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Abstract : 
 
Sea states are usually the combination of several time-evolving wave systems whereas the classical spectral 
estimation methods assume stationarity. A method that adapts to the dynamical evolution of the spectral 
components is proposed to improve both omnidirectional and directional sea wave spectral estimations. In 
this method, periodograms are computed for each sea state as in the conventional methods, and rather than 
only smoothing individual periodograms, the overall time-history of periodograms are simultaneously 
smoothed in frequency and time dimensions. Since a simple two dimensional averaging would not be 
appropriate because the temporal evolution of the wave systems reflects typical non-stationary behaviors, we 
use either kriging or adaptive 2D kernel density estimators that allow the taking care of the spectral 
component frequency-time evolutions. The method is successfully validated on sequences of spectra typical 
of sea-state conditions in West Africa. The comparison with the simple 2D averaging method and individual 
periodogram smoothing method shows that the proposed method gives higher effective numbers of degrees 
of freedom, better estimates of the spectral shape and reliable spectral moments. The method also provides 
a tool for sea wave spectra interpolation and may thus be used to fill in missing values and improve wave 
systems tracking for storm identification purposes. 
 

Highlights 

► We propose a method to improve sea wave spectra estimation. ► The proposed method takes advantage 
of the structure of wave systems time-histories. ► The method also provides for missing spectra 
interpolation. ► We also apply the method to directional spectra estimation. ► The method is validated on 
spectra measured off Angola. 
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1 Introduction

Description of random ocean waves is of vital importance for many activities and therefore a con-
siderable effort is spent on the collection and analysis of wave data. The most frequent approach for
analyzing the characteristics of random ocean waves is spectral analysis [15], [4]. In that approach,
a sea state is defined for a suitable short-term period of time (from half hour to several hours),
and is considered fully characterized by its directional spectrum which provides the distribution of
the wave energy as a function of frequency and direction. Reliable sea state spectral estimation
is therefore important, especially in coastal engineering and others marine applications. Meth-
ods of two types are available for estimating the spectrum of a sea surface elevation time series:
non-parametric and parametric methods. Non parametric sea wave spectral estimation generally
consists in periodogram smoothing with frequency windows [26], [34], or in Fourier transformation
of smoothed or truncated auto-covariance function [3]. In parametric spectral estimation, the task
is to estimate the parameters of a model that describes the spectrum of the sea state [24], [18].
Parametric estimation is generally satisfactory for unimodal spectra, but much weaker when the
spectrum exhibits many peaks [21].

In many cases, the sea state is a superimposition of coexisting wave systems (swells and wind
sea) and the resulting spectra have many peaks. One often needs in such cases to partition the sea
state into its wave systems for an accurate characterization (see [1], [11], [17], [25]) . Furthermore,
some of successive wave systems are created by the same meteorological event (storm, hurricane,
pressure low, etc.) and thus, one can track in time the evolution of wave systems in order to link
them to the same event (see [17], [1]). Indeed, when looking at the time-history of periodograms, it
is possible to observe temporal coherence in the spectral components. As an illustration, Figure 1
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shows on the left panel a periodogram for individual sea state (in dark) and on the top right panel
the time-history of periodograms off Angola. Linear patterns can be observed in the low frequencies
ranges, corresponding to the time evolutions of swell systems. Some coherent patterns can also be
observed in high frequencies ranges, corresponding to local winds effects. It is legitimate to expect
that taking into account the temporal coherence of the spectral components may be a good way to
improve sea wave spectra estimation. That allows to overcome the limits imposed to the estimation
quality by strict stationnarity conditions.
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Fig. 1. Sea wave spectra estimation and interpolation applied to in-situ data: (left) example of periodogram and
estimated spectrum; (right) time-history of periodogram (up) and estimated spectra (bellow).

This study proposes methods that adapt to the dynamical evolution of the spectral components
to improve both omnidirectional and directional sea wave spectral estimation. Periodograms are first
of all computed for each sea state as in the conventional methods. Yet, rather than only smoothing
individual periodograms, we consider the overall time-history of periodograms as a random field
that depends on frequency and time, and we smooth this field simultaneously in frequency and
time dimensions. Since the temporal evolution of the wave systems reflects typical non-stationary
behaviors, as for instance the linear increasing trend of the pic frequency of swell components, a
simple two dimensional averaging would not be appropriate. Two techniques that allow to consider
the dynamical evolution of wave systems are therefore proposed in this study to smooth the time-
history of periodograms:

• Kriging that is a spatial optimal interpolation method based on the idea that the value at an
unknown point should be a weighted average of the known values at its neighbors, where the
optimal weights are calculated using the time and frequency correlations [29];

• Adaptive 2D kernel density estimator i.e. imposing a kernel that adapts to the dynamical
evolution of wave systems [27].

