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Abstract : 

This study examined the effect of a commercial mix of Bacillus sp. on survival, growth and digestive 
enzyme activities of Florida pompano, red drum and common snook. Larvae were fed either live feed 
enriched with Algamac 3050 (Control), Algamac 3050 and probiotics (PB), or the previous diet 
combined with a daily addition of probiotics to the tank water (PB+). Survival was not affected by the 
treatments for any of the species. At the end of the pompano and snook trial, standard lengths of larvae 
from the PB and PB+ treatments were significantly greater than for the control larvae. Microbiological 
analyses were performed at the end of the pompano trial, and numbers of presumptive Vibrio were not 
a concern in the system. For both pompano and snook, trypsin-specific activity was higher in PB and 
PB+ larvae compared with the control larvae. Similarly, alkaline phosphatase activity was higher for the 
pompano larvae fed the PB and PB+ treatments and for the snook larvae fed the PB+ treatment 
compared with the control larvae. This experiment suggests that a mix of Bacillus sp. can promote 
growth through an early maturation of the digestive system during the early larval stages of pompano 
and snook. 
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 INTRODUCTION 19 

Marine fish larvae undergo major physiological and morphological changes during the first 20 

weeks of their lives (Péres et al. 1997). Inadequate nutrition and larval rearing conditions 21 

during this crucial transitional period adversely affect the development and the future success 22 

of the larvae (Yúfera and Darias 2007). Determining optimal rearing protocols has proven 23 

difficult in marine fish due to the small size and fragility of the larvae, therefore, the mass 24 

production of robust juveniles remains a challenge for most species (Hamre et al. 2013). The 25 

external environment has a major impact on marine fish gastrointestinal microflora as 26 

osmoregulation requires constant ingestion of the surrounding water (Gatesoupe 1999). Since 27 

the digestive tract of fish larvae is sterile at hatching, the initial colonization depends on the 28 

environment and live feed ingested (Grisez et al. 1997). The initial microflora established at 29 

the larval stage seems to persist after metamorphosis, it is therefore thought that providing 30 

probiotics as soon as possible after hatching can have beneficial effects (Ringø and Vadstein 31 

1998). In addition, the larvae immune system is immature and relies on nonspecific defense 32 

mechanisms, thus a healthy microflora constitutes a crucial primary barrier to which 33 

probiotics can, most likely, effectively contribute (Hansen and Olafsen 1999).  34 

Probiotics are ‘live microorganisms which when administered in adequate amounts confer a 35 

health benefit to the host’ (Aureli et al. 2011). In humans, Hooper et al. (2001) demonstrated 36 

that probiotics can modulate the expression of genes involved in nutrient absorption, mucosal 37 

barrier fortification and postnatal intestinal maturation. Bacteria communicate via the use of 38 

quorum-sensing molecules, which regulate gene expression mainly when the population has 39 

reached a high cell density (Williams et al. 2007). B. subtilis was found to produce a quorum- 40 

sensing pentapeptide, the competence and sporulation-stimulating factor (CSF), which 41 

activates two cellular survival pathways (protein kinase B and p38 mitogen-activated protein 42 

kinase) and induces the expression of the heat shock protein (e.g. Hsp27) in intestinal 43 



 4 

epithelial cells (Fujiya et al. 2007). Hsp protect cells against various stresses and this 44 

mechanism is highly conserved throughout evolution and across species (Parsell and 45 

Lindquist 1993). When over expressed, Hsp increase intestinal epithelial cells viability and 46 

protect from oxidative injury, contributing to intestinal homeostasis (Tao et al. 2006). 47 

Probiotics have various modes of actions including the competitive exclusion of pathogenic 48 

bacteria (Moriarty 1997, Gomez-Gil et al. 2000, Chythanya et al. 2002, Balcázar et al. 2004, 49 

Vine et al. 2004), the improvement of water quality (Moriarty 1997), the enhancement of the 50 

immune system (Gatesoupe 1999, Balcázar et al. 2004, Picchietti et al. 2009, Zhou et al. 51 

2010) and the stimulation of the digestive system (Suzer et al. 2008, Lazado et al. 2012). 52 

Among the probiotics, Bacillus is of particular interest as it is a spore forming bacteria 53 

