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Abstract : 
 
In order to optimize frontal detection in sea surface temperature fields at 4 km resolution, a combined 
statistical and expert-based approach is applied to test different spatial smoothing of the data prior to 
the detection process. Fronts are usually detected at 1 km resolution using the histogram-based, single 
image edge detection (SIED) algorithm developed by Cayula and Cornillon in 1992, with a standard 
preliminary smoothing using a median filter and a 3 × 3 pixel kernel. Here, detections are performed in 
three study regions (off Morocco, the Mozambique Channel, and north-western Australia) and across 
the Indian Ocean basin using the combination of multiple windows (CMW) method developed by Nieto, 
Demarcq and McClatchie in 2012 which improves on the original Cayula and Cornillon algorithm. 
Detections at 4 km and 1 km of resolution are compared.  
 
Fronts are divided in two intensity classes (“weak” and “strong”) according to their thermal gradient. A 
preliminary smoothing is applied prior to the detection using different convolutions: three type of filters 
(median, average and Gaussian) combined with four kernel sizes (3 × 3, 5 × 5, 7 × 7, and 9 × 9 pixels) 
and three detection window sizes (16 × 16, 24 × 24 and 32 × 32 pixels) to test the effect of these 
smoothing combinations on reducing the background noise of the data and therefore on improving the 
frontal detection. The performance of the combinations on 4 km data are evaluated using two criteria: 
detection efficiency and front length. We find that the optimal combination of preliminary smoothing 
parameters in enhancing detection efficiency and preserving front length includes a median filter, a 16 × 
16 pixel window size, and a 5 × 5 pixel kernel for strong fronts and a 7 × 7 pixel kernel for weak fronts. 
Results show an improvement in detection performance (from largest to smallest window size) of 71% 
for strong fronts and 120% for weak fronts. Despite the small window used (16 × 16 pixels), the length 
of the fronts has been preserved relative to that found with 1 km data.  
 
This optimal preliminary smoothing and the CMW detection algorithm on 4 km sea surface temperature 
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data are then used to describe the spatial distribution of the monthly frequencies of occurrence for both 
strong and weak fronts across the Indian Ocean basin. In general strong fronts are observed in coastal 
areas whereas weak fronts, with some seasonal exceptions, are mainly located in the open ocean.  
 
This study shows that adequate noise reduction done by a preliminary smoothing of the data 
considerably improves the frontal detection efficiency as well as the global quality of the results. 
Consequently, the use of 4 km data enables frontal detections similar to 1 km data (using a standard 
median 3 × 3 convolution) in terms of detectability, length and location. This method, using 4 km data is 
easily applicable to large regions or at the global scale with far less constraints of data manipulation and 
processing time relative to 1 km data. 
 

Highlights 

► We improve 4 km SST frontal detections with a preliminary gradient-based smoothing. ► Gradient-
based smoothing is tested with multiple detection window sizes. ► Strong and weak fronts are defined 
based on their thermal gradient intensity. ► Improved detection performance at 4 km is comparable to 
1 km data. ► The method is adequate to process large marine areas. 

 

Keywords : Mesoscale thermal fronts, Preliminary smoothing, Sea surface temperature, 4 km 
resolution, Gradient intensity classification, Expert-based approach, Detection efficiency, Indian Ocean 
 
 

 

 



1. Introduction

Fronts are constitutive elements of almost all spatial structures observed at the ocean surface worldwide.

These boundaries are equally as important in characterizing the epipelagic environment as continuous

surface descriptors, such as temperature, salinity and ocean color. Fronts are primarily driven by physical

displacements of surface waters; thus, sea surface temperature (SST) is by far the parameter by which

fronts are most often detected. Synoptic satellite observations enable fronts to be identified at regional or

even basin scale, according to data processing capabilities.

There  are  two  primary methods  by which  fronts  are  detected:  the  gradient-based  approach  and  the

histogram-based approach. The Canny operator (Canny, 1986) is the most commonly used gradient-based

method. In general, this method applies an upper gradient threshold to identify a pixel as an edge and a

lower threshold to discard it. If the pixel gradients are between both thresholds, only the pixels that is

closest  to  the  upper  threshold  are  marked  as  an  edge  (i.e.,  skeletonization).  The   histogram-based

approach detects the limit that divides two distinct pixel populations. The most commonly used method

for this approach is the single edge detection algorithm (SIED) developed by (Cayula & Cornillon, 1992)

that is based on a bimodal histogram of two water masses.

