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Environmental variability is an important cause o f fluctuations in marine ecosystems. 
ln a rder la assess the contribution afa particular environ mental signal wc need 10 know 
not only how strongly il is couplcd to the biological componenls., but a lso how responsivc 
the ecosystcm is to fluctuations on that lime seale. Sorne ecosystems appear to have 
characterÎstic resooan! frequencies, and even a weak environmental signal al one of 
these frequencies cao cause large changes in population sizes. Il is alrcady known Ihal 
some commercial fi sh stocks undergo abundance cycles which can be explained in this 
way. since models of thcir population dynamics ex hibit resonances at or near the 
appropriatc freq uencies. and in this paper it is shown that resonance is found in Lotk a­
Volterra models ofpredator-prey systems. Thus resonance appears to be a likely cause of 
many of the nuctuations found in marine ecosystems. 

Oceulloi. Acta, 1983. Proceedings 17th European Marine Biology Symposium, BreSL 
F rance. 27 September- I Oclober, 1982. 183-186. 

L'ampli ficatio n de fluctuations de l'environnement dans les écosystèmes 
mafln s 

La variabilité de l'en vironnement est une cause importante de nuctuations dans les 
écosystèmes marins. Pour mieux comprendre l'importance d'un facteur particulier de 
l'cnvironnemenL il faut con naître non seulement son importance par rapport aux com­
posants biologiq ues, mais aussi la vitesse avec laquelle l'ècosyslème réagit. Quelques 
écosystèmes semblent avoi r des fréquences de résonance caractèristiques, et même une 
légère pertu rbation de l'envi ronnement à l'une de ces fréquences peut causer d'impor­
tants changements dans le développement des populations. On sait que quelques stocks 
de poissons commerciaHsables changent pêriodiquement, cc q ui peUl être expliqué 
par celte hypothèse, puisque les modèles de leur dynamique de populations mon trent 
des résonances aux pêriodes voisines. Ce tra vai l mon tre qu'il existe une résonance dans 
les modéles de Lotka-Volterra des systèmes prédateu r-proie. Ainsi la résonance semble 
être une cause probable de beaucoup de fluctuations dans les écosystèmes marins. 

Dceanal. Acta, 1983, Actes 26" Symposi um Européen de Biologie Marine, Brest, 27 sep­
tembre- 1er octobre 1982. 183-1B6. 

There arc many possible ways in which fluctuations can 
arise in (,.'COsystems. They ma y bc intrinsic in the dyna­
mies of the populat ions. as in the Cà se of systems which 
behave lik e Lotka-Vo lterra predator-prey models. Alter-

natively they mOly be induccd by external factors such 
as changes in tempcraturc. In many cases it appenrs 
that the best ex planation is a combinat ion of the two; 
external factors drive the Ouctuations. but their magni­
tude is determincd by theability ofthe system to respond 
to oscillat ions of different frequency. The analysis of 
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such cases depcnds on how sensitive the magnitude of 
the fluctuation is 10 frequency ; if the frequency depen­
dence 1S weak, then the externally driven nature of the 
fluctuations can be identified by relatively straight­
forward sla tist1cal methods. such as laggcd correlation 
analysis. However. if the response of the system is 
strongly frequency-dependent then a driving force at the 
appropriate frequency may have a much larger eITeet 
than equally st rong forcing elTeets at other frequencies. 
This can occur if the system has one or more resonant 
freq uencies. but it is difficult 10 identify resonant 
behav10ur from a limited set of data without a good 
understanding of the dynamics of the system. Since not 
ail kinds of ecosystem models lead to resonant beha­
viour, this paper deals with understanding the situations 
under which resonances can oceur and identi fying 
cases in which they are Iikely to he an important faclor 
in the fluctuat ions of marine ecosystems. 

CONDITIONS FOR RESONANCE 

Resonance is a famil iar phenomenon in physics and 
engineering, where il 1S associalcd with second-arder 
dilTerential equations such as Ihat for the dampcd 
driven harmonie oscillator 

mX' ~ - kX - qX' + r(l ), (1 ) 

where X ~ and X' refer to the second and fi rst time deri­
vat ives of X and f(t) is a fo rci ng function (m. k. and q 
a re constan ts). For small val ues of q Ihis system has a 
pro no unccd rcsonance in the vkinity of2 n:(k/m)' /l. and 
for periodic forcing functions with freq uencies close to 
this value the system variable X oscillates al the same 
frequency with a large amplitude. Si nce the system is 
linear, the elTeets of difJerent periodic components of the 
forcing function are additive and Ihus the system is 
efJecti vely capable of pick ing out those frequency 
components which 8re close to resonance and respond­
ing only to those. This is the way a rad io receiver works; 
from thc entire frequency spectrum of electromagnelic 
waves it selects and amplifies only those frequencies 
to which il 1S tuned. The larger the value of q, the wider 
the range of freq uencies to which the system responds 
and the less prono unced the response. 