(Cutting 2011). Spore production is triggered by nutrient depletion in the bacterial 54 

environment, allowing for long-term survival in conditions inadequate to vegetative bacteria. 55 

Even though spores are dehydrated and have an inactive metabolism, they are able to monitor 56 

the environment (Nicholson et al. 2000). Under appropriate conditions, germination occurs 57 

by allowing water to penetrate the spore and vegetative growth resumes (Moir 2006). The 58 

spore surface layer confers outstanding resistance to extreme physical and chemical stress 59 

(Henriques and Moran 2007). Spores are heat stable and can survive the low pH of the gastric 60 

barrier (Spinosa et al. 2000). Therefore, they can be stored at room temperature in a 61 

desiccated form for a long period of time and all of the administrated spores will reach the 62 

intestinal tract (Cutting 2011). In addition, production cost is low, making Bacillus 63 

particularly valuable for use in aquaculture production (Wang et al. 2008). 64 

In fish, the administration of Bacillus was found to positively influence expression of genes 65 

involved in growth metabolism and animal welfare in sea bream (Avella et al. 2010). In the 66 

same species, Bacillus was shown to increase the expression of occludin, a trans-membrane 67 

component of tight junctions in the intestine, suggesting an improvement of cell junction 68 
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integrity between enterocytes (Cerezuela et al. 2013). On white shrimp Penaeus vannamei, a 69 

Bacillus coagulants supplementation improved growth performances and enhanced the 70 

immune response through antibacterial activity as well as an increase in phenoloxidase, 71 

superoxide dismutase and peroxidase activities (Wang and Gu 2010). In addition, studies 72 

have demonstrated, but not explained, the ability for Bacillus to increase resistance to vibrio 73 

in black tiger shrimp Penaeus monodon (Vaseeharan and Ramasamy 2003), common snook, 74 

Centropomus undecimalis (Kennedy et al. 1998) and sea bass Dicentrarchus labrax (Touraki 75 

et al. 2012); increase growth and stimulate the digestive system in Indian white shrimp 76 

Fenneropenaeus indicus (Ziaei-Nejad et al. 2006), Pacific white shrimp Penaeus vannamei 77 

(Wang 2007), Japanese flounder Paralichthys olivaceus (Ye et al. 2011), orange-spotted 78 

grouper Epinephelus coioides (Sun et al. 2013), rohu Labeo rohita (Mohapatra et al. 2012) 79 

and common carp Cyprinus carpio (Wang and Zirong 2006); promote growth and improve 80 

tolerance to rearing conditions in sea bream Sparus aurata (Avella et al. 2010).  81 

 82 

 The present study aimed to test the effects of a commercial mix of Bacillus (Sanolife MIC-F, 83 

INVE Technologies, Belgium) on the growth and digestive enzyme activities in early larval 84 

stages of some of Florida’s high-value marine food fish (Florida pompano Trachinotus 85 

carolinus and red drum Sciaenops ocellatus) and stock enhancement species (common snook 86 

Centropomus undecimalis). 87 

  88 
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MATERIALS AND METHODS 89 

Experimental animals 90 

Snook and pompano eggs were obtained from broodstock captured on the southwest Florida 91 

coast and held at the Mote Marine Laboratory Aquaculture Research Park in Sarasota, 92 

Florida. Broodstock were conditioned through photothermal regimes in tanks (25 m3 for 93 

pompano, 45 m3 for snook) equipped with recirculating filtration systems. Spawning was 94 

induced by implanting mature pompano females with 50 µg.kg-1 of sGnRHa (Ovaplant®) and 95 

mature snook females with 50 µg.kg-1 of sGnRHa from the Institute of Marine and 96 

Environmental Technology of the University of Maryland. Red drum eggs were received 97 

from captive broodstock held at the Florida Fish and Wildlife Conservation Commission 98 

