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Optimisation of the time series 
reconstruction

Introduction
If Newman's approximation is used to calculate the low frequency part of the non-
linear transfer between the waves and the forces on an LNG carrier, the CPU time to
make the time series reconstruction of wave loads is a small part of the total. How-
ever, using full QTF-matrices increases the required work by a factor equal to the
number of wave components in the sea states and the total simulation time can be
increased by 5 or 10.

Moreover, if we consider the multi-directional sea, the double summation becomes
a quadruple summation at second order which is extremely time-consuming.

There is a way to accelerate this computation by making an algebraic or system
approximation of the QTF. The aim of this report is to present the solutions, the
problems and the performances of such system approximation.

After a brief presentation of the modeling of forces and response of a moored ves-
sel, we will introduce a general approach of approximation of a quadratic transfer
function.

A particular case of approximation consists of factorising the full matrix of QTF,
considering only the main (highest modulus) eigenvalues and corresponding eigen-
vectors. We will see in using this approximation, that, the double summation with
the number of waves multiplying the number of waves becomes that with the
number of eigenvalues multiplying the number of waves.

The gain is then equal to ratio between the number of waves and that of eigenvalues
in uni-directional waves, while in multi-directional sea, the gain could be even more
important (equal to the number of waves multiplying the number of headings and
divided by the number of eigenvalues).

This study will compare the different approaches of this method on a case study fur-
nished by Bureau Veritas. Extensive results are given for QTF uni-directional and
some first results are commented for QTF multi-directional.
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General considerations, uni- or multi-directional case, will be discussed on the dif-
ferent manners to run the approximation: eigendecomposition on the total QTF
(including or not the wave spectrum), eigen-decomposition on a sub-frequency-
band QTF, interpolation before or after approximation, corrections of the approxi-
mation of mean and standard deviation of the low frequency forces.

The assessment of the quality of the approximation will be presented on average
and extreme distances. Some information on the number of operations and CPU
time will be given.
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Modeling of the low frequency behaviour

The behaviour of the vessel is modeled in a simplified way, first by a linear (RAO)
plus a quadratic (QTF) transfer between the linear wave elevation  and the
forces  (1) and secondly by a linear dynamic system between the forces and the
movements (2).

(1)

(2)

The sign  is for time convolution, , , the impulse response of the linear
transfers and  the quadratic impulse response. ,  and  are respec-
tively the mass, damping and stiffness coefficients.

In term of transfer function, the following diagram can summarize this modeling.

FIGURE 1 : Vessel behaviour transfer model

with  the 2D Fourier transform of , and ,  the Fou-
rier transform of  and .
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In fact, the problem that we study in this report is the optimisation of the time series
reconstruction, neither  nor  make problem, but only the quadratic
part and its low frequency components that is reduced to the difference terms when
considering waves reduced to a high frequency band. In the same way, if the move-
ment has to be simulated,  as a linear transfer must be left outside the optimi-
sation.

The second order force time series can be written in function of the Fourier trans-
form of the wave time series  as

(3)

which could be split into

(4)

which simplifies in a sum part nonlinear interactions and difference part nonlinear
interactions (low frequency part)

(5)

In the sequel we will be interested only in the difference part of the forces
and of the difference part of the QTF, .
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Approximation of a quadratic system
The simplest schemes of quadratic systems are of two types, squarer in time
(Fig. 2) or diagonal-dominant in frequency (Fig. 3). Each of these schemes asks
only for 1D calculations for simulations. For the squarer nonlinearity (we call it S
in the sequel) the second order impulse response of the quadratic part is diagonal.

(7)

and corresponds to a QTF full of 1.

For the diagonal-dominant nonlinearity (we call it D in the sequel) it is the fre-
quency transfer function itself which is (upper/lower) diagonal

(8)

Rem. The system S is often called in system theory, L-N-L or Wiener-Hammerstein
model (L-N-L for Linear dynamic-Nonlinear static-Linear dynamic), with here a
static nonlinearity which is a squarer.

FIGURE 2 : Squarer nonlinearity system S

FIGURE 3 : Diagonal-dominant nonlinearity D

A general quadratic transfer function (Fig. 4), as the one used for the modeling of
low frequency forces or movements, if decomposed as a sum of a reduced number
of such simple quadratic systems (Fig. 5), is shortly simulated. The simulation time
is of course proportional to the number of systems necessary to well approximate
the original quadratic transfer function.

A general quadratic system contains two linear transfer functions, one before the
quadratic transfer and one after (Fig. 4). As these transfers do not increase really
the complexity of the simulation, it is not always interesting to integrate these lin-
ear transfers in the global quadratic transfer function before the synthesis. In that
case the global QTF is written (see [7])
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(9)

Sometimes, the fact to consider  increases drastically the number of
elementary systems necessary to well approximate the quadratic transfer. The
choice of integration or not of  and/or  depends of the formulation of this lin-
ear transfers.

The general synthesis of a QTF with combination of S and D systems is very com-
plicated and needs the resolution of a highly nonlinear problem. Meanwhile some
progresses could be made in that sense in future works.

Two particular decompositions are simple to solve. A first classical one is used
when the quadratic transfer function is diagonal dominant. In that case only the
terms around the diagonal are kept and the system corresponds to the sum of a
reduced number of D systems with

(10)

FIGURE 4 : General quadratic system

The second one is the combination in parallel of Wiener or L-N models (L-N for
Linear dynamic-Nonlinear static). We will see hereafter how it is possible to syn-
thesise the low frequency behaviour of the system as a sum of squarer systems
(Fig. 2) with 

FIGURE 5 : S and D system decomposition
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Synthesis of the low frequency transfer
The quadratic transfer function, which corresponds to the difference term, is Her-
mitian. If its eigendecomposition exists

(11)

the QTF can be written

(12)

with properties of orthogonality between the eigenfunctions .

So the force  in (6) can be expressed as a sum of simple quadratic systems

(13)

where the term into the modulus is the analytic signal associated to the output of a
linear system 
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with

(15)

Then  can be written

(16)
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(18)

(19)

which makes  periodic with a period  and sampled at the fre-
quency 

It induces that (11) is a classical algebraic eigenproblem, which gives  eigenval-
ues  and eigenvectors .

(20)

and the ,  are formulated as

(21)

and

(22)

So, (20) can be modelised as a combination of  L-N models (the Hilbert trans-
form  is a linear operator).