The addition and the use of the time dimension, taking into consideration the dynamical evo-
lution of the wave systems, improves the sea state spectral estimation. Spectra estimates using
the proposed approach dramatically enhance the temporal tracking of wave systems for sea storms
identification purposes. Moreover, in-situ wave measurements often suffer from missing data in
consequence of instrument loss, malfunction, or delayed maintenance. For the many marine ap-
plications that need continuous measurements, the approach provides a straightforward way to
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observed
sea surface
elevation

=⇒
observed

spectrum
=⇒

parametric
fitted

spectrum
=⇒

synthetic sea
surface elevation

simulation

Table 1. Summary of the method used to generate synthetic time-series of sea surface elevation

interpolate spectra when faced with missing data (see Figure 1 right panel). The extension of the
method to directional spectra improves also the estimation of the directional spreading which is
important in some marine applications.

The paper is organized as follows. A brief description of the data used for this study is given in
Section 2. In Section 3, we present the proposed method for omnidirectional spectral estimation.
We then show some comparison results of the estimated spectra with those that are estimated by
only smoothing individual periodograms, and with spectra that are estimated using a naive two
dimensional averaging. The ability of the proposed method to interpolate missing spectra is finally
shown. Section 4 presents the extension of the methods to the directional spectral estimation.
Conclusions are given in Section 5

2 Data

The data used for this study are re-simulated times series of sea surface elevations derived from
a time history of parametric spectra in order to validate the proposed methods in an idealized
situation where the ”true” spectra are known. The measurement data, covering period from March
2001 to April 2004 are obtained from a directional waverider buoy, sampled at 1.28 Hz, and anchored
by 1450 m water depth off the coast of Angola. Half hourly successive spectra derived from in-
situ measurements are first partitioned using a “dynamical partitioning algorithm” [2]. Synthetic
spectra are then obtained as linear combinations of parametric models fitted to the partitions.
A wind sea component is fitted by a Jonswap parametric model and swell components are fitted
by Log-normal parametric models as recommended in [10], [21] for West Africa conditions (see
Figure 2 ). The resulting time history of synthetic spectra provides a realistic sequence of spectra
(reference spectra). From each synthetic spectrum, time series of sea surface elevation z(τ) are
finally simulated, assuming that z(τ) is a Gaussian process, as described in [13], [22]. The goal
is to estimate spectra from the re-simulated sea surface elevations times series with the proposed
methods and the conventional ones and to compare the results with the reference spectra.

3 Proposed method for omnidirectional spectral estimation

3.1 Method

The method consists of two steps:

1. block the data by short stationary periods (typically 30 minutes) and compute periodograms
for recorded sea elevation time series using discrete Fourier transform on each block;

2. smooth the time-history of log-periodogram using either:

• kriging, or
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Fig. 2. Observed periodogram and fitted combined model (Log-normal function for the swell component and Jonswap
for the wind sea).

• two dimensional Kernel Density Estimator by imposing a kernel that follows the dynam-
ical evolution of waves systems (adaptive kde2D).

3.1.1 Definitions

Consider a real-valued, zero mean process {zτ}0≤τ≤T over duration T and assume that {zτ}0≤τ≤T

is divided into N zero mean stationary sub-processes
{

z1τ
}

,
{

z2τ
}

, ...,
{

zNτ
}

of individual duration

δt = T/N and with finite size observed realization
(

z10 , ..., z
1
2n−1

)

,
(

z20 , ..., z
2
2n−1

)

, ...,
(

zN0 , ..., zN2n−1

)

at time t ∈ {δt, 2δt, ..., Nδt}.
At a given time t = jδt, the associated periodogram for the stationary sub-process

{

zjτ
}

is
computed for a discrete set of frequencies f ∈ [δf, 2δf, ..., nδf ] as

I (f, t) =
1

2n

∣

∣

∣

∣

∣

2n−1
∑

τ=0

zjτe
−i2πfτ

∣

∣

∣

∣

∣

2

(1)

with δf = 1/(2nτ) the sampling frequency.
Based on asymptotic properties, [6], [9] a frequently adopted model for I (f, t) is

I (f, t) = S(f, t)ϕ(f, t)

with ϕ(f, t) are
iid
∼ exp(1) and S(f, t) denotes the true spectral density. According to this model,

E [I(f, t)] = S(f, t)

and
V ar [I(f, t)] = S2(f, t).

Due to its very large variance, I(f, t) is seldom used as an estimator of S(f, t). A logarithmic
transform is commonly applied to convert the above multiplicative noise model into an additive
noise model and stabilize the variance (see, [9] [19] [23])
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L (f, t) = m (f, t) + ξ (f, t)

where L (f, t) = log(I(f, t)), m(f, t) = log(S(f, t)) is the true log-spectral density and ξ(f, t) =
log(ϕ(f, t)) are iid random variables.

