

# SEDICAR MD 133 - Rapport scientifique

A bord du Marion Dufresne II

# Partie 1 : Brest, 24-06-2003 / Brest, 29-06-2003

<u>Chef de mission :</u> Jean-François BOUR ILLET <u>Directeur des opérations :</u> Xavier MORIN

# Partie 2 : Brest, 12-07-2003 / Bordeaux, 14-07-2003

<u>Chef de mission :</u> Jean-François BOUR ILLET <u>Directeur des opérations :</u> Yvon BALUT

# Partie 3 : Bordeaux, 15-07-2003 / Las Palmas, 24-07-2003

<u>Chef de mission :</u> Jean-Louis T URON <u>Co-chef de mission :</u> Jean-François BOURILLET <u>Directeur des opérations :</u> Yvon BALUT

# Table des matières

| • | Introduction                                                                                               | p3                   |
|---|------------------------------------------------------------------------------------------------------------|----------------------|
| • | Carte générale                                                                                             | p 4                  |
| • | Liste des participants                                                                                     | p 5                  |
| • | Résumé - Objectifs scientifiques                                                                           | р 10                 |
| • | Méthodes et outils<br>* Carottage et étude des carottes à bord<br>* Description du sondeur multi-faisceaux | p 19<br>p 20<br>p 30 |
| • | Journal de bord                                                                                            | p 40                 |
| • | Liste des cibles de carottages                                                                             | p 43                 |
| • | Carte des stations des 3 parties                                                                           | p 45                 |

Données des carottages :

- > Carte morphologique du site
- Plan de situation du site
- Profil 3.5kHz général
- Profil 3.5kHz de la station
- ➢ Fiche de carottage
- Photos des sections
- Description des sédiments
- Propriétés physiques (M.S.T.)
- > Spectrophotometrie
- Spectrocolorimétrie (carotte MD03 2693 à MD03 2696)

| • | MD03-2688 station 1 "Crozon"              | p 46  |
|---|-------------------------------------------|-------|
| • | MD03-2689 station 2 "Delesse"             | p 58  |
| • | MD03-2690 station 3 "Guilcher"            | p 67  |
| • | MD03-2691 station 4 "Blackmud"            | p 79  |
| • | MD03-2692 station 5 "Treveleyan"          | p 89  |
| • | MD03-2693 station 6 « Canyon Cap breton » | p 100 |
| • | MD03-2694 station 7 « Dôme Gascogne »     |       |
| • | MD03-2695 station 8 « Levée Audierne »    | p 127 |
| • | MD03-2696 station 9 « Ride Quiberon »     | p 139 |
|   |                                           | _     |
| • | Concours de chorales SEDICAR              | p 151 |

#### Introduction

La campagne SEDICAR (SEDIment CARottage) à bord du navire océanographique Marion Dufresne s'est déroulée dans le golfe de Gascogne. Le navire et ses équipements scientifiques associés étaient mis à disposition par l'IPEV. Au cours des trois parties, le navire a relié Brest à Brest (24-28 juin 03), Brest à Bordeaux (12-14 juillet 03) et Bordeaux à Las Palmas (14 au 24 juillet 03). Pour la première partie, l'équipe scientifique SEDICAR a bénéficié du soutien de l'équipe partielle de la mission précédente PICASSO ; pour la troisième partie, elle est venue renforcer l'équipe de la mission PICABIA. Les travaux de la campagne SEDICAR se sont terminés le 19 juillet 2003 à la sortie du golfe de Gascogne. Les responsables scientifiques étaient Jean-François Bourillet (parties 1 & 2), Jean-Louis Turon et Jean-François Bourillet (partie 3). La mise à disposition de 10 jours de campagnes sur les 16 estimés nécessaires pour mener à bien les objectifs de la demande de campagne nous ont obligés à réduire de 2/3 le nombre initial de sites (de 26 à 17). Le choix s'est porté sur les sites pour lesquels le carottier géant Calypso représentait le meilleur voire l'unique moyen de prélèvement. C'est ainsi que la plupart des sites du plateau continental, sableux et dans une moindre mesure peu profonds, ont été écartés en faveur des sites argilo-silteux de la pente et du glacis. La première partie de la mission a été écourtée (5 sites réalisés sur 11) en raison d'une avarie importante sur le treuil. En raison de mises au point diverses nécessaires après l'arrêt technique, aucune des 2 carottes prévues n'a été prélevée pendant la seconde partie. Quatre carottes sur 4 ont été réalisées au cours de la troisième partie mais en intégrant les 2 de la deuxième partie au détriment de 2 carottes.



Liste des participants aux trois parties de la campagne SEDICAR de Brest à Las Palmas

## Liste des participants à la partie 1 : Brest / Brest

| Nom        | Prénom         | Fonction                    | Organisme                                                               | Courrier                           | Pays      |
|------------|----------------|-----------------------------|-------------------------------------------------------------------------|------------------------------------|-----------|
|            |                |                             |                                                                         |                                    |           |
| APPRIOU    | Delphine       | Etudiante                   | Ifremer centre de Brest 29280 Plouzané Cedex                            | delphine.appriou@ifremer.fr        | France    |
| AUFFRET    | Gérard         | Expert                      | IUEM UMR6538 Place Nicolas Copernic 29280 Plouzané                      | gerardgenevieve@libertysurf.fr     | France    |
| AUFFRET    | Yves           | Ingénieur                   | Ifremer centre de Brest 29280 Plouzané Cedex                            | yves.auffret@ifremer.fr            | France    |
| BALTZER    | Agnès          | Maître de Conférence        | Université de Caen rue des tilleuls 14000 Caen                          | agnes.baltzer@geos.unicaen.fr      | France    |
| BALUT      | Yvon           | Ingénieur                   | IPEV                                                                    | yvon.balut@ifrtp.ifremer.fr        | France    |
| BERNARD    | Marie-France   | Médiatrice scientifique     | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence |                                    | France    |
| BERTRAND   | Sébastien      | Etudiant                    | Université de Liège                                                     | S.Bertrand@ulg.ac.be               | Belgique  |
| BOES       | Xavier Bernard | Etudiant                    | Université de Liège                                                     | Xavier.Boes@ulg.ac.be              | Belgique  |
| BOURILLET  | Jean-François  | Chercheur - Chef de mission | Ifremer centre de Brest 29280 Plouzané Cedex                            | jfb@ifremer.fr                     | France    |
| CIRAC      | Pierre         | Maître de Conférence        | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence | cirac@epoc.u-bordeaux.fr           | France    |
| COUTELLE   | Alain          | Professeur                  | UBO                                                                     | alain.coutelle@univ-brest.fr       | France    |
| DE DECKER  | Sophie         | Etudiante                   | Ecole Ingénieur Strasbourg                                              |                                    | France    |
| DENNIELOU  | Bernard        | Chercheur                   | Ifremer centre de Brest 29280 Plouzané Cedex                            | bernard.dennielou@ifremer.fr       | France    |
| DESSALE    | Nils           | Etudiant                    | Intechmer                                                               | nils.dessale@voila.fr              | France    |
| DIRBERG    | Guillaume      | Etudiant                    | Ecole Ingénieur Strasbourg                                              |                                    | France    |
| DUBRULLE   | Carole         | Etudiante                   | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence | carole.dubrulle@etu.u-bordeaux1.fr | France    |
| DUPONT     | Sebastien      | Ingénieur                   | Ifremer centre de Brest 29280 Plouzané Cedex                            | sebastien.dupont@ifremer.fr        | France    |
| FLOCH      | Gilbert        | Technicien                  | Ifremer centre de Brest 29280 Plouzané Cedex                            | gilbert.floch@ifremer.fr           | France    |
| GUYOMARCH  | Patrick        | Technicien                  | EPSHOM 13, rue du Chatellier BP426 29275 Brest                          | guyomard@shom.fr                   | France    |
| JAOUEN     | Alain          | Technicien                  | IPEV                                                                    | alain.jaouen@ifrtp.ifremer.fr      | France    |
| LEGEAIS    | Jean-François  | Etudiant                    | Ensieta                                                                 | jeff240@caramail.com               | France    |
| LERICOLAIS | Gilles         | Chercheur                   | Ifremer centre de Brest 29280 Plouzané Cedex                            | gilles.lericolais@ifremer.fr       | France    |
| MILLO      | Christian      | Etudiant                    | Université de Kiel                                                      | cm@gpi.uni-kiel.de                 | Italie    |
| MORIN      | Xavier         | Directeur des opérations    | IPEV                                                                    | xavier.morin@ifrtp.ifremer.fr      | France    |
| PICHON     | Emilie         | Etudiante                   | IUEM UMR6538 Place Nicolas Copernic 29280 Plouzané                      | Laurence.Droz@univ-brest.fr        | France    |
| POIRIER    | Dominique      | Ingénieur                   | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence | poirier@epoc.u-bordeaux.fr         | France    |
| REYNAUD    | Jean-Yves      | Chercheur                   | MNHN - Labo. Géologie 43 rue Buffon 75005 Paris                         | reynaud@mnhn.fr                    | France    |
| ROTHE      | Stefan         | Chercheur                   | IMAGE                                                                   |                                    | Allemagne |
| ROUSSET    | Jean-Marc      | Maître de Conférence        | Université de Caen rue des tilleuls 14000 Caen                          | rousset@meca.unicaen.fr            | France    |
| SAMUEL     | Claire         | Etudiante                   | Intechmer                                                               | Reclaisam@aol.com                  | France    |
| SANGIARDI  | Pierre         | Ingénieur                   | IPEV                                                                    | pierre.sangiardi@ifrtp.ifremer.fr  | France    |
| TOUCANNE   | Samuel         | Etudiant                    | Université de Nantes - 62, rue de la gare 44320 St Père en Retz         | stoucanne@yahoo.fr                 | France    |
| ZARAGOSI   | Sébastien      | Maître de Conférence        | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence | s.zaragosi@epoc.u-bordeaux.fr      | France    |

## Liste des participants à la partie 2 : Brest / Bordeaux

| Nom       | Prénom        | Fonction                | Organisme                                                               | Courrier                                     | Pays   |
|-----------|---------------|-------------------------|-------------------------------------------------------------------------|----------------------------------------------|--------|
|           |               |                         |                                                                         |                                              |        |
| BALTZER   | Agnès         | Maître de Conférence    | Université de Caen - Rue des tilleuls 14000 Caen                        | agnes.baltzer@geos.unicaen.fr                | France |
| BALUT     | Yvon          | Ingénieur de recherche  | IPEV                                                                    |                                              | France |
| BEAUDELOT | Cédric        | Etudiant                | IUEM UMR6538 Place Nicolas Copernic 29280 Plouzané                      | cedric.beaudelot@ifremer.fr                  | France |
| BERNARD   | Marie-France  | Médiatrice scientifique |                                                                         |                                              | France |
| BONNARD   | Gaële         | Médecin                 | 125 avenue Nacel Penard - 33600 PESSAC - tél : 06 63 07 29 93           |                                              | France |
| BOURILLET | Jean-François | Cadre R2                | Ifremer centre de Brest 29280 Plouzané Cedex                            | jfb@ifremer.fr                               | France |
| CIRAC     | Pierre        | Maître de Conférence    | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence | cirac@epoc.u-bordeaux.fr                     | France |
| CREMER    | Michel        | Chercheur               | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence | cremer@epoc.u-bordeaux.fr                    | France |
| DUBRULLE  | Carole        | Etudiante de DEA        | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence | carole.dubrulle@libertysurf.fr               | France |
| DUPONT    | Sébastien     | Ingénieur               | Ifremer centre de Brest 29280 Plouzané Cedex                            | sebastien.dupont@ifremer.fr                  | France |
| JEGOU     | Isabelle      | Etudiante               | IUEM UMR6538 Place Nicolas Copernic 29280 Plouzané                      |                                              | France |
| JOUET     | Gwenael       | Stagiaire               | IUEM UMR6538 Place Nicolas Copernic 29280 Plouzané                      | gwenael.jouet@ifremer.fr                     | France |
| LE NOC    | Marlène       | Secrétaire              | IPEV                                                                    | marlene.le.noc@ifrtp.ifremer.fr              | France |
| LEBOURG   | Laurence      | Assistant Ingénieur     | IPEV                                                                    | laurence.lebourg@ifrtp.ifremer.fr            | France |
| LEGEAIS   | Jean-François | Stagiaire               | ENSIETA                                                                 | legeaije@ensieta.fr /// jeff240@caramail.com | France |
| NOKIN     | Marc          | Ingénieur               | Ifremer centre de Brest 29280 Plouzané Cedex                            | marc.nokin@ifremer.fr                        | France |
| OLLIVIER  | Bernard       | Ingénieur de recherche  | IPEV                                                                    | bernard.ollivier@ifrtp.ifremer.fr            | France |
| RIGAUT    | Frédéric      | Ingénieur d'études      | IPEV                                                                    | frederic.rigaut@ifrtp.ifremer.fr             | France |
| TOUCANNE  | Samuel        | Etudiant                | 62, rue de la gare 44320 St Père en Retz                                | stoucanne@yahoo.fr                           | France |
| TURON     | Jean-Louis    | Directeur de Recherche  | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence | turon@epoc.u-bordeaux.fr                     | France |
| VUAILLET  | Pierre        | Etudiant                |                                                                         |                                              | France |
| ZARAGOSI  | Sébastien     | Maître de Conférence    | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence | s.zaragosi@epoc.u-bordeaux.fr                | France |

