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Abstract : 
 
The desire to predict the consequences of global environmental change has been the driver towards 
more realistic models embracing the variability and uncertainties inherent in ecology. Statistical ecology 
has gelled over the past decade as a discipline that moves away from describing patterns towards 
modelling the ecological processes that generate these patterns. Following the fourth International 
Statistical Ecology Conference (1–4 July 2014) in Montpellier, France, we analyse current trends in 
statistical ecology. Important advances in the analysis of individual movement, and in the modelling of 
population dynamics and species distributions, are made possible by the increasing use of hierarchical 
and hidden process models. Exciting research perspectives include the development of methods to 
interpret citizen science data and of efficient, flexible computational algorithms for model fitting. 
Statistical ecology has come of age: it now provides a general and mathematically rigorous framework 
linking ecological theory and empirical data. 
 
 
Keywords : citizen science ; hidden Markov model ; hierarchical model ; movement ecology ; software 
package ; spatially explicit capture–recapture ; species distribution modelling ; state–space model 
 
 

 

 



1. Introduction 1 

Variability is challenging ecology, from genes to individuals, species or ecosystems: 2 

quantifying and explaining biological variation is an ever-important goal. Variability arises 3 

from both ecological processes and sampling, requiring the modelling of uncertainty, the very 4 

nature of statistics (Davidian & Louis 2012; Spiegelhalter 2014).  5 

Statistics has long permeated the field of ecology through the contributions of eminent 6 

scientists such as Fisher, Haldane and Leslie.  However, we detect a recent rise in statistical 7 

awareness, manifested in various ways. First, research centres especially devoted to statistical 8 

ecology have been created in the USA (Statistical and Applied Mathematical Sciences 9 

Institute) and the UK (National Centre for Statistical Ecology).  There are also institutes 10 

focussed on synthesis (e.g., the National Center for Ecological Analysis and Synthesis and the 11 

National Institute for Mathematical and Biological Synthesis, both in the USA). Second, new 12 

journals dedicated to methodological advances (not only statistical) have been created and are 13 

now having considerable impact (notably Molecular Ecology Resources and Methods in 14 

Ecology and Evolution). Third, there are more specialized conferences that provide the 15 

opportunity for statisticians to interact with ecologists for mutual benefit. The reasons for this 16 

recent rise of statistical ecology are manifold and include the societal demand for scientists to 17 

address pressing issues such as global change and the current biodiversity crisis, the need to 18 

analyse the massive datasets and the novel data types generated by new technologies, and the 19 

popularisation of methods through free statistical packages and the rise in computing power. 20 

We view the rise of statistical ecology as a sign that ecological and statistical modelling are 21 

coming together with the common goal of understanding complex processes in a formal 22 

inferential framework for better predictive capabilities. We acknowledge that not all 23 

ecologists agree that ecology lends itself to theorization and prediction (Cooper 2003), or that 24 



process-based methods necessarily have higher predictive ability than phenomenological 1 

models (Peters, 1991; Breiman 2001). However, past disappointments may simply be due to 2 

inappropriate and coarse modelling. If so, progress in both ecological theory and statistical 3 

ecology and a better integration of the two should enhance our understanding and our 4 

predictive ability of ecological phenomena. In the following, we highlight recent trends in 5 

statistical ecology and provide perspectives for the future development of this discipline (see 6 

also King 2014). 7 

We analysed the contents of the abstracts of four International Statistical Ecology 8 

Conferences (ISECs) held biannually between 2008 and 2014 to provide a picture of recent 9 

trends in statistical ecology (Appendix 1). The quantitative results of this analysis show a 10 

temporal shift across the different ISECs, from studies focusing on sampling design issues 11 

towards predictive studies that aim to integrate the modelling of processes with the analysis of 12 

ecological patterns. These results are further synthesized below. 13 

 14 

2. Questions being addressed 15 

Assessing species distribution. Species distribution models (SDMs) are now common 16 

tools to investigate the main drivers of species range and to forecast potential impacts of 17 

environmental changes on biodiversity. Important innovations include the use of point 18 

processes to fit SDMs to presence-only data and the mathematical equivalence of MAXENT 19 

to generalized linear models (Renner & Warton 2013). SDMs are also being extended to 20 

several species to improve the model parameterization for rare species, and to enable the 21 

estimation of co-occurrence patterns. Last, the development of hierarchical occupancy 22 

models, with their ability to handle spatial dependence and imperfect detection, paves the way 23 

for better modelling of the underlying sources of uncertainty (MacKenzie et al. 2006).  24 