The periodogram estimate is an asymptotically (in n) unbiased but inconsistent estimate of the
underlying true spectrum (see [30]). In particular, the estimate suffers from a high variance which
does not converge to zero as n increases. Consistent estimators of wave spectral density can be
obtained by assuming the spectrum constant over some neighborhood and directly smoothing the
periodogram or the log-periodogram [32].

3.1.2 Smoothing the time-history of periodograms using Kriging

Kriging is based on the idea that the value at an unknown point should be a weighted average of the
known values at its neighbors. Kriging theory provides an optimal linear unbiased estimator, based
on assumptions on covariances and it is meant for estimation of a single realization of a random
field [7].

We assume that the true log-spectral density m(f, t) is a second order time stationary process
and denote

{

µm(f) = E [m(f, t)]
cov [m(f, t),m(f ′, t′)] = Cm (f, f ′, t′ − t)

As a consequence the log-periodogram L(f, t) is also a second order stationary process such that

µL(f) = E [L(f, t)]

= E [m(f, t) + ξ (f, t)]

= µm(f) + α (2)

with α = E [ξ(f, t)] and

cov [L(f, t), L(f ′, t′)] = cov [m(f, t) + ξ (f, t) ,m(f ′, t′) + ξ (f ′, t′)]

=

{

Cm(f, f ′, t− t′) if (f, t) 6= (f ′, t′)
Cm(f, f ′, t− t′) + σ2 if (f, t) = (f ′, t′)

(3)

with σ2 = var [ξ (f, t)].
We construct an unbiased linear estimator of m(f, t)

m̂(f, t) = µm(f) +
∑

i/
|fi−f |<Df
|ti−t|<Dt

λi (L(fi, ti)− µL(fi)) (4)

with λ =











λ1

λ2

...
λn











such that

E
[

(m̂(f, t)−m(f, t))
2
]

= λ′KLλ− 2λ′kL + var [m(f, t)]
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is minimum. λ is thus given by
λ = kLK

−1
L

with

kL =











cov [m(f, t), L(f1, t1)]
cov [m(f, t), L(f2, t2)]

...
cov [m(f, t), L(fn, tn)]











=











Cm (f, f1, t− t1)
Cm (f, f2, t− t2)

...
Cm (f, fn, t− tn)











(5)

and

KL =













var [L(f1, t1)] cov [L(f1, t1), L(f2, t2)] · · · cov [L(f1, t1), L(fn, tn)]

cov [L(f2, t2), L(f1, t1)]
. . . · · ·

...
...

...
. . .

...
cov [L(fn, tn), L(f1, t1] · · · · · · var [L(fn, tn)]













(6)

We estimate cov [L(f, t), L(f ′, t+∆t)] by

ĈL(f, f
′,∆t) =

1

N

N−∆t
∑

t=1

L(f, t)L(f ′, t+∆t)−
1

N

N−∆t
∑

t=1

L(f, t)

N−∆t
∑

t=1

L(f ′, t+∆t) (7)

and µL(f) by

µ̂L(f) =
1

N

N
∑

t=1

L(f, t)

and then deduce an estimate of µm and Cm using (2) and (3) and then the weights λ by replacing
CL and µL by the estimates in (5) and (6). Finally, the estimated spectral density at a given
frequency and a given time is obtained by

Ŝ(f, t) = exp (m̂(f, t)) .

Note that it is also possible to compute the kriging variance

var [m̂(f, t)−m(f, t)] = E
[

(m̂(f, t)−m(f, t))2
]

(8)

which gives an estimation of the uncertainty and may be interesting for some applications.
In practice, the covariance is estimated by (7) using three year time-history of periodograms. In

the case where only very short measurements durations would be available, covariance could still
be estimated from long duration hindcast data. It is also possible to use a parametric model for
the covariance function as it is often the case in geostatitics (see e.g. [7]). The covariance should be
constant at a regional scale and one should be in position to use the same covariance to estimate
spectra for any close enough site.

Figure 3 shows the correlation matrices defined as

R(f, f ′,∆t) =
ĈL (f, f ′,∆t)

ĈL (f, f ′, 0)

6
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A global yet expected observation is that the correlation decreases when ∆t increases. Moreover,
it is found that swell systems (f <= fs = 0.11Hz) are still self-correlated up to two days time-lags
whereas wind sea systems are only weakly correlated beyond 24h. For swell systems the correlation
structure moves to the right side meaning that the correlation is more important between S(f, t)
and S(f ′, t′) when t > t′ and f > f ′. This reflects the increasing trend of frequencies along a swell
event (11). The correlation structure of wind sea systems is also found to move slightly to the
opposite side reflecting the decreasing trend of wind sea frequencies. The parameters Df and Dt

of (4) which describe the size of neighborhood used for kriging interpolation are Df = 10δf and
Dt = 12δt, where δf and δt denote frequency and time increments respectively.
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Fig. 3. Correlation function for different values of ∆t