FIGURE 6 : Synthesis of the low frequency QTF transfer
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that is to say, that gives an acceptable error  on . The definition of the
norm of the error and what is acceptable left to be defined.

(23)

All what have been described before can be generalized to directional waves and
directional quadratic transfer function without theoretical problem.

(24)

and

(25)

with

(26)

Of course we could expect that the number of eigentransfers necessary to well
approximate the QTF will be higher than in the non-directional case.

This technique of approximation of QTF has been now often used for the estima-
tion of statistics of second order phenomena (second order waves, low frequency
forces and response). See for example [1],[2],[3] or [5].
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Approximation of the low frequency transfer
The Euclidian norm of a matrix is given by the highest singular value of the matrix.
In the case of a Hermitian matrix, the singular values of the matrix are equal to the
absolute value of the eigenvalues. So, if the eigendecomposition of the discretised
QTF is

(27)

with

(28)

the best approximation is given by keeping the eigenvalues of highest modulus

(29)

The norm of the matrix residue is given by 

(30)

Example of QTF approximation

An illustration of the QTF approximation is given Figure 7.

The QTF was calculated on 200 frequencies with a frequency step
 from the interpolation and restriction to the wave frequency band

[0.35,0.55 rad/s] of an original QTF. The approximation obtained in keeping 3
eigenvalues from the 200 initial eigenvalues is very good (the figure shows the
modulus of the QTF).

In Figure 8 we verify that the quality of the approximation is good. The absolute
value of the eigenvalues decrease very rapidly and the norm of the QTF residue
(the fourth eigenvalue) is very small compared to the norm of the QTF (the first
eigenvalue).
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FIGURE 7 : QTF (200 eigenvalues - left) vs approximated QTF (3
eigenvalues - right)

FIGURE 8 : QTF ten first eigenvalues
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Steps of approximation
The step of approximation can be applied in different ways on the Quadratic Trans-
fer Function.

Frequency sub-band. If the useful wave frequency band is a band defined by
[ω1,ω2] (no energy outside this band), it is more interesting to approximate (diago-
nalise) only the QTF restricted to this band

(31)

This will decrease the number of eigenvalues necessary to reach the same level of
approximation.

Interpolation. The QTF are calculated by the hydrodynamic software with a fre-
quency step . This step generally does not correspond to the step necessary for
the simulation  as used in (17). In fact, generally  is smaller than , and
so it is necessary to interpolate to calculate the . This interpolation
can be made before or after the eigendecomposition. In that later case, the interpo-
lation is made on the eigenvectors . We will choose in both the cases a linear
interpolation.

So four methodologies are possible and will be compared in the sequel of this
study.

• interpolation of raw QTF followed by eigendecomposition
• eigendecomposition of raw QTF followed by interpolation of eigenvectors
• extraction of sub-matrix QTF followed by interpolation of QTF, eigendecom-

position
• extraction of sub-matrix QTF followed by eigendecomposition of sub-matrix

QTF, interpolation of eigenvectors

Eigendecomposition. We used to find the eigenvalues and eigenvectors of the
QTF an IRLM method (Implicit Restarted Lanczos method) [4]&[6]. This algo-
rithm permits to calculate only the first eigenvalues of highest modulus of large
matrix and their corresponding eigenvectors. It permits to gain computing time
when the number of eigenvalues needed is very small compared to the size of the
matrix, what is exactly the situation we have to deal with.

Correction. An improvement of the reconstruction of the time series can be
obtained by the calculation of the theoretical mean and variance of the output of the
quadratic transfer. It is very simple to see that the theoretical mean of (19) is given
by

(32)
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Q ω∆ 0,( ) Q ω∆ ω∆,( ) …     

   …     
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        …

∆ω
δω δω ∆ω

Q kδω lδω,( )

ϕi

c-
2( ) t( )〈 〉 2 Q kδω k– δω,( )η kδω( )η kδω( )δωδω

k 0=

N 1–

∑=
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which is very simple to calculate. The approximation of ,  (29) introduces an
error on the mean that can be also calculated in the same way. So, a correction of
the mean of the reconstructed time series can be applied.

In the same way, but with more complicated calculation, which are not given here,
a correction of the variance can also be applied.

So, a lot of reconstruction schemes are possible and will produce different quality
of approximation and computing times. Some are illustrated in Fig. 9 (red, blue and
black paths).

FIGURE 9 : Reconstruction schemes
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Test case
The test case that we used corresponds to the QTF of a vessel which is described in
a Bureau Veritas HAWAI report. It corresponds to a vessel with a draft of 15m in
25m water depth. We only considered in this study the surge response.

The QTF are given from 0.2 rad.s-1 (0.032 Hz) to 1.2 rad.s-1 (0.191 Hz) with a step
0.01 rad.s-1(0.0016 Hz). The modulus of the QTF that we used is given in Fig. 10.

The waves were described by a JONSWAP spectrum with parameters:
Hs = 5m, Tp = 12s and γ = 10 with a wave heading of 165°.

When used, the frequency sub-band is [0.35,0.88 rad/s].

The dynamic transfer (2) has as coefficients:

M = 257.9 106 kg, K = 1. 106 N.m-1, ξ = 0.08, with ξ the critical damping, which
gives a resonant pulsation ω =  = 0.0622 rad.s-1, then a resonant period Tr =
100.9 s. The damping coefficient D is given by 2ξωM.

The time series are simulated with a sampling frequency 0.382 Hz on a duration
which corresponds to 53617 seconds (~1h30) when the number of points of the
time series is 2048.

FIGURE 10 : Modulus of the raw QTF
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Assessment of the computing time
The counting of elementary operations is not always obvious and sometimes
depends of the data itself, for example in convergent iterative schemes, as for
example the eigendecomposition.

Anyway, we give hereafter some information about the relation between number of
operations and size of vectors/matrices that we have to manipulate. In a second part
we will give the computing times obtained on a PC.

Number of operations

First let us define:

• mf the size of the raw QTF (mf x mf)

• mfsb the size of the QTF limited to the frequency sub-band

• k the ratio between the raw frequency step  and the interpolated frequency
step , 

• n the number of eigenvalues
• mθ the number of directions (in the case of multi-directional QTF)

• npt the number of points of the time series simulation

Interpolation is common to all the methods and the number of operations depends
at the same time of mf (or mfsb) and of k.

In the case of uni-directional QTF, mθ=1.