The  SIED is  developed in  two main  axes:  the  identification  and correction  of  clouds  and the  edge

detection itself.  Prior to the detections, this method requires a standard preliminary smoothing of the

images (generally using 1 km SST data), consisting of a 3×3 median filter in order to reduce the local

noise. The detection process includes a division of the image into fixed windows of size 32×32 pixels, in

which the algorithm searches for fronts. The algorithm examines the spatial properties of the SST field in

each window to investigate the presence of a thermal limit between two water masses. Specifically, a SST

histogram is computed from each window and tested for significant bimodality to determine if a frontal

edge is present. Three internal parameters are defined by the SIED to formally identify a front: 1) the

5

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94



spatial cohesion threshold, θ = 0.90, to test the bimodality, 2) the signal-to-noise ratio, S = 4, related to a

maximum error probability and 3) the population threshold, Pwi ≥ 0.25, that represents the minimum size

ratio between water populations. The last stage of the analysis, termed the “following algorithm”, joins

contours that are slightly separated (Cayula & Cornillon, 1992).

Since 1992,  many studies  have developed upon the original  Cayula  and Cornillon method.  In 1995,

Cayula and Cornillon themselves applied their previous SIED algorithm to a sequence of SST images to

develop the multi-image edge detector (MIED) method that simultaneously detects weaker fronts and

improves the elimination of false detections. 

Ullman and Cornillon (2000) evaluated different gradient and histogram-based edge detection algorithms

using Advanced Very High Resolution Radiometer SST data and compared their results with SST fronts

obtained from in situ data. They tested false front detections and failures to detect fronts and concluded

that the false front error rates were less important for the SIED than for gradient-based method. They

suggested that SIED  frontal detection algorithm can be useful in providing accurate statistics of front

occurrence at scales > 10 km, but that gradient-based methods were more accurate at scales < 10 km.

Ullman and Cornillon (2001) then applied the MIED algorithm to 12 years of SST images, revealing the

presence of persistent fronts off the northeast US coast.

Diehl et al. (2002) investigated an approach using “geographic window sizes” (window size is determined

by the correlation of the data surrounding the window's central point) to avoid the limitation of the unique

window size used by the SIED algorithm. They found that front detection is improved where fronts are

smaller or more dense, mostly in coastal regions, but at a cost of a complex data re-composition. 

In terms of expanding the SIED to other data types, Miller (2004, 2009a) was among the first to apply the
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SIED  to  Sea-viewing  Wide  Field-of-view  Sensor  data  to  detect  chlorophyll-a (Chla)  fronts  and

boundaries  of  suspended  matter.  He  combined  these  with  SST  fronts  to  describe  the  physical  and

biological interactions involved in coastal areas under tidal influence.

Using Chla data, Wall et  al. (2008) applied a gradient-based and a histogram-based algorithm on the

coastal waters off Florida, combining 32×32 and 16×16 pixel detection windows and modifying some

SIED parameters. They found that the gradient-based algorithm was better at identifying near-shore Chla

fronts than weaker offshore fronts. 

More recently, Nieto et al. (2012) proposed an improved implementation of the Cayula and Cornillon

(1992) algorithm termed the combination of multiple windows (CMW), initially applied to 1 km SST

data. This method, used in the present study, applies grids of frontal detection (four 32×32 pixel windows)

that overlap by half their size in order to overcome the edge effect of the original SIED algorithm, whose

detection  efficiency  decreases  towards  the  edges  of  the  windows.  This  method  provides  huge

improvements from the standard Cayula and Cornillon SIED approach in terms of both edge detection

(140%) and front length (30%).

Prior to the detection of fronts, a pre-processing of the data based on smoothing filters is needed in order

to remove the noise introduced by the sensor and the uncorrected atmospheric effects. The smoothing

procedure helps to preserve valid information from the original noise (the high frequency signal in the

spatial  domain)  by improving the quality of  the  subsequent  frontal  detection.  At  the  same time,  the

selection of an adequate window size is critical for the performance of the detection. All methods based

on SIED have been almost exclusively applied to 1 km data (and mostly SST data) that facilitates the

tuning of the algorithm and supplies the most detailed and accurate results. They generally use similar

preliminary smoothing methods (a median filter with a 3×3 kernel) and the 32×32 pixel window. Table 1
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summarizes the data resolution, preliminary smoothing and internal parameters used by several authors in

the application of the SIED method. The only study known to us that uses a different smoothing method

is that by Belkin and O’Reilly (2009). This study applied a median filter that considers a small window

(3×3 pixels) within a larger one (5×5 pixels) before the detection process applied to both SST and Chla

data.