3.1.3 Smoothing the time-history of periodograms using 2D kernel density estimator

Kernel smoothing of the individual log-periodogram is a popular nonparametric method for spectral
density estimation [16]. The usual kernel estimation (kde1D) for the log-spectrum is defined as

m̂ (f, t) =
1

n

n
∑

i=1

1

h
K

(

f − fi
h

)

L(fi, t) (9)

where kernel function K takes various forms in the literature, for instance a Hanning window, and
is in fact a symmetric probability density function. The bandwidth h is a non negative smoothing
parameter that controls the amount of smoothing.
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Since the time- history of log-periodogram is assumed to be a random field L(f, t), we propose
in the following to smooth it with a 2D kernel density estimator. The general form for the 2D
density estimator is then

m̂(f, t) =
1

n

n
∑

i=1

1

det(H)
K

{

H−1

([

f
t

]

−

[

fi
ti

])}

L(fi, ti) (10)

n is the number of observation points, K is the Kernel function, and H is the 2 × 2 bandwidth

matrix. When H is a diagonal matrix i.e. H =

[

hf 0
0 ht

]

where the elements hf and ht control the

smoothing in frequency and time ranges respectively, the corresponding estimator is equivalent to
a simple 2D averaging (see Figure 4 (b)) and it is denoted hereafter by ”kde2D”.

Yet we adapt in our proposed method a kernel that follows the frequency-time evolutions of

wave systems. This is easily carried out by using a full bandwidth matrix i.e H =

[

hf λ
λ ht

]

where

λ is used to control the frequency-time evolution of wave systems (”adaptive kde2D”). According
to a linear wave theory in deep water, for a wind event that was bounded in time and space, the
dominant wave frequency observed at some distant location linearly increases over time at a rate
inversely proportional to the distance traveled (see [12], [17]):

df

dt
=

g

4πd
(11)

The dynamical time evolution of wind sea systems however does not have any particular a priori
pattern. It depends on the wind field characteristics (speed, direction, and time-displacement).
Yet, according to Sverdrup and Munk [31], at the beginning of wind waves development, the energy
transferred from wind to waves helps to increase the period (decrease the frequency). For simplicity
it is assumed that the frequency-time evolution of wind sea systems follows in practice a decreasing
linear trend (Figure 4 (c)). Thus λ has a positive value for swell systems and negative value for
wind sea systems. The use of a full bandwidth matrix allows to take into account the dynamical
evolution of the wave systems and therefore allows to overcome the limits imposed to the estimation
by strict stationnarity conditions.
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Fig. 4. Illustration of 2D Kernel Density Estimator: (a) with diagonal bandwidth matrix (kde2D), (b) with full
bandwidth matrix (adaptive kde2D) for the case f < fs ; (c) Wave systems peak frequency time evolution

It is well known that the choice of H is much more crucial than the choice of K (e.g., see
[33], [28]). If the smoothing parameters are too small, the estimate is too noisy, exhibiting high

8
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variability. If they are too large, then the estimate may miss key features due to over-smoothing,
washing out small details. In practice, to speed up computation and for its simplicity we use a
triangular kernel defined by

K(u) =

{

1− |u| if |u| ≤ 1.
0 otherwise

The bandwidth of the kernel is a free parameter that exhibits a strong influence on the resulting
estimate. There are several methods to optimize the kernel bandwidth. In this study, the bandwidth
is obtained by minimizing the mean integrated squared error (MISE) function. It is the most
common optimality criterion used to select kernel bandwidth. The MISE is defined as

MISE(H) = E
∑

f

∑

t

(m̂(f, t)−m(f, t))2

As the theoretical log-density m(f, t) is unknown, the MISE can not be estimated directly. Bowman
[5] has proposed the use of cross validation method to estimate the MISE. In this method, the
observation sample i is removed for estimating m(fi, ti).

For instance we find for West Africa the optimal bandwidth matrix H =

[

hf λ
λ ht

]

for the

adaptive 2D kernel density estimator which elements are:
hf = 0.01Hz ht = 15h λ = 0.45×mHz.h−1, (case of swell systems)
hf = 0.04Hz ht = 9h λ = −1.2×mHz.h−1 , (case of wind sea systems).
The swell systems frequency domain smoothing bandwidth is smaller than the wind sea one

justifying the fact that swells have narrower ranges of frequencies than wind sea; swell waves
have dispersed from their generation area and have been dissipated. In contrast, the time domain
smoothing bandwidth of swell systems is greater than the wind sea one because swells are generated
by distant storms and the more remote is the storm, the greater is the duration between arrivals
of successive frequencies according to dispersion of sea waves in deep water (11). Similarly to the
covariance in the case of kriging, the bandwidth matrix should be constant at a regional scale. One
needs to estimate in practice only once the bandwidth matrix which can be therefore used for other
neighboring sites. Knowledge of the local climate would allow one to choose without computation
bandwidth matrix values close to these optimal ones.

