
- 326 [5] V.M. Lopes, M. Baptista, T. Repolho, R. Rosa, P.R. Costa, Uptake, transfer and
- 327 elimination kinetics of paralytic shellfish toxins in common octopus (*Octopus*
- 328 *vulgaris*), Aquat. Toxicol. 146 (2014) 205-211.
- 329 [6] A.P. Sierra-Beltrán, A. Cruz, E. Núñez, L.M. Del Villar, J. Cerecero, J.L. Ochoa,
- 330 An overview of the marine food poisoning in Mexico, Toxicon 36 (1998)
- 331 1493-1502.
- 332 [7] A. Furey, S. O'Doherty, K. O'Callaghan, M. Lehane, K.J. James, Azaspiracid
- poisoning (AZP) toxins in shellfish: Toxicological and health considerations,
- 334 Toxicon 56 (2010) 173-190.

335	[8] L.E. Fleming, B. Kirkpatrick, L.C. Backer, C.J. Walsh, K. Nierenberg, J. Clark, A.
336	Reich, J. Hollenbeck, J. Benson, Y.S. Cheng, J. Naar, R. Pierce, A.J. Bourdelais,
337	W.M. Abraham, G. Kirkpatrick, J. Zaias, A. Wanner, E. Mendes, S. Shalat, P.
338	Hoagland, W. Stephan, J. Bean, S. Watkins, T. Clarke, M. Byrne, D.G. Baden,
339	Review of Florida red tide and human health effects, Harmful Algae 10 (2011)
340	224-233.
341	[9] T. Torgersen, J. Aasen, T. Aune, Diarrhetic shellfish poisoning by okadaic acid
342	esters from Brown crabs (Cancer pagurus) in Norway, Toxicon 46 (2005)
343	572-578.
344	[10] E. Prassopoulou, P. Katikou, D. Georgantelis, A. Kyritsakis, Detection of okadaic
345	acid and related esters in mussels during diarrhetic shellfish poisoning (DSP)
346	episodes in Greece using the mouse bioassay, the PP2A inhibition assay and
347	HPLC with fluorimetric detection, Toxicon 53 (2009) 214-227.
348	[11] A. Li, J. Ma, J. Cao, P. McCarron, Toxins in mussels (Mytilus galloprovincialis)
349	associated with diarrhetic shellfish poisoning episodes in China, Toxicon 60
350	(2012) 420-425.
351	[12] A. Li, G. Sun, J. Qiu, L. Fan, Lipophilic shellfish toxins in Dinophysis caudata
352	picked cells and in shellfish from the East China Sea, Environ. Sci. Pollut. Res.
353	xxx (2014) xxx. Doi: 10.1007/s11356-014-3595-z
354	[13] S. Cordier, C. Monfort, L. Miossec, S. Richardson, C. Belin, Ecological analysis
355	of digestive cancer mortality related to contamination by diarrhetic shellfish
356	poisoning toxins along the coasts of France, Environ. Res. 84 (2000) 145-150.

357	[14] E. Manerio, V.L. Rodas, E. Costas, J.M. Hernandez, Shellfish consumption: A
358	major risk factor for colorectal cancer, Med. Hypotheses 70 (2008) 409-412.
359	[15] L. MacKenzie, V. Beuzenberg, P. Holland, P. McNabb, A. Selwood, Solid phase
360	adsorption toxin tracking (SPATT): a new monitoring tool that simulates the
361	biotoxin contamination of filter feeding bivalves, Toxicon 44 (2004) 901-918.
362	[16] E. Fux, C. Marcaillou, F. Mondeguer, R. Bire, P. Hess, Field and mesocosm trials
363	on passive sampling for the study of adsorption and desorption behaviour of
364	lipophilic toxins with a focus on OA and DTX1, Harmful Algae 7 (2008)
365	574-583.
366	[17] E. Fux, R. Bire, P. Hess, Comparative accumulation and composition of
367	lipophilic marine biotoxins in passive samplers and in mussels (M. edulis) on the
368	West Coast of Ireland, Harmful Algae 8 (2009) 523-537.
369	[18] T. Rundberget, E. Gustad, I.A. Samdal, M. Sandvik, C.O. Miles, A convenient
370	and cost-effective method for monitoring marine algal toxins with passive
371	samplers, Toxicon 53 (2009) 543-550.
372	[19] P. Rodríguez, A. Alfonso, E. Turrell, JP.Lacaze, L.M. Botana, Study of solid
373	phase adsorption of paralytic shellfish poisoning toxins (PSP) onto different
374	resins, Harmful Algae 10 (2011) 447-455.
375	[20] A. Caillaud, P. de la Iglesia, E. Barber, H. Eixarch, N. Mohammad-Noor, T.
376	Yasumoto, J. Diogène, Monitoring of dissolved ciguatoxin and maitotoxin using
377	solid-phase adsorption toxin tracking devices: Application to Gambierdiscus
378	pacificusin culture, Harmful Algae 10 (2011) 433-446.