Stock Enhancement Research Facility.  99 

Eggs for each species were incubated in a 100 L hatching tank with aeration and an 100 

upwelling water circulation from a 3m3 system with UV and bio-filtration. Fertilization and 101 

hatching rates were respectively 54.5 % and 73.2 % for pompano and 83.5 % and 85.2 % for 102 

snook. The fertilization rate of the red drum eggs was unknown while the hatching rate 103 

reached 90.2 %. 104 

 105 

Experimental set up and treatments 106 

The experimental set up included three identical independent systems. Each system was 107 

composed of four 100L tanks with water recirculating from the tanks to a biofilter and back 108 

to the tanks via a UV light. Each independent system was assigned a treatment to avoid 109 

probiotic cross contamination. 110 

After hatching, larvae were volumetrically counted and transferred to the experimental tanks 111 

at 100 larvae per liter for pompano and red drum, and 200 larvae per liter for snook according 112 

to standard procedures at the research park.  For all species, photoperiod was maintained at 113 
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12h dark: 12h light, salinity at 35 ± 1 g.L-1, temperature at 27 ± 1 °C, pH at 8 ± 0.5, dissolved 114 

oxygen at 6 ± 2 mg.L-1. From 2 days post hatch (DPH), rotifers were fed twice a day at 5 115 

rotifers per mL. In addition, a microdiet (Gemma, Skretting, France) was delivered twice a 116 

day in between rotifer feeding.  117 

Trials were stopped at the end of the rotifer-feeding period for pompano (9 DPH) and snook 118 

(12 DPH). The red drum trial was extended up to 21 DPH due to the lack of significant 119 

difference in growth at the end of the rotifer-feeding period (10 DPH). In this case, rotifer 120 

density was decreased to 3 per ml at 7 DPH and the fish weaned onto the microdiet from 10 121 

DPH. 122 

Three treatments were tested in quadruplicate for all trials. The first treatment (control) was 123 

rotifers enriched with Algamac 3050 (Aquafauna Bio-Marine Inc, USA). The second 124 

treatment (PB) was rotifers enriched with Algamac 3050 and a commercial mix of Bacillus 125 

spp. (0.5 g per liter of enrichment according to manufacturer’s recommendations, 126 

concentration of bacteria: minimum 1x1010 CFU/g). The third treatment (PB+) was the 127 

second treatment, with additional probiotics (5 g.m-3, according to manufacturer’s 128 

recommendations) added daily directly to the tank water.  129 

 130 

Sampling 131 

Larvae growth was monitored through standard length measurement of 10 larvae from each 132 

tank (40 per treatment) at 1, 5 and 9 DPH for pompano; 1, 5, 9, and 12 DPH for snook; 1, 7, 133 

14 and 21 DPH for red drum. Pompano larvae body depth was also recorded in consideration 134 

to the particular short, deep and compressed pompano body shape. At the end of the trials, 50 135 

larvae from each tank (200 per treatment) were preserved at -70°C for enzyme analysis. In 136 

addition, at the end of the pompano trial, 25 larvae from each tank (100 per treatment) were 137 

preserved at 4°C for bacterial analyses performed the following day. 138 
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 139 

Enzyme and bacterial analyses 140 

Enzyme analyses were performed at the Functional Physiology of Marine Organisms unit at 141 

Ifremer in Brest, France. Larvae from each tank were pooled and homogenized prior to all 142 

analyses. Trypsin, amylase, alkaline phosphatase (AP) and leucine–alanine peptidase (Leu- 143 

ala) activities were assayed according to Holm et al. (1988), Métais and Bieth (1968), Bessey 144 

et al. (1946) and Nicholson and Kim 1975, respectively. Enzyme activity results are 145 

expressed as specific activities, i.e. U.mg-1 protein. Protein was determined by the Bradford 146 

procedure (Bradford 1976). Due to technical difficulties, red drum larvae sampled at the end 147 

of the rotifer feeding period (7 dph) could not be processed and enzyme analyses were 148 

performed at 21 dph only, therefore, results from the red drum trial are presented separately 149 

in table 2. 150 

Bacterial analyses were performed at the Mote Marine Laboratory, Center for Marine 151 

Microbiology. Larvae from each tank were pooled and rinsed three times with sterile 152 

seawater then ground using a PowerSoil® DNA isolation kit (MO-BIO Laboratories, Inc., 153 

USA). Serial dilutions of the homogenates were then plated on marine agar (promoting the 154 

growth of all marine heterotrophs) and TCBS (medium selective of Vibrio sp.) media. The 155 

petri dishes were incubated at 22 °C and the number of colony-forming units were counted 156 