3.2 Results

Re-simulated time-series of sea surface elevation (see Section 2) are used to estimate spectra by the
proposed methods. Periodograms are first computed from the time-series and the time-history of
periodograms are smoothed using kriging technique of Section 3.1.2 and adaptive 2D kernel density
estimator technique (adaptive kde2D) of Section 3.1.3. Our goal is to compare the estimated spectra
with the reference spectra (i.e. synthetic spectra that are used to simulate the time-series of sea
surface elevation ). Furthermore, in order to check the relevance of our method, the spectra are
also estimated, using a diagonal 2D kernel density estimator (kde2D) i.e. a naive 2D averaging,
and using 1D kernel density estimator, that consists of periodogram smoothing in the frequency
domain only (kde1D).

The first part of this section shows results related to the improvement in the spectral estimation
using kriging and adaptive kde2D. The second part shows some results of the ability of the these
techniques to interpolate missing spectra.

9
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3.2.1 Improvement in spectral estimation

Figure 5 shows the time-history of the error S(f, t)− Ŝ(f, t), where S(f, t) denotes the true spectra
and Ŝ(f, t) the spectra estimated by the different methods (kde1D, kde2D, adaptive kde2D and
kriging). The error is greater for the spectra estimated by kde1D and kde2D than those estimated
using adaptive kde2D and kriging. In particular, kde1D and kde2D often underestimate the peaks
of swells systems in comparison to the proposed methods. Visual inspection shows that spectra
estimated using an adaptive kde2D or kriging are closer to the true spectra than those obtained by
kde1D and kde2D. The same observation can be made on the individual spectra (see Figure 6).

The results are also studied quantitatively on three statistical parameters: effective number
of degrees of freedom of the spectral estimation, Goda’s peakedness parameter, and the spectral
moments.
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Fig. 5. time-history of the difference between the true spectra and the estimated spectra.

• Effective number of degrees of freedom

Under the assumption that the periodograms are independent and exponentially distributed,
the spectrum Ŝ(f, t) obtained by smoothing the periodograms, is shown (see for example [8],
[35]) to approximately obey a χ2 distribution with 2νeff degrees of freedom

2νeff
Ŝ(f, t)

S(f, t)
∼ χ2(2νeff ).

νeff is often used in spectral estimation as an indicator of goodness of the estimation. A
classical assumption made to compute the number of degrees of freedom is that the spectrum
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Fig. 6. Example of estimated spectrum in comparison with the reference one.
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is constant in some neighborhood. Since this assumption is not fully valid, we compute an
”effective number of degrees of freedom” defined by

1

νeff (f, t)
= var

[

Ŝ(f, t)

S(f, t)
− 1

]

(12)

= E





(

Ŝ(f, t)

S(f, t)
− 1

)2


 ,

where S(f, t) is the reference spectrum denoted by Sref (f, t) and Ŝ(f, t) is the estimated
spectrum. The ”effective number of degrees of freedom” integrated for the whole time-history
can then be estimated by

ν̂eff (f) =
1

1
N

∑N
t=1

(

Ŝ(f,t)
S(f,t) − 1

)2 (13)

where N is the total number of spectra. νeff can also be seen as the inverse of the normalized
mean square error.

The Figure 7 shows the results of the ”effective number of degrees of freedom” for the four
estimation methods. Globally, νeff (f) has higher values for kriging and adaptive kde2D
spectra than naive kde2D spectra which are slightly superior to the kde1D ones. νeff (f)
varies proportionally with the spectral density and then reaches its peaks approximately at
the same frequency as the peak frequency of swell and the wind sea systems. The peaks of swell
are better estimated by kriging and by adaptive kde2D than by kde2D and kde1D. For wind
sea systems the differences between adaptive kde2D, kde2D and kriging are not significant.
The quality of the estimation is not good enough for the frequency interval between swell
and wind sea systems ([0.11 0.13Hz]) and the tail of the spectrum f > 0.18Hz. For those
intervals of frequency, the spectral densities are low and no temporal structure can actually
be identified.
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Fig. 7. Effective number of degrees of freedom as function of frequency for the three estimation methods

12



Author / (2015) –23 13

• Goda’s peakedness parameter [14]

The objective is to investigate what improvements in the accuracy of the spectral bandwidth
estimation one can have with our proposed methods. We used as spectral bandwidth the
Goda’s peakedness parameter Qp, and it is estimated for each component (wind sea and
swell) of the spectrum as:

