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ABSTRACT

Environmental variability is an important cause of fluctuations in marine ecosystems.
In order to assess the contribution of a particular environmental signal we need to know
not only how strongly it is coupled to the biological components, but also how responsive
the ecosystem is to fluctuations on that time scale. Some ecosystems appear to have
characteristic resonant frequencies, and even a weak environmental signal at one of
these frequencies can cause large changes in population sizes. It is already known that
some commercial fish stocks undergo abundance cycles which can be explained in this
way, since models of their population dynamics exhibit resonances at or near the
appropriate frequencies, and in this paper it is shown that resonance is found in Lotka-
Volterra models of predator-prey systems. Thus resonance appears to be a likely cause of
many of the fluctuations found in marine ecosystems.

Oceanol. Acta, 1983. Proceedings 17th European Marine Biology Symposium, Brest,
France, 27 September-1 October, 1982, 183-186.

RESUME

L’amplification de fluctuations de I'environnement dans les écosystémes
marins

La variabilit¢ de I'environnement est une cause importante de fluctuations dans les
¢écosystémes marins. Pour mieux comprendre I'importance d'un facteur particulier de
I'environnement, il faut connaitre non seulement son importance par rapport aux com-
posants biologiques, mais aussi la vitesse avec laquelle I'écosystéme réagit. Quelques
écosystémes semblent avoir des fréquences de résonance caractéristiques, et méme une
légére perturbation de I'environnement a I'une de ces fréquences peut causer d’impor-
tants changements dans le développement des populations. On sait que quelques stocks
de poissons commercialisables changent périodiquement. ce qui peut étre expliqué
par cette hypothése. puisque les modéles de leur dynamique de populations montrent
des résonances aux périodes voisines. Ce travail montre qu'il existe une résonance dans
les modéles de Lotka-Volterra des systémes prédateur-proie. Ainsi la résonance semble
étre une cause probable de beaucoup de fluctuations dans les écosystémes marins.

Oceanol. Acta, 1983. Actes 26* Symposium Européen de Biologie Marine, Brest, 27 sep-
tembre-1¢7 octobre 1982, 183-186.

INTRODUCTION

natively they may be induced by external factors such
as changes in temperature. In many cases it appears

There are many possible ways in which fluctuations can that the best explanation is a combination of the two;
arise in ecosystems. They may be intrinsic in the dyna- external factors drive the fluctuations, but their magni-
mics of the populations, as in the case of systems which tude is determined by the ability of the system to respond
behave like Lotka-Volterra predator-prey models. Alter- to oscillations of different frequency. The analysis of
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such cases depends on how sensitive the magnitude of
the fluctuation is to frequency ; if the frequency depen-
dence is weak, then the externally driven nature of the
fluctuations can be identified by relatively straight-
forward statistical methods. such as lagged correlation
analysis. However, if the response of the system is
strongly frequency-dependent then a driving force at the
appropriate frequency may have a much larger effect
than equally strong forcing effects at other frequencies.
This can occur if the system has one or more resonant
frequencies, but it is difficult to identify resonant
behaviour from a limited set of data without a good
understanding of the dynamics of the system. Since not
all kinds of ecosystem models lead to resonant beha-
viour, this paper deals with understanding the situations
under which resonances can occur and identifying
cases in which they are likely to be an important factor
in the fluctuations of marine ecosystems.

CONDITIONS FOR RESONANCE

Resonance is a familiar phenomenon in physics and
engineering, where it is associated with second-order
differential equations such as that for the damped
driven harmonic oscillator
mX” = — kX — gX' + f(t), (1)
where X” and X' refer to the second and first time deri-
vatives of X and f(t) is a forcing function (m. k. and q
are constants). For small values of q this system has a
pronounced resonance in the vicinity of 2 n(k/m)"/%, and
for periodic forcing functions with frequencies close to
this value the system variable X oscillates at the same
frequency with a large amplitude. Since the system is
linear, the effects of different periodic components of the
forcing function are additive and thus the system is
effectively capable of picking out those frequency
components which are close to resonance and respond-
ing only to those. This is the way a radio receiver works ;
from the entire frequency spectrum of electromagnetic
waves 1t selects and amplifies only those frequencies
to which it is tuned. The larger the value of q, the wider
the range of frequencies to which the system responds
and the less pronounced the response.