Approximated QTF

Eigenvalue decomposition with IRLM method takes
4.n.(k.mθ.mf)

2+(30.n2+18.n).k.mθ.mf+O(n3)
if a frequency sub-band is used mf=mfsb

This step of eigendecomposition is made one time for a given QTF. For each differ-
ent sea-states or each different wave time series only the following step is neces-
sary.

The simulation itself, (20), (21) and (22) with Fast Fourier Transform is propor-
tional to n.(mθ.npt).log2(mθ.npt)

Full simulation (Eq. (19)) with Fast Fourier Transform takes time proportional to
(mθ.npt)2.log2(mθ.npt)

Dominant diagonal simulation

In the case of a dominant diagonal (19) can be restricted to some  diagonals
around the main diagonal.

(33)

the computing time is then proportional to (nd.mθ).(mθ.npt)

For full and dominant diagonal simulations a step of preparation of calculation of
the  is independent on sea-state and wave time series. This step (Table 2) is
separated in the following tables from the time computing of simulation itself.

∆ω
δω δω k∆ω=

nd

c-
2( ) t( ) 2 Q kδω k d+( )– δω,( )η kδω( )η k d+( )δω( )e j– dδωtδωδω

k 0=

N 1–

∑
d nd–=

nd

∑=

e j– kδωt
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The interest of one or another method depends approximately, when npt is high, on
the comparison between n, (nd.mθ) and (npt.mθ).

Computing times

We give hereafter (Tables 1-3) some computing times obtained with a PC (Intel
Duo Core, 2.4GHz, 2Go RAM), and Matlab version 7.01.

Table 1 gives the CPU times necessary for the preparation of the QTF before the
simulation itself. Table 2 gives the CPU times corresponding to the calculation of
the  for the full and dominant diagonal methods. Table 3 gives the CPU
times for 100 time series simulations of 1h30 with the three methods.

The full simulation and approximated QTF simulation are calculated with Fast
Fourier Transform and so are independent on a frequency sub-band.

It is clear that approximated QTF and dominant diagonal methods are very interest-
ing in computing time compared to full 2D Fourier transform, as long as n and nd

TABLE 1 : Approximated QTF, k = 8.5

interpolat. (second) eigendecomp. (second) correction (second)

k.mf = 1024 k.mfsb = 452 k.mf = 1024 k.mfsb = 452 k.mf = 1024 k.mfsb = 452

n = 40 1.20 0.40 1.25 0.22 0.44 0.11

n = 20 1.20 0.40 1.03 0.16 0.36 0.08

n = 10 1.20 0.40 0.84 0.13 0.31 0.07

n = 5 1.20 0.40 0.48 0.09 0.31 0.06

TABLE 2 : Full and dominant diagonal preparation, npt = 2048

Full (s) Dominant diagonal

k.mf = 1024 k.mfsb = 452 k.mf = 1024 k.mfsb = 452

1.20 0.40

nd = 160 1.25 0.22

nd = 80 1.03 0.16

nd = 40 0.84 0.13

nd = 20 0.48 0.09

TABLE 3 : Time series simulation - 100 time series, npt = 2048

full (s) approximated QTF (s) dominant diagonal (s)

k.mf = 1024 k.mfsb = 452

n = 40 1.7 nd = 160 10.3 6.14

96 n = 20 0.8 nd = 80 5.3 3.12

n = 10 0.4 nd = 40 2.6 1.56

n = 5 0.2 nd = 20 1.3 0.8

e j– kδωt
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are small. We will see after that, in the uni-directional case, n > 5 gives very good
results. But for the QTF we are working with, approximately nd = 160 is necessary
to have the same level of quality of approximation as n = 10 with the approximated
QTF method (computing times in red in Table 3). This corresponds to a gain of 25
on the CPU time.
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Assessment of the accuracy

Criteria of quality
To determine the quality of the reconstruction of the time series of forces and
movements and the effect of the different choices of methodologies and parameters
(interpolation before vs after, number of eigenvalues, ...) we have to choose one or
more measures of the distance between the time series reconstructed and an "exact"
time series.

We use two types of measure, a first one is average distance on the length of the
time series (mean and standard deviation), the second one is a distance between
statistics of extremes (maximum amplitude of the time series). They are defined
hereafter

Average distances. 

Relative mean distance

(34)

where  stands for statistical expectation,  (resp. ) is the Reference
(resp. reconstructed) time series. In fact it corresponds to the relative error on the
drift force or offset displacement.

Relative standard deviation distance

(35)

with  the centered time series

Extreme distances. 

High level quantiles of the maximum value of a time series (1h30) are calculated
for the reference time series and for the approximated one. 

A quantile  is defined from the cumulative distribution of the maximum as

(36)

Three levels of quantiles have been analysed for  equals 0.999, 0.99 and 0.9.

When we are looking at negative extreme values the definition is changed as

(37)

It is this definition that in fact we will use in our results.

This criteria of goodness of the high quantiles permits to assess the ability of the
approximation to well reproduce extreme behaviour of the system.

All the figures have been calculated after the simulation of 40000 time series for
each cases. This high number of simulations is particularly necessary for a good
estimation of extreme statistics. The case 50 eigenvalues is taken as the reference
as there is not any difference on the previous distances between 50 and 70 eigen-
values. The complete values of these different criteria in the different cases of
approximation are given in Appendix 1. An example of comparison of the time
series with different choices of number of eigenvalues is given in Figure 12. The
quality of the case 50 eigenvalues is also illustrated by the Figure 13, where it is
compared to the full 2D Fourier computation (19). Visually the difference is not

M IE xr t( ) xR t( )–( ) IE xR t( )( )⁄=

IE xR t( ) xr t( )

E IE xr t( ) xR t( )–( )
2

( ) IE xR t( )
2

( )⁄=

x

x x IE x( )–=

qx

P Xmax qx<( ) x=

x

P Xmin qx>( ) x=
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perceptible, and if the time series of the difference of the forces is plotted
(Figure 13, bottom), the residue is close to the order 101 N, compared to the order
of 106 N for the forces, which is quite excellent.

Effect of frequency sub-band

If the choice of a frequency sub-band limits the application of the approximation to
cases where the energy of the waves are in this sub-band, it permits at equal quality
to decrease the number of eigenvalues and so to decrease the time of simulation.

If, for example, we look at the relative residue of the approximation on QTF (see
Eq. (30)), which corresponds to the ratio of modulus of the first neglected eigen-
value to the largest one

(38)

where  and so  integrate the wave spectral density

(39)

we see in Fig. 11, that in the case of interpolation followed by diagonalisation the
gain in the quality is very important for reduced number of eigenvalues. It could be
verified in Appendix 1, that this  is a good indicator of the quality of the approxi-
mation.