Qp =
2

m2
0

∫ fmax

fmin

fS(f)2df

where m0 =
∫ fmax

fmin
S(f)df , fmin and fmax are respectively the lower and the upper frequencies

bounds. We compute for the four estimation methods the normalized mean absolute error
defined as

NMAEQp
=

∣

∣

∣Qp − Q̂p

∣

∣

∣

Qp
× 100

where Qp is the reference Goda’s peakedness parameter and Q̂p is the one that is computed
from the spectra estimated by kde1D, kde2D, adaptive kde2D or kriging. The results Figure 8
shows the average of NMAEQp

versus the peak frequency. The swell systems spectral band-
widths are clearly better estimated using adaptive kde2D and kriging than the others. Taking
to account the frequency-time evolution of the swell systems allows to reduce approximately
by 10% the error in the estimation of the spectral bandwidth. The improvement in the wind
sea systems bandwidth parameter estimation is not significant. The wind sea have in fact a
broad spectral bandwidth and short stationary durations and it is difficult to have precision
in its estimation.
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Fig. 8. Normalized mean absolute error for the Goda’s peakdness parameter as function of the peak frequency

• Spectral moments

Spectral moments are used to compute sea wave parameters (significant wave height, mean
period, etc). The ability of the proposed methods to give good estimates of spectral moments
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is therefore another important criterion for choosing spectral estimates for ocean waves. The
objective is to verify that the reduction of the variance in the spectral estimation using our
method does not decrease the accuracy of the spectral moments. We thus investigate the
relative difference between the reference spectral moments and the estimated ones defined for
the nth moment as:

Dmn(t) =

∣

∣

∣

∫

fnSref (f, t)df −
∫

fnŜ(f, t)df
∣

∣

∣

∫

fnSref (f, t)df

The Figure 9 shows the boxplot of Dmn distribution for the −1, 0, 1, 2 orders of spectral
moments. The difference between the reference spectral moments and the estimated ones
is lower for kriging and adaptive kde2D. It can be concluded that the spectral moments,
and thus the sea wave environmental parameters, may be accurately estimated by the two
proposed methods. The reduction of the spectral variance by taking into account the temporal
evolution of wave systems is thus very useful and does not affect the accuracy of the sea state
parameters estimation.
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Fig. 9. Boxplot of relative error between the reference spectral moments and the estimated ones

3.2.2 Interpolation ability

In-situ deployed instruments, such as buoys, are sources for continuous long-term oceanographic
data acquisition. Given the rough and unfavorable conditions in the ocean, data gaps are a common
consequence of instrument loss, malfunctioning, or delayed maintenance or data collection, and are
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a major problem for data analysis. The previously proposed methods, namely kriging and adaptive
kde2D, can be effective tools for missing data interpolation. The ability of the methods to perform
spectral interpolation is shown in the present part.

We take a time-history of periodograms I(f, t)1≤t≤N split at half-hour intervals. For each time
step t, gaps with durations dt ∈ {1h, 3h, 6h, 12h, 24h} are arbitrarily generated by removing the
corresponding number of periodograms {2, 6, 12, 24, 48} centered on t. Spectra in the gap extent
are then interpolated with kriging and adaptive kde2D methods. We then compare the interpolated
spectra with the reference ones.

The Figure 10 shows an interpolated spectrum for different gap lengths. From the visual in-
spection of this figure we can see a good agreement between the reference spectrum and the two
interpolated ones onto 12h. The overall accuracy of the interpolated spectra as a function of fre-
quency is evaluated by the ”effective number of degrees of freedom” (13). The ”effective number
of degrees of freedom” curves are presented in Figure 11 for the two methods and for different gap
lengths. Globally, as could have been expected νeff decreases when the length of the gaps increases,
reflecting that the quality of the interpolation decreases when the length of the gaps increases. The
first one (0h) correspond to νeff when there is no gap; it is the same as in Figure 7. Up to 6h, the
kriging νeff curves are most of the time under the adaptive kde2D ones, reflecting that adaptive
kde2D is sightly better than kriging for those gap lengths. Regarding then 12h gap length, krig-
ing interpolation is sightly better than the adaptive kde2D. The available information for this gap
length is not sufficiently rich for accurate estimation of the peaks that correspond to the highest
densities values. Above a gap length of 24h, spectra can not be interpolated by adaptive kde2D
since the optimal time domain bandwidth of wind sea systems htws is equivalent to 9h. Kriging
interpolation for those gap lengths also shows poor quality. It is clear that longer periods of missing
spectra can not be properly interpolated.
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Fig. 10. Example of interpolated spectrum with the reference one for different gap length.
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Fig. 11. ”Effective number of degrees of freedom” νeff for the two methods and for different gap length.