A single fi rst-order dilTerential equation Iike those 
widely used in population biology does not exhibit 
resonance and the amplitude of the response decreases 
continuously as the frequency is increased. This is 
probably why Ihe possibi lity of resonance has generally 
becn ignored by population biologisls and eeologists. 
However, once one has a system of two or more first­
order dilTercntial equations il bccomes possible to 
generate resonant behaviour. The reasons for this are 
faîrly mathematical but can he iIIustrated by reference 
to equation (1) : define V = X' and replace XH by V' 
50 that the single second-order equation can be rewrîtten 
as IwO completely equ ivalen t first-o rder equations 

V' ~ - kX - qV + r(l) 
and 

X' ~ V, 

(2 a) 

(2 b) 
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which exhibil the same resonanl hehaviour. Thus the 
equalion for the damped harmonie oscillator is mathe­
matically equivalent to a mode! of a type common in 
ecology, and 1 will show in a following section Ihat 
cquations (2) correspond to the usual Lotka-Volterra 
model for a predator-prey system. 

ln general one cao find resonant behaviour in any 
system of Iwo or more fi rst-order difJerential equations, 
although il may not always bc present or, if presen t, 
may he too heavily dampcd to he observed. Since il 
does not oceur with si ngleequations, it should he viewed 
as a syslemic properly of communities arising o ut of 
their mutual interactions. Il can also oceur in age­
structured population models when coupling ex ists 
belween different age classes (e.g., cannibalism). 

A similar situation holds for discrete models. First-order 
finile difJerence equations, such as the stock-recruitment 
models widely used in fisheries. do not exhibit reso­
nance. However, systems of coupled difference equations 
(community models) can orten lead to resonance. as can 
higher-order models such ~ 

(3) 

which describes a stock with survivors from the previous 
season plus recruits from N scasons earlier (Silverl, 
Smith, 1981). 

RECOGNIZING RESO NANCE IN ECOSYSTEM 
MODELS 

The theory of resonance is basically a linear Iheory, 
while mos! ecosystem models are nonlinear. This means 
Ihat white we can use linearized theories to study the 
occurence of resonance, prediction of the magnitude of 
resonanl clTects requires that wc go back to the original 
nonl inear theory. Actually, the same situation is fou nd 
in physics. Most mechanical oscillalors, such as water 
waves and pendula and springs, are nonlinear. The 
theory of the linear harmonie osci llator has provcd quite 
useful in predicting the frcqucncies at which large oscil­
lations are likely to oceur, but it is absolutely useless 
wben it cornes to calculating when a wave or a spring 
will break, when a pend ulum will swing full circle, or 
when a bridge will fall down . Thus in dealing wilh 
linearized models of ecosystems it is important to 
realize that the resulting models can help identify 
frequencies at which large fluctuations are likely 10 be 
fou nd, bul Ihal these models are unlikely 10 provide 
adequate quantitative descriptions of these fluctuations. 

The mathemalical methods required for a complete 
study of resonance in ecosystems are quite complex; 
since Ihey have been discussed in detail elsewhere 
(Sil vert, Smith, 1981~ only a brief summary will be 
given here. For brevity 1 shall focus on cont1nuous 
models (systems of difJerential equations) and omit 
discussion of discrete models (finite-difference equa­
tians). 

Let x be a vector describing the state of an ecosystem, 
typically the vector of population sizes. Given a model 



of the form 

x' - f(x) , (4) 

wi th equilibri um solution Xo such thal [(xo) = 0, lei 
X = x - Xo measu re the displacemen t of the system 
from equilibrium ; the linearizcd form of the model is 
then 

X ' = AX . (5) 

where A is the community matrix A = ôfliJx. To see 
how this linearized model responds to a period ic dis­
turbance of frequency 2 J[W we look at steady-state 
solutions of 

X ' - AX = Bcoswl = Re { B ei"'" l , (6) 

where Re { . } refers to the real part of the complex 
exponential - this is a mathematical device to simplify 
the notation (which may also make il more obscure). 
The solutions are of the form 

X :::: Re { R(w) Bel .... ' } 

where 
R(w) = (iw l _ A)- 1 

(7) 

(8) 

is the «( response function » and 1 is the unit matrix. The 
frequencies for which pcrturbationsofa given magnitude 
generate the largest population fl uctuations are those 
for which R(w) has the largest components, which are 
values forw hich thedeterminant orthe malrix (iw l - A) 
is small. These are values for which iw is close to an 
cigenvalue of A, and thus the closer these eigenvalues are 
to the imaginary axis, the st ronger and more sharply 
defined are the resonances. 