## Liste des participants à la partie 3 : Bordeaux / Las Palmas

| Nom              | Prénom        | Fonction               | Organisme                                                               | Pays      |
|------------------|---------------|------------------------|-------------------------------------------------------------------------|-----------|
|                  |               |                        |                                                                         |           |
| ALT-EPPING       | Ulrich        | Etudiant               | Université de Bremen                                                    | Allemagne |
| BALTZER          | Agnès         | Maître de Conférence   | Université de Caen - Rue des tilleuls 14000 Caen                        | France    |
| BALUT            | Yvon          | Ingénieur              | IPEV                                                                    | France    |
| BEARD            | Sacha         | Etudiant               | Université de Wales - Bangor                                            | France    |
| BRETEL           | Patrice       | Maître de Conférence   | Université de Caen - Rue des tilleuls 14000 Caen                        | France    |
| CASTERA          | Marie-Hélène  | Technicienne           | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence | France    |
| BONNARD          | Gaële         | Médecin                | IPEV                                                                    | France    |
| BOURILLET        | Jean-François | Chercheur              | Ifremer - Centre de Brest - 29280 Plouzané cédex                        | France    |
| CIRAC            | Pierre        | Maître de Conférence   | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence | France    |
| COZIC            | Amandine      | Etudiant               | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence | France    |
| CREMER           | Michel        | Etudiant               | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence | France    |
| DANIAU           | Anne-Laure    | Etudiant               | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence | France    |
| DE DECKER        | Sophie        | Etudiant               | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence | France    |
| DENIAUD          | Hélène        | Etudiant               | Université de Perpignan                                                 | France    |
| DESSALE          | Nils          | Etudiant               | Ifremer - Centre de Brest - 29280 Plouzané cédex                        | France    |
| DIRBERG          | Guillaume     | Etudiant               | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence | France    |
| DUCASSOU         | Emmanuelle    | Etudiant               | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence | France    |
| DUPRAT           | Josette       | Technicienne           | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence | France    |
| ESCUTIA          | Carlota       | Chercheur              | Institut de la Science de la terre - Grenade                            | Espagne   |
| EYNAUD           | Frédérique    | Maître de Conférence   | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence | France    |
| FLEURY           | Dominique     | Ingénieur              | IPEV                                                                    | France    |
| FLOCH            | Gilbert       | Technicien             | Ifremer - Centre de Brest - 29280 Plouzané cédex                        | France    |
| GANCEDO-TERRINHA | Pedro-Antonio | Chercheur              | Université de Lisbonne                                                  | Portugal  |
| GARCIA-ORELLANA  | Jordi         | Chercheur              | Université de Barcelone                                                 | Espagne   |
| GONTHARET        | Swanne        | Etudiant               | Université de Paris VI                                                  | France    |
| GRACIA           | Eulalia       | Chercheur              | Université de Barcelone                                                 | Espagne   |
| JULLIEN          | Elsa          | Etudiant               | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence | France    |
| KIM              | So-Young      | Etudiant               | Université de Wales - Bangor                                            | UK        |
| LARRASOANA       | Juan Cruz     | Etudiant               | CSIC Barcelone                                                          | Espagne   |
| LE NOC           | Marlène       | Technicienne           | IPEV                                                                    | France    |
| LEBOURG          | Laurence      | Assistante Ingénieur   | IPEV                                                                    | France    |
| LEGEAIS          | Jean-François | Etudiant               | IPEV                                                                    | France    |
| Lo CASCIO        | Marie         | Etudiant               | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence | France    |
| MALAIZE          | Bruno         | Maître de Conférence   | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence | France    |
| MARRET           | Fabienne      | Chercheur              | Université de Wales - Bangor                                            | UK        |
| MARTIN-LEBREIRO  | Susana        | Chercheur              | IGM-DGM Lisbonne                                                        | Portugal  |
| NAUGHTON         | Filipa        | Etudiant               | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence | France    |
| NAVE             | Silvia        | Chercheur              | IGM-DMG Lisbonne                                                        | Portugal  |
| OGGIAN           | Georges       | Technicien             | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence | France    |
| OLLIVIER         | Bernard       | Ingénieur              | IPEV                                                                    | France    |
| PEREZ-BELMONTE   | Lucia         | Etudiant               | Ifremer - Centre de Brest - 29280 Plouzané cédex                        | Espagne   |
| RIGAUT           | Frédéric      | Ingénieur              | IPEV                                                                    | France    |
| SANCHEZ-GONI     | Maria         | Chercheur              | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence | France    |
| TURON            | Jean-Louis    | Directeur de Recherche | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence | France    |
| VAN TOER         | Aurélie       | Etudiant               | Université Bordeaux I UMR 5805 EPOC, avenue des facultés, 33405 Talence | France    |
| VIZCAINO         | Alexis        | Etudiant               | CSIC Barcelone                                                          | Espagne   |
| VOELKER          | Antje         | Chercheur              | IGM-DGM Lisbonne                                                        | Portugal  |

| Université flottante |        |          |                                           |            |  |  |
|----------------------|--------|----------|-------------------------------------------|------------|--|--|
| Nom                  | Prénom | Fonction | Organisme                                 | Pays       |  |  |
|                      |        |          |                                           |            |  |  |
| ACOSTA-COLON         |        |          | Purdue University                         | Etats-Unis |  |  |
| ARYAL                |        |          | Purdue University                         | Etats-Unis |  |  |
| BULOIS               |        |          | Université de Bretagne Ouest              | France     |  |  |
| CALAIS               |        |          | Purdue University                         | Etats-Unis |  |  |
| CLIFTON              |        |          | Purdue University                         | Etats-Unis |  |  |
| COUTEAU              |        |          | Université de Bordeaux                    | France     |  |  |
| CRESPIN              |        |          | Université de Bordeaux                    | France     |  |  |
| DASGUPTA             |        |          | Purdue University                         | Etats-Unis |  |  |
| DEBORDE              |        |          | Université de Bordeaux                    | France     |  |  |
| DEVERCHERE           |        |          | Institut Universitaire Européen de la Mer | France     |  |  |
| DOMZIG               |        |          | Institut Universitaire Européen de la Mer | France     |  |  |
| ETOURNEAU            |        |          | Université de Bordeaux                    | France     |  |  |
| FARMER               |        |          | Purdue University                         | Etats-Unis |  |  |
| GALERNE              |        |          | Université de Bretagne Ouest              | France     |  |  |
| GIRARDIE             |        |          | Université de Bordeaux                    | France     |  |  |
| GRIFFITHS            |        |          | Purdue University                         | Etats-Unis |  |  |
| IDIER                |        |          | Université de Bretagne Ouest              | France     |  |  |
| JEGO                 |        |          | Institut Universitaire Européen de la Mer | France     |  |  |
| JOLY                 |        |          | Université de Bordeaux                    | France     |  |  |
| KOGLIN               |        |          | Purdue University                         | Etats-Unis |  |  |
| MACY                 |        |          | Purdue University                         | Etats-Unis |  |  |
| MAS                  |        |          | Université de Bordeaux                    | France     |  |  |
| MOUSSEAU             |        |          | Université de Bretagne Ouest              | France     |  |  |
| NONNOTTE             |        |          | Institut Universitaire Européen de la Mer | France     |  |  |
| PEYPOUQUET           |        |          | Université de Bordeaux                    | France     |  |  |
| TAURUA               |        |          | Institut Universitaire Européen de la Mer | France     |  |  |
| THORAVAL             |        |          | Université de Bretagne Ouest              | France     |  |  |
| WULPUT               |        |          | Université de Bretagne Ouest              | France     |  |  |

# Résumé

**Objectifs scientifiques** 

### Résumé

Les fleuves constituent un vecteur primordial pour le transport des produits issus de l'érosion continentale jusqu'aux zones de dépôts profonds. A la faveur des variations climatiques, le profil d'équilibre des fleuves évoluent dans le temps pour atteindre leur niveau de base souvent équivalent au niveau de la mer. Leurs paramètres hydrauliques et leur morphologie varient : le long de leur cours sous-marin ou émergé, ils construisent des figures sédimentaires, remanient ou érodent des figures plus anciennes.

Lors des périodes froides des derniers 500.000 ans, il existait un fleuve qui coulait au centre de la Manche actuelle : le paléo-fleuve Manche. En amont, il drainait les bassins versants de fleuves actuels comme la Seine, la Somme, la Solent et probablement la Meuse, le Rhin, la Tamise à l'occasion de l'ouverture du barrage que constitue le Pas-de-Calais. Il a été reconnu que les bancs sableux ou les vallées fossiles vides ou comblées du plateau continental appartiennent bien à un seul et même ensemble le « système Manche ». Au cours des très bas niveaux marins, le fleuve, s'approchant du rebord du plateau (200 m), était par endroit en liaison directe avec les canyons de la pente. Par leur organisation convergente, ces canyons alimentaient les deux zones de dépôts profonds du pied de marge (4200 m) que sont les appareils turbiditiques Celtique et Armoricain récemment cartographiés.

Le but de la campagne est de connaître la réponse d'un système sédimentaire complet à la haute variabilité climatique du Quaternaire terminal. Les objectifs consistent à :

- étudier les transferts sédimentaires du rebord du plateau vers les systèmes profonds
  - en déterminant le type (détritique, hémipélagique, gravitaire, glaciaire, fluvial) et la chronologie des régimes sédimentaires sur le haut de pente et dans les systèmes chenaux/levées qui alimentent les 2 systèmes de dépôts,
  - en essayant de différencier les apports glaciaires en provenance de la fonte de la calotte des îles Britanniques des apports périglaciaires du système Manche, et dans la mesure du possible de distinguer les signatures des différents bassins versants continentaux.
- reconstituer les conditions paléoenvironnementales du Golfe de Gascogne et donc les climats contemporains des érosions alimentant le système Manche. En particulier, essayer de remonter jusqu'à une période dont les conditions environnementales sont les plus proches des conditions actuelles (stade isotopique 11 soit 400.000 ans environ).

Neuf carottes de 20 à 40 m ont été réalisées sur des sites clés précédemment repérés. Les analyses réalisées à bord montrent déjà que 4 cycles ont été enregistrés (jusqu'à 400.000 ans) et que de nombreux évènements turbiditiques sont présents en pied de pente.

## **Objectifs scientifiques**

Le thème principal est l'étude des transferts sédimentaires des estuaires vers le domaine profond en régime périglaciaire, au cours des derniers cycles climatiques avec comme cas d'étude le "Système Manche". La notion de « Système Manche » découle d'une volonté d'une étude intégrée comprenant l'évolution des sédiments sous l'influence de l'hydrodynamisme actuel et du glacio-eustatisme, la liaison canyon-éventail profond et les processus de transit dans la pente. Elle rassemble plusieurs provinces physiographiques depuis le proche côtier jusqu'au domaine abyssal et en particulier la zone-charnière du rebord du plateau continental. Le lien commun en est le fleuve " Manche ", aujourd'hui disparu, mais qui a été le vecteur privilégié des échanges sédimentaires entre le continent et les zones profondes de dépôts lors des bas niveaux marins ce qui est classique mais aussi lors des hauts niveaux marins ce qui est plus original.

L'intérêt de travailler en régime périglaciaire est que ces bassins, situés dans la zone maximale de battement du front polaire, sont particulièrement aptes à enregistrer la haute variabilité climatique et les débâcles glaciaires. Le « système Manche » s'étend du Sud de la Mer du Nord jusqu'au Golfe de Gascogne. Il comporte actuellement un domaine de plateau continental, La Manche, une portion de pente continentale accidentée de nombreux canyons et un glacis marqué par la présence de 2 grands éventails profonds récemment mis en évidence, le Celtique à l'Ouest et l'Armoricain à l'Est. La zone d'étude réduite comprend le système du paléo-fleuve Manche limité à l'Est par la le rebord du plateau continental et s'étend jusqu'à la longitude 10° Ouest et de la latitude 49° Nord à 43° Nord.

## Le système sédimentaire « Manche »:

Au cours des principaux cycles climatiques, les fleuves ont évolué et ont été le vecteur principal des transits sédimentaires (Gibbard P.L., 1988). En parallèle, les transgressions glacio-eustatiques effacent de façon cyclique tout ou partie des empreintes des systèmes fluviatiles sur la plate-forme. Néanmoins, des études récentes ont permis de démontrer l'appartenance d'un certain nombre de figures sédimentaires au même système sédimentaire : le "Système Manche" (cf figure1).

Auffret (Auffret G.A., 1983) avait déjà prouvé que la partie profonde du système était le siège d'évènements turbiditiques mais la cartographie des deux appareils turbiditiques profonds Celtique et Armoricain (Auffret et al., 2000; Le Suavé et al., 2000), la description de leur structure sismique et des conditions de sédimentation au cours du dernier cycle glaciaire (Droz et al., 1999; Zaragosi, 2001; Zaragosi et al., 2000) sont tout à fait récentes.

Les canyons de la pente des Approches Occidentales de la Manche (Bourillet and Loubrieu, 1995) organisés en véritables bassins versants (Bourillet J.-F. et al., 2001) comme le soupçonnait déjà Day (Day A.A., 1959) assurent le transfert des sédiments piégés le long de 600 km de rebord de plate-forme et l'alimentation des systèmes turbiditiques. En effet, les sédiments, contrairement à la marge est-américaine (McHugh C.M.G. et al., 1996; Mountain G.S. et al., 1996), ne comblent pas les canyons à mi-pente et contribuent directement au bilan des centres dépôts profonds. Au cours des bas niveaux marins, les fleuves ont laissé leurs empreintes retrouvées sur le plateau externe sous forme de paléovallées (Bourillet et al., soumis; Bouysse et al., 1975b; Reynaud et al., 1999) entaillant le prisme Néogène (Evans C.D.R., 1990) ou de bancs sableux profonds (Bouysse et al., 1976; Reynaud, 1996) et sur le plateau interne en Manche centrale et orientale sous forme de paléovallées (Auffret J.P. et al., 1980; Larsonneur et al., 1982) convergeant vers la Fosse Centrale (Lericolais G., 1997) ou de bancs sableux (Mhammdi, 1994; Trentesaux, 1993).



Figure 1. Le « système Manche » et ses exutoires sous-marins au dernier maximum glaciaire.. 1 : bancs sableux ; 2 : bassin versant de la Grande Sole ; 3 : bv de la Petite Sole ; 4 : bv de La Chapelle ; 5: bv Ouest Bretagne ; 6 : système turbiditique Celtique ; 7 : système turbiditique Armoricain. (Bourillet et al., 2003)



Figure 2. Comparaison des taux de sédimentation des systèmes turbiditiques Celtique et Armoricain et des hauts fonds du Golfe de Gascogne (Mériadzek, Treveylan).

Actuellement une difficulté majeure dans l'étude de ces dépôts profonds, est la superposition de deux sources d'apports sédimentaires : le "Système Manche" et le système glaciaire situé en Mer d'Irlande (Bourillet et al., soumis; Zaragosi et al., 2001b). Ce dernier conditionné essentiellement par le fonctionnement de la calotte glaciaire anglo-saxonne (Bowen et al., 2002; Knight, 2001; McCabe and Clark, 1998; Scourse and Furze, 2001; Scourse et al., 2000) est susceptible d'être à l'origine de forts apports sédimentaires vers le domaine profond du Golfe de Gascogne.

## Contexte paléoenvironnemental générales de la marge ouest européenne :

Les récents travaux paléoenvironnementaux ont permis de montrer comment les environnements ouest européens et plus particulièrement les environnements sédimentaires du Golfe de Gascogne étaient sensibles à la haute variabilité climatique telle qu'elle est enregistrée au sein des calottes glaciaires. Ils sont influencés à la fois par les facteurs globaux comme la position des ceintures climatiques, la remontée de la Dérive Nord Atlantique (Eynaud, 1999) et l'arrivée d'icebergs canadiens lors des évènements d'Heinrich (Grousset et al., 2000 ; Auffret et al., 2002) et par des facteurs plus régionaux comme l'arrivée d'eaux de fonte en provenance des calottes glaciaires et glaciers (Eynaud, 1999).

Les carottes prélevées dans les deux systèmes turbiditiques montrent des taux de sédimentation similaires à ceux de la Terrasse Mériadzek de 12 à 10 ka BP (cf. figure 2). Mais elles montrent également un arrêt plus précoce pour le système Armoricain que pour le système Celtique (respectivement à 10 et 7 ka BP) (Zaragosi et al., 2001a).

## **Résultats attendus**

# *Transfert sédimentaire du rebord de pente vers les systèmes turbiditiques*

Les résultats escomptés sont doubles :

• Reconstruire le fonctionnement sur un cycle complet : de la mise en place du fleuve manche liée à la période de glaciation, à ses apports et la disparition de ces dépôts lors des périodes de déglaciation. Les carottes disponibles au sein des systèmes de dépôts profonds n'ont permis d'enregistrer le fonctionnement que pour les derniers 12 000 ans, ce qui est insuffisant (cf. figures 2 et 3). Sur les enregistrements sondeur de sédiment SAR, les 4 derniers cycles glacio-eustatiques (DS1 à DS4) pourraient être enregistrés. (Zaragosi, 2001)



Figure 3. Détail d'un profil sismique 3,5 kHz-SAR montrant l'enregistrement de quatre séquences sédimentaires (DS1-DS4) sur les 40 premiers mètres de la levée Whittard.



Figure 4 : Morphologie de la marge septentrionale du golfe de Gascogne.

- Différencier les sources du matériel détritique. Les systèmes chenaux/levées sont les premiers exutoires des bassins versants (bv) de la pente avant les éventails profonds (Le Suavé, Bourillet et Coutelle, 2000) (cf. Figure 4) :
  - Le by de la Grande Sole Petite Sole piégeait les sédiments en provenance du Sud Irlande
  - le by de la Petite Sole, les sédiments en provenance du Sud Irlande et du paléofleuve Manche; ceux de La Chapelle et de Bretagne-Ouest, les sédiments apportés par le paléofleuve Manche (Bourillet et Lericolais, 2003)
  - le bv de Bretagne-Sud, le matériel érodé du Massif Armoricain par les paléofleuves de Bretagne Sud (Pinot, 1974 ; Proust et al., 2001; Bonnet, 1998)) et la paléoLoire
  - pour le bassin versant Gascogne et celui de Rochebonne dans une moindre mesure, les sédiments de la paléoLoire mais les arguments sont seulement géographiques;
  - plus au sud le bv des Landes collecte les sédiments des paléoGaronne et paléoAdour.