A single first-order differential equation like those
widely used in population biology does not exhibit
resonance and the amplitude of the response decreases
continuously as the frequency is increased. This is
probably why the possibility of resonance has generally
been ignored by population biologists and ecologists.
However, once one has a system of two or more first-
order differential equations it becomes possible to
generate resonant behaviour. The reasons for this are
fairly mathematical but can be illustrated by reference
to equation (1): define V = X' and replace X" by V'
so that the single second-order equation can be rewritten
as two completely equivalent first-order equations

V = —kX — qV + f(t) (2 a)
and
Xr=V, (2b)

which exhibit the same resonant behaviour. Thus the
equation for the damped harmonic oscillator is mathe-
matically equivalent to a model of a type common in
ecology, and 1 will show in a following section that
equations (2) correspond to the usual Lotka-Volterra
model for a predator-prey system.

In general one can find resonant behaviour in any
system of two or more first-order differential equations,
although it may not always be present or, if present,
may be too heavily damped to be observed. Since it
does not occur with single equations, it should be viewed
as a systemic property of communities arising out of
their mutual interactions. It can also occur in age-
structured population models when coupling exists
between different age classes (e.g., cannibalism).

A similar situation holds for discrete models. First-order
finite difference equations, such as the stock-recruitment
models widely used in fisheries, do not exhibit reso-
nance. However, systems of coupled difference equations
(community models) can often lead to resonance, as can
higher-order models such as

(3)

which describes a stock with survivors from the previous
season plus recruits from N seasons earlier (Silvert,
Smith, 1981).

Xp+1 = X, + R(xu~N)-

RECOGNIZING RESONANCE IN ECOSYSTEM
MODELS

The theory of resonance is basically a linear theory,
while most ecosystem models are nonlinear. This means
that while we can use linearized theories to study the
occurence of resonance, prediction of the magnitude of
resonant effects requires that we go back to the original
nonlinear theory. Actually, the same situation is found
in physics. Most mechanical oscillators, such as water
waves and pendula and springs, are nonlinear. The
theory of the linear harmonic oscillator has proved quite
useful in predicting the frequencies at which large oscil-
lations are likely to occur, but it is absolutely useless
when it comes to calculating when a wave or a spring
will break, when a pendulum will swing full circle, or
when a bridge will fall down. Thus in dealing with
linearized models of ecosystems it is important to
realize that the resulting models can help identify
frequencies at which large fluctuations are likely to be
found, but that these models are unlikely to provide
adequate quantitative descriptions of these fluctuations.

The mathematical methods required for a complete
study of resonance in ecosystems are quite complex ;
since they have been discussed in detail elsewhere
(Silvert, Smith, 1981), only a brief summary will be
given here. For brevity I shall focus on continuous
models (systems of differential equations) and omit
discussion of discrete models (finite-difference equa-
tions).

Let x be a vector describing the state of an ecosystem,
typically the vector of population sizes. Given a model
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of the form
x' = f(x), (4)

with equilibrium solution x, such that f(x,) = 0, let
X = x — x, measure the displacement of the system
from equilibrium ; the linearized form of the model is
then

X' = AX, (5)
where A is the community matrix A = df/éx. To see
how this linearized model responds to a periodic dis-
turbance of frequency 2 nw we look at steady-state
solutions of

X' — AX = Bcoswt = Re{Be™}, (6)

where Re { . } refers to the real part of the complex
exponential — this is a mathematical device to simplify
the notation (which may also make it more obscure).
The solutions are of the form

X = Re{ R(w)Be™}
where
R(w) = (iw] — A)~!

(7)

(8)

is the « response function » and [ is the unit matrix. The
frequencies for which perturbations of a given magnitude
generate the largest population fluctuations are those
for which R(w) has the largest components, which are
values for which the determinant of the matrix (iwl — A4)
is small. These are values for which iw is close to an
eigenvalue of A, and thus the closer these eigenvalues are
to the imaginary axis, the stronger and more sharply
defined are the resonances.