FIGURE 11 : Effect of the frequency sub-band on QTF norm residue

Effect of the order of operations and of corrections
In Figs. 14-17 are plotted the relative mean and standard deviation (Eq. 34 & 35) as
function of the number of eigenvalues in the case of frequency sub-band. Figs. 14-
15 for the forces and Figs. 16-17 for the displacements. These figures show, on the
mean as on the standard deviation, a clear degradation of the approximation

ε QT Q̂T– 2 QT 2⁄=

QT Q̂T

QT ω1 ω– 2,( ) Q ω1 ω– 2,( )S ω1( )S ω2( )=

ε
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between interpolation followed by diagonalisation and diagonalisation followed by
interpolation. If diagonalisation followed by interpolation permits a gain in CPU
time (the eigendecomposition is made on a smaller matrix) it is paid by a loss of
quality or CPU time in the simulation.

Meanwhile in the case of multi-directional seas and QTF, it permits to work with
smaller matrices, to decrease CPU time of eigendecomposition and to avoid prob-
lems of memory space.

The effect of corrections on mean and standard deviation of the time series is also
clear. For the mean the correction is total as the mean of the difference is the differ-
ence of the mean, so the mean error due to approximation is completely corrected.
But for the standard deviation of the error, the effect of correction is clearly visible
only for very low number of eigenvalues (<5). Anyway, for 5 eigenvalues the
standard deviation of the error of approximation is only 5% for the forces and 3%
for the displacements.

We could note that there is no difference between the relative mean error on forces
and displacements. This result is obvious as the mean of the displacement is
obtained by a simple multiplication of the mean of forces with  (see Eq. 2 &
Fig. 1).

An interesting result concerns the choice of frequency sub-band. We can note in the
tables of Appendix 1 that, when we use the entire frequency band, the results are
less accurate. For example, taking 25 eigenvalues on the entire frequency band is
equivalent to 10 eigenvalues with the frequency sub-band, although, after the
approximation of the QTF, the 2nd order transfer function will be multiplied by the
limited frequency band of the waves. So, it is important, if possible, to well define
the useful frequency band of the QTF to optimise the reconstructions.

Quantile. The results on quantile 0.999 given in Fig. 18&19, show again, that also
on extremes values, the effect of approximation becomes very weak when the
number of eigenvalues is higher than 5, with a tendency for the displacements
(Fig. 19) to underestimate the extreme values.

Spectral density. Time series simulations of good quality ask also to respect the
distribution of the variance in frequency. Actually, the forces are the input of reso-
nant systems, and the behaviour of these sytstems are mainly driven by the distri-
bution of variance in the frequency band around the resonant frequency. Fig. 20
gives the spectral density of the force for four different approximations. If clearly
the frequency distribution is very bad for two eigenvalues, 5 eigenvalues is not so
bad and 10 eigenvalues is quite perfect. When the correction of the variance is
applied (Fig. 21), the 5 eigenvalues case is even better.

Hx
1– 0( )
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FIGURE 12 : Simulation of forces with 50, 10 and 2 eigenvalues

FIGURE 13 : Simulation of forces, 50 eigenvalues vs. full computation
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FIGURE 14 : Comparison of different methods - Forces - Relative Mean

FIGURE 15 : Comparison of different methods - Forces - Relative Standard
deviation
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FIGURE 16 : Comparison of different methods - Displacements - Relative
Mean

FIGURE 17 : Comparison of different methods - Displacements - Relative
Standard deviation
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FIGURE 18 : Comparison of different methods - Forces - Quantile

FIGURE 19 : Comparison of different methods - Displacements - Quantile
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FIGURE 20 : Spectral density of forces - 50, 10, 5 and 2 eigenvalues

FIGURE 21 : Spectral density of corrected forces - 50, 10, 5 and 2 eigenvalues
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Note on the random frequency method
A now classical method to simulate long time series with a limited number of oper-
ations is to use random frequency simulation.

(40)

In fact, in a simplified way, in (40), the frequencies  in  are not taken
regularly spaced, but as , where  is a random variable uniformly
distributed in [ ] which is drawn independently on each frequency.
This will permit to reduce the number of components , in increasing , keep-
ing the same duration of the time series without periodicity of this time series.
Then, It permits to reduce drastically the computing time without reducing the
length of the time series.

An example is given Figure 22 with the simulation of a wave time series. It corre-
sponds to the first 2400 seconds of 3 hour simulation with a sampling frequency

 equals 1 Hz. The "purely random" corresponds to

(41)

with , 

The "periodic" corresponds to the same formula but with ,
which makes  periodic with a period . The "random fre-
quency" uses the same  but with random frequencies as explained before.

The "random frequency" method, as expected, produces non-periodic time series,
but when we calculate the correlation function (Figure 23) we observe that, for
high time lags, the waves are not uncorrelated as it must be. That is to say that,
when calculating statistics related to the duration of a sea-state (here 3 hours), for
example the maximum crest, these statistics will be biased, and in such a way that
they will be much closer to statistics corresponding to the duration . The conclu-
sion would be the same on .

This effect, of course decreases as  is increased. Anyway, if necessary, this
method could be coupled with the approximation method (Eq. ,21&22) if it is nec-
essary to decrease more the computation time of time series.

c-
2( ) t( ) 2 Q kδω l– δω,( )η kδω( )ejkδωtη lδω( )e j– lδωtδωδω

l 0=
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∑
k 0=

N 1–

∑=

kδω ejkδωt

k 1–( )δω Ω+ Ω
δω 2⁄– δω 2⁄,

N δω
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η t( ) η kδω( )ejkδωtδω
k N 1–( )–=
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FIGURE 22 : Time series - periodic (top), random frequencies (middle),
purely random (bottom)

FIGURE 23 : Correlation functions - periodic (top), random frequencies
(middle), purely random (bottom)
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Multi-directional QTF
As it was seen before (Eqs (24)-(26)), the extension of the method of approxima-
tion of the QTF in the case of directional QTF and waves is quite direct. The
dimension of the QTF is multiplied by the number of directions which are consid-
ered. An example of QTF for 5 heading directions is given in Fig. 24.

One problem that could be encountered is that the frequency interpolated direc-
tional QTF has a size not compatible with the memory of the computer, mainly for
the eigendecomposition. One solution is to choose to interpolate after the eigende-
composition. As we commented before this method induces a light loss of accuracy
at equal number of eigenvalues, but it is sometimes the only solution and it also
permits to reduce drastically the CPU time for the eigendecomposition.