379	[21] L.A. MacKenzie, <i>In situ</i> passive solid-phase adsorption of micro-algal biotoxins
380	as a monitoring tool, Curr. Opin. Biotech. 21 (2010) 326-331.
381	[22] A. Li, F. Ma, X. Song, R. Yu, Dynamic adsorption of diarrhetic shellfish
382	poisoning (DSP) toxins in passive sampling relates to pore size distribution of
383	aromatic adsorbent, J. Chromatogr. A 1218 (2011) 1437-1442.
384	[23] H. Zhao, J. Qiu, H. Fan, A. Li, Mechanism and application of solid phase
385	adsorption toxin tracking for monitoring microcystins, J. Chromatogr. A 1300
386	(2013) 159-164.
387	[24] Z. Zendong, C. Herrenknecht, E. Abadie, C. Brissard, C. Tixier, F. Mondeguer, V.
388	Séchet, Z. Amzil, P. Hess, Extended evaluation of polymeric and lipophilic
389	sorbents for passive sampling of marine toxins, Toxicon xxx (2014) xxx. Doi:
390	10.1016/j.toxicon.2014.03.010
391	[25] G. Pizarro, A. Moroño, B. Paz, J.M. Franco, Y. Pazos, B. Reguera, Evaluation of
392	passive samplers as a monitoring tool for early warning of Dinophysis toxins in
393	shellfish, Mar. Drugs 11 (2013) 3823-3845.
394	[26] Q. Gao, C. Pan, F. Liu, F. Lu, D. Wang, J. Zhang, Y. Zhu, Adsorption
395	characteristics of malic acid from aqueous solutions by weakly basic
396	ion-exchange chromatography, J. Chromatogr. A 1251 (2012) 148-153.
397	[27] X. Li, Z. Li, J. Chen, Q. Shi, R. Zhang, S. Wang, X. Wang, Detection, occurrence
398	and monthly variations of typical lipophilic marine toxins associated with
399	diarrhetic shellfish poisoning in the coastal seawater of Qingdao City, China,

400 Chemosphere 111 (2014) 560-567.

+ 1

403	Table1 Dynamic adsorption equations for OA and DTX1 toxins by HP20 resin simulated using different mathematical models

Salinity of seawater	Toxins	Elovich equation q=a+b×Lnt	Double constant equation Lnq=b×Lnt+Lna	Parabolic diffusion equation $q=a+b\times\sqrt{t}$	First order kinetic equation Lnq=a+b×t	Pseudo-secondary kinetics equation t/q=a+b×t
	OA	y=134.8 x-306.1	y=0.558x+3.43	y=38.62 x+31.46	y=0.0158x+4.16	y=0.00091x+0.1153
High salinity		$R^2 = 0.9199$	$R^2 = 0.9215$	$R^2 = 0.8993$	$R^2 = 0.9588$	$R^2 = 0.9776$
(27‰)	DTV1	y=333.5x-790.1	y=0.684 x+3.28	y=56.74 x+40.54	y=0.0043x+5.61	y=0.00062x+0.0816
	DIXI	$R^2 = 0.9502$	<i>R</i> ² =0.9517	$R^2 = 0.8923$	$R^2 = 0.5324$	$R^2 = 0.9832$
	OA	y=116.2 x-166.5	y=0.449x+4.29	y=44.51 x+106.73	y=0.0027x+5.84	y=0.00098x+0.0534
Medium		$R^2 = 0.9474$	$R^2 = 0.9305$	$R^2 = 0.8816$	$R^2 = 0.5225$	$R^2 = 0.9957$
(13.5%)	DTX1	y=302.2 x-488.3	y=0.438 x+4.70	y=63.45 x+153.12	y=0.0027x+6.20	y=0.00069x+0.0374
		<i>R</i> ² =0.9597	$R^2 = 0.9371$	$R^2 = 0.8858$	$R^2 = 0.5452$	$R^2 = 0.9951$
	OA	y=99.1 x-125.0	y=0.329 x+4.20	y=31.97 x+139.03	y=0.0083x+4.97	y=0.0011x+0.0668
Low		$R^2 = 0.9573$	$R^2 = 0.9476$	$R^2 = 0.8995$	$R^2 = 0.9440$	$R^2 = 0.9964$
(9‰)	DTX1	y=263.1x-406.5	y=0.383x+4.81	y=48.06 x+195.47	y=0.0027x+6.10	y=0.00072x+0.0454
		$R^2 = 0.9761$	$R^2 = 0.9456$	$R^2 = 0.8963$	$R^2 = 0.6148$	$R^2 = 0.9979$