Table 1. Parameters applied in previous studies using the Cayula and Cornillon (1992) SIED algorithm to
detect sea surface temperature and chlorophyll-a  fronts from satellite images. 

 The objective of our study is to define an adequate pre-processing procedure to detect fronts using 4 km

data without losing relevant information (e.g., general patterns, detection of weak fronts, coherence of

detections, and length). The considerable advantage of such upscaling is the ability to process data at the

basin or global scale, minimizing processing time and avoiding data handling constraints.
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Thus, we extensively test frontal detections made with different combinations of preliminary smoothing

parameters, including median, average, and Gaussian filters at four different kernel sizes ( i.e., 3×3, 5×5,

7×7, and 9×9 pixels) and using different detection window sizes (16×16, 24×24, and 32×32 pixels). We

aim to propose a new conditional smoothing method that maximizes edge detection quality from 4 km

data.

We then perform a classification of the fronts at the basin scale, based on the intensity of their thermal

gradient. The resulting patterns are described in particular for coastal and offshore regions, highlighting

some oceanographic processes.

It is important to note that while we do not validate our frontal detections with in-situ measurements, we

test the performance of the contextual smoothing method using 4 km data and consider all fronts that are

detected to be real.

2. Methods.

2.1. Satellite data.

Daily 1 km and 4 km SST fields are obtained from the Moderate Resolution Imaging Spectroradiometer

(MODIS) of the Aqua platform, for the period between 2002 and 2011 (http://oceancolor.gsfc.nasa.gov/).

Another data set of 2 km resolution is sampled from 1 km data in order to analyze the variability of the

frontal gradients according to different spatial resolutions (i.e., 1, 2 and 4 km). The quality flags available

for 4 km (i.e., 0, 1 ,2) are tested to evaluate their effect on the detection of frontal structures. Flag 0

gathers initial detectability tests that are considered as a minimal requirement for pixels without cloud

cover. Since flags 1 and 2 include a threshold that masks the highest SST gradients along with cloud

borders, only flag 0 is kept. 
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2.2 Study areas.

Several regions around the world are used to test the effect of applying different smoothing parameters

prior to the detections of fronts using the CMW method (Nieto et al., 2012) on 4 km data. Though the

base algorithm for CMW, the SIED method, is known to have low sensitivity to cloud cover (Cayula &

Cornillon, 1992), we select three areas of low cloud coverage to give a maximal spatial continuity in

frontal  detections.  This  allows  us  to  measure  the  length  of  fronts  that  are  detected,  without  spatial

constraints. To test the effects of the preliminary smoothing methods, five clear images of each of the

three areas (for a total of 15 days) are selected across ten years of data (about 10 7 pixels in total) in order

to achieve statistically significant results. The resulting smoothing parameters are then applied and fronts

are detected using the CMW method at the basin scale. 

The study areas are each characterized by high mesoscale variability and include the region offshore of

Morocco,  the Mozambique Channel,  and offshore of north-western Australia (Fig.  1).  The Moroccan

region, located between a rich coastal upwelling and offshore stratified oligotrophic waters, is influenced

by the Canary Current (Fig.  1). The variable intensity of the upwelling is related to numerous coastal

topographic  irregularities  which make  mesoscale  structures  (and hence,  fronts)  very common in this

region (Nieto et al., 2012; Pacheco & Hernandez-Guerra, 1999). The Mozambique Channel is influenced

by the North Equatorial Madagascar Current that contributes to the southward Mozambique Channel flow

and to the high eddy activity found in this region. The southern part of the channel is affected by the local

upwelling  of  southern  Madagascar  and  in  Delagoa  Bight  (26-28°S)  (Lutjeharms,  2006).  The  north-

western Australian region is impacted by several currents, including the Indonesian Throughflow (ITF),

the Halloway Current (HC) and the Leeuwin Current (LC) that act together to generates permanent high

intensity coastal fronts (Fig. 1) 

10

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207



Figure 1. Mean wind velocity (June) and surface currents related to the three study areas:  Morocco,
Mozambique Channel and north-western Australia. Atlantic Ocean currents: Azores Current (AC), Canary
Current (CC), North Equatorial Current (NEC), North Equatorial Counter Current (NECC). Indian Ocean
currents:  Great  Whirl  (GW),  West  Indian  Coastal  Current  (WICC),  South  Monsoon Current  (SMC),
Southern Gyre (SG). Northeast and Southeast Madagascar Current (NEMC, SEMC), East African Coastal
Current (EACC), Agulhas Current (AC), South Equatorial Current (SEC), East Gyral Current (EGC),
South Java Current (SJC), Halloway Current (HC), Indonesian Throughflow (ITF) and Leeuwin Current
(LC).