FIGURE 24 : Modulus of the raw directional QTF on the frequency sub-band

To analyse the accuracy of approximation obtained in the directional case, we have
compared the relative Euclidian norm of the residue of approximation of the QTF

(42)

which, as we discussed before, is a good indicator of the quality of the recon-
structed time series.  indicates  approximated with x eigenvalues.

Two different directional QTFs have been considered, one with 5 heading direc-
tions [0°,10°,20°,30°,40°] (Fig. 24) and a second one with 10 heading directions
[0°,10°,20°,30°,40°,50°,60°,70°,80°,90°]. The method with frequency sub-band
and interpolation before eigendecomposition has been used. The results have been
compared to the uni-directional case (heading=0°).

Figure 25 shows the relative residue for these three cases in function of the number
of eigenvalues of the approximation. These curves indicates that the number of
eigenvalues necessary to keep the same accuracy as in the uni-directional case cor-
responds to multiply the number of eigenvalues of the uni-directional case by a
number slightly lower than the number of heading directions.

ε QTFxev QTF– 2 QTF 2⁄=

QTFxev QTF
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In a different way, we have plotted in Figure 26, the ratio, at a given residue,
between the number of eigenvalues in the directional case (5 and 10 dir.) and this
number for the unidirectional case. It shows, in a strange way, that the ratio reaches
a maximum around ε=3.10-2 and decreases for higher accuracies to reach approxi-
mately the number of heading directions multiply by 3/5.

In using the figures of part "Assessment of the computing time" and "Assessment of
the accuracy", we can estimate that, in the case of 10 heading directions, 100 sec-
onds will be necessary to simulate 100 time series of 1h30, with an accuracy of

.

FIGURE 25 : Relative residue vs number of eigenvalues

FIGURE 26 : Multi-/uni-directional number of eigenvalues vs relative residue
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Conclusion
We have seen in this report, how the approximation of the full matrix of QTF based
on eigendecomposition, could permit to reduced the CPU time of the time series
reconstruction.

Different options have been discussed (interpolation before/after diagonalisation,
use of frequency sub-band, correction of effect of eigenvalue truncation on mean
and variance).

The effect of these options and of the number of the eigenvalues on the accuracy of
the simulations have been analysed. It showed that the accuracy in average values
and extreme statistics stays acceptable with a reduced number of eigenvalues.

Then the CPU time is reduced in such a way that the double summation with the
number of waves multiplying the number of waves becomes that with the number
of eigenvalues multiplying the number of waves.

In directional QTF case, the gain in CPU time has been estimated. Results obtained
in another project on simulation of second order waves by the same technique of
approximation of the QTF were more optimistic on the number of eigenvalues for
directional case. It seems that it is mainly due to the fact that in the case of second
order wave QTF, the QTF is only dependent on the difference between the direc-
tion . This is not the case for the low frequency force QTF, which gives to
the QTF a more complex structure.

The gain in CPU time seems to stay more or less the same as in uni-directional, i.e.
number of waves divided by number of eigenvalues of the uni-directional case,
whatever the number of heading directions. This point has to be confirmed and pre-
cised in future studies. Meanwhile, in the case we tested, a gain of 20 in the CPU
time is reached with very good accuracy on time series reconstruction. This gain is
completely dependent on the density of the QTF around one diagonal.

A mixing of QTF approximation by eigendecomposition and diagonal dominant
techniques could certainly permit to reduce more the CPU time, but this needs
complementary tedious works.

θi θj–
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Appendix 1: Mean, variance and quantile comparisons
In the following tables are gathered all the comparisons between reference time
series and approximated ones in the uni-directional case.

•  is the relative Euclidian norm of the resi-
due of approximation of the QTF, when keeping only x eigenvalues.

•  is the same but on the QTF which includes the

wave density spectrum .

• x, x’ and x’’ give the quantiles 0.999, 0.99 and 0.9.
• mean_Fxev (resp. mean_Sxev) is the mean of forces (resp. displacement) when

keeping only x eigenvalues.
• Mf (resp. Ms) is the relative error on the mean of forces (resp. displacements)

(Equation (34)).
• Ec_Fxev (resp. Ec_Sxev) is the standard deviation of forces (resp. displacement)

when keeping only x eigenvalues.
• Ef (resp. Es) is the relative error on the standard deviation of forces (resp. dis-

placements) (Equation (35)).
• "inter/diag" (resp. "diag/interp") indicates the order of operations of interpola-

tion and diagonalisation.
• "corrected" indicates that correction on mean and variance have been applied

(Equations (32)).

Appendix 1: Mean, variance and quantile 
comparisons

ε QTFxev QTF50ev– QTF50ev⁄=

ε' Qxev Q50ev– Q50ev⁄=

QTF ω1 ω2,( )S ω1( )S ω2( )
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TABLE 4 : 25 eigenvalues
25  eigenvalues 
 