Measuring biodiversity (including population dynamics). Biodiversity is multifaceted, 1 

involving aspects of species richness, functions, traits and phylogeny. Consequently, the 2 

choice of relevant diversity indices is challenging, especially when analysing aspects of 3 

functional or phylogenetic diversity and when evaluating the dissimilarities among locations 4 

(quadrats, sites, or regions). Moreover, the potential factors driving the dynamics of 5 

biodiversity (e.g., competition and environmental filters) need to be disentangled. In the 6 

ISECs, estimation of population size, a related topic, has been a major focus, notably through 7 

refinements of capture-recapture (CR) methods. There has been an increase in non-invasive 8 

methods that use natural identifying characteristics of animals (camera or acoustic traps, 9 

genetic markers), with treatment of misidentification error. In parallel, spatially-explicit 10 

models have been developed to fully exploit the spatial information in CR data (Royle et al. 11 

2014).  12 

Understanding animal movements. Movement ecology has shifted from 13 

phenomenological models of observable patterns to mechanistic models characterizing the 14 

underlying processes. In particular, the use of state-space models that account explicitly for 15 

the observation process has now become standard (Patterson et al. 2008), and hierarchical 16 

models have been developed to model individual movements as functions of behavioural 17 

states, past experiences, and environmental heterogeneity (McClintock et al. 2012). While 18 

earlier work relied on discrete-time correlated random walks, the use of continuous-time 19 

models and the integration of other types of data (e.g., species interactions, population 20 

dynamics) are increasing. 21 

Interpreting citizen science data. Data from citizen science programs represent an 22 

opportunity to sample large regions and feed long-term monitoring studies. Difficulties arise 23 

with recent programs based on web- and smartphone-based technologies that are 24 

characterized by the free participation of many laypersons, loose sampling protocols and 25 



heterogeneities in the spatiotemporal distribution of observations. These potential sources of 1 

bias may be accounted for by the joint modelling of the ecological and observation processes 2 

through, e.g., hidden process models (Pagel et al. 2014). 3 

 4 

3. Methods 5 

Hidden process modelling. Ecologists have broadly adopted hierarchical, state-space 6 

and hidden Markov models to deal with how individuals and populations distribute in space 7 

and change over time (Clark 2007). This reflects a move away from modelling spatiotemporal 8 

patterns per se and towards modelling the ecological processes that generate those patterns.  9 

The timescale of interest might be short, such as for animal behaviour, or medium, such as for 10 

migration and demographic processes, or long, such as for changes in species ranges, 11 

composition and biodiversity, or for evolutionary processes. By modelling the underlying 12 

processes while accounting for observation error and model uncertainty, we seek to gain in 13 

predictive ability and hence in the effectiveness of management actions, whether we are 14 

managing a commercial fishery, conserving a threatened population, assessing the impact on 15 

biodiversity of habitat loss, predicting response of populations to disturbance, or evaluating 16 

the effects of climate change on communities. 17 

Coexistence of frequentist and Bayesian frameworks. Bayesian methods are now 18 

widely used, largely because they can more easily accommodate realistic ecological models. 19 

However two notable trends are emerging: an increasing interest in critically evaluating the 20 

performance of Bayesian methods from a frequentist perspective (Little 2011); and the 21 

increasing practicality of frequentist tools for hierarchical models previously only amenable 22 

to Bayesian methods (e.g., Lele et al. 2007). 23 



Dynamic models. Current research in population dynamics addresses the limits of 1 

statistical inference and predictions for nonlinear dynamics (e.g., Hartig & Dormann 2013). 2 