2.3 Frontal detection and assessment of preliminary data smoothing

The default data smoothing generally applied to the data prior to the frontal detection consists of a simple

3×3 median filter (as in Cayula & Cornillon (1992), see Table 1). Nevertheless, preliminary tests (not

shown) indicate that the performance of the frontal detection greatly depends on the type and intensity of

the smoothing applied, independent of the internal settings of the SIED algorithm.

In this study, we evaluate the practical effects of smoothing on frontal detection performance, including

the influence of the local gradient whose intensity is directly related to the ability to detect fronts. We

propose here to use the local gradient as an intrinsic property of the fronts in order to separate them into
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"weak" and "strong" categories. To do this we first apply a 3×3 Gaussian filter to reduce local noise and

then determine the minimum significant surface gradient in our data, as measured by the Sobel operator

(Gonzalez & Woods, 2007). Considering the effective radiometric resolution of the SST data (0.15°C) and

the maximum size of a pixel in an equidistant cylindrical projection at the equator (4.5 km), the weakest

(bi-directional) Sobel gradient (as measured linearly in a 3×3 pixel matrix) is close to 0.017°C km-1.

Since residual uncorrected atmospheric artifacts tend to increase the measured gradient, we  consider that

0.02°C km-1 is  an adequate threshold to define significant  SST gradients.  We also confirm by visual

expertise that gradients <0.02°C km-1 are generally associated with the background noise of the data and

do not reveal interpretable oceanic structures. 

Ultimately,  we  divide  the  fronts  into  two  populations,  separated  by  the  mode  of  their  distribution,

thereafter labeled "weak" and "strong" fronts. The gradient associated with each frontal pixel is defined as

the highest gradient value found at a maximum distance of three pixels from the front. This is done to

account for the frequent slight spatial mismatch observed between the front position and its associated

gradient.  In order to define a representative threshold value for each type of fronts,  the mode of the

distribution is computed from a very large data set (in our case, one full year of daily data for the whole

Indian Ocean, i.e., about 109 pixels). The median gradient value found is 0.042 °C km-1. This value is then

used as a reference for all regions of this study.

We then test  the effects of  different  smoothing methods,  or  convolutions,  using common filters (i.e.,

Gaussian, median and average) at four kernel sizes (3×3, 5×5, 7×7 and 9×9 pixels) on 4 km SST images

prior to the frontal detection. All tests are performed for three different window sizes (16×16, 24×24,

32×32 pixels, hereafter named W16, W24 and W32). Windows sizes smaller than 12×12 pixels were not

been tested because of the difficulty of the SIED algorithm finding a statistically valid solution for the
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separation of two water masses that allows a front to be defined. The tests are also performed without any

convolution. A total of 39 window, filter and kernel combinations are evaluated.

The Gaussian filter is used to blur images and partly remove noise. When working with images, it is

necessary to  use  the  two-dimensional  Gaussian  function  that  is  the  product  of  two one-dimensional

Gaussian functions (in both x and y directions). The median filter, widely used due to its ability to remove

noise while preserving edges, works by computing the median of the neighborhood values. Finally, the

average or mean filter reduces the variation between neighboring pixels. The constraints of using this

filter includes an excessive influence of outliers pixels on the average, and a blurring effect of the filter in

cases of high contrast.  

Different smoothing combinations are applied to the 15 test images and fronts are then detected using the

CMW method. In order to maximize detections, we adapt the CMW method to 4 km data by altering the

internal parameters to θ = 0.65, S = 3.0 and Pwi = 0.10. In particular, a low value of Pwi improves the

detection of frontal structures closer to the coast.  It is important to note that after several tests on 4 km

global area coverage data (not shown), we did not apply the “following algorithm” of Cayula & Cornillon

(1992)  included in  the  original  CMW method,  as  it  did  not  show a  visible  improvement  of  frontal

detections at 4 km. Contrary to the original SIED algorithm, no minimum front length has been defined

because the CMW method already combines partially detected fronts. 

The performance of the frontal detection is evaluated independently for the weak and strong fronts and

for each combination of filter, kernel and window size. The performance assessment procedure included a

statistical analysis and an expert-based approach. The statistical analysis consisted of the evaluation of: 1)

the detection efficiency, defined as the total number of frontal pixels found in each image, and 2) the

average length of the fronts (in km), a more complex parameter to define due to potential false breaks
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between  fronts.  A  "reference"  combination  (i.e.,  the  smoothing  method  most  frequently  used  in

histogram-based frontal detection studies) is defined as a 3×3 median filter combined with a W32 and is

used to evaluate the improvement in the detection efficiency. 