Le système Manche n'est pas directement influencé par les apports de la calotte des îles britanniques et constitue la source principale de l'éventail profond turbiditique Armoricain. En revanche, l'éventail profond Celtique est multisource et possède deux principaux bassins d'alimentation : celui de La Grande Sole via le chenal Whittard, au droit de la Mer d'Irlande, et celui de la Petite Sole via le chenal Shamrock dont la partie orientale a été connectée aux paléovallées du fleuve Manche. Des cibles supplémentaires devraient caractériser les apports des bassins versants Bretagne-Ouest, Bretagne-Sud et Landes

## Reconstitution paléoclimatique du Golfe de Gascogne

La problématique essentielle concerne la reconstitution paléo-océanographique (reconstitution des conditions de surface et de fond) au cours des derniers cycles climatiques et en particulier sur les dernières périodes interglaciaires y compris le stade isotopique 5 dernier analogue avant la période de réchauffement actuel. Elle intéresse en parallèle l'étude des phases paroxysmales de débâcles d'icebergs. L'un des atouts essentiels des séquences climatiques à prélever dans le Golfe de Gascogne est que ce domaine océanique est étroitement soumis aux influences continentales. Cette situation privilégiée est éminemment favorable pour établir les connexions entre l'océan, la cryosphère (débâcle glaciaire), la réponse continentale et l'atmosphère (fonte des glaces, évolution de la végétation via l'étude des pollens). Quelques très rares carottes aujourd'hui épuisées correspondent à ces critères dans le golfe. D'autres sont très courtes ou incomplètes. De plus les travaux en cours axés sur les relations directes océan-continent correspondent à l'étude de l'évolution de la végétation sous influence méditerranéenne ou de transition (missions IMAGES en Mer d'Alboran et Ouest Portugal).

L'objectif est d'étendre ce type d'étude sous climat eurosibérien, contexte climatique de la bordure du Golfe de Gascogne. Cette démarche se justifie pleinement par le fait que les séquences de références européennes documentant la variabilité climatique continentale

appartiennent essentiellement à ce domaine (Plateau de Devès, La grande Pile, les Echets). De fait à ce jour aucune séquence témoignant de l'évolution climatique n'est disponible pour le stade isotopique 11 dans le golfe de Gascogne. Ce stade est pourtant la période interglaciaire durant laquelle les paramètres orbitaux de la terre (insolation) étaient les plus proches de l'actuel. Il paraît en conséquence indispensable de documenter plus précisément cette période.

#### Références

Antoine, P., Lautridou, J.-P., and Laurent, M. (2000). Long-term fluvial archives in NW France : response of the Seine and Somme rivers to tectonic movements, climatic variations and sea-level changes. *Geomorphology* **33**, 183-207.

Auffret G.A. (1983). "Dynamique sédimentaire de la marge continentale celtique : évolution Cénozoïque-spécificité du Pléistocène supérieur et de l'Holocène." Unpublished Doctorat d'état thesis, Université de Bordeaux , France.

Auffret, G. A., Zaragosi, S., Dennielou, B., Cortijo, E., Van Rooij, D., Grousset, F., Pujol, C., Eynaud, F., Siegert, M. (2002). Terrigenous flux at the Celtic margin during the last glacial cycle. *Marine Geology*, 188: 79-108.

Auffret, G. A., Zaragossi, S., Voisset, M., Droz, L., Loubrieu, B., Pelleau, P., Savoye, B., Bourillet, J.-F., Baltzer, A., Bourquin, S., Dennielou, B., Coutelle, A., Weber, N., and Floch, G. (2000). Premières observations sur la morphologie et les processus sédimentaires récents de l'Eventail celtique. *Oceanologica Acta* 23, 109-116.

Auffret J.P., Alduc, D., Larsonneur, C., and Smith, A. J. (1980). Cartographie en isopaques des formations sédimentaires de la Manche Orientale et bathymétrie au toit de bed-rock. *Anns. Inst. Océanographique* **56**, 21-35.

Bellec, V., and Cirac, P. (2001). La couverture meuble de la plate-forme sud-aquitaine. *In* "8ème Congrès de Sédimentologie, 13-15 novembre 2001.". Publication ASF, Orléans.

Berné, S., Lericolais, G., Marsset, T., Bourillet, J. F., and De Batist, M. (1998). Erosional offshore sand ridges and lowstand shorefaces : examples from tide- and wave-dominated environments of France. *Journal of Sedimentary Research* **68**, 540-555.

Bonnet, S. (1998). "Tectonique et dynamique du relief : le socle armoricain au Pléistocène." Unpublished Mémoires n°86 thesis, Université Rennes 1.

Bourillet, J.-F. and Lericolais, G., (2003). Morphology and seismic stratigraphy of the Manche paleoriver system, Western Approaches margin. In: J. Mienert, Weaver, P.P. (Editor), European Margin Sediment Dynamics : Side -Scan Sonar and Seismic Images. Springer, Berlin, pp. 229-232.

Bourillet, J.-F., Reynaud, J.-Y., Baltzer, A., and Zaragosi, S., (2003). The "Fleuve Manche": the sub-marine sedimentary features from the outer shelf to the deep-sea fans. *Journal of Quaternary Science*, 18: 261-282.

Bourillet, J. F., and Loubrieu, B. (1995). Carte bathymorphologique de la marge des entrées de la Manche au1:250.000. IFREMER.

Bouysse, P., Horn, F., and Le Lann, F. (1975a). Etude de la structure de la plate-forme continentale méridionale de la Mer Celtique entre 7 et 8 degrés Ouest. *Revue de l'Institut du Pétrole* **30**, 855-863.

Bouysse, P., Horn, F., Lefort, J. P., and Le Lann, F. (1975b). Tectonique et structures post-paléozoïques en Manche Occidentale. *Philos. Trans. R. Soc. London* 279, 41-54.

Bouysse, P., Horn, R., Lapierre, F., and Le Lann, F. (1976). Etude des grands bancs de sable du Sud-Est de la Mer Celtique. *Marine Geology* **20**, 251-275.

Bowen, D. Q., Phillips, F. M., McCabe, A. M., Knutz, P. C., and Sykes, G. A. (2002). New data for the Last Glacial Maximum in Great Britain and Ireland. *Quaternary Science Reviews* **21**, 89-101.

Droz, L., Auffret, G., Savoye, B., and Bourillet, J.-F. (1999). L'Eventail profond de la marge Celtique : stratigraphie et évolution sédimentaire. *Comptes Rendus de l'Académie des Sciences de Paris* **328**, 173-180.

Eynaud, F. (1999). "Kystes de Dinoflagellés et Evolution paléoclimatique et paléohydrologique de l'Atlantique Nord au cours du Dernier Cycle Climatique du Quaternaire." Unpublished Thèse de 3e cycle thesis, Université de Bordeaux I.

Grousset, F., Pujol, C., Labeyrie, L., Auffret, G. A., and Boelaert, A. (2000). Were the North Atlantic Heinrich events triggered bu the behavior of the European ice sheet? *Geology* 28, 123-126.

Knight, J. (2001). Glaciomarine deposition around the Irish Sea basin: some problems and solutions. *Journal of Quaternary Science* **16**, 405-418.

Larsonneur, C., Auffret, J. P., and Smith, A. J. (1982). Carte des paléo-vallées et des bancs de la Manche orientale (1/50 000). B.R.G.M. édit.

Lautridou, J. P. (1985). "Le cycle périglaciaire pléistocène en Europe du Nord-Ouest et plus particulièrement en Normandie.", Thèse Lettres, Univ. Caen, 2 vol., 908 p.

Le Suavé, R., Bourillet, J. F., and Coutelle, A. (2000). La marge nord du golfe de Gascogne. Connaissances générales et apport des nouvelles synthèses de données multifaisceaux. *In* "Synthèse bathymétrique et imagerie acoustique de la Zone économique exclusive Atlantique Nord-Est." (Ifremer, Ed.), pp. 55. Ifremer.

Lericolais, G. (1997). "Evolution Plio-Quaternaire du Fleuve Manche : Stratigraphie et Géomorphologie d'une Plateforme Continentale en Régime Périglaciaire." Unpublished Docteur Géologie Marine thesis, Univ. Bordeaux I, 265p.

Lericolais, G., Bourillet J.-F. (2000). "Why a drilling in the English Channel for 2003 ODP new program". *In* "European Ocean Drilling Forum, 10-11 april 2000. Abstract, PI-29.", LA Grande Motte.

Lericolais, G., Bourillet J.F. (1999). The Channel system. *In* " COMPLEX, Conference for Multi-Platform Exploration Ocean Drilling post-2003, 25-29 May 1999.", pp. Abstract, 139-140., Vancouver.

Marsset, T., Tessier, B., Reynaud, J.-Y., De Batist, M., and Plagnol, C. (1999). The Celtic Sea banks : an example of sand body analysis from very high-resolution seismic data. *Marine Geology* **158**, 89-109.

McCabe, M., and Clark, P. U. (1998). Ice sheet variability around the North Atlantic Ocean during the last deglaciation. *Nature* **392**, 373-377.

Mhammdi, N. (1994). "Architecture du banc sableux tidal de Sercq (iles Anglo-Normandes).", Université de Lille.

Pinot, J.-P. (1974). "Le précontinent Breton entre Penmarc'h, Belle-ile et l'escarpement continental. Etude géomorphologique.", UBO.

Proust, J. N., Menier, D., Guillaucheau, F., Guennoc, P., Bonnet, S., Rouby, D., and C., L. C. (2001). Les vallées fossiles de la baie de la Vilaine : nature et évolution du prisme sédimentaire côtier du Pléistocène armoricain. *Bull. Soc. Géol. Fr.* (sous presse).

Reynaud, J. Y. (1996). "Architecture et évolution d'un banc sableux de Mer Celtique Méridionale." Unpublished Thèse de doctorant, 185 p. thesis, Lille.

Reynaud, J. Y., Tessier, B., Proust, J. N., Dalrymple, R., Bourillet, J. F., De Batist, M., Lericolais, G., Berné, S., and Marsset, T. (1999). Architecture and sequence stratigraphy of a late neogene incised valley at the shelf margin, Southern Celtic Sea. *Journal of Sedimentary Research* **69**, 351-364.

Scourse, J. D., and Furze, M. F. A. (2001). A critical review of the glaciomarine model for Irish sea deglaciation: evidence from southern Britain, the Celtic shelf and adjacent continental slope. *Journal of Quaternary Science* **16**, 419-434.

Scourse, J. D., Hall, I. R., McCave, I. N., Young, J. R., and Sugdon, C. (2000). The origin of Heinrich layers: evidence from H2 for European precursor events. *Earth and Planetary Science Letters* **182**, 187-195.

Tessier, B. (1997). "Expressions Sédimentaires de la Dynamique Tidale." Unpublished Mémoire d'Habilitation à Diriger des Recherches, Université des Sciences et Technologies de Lille.

Trentesaux, A. (1993). "Structure et dynamique sédimentaire du Middelkerke bank, Mer du Nord méridionale.", Université de Lille.

Zaragosi, S. (2001). "Les systèmes turbiditiques profonds de la marge Celtique-Armoricaine (Golfe de Gascogne) : Physiographie et Evolution au cours des derniers 30 000 ans." Unpublished Thèse de 3e cycle thesis, Université de Bordeaux I.

Zaragosi, S., Auffret, G. A., Faugères, J.-C., Garlan, T., Pujol, C., and Cortijo, E. (2000). Physiography and recent sediment distribution of the Celtic Deep-Sea Fan, Bay of Biscay. *Marine Geology* **169**, 207-237.

Zaragosi, S., Eynaud, F., Pujol, C., Auffret G.A., Pujol C., Turon J.L., and Garlan, T. (2001a). Initiation of the European deglaciation as recorded in the northwestern Bay of Biscay slope environments (Meriadzek Terrace and Trevelyan Escarpment) : a multi-proxy approach. *Earth Planet. Sci. Lett.* **188**, 493-507.

Zaragosi, S., Le Suavé, R., Bourillet, J.-F., Auffret, G. A., Faugères, J.-C., Pujol, C., and Garlan, T. (2001b). The deepsea Armorican depositional system (Bay of Biscay), a multiple source, ramp model. *Geo-Marine Letters* **20**, 219-232.

# Méthodes et outils :

# Carottage et étude des carottes à bord

- . Présentation générale du carottier
- . Conditionnement des carottes
- . Description lithostratigraphique
- . Photographie numérique
- . Spectrophotométrie couleur
- . Banc multi-paramètres GEOTEK (MSCL)

# Description du sondeur multifaisceaux

# Carottage et étude des carottes à bord

Reconnaissance des sites - Dans les systèmes sédimentaires de la pente et du glacis continental, il est capital de pouvoir bénéficier d'une reconnaissance précise des sites (marge d'erreur hectométrique) pour atteindre la cible des carottages. Dans la mesure où les variations latérales de faciès et d'épaisseur sont importantes, on a besoin de connaître très précisément la position et la nature de la couche sédimentaire pour choisir la longueur du tube ainsi que les paramètres de gréement du carottier.

Positionnement et nature du fond - Les cibles sont choisies sur la base de profils sismiques ou de sondeur précédemment acquis et validées par un double ou un triple passage au sondeur multifaisceaux (Seafalcon 11). Outre ses fonctions classiques (bathymétrie et imagerie), ce sondeur possède un mode d'émission à site étroit, avec une modulation linéaire de fréquence (chirp, centré sur 3,75 KHz) qui permet, dans les sédiments hémipélagiques argilo-sableux, la reconnaissance à haute résolution des caractères géométriques et d'impédance acoustique de la pile stratigraphique sur une épaisseur de 40 à 60 m en moyenne sous le fond de mer. Les données de sondeur sont asservies aux données de positionnement D-GPS de la base scientifique du Marion Dufresne, enregistrées et visualisées par le logiciel de cartographie Temps réel Caraïbes (Ifremer). Outre les sorties papier temps-réel, les profils chirp sont visualisés sur l'interface SBP-visu.

<u>Présentation générale du carottier</u> - Le carottier mis en œuvre durant la mission, un carottier à piston de type CALYPSO, développé pour le Marion Dufresne, peut recevoir des tubes d'une longueur de 75 m (limitation liée à la longueur de la coursive du navire où le carottier est monté). Le câble du carottier est en Aramide, dont le poids dans l'eau est quasinul, ce qui permet d'augmenter le lest du carottier, à capacité de treuillage constante. Durant la mission, les tubes montés sur le carottier avaient une longueur de 30 à 51 m, en adéquation avec la capacité du carottier à pénétrer les lithologies argilo-sableuses des cibles visées. Le rapport de la longueur des tubes à la récupération donne une moyenne de 0,73. Le taux de récupération exact, rapport de la pénétration du tube à la longueur de sédiment récupérée, sera calculé à partir des données enregistrées par le tensiomètre du treuil.

#### Voir figure suivante

Contrôle de l'altitude – L'altitude précise du carottier par rapport au fond, lors des opérations de carottage SEDICAR, a été fait grâce à un pinger, fixé sur le lest du carottier et émettant toutes les secondes un bip à 12,5 KHz, la réception se faisant sur la base-sondeur du navire. La mesure graphique en temps réel du retard entre le premier écho et le direct a permis de piloter au demi-mètre près la descente du carottier à partir de 30 m au-dessus du fond de la mer.