ε = ||QTF25ev-QTF50ev||2 /  || QTF50ev||2 

 
Frequency sub-band : 
ε interp/diag = 8.13 10-3 
ε diag/interp = 1.21 10-2 

All frequencies :  
ε interp/diag = 3.76 10-2 
ε diag/interp = 3.90 10-2 

 
ε’ = ||Q25ev-Q||2 /  || Q||2 
 
Frequency sub-band : 
ε’ interp/diag = 1.36 10-2 
ε’ diag/interp = 1.89 10-2 

All frequencies :  
ε’ interp/diag = 1.18 10-1 
ε’ diag/interp = 1.20 10-1 

 
Frequency sub-band 

All frequencies 

 P(F25evmin> x)=0.999 
P(F25evmin> x’)=0.99 
P(F25evmin> x’’)=0.90 

P(F50evmin> x)=0.999 
P(F50evmin> x’)=0.99 
P(F50evmin> x’’)=0.90 

Mean Standard deviation 

interp/diag 
 

x = -4.00 106 

x’= -3.30 106 
x’’= -2.52 106 

x = -4.00 106 

x’= -3.29 106 
x’’= -2.52 106 

mean_F25ev= -2.80 105 
mean_S25ev= -2.80 10-1 
Mf = -7.86 10-3 

Ms = -7.86 10-3 

Ec_F25ev= 3.26 105  
Ec_S25ev= 7.97 10-1 
Ef = 1.05 10-2 

Es = 5.2 10-3 

diag/interp 
 

x = -4.00 106 

x’= -3.30 106 
x’’= -2.53 106 

x = -3.99 106 

x’= -3.29 106 
x’’= -2.52 106 

mean_F25ev= -2.85 105 
mean_S25ev= -2.85 10-1 
Mf =2.56 10-2 

Ms =2.56 10-2 

Ec_F25ev= 3.27 105 
Ec_S25ev= 7.99 10-1 
Ef = 1.74 10-2 

Es = 9.78 10-3 

interp/diag 
corrected 
 

x = -4.00 106 

x’= -3.29 106 
x’’= -2.52 106 

x = -4.00 106 

x’= -3.29 106 
x’’= -2.52 106 

mean_F = -2.78 105 
mean_S = -2.78 10-1 
Mf = -4.51 10-5 
Ms = -4.53 10-5 

Ec_F = 3.27 105  
Ec_S = 7.97 10-1 

Ef = 1.05 10-2 

Es =5.19 10-3 

diag/interp 
corrected 
 

x = -3.99 106 

x’= -3.29 106 
x’’= -2.52 106 

x = -3.99e6 

x’= -3.29 106 
x’’= -2.52 106 

mean_F = -2.78 105 
mean_S = -2.78 10-1 
Mf = -1.13 10-4 
Ms = -9.87 10-4 

Ec_F = 3.27 105  
Ec_S = 7.97 10-1 
Ef = 1.73 10-2 

Es = 9.74 10-3 

 P(F25evmin> x)=0.999 
P(F25evmin> x’)=0.99 
P(F25evmin> x’’)=0.90 

P(F50evmin> x)=0.999 
P(F50evmin> x’)=0.99 
P(F50evmin> x’’)=0.90 

Mean Standard deviation 

interp/diag 
 

x = -3.99 106 

x’= -3.30 106 
x’’= -2.52 106 

x = -4.00 106 

x’= -3.31 106 
x’’= -2.53 106 

mean_F25ev= -2.87 105 
mean_S25ev= -2.87 10-1 

Mf = -1.90 10-2 

Ms = -1.90 10-2 

Ec_F25ev= 3.26 105  
Ec_S25ev= 7.97 10-1 

Ef = 3.07 10-2 

Es = 1.67 10-2 

diag/interp 
 

x = -3.97 106 

x’= -3.28 106 
x’’= -2.51 106 

x = -4.00 106 

x’= -3.30 106 
x’’= -2.53 106 

mean_F25ev= -2.79 105 
mean_S25ev= -2.79 10-1 

Mf = -4.06 10-2 

Ms = -4.06 10-2 

Ec_F25ev= 3.26 105  
Ec_S25ev= 8.04 10-1 

Ef = 4.12 10-2 

Es = 2.81 10-2 

interp/diag 
corrected 
 

x = -4.00 106 

x’= -3.31 106 
x’’= -2.53 106 

x = -4.00 106 

x’= -3.31 106 
x’’= -2.53 106 

mean_F = -2.89 105 
mean_S = -2.89 10-1 
Mf = -7.48 10-5 
Ms = -7.47 10-5 

Ec_F = 3.27 105  
Ec_S = 7.97 10-1 

Ef = 3.07 10-2 

Es = 1.66 10-2 

diag/interp 
corrected 
 

x = -4.00 106 

x’= -3.31 106 
x’’= -2.53 106 

x = -4.00 106 

x’= -3.30 106 
x’’= -2.53 106 

mean_F = -2.89 105 
mean_S = -2.89 10-1 

Mf = -2.80 10-4 
Ms = -3.38 10-4 

Ec_F = 3.27 105  
Ec_S = 7.97 10-1 

Ef = 4.11 10-2 

Es = 2.75 10-2 
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TABLE 5 : 10 eigenvalues
10  eigenvalues 
 