48 hours after plating. 157 

 158 

Probiotic strains identification 159 

One gram of the commercial mix was diluted in 99 ml of Phosphate-Buffered Saline (PBS) 160 

and mixed thoroughly. An inoculating loopful of the suspension was then plated following 161 

the quadrant method on Trypticase Soy Agar (TSA) media. The plate was incubated inverted 162 

at 37 °C overnight. Colonies showing distinct morphologies were sub-cultured on TSA media 163 
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following the same method. Isolated strains were sent for 16S rDNA sequencing 164 

identification to Accugenix, Inc. (Newark, DE, USA). 165 

 166 

Statistical analysis 167 

Statistical analyses were performed using MINITAB® version 16.0. Normality and 168 

homogeneity of variance were confirmed using Kolmogorov–Smirnov test. Growth and body 169 

depth data were analyzed using a General Linear Model (GLM) with all time and treatment 170 

interactions being analyzed and significant differences tested by a Tukey post-hoc test with 171 

95 % confidence. Bacterial counts and enzyme activities were compared by a one-way 172 

ANOVA followed by a Tukey post hoc test with 95 % confidence. Survival data was arcsine 173 

square root transformed before a one-way ANOVA followed by a Tukey post-hoc test with 174 

95 % confidence. 175 

 176 

RESULTS 177 

 178 

Bacillus strains identification 179 

Three Bacillus strains were isolated from the commercial mix. The 16S rDNA sequence- 180 

based identified the following species: Bacillus licheniformis, Bacillus amyloliquefaciens 181 

plantarum/methylotrophicus and Bacillus pumilus/safensis. In the two later cases, the strain 182 

matched two closely related species that cannot be differentiated by 16S rDNA (Fig. 1).  183 

 184 

Survival 185 

No significant difference in survival from hatching to the end of the trial was observed 186 

between treatments regardless of the species. However, survival was significantly higher in 187 

pompano (7.6 ± 1.9 %) and red drum (9.9 ± 0.8 %) compared to snook (2.4 ± 0.7 %) (Fig.2). 188 
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During the snook trial, poor survival led to the termination of one PB tank at 7 DPH, as well 189 

as one Control and one PB+ tank at DPH 9.  190 

 191 

Growth 192 

At the end of the pompano trial, PB and PB+ larvae had significantly greater standard length 193 

(Fig. 3A) and body depth (Fig. 3B) than the control larvae with 4.34 ± 0.10, 4.22 ± 0.07 and 194 

3.89 ± 0.09 mm, respectively for standard length and 0.88 ± 0.01, 0.83 ± 0.03 and 0.66 ± 195 

0.01, respectively for body depth. The same was true for snook larvae standard length with 196 

3.69 ± 0.02, 3.60 ± 0.03 and 3.29 ± 0.03 mm, respectively for PB, PB+ and control larvae 197 

(Fig. 3C). However, no significant difference was observed for body depth with an average of 198 

0.71 ± 0.20 mm at the end of the experiment (Fig. 3D). At the end of the red drum trial, no 199 

difference was observed between treatments with an average of 5.44 ± 0.07 mm (Table 1). 200 

 201 

Bacterial analyses 202 

Results from the microbiological analyses on the pompano larvae showed significantly higher 203 

counts of colony-forming units (CFU) per larvae on the marine agar media for the larvae fed 204 

the probiotics supplementation (38.103 ± 8.103 CFU for PB and 18.103 ± 22.103 CFU for 205 

PB+) compared to the control larvae (103 ± 0.6.103 CFU). Numbers of presumptive Vibrio on 206 

the TCBS media were low and not significantly different between treatments with an average 207 

of 0.06 ± 103 CFU per larvae (Table 2). 208 

 209 

Enzyme activities 210 

For both pompano and snook, trypsin specific activities at the end of the trial were 211 

significantly higher in larvae fed the PB and the PB+ treatments compared to the control 212 

larvae. Trypsin activities of snook larvae from the PB and PB+ treatments were respectively 213 
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37.3 % and 29.6 % higher than that of control larvae, while trypsin activities of pompano 214 

larvae from the same treatments were respectively 45.1 % and 46.8 % higher than that of 215 

control larvae (Fig. 4a).  216 

Difference in amylase activity was only observed for snook larvae, with activities of larvae 217 

from the PB+ treatment 65.2 % higher than that of control larvae (Fig. 4b). 218 

AP activities of pompano larvae from the PB and PB+ treatments and snook larvae from the 219 