Figure : Carottier géant Calypso

Conditionnement des carottes - La carotte de sédiment est contenue dans une chemise

PVC qui, une fois extraite du tube acier, est graduée en cm du sommet à la base. Suivant cette échelle graduée, la carotte est ensuite tronçonnée à partir du haut en sections de 1,5 m, repérées à leur sommet (T comme Top) et à leur base (B comme Bottom). Chaque section est ensuite partagée en long dans un plan unique repéré avant le tronconnage par une directrice sur la chemise. Une demi-section, repérée A (comme Archive) est aussitôt empaquetée dans



une gaine plastique étanche et remisée en chambre froide dans un étui PVC, tandis que l'autre, notée W (comme Working, ou section de travail) entre dans la chaîne d'analyses installée à bord. Cette chaîne comprend, dans l'ordre, les postes décrits ci-après. Pour des raisons de préservation des phases minérales fugaces, ultra-sensibles à la décompression ou à l'oxydation, il apparaît préférable, de réaliser la photo numérique avant toute autre opération.

<u>Description lithostratigraphique</u> – Cette première description du sédiment permet d'obtenir un log total des couches prélevées. Des fiches standard de type ODP sont remplies d'après la description visuelle des sections de travail, à l'appui éventuellement d'un premier examen microscopique réalisé sous une loupe binoculaire (sables) ou à l'aide de frottis collés au baume du Canada (boues). Sont consignés en particulier dans le log stratigraphique : les structures sédimentaires (primaires ou liées à la déformation du sédiment par le carottage), la granularité (renvoyant à des lithologies standard de sédiment), les observations particulières

(clasts, passées, surfaces d'érosion etc...), la couleur (éventuellement à l'aide d'une charte colorimétrique de type Munsell, bien que opération cette soit désormais moins cruciale suppléée puisque par l'analyse spectrophotométrique), les positions de prélèvement (frottis, etc...). Les données sont ensuite saisies sous Illustrator pour la mise au propre du log. Les symboles utilisés et un exemple de log figurent pages suivantes.



## Légende des descriptions lithologiques





<u>Photographie numérique</u> – La photographie de tous les tronçons permet de conserver une image de haute qualité des sédiments tels qu'ils ont été prélevés. Les tronçons seront par la suite échantillonnés en partie ou en totalité et donc disparaîtront partiellement. La photographie a toujours été la première mesure réalisée le plus rapidement possible après l'ouverture pour s'affranchir de la dégradation rapide des couleurs des monosulfures.

Pendant la première partie de SEDICAR, chaque section de travail a été photographiée à l'aide d'un appareil Sony DSC 70, à une distance de 1 m et sous un éclairage de néons lumière du jour. Les images obtenues, dans le format 2/3, présentent chacune 50 cm de carotte dans la longueur de l'image, à une résolution d'environ 30 pixels par centimètre. Les fichiers TIFF bruts sont ensuite assemblés et recadrés sous photoshop de façon à reproduire une section par fichier. Les fichiers finalisés sont compressés au format JPEG





Pour le reste de SEDICAR, le scanner du banc Geotek a été utilisé. La photographie et la spectrocolorimétrie réalisées simultanément mais sont nécessitent un passage distinct de celui des mesures MST. Pour une résolution de 100 points/cm, il faut compter 5 minutes / tronçon. Cette basse résolution permet d'obtenir directement un seul fichier .tiff par section. Toutes les sections sont assemblées manuellement avec un logiciel de dessin. Pour une résolution supérieure, 200 pts/cm, le passage d'un tronçon dure 10 minutes et il faut concaténer 8 fichiers pour monter une section. La basse résolution a été jugée suffisante.

Un exemple de photographie prise avec l'appareil numérique Sony (1<sup>ère</sup> partie de SEDICAR) et un exemple de photographie recomposée à partir des 3 longueurs d'onde du scanner Geotek figurent page suivante.

## Exemple de photographie numérique



Exemple de photographie recomposée



<u>Spectrophotométrie couleur</u> – La spectrocolorimétrie permet, dans certains cas, d'obtenir une stratigraphie préliminaire basée de façon sommaire sur la couleur du sédiment :

\* Les teintes claires correspondent (en Atlantique) à une sédimentation plus carbonatée mise en place au cours de périodes relativement chaudes ;

\* Les teintes sombres correspondent à des périodes de mise en place sous climat plus froid.

La mesure se fait une fois les sections de travail recouvertes d'un film plastique transparent (pour éviter la pollution du capteur au contact du sédiment). Le spectropho-



tomètre utilisé est un Minolta CM-508i, dont le capteur est un disque de 8 mm de diamètre. La mesure en continu se fait donc tous les 2 cm. Elle comprend le spectre de couleur (400-700 nm en 16 classes de 20 nm), la couleur au format Lab et la couleur au format Munsell. Les données sont ensuite transférées dans un tableur et l'établissement des 3 graphes (L\* : variable de luminance a\*, b\* : coordonnées de chromaticité) s'effectue à l'aide de macrocommandes (cf. exemple page suivante).



Banc multi-paramètres GEOTEK (MSCL) - Certaines propriétés pétrophysiques sont

analysées en continu sur les sections de travail à partir d'un banc MST (Multi-Sensor Core Logger). La densité gamma, la vitesse des ondes P et la susceptibilité magnétique sont analysées tous les 2 cm en un seul passage. Après la première partie de SEDICAR, le banc amélioré autorise d'acquérir au prix d'un passage supplémentaire la photographie couleur et la spectrocolorimétrie. Les capteurs sont appliqués automatiquement après calibration de l'épaisseur de la section sur le banc par un palpeur, procédure qui nécessite la planéité parfaite de la surface du sédiment pour garantir la continuité des enregistrements, en particulier pour la susceptibilité et la vitesse des ondes P. Cette condition n'est pas toujours réalisée, ce qui explique les ruptures dans certains enregistrements. L'atténuation gamma est calibrée à l'aide d'un étalon contenant des demicylindres d'aluminium de différents diamètres immergés dans l'eau à l'intérieur d'une chemise en PVC identique à celle utilisée pour les carottages.



L'aluminium a une densité de 2,71, identique à la densité moyenne des minéraux alumino-silicatés majoritaires dans les sédiments carottés. L'immersion de l'étalon dans l'eau vise à se rapprocher des caractéristiques d'atténuation qui sont celles d'un sédiment saturé en eau (60 à 80% du volume total). Pour la mission SEDICAR, les rapports diamètre de cylindre (cm) / densité (g/cc) de l'étalon donnent la séquence suivante : 0/1 - 2/1,429 - 3/1,644 -

4/1,858 - 5/2,073 - 6/2,287.Les mesures de calibration sont intégrées sur 10 secondes et les mesures sur sédiment sont intégrées sur 2 secondes. La mesure de la vitesse des ondes P (PTO : Pwave Travel time Offset) se fait au travers des transducteurs acoustiques et du PVC. Elle est basée sur la différence entre la durée théorique de parcours du son dans 4 cm d'eau à une température donnée et la durée de parcours dans la partie de l'étalon de la gamma densité ne contenant



pas d'aluminium. Le transducteur utilisé mesure la vitesse de l'impulsion avec une résolution de 50 ns, permettant une détermination de la PTO dans le médium avec une résolution de 1,5 m/s. La mesure de la susceptibilité magnétique est calibrée sur une mesure dans le vide (mise à zéro). Les données sont ensuite recopiées dans un tableur et l'établissement des graphes s'effectue à l'aide de macrocommandes ou de fichiers existants (cf. exemple page suivante).

## SEDICAR

# **Propriétés physiques**

## Station 5 MD03-2692



# Short description of the multibeam echosounder

By Xavier MORIN

#### 1. Introduction :

The deep water echosounder Thomson Seafalcon 11 was installed on board the oceanographic research vessel Marion-Dufresne in 1995. It has since then become an essential instrument, which is intensively used for cartography (bathymetry and imagery) and sediment profiling.

The multibeam echosounder (MBES) Thomson Seafalcon 11 runs two modes of operation : the "bathymetry and imaging" mode and the "sub-bottom profiler" mode. Both modes can be ran simultaneously.

#### 2. <u>Bathymetry and imagery</u> :

Bathymetry and imagery are simultaneous informations derived by the echosounder. Bathymetry provides the depth, travel time and propagation direction of a huge number of created soundings, regarding the ship's attitude and sound velocity profile. Imagery is the reflectivity derived from the soundings signals and is related to backscattered energy. A seabed image is produced from this information, where grey levels are dependent of the sea floor nature.

In this operating mode (bathymetry and imagery), the echosounder uses transmitted frequencies around a 12 KHz carrier. The range of depths on which this mode can operate is 50 to 11000 metres. Five spatially separated cross-track swaths are simultaneously created in order to generate a data redundancy (as if five multibeam echosounders were simultaneously used). These swaths are separated in the frequency domain by the use of digital active filters.

Thus, measurement gaps are avoided. These five swaths are separated (along the boat-track axis) from each other by a 1.4 degree angle. The central swath is vertical. The large antenna 3 dB attenuation level (at transmission) and beam forming at reception allow images to be built and measure bathymetry at 120 degrees from the track axis of the boat (60 degrees to starboard and 60 degrees to portside). Actually,

the swath angle depends on the depth and on the signal-to-noise ratio. It is always comprised between  $120^{\circ}$  and  $140^{\circ}$ .

Concerning bathymetry, the across-track resolution depends upon the measured depth H. The across-track length of a resolution cell is typically equal to H/100. The number of created soundings for one measurement is typically equal to 2000 (400 per swath).



Fig 1 : *Example of a part of a simple bathymetric map created during the Page cruise (july 2002), processed using Caraibes software.* 

The imaging system uses the reflectivity extracted from the five separated frequency swaths. This representation is useful for the study of the seafloor texture and composition. In order to build images, a mosaic is created, geographically representing sea bottom level in the studied area. This mosaic is fed by the five sets of backscattered signal. The huge number of data for each swath (around 20.000 for a complete cycle of 5 emitted frequencies) and their redundancy allow a large geographic coverage and the relative increase of the signal-to-noise ratio.



Fig 2 : *Representation of an image measured with Seafalcon 11 echosounder (raw image without post-processing)*.

## 3. <u>Sub-bottom profiler</u> :

The Seafalcon 11 echosounder also includes a sub-bottom profiler. This system is able to create reflectivity slices of the sub-bottom sea floor as a function of the geographical position of the boat.

As described in the preceding paragraph, beam forming from many signals received on each sensor provides a very narrow antenna diagram (high directivity), during transmission (7.4 degrees) and reception (5.6 degrees). This beam formation also achieves a high acoustic signal level. Indeed, one of the main features of this profiler is the use of a large dedicated transmission array, and the use of the large bandwidth and long size multibeam reception array in order to create a high acoustic

level signal and a very narrow beamwidth. While classical profilers beamwidths are usually wide ( $20^{\circ}$  to  $30^{\circ}$ ), the seafalcon 11 echosounder produces a 7.4° width beam. This feature prevents from interferences between different objects located in the illuminated scene, and achieves a very good along-track resolution.

The central frequency used for this system is equal to 3.75 KHz. As for the "bathymetry and imaging" mode, the transmitted wave is linearly frequency modulated. The corresponding correlation gain is equal to 23 dB. The large transmitted bandwidth (1.6 KHz) achieves a small vertical resolution (0.45 metres).

Five beams are created on reception (the central beam is vertical), separated from each other by 5 degrees. This diversity provides an opportunity to record good quality profiles when the across-track slope is steep. Typically, 100 metres penetrations are achieved for a 4000 metres depth. The maximal observed penetrations are around 200 metres.



Fig 3 : *Example of a sub-bottom profiling chart created during the Images 7 cruise (may 2001)*.

In any case, the ship's attitudes are used in order to determine the exact location of each sounding. Two high performance Heading and Vertical Reference Unit (HVRU) are installed on the Marion-Dufresne to measure the ship's attitudes.

#### 4. <u>Post-processing</u>:

The post-processing of bathymetry and imaging data is carried out with the "Caraibes" software, which has been developed by I.F.R.E.M.E.R. This image processing software enables :

\_ The creation of geographical digital data grids for bathymetry. Contour extraction, "spline" curves filtering and bi-dimensional digital filtering are examples of tools that

can be used to remove any possible artefact. 3-D representations are possible. The resolution cell size of the digital terrain Model can be chosen, as well as the vertical depth resolution. For instance, the map on figure # 1 has a 40 metres cell resolution and a 0.5 metre vertical depth resolution.

\_ The creation of reflectivity mosaics for images. Filtering and contrast enhancement can then be applied for instance.

A version for real time display is also installed aboard the Marion Dufresne vessel. This tool is very useful, since it clearly shows the multibeam coverage during surveys. The ship's routes can be adapted in real time in order to achieve the goals of the survey.

\_ In order to *a posteriori* view the sub-bottom profiles, the French Polar Institute has developed a unix-based software. This software uses gmt and is freely available to any scientist team who would ask for it.



Fig 4 : Example of a 3-D processed bathymetric map using GMT.

#### Appendix A : Deep water sub-bottom profiling and high resolution

One major quality of the Seafalcon 11 echosounder is the high resolution beamwidth of the antenna array used for sub-bottom profiling. In order to achieve this high resolution, wide antenna beam forming and crossbeam techniques are used to provide a narrow footprint. Classical sub-bottom profilers usually generate a 30° beamwidth needing high ping rates for image integration. Narrow beams improve the sub-bottom analysis by suppressing interferences between seabed backscattered first layer signals and the sub-bottom layers. The crossbeam technique is not based on non linear or parametric effects, and therefore does not suffer from a reduction in acoustic power as in such techniques (typically –30 dB). The transmitted power is maximised, and combined with narrow beams (5°), typical penetrations of 100 metres are achieved for a 4000 metres depth.



Fig 9 : Wide (left) and narrow (right) sub-bottom profilers. Using a wide antenna beam, the echoes are averaged in the final image.



Fig 10 : The use of a very narrow beam on the Marion-Dufresne achieves a very small footprint on the sea-floor. Therefore, the spatial resolution is very good. Moreover, the energy is focused on a very small area, leading to deep penetrations with a very good vertical resolution (large transmitted bandwidth).
#### Appendix B : System overview

Figure 11 shows an overview of the system : the antennas (wet end) are flush mounted underneath the bow. The front end electronics are located close to the antennas, while the processing and operation computers can be found in the scientific operational centre.



Fig 11 : system overview.

### Appendix C : Characteristics

### System :

| _ Operating depth | : 50 metres to 11000 metres.     |
|-------------------|----------------------------------|
| _ Typical speed   | : 12 – 17 knots.                 |
| Maximum sea state | : 7 (depends on ship's draught). |
| Maximum roll      | : +/- 15°.                       |
| _ Maximum pitch   | : +/- 10°.                       |

### **Bathymetry :**

| Accuracy for typical        |                            |
|-----------------------------|----------------------------|
| noise of 51 dB/ $\sqrt{Hz}$ | : Less than 1 % of depth.  |
| _ Medium frequency          | : 12 KHz.                  |
| Number of simultaneous      |                            |
| independent pulses          | : 5.                       |
| _ Typical coverage          | : 140° at 2000 metres.     |
|                             | 120° at 5000 metres.       |
| _ Number of soundings       |                            |
| per swath                   | : 2000 (400 per pulse).    |
| _ Transmission beams        | : 5 pulses at 1.4° x 140°. |
| _ Reception beams           | : 3.6° x 24°.              |

### **Reflectivity :**

| _ Principle              | : 5 transmitted pulse merging. |
|--------------------------|--------------------------------|
| _ Number of elementary   |                                |
| pixels before mosaicing  |                                |
| (ping rate : 20 seconds) | : 18,000.                      |

### Sub-bottom profiling :

| _ Medium frequency    | : 3.75 KHz.    |
|-----------------------|----------------|
| _ Typical penetration | : 100 metres.  |
| _Number of created    |                |
| beams                 | : 5.           |
| _ Beam width :        | : 4.8° x 5.6°. |

### **MBES transmission array :**

| _ Size               | : 6 metres x 0.6 metre. |
|----------------------|-------------------------|
| _Weight              | : 1500 Kg.              |
| _ Number of acoustic |                         |
| modules              | : 13.                   |
|                      |                         |

### Sub-bottom profiler transmission array :

| _Size                | : 6 metres x 0.4 metre. |
|----------------------|-------------------------|
| _Weight              | : 200 Kg.               |
| _ Number of acoustic |                         |
| modules              | : 16.                   |

### **Reception array :**

\_ Module size: 1.1 metre x 0.4 metre.\_ Module weight: 125 Kg.\_ Number of modules: 5 in "U" shape.\_ Possible installation modes : « U » or « V » shape.