This analysis shows why resonances are not found in
single-population models, since the community matrix
reduces to a single real number which is its own eigen-
value, so the resonant frequency (the imaginary part of
the eigenvalue) is zero. The only time we find resonances
is when the community matrix has complex eigenvalues.

By comparing the above analysis with the usual treat-
ment of ecosystem stability (May 1974) we see that
whereas an ecosystem model is formally stable if the
eigenvalues all have negative real parts, it can still
exhibit a strong resonant response if one of the eigen-
values is complex and lies near the imaginary axis.

RESONANCE IN THE LOTKA-VOLTERRA-
VERHULST MODEL

The traditional Lotka-Volterra predator-prey model
with a Verhulst density-dependent term and a variable
growth rate is

O a)
(9 b)

p'=(a+glt)—qp —kz)p
z =(kp - b)z,
where p is the prey population (say phytoplankton) and

z the predator (zooplankton). The equilibrium levels
are p, = b/k and z, = a/k — qb/k®. The equations for

the displacements from equilibrium P = p — p, and
Z = z — z,are (to lowest order)

P’ = — (gb/k) P — bZ + (gb/k) g(1)
Z' =(a—qbk)P,

(10 a)
(10 b)

which are the same as equations (2) for the damped
harmonic oscillator with suitable redefinition of the
variables (Z and P instead of X and V) and of the
constants. Thus the Lotka-Volterra-Verhulst model
should have resonance properties similar to those found
in mechanical and electrical systems. In the weakly
damped case (q small) the resonant frequency is close
to 2 n(ab)'/? which is the characteristic frequency of the
Lotka-Volterra neutrally stable limit cycle ; in this case
the eigenvalues of the community matrix are pure
imaginary (May 1974). The stronger the density-
dependence of the phytoplankton population, the
greater the damping and the weaker the resonance.

This example shows that the conditions for resonance
can be found in commonly used models of marine
ecosystems. Predator-prey relationships, cannibalism
by adults, and other types of interaction which give rise
to lagged negative feedback are likely to cause resonance.
The effects of resonance are likely to be reduced by
instantaneous self-regulatory processes such as density-
dependent growth.

CONCLUSIONS

Resonance is certainly possible in marine ecosystems,
as the Lotka-Volterra-Verhulst model shows, and it
poses a difficult challenge for both the theorist and the
experimentalist. From a theoretical point of view the
prediction of resonance is difficult because the frequency
and breadth of a resonance are sensitive to interaction
parameters which are usually more difficult to estimate
than are parameters describing single populations.
Furthermore, previous work on difference-equation
models of commercial fish populations has shown that
these resonant frequencies may be quite different from
those corresponding to biological time scales like age at
first maturity (Silvert, Smith, 1981). From an experimen-
tal point of view it is difficult to identify resonant
responses from the limited data sets generally available
to marine scientists, especially when there are large
theoretical uncertainties in the predicted resonant
frequencies. The best methods to use appear to be
those of time series analysis, since comparison of the
fluctuation spectra of marine populations with the
spectrum of a possible environmental forcing function
gives the frequency-dependent response function ; howe-
ver, this approach must be used with caution since the
methodology of spectral analysis cannot deal adequa-
tely with nonlinear effects. Ironically this means that
the largest and presumably most significant fluctuations
in the system are likely to be the most difficult ones to
analyze.

The significance of these difficulties is that they show
that fluctuations in marine ecosystems may not be
easy to identify as arising either from the internal
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dynamics of the biological populations or from external
forcing functions. It may be the interaction of both
causes through the mechanism of resonance which
causes fluctuations of unexpected frequency and ampli-
tude.

The methodology of response theory and the study of
resonance come from the physical sciences, and the
difficulties described above are well known to physical
scientists and engineers. Unexpected resonances in
bridges and other structures are known to occur and
have on occasion led to spectacular and catastrophic
failures. Most of us are familiar with the sudden onset of
resonance which often occurs when an automobile
reaches critical speed on a dirt road. In these cases the
mechanism of resonance is clearly seen, and yet it is

extremely difficult to predict. We may have to face this
situation in ecology as well ; we may find that many of
the fluctuations in marine ecosystems are associated
with resonant behaviour, and even with this under-
standing we may not be able to develop a predictive
capacity.
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