PB+ treatment were higher than that of control larvae. AP activity of snook larvae from the 220 

PB+ treatments was 27.1 % higher than that of control larvae while AP activities of pompano 221 

larvae from the PB and PB+ treatments were respectively 27.9 % and 28.0 % higher than that 222 

of control larvae. For all treatments, AP activities of pompano larvae were significantly 223 

higher than that of snook larvae (Fig. 4c). 224 

For both snook and pompano, no significant differences were observed in Leu-ala activities 225 

between treatments or between species (Fig. 4d). 226 

No significant differences were observed in the activities of the enzymes tested for red drum 227 

at the end of the trial (Table 1).  228 

  229 
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DISCUSSION 230 

 231 

This series of experiments clearly suggested a beneficial effect of Bacillus probiotic on 232 

growth and digestive enzyme activity of Florida pompano and Common snook larvae when 233 

supplemented during the early larval stages. Similar results have been observed with Indian 234 

white shrimp (Ziaei-Nejad et al. 2006), common carp (Wang and Zirong 2006), Pacific white 235 

shrimp (Wang 2007), Japanese flounder (Ye et al. 2011), rohu (Mohapatra et al. 2012) and 236 

orange-spotted grouper (Sun et al. 2013). 237 

The three strains identified in the commercial mix are species closely related to Bacillus 238 

subtilis however, they differ metabolically and secrete different enzymes (Priest et al. 1987).  239 

B. pumilus isolated from the gut of rohu fingerlings was found to produce amylase and 240 

cellulase (Ghosh et al. 2002) and it demonstrated strong inhibition against several strains of 241 

Vibrio sp. when isolated from the gut of black tiger shrimp (Hill et al. 2009). B. licheniformis 242 

has been reported to have antiviral properties through the induction of cytokines (Arena et al. 243 

2006) and to produce an antimicrobial peptide with a broad inhibitory spectrum (Cladera- 244 

Olivera et al. 2004). In addition it was shown to produce phytase when isolated from several 245 

freshwater cultured fish (Dan and Ray 2013). B. amyloliquefaciens is closely related to B. 246 

subtilis and used to be given a subspecies status (B. subtilis subsp. amyloliquefaciens) before 247 

additional studies demonstrated the numerous physiological and biochemical specificities of 248 

B. amyloliquefaciens (Priest et al. 1987). One of the main differences between the two 249 

species is the ability of B. amyloliquefaciens to produce more extracellular enzyme than B. 250 

subtilis, including between 50 and 150 times more α-amylase (Welker and Campbell 1967, 251 

Priest et al. 1987). In fish, B. amyloliquefaciens was found to have an inhibitory effect on 252 

pathogenic Aeromonas hydrophila associated with the eel Anguilla anguilla (Cao et al. 253 

2011), and improved growth, feed conversion ratio and immunological parameters in Nile 254 
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tilapia Oreochromis niloticus (Ridha and Azad 2012). The addition of either B. subtilis, B. 255 

licheniformis or B. pumilus to the diet of olive flounder Paralichthys olivaceus, led to 256 

different effects with B. subtilis increasing growth, B. subtilis and B. pumilus increasing 257 

survival rate, and B. pumilus and B. licheniformis increasing superoxide dismutase activity 258 

and disease resistance (Cha et al. 2013). These results highlight the interest of supplementing 259 

several strains of probiotics simultaneously. Nonetheless, it is likely that the inclusion rate of 260 

each strain will impact on the final effect of the product and therefore manufacturers should 261 

communicate not only on the qualitative characteristics of their product, but also on the 262 

quantitative characteristics.  263 

Several modes of action are proposed to explain the positive effect of probiotics, including 264 

antagonism towards pathogens, competition for adhesion sites and competitions for nutrients 265 

(Ray et al. 2012). However, the microbiological analyses on the pompano larvae at the end of 266 

the trial did not show high vibrio counts in any of the treatments. Therefore, it was assumed 267 

that in the experimental system used for these trials, pathogenic bacteria were not a major 268 

issue and no microbiological analyses were performed for the other species. Counts of 269 

heterotrophic bacteria were significantly higher in the PB and PB+ treatments compared to 270 

the control, confirming the presence of the probiotics in the gut of the larvae.  271 