# SEDICAR MD03-133

Journal de bord

#### Journal de bord SEDICAR

#### LEG 1

| Date       | Station | Time<br>[TU] | Latitude<br>N | Longitude P<br>W | rofondei     | ur Operations                                                                                                                                                                         |
|------------|---------|--------------|---------------|------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24/06/2003 | =       | 20.00        |               |                  |              | Donart do Brost                                                                                                                                                                       |
| 25/06/2003 | -       | 02:15        | 047°38.80     | 005°56.12        | 139          | Début profil 1(3.5kHz)<br>prohlème de calare du 3.5 kHz au passage de la pente du talus                                                                                               |
|            |         | 06:44        | 047°00.29     | 006°50.86        | 4105         | Début profil 2: problème de calage du 2 5kbz; perd le fond                                                                                                                            |
|            |         | 07.24        |               |                  |              | Début profil 4                                                                                                                                                                        |
|            | 1       | 10:07        | 046°48.20     | 007°05.57        | 4205         | Début profil 5<br>Arrivée our station MD03 2688 Crozon                                                                                                                                |
| 25/06/2003 | I       | 13:11        | 046°48.03     | 007°02.93        | 4385<br>4338 | déclenchement (longueur filée) 35.36m récupérés<br>Après carottage, rout plein Ouest vers point A<br>A: 46°48.42N / 07°05.04W                                                         |
|            | -       | 15:50        |               |                  |              | Départ station                                                                                                                                                                        |
|            |         | 15:50        |               |                  |              | Début profil 6: transit vers B1:<br>B1:7°05.00W / 47°21.7N                                                                                                                            |
|            |         | 18:52        | 047°21.79     | 007°05.40        |              | Début profil 7. De B1 à B2<br>B2:7°12.9W / 47°23.8N                                                                                                                                   |
|            |         | 19:29        |               |                  |              | Fin profil 7                                                                                                                                                                          |
|            |         | 19:37        |               |                  |              | Début profil 8. De B2 à B3                                                                                                                                                            |
|            |         | 20.01        |               |                  |              | B3: / 108.783W / 4/ 24.467N<br>Début profil 0, Do B3 à MD03 2690                                                                                                                      |
|            | 2       | 20.01        |               |                  |              | Arrivée sur station MD03 2689 Eperon Delesse                                                                                                                                          |
| 25/06/2003 | -       | 21:56        | 047°23.12     | 007°10.40        | 2017         | Déclenchement 16.97m récupérés                                                                                                                                                        |
|            | -       | 23:30        |               |                  |              | Départ station                                                                                                                                                                        |
|            |         | 23:40        | 047°22.00     | 007°11.53        |              | Début profil 10                                                                                                                                                                       |
| 26/06/2003 |         | 02:00        | 047°01.65     | 007°41.85        |              | Début reconnaissance Levée Guilcher                                                                                                                                                   |
|            |         | 02:27        | 047°00.22     | 007°47.67        |              | Fin de reconnaissance retour sur point de carottage                                                                                                                                   |
|            | 3       | 03:46        | 047°01.00     | 007°45.00        | 4322         | Arrivée sur station MD03 2690 Levée Guilcher                                                                                                                                          |
| 26/06/2003 |         | 05:15        | 04/°01.25     | 007°44.99        | 4340         | Declenchement 36,18m recuperes                                                                                                                                                        |
|            |         |              |               |                  |              | mais le messager est arrivé alors que le câble du                                                                                                                                     |
|            |         |              |               |                  |              | contrenoids n'était pas encore retendu                                                                                                                                                |
|            |         |              |               |                  |              | Cause: surestimation de la profondeur due à un mauvais                                                                                                                                |
|            |         |              |               |                  |              | profil de vitesse du son dans l'eau                                                                                                                                                   |
|            | -       | 07:25        |               |                  |              | Départ station                                                                                                                                                                        |
|            |         | 07:25        |               |                  |              | Début profil 11                                                                                                                                                                       |
|            |         | 08:09        |               |                  |              | Début profil 12                                                                                                                                                                       |
|            |         |              |               |                  |              | Début reconnaissance Blackmud D1 vers D2                                                                                                                                              |
|            | 4       | 08:38        |               |                  |              | Fin profil 12<br>Arrivée our station MD02 2601 Blockmud                                                                                                                               |
| 26/06/2003 | 4       | 11.10        | 047°03 95     | 007°55 67        | 4371         | Déclenchement 23 35m récupérés                                                                                                                                                        |
|            | -       | 13:36        | 047°04.20     | 007°54.72        |              | Départ station                                                                                                                                                                        |
|            |         | 13:36        | 047°04.20     | 007°54.72        |              | Début profil 13                                                                                                                                                                       |
|            |         | 18:37        | 046°50.00     | 009°28.65        | 4080         | Début profil 14                                                                                                                                                                       |
|            |         |              |               |                  |              | Début reconnaissance de E1 à E2<br>E1:46°49,97N / 9°28,98W E2:46°49,58N / 9°32,12W                                                                                                    |
|            | _       | 18:52        |               |                  | 4050         | Début profil 15 de E2 vers station Trevelyan MD03-2692                                                                                                                                |
| 26/06/2002 | 5       | 20:42        | 046040 72     | 000020 07        | 4064         | Station MD03-2692 Trevelyan: debut descente                                                                                                                                           |
| 20/00/2003 |         | 21.91        | 046-49.72     | 009-30.97        | 4004         | Tube du carottier plié, cassé à 15m du haut                                                                                                                                           |
| 27/06/2003 |         | 01:07        | 046°48.84     | 009°30.20        |              | Depart station                                                                                                                                                                        |
|            |         | 01:07        |               |                  |              | Début profil 16                                                                                                                                                                       |
|            |         | 06:00        |               |                  |              | Arrivée sur station MD03-2693                                                                                                                                                         |
|            |         | 07:06        |               |                  |              | Incident de frein du cabestan                                                                                                                                                         |
|            |         | 07:12        |               |                  |              | Panne sur frein du cabestan, câble dévidé trop rapidement,<br>câble cassé, 4483m perdus, carottier et accéléromètre perdus<br>Retour à Brest, arrivéé prévue le 28/06/2003 vers 07:00 |

#### Journal de bord SEDICAR

#### LEG 2

| Date       | Station | Time  | Latitude  | Longitude | Profondeur | Operations                                                   |
|------------|---------|-------|-----------|-----------|------------|--------------------------------------------------------------|
|            |         | [TU]  | N         | W         | [m]        |                                                              |
|            | _       |       |           |           |            |                                                              |
| 13/07/2003 | -       | 01:40 | 47°47,50' | 05°15,0'  | 123        | Début profil 20                                              |
|            |         |       |           |           |            | Avarie sur un des deux moteurs de propulsion: retard de 5H   |
|            |         |       |           |           |            | Pb d'acquisition du 3,5 kHz de 07:10 à 07:42 (dû puissance   |
|            |         |       |           |           |            | des ondes / faibles profondeurs).                            |
|            |         |       |           |           |            | Les essais sur le treuil prennent du temps, ce qui empêchera |
|            |         |       |           |           |            | de réaliser des carottages.                                  |
|            |         | 12:05 | 46°33,99' | 4°44,8'   |            | Fin du profil 20                                             |
|            |         |       |           |           |            | arrêt du 3,5kHz pour passer en SMF-chirp                     |
| 14/07/2003 |         | 02:42 | 45°32,16' | 01°00,68' |            | attente du pilote à l'entrée du Verdon pour la remontée      |
|            |         |       |           |           |            | de la Gironde                                                |

### LEG 3

I

| Date       | Station | Time<br>ITU1 | Latitude<br>N | Longitude I<br>W | Profondeur<br>[m] | Operations                                               |
|------------|---------|--------------|---------------|------------------|-------------------|----------------------------------------------------------|
|            |         | 1.01         |               |                  | [m]               |                                                          |
| 15/07/2003 |         | 20:40        |               |                  |                   | Appareillage Bordeaux                                    |
| 16/07/2003 |         | 10:25        |               |                  |                   | Début profil 21                                          |
| 16/07/2003 | 6       | 10:25        |               |                  |                   | Arrivée sur station MD03-2693 Cap Breton                 |
|            |         | 15:52        | 43°39,25'     | 01°39,80'        | 383               | déclenchement; 39,33m récupérés                          |
|            |         | 16:27        |               |                  |                   | 3,5kHz clair sur station sans propulseur                 |
|            | _       | 17:00        |               |                  |                   | Départ station                                           |
|            |         | 17.00        |               |                  |                   |                                                          |
|            |         | 17:00        |               |                  |                   | Debut profil 22                                          |
| 47/07/0000 |         | 00.00        | 44940.051     | 00800 401        |                   | Route vers Dome Gascogne 1                               |
| 17/07/2003 |         | 00:32        | 44 40,05      | 03°32,43°        | 4450              | Debut promi 23                                           |
|            |         |              | 44 51,22      | 03 42,01         | 4150              | Entre 01.00 et 01.10, point remarquable à 3750m, environ |
|            |         | 05.00        | 15°11 60'     | 04049 421        | 4450              | Début profil 22                                          |
|            |         | 05.00        | 45 14,09      | 04 40,42         | 4450              | Passage nour ontimisation du site Dôme Gascogne 2        |
|            |         | 08.15        |               |                  |                   | Fin profil 23 à 4250m                                    |
| 17/07/2003 | 7       | 09:25        | 45°28.56'     | 05°23.74'        | 4236              | Arrivée sur station MD03-2694 Dôme Gascogne 1            |
|            | •       | 11:03        | 45°28.56'     | 05°23.63'        | 4160              | déclenchement: 36.22m récupérés                          |
|            |         | 13:10        | ,             | ,                |                   | Départ station                                           |
|            | -       |              |               |                  |                   | •                                                        |
|            |         | 15:10        |               |                  |                   | Début profil 24                                          |
|            |         |              |               |                  |                   | Route vers prochaine station: Quiberon, pour optimiser   |
|            |         |              |               |                  |                   | la localisation                                          |
|            |         | 19:48        | 46°51,42'     | 06°13,41'        | 4240              | Approche Levée Audierne                                  |
| 17/07/2003 | 8       | 22:07        | 46°43,08'     | 06°12,68         | 4377              | Arrivée sur station MD03-2695 Levée Audierne             |
| 18/07/2003 |         | 00:21        | 46°43,14'     | 06°12,28'        | 4375              | déclenchement; 27,19m récupérés                          |
|            | -       | 02:15        |               |                  |                   | Départ station                                           |
|            |         | 02:15        | 46°43,26'     | 06°12,55'        |                   | Route vers prochaine station: Quiberon                   |
|            |         |              |               |                  |                   | Début profil 25                                          |
| 18/07/2003 | 9       | 04:47        | 46°29,50'     | 06°02,36'        |                   | Arrivée sur station MD03-2696 Quiberon                   |
|            |         | 06:22        | 46°29,51'     | 06°02,36'        | 4422              | déclenchement; 26,62m récupérés                          |
|            | -       | 08:30        |               |                  |                   | Départ station                                           |
|            |         | 00-14        | 16°25 56'     | 06°02 17'        |                   | Début profil 26                                          |
|            |         | 09.14        | 40 20,00      | 00 03,17         |                   | Route vers Dôme Burdigalia pour un levé seul             |
|            |         | 11:30        |               |                  |                   | Passage en mode sondeur                                  |
| 18/07/2003 |         | 23:59        |               |                  |                   | Fin de la mission SEDICAR Sortie du golfe de Gascogne    |
| 19/07/2003 |         | 00:00        |               |                  |                   | Début de la mission PICABIA                              |

# SEDICAR MD03-133

Liste des carottages et plan général

#### SEDICAR Tableau des carottages

| Station | Carotte Nom Profondeur Latitude Lo |               | Longitude   | Longueur de | Responsable | Localisation du demi | Localisation du demi       |                                  |                 |
|---------|------------------------------------|---------------|-------------|-------------|-------------|----------------------|----------------------------|----------------------------------|-----------------|
|         |                                    | station       | [m]         | ° N         | ° W         | carotte [m]          | scientifique               | tronçon de travail               | tronçon archivé |
|         | Dartio 1                           | · Brost / Bro | het         |             |             |                      |                            |                                  |                 |
|         | Faitle                             | . Diest/ Die  | 51          |             |             |                      |                            |                                  |                 |
| 1       | MD03-2688                          | Crozon        | 4385        | 046°48.03   | 007°02.93   | 35,36                | S. ZARAGOSI/JF. BOURILLET  | Université Bordeaux I - UMR EPOC | lfremer-DRO/GM  |
| 2       | MD03-2689                          | Delesse       | 2017        | 047°23.12   | 007°10.40   | 16,97                | J.F. BOURILLET             | Ifremer-DRO/GM                   | Ifremer-DRO/GM  |
| 3       | MD03-2690                          | Guilcher      | 4340        | 047°01.25   | 007°44.99   | 36,18                | S. ZARAGOSI/JF. BOURILLET  | Ifremer-DRO/GM                   | Ifremer-DRO/GM  |
| 4       | MD03-2691                          | Black mud     | 4371        | 047°03.95   | 007°55.67   | 23,35                | S. ZARAGOSI/JF. BOURILLET  | Ifremer-DRO/GM                   | lfremer-DRO/GM  |
| 5       | MD03-2692                          | Trevelyan     | 4064        | 046°49.72   | 009°30.97   | 38,96                | S. ZARAGOSI                | Université Bordeaux I - UMR EPOC | Ifremer-DRO/GM  |
|         | Partie 3                           | : Bordeaux /  | / Las Palma | is          |             |                      |                            |                                  |                 |
| •       |                                    |               | 404         | 10000 0501  |             | 00.00                |                            |                                  |                 |
| 6       | MD03-2693                          | Capbreton     | 431         | 43°39,258   | 01°39,805   | 39,33                | P. CIRAC / J.F. BOURILLE I | Universite Bordeaux I - UMR EPOC | Ifremer-DRO/GM  |
| 7       | MD03-2694                          | Dome Gascogne | 4162        | 45°28,56'   | 05°23,63'   | 36,22                | J.L. TURON                 | Université Bordeaux I - UMR EPOC | Ifremer-DRO/GM  |
| 8       | MD03-2695                          | Audierne      | 4375        | 46°43,14'   | 06°12,68'   | 27,19                | J.F. BOURILLET             | Ifremer-DRO/GM                   | Ifremer-DRO/GM  |
| 9       | MD03-2696                          | Blavet        | 4422        | 46°29,51'   | 06°02,36'   | 27,6                 | J.F. BOURILLET             | Ifremer-DRO/GM                   | Ifremer-DRO/GM  |

# Mission SEDICAR du 24/06/2003 au 19/07/2003



# MD03-2688 Station 1

## «!Levée Crozon!»

### Site levée Crozon

L'objectif de cette carotte est double :

- paléoenvironemental avec l'étude de la variabilité des apports sédimentaire en provenance du système «Manche » vers le système turbiditique armoricain au cours de plusieurs cycles climatiques. Le chenal de Crozon alimente un lobe oriental de l'éventail Armoricain.
- (2) sédimentologique avec l'étude des processus sédimentaires responsables de la formation des levées turbiditiques, avec en particulier différencier les paramètres internes au couple chenal levée des paramètres externes liés à la modification de la source sédimentaire.

Le taux de récupération (80%) est bon 35,36 m pour 44 m de tube. La séquence dans l'ensemble vaseuse présente de nombreuses passées de silt et sable très fin.