Beyond the population, dynamic statistical models are now applied at larger spatial and 3 

organizational scales to describe the dynamics of species ranges, communities and ecosystem 4 

processes (e.g., Clark et al. 2011). A common feature of these recent statistical models is that 5 

they describe how large-scale dynamics arise from underlying principles of demography 6 

and/or ecophysiology, aiming to base inference and prediction on processes rather than 7 

correlations.  8 

Integrated modelling. Another trend is the popularization of integrated modelling – 9 

i.e., combining different data sets in a single, coherent analysis (Newman et al. 2014) – to 10 

address a wide variety of ecological questions. Current developments deal with the issues of 11 

goodness-of-fit testing, model selection, integration of recent developments in demography 12 

(e.g., integral projection models), and testing the assumption that data from different sources 13 

can be considered independent. From an ecological viewpoint, integrated modelling now 14 

scales from populations up to communities (Péron & Koons 2012). 15 

 16 

4. Implementation 17 

 18 

Computational algorithms. The development of efficient and flexible computational 19 

algorithms for complex models and big datasets ([integrated nested] Laplace approximations, 20 

Hamiltonian Monte Carlo and standard Markov chain Monte Carlo algorithms) requires 21 

tremendous research efforts, as does their implementation in software packages (e.g., R-22 



INLA*, AD Model Builder†, LaplacesDemon‡, Stan§, Nimble**, OpenBUGS††, JAGS‡‡, 1 

PyMC§§, MCMCglmm***). When a complete likelihood cannot be easily calculated, methods 2 

for estimation based only on simulations and summary statistics (Synthetic likelihood: Wood 3 

2010; Approximate Bayesian Computation: Csilléry et al. 2010) are also receiving attention.  4 

Software development and evaluation. There is a tension between devoting time to 5 

developing new methodology, and to enabling other researchers to implement it. Although it 6 

is easy to self-publish an R package or a GUI, a culture shift is needed toward more thorough 7 

testing and verification of published software. We welcome the initiative of ecological 8 

journals to publish software papers, which ensures that publicly-available software is peer-9 

reviewed, and endows software development efforts with much-needed professional 10 

recognition. 11 

 12 

5. Advice to statistical ecologists 13 

 14 

Avoiding statistical machismo†††.  Given methodological developments and increasing 15 

computing power, there is a great temptation to increase model complexity.  In some cases 16 

this is helpful: previously restrictive assumptions about the observation process can be 17 

relaxed; previously intractable ecological mechanisms can be expressed as mathematical 18 

                                                            

*  http://www.r-inla.org/ 
†  http://admb-project.org/ 
‡  http://www.bayesian-inference.com/software 
§  http://mc-stan.org/ 
**  http://r-nimble.org/ 
††  http://www.openbugs.net/w/FrontPage 
‡‡  http://mcmc-jags.sourceforge.net/ 
§§  http://pymc-devs.github.io/pymc/ 
***   http://cran.r-project.org/web/packages/MCMCglmm/index.html 
†††    http://dynamicecology.wordpress.com/2012/09/11/statistical-machismo/ 



models and incorporated in estimation.  In other cases, however, increasing complication can 1 

lead to less robust inference or ecologically insignificant improvements, which nevertheless 2 

waste practitioners’ time and direct their energies away from less glamorous topics such as 3 

improved data collection; there is also often an increased chance of mistakes in 4 

implementation.  There is a clear need for an evaluation strategy of new, often complex 5 

statistical methods to determine the scope of beneficial application for ecology (Hodges 6 

2010). Beneficial means that for a given ecological question and dataset, applying the new or 7 

modified method provides clearer results and avoids drawing flawed conclusions. 8 

Comprehensive model evaluation must include consideration of sample design, covariate 9 

selection, goodness-of-fit, and parameter redundancy diagnostics. 10 

Going one step further.  Many ecological applications are motivated by scientific 11 

support for conservation or management decisions.  Statistical decision theory has much to 12 

offer, both directly in terms of helping rational decision-making, but also in optimizing future 13 

data-collection efforts.  14 

 15 

6. Conclusions 16 

The dialog between statisticians and ecologists has intensified over recent decades, 17 

and ISECs have contributed to this dialog. We encourage even more mixing between 18 

statisticians and ecologists, by exhorting the former to go to the field for a sound 19 

understanding of the data for relevant modelling (Gimenez et al. 2013) and the latter to 20 

embrace courses in mathematics that underpins the reliable application of statistical methods 21 