ε = ||QTF10ev-QTF50ev||2 /  || QTF50ev||2 

 
Frequency sub-band : 
ε interp/diag = 3.92 10-2 
ε diag/interp = 4.01 10-2 

All frequencies :  
ε interp/diag = 1.20 10-1 
ε diag/interp = 1.00 10-1 

 
ε’ = ||Q10ev-Q||2 /  || Q||2 
 
Frequency sub-band : 
ε’ interp/diag = 1.36 10-2 
ε’ diag/interp = 1.89 10-2 

All frequencies :  
ε’ interp/diag = 1.18 10-1 
ε’ diag/interp = 1.20 10-1 

 
Frequency sub-band 

All frequencies 

 P(F10evmin> x)=0.999 
P(F10evmin> x’)=0.99 
P(F10evmin> x’’)=0.90 

P(F50evmin> x)=0.999 
P(F50evmin> x’)=0.99 
P(F50evmin> x’’)=0.90 

Mean Standard deviation 

interp/diag 
 

x = -4.01 106 

x’= -3.31 106 
x’’= -2.53 106 

x = -4.00 106 

x’= -3.29 106 
x’’= -2.52 106 

mean_F10ev= -2.85 105 
mean_S10ev= -2.85 10-1 

Mf = -2.48 10-2 

Ms = -2.48 10-2 

Ec_F10ev = 3.27 105 
Ec_S10ev= 7.97 10-1 

Ef = 3.05 10-2 

Es = 1.69 10-2 

diag/interp 
 

x = -4.01 106 

x’= -3.31 106 
x’’= -2.53 106 

x = -3.99 106 

x’= -3.29 106 
x’’= -2.52 106 

mean_F10ev= -2.85 105 
mean_S10ev= -2.85 10-1 

Mf = -2.64 10-2 

Ms = -2.64 10-2 

Ec_F10ev = 3.27 105 
Ec_S10ev= 7.94 10-1 

Ef = 3.41 10-2 

Es = 2.13 10-2 

interp/diag 
corrected 
 

x = -4.00 106 

x’= -3.30 106 
x’’= -2.52 106 

x = -4.00 106 

x’= -3.29 106 
x’’= -2.52 106 

mean_F = -2.78 105 
mean_S = -2.78 10-1 
Mf = -2.02 10-4 
Ms = -2.12 10-4 

Ec_F = 3.27 105  
Ec_S = 7.97 10-1 

Ef = 3.05 10-2 

Es = 1.69 10-2 

diag/interp 
corrected 
 

x = -4.00 106 

x’= -3.30 106 
x’’= -2.52 106 

x = -3.99 106 

x’= -3.29 106 
x’’= -2.52 106 

mean_F = -2.78 105 
mean_S = -2.78 10-1 
Mf = -1.91 10-4 
Ms = -2.29 10-4 

Ec_F = 3.27 105  
Ec_S = 7.97 10-1 

Ef = 3.41 10-2 

Es = 2.10 10-2 

 P(F10evmin> x)=0.999 
P(F10evmin> x’)=0.99 
P(F10evmin> x’’)=0.90 

P(F50evmin> x)=0.999 
P(F50evmin> x’)=0.99 
P(F50evmin> x’’)=0.90 

mean Standard deviation 

interp/diag 
 

x = -3.99 106 

x’= -3.28 106 
x’’= -2.53 106 

x = -4.00 106 

x’= -3.31 106 
x’’= -2.53 106 

mean_F10ev= -3.03 105 
mean_S10ev= -3.03 10-1 

Mf = -3.99 10-2 

Ms = -3.99 10-2 

Ec_F10ev= 3.19 105  
Ec_S10ev= 7.55 10-1 

Ef = 1.25 10-1 

Es = 1.08 10-1 

diag/interp 
 

x = -3.98 106 

x’= -3.27 106 
x’’= -2.52 106 

x = -4.00 106 

x’= -3.30 106 
x’’= -2.53 106 

mean_F10ev= -3.03 105 
mean_S10ev= -3.03 10-1 

Mf = -4.48 10-2 

Ms = -4.48 10-2 

Ec_F10ev= 3.18 105  
Ec_S10ev= 7.51 10-1 

Ef = 1.29 10-1 

Es = 1.15 10-1 

interp/diag 
corrected 
 

x = -4.05 106 

x’= -3.34 106 
x’’= -2.56 106 

x = -4.00 106 

x’= -3.31 106 
x’’= -2.53 106 

mean_F = -2.89 105 
mean_S = -2.89 10-1 
Mf = -5.24 10-4 
Ms = -8.00 10-4 

Ec_F = 3.27 105  
Ec_S = 7.97 10-1 

Ef = 1.25 10-1 

Es = 9.49 10-2 

diag/interp 
corrected 
 

x = -4.06 106 

x’= -3.34 106 
x’’= -2.56 106 

x = -4.00 106 

x’= -3.30 106 
x’’= -2.53 106 

mean_F = -2.89 105 
mean_S = -2.89 10-1 
Mf = -6.08 10-4 
Ms = -9.03 10-4 

Ec_F = 3.27 105  
Ec_S = 7.97 10-1 

Ef = 1.28 10-1 

Es = 9.99 10-2 
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TABLE 6 : 5 eigenvalues
5  eigenvalues 
 