- Carte morphologique du site
- Plan de situation du site
- Profil 3.5kHz général
- Profil 3.5kHz du site
- Fiche de carottage
- o Photos
- o Description des sédiments
- Propriétés physiques (M.S.T.)
- o Réflectivité



Morphologie du site MD03 2688



MD03-2688 3.5kHz général



### Reconnaissance de la Leve de Crozon - carotte MD03 - 2688 -



profondeur (m)

#### INSTITUT PAUL EMILE VICTOR

NOM DE LA CAMPAGNE

| CAROTTE (N°                           | ):               | CAROTTE (longueur) :                                | POSITION :                                       |
|---------------------------------------|------------------|-----------------------------------------------------|--------------------------------------------------|
| MD 03-20<br>(MD - année - milles - ce | 688<br>entaines) | 35,36 m                                             | Latitude : 46°48,03' N<br>Longitude : 07°02,93'W |
| CAROTTIER (type) <sup>(1)</sup> :     | CALYPSO II       | REGLAGES :<br>Tubes (longueur) : 44,00 m            | CONTREPOIDS :<br>Type (2) : cylindrique          |
| Poids total (air) :                   | 7,30 t           | Câbles :<br>Chute libre : 1,20 m                    | Pénétration : m                                  |
| Poids total (eau) :                   | 6,60 t           | Boucle : 1,60 m<br>LC poids : 48,70 m               | Longueur de carotte : m<br>+ Ogive (+ 0,15 m)    |
| PARAMETRES MES                        | URES :           | HEURES (GMT)                                        | INSTRUMENTATION<br>OPERATIONS ANNEXES            |
| onde corrigée :                       | 4 385,00 m       | Début manœuvre : 11:57                              | Pinger : oui                                     |
| ine filée :                           | 4 338,00 m       | Déclenchement : 13:11                               | Flux de chaleur :                                |
| achement/différentiel (tonne) :       | t                | Fin de manœuvre : <b>15:20</b>                      | CTD (bouteilles) :                               |
| nétration/apparente (m) :             | m                | Durée de manœuvre : 03:23<br>Départ station : 15:50 | Filet à plancton :                               |
| nétration/tensiomètre (m) :           | m                |                                                     | Autres : 1 accéléromètre sur les                 |

Date :

| 0    | 150  | 300  | 45 | 50           | 600  | 750  | 900  | 1050 |
|------|------|------|----|--------------|------|------|------|------|
|      |      |      |    | IV           | V    | VI   | VII  |      |
|      |      |      |    |              |      |      |      |      |
| 1050 | 1200 | 1350 | 15 | 00           | 1650 | 1800 | 1950 | 2100 |
| VIII |      | IX   | Х  | XI           | XII  | XIII | XIV  |      |
|      |      |      |    | vide partiel |      |      |      |      |
|      |      |      |    |              | ·    |      | ·    |      |

| 2100 | 2250 2- | 400 25 | 550 27 | 700 28 | 350 30 | 000 3150 |
|------|---------|--------|--------|--------|--------|----------|
| XV   | XVI     | XVII   | XVIII  | XIX    | XX     | XXI      |
|      |         |        |        |        |        |          |
|      |         |        |        |        |        |          |

| 3150 | 33       | 00    | 34 | 50 | 3536 | 3600   |
|------|----------|-------|----|----|------|--------|
|      | XXII     | XXIII |    |    | XXIV |        |
|      | 10cm/gaz |       |    |    | Fin  | +6cm   |
|      |          |       |    |    |      | en bas |





### MD133 - SEDICAR

### Sediment Description

### Core MD03-2688





**SEDICAR** 

# Propriétés physiques

# Station 1 MD03-2688



Geotek MSCL 6,0 - MD03-2688.out created at 04:37:13 on 06-26-2003.

### SEDICAR

## **Spectral Reflectance**

### Station 1 Core MD03-2688



# MD03-2689 Station 2

## «!Eperon Delesse!»

## **Site eperon Delesse**

L'objectif de cette carotte est de caractériser le régime sédimentaire détritique en provenance du système « Manche » et de distinguer des dépôts générés par des courants. Le site est situé sur l'arête d'un éperon à mi-pente.

Le taux de récupération (48%) est moyen 16,98 m pour 35,50 m de tube. La séquence dans l'ensemble vaseuse présente des passées de silt et un gravier a été trouvé (2,30 m).

- Carte morphologique du site
- Plan de situation du site
- Profil 3.5kHz du site
- Fiche de carottage
- $\circ$  Photos
- Description des sédiments
- Propriétés physiques (M.S.T.)
- o Réflectivité



# Morphologie du site MD03 2689



### Reconnaissance de l'Eperon DELESSE - MD03 2689 -

### Profondeur (m)



#### INSTITUT PAUL EMILE VICTOR

| NOM DE LA CAMPAGNE                              |                 | Date : 25/06/2003                               | Météo : (force) / Direction Beau                  |  |
|-------------------------------------------------|-----------------|-------------------------------------------------|---------------------------------------------------|--|
| MD 133/SEDICAR                                  |                 | N° de station : 2 Delesse                       | Mer :<br>Variation tension (maxi) :               |  |
| CAROTTE (N                                      | °):             | CAROTTE (longueur) :                            | POSITION :                                        |  |
| MD 03-2689<br>(MD - année - milles - centaines) |                 | 16,98 m                                         | Latitude : 47°23,12' N<br>Longitude : 07°10,40' W |  |
| CAROTTIER (type) <sup>(1)</sup> :               | CALYPSO II      | REGLAGES :<br>Tubes (longueur) : 35,50 m        | CONTREPOIDS :<br>Type (2) : cylindrique           |  |
| Poids total (air) :                             | 7,30 t          | Câbles :<br>Chute libre : 1,20 m                | Longueur PVC : m<br>Pénétration : m               |  |
| Poids total (eau) :                             | 6,60 t          | Boucle : 1,60 m<br>LC poids : 40,20 m           | Longueur de carotte : m<br>+ Ogive (+ 0,15 m)     |  |
| PARAMETRES ME                                   | SURES :         | HEURES (GMT)                                    | INSTRUMENTATION<br>OPERATIONS ANNEXES             |  |
| ionde corrigée :<br>igne filée :                | 2 017,00 m<br>m | En station : 20:25<br>Début manœuvre : 20:49    | Pinger : <b>oui</b><br>Flux de chaleur :          |  |
| rrachement/total <i>(tonne)</i> :               | t               | Declenchement : 21:56   Fin de manœuvre : 23:08 | CTD (hydro) :                                     |  |
| nachemen/diferentier ( <i>torine</i> ) .        | t<br>20,00 m    | Durée de manœuvre : 02:19                       | Filet à plancton :                                |  |
| énétration/apparente (m) :                      |                 | Depart station.                                 |                                                   |  |

| 0    | 150 30                | 00 4  | 150 6 | 00                         | 750 9              | 00 1050 |
|------|-----------------------|-------|-------|----------------------------|--------------------|---------|
|      | II                    | III   | IV    | V                          | VI                 | VII     |
|      | Tronçon brisé (roche) |       |       |                            |                    |         |
| 1050 | 1200 13               | 50 1: | 500 1 | 650 1697,5                 | 1800               |         |
| VIII | IX                    | X     | XI    | XII                        |                    |         |
|      |                       |       | vp    | Fin                        |                    |         |
|      |                       |       |       | 20cm de sédiments expu     | ulsés par pression |         |
|      |                       |       |       | intersticielle dans 2 bout | chons              |         |

vp=vide partiel

#### MARION DUFRESNE



### MD133 - SEDICAR

### Sediment Description

### Core MD03-2689



### **SEDICAR**

# **Popriétés physiques**



### SEDICAR

## **Spectral Reflectance**

### Station 2 Core MD03-2689



# MD03-2690 Station 3

## «!Levée Guilcher!»

## Site levée Guilcher

L'objectif de cette carotte est double :

- (1) paléoenvironemental avec l'étude de la variabilité des apports sédimentaire en provenance du système «Manche » vers le système turbiditique armoricain au cours de plusieurs cycles climatiques. Le chenal Guilcher alimente un lobe central et proximal de l'éventail Armoricain.
- (2) sédimentologique avec l'étude des processus sédimentaires responsables de la formation des levées turbiditiques, avec en particulier différencier les paramètres internes au couple chenal levée des paramètres externes liés à la modification de la source sédimentaire.

Le taux de récupération (82%) est bon 36,18 m pour 44 m de tube. La séquence dans des silt argileux présente des séries d'alternance de lamines noires / gris-beige à fréquence variable et des passées sableuses abondantes à la base.

- o Carte morphologique du site
- Plan de situation du site
- o Profil 3.5kHz général
- o Profil 3.5kHz du site
- o Fiche de carottage
- o Photos
- Description des sédiments
- o Propriétés physiques (M.S.T.)
- o Réflectivité



Morphologie du site MD03 2690



# MD03-2690 3.5kHz général



### Reconnaissance de la "Leve Guilcher" - MD03 - 2690-

Profondeur (m)



#### MARION DUFRESNE

| NOM DE LA CAMPAGNE                              |            | Date : 26/062003                                       | 3 Météo : (force) / Direction Beau                | Météo : (force) / Direction <b>Beau</b>         |  |  |
|-------------------------------------------------|------------|--------------------------------------------------------|---------------------------------------------------|-------------------------------------------------|--|--|
| MD 133/SE                                       | DICAR      | N° de station : 3 Guilche                              | Mer :<br>Yr Variation tension (maxi) :            | vent :<br>Mer :<br>Variation tension (maxi) :   |  |  |
| CAROTTE (                                       | N°):       | CAROTTE (longueur)                                     | : POSITION :                                      |                                                 |  |  |
| MD 03-2690<br>(MD - année - milles - centaines) |            | 36,18 m                                                | Latitude : 47°01,25' N<br>Longitude : 07°44,99' W | Latitude: 47°01,25' N<br>Longitude: 07°44,99' W |  |  |
|                                                 |            | REGLAGES :                                             | CONTREPOIDS :                                     |                                                 |  |  |
|                                                 | 7 20 4     | Tubes (longueur) : 44,00 m<br>Longueur piston: 47,65 m | Type (2) : cylindrique<br>Longueur PVC :          | m                                               |  |  |
| Folus total (all).                              | 7,50 t     | Chute libre : m                                        | Pénétration :                                     | m                                               |  |  |
| Poids total (eau) :                             | 6,60 t     | Boucle : 1,60 m                                        | Longueur de carotte<br>+ Ogive (+ 0,15 m)         | m                                               |  |  |
|                                                 |            |                                                        |                                                   |                                                 |  |  |
| PARAMETRES M                                    | ESURES :   | HEURES (GMT)                                           | INSTRUMENTATI<br>OPERATIONS ANN                   | ION<br>IEXES                                    |  |  |
| Sonde corrigée :                                | 4 340,00 m | En station : 03:46                                     | Pinger : oui                                      |                                                 |  |  |
| Ligne filée :                                   | m          | Déclenchement : 5:15' 45''                             | Flux de chaleur :                                 |                                                 |  |  |
| Arrachement/total (tonne) :                     | t          | Ein de menouvre : 07:17                                | CTD (hydro) :                                     |                                                 |  |  |
| Arrachement/différentiel (tonne)                | : <b>t</b> |                                                        | CTD (bouteilles):                                 |                                                 |  |  |
| Pénétration/apparente (m) : m                   |            | Départ station : 07:25                                 | Filet à plancton :                                |                                                 |  |  |
| <sup>2</sup> énétration/tensiomètre (m) :       | m          |                                                        | Autres : accélérome                               | etre sur le les                                 |  |  |

Pénétration/tensiomètre (m) : Autres : m L

Description / incidents : entre le core catcher et la fin du tube, 10cm de sédiment récupérés lors de l'ouverture (entre 2 bouchons)

| 0    | 1:   | 50 3   | 00 4   | 50       | 600  | 750  | 900 1050  |
|------|------|--------|--------|----------|------|------|-----------|
|      | 1    | I      |        | IV       | V    | VI   | VII       |
|      |      |        |        |          |      |      |           |
| 1050 | 12   | 200 13 | 350 15 | 500      | 1650 | 1800 | 1950 2100 |
|      | VIII |        | ^      |          |      |      |           |
|      |      |        |        |          |      |      |           |
| 2100 | 22   | 250 24 | 100 25 | 550      | 2700 | 2850 | 3000 3150 |
|      | XV   | XVI    | XVII   | XVIII    | XIX  | XX   | XXI       |
|      |      |        |        |          |      |      |           |
|      |      |        | ·      |          | ·    |      |           |
| 3150 | 33   | 300 34 | 150 36 | 500 3618 | 3750 |      |           |
|      | XXII | XXIII  | XXIV   | XXV      |      |      |           |
|      |      |        |        | Fin      |      |      |           |
|      |      |        |        |          |      |      |           |






### **Sediment Description**

Core MD03-2690



# Popriétés physiques



Geotek MSCL 6,0 - MD03-2690.out created at 17:54:46 on 06-26-2003.

### **Spectral Reflectance**

### Station 3 Core MD03-2690



### MD03-2691 Station 4

### «!Levée Blackmud!»

### Site levée Blackmud

L'objectif de cette carotte est double :

- (1) paléoenvironemental avec l'étude de la variabilité des apports sédimentaire en provenance du système «Manche » vers le système turbiditique armoricain au cours de plusieurs cycles climatiques. Le chenal Guilcher alimente un lobe central et distal de l'éventail Armoricain.
- (2) sédimentologique avec l'étude des processus sédimentaires responsables de la formation des levées turbiditiques, avec en particulier différencier les paramètres internes au couple chenal levée des paramètres externes liés à la modification de la source sédimentaire.

Le taux de récupération (75%) est bon 23,35 m pour 30,90 m de tube. La séquence variée est constituée de vases et silts argileux au sommet, d'un lit plurimétrique de sable gris (7-9 m), des alternances sable/vase. Les sables offrent une large palette de couleur.