This analysis shows why resonances are not found in 
single-population models, since the community matrix 
reduccs to a single real number which is ilS own eigen­
value, so the resonanl frequency (the imaginary part of 
the eigenvalue) is zero. The only time we find resonances 
is when the community matrix has complex eigenvalues. 

By compari ng the above analysis with the usual treat­
ment of ecosystem stabi lity (May 1974) we see that 
whereas an ecosystem model is forma lly stable if the 
eigenvalues ail have negative rcal parts, il can slill 
exhibit a slrong resonan l responsc if one of the eigen­
values is complex and lies near the imaginary axis. 

RESONANCE IN THE LOTKA-VOLTERRA­
VERHULST MODEL 

The traditional Latka-Volterra predator-prey model 
with a Verhulst density-dependent term and a variable 
growth rate is 

p' - (a + g(t) - qp - kz) P 

z' - (kp - b) z , 

(9 a) 

(9 b) 

where p is the prey population (say phytoplank ton) and 
z the predator (zooplankton ). The equilibri um levels 
are Po = bfk and Zo = afk - qbfk 2. The equations for 
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the displacements from equilibrium P = P - Po and 
Z = z - Zo are (ta lowest order) 

P' - - (qbjk) P - bZ + (qbjk) g(t) 

Z' - (a - qbfk)P, 

(10 a) 

(10 b) 

whkh arc the same li S equations (2) for the damped 
harmonic osci llator wit h suitable redefinition of the 
variables (Z and P instead of X and V) and of the 
constants. Thus Ihe Lotka-Volterra-Verhulst model 
should have resonance properties similar to those fo und 
in mechanical and electrical systems. ln the weakly 
damped case (q smaU) the resonant frequency is close 
to 2 n(ab)1 12 which is the characteristic frequency of the 
Latk a-Volterra neutrally stable limit cycle ; in this case 
the eigenvalues of the communi ty matrix are pure 
imaginary (May 1974). The stronger thc density­
dependence of Ihe phytoplankton population, the 
greater the damping and the weaker the resonance. 

Th is example shows that the condi tions for resonance 
can be found in commonly used models of marine 
ecosystems. Predator-prey relationships, cannibalism 
by adults, and o ther types of interaction which give rise 
to lagged negative feedback are likely 10 cause resonancc. 
The effects of rcsonance are likely to he reduced by 
instantaneous self-regulatory processes such as density­
dependent growth. 

CONCLUSIONS 

Resonance is certa inly possible in marine ecosystems, 
as the Lotka-Volterra-Verhulst model shows, and il 
poses a difficuh challenge for both the theorist and the 
experimentalist. From a theoretical point of view the 
prediction of resonance is difficult because the frequency 
and breadth of a resonance are sensitive to interaction 
parameters which are usually more difficu lt to estimate 
than are parameters describing single populations. 
Furthermorc, previous work on difference-equal ion 
models of commercial rish popu lations has shown lhal 
these resonanl frequencies may be quite different from 
those corresponding to biological lime scales like age at 
fi rSI malurily (Silvert, Smith, 198 1). From an expcrimen­
tal point of view il is difficult to ident ify resonant 
responses from the limited dala sets generally available 
to marine sciell1ists, especially when there are large 
theoret ical uncertaint ies in the predicled resonant 
frequencies. The best methods to use appear to he 
those of lime series analysis, since comparison of the 
fluctuation spectra of marine populations with the 
spectrum of a possible environmental forcing function 
gives the frequency-dependent response funct ion; howe­
ver, th is approach must he used wi th cau tion since the 
methodology of spectral analysis cannot deal adequa­
tely with nonlinear effects . Iron ically th is means that 
the largest and presumably most significant fluctuations 
in the system are likely to be the most difficult ones to 
analyze. 

The significance of thesc difficulties is thal they show 
that fluctuations in marine ecosystems may not he 
easy to ident ify as arising either from the internai 
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dynamics of the biological populations or from external 
forcing functions. It may he the interaction o f both 
causes through the mechanism of resonance which 
causes fluctuations of unexpected frequency and ampli­
tude. 

The methodology of response theory and the study of 
resonance come from the physical sciences, and the 
difficulties described above are weil known to physical 
scientists and engineers. Unexpected resonances in 
bridges and o ther structures are known to accur and 
have on occasion 100 to spectacular and catastrophic 
failures. Most of us are familiar with the sudden onset of 
resonance which orten accurs when an automobile 
reaches critical speed on a dirt road. ln these cases the 
mechanism of resonance is c1early seen, and yet it is 
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extremely difficult to predict. We may have to face this 
si tuation in ecology as weil ; we may find that many of 
the fluctuations in marine ecosystems are associated 
with resonant hehaviour, and even with this under­
standing wc may not he able to develop a predictive 
capacity. 
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