Probiotics can also act on the digestive system of their host. Poorly developed at hatching, the 272 

digestive system of marine fish larvae matures progressively, evolving from an intracellular 273 

mode of digestion via pinocytosis, to an adult mode of digestion involving membrane 274 

transport with the development of the brush border membrane (Govoni et al. 1986). Alkaline 275 

phosphatase, an enzyme mainly located in the brush border membrane of enterocytes, is 276 

therefore a good indicator of intestinal development (Cahu and Zambonino-Infante 1995). 277 

Simultaneously to the intestine maturation, the functional maturation of the pancreas occurs, 278 

with an activity increase of proteolytic enzymes, including trypsin, and a decrease in the 279 
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carbolytic enzyme amylase (Cahu and Zambonino-Infante 1994). In this study, results from 280 

the enzyme analyses showed an increase in trypsin specific activity for the pompano and 281 

snook larvae fed the probiotic supplementation. In addition, the specific activity of alkaline 282 

phosphatase was significantly higher for pompano larvae fed the PB and PB+ treatments and 283 

for snook larvae fed the PB+ treatment, suggesting an early maturation of the digestive 284 

system. The higher amylase specific activity in snook larvae fed the PB+ treatment might be 285 

due to a higher capacity of snook to utilize carbohydrates, which could be stimulated by the 286 

important extracellular amylase production by B. amyloliquefaciens. Very little is known 287 

about the natural diet of the early larval stage of snook and pompano and more research is 288 

needed to understand such variations. 289 

It was hypothesized that the increase in enzyme activities observed with the use of probiotics 290 

could be due to the exoenzymes produced by the bacteria (Bairagi et al. 2002, Balcázar et al. 291 

2006). Nonetheless, Ziaei-Nejad et al. (2006) demonstrated that the proportion of enzyme 292 

synthesized by the probiotics could only contribute to a very small amount of the total 293 

enzyme activity of the gut and suggested that instead, the probiotics stimulate the production 294 

of endogenous enzymes. 295 

In the present study, the increased level of maturation of the enterocytes of the snook and 296 

pompano larvae fed the probiotic supplementation suggested an increased absorptive capacity 297 

of the brush-border membrane leading to more efficient feed utilization and better growth. 298 

Pompano and snook larvae are not as robust as red drum larvae and seem to benefit more 299 

from the probiotic supplementation. However, no detrimental effect was observed for the red 300 

drum larvae and the probiotics might have influenced factors other than growth and digestive 301 

enzyme activity, such as disease and stress resistance, intestinal epithelium structure or 302 

general welfare as discussed above. In addition, a longer trial period might have revealed 303 

some differences in growth as Ridha and Azad (2012) did not observe any growth differences 304 
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after 99 days when juvenile Nile tilapia were fed a diet enriched with Bacillus but observed 305 

differences 61 day after the end of the treatment compared to the control treatment. 306 

Moreover, a higher level of probiotic supplementation might be necessary. Indeed, Merrifield 307 

et al. (2010) showed that high intestinal levels of B. subtilis and B. licheniformis (>80 %) are 308 

required to improve rainbow trout growth performance and feed utilization.  309 

No difference in survival was observed between treatments for all species although an 310 

increase in survival would be expected alongside the advanced digestive system maturation 311 

and improved growth, especially for snook where survival is very low. Many factors 312 

participate in the survival of young fish larvae and snook being a relatively new species in 313 

aquaculture, many rearing aspects still need to be explored and improved. Even though the 314 

probiotic supplementation did not increase survival it is likely that larvae with improved 315 

growth and digestive capabilities will be more robust and a difference in survival might be 316 

observed after critical life events such as metamorphosis and weaning. 317 

In conclusion, these experiments demonstrated positive effects from the mix of Bacillus on 318 

the development of pompano and snook larvae through an early maturation of the digestive 319 

tract. To obtain optimal effects, a supplementation through both the live feed and the tank 320 

water seems recommended. Further research is needed to better understand the mode of 321 

action of probiotics and the mechanisms involved during the ontogeny of the digestive 322 

system. 323 
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Figure headlines 524 

 525 

Figure 1: Phylogenetic trees constructed using the neighbor-joining method for each of the 526 

isolated strains. The N join scale bar provides a horizontal distance scale. 527 

 528 

Figure 2. Survival from hatching for snook, pompano and red drum at the end of the trial. 529 