- Carte morphologique du site
- Plan de situation du site
- Profil 3.5kHz général
- Profil 3.5kHz du site
- Fiche de carottage
- o Photos
- o Description des sédiments
- Propriétés physiques (M.S.T.)
- o Réflectivité



# Morphologie du site MD03 2691



# MD03-2691 3.5kHz général



Reconnaissance de la Leve Blackmud - MD03 - 2691-

Profondeur (m)



#### INSTITUT PAUL EMILE VICTOR

| NOM DE LA CA                                                      | MPAGNE          | Date :                                     | 26/06/3003        | Météo : (force) / Direction Beau            |                        |
|-------------------------------------------------------------------|-----------------|--------------------------------------------|-------------------|---------------------------------------------|------------------------|
| MD 133/SE                                                         | DICAR           | N° de station :                            | 4 Blackmud        | Mer :<br>Variation tension (maxi) :         |                        |
| CAROTTE (N°) :<br>MD 03-2691<br>(MD - année - milles - centaines) |                 | CAROTTE                                    | (longueur) :      | POSITION :                                  |                        |
|                                                                   |                 | 23,35 m                                    |                   | Longitude : 07°55,672'                      | Longitude : 07°55,672' |
| CAROTTIER (type) <sup>(1)</sup> :                                 | CALYPSO II      | REC                                        | GLAGES :          | CONTREPOIDS :<br>Type (2) : cylindric       | lne                    |
| Poids total (air) :                                               | 7,30 t          | Câbles :<br>Chute libre :                  | 1,20 m            | Longueur PVC :<br>Pénétration :             | m<br>m                 |
| Poids total (eau) :                                               | 6,60 t          | Boucle :<br>LC poids :                     | 1,60 m<br>35,60 m | Longueur de carotte :<br>+ Ogive (+ 0,15 m) | m                      |
| PARAMETRES M                                                      | ESURES :        | HEUR                                       | RES (GMT)         | INSTRUMENTATI<br>OPERATIONS ANN             | ON<br>EXES             |
| <u>Sonde corrigée</u> :<br>Liane filée :                          | 4 371,00 m<br>m | Début manœuvre : 09                        | :47               | Pinger : oui                                |                        |
| Arrachement/total (tonne) :                                       | t               | Déclenchement : 11<br>Fin de manœuvre : 13 | :10<br>:32        | CTD (hydro) :                               |                        |
| Arrachement/différentiel (tonne) :<br>Pénétration/apparente (m) : | t<br>14,80 m    | <u>Durée de manœuvre</u> :                 | 03:45             | CTD (bouteilles) :<br>Filet à plancton :    |                        |
| Pénétration/tensiomètre (m) :                                     | m               | Départ station : 13                        | :36               | Autres : 1 accéléron                        | nètre sur le lest      |

Description / incider ouverture carotte: n°VI A à moitié remplie (sableuse)

A l'extrémité (top): sachet ogive (clay compacte)

| 0    | 150  | 300  | 4   | 50 | 600  | 750  | 900 1050  |
|------|------|------|-----|----|------|------|-----------|
| I    |      | I    | III | IV | V    | VI   | VII       |
|      |      |      |     |    |      |      |           |
|      |      |      |     |    |      |      |           |
|      |      |      |     |    |      |      |           |
| 1050 | 1200 | 1350 | 15  | 00 | 1650 | 1800 | 1950 2100 |
| VI   |      | IX   | Х   | XI | XII  | XIII | XIV       |
|      |      |      |     |    |      |      |           |
|      |      |      |     |    |      |      |           |
|      |      |      |     |    |      |      |           |

| 2100 | 2250 | 2335 | 2400 |
|------|------|------|------|
| XV   |      | XVI  |      |
|      |      | Fin  |      |
|      |      |      |      |

#### MARION DUFRESNE



#### Sediment Description

#### Core MD03-2691



# Popriétés physiques



### **Spectral Reflectance**

### Station 4 Core MD03-2691



## MD03-2692 Station 5

### «!Escarpement Trevelyan!»

### Site escarpement Trevelyan

L'objectif est de reconstituer les conditions paléoenvironnementales du golfe de Gascogne et donc les climats contemporains des érosions alimentant le système Manche / Mer d'Irlande. En particulier, essayer de remonter jusqu'à une période dont les conditions environnementales sont les plus proches des conditions actuelles (stade isotopique 11 soit 400.000 ans environ).

Le taux de récupération (76%) est bon 38,96 m pour 51,50 m de tube. La séquence est dans l'ensemble constituée de silt argileux avec quelques débris et des passées silteuses.

La couleur et la susceptibilité magnétique laissent penser que le stade 10 a été atteint.

- Carte morphologique du site
- Plan de situation du site
- Profil 3.5kHz du site
- Fiche de carottage
- o Photos
- Description des sédiments
- Propriétés physiques (M.S.T.)
- o Réflectivité



| Echelle : 1/564393 a N46 0.00<br>Ellipsoide : WGS-84 | SEDICAR                          |
|------------------------------------------------------|----------------------------------|
| Projection : MERCATOR                                | Par : caraibes                   |
| trevelyan<br>Pas MNT/Grille : 500.0 metres           | Le 23/07/2003<br>a 11:39:02      |
| lsobathes: 100.0 metres Maitresses: 500.0 metres     | Logiciel CARAIBES<br>(c) IFREMER |
| Carotte MD03-2692                                    |                                  |

| route du Marion Dufresne lors de la campagne     SEDICAR (2003) .     ZEE Gascogne 1 et 2 |
|-------------------------------------------------------------------------------------------|
| ITSAS 1et 2                                                                               |
| — Belgica 96                                                                              |
| — SEDIFAN                                                                                 |
| SEDIMANCHE                                                                                |

Morphologie du site MD03 2692



Reconnaissance du Leve de Trevelyan - MD03 - 2692 -

Profondeur (m)





| 2100 | 22   | 50 24  | 400 20 | 27     | 200                      | 500 50 | 00 31 |
|------|------|--------|--------|--------|--------------------------|--------|-------|
|      | XV   | XVI    | XVII   | XVIII  | XIX                      | XX     | XXI   |
|      |      |        |        |        |                          |        |       |
|      |      |        |        |        |                          |        |       |
|      |      |        |        |        |                          |        |       |
|      |      |        |        |        | 3890                     | 5      |       |
| 3150 | 33   | 300 34 | 450 36 | 500 37 | 750 <b>/3835-3855/</b> 3 | 900    |       |
|      | XXII | XXIII  | XXIV   | XXV    | XXVI                     | Ţ      |       |
|      |      |        |        |        | IXXI FIN                 |        |       |
| 1    |      | 1      | 1      | 1      |                          |        |       |





### **Sediment Description**

#### Core MD03-2692





# Popriétés physiques

### Station 5 MD03-2692



Geotek MSCL 6.0 - MD03-2692.out created at 00:23:32 on 06-28-2003.

### **Spectral Reflectance**

### Station 5 Core MD03-2692



### MD03-2693 Station 6

### «!Canyon Capbreton »

### Site canyon Capbreton

L'objectif de cette carotte dans le canyon de Capbreton est double :

Connaître le mode de formation de terrasses confinées et de méandre abandonné, Datation de la séquence sédimentaire des événements turbiditiques.

Le taux de récupération (90%) est très bon 39,33 m pour 43,70 m de tube. L'enregistrement du tensiomètre montre qu'une carotte plus longue est réalisable avec des réglages adaptés. La séquence récupérée est de très bonne qualité avec quelques vides à la base dus à une forte présence de gaz. Sous la vase holocène, des couches de silt et de sable fin ont été prélevées comme espéré.

- Carte morphologique du site
- Plan de situation du site
- o Profil 3.5kHz général
- Profil 3.5kHz du site
- Fiche de carottage
- o Photos
- o Description des sédiments
- Propriétés physiques (M.S.T.)
- o Réflectivité
- o Spectrocolorimétrie



# Morphologie du site MD03 2693



### MD03-2693 3.5kHz général





Reconnaissance de la station Cap breton- carotte MD03 - 2693

#### NOM DE LA CAMPAGNE

#### **MD 133/SEDICAR**

### CAROTTE (N°) :

MD 03-2693 (MD - année - milles - centaines)

 CAROTTIER (type) (1) :
 CALYPSO II

 Poids total (air) :
 7,30 t

 Poids total (eau) :
 6,60 t

| PARAMETRES MESURES :               |        |   |
|------------------------------------|--------|---|
| Sonde corrigée :                   | 431,00 | m |
| Ligne filée :                      | 383,70 | m |
| Arrachement/total (tonne) :        |        |   |
| Arrachement/différentiel (tonne) : |        | t |
| Pénétration/apparente (m) :        |        |   |
| Pénétration/tensiomètre (m) :      |        | m |



#### CAROTTE (longueur) :

38,57+0,76=39,33 m

| REGLAGES :                       |       |   |  |
|----------------------------------|-------|---|--|
| Tubes (longueur) :               | 43,70 | m |  |
| <u>Câbles</u> :<br>Chute libre : | 1,60  | m |  |
| Boucle :                         |       | m |  |
| LC poids :                       | 48,60 | m |  |

| HE                | URES (GMT)        |
|-------------------|-------------------|
| En station :      | 10:25             |
| Début manœuvre :  | 15:42             |
| Déclenchement :   | 15:52             |
| Fin de manœuvre : | 16:38             |
| Durée de manœuv   | <u>re</u> : 00:56 |
| Départ station :  |                   |

```
Météo : (force) / Direction Fin d'une mer formée
Vent : 45 nds le matin
Mer :
Variation tension (maxi) :
```

MARION DUFRESNE

|             | POSITION :   |  |
|-------------|--------------|--|
| Latitude :  | 43°39,258' N |  |
| Longitude : | 01°39,805' W |  |

| CONTREPOIDS :                |   |
|------------------------------|---|
| Type (2) : cylindrique 100Kg |   |
|                              |   |
| Longueur PVC :               | m |
| Dénétration :                |   |
| Penetration .                | m |
| Longueur de carotte          | m |
| + Ogive (+ 0.15 m)           |   |
| 3 4 ( 4) 4 9                 |   |

| INSTRUMENTATION<br>OPERATIONS ANNEXES |     |  |
|---------------------------------------|-----|--|
| Pinger :                              | non |  |
| Flux de chaleur :                     | non |  |
| CTD (hydro) :                         | non |  |
| CTD (bouteilles):                     | non |  |
| Filet à plancton :                    | non |  |
| Autres :                              | 1   |  |

Description / incidents : Expulsion de la base de la carotte par le gaz (forte odeur d'hydrogène sulfuré). Récupération dans le tronçon XXVII

| 0    |      | 150         | 3     | 00   | 450  |       | 600  |      | 750       | 900  | 1050 |
|------|------|-------------|-------|------|------|-------|------|------|-----------|------|------|
|      |      |             |       |      |      | IV    |      | V    | VI        | VII  |      |
|      |      |             |       |      |      |       |      |      |           |      |      |
|      |      |             |       |      |      |       |      |      |           |      |      |
| 1050 |      | 1200        | 13    | 350  | 1500 |       | 1650 |      | 1800 1    | 1950 | 2100 |
|      | VIII |             | IX    | X    |      | XI    |      | XII  | XIII      | XIV  |      |
|      |      |             |       |      |      |       |      |      |           |      |      |
|      |      |             |       |      |      |       |      |      |           |      |      |
| 2100 |      | 2250        | 2/    | 100  | 2550 |       | 2700 |      | 2850      | 2000 | 3150 |
| 2100 | XV   | 2200        |       | XVII | 2000 | XVIII | 2700 | XIX  | XX (      |      | 3750 |
|      |      |             |       |      |      |       |      |      |           |      |      |
|      |      |             |       |      |      |       |      |      |           |      |      |
|      |      |             |       |      |      |       |      |      |           |      |      |
| 3150 |      | 3300        | 34    | 150  | 3600 |       | 3750 |      | 3857 3933 | -    |      |
|      | XXII | <b>&gt;</b> | (XIII | XXIV |      | XXV   |      | XXVI | XXVII     | _    |      |
|      |      |             |       |      |      |       |      |      | I FIN     |      |      |

(1) CALYPSO - CALYPSO GRAVI/FLUX - BOX CORER 1/4m ou carré géant





#### **Sediment Description**

#### Core MD03-2693


### **MD133 - SEDICAR**

## Sediment Description

**Core MD03-2693** 



Comments Hole Dark olive hemipelagic silty clay disturbed by coring Thin fine sand smearslide layers strongly bioturbated Dark grey and very dark grey silty clay shell fragment darker areas are more homogenous moderatly bioturbated Dark grey silty clay small burrows irregularly scattered throughout moderatly bioturbated Dark olive grey silty clay to clayey silty small burrows scattered throughout diffuse sand pockets moderate bioturbation

Grey silty clay to clayey silty small burrows, scattered throughout sand pockets single thiker bed with a sharp base and a graded top

moderate bioturbation

Grey silty clay

# **Popriétés physiques**

## Station 6 MD03-2693



Geotek MSCL 6.0 - MD03-2692.out created at 00:23:32 on 06-28-2003.

## **Spectral Reflectance**

## Station 6 Core MD03-2693



## **Colour Intensity**

## Station 6 Core MD03-2693



# MD03-2694 Station 7

## «!Dôme Gascogne »

## Site dôme Gascogne

L'objectif est de prélever une séquence témoignant de l'évolution continentale pour le stade isotopique 11 dans le Golfe de Gascogne. Ce stade est la période interglaciaire durant laquelle les paramètres orbitaux de la terre (insolation) étaient les plus proches de l'actuel. Il paraît en conséquence indispensable de documenter plus précisément cette période.

Le site a été choisi pour être suffisamment dégagé des apports détritiques tant en enregistrant les messages polliniques continentaux. Le taux de récupération (83%) est bon 36,22m pour 43,70 m de tube. Les résultats préliminaires montrent que des taux de sédimentation plus élevés que prévus n'ont pas permis de d'atteindre le stade 11. Cependant cette carotte reste d'un intérêt majeur car elle échantillonne une série continue jusqu'au stade 8 contrairement à la seule archive alors disponible qui atteignait de façon discontinue le stade 5.

- Carte morphologique du site
- Plan de situation du site
- o Profil 3.5kHz du site
- Fiche de carottage
- Photos et photos retouchées
- Description des sédiments
- Propriétés physiques (M.S.T.)
- o Réflectivité
- o Spectrocolorimétrie



| Echelle : 1/550/89 a N46 0.00                    | SEDICAR                     | route du Marion Dufresne lors de la campagne |
|--------------------------------------------------|-----------------------------|----------------------------------------------|
| Empsoide : WGS-04<br>Projection : MERCATOR       |                             | SEDICAR (2003)                               |
|                                                  | Par : caraibes              | - ZEE Gascogne 1 et 2                        |
| Pas MNT/Grille : 500.0 metres                    | Le 22/07/2003<br>a 18:45:40 | ITSAS 1et 2                                  |
| Isobathes: 100.0 metres Maitresses: 500.0 metres | Logiciel CARAIBES           | — Belgica 96                                 |
| Carotte MD03-2694                                |                             | — SEDIFAN                                    |
|                                                  |                             | SEDIMANCHE                                   |

# Morphologie du site MD03 2694





Reconnaissance de la station Dôme de Gascogne - carotte MD03 - 2694

#### INSTITUT PAUL EMILE VICTOR

#### NOM DE LA CAMPAGNE

#### **MD 133/SEDICAR**

## CAROTTE (N°) :

MD 03-2694 (MD - année - milles - centaines)

CAROTTIER (type) <sup>(1)</sup>: CALYPSO II Poids total (air): 6,50 t Poids total (eau): 6,40 t

| PARAMETRES MESURES                 | :        |   |
|------------------------------------|----------|---|
| Sonde corrigée :                   | 4 162,00 | m |
| Ligne filée :                      | 4 160,00 | m |
| Arrachement/total (tonne) :        | léger    | t |
| Arrachement/différentiel (tonne) : |          | t |
| Pénétration/apparente (m) :        |          | m |
| Pénétration/tensiomètre (m) :      |          | m |

Date : 17/07/2003 N° de station : 7 Dôme Gascogne



 REGLAGES :

 Tubes (longueur) :
 43,70 m

 Câbles :
 1,60 m

 Boucle :
 1,60 m

 LC poids :
 48,50 m

| JRES (GMT)       |
|------------------|
| 09:25            |
| 09:51            |
| 11:03            |
| 13:05            |
| <u>e</u> : 03:14 |
| 13:06            |
|                  |

Météo : (force) / Direction Vent : Mer : Variation tension (maxi) : POSITION : Latitude : 45°28,56' N

Longitude : 05°23,63' W

| CONTREPOIDS :<br>Type (2) :               | cylindrique 100kg |   |
|-------------------------------------------|-------------------|---|
| Longueur PVC :                            |                   | m |
| Pénétration :                             |                   | m |
| Longueur de carotte<br>+ Ogive (+ 0,15 m) |                   | m |

| INSTRUMENTATION<br>OPERATIONS ANNEXES |     |  |
|---------------------------------------|-----|--|
| Pinger :                              | non |  |
| Flux de chaleur :                     | non |  |
| CTD (hydro) :                         | non |  |
| CTD (bouteilles) :                    | non |  |
| Filet à plancton :                    | non |  |
| Autres :                              | non |  |

Description / incidents : Carottier tordu 10 à 14m sous le lest

1 poche surface premiers et derniers tronçons pistonnés

| 0    | 1    | 150<br>   | 300 |           | 450  | IV    | 600  | V   | 750  | VI   | 900<br>VII  | 1050 |
|------|------|-----------|-----|-----------|------|-------|------|-----|------|------|-------------|------|
| 1050 | VIII | 1200      | 135 | o<br>X    | 1500 | XI    | 1650 | XII | 1800 | XIII | 1950<br>XIV | 2100 |
| 2100 | XV   | 2250<br>X | 240 | o<br>XVII | 2550 | XVIII | 2700 | XIX | 2850 | XX   | 3000<br>XXI | 3150 |
| 3150 | :    | 3300      | 345 | 0         | 3600 | 3622  |      |     |      |      |             |      |

| XXII | XXIII | XXIV | XXV   |
|------|-------|------|-------|
|      |       |      | I FIN |

#### MARION DUFRESNE







La couleur des tronçons I à VIII et XIV à XV a été corrigée en Adobe Photoshop avec luminosité -100 et contraste -50 Ces tronçons étaient trop blancs car le photo scanner avait un diaphragme 11.