(Barraquand et al. 2014).  22 



In summary, the statistical approaches developed for ecology are maturing toward a 1 

statistically rigorous, explanatory and possibly predictive framework for linking theory, data 2 

and applications. Exciting research directions are ahead of us that will hopefully help to 3 

address pressing issues in the context of global change. 4 

 5 
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Appendix 1.  1 

 2 

The R code to perform the analyses described below is provided in the script ISEC-analysis.R as well 3 

as the data which are in the ISECData.rda and ISECGraph.rda files. 4 

 5 

We performed a text mining analysis and analyzed the lists of the 25 most common words in each 6 

ISEC abstract volume (Figure A1). The word dynam appeared in the 2014 list, chang and process in 7 

2012 and 2014 and time in 2010, 2012 and 2014 suggesting a growing interest in integrating 8 

mechanisms to explain ecological patterns in time. Predict reached the top 25 list in 2014 and chang in 9 

2012 and 2014, which is in line with a rising concern for global change and with related efforts to 10 

predict ecological dynamics under environmental change. The words distance, survey, density and 11 

design disappeared from the list after ISEC 2008.  This reflects the main focus of the first conference 12 

on sampling design issues while ISECs 2010, 2012 and 2014 reflected a wider range of interests (e.g., 13 

movement ecology appeared in 2012).  14 

Now focusing on the 16 words that are common to the abstracts of all four ISECs (Figure A1), 15 

statistical ecology is without surprise about fitting models to data to estimate parameters of ecological 16 

relevance. This is achieved by developing methods to determine the main effects explaining the 17 

different patterns in the distributions of individuals, populations and species. The quantity of interest is 18 

predominantly the abundance of animals, considered at different spatial scales with a particular 19 

attention to the issue of imperfect detection and adequate sampling scheme.   20 

 21 
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 27 

Table A1. The 25 most frequent words in the ISEC abstracts (sorted by the number of occurrences). 28 

The terms common to all ISEC editions are in bold. 29 

 30 

2008  2010  2012  2014 

model  model  model  model 

estim  estim  data  data 

data  data  estim  speci 

popul  speci  popul  estim 

speci  popul  speci  popul 

sampl  method  spatial  method 

method  sampl  method  distribut 

abund  abund  individu  spatial 

survey  differ  sampl  sampl 

spatial  detect  paramet  ecolog 

detect  spatial  time  differ 

probabl  survey  distribut  abund 

paramet  observ  survey  individu 

anim  inform  abund  time 

individu  paramet  effect  detect 

analysi  anim  differ  paramet 

distanc  effect  detect  chang 

distribut  individu  inform  observ 

surviv  analysi  ecolog  predict 

observ  probabl  probabl  process 



densiti  distribut  anim  dynam 

differ  time  movement  effect 

rate  covari  statist  anim 

design  function  chang  statist 

effect  area  process  inform 

 31 

 32 

 33 

 34 

 35 

In addition, we performed a multivariate analysis (non-symmetric correspondence analysis) of the 50 36 

most common words found in the abstracts of the four conferences (Figure A2).  Figure A2a shows 37 

major trends of semantic variation among the abstracts. The first major trend (abscissa) contrasts the 38 

studies focusing on sampling design issues (e.g., high positive scores of transect, design, sample, detec) 39 

and the studies focusing on characterizing processes and resulting patterns (negative scores). The 40 

second axis contrasts the field of population studies based on capture-recapture approaches vs. 41 

approaches investigating community dynamics, habitat modelling and species distributions (e.g., high 42 

positive scores of communiti, speci, habitat, distribut). These two axes represent 10.04% of the overall 43 

variation among abstracts. Figure A2b shows the 90% convex hulls of each ISEC conference based on 44 

the scores of their abstracts. We found a significant variation (randomization test, p < 0.001) with an 45 

overall trajectory toward lower scores on the first axis (more process-oriented works) and toward more 46 

emphasis on community dynamics, habitat modelling and species distributions on the second axis. 47 

 48 
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