Mean ± standard error (n=3 for snook, n=4 for pompano and red rum). Letters indicate 530 

significant differences. 531 

 532 

Figure 3: Body depth and standard length of pompano and snook larvae at the end of the trial. 533 

Mean ± standard error (n=4 for pompano, n=4 for snook at 1 and 5 DPH then n=3, 10 larvae 534 

per tank and time point). Letters indicate significant differences between times and 535 

treatments. 536 

 537 

Figure 4: Specific activities (U.mg-1 of protein) of trypsin, amylase, alkaline phosphatase 538 

(AP) and leucine-alanine peptidase (leu-ala) of snook and pompano larvae during the trial. 539 

Mean ± standard error (n=3 and 4 respectively for snook and pompano, 50 larvae per tank). 540 

Letters indicate significant differences between treatments for snook (uppercase letters), 541 

pompano (italic uppercase letters) and between treatment and species (lower case letters).  542 

  543 



 24 

 544 

 545 

 546 

Figure 1 547 

  548 

A) 

C) 

B) 



 25 

 549 

Figure 2.  550 

  551 

a 

a 

a 

b 
b 

b 

c 

c 

c 

0 

2 

4 

6 

8 

10 

12 

14 

Control PB PB+ 

%
 su

rv
iv

al
 

Snook 

Pompano 

Red drum 



 26 

 552 

Figure 3.  553 

  554 

a 
b 

c 

e 

f 

d 

2.2 
2.4 
2.6 
2.8 
3.0 
3.2 
3.4 
3.6 
3.8 

0 1 2 3 4 5 6 7 8 9 10 11 12 

St
an

da
rd

 L
en

gt
h 

(m
m

) 

Day Post Hatch 

C. Snook 

Control PB PB+ 

c 

a 

b 

d 

2.5 

3.0 

3.5 

4.0 

4.5 

0 1 2 3 4 5 6 7 8 9 

St
an

da
rd

 L
en

gt
h 

(m
m

) 
A. Pompano 

b 

d 

a 

c 

e 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0 1 2 3 4 5 6 7 8 9 

B
od

y 
D

ep
th

 (m
m

) 

B. Pompano 

a a 

b 

c 

0.4 

0.5 

0.6 

0.7 

0.8 

0 1 2 3 4 5 6 7 8 9 10 11 12 

B
od

y 
D

ep
th

 (m
m

) 

D. Snook  



 27 

 555 

Figure 4.  556 
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Table 1. Effects of a probiotic supplementation (PB and PB+) on standard length (mm) and 558 

specific activities (U.mg-1 of protein) of trypsin, amylase, alkaline phosphatase (AP) and 559 

leucine-alanine peptidase (leu-ala) of red drum larvae. Mean ± standard error (n=4 tanks, 50 560 

larvae per tank). No statistical differences were observed. 561 

  Control PB PB+ 
Growth    

1 DPH 2.82 ± 0.01 2.81 ± 0.02 2.79 ± 0.01 
7 DPH 3.51 ± 0.02 3.55 ± 0.01 3.58 ± 0.01 

14 DPH 4.67 ± 0.01 4.48 ± 0.03 4.58 ± 0.02 
21 DPH 5.54 ± 0.03 5.45 ± 0.08 5.32 ± 0.08 

    
Specific activity 
at 21 DPH   

Trypsin 0.02 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 
Amylase 0.56 ± 0.04 0.42 ± 0.07 0.51 ± 0.03 

AP 0.09 ± 0.01 0.08 ± 0.01 0.10 ± 0.00 
Leu-ala 145.8 ± 4.2 118.9 ± 3.2 143.1 ± 5.8 

        
 562 

  563 
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Table 2. Number of colony-forming units (x103 ± standard error of the mean) per pompano 564 

larvae (n=4 tank, 10 larvae per tank) fed without probiotic supplementation (Control), with 565 

probiotic supplementation in the live food (PB) or with probiotic supplementation in the live 566 

food and tank water (PB+). Superscript letters indicate significant differences within the same 567 

column (Tukey test, p<0.05). 568 

 569 

 570 

 571 

 572 

 573 

  Marine Agar TCBS 
Control 1.0±0.6a 0.01±0.00a 

PB 38±8b 0.15±0.01a 

PB+ 18±22b 0.02±0.01a 