La couleur des tronçons XVI à XVIII a été corrigée en Adobe Photoshop avec luminosité -100 et contraste -50 Ces troncons étaient trop blancs car le photo scanner avait un diaphragme 11.



#### MD133 - SEDICAR

## **Sediment Description**

#### Core MD03-2694



**Popriétés physiques** 

## Station 7 MD03-2694



Geotek MSCL 6.0 - MD03-2692.out created at 00:23:32 on 06-28-2003.

## **Spectral Reflectance**

Station 7 Core MD03-2694



**Colour Intensity** 

## Station 7 Core MD03-2694



# MD03-2695 Station 8

## « Levée Audierne »

## Site levée Audierne

L'objectif est d'identifier la provenance des évènements turbiditiques ayant transité par le canyon d'Audierne en carottant les dépôts de levée au pied de la pente. Suite à la reconnaissance, seule la levée gauche présentait un site favorable.

Le taux de récupération (89%) est très bon 27,19 m pour 30,60 m de tube. Après une couche métrique de vase holocène, plusieurs séries d'alternances silt/vase ou sable/vase prouvent l'activité turbiditique avec des taux de sédimentation variable. Cette carotte et la carotte Quiberon (MD03-2696) plus à l'Est ont été prélevées dans le même bassin versant de la pente, le bassin de Bretagne Sud. La comparaison devrait mettre en évidence le passage des apports des petits fleuves côtiers sud-bretons à l'Ouest et du fleuve Loire à l'Est. Des minéraux d'augite ont déjà été observés sur une lame mince.

- Carte morphologique du site
- Plan de situation du site
- Profil 3.5kHz général
- Profil 3.5kHz du site
- Fiche de carottage
- Photos
- Description des sédiments
- Propriétés physiques (M.S.T.)
- o Réflectivité
- o Spectrocolorimétrie



| Echelle : 1/563690 a N46 0.00<br>Ellipsoide : WGS-84 | SEDICAR                          |                                                                |
|------------------------------------------------------|----------------------------------|----------------------------------------------------------------|
| Projection : MERCATOR                                | Par : caraibes                   | route du Marion Dufresne lors de la campagne<br>SEDICAR (2003) |
| Pas MNT/Grille : 500.0 metres                        | Le 21/07/2003<br>a 16:11:02      | EE Gascogne 1 et 2     ITSAS 1et 2                             |
| Isobathes: 100.0 metres Maitresses: 500.0 metres     | Logiciel CARAIBES<br>(c) IFREMER | Belgica 96<br>SEDIFAN<br>SEDIMANCHE                            |
| Carottes MD2695                                      |                                  |                                                                |

# Morphologie du site MD03 2695



# MD03-2695 3.5kHz général





Reconnaissance de la levée Audierne - carotte MD03 - 2695

#### MARION DUFRESNE

| N  | OM DE LA CAMPAGNE |
|----|-------------------|
| MD | 133/SEDICAR       |

#### CAROTTE (N°):

MD 03-2695

(MD - année - milles - centaines)

| CAROTTIER (type) <sup>(1)</sup> : | CALYPSO II |
|-----------------------------------|------------|
| Poids total (air):                | 7,00 t     |
| Poids total (eau) :               | 6,20 t     |

| PARAMETRES MESURES :               |          |   |  |
|------------------------------------|----------|---|--|
| Sonde corrigée :                   | 4 375,00 | m |  |
| Ligne filée :                      | 4 341,00 | m |  |
| Arrachement/total (tonne) :        |          | t |  |
| Arrachement/différentiel (tonne) : |          | t |  |
| Pénétration/apparente (m) :        |          | m |  |
| Pénétration/tensiomètre (m) :      |          | m |  |





27,19 m

| REGLAGES :                |       |   |  |  |
|---------------------------|-------|---|--|--|
| Tubes (longueur) :        | 30,60 | m |  |  |
| Câbles :<br>Chute libre : |       | m |  |  |
| Boucle :                  | 1,60  | m |  |  |
| LC piston                 | 34,25 | m |  |  |
| LC poids :                | 35,70 | m |  |  |

| HEURES (GMT)      |                   |  |  |  |
|-------------------|-------------------|--|--|--|
| En station :      | 22:07             |  |  |  |
| Début manœuvre :  | 22:55             |  |  |  |
| Déclenchement :   | 00:21             |  |  |  |
| Fin de manœuvre : | 02:14             |  |  |  |
| Durée de manœuv   | <u>re</u> : 03:19 |  |  |  |
| Départ station :  | 02:15             |  |  |  |

| Vent:                            |                           |  |
|----------------------------------|---------------------------|--|
| Mer:<br>Variation tension (maxi) |                           |  |
| variation tens                   | SUIT (IIIdXI) .           |  |
|                                  |                           |  |
|                                  |                           |  |
|                                  |                           |  |
|                                  |                           |  |
|                                  | POSITION :                |  |
| l atitude :                      | POSITION :<br>46°43 14' N |  |
| Latitude :                       | POSITION :<br>46°43,14' N |  |

| CONTREPOIDS :<br>Type (2) : cylindrique   |   |
|-------------------------------------------|---|
| Longueur PVC :                            | m |
| Pénétration :                             | m |
| Longueur de carotte<br>+ Ogive (+ 0,15 m) | m |

| INSTRUMENTATION<br>OPERATIONS ANNEXES |     |  |  |
|---------------------------------------|-----|--|--|
| Pinger :                              | non |  |  |
| Flux de chaleur :                     | non |  |  |
| CTD (hydro) :                         | non |  |  |
| CTD (bouteilles):                     | non |  |  |
| Filet à plancton :                    | non |  |  |
| Autres :                              | non |  |  |

Description / incidents : Perte de liquide vaseux à toutes les sections Tronçon 18: 1m; tronçon 19: 60cm 1 sac surface; 1 sac ogive

| 0                 | 150  | 300  | 450                       | 600       | 750  | 900 1050  |
|-------------------|------|------|---------------------------|-----------|------|-----------|
|                   | II   |      | IV                        | V         | VI   | VII       |
|                   |      |      | lvide                     | 1         |      |           |
| 1050              | 1200 | 1350 | 1500                      | 1650      | 1800 | 1950 2100 |
| VIII              | IX   | X    | XI                        | XII       | XIII | XIV       |
|                   |      |      |                           |           |      |           |
| 2100              | 2250 | 2400 | 2550 2650                 | 2700 2740 | ·    |           |
| 2100<br><b>XV</b> | 2250 | 2400 | 2550 2650<br><b>XVIII</b> | 2700 2719 |      |           |
| ~~~               | ~~~  | ~~!! | <b></b>                   |           |      |           |





#### MD133 - SEDICAR

#### Sediment Description

#### Core MD03-2695



# **Popriétés physiques**

## Station 8 MD03-2695

| Se                   | annent thickness |      | 0 50 100 150 |              | Density (g/cm3) | 0 50 100 | 0 2000 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------|------------------|------|--------------|--------------|-----------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0,0<br>0 <del></del> | 5,0              | 10,0 |              |              |                 | [3]      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                  |      |              |              |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                  |      |              | 2 i          |                 |          | 1 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                  |      |              | - E          |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5 -                  |                  |      |              | <u> </u>     |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      |                  |      |              | <sup>2</sup> |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      |                  |      |              | - F          | 2               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 -                 |                  |      | -            | -            |                 |          | - 5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -                    |                  |      |              |              |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                  |      |              |              |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      |                  |      |              |              |                 |          | wahadada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15                   | 1                |      |              |              | -               |          | E C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | huddha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      |                  |      |              |              |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      |                  |      |              | 5            | 24              |          | E Contraction of the second se | - The second sec |
| 20 -                 | 5                |      | -            | - 5-         |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                  |      |              |              |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Vinter - V |
|                      |                  |      |              |              |                 |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ~                    | - {              |      |              |              |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 25 -                 |                  |      |              | -            |                 |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -                    | 2                |      |              |              | <u> </u>        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                  |      |              |              |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30                   |                  |      |              |              |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                  |      |              |              |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                  | _    |              |              |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 35 -                 |                  |      |              |              |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      |                  |      |              |              |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                  | _    |              |              |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                  |      |              |              |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40                   |                  |      |              |              |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Geotek MSCL 6,2 - MD03 2695,out created at 10:48:53 on 07-23-2003,

## **Spectral Reflectance**

### Station 8 Core MD03-2695



## **Colour Intensity**

## Station 8 Core MD03-2695



# MD03-2696 Station 9

## « Ride de Quiberon »

## Site ride de Quiberon

L'objectif est de déterminer la provenance des évènements turbiditiques ayant transité par le canyon du Blavet et le chenal de Cornouailles et qui semblent alimenter le mini-éventail de Quiberon en carottant les dépôts au pied de la pente. Il serait ainsi possible de connaître si la paléo-Loire était connectée, voire était la source essentielle de ce dépôt d'éventail.

Le taux de récupération (87%) est très bon 27,60 m pour 31,75 m de tube. Trois séquences métriques de silt, des passées sableuses et des débris d'éponges (25,80 m) ont été observées. Cette carotte et la carotte Audierne (MD03-2695) plus à l'Ouest ont été prélevées dans le même bassin versant de la pente, le bassin de Bretagne Sud. La comparaison devrait mettre en évidence le passage des apports des petits fleuves côtiers sud-bretons à l'Ouest et du fleuve Loire à l'Est.

- Carte morphologique du site
- Plan de situation du site
- o Profil 3.5kHz général
- o Profil 3.5kHz du site
- Fiche de carottage
- o Photos
- o Description des sédiments
- Propriétés physiques (M.S.T.)
- o Réflectivité
- o Spectrocolorimétrie



| Echelle : 1/560901 a N46 0.00<br>Ellipsoide : WGS-84 | SEDICAR                          | route du Marion Dufresne lors de la campagne |
|------------------------------------------------------|----------------------------------|----------------------------------------------|
| Projection : MERCATOR                                | Par : caraibes                   | ZEE Gascogne 1 et 2                          |
| Pas MNT/Grille : 500.0 metres                        | Le 21/07/2003<br>a 15:35:02      | ITSAS 1et 2<br>Belgica 96                    |
| Isobathes: 100.0 metres Maitresses: 500.0 metres     | Logiciel CARAIBES<br>(c) IFREMER | - SEDIFAN<br>- SEDIMANCHE                    |
| ∠arotte MD 2696                                      |                                  |                                              |

Morphologie du site MD3 2696



# MD03-2696 3.5kHz général





Reconnaissance de la ride de Quiberon - carotte MD03 - 2696

#### MARION DUFRESNE

| NOM DE LA CAMPAGNE                |              |  |  |
|-----------------------------------|--------------|--|--|
| MD 133/SEDICAR                    |              |  |  |
|                                   |              |  |  |
| CAROTTE (                         | [N°) :       |  |  |
| MD 03-2696                        |              |  |  |
| (MD - année - milles              | - centaines) |  |  |
|                                   |              |  |  |
| CAROTTIER (type) <sup>(1)</sup> : | CALYPSO II   |  |  |
|                                   |              |  |  |

| ()) () () () () () () () () () () () () |        |
|-----------------------------------------|--------|
| Poids total (air) :                     | 7,00 t |
| Poids total (eau) :                     | 6,20 t |
|                                         |        |

| PARAMETRES MESURES                 | :        |   |
|------------------------------------|----------|---|
| Sonde corrigée :                   | 4 422,00 | m |
| Ligne filée :                      | 4 384,00 | m |
| Arrachement/total (tonne) :        |          | t |
| Arrachement/différentiel (tonne) : |          | t |
| Pénétration/apparente (m) :        |          | m |
| Pénétration/tensiomètre (m) :      |          | m |

| Date :          | 18/07/2003       |
|-----------------|------------------|
| N° de station : | 9 Levée Quiberon |

CAROTTE (longueur) : 27,60 m

| REGLAGES :                       |       |   |  |  |  |
|----------------------------------|-------|---|--|--|--|
| Tubes (longueur) :               | 31,75 | m |  |  |  |
| <u>Câbles</u> :<br>Chute libre : |       | m |  |  |  |
| Boucle :                         | 1,60  | m |  |  |  |
| LC poids :                       | 36,50 | m |  |  |  |

| HEURES (GMT)      |                   |  |  |  |  |  |
|-------------------|-------------------|--|--|--|--|--|
| En station :      | 04:47             |  |  |  |  |  |
| Début manœuvre :  | 04:50             |  |  |  |  |  |
| Déclenchement :   | 06:22             |  |  |  |  |  |
| Fin de manœuvre : | 08:30             |  |  |  |  |  |
| Durée de manœuv   | <u>re</u> : 03:40 |  |  |  |  |  |
| Départ station :  | 09:14             |  |  |  |  |  |
| 1                 |                   |  |  |  |  |  |

Météo : (force) / Direction Vent : Mer : Variation tension (maxi) : **POSITION**: 46°29,51' N Latitude : 06°02,36 W Longitude :

| CONTREPOIDS :<br>Type (2) : cylindrique   |   |
|-------------------------------------------|---|
| Longueur PVC :                            | m |
| Pénétration :                             | m |
| Longueur de carotte<br>+ Ogive (+ 0,15 m) | m |

| INSTRUMENTATION<br>OPERATIONS ANNEXES |     |  |  |  |  |
|---------------------------------------|-----|--|--|--|--|
| Pinger :                              | non |  |  |  |  |
| Flux de chaleur :                     | non |  |  |  |  |
| CTD (hydro) :                         | non |  |  |  |  |
| CTD (bouteilles):                     | non |  |  |  |  |
| Filet à plancton :                    | non |  |  |  |  |
| Autres :                              | non |  |  |  |  |

Description / incidents : 1 sac surface et 1 sac ogive

| _    |      |      |     |      |       |      |       |       |          |
|------|------|------|-----|------|-------|------|-------|-------|----------|
| 0    |      | 150  |     | 800  | 450   | 600  | 7     | /50 9 | 900 1050 |
|      |      |      |     | 111  | IV    |      | V     | VI    | VII      |
|      |      |      |     |      |       |      |       |       |          |
|      |      |      |     |      |       |      |       |       |          |
| 1050 |      | 1200 | 1.  | 350  | 1500  | 1650 | 1     | 800 1 | 950 2100 |
|      | VIII |      | IX  | Х    | XI    |      | XII   | XIII  | XIV      |
|      |      |      |     |      |       |      |       |       |          |
|      |      |      |     |      |       |      |       |       |          |
| 2100 |      | 2250 | 2   | 400  | 2550  | 2700 | 2760  |       |          |
|      | XV   |      | XVI | XVII | XVIII |      | XIX   |       |          |
|      |      |      |     |      |       |      | I FIN | 1     |          |
|      |      |      |     |      |       |      |       |       |          |




La couleur du tronçon XVI a été corrigée en Adobe Photoshop avec luminosité -100 et contraste -50 Ces tronçons étaient trop blancs car le photo scanner avait un diaphragme 11.



**SEDICAR** 

# **Popriétés physiques**

### Station 9 MD03-2696



Geotek MSCL 6.2 - MD03 2696A.out created at 10:49:46 on 07-23-2003.

### SEDICAR

## **Spectral Reflectance**

### Station 9 Core MD03-2696



### SEDICAR

**Colour Intensity** 

### Station 9 Core MD03-2696