ε = ||QTF5ev-QTF50ev||2 /  || QTF50ev||2 

 
Frequency sub-band : 
ε interp/diag = 1.33 10-1 
ε diag/interp = 1.32 10-1 

All frequencies :  
ε interp/diag = 4.24 10-1 
ε diag/interp = 3.13 10-1 

 
ε’ = ||Q5ev-Q||2 /  || Q||2 
 
Frequency sub-band : 
ε’ interp/diag = 4.30 10-2 
ε’ diag/interp = 1.26 10-1 

All frequencies :  
ε’ interp/diag = 2.44 10-1 
ε’ diag/interp = 2.50 10-1 

 
Frequency sub-band 

All frequencies 

 P(F5evmin> x)=0.999 
P(F5evmin> x’)=0.99 
P(F5evmin> x’’)=0.90 

P(F50evmin> x)=0.999 
P(F50evmin> x’)=0.99 
P(F50evmin> x’’)=0.90 

Mean Standard deviation 

interp/diag 
 

x = -3.93 106 

x’= -3.23 106 
x’’= -2.47 106 

x = -4.00 106 

x’= -3.29 106 
x’’= -2.52 106 

mean_F5ev= -2.57 105 
mean_S5ev= -2.57 10-1 

Mf = 7.50 10-2 

Ms = 7.50 10-2 

Ec_F5ev= 3.22 105  
Ec_S5ev= 8.04 10-1 

Ef = 6.07 10-2 

Es = 3.40 10-2 

diag/interp 
 

x = -3.98 106 

x’= -3.29 106 
x’’= -2.53 106 

x = -3.99 106 

x’= -3.29 106 
x’’= -2.52 106 

mean_F5ev= -2.99 105 
mean_S5ev= -2.99 10-1 

Mf = -7.71 10-2 

Ms = -7.71 10-2 

Ec_F5ev= 3.21 105  
Ec_S5ev= 7.57 10-1 
Ef = 1.34 10-1 

Es = 1.10 10-1 

interp/diag 
corrected 
 

x = -4.00 106 

x’= -3.30 106 
x’’= -2.52 106 

x = -4.00 106 

x’= -3.29 106 
x’’= -2.52 106 

mean_F = -2.78 105 
mean_S = -2.78 10-1 

Mf = 4.34 10-4 
Ms = 5.85 10-4 

Ec_F = 3.27 105  
Ec_S = 7.97 10-1 

Ef = 5.96 10-2 

Es = 3.27 10-2 

diag/interp 
corrected 
 

x = -4.02 106 

x’= -3.33 106 
x’’= -2.54 106 

x = -3.99 106 

x’= -3.29 106 
x’’= -2.52 106 

mean_F = -2.78 105 
mean_S = -2.78 10-1 

Mf = -4.45 10-4 
Ms = -7.11 10-4 

Ec_F = 3.27 105  
Ec_S = 7.97 10-1 

Ef = 1.34 10-1 

Es = 1.00 10-1 

 P(F5evmin> x)=0.999 
P(F5evmin> x’)=0.99 
P(F5evmin> x’’)=0.90 

P(F50evmin> x)=0.999 
P(F50evmin> x’)=0.99 
P(F50evmin> x’’)=0.90 

Mean Standard deviation 

interp/diag 
 

x = -3.75 106 

x’= -3.08 106 
x’’= -2.37 106 

x = -4.00 106 

x’= -3.31 106 
x’’= -2.53 106 

mean_F5ev= -2.79 105 
mean_S5ev= -2.79 10-1 

Mf = 4.48 10-2 

Ms = 4.48 10-2 

Ec_F5ev= 2.89 105  
Ec_S5ev= 6.20 10-1 

Ef = 2.85 10-1 

Es = 2.81 10-1 

diag/interp 
 

x = -3.73 106 

x’= -3.07 106 
x’’= -2.36 106 

x = -4.00 106 

x’= -3.30 106 
x’’= -2.53 106 

mean_F5ev= -2.79 105 
mean_S5ev= -2.79 10-1 

Mf = 3.98 10-2 

Ms = 3.98 10-2 

Ec_F5ev= 2.88 105  
Ec_S5ev= 6.15 10-1 

Ef = 2.92 10-1 

Es = 2.91 10-1 

interp/diag 
corrected 
 

x = -4.21 106 

x’= -3.45 106 
x’’= -2.65 106 

x = -4.00 106 

x’= -3.31 106 
x’’= -2.53 106 

mean_F = -2.89 105 
mean_S = -2.89 10-1 

Mf = -1.43 10-3 
Ms = -2.64 10-4 

Ec_F = 3.27 105  
Ec_S = 7.97 10-1 

Ef = 2.76 10-1 

Es = 1.85 10-1 

diag/interp 
corrected 
 

x = -4.21 106 

x’= -3.45 106 
x’’= -2.65 106 

x = -4.00 106 

x’= -3.30 106 
x’’= -2.53 106 

mean_F = -2.78 105 
mean_S = -2.78 10-1 

Mf = -1.53 10-3 
Ms = -2.78 10-4 

Ec_F = 3.27 105  
Ec_S = 7.97 10-1 

Ef = 2.83 10-1 

Es = 1.95 10-2 
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TABLE 7 : 2 eigenvalues
2  eigenvalues 
 
ε = ||QTF2ev-QTF50ev||2 /  || QTF50ev||2 

 
Frequency sub-band : 
ε interp/diag = 5.36 10-1 
ε diag/interp = 5.43 10-1 

All frequencies :  
ε interp/diag = 9.49 10-1 
ε diag/interp = 6.39 10-1 

 
ε’ = ||Q2ev-Q||2 /  || Q||2 
 
Frequency sub-band : 
ε’ interp/diag = 1.85 10-1 
ε’ diag/interp = 2.62 10-1 

All frequencies :  
ε’ interp/diag = 9.93 10-1 
ε’ diag/interp = 9.93 10-1 

 
Frequency sub-band 

All frequencies 

 P(F2evmin> x)=0.999 
P(F2evmin> x’)=0.99 
P(F2evmin> x’’)=0.90 

P(F50evmin> x)=0.999 
P(F50evmin> x’)=0.99 
P(F50evmin> x’’)=0.90 

Mean Standard deviation 

interp/diag 
 

x = -3.63 106 

x’= -2.96 106 
x’’= -2.26 106 

x = -4.00 106 

x’= -3.29 106 
x’’= -2.52 106 

mean_F2ev= -2.03 105 
mean_S2ev= -2.03 10-1 

Mf = 2.71 10-1 

Ms = 2.71 10-1 

Ec_F2ev= 2.94 105  
Ec_S2ev= 7.4 10-1 

Ef = 2.16 10-1 

Es = 1.94 10-2 

diag/interp 
 

x = -3.34 106 

x’= -2.72 106 

x’’= -2.08 106 

x = -3.99 106 

x’= -3.29 106 
x’’= -2.52 106 

mean_F2ev= -1.88 105 
mean_S2ev= -1.88 10-1 

Mf = 3.25 10-1 

Ms = 3.25 10-1 

Ec_F2ev= 2.69 105  
Ec_S2ev= 6.52 10-1 
Ef = 2.88 10-1 

Es = 2.82 10-1 

interp/diag 
corrected 
 

x = -4.08 106 

x’= -3.34 106 
x’’= -2.56 106 

x = -4.00 106 

x’= -3.29 106 
x’’= -2.52 106 

mean_F = -2.78 105 
mean_S = -2.78 10-1 

Mf = 4.00 10-4 
Ms = 4.19 10-4 

Ec_F = 3.27 105  
Ec_S = 7.97 10-1 

Ef = 2.01 10-1 

Es = 1.77 10-1 

diag/interp 
corrected 
 

x = -4.10 106 

x’= -3.34 106 
x’’= -2.57 106 

x = -3.99 106 

x’= -3.29 106 
x’’= -2.52 106 

mean_F = -2.78 105 
mean_S = -2.78 10-1 

Mf = 3.14 10-4 
Ms = 2.55 10-4 

Ec_F = 3.27 105  
Ec_S = 7.97 10-1 

Ef = 2.50 10-1 

Es = 2.37 10-1 

 P(F2evmin> x)=0.999 
P(F2evmin> x’)=0.99 
P(F2evmin> x’’)=0.90 

P(F50evmin> x)=0.999 
P(F50evmin> x’)=0.99 
P(F50evmin> x’’)=0.90 

Mean Standard deviation 

interp/diag 
 

x = -5.95 104 

x’= -4.91 104 
x’’= -3.76 104 

x = -4.00 106 

x’= -3.31 106 
x’’= -2.53 106 

mean_F2ev= -2.23 103 
mean_S2ev= -2.23 10-3 

Mf = 1.01 

Ms = 1.01 

Ec_F2ev= 5.17 103  
Ec_S2ev= 1.20 10-2 

Ef = 1.00 

Es = 1.01 

diag/interp 
 

x = -5.61 104 

x’= -4.61 104 
x’’= -3.54 104 

x = -4.00 106 

x’= -3.30 106 
x’’= -2.53 106 

mean_F2ev= -2.06 103 
mean_S2ev= -2.06 10-3 

Mf = 1.00 

Ms = 1.00 

Ec_F2ev= 4.90 103  
Ec_S2ev= 1.15 10-2 

Ef = 1.00 

Es = 1.01 

interp/diag 
corrected 
 

x = -3.91 106 

x’= -3.25 106 
x’’= -2.52 106 

x = -4.00 106 

x’= -3.31 106 
x’’= -2.53 106 

mean_F = -2.89 105 
mean_S = -2.89 10-1 

Mf = 6.35 10-3 
Ms = 6.29 10-3 

Ec_F = 3.27 105  
Ec_S = 7.97 10-1 

Ef = 1.02 

Es = 1.02 

diag/interp 
corrected 
 

x = -3.90 106 

x’= -3.23 106 
x’’= -2.52 106 

x = -4.00 106 

x’= -3.30 106 
x’’= -2.53 106 

mean_F = -2.78 105 
mean_S = -2.78 10-1 

Mf = 6.33 10-3 
Ms = 6.27 10-3 

Ec_F = 3.27 105  
Ec_S = 7.97 10-1 

Ef = 1.02 

Es = 1.02 