3.2.3 Discussion

The results show that the spectral components temporal correlation structure can be used to im-
prove sea wave spectrum estimation. Both the kriging method and the adaptive kde2D method
give better estimates for spectral shape and for overall spectral moments than the kde1D method or
naive kde2D method. The dependance between successive sea states inside the same meteorological
event can not be taken into account when smoothing an individual sea wave periodogram. This
dependance needs to be taken into account by also considering additional information provided by
neighboring periodograms. However, as it is shown by the results, a simple 2D averaging (kde2D)
of the periodograms is not sufficient. Introducing the time dimension in the spectral estimation
requires to take care of the spectral components evolutions in order to have reliable spectra that
can be used with confidence in marine applications.

Moreover, the results also show that between adaptive kde2D and kriging, the first has a slight
superiority. They are roughly equivalent in the sense that we are looking in the two cases for a
linear estimator of the spectral density S(f, t) by using the neighboring spectral densities weighted
by the neighbors distance to S(f, t). The difference between the two methods is probably due
to the size of data used to estimate the covariance function which is a key imput in the kriging
method. The latest results are obtained with covariance estimated from only three years data.
Yet, even with three years data, the quality of spectra estimates using kriging is better than those
obtained with kde1D or a simple 2D averaging. The accuracy of spectra estimates using kriging
might be improved by using more than three years. Moreover, in contrast to adaptive kde2D, the
kriging method has the advantage of not requiring a prior model for the time evolution of spectral
components. The time-evolution of peak frequencies of swell systems is usually easy to model, but
the of wind sea one lacks specific repeatable models. Choosing a prior model for wind sea peak
frequency time-evolution may slightly affect spectral estimation using adaptive kde2D.
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4 Extention of the directional spectral estimation

Directional information is crucial in many ocean engineering applications. This information is
condensed in a directional wave spectrum described by

S(f, θ) = S(f)D(f, θ), (14)

where S(f) is the energy density spectrum and D(f, θ) is the directional spreading function. The
directional spreading function can be expanded in an angular Fourier series,

D(f, θ) =
1

π

[

a0(f)

2
+

∞
∑

n=1

an(f). cos(n.θ) + bn(f). sin(n.θ)

]

, (15)

where an(f) and bn(f) are the Fourier coefficients. Based on three simultaneous wave measurements
recorded at the same location, such as for instance heave, pitch and roll of a buoy, it is known that
only the first and second Fourier order coefficients can be obtained based on the cross-spectra ([20]).
It common to use a parametric form for D(f, θ), one of the most used directional spreading function
model is cosine− 2s defined by

D(f, θ) = K(f) cos2s(f)
(

θ − θm(f)

2

)

, (16)

where K(f) is a normalization factor, θm(f) the mean wave direction, and s(f) the directional
spreading parameter.

In the case of the measurements recorded by a pitch/roll buoy the first Fourier coefficients may
be obtained by

a1(f) =
Qzx(f)

[Czz(f)(Cxx(f) + Cyy(f))]1/2
, b1(f) =

Qzy(f)

[Czz(f)(Cxx(f) + Cyy(f))]1/2
, (17)

where subscripts x, y, and z denote East, North, and vertical particle displacements respectively;
and the real and imaginary parts Cij and Qij of a cross-spectrum between wave records i and j.
The mean wave direction, and the directional width are related to the first harmonic through

θm1(f) = arg (a1(f) + ib1(f))

σ(f) =
√

2 (1− (a21(f) + b21(f))).

The directional spreading parameter s(f) is then given by

s(f) =
2

σ2(f)
− 1.

4.1 Method

The generalization of the methods to the 2D spectra estimation can be described by three steps.
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1. Cross-periodograms computation

The periodogram of sea surface elevation z(τ) ( 1) can be seen as a cross-periodogram between
z and itself. Generally the cross-periodogram between discrete-time signals y(τ) and x(τ) of
length n is computed as

Ixy(f, t) = 1
NX∗(f, t)Y (f, t)

= Cxy(f, t)− iQxy(f, t)
(18)

with

X∗(f, t) =
1

2n

2n−1
∑

τ=0

xj
τe

i2πfτ

and

Y (f, t) =
1

2n

2n−1
∑

τ=0

yjτe
−i2πfτ .

Following (18) the periodogram of the co-spectra (Czz(f, t), Cxx(f, t), Cyy(f, t)) and the
quadrature spectra (Qzx(f, t), Qzy(f, t), Cxy(f, t)) can be computed.

2. Smoothing the time-history of the logarithmic periodograms of the co-spectra and the quadra-
ture spectra

The time-history of the logarithmic periodograms of the co-spectra and the quadrature spectra
are treated as a random field and are separately smoothed using the same smoothing method
(Kriging (Section 3.1.2) or kde2D (Section10)) as in the 1D case in other to get estimates of
co-spectral densities (Ĉzz(f, t), Ĉxx(f, t), Ĉyy(f, t) and Ĉxy(f, t)), and estimates of quadrature

spectral densities (Q̂zx(f, t) and Q̂zy(f, t)).