404

Salinity of seawater Toxins		Pseudo-secondary h kinetics equation		Q _e ,cal	Q _e ,exp	
High salinity	OA	y=0.00091x+0.1153	8.67	1100	901	
(27‰)	DTX1	y=0.00062x+0.0816	12.25	1610	1310	
Medium	OA	y=0.00098x+0.0534	18.73	1020	900	
(13.5%)	DTX1	y=0.00069x+0.0374	26.74	1450	1290	
Low salinity	OA	y=0.0011x+0.0668	14.97	909	868	
(9‰)	DTX1	y=0.00072x+0.0454	22.03	1390	1280	

405 Table2 Comparison of experimental values and theoretical values of adsorption of OA

406 and DTX1 toxins by HP20 resin simulated by the Pseudo-secondary kinetics equation.

407 Note: h(=1/a) means the initial sorption rate (ng/(g·min)); Q_e, cal (=1/b) means the

408 theoretical values were calculated according to the Pseudo-secondary kinetics

409 equations; Q_e,exp means the actual values were tested in the adsorption experiments.

410

411 **Table3** Specific surface areas and average pore volumes of HP20 resins before and

Salinity of seawaters	Characteristic index	Before adsorption for toxins	After adsorption for toxins	Changing ratio (%)
High	Specific surface area (m^2/g)	654.7	539.3	-17.6
salinity (27‰)	Average pore volume (cm ³ /g)	1.30	1.18	-9.2
Medium	Specific surface area (m ² /g)	558.3	546.0	-2.2
(13.5‰)	Average pore volume (cm ³ /g)	1.01	1.18	+16.8
Low salinity	Specific surface area (m^2/g)	604.5	552.3	-8.6
(9‰)	Average pore volume (cm ³ /g)	1.11	0.97	-12.6

412 after adsorption for OA and DTX1 toxins in seawaters of different salinity.

413 Note: specific surface area was calculated by the BET model; average pore volume

414 (pore size 1.7 - 300 nm) was calculated by the BJH model.

k contraction of the second se

415 **Legends of figures**

416	Fig.1. Chemical structures of OA and its analogue DTX1.
417	Fig.2. LC-MS/MS chromatograms of OA and DTX1 in one sample collected from the
418	artificial seawater at low salinity after 30-min exposure in adsorption experiment.
419	Three different transitions of parent ions m/z 827.5 and 841.5 were used to
420	qualify OA and DTX1, respectively. The concentrations of OA and DTX1 in this
421	sample were tested as 1.85 and 2.77 ng/mL, respectively.
422	Fig.3. Dynamic adsorption curves of OA (a) and DTX1 (b) toxins by HP20 resin in
423	seawaters with different salinity.
424	Fig.4. Average linear adsorption rates of OA (a) and DTX1 (b) toxins by HP20 resin
425	in seawaters with different salinity calculated in different time period.
426	Fig.5. Accumulative pore volumes for different interval pore size of HP20 resin
427	before and after adsorption for OA and DTX1 toxins in seawaters with different
428	salinity.
429	Fig.6. Scanning electron microscopes (SEM) of HP20 resin before and after
430	adsorption under different salinity conditions. SEM of high salinity blank (a) and
431	high salinity (b), medium salinity blank (c) and medium salinity (d), low salinity
432	blank (e) and low salinity (f) are compared separately.

25

Fig. 1

Fig.2

Norder K

Fig. 3

Fig. 4

Fig. 6