3. Directional spreading function

From those estimated cross-densities, the last step is to calculate the Fourier coefficients (17),
then the directional spreading function D(f, θ) using (16) and finally the directional spectrum
S(f, θ) using (14).

4.2 Results

As for the 1D case the validation is carried out on a simulated time series of sea surface horizontal
(x(τ) and y(τ)) and vertical (z(τ)) motions. The simulated time series are derived from synthetic
directional spectra obtained by fitting of parametric models on partitions derived from West Africa
in-situ data. The wind sea component is fitted by a Jonswap parametric model, swell components
are fitted by a Log-normal shape, and the directional spreading function is modeled by a cos2s

function. To avoid imposing ill-estimated values of s for partitions of low energy, we use for at
times the empirical directional width parameter σ derived in [10] for West Africa locations. σ is a
function of frequency and can be expressed as:

σ(f) = 0.87f0.25, (19)
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where σ(f) is in radians.
Directional spectra are then estimated from the simulated time-series using kriging, adaptive

kde2D and kde1D methods. Figure 12 shows an example of estimated directional spectrum in
comparison to the reference one. Since the directional spectrum is the product of Szz(f) by D(f, θ)
the same results on spectral moments may be obtained as in 1D case. The directional width σ(f)
seems the natural parameter that can be investigated for checking the quality of directional spectra
estimates. The Figure 13 presents the result of directional width estimates with the three methods
for 500 consecutive time steps in comparison of the reference directional width (19). Directional
width obtained with kde1D method exhibits the most hightest dispersion compared to the other
methods. The mean difference between quantile 5% and quantile 95% is 5◦ against 3.5◦ for kriging
and 3◦ for adaptive kde2D. These differences do not look significant, because the chosen reference
directional width (West Africa climate) corresponds to narrow spectra; wide spectra might show
greater differences since they are expected to be proportional to the directional width. The results
however show that it is more likely to get accurate directional width estimates using kriging or
(slightly better) adaptive kde2D.
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Fig. 12. Example of directional spectrum estimates

5 Conclusions

Two methods based on kriging and adptive Kernel Density Estimator are proposed for both 1D and
2D ocean wave spectral estimation and interpolation. The main idea behind those two methods is
the use of the temporal correlation structure of wave systems (wind sea and swell) to improve wave
spectra estimation. Regarding 1D spectrum estimation, the first stage common to both methods
is to calculate the periodograms (raw spectra) of recorded sea surface elevation time-series. The
spectral density is then considered as a function of frequency and time and the next step is to treat
the time-history of the log-periodogram as a random field and smooth it using either kriging or
adptive kde2D method. The methods are extended to 2D spectra estimation by using the same
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Fig. 13. Directional width obtained with the three methods; 5% and 95% fluctuation intervals are plotted in dashed
black line. The red curve corresponds to the true value given by (19).

technique as for 1D spectra to estimate separately auto-densities and cross-densities, and then
computing the directional distribution function with Fourier coefficients obtained from them.

The estimation methods were tested on synthetic yet field-similar data and the results were
compared with the conventional kde1D method and a naive 2D averaging method. We have found
that both Kriging and adaptive kde2D-based proposed methods provide better spectral estimates,
i.e. a better representation of the spectra shape and better values of spectral moments compared
to the kde1D method and a naive 2D averaging method. Regarding directional spectra, it is found
that the proposed methods allow to better estimate the directional spreading parameter. It is also
found that the adaptive kde2D-based method gives slightly better results than kriging. However,
the adaptive kde2D method requires a prior model of time-evolution for peak frequencies of wind
sea and swell systems. The kriging method has the advantage of not considering any prior model
for the time-evolution of peak frequencies of wave systems. It is based on estimation of covariance
matrices, the quality of which depends on the size of the data available.

The exploitation of the time dimension correlation structure in spectral estimation is also demon-
strated to be a good tool for spectra interpolation over gaps when dealing with in-situ data, which
often suffer from such missing data. With the proposed methods, we found that spectra can be
properly interpolated up to 12h gap lengths, with the quality of interpolated spectra decreasing
when gaps length increases.

Some improvements can still be brought to the proposed estimation methods. Especially, for
adaptive kde2D, the use of wind data may be used for the improvement of the time-evolution
model of peak frequencies of the wind sea. Regarding kriging, a choice of an appropriate covariance
structure model rather than using the empirical one may improve the spectral estimates.

The proposed estimation methods can improve the tracking of wind sea and swell systems as
much as the wave systems time evolution is taken into account in spectra estimation. Kriging might
also be used when one accesses data from an array of buoys. It can similarly be applied to swell
time-space tracking.
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