Here, we examine front length by first, removing very short fronts (< 10 pixels; considered suspect) from

the 15 test images, and then averaging the length of all fronts that have been detected. Next, an expert-

based  visual  examination  of  the  images  is  performed  to  account  for  indicators  that  are  difficult  to

quantify, such as the shape of the fronts, the proportion of short fronts, the presence of possible "double

fronts" and the proximity of fronts to the coastline.

Additionally  the  histograms  of  Sobel  gradient  values  associated  with  fronts  are  computed  for  the

Moroccan area. This is done to show the effects of the data resolution and the window size on the gradient

distribution and to visualize the thresholds used to define the weak and strong fronts.  We compare 1)

different resolutions (1, 2 and 4 km) using the same window size (W16) and 2) the size of the detection

window (16×16, 24×24 and 32×32) at 4 km resolution. 

2.4 Performance of the frontal detections

In order to estimate the overall performance of the detections at 4 km, the spatial correspondence between

the  fronts  detected  and  the  gradient  is  quantified  separately  for  weak  and  strong  fronts.  The

“representative surface” of each front is first computed by considering a distance of three pixels from all

frontal pixels. This is done to account for the precision of the front positioning found to vary from one to

three pixels from the nearest maximum corresponding gradient. A detection rate is then calculated from

the five clear images of both Moroccan and north-western Australian areas, given as the percentage of

fronts that are detected and correspond to either a strong or weak frontal gradient. 
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2.5 Application of optimal smoothing at the basin scale

To test the optimal smoothing combination found in this study, we apply it at the basin scale in the Indian

Ocean on 10 years (2003-2012) of daily 4 km MODIS data. Thermal fronts are detected and monthly

frequency  of  occurrences  (in  percentage)  are  mapped  and  divided  into  “weak”  and  “strong”  front

categories for 1) the north-east (NE) monsoon (December to March) and 2) the south-west (SW) monsoon

(June to September). Both monsoon seasons are associated with specific regimes of winds and currents.

Biogeographical  regions  as  defined  by  Longhurst  (2007)  are  superimposed  to  facilitate  visual

comparisons of the patterns of frontal occurrence.

The Indian Ocean is known to have specific oceanographic characteristics that differ considerably from

the Atlantic and Pacific Oceans, mainly because is bounded in the north by the Asian continent. The

thermal contrast between land and sea, due to the presence of the continent,  creates a seasonal wind

reversal and deep seasonal variability in the ocean currents (Fieux & Reverdin, 2001), making this an

ideal ocean to investigate frontal detections. 

3. Results and discussion

3.1 Effects of the preliminary smoothing

The results of the preliminary smoothing of the data summarized the combined effects of the filters  at

different kernel sizes and the effects associated with the size of the detection window.  The effects of the

internal parameters of the SIED algorithm optimized for 4 km data are minor compared to those of the

smoothing type (not shown). 

Due to the sensitivity of these factors to the front intensity, or thermal surface gradient, the results are

presented here for both "weak" and "strong" front categories.
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3.1.1 Frontal detection efficiency

The detection efficiency shows that the impact of the smoothing is considerable. The frontal detections

performed without any preliminary convolution (Fig. 2) was much lower than those with a convolution,

with  very similar  results  among  window sizes  (Fig.  2a,  b).   The  higher  improvement  found in  the

detection efficiency of the weakest fronts thanks to the smoothing is due to the fact that they are more

affected by the spatial noise of the data when using the SIED algorithm than strong fronts. We find that

window size shows the biggest effect on frontal detection efficiency, followed by kernel size and filter

type. 

The effect  of  the window size is found to be the most  important  factor for detection efficiency.  The

average  increase compared to the “reference” smoothing (i.e., W32, 3×3 median filter)  and the highest

detection efficiencies obtained in this study is 71% for strong fronts (using W16, 5×5 median filter) and

120% for weak fronts (using a W16, 7×7 median filter) (Fig. 2a, b). The detection efficiency for weak

fronts  increased moderately between W32 and W24 (24%) and more strongly between W24 and W16

(68%) (Fig. 2a). The detection efficiency for the strong fronts, increased by 9% from W32 to W24 and by

10% from W24 to W16. Overall, the smallest detection window (W16) gives the highest performance in

terms of  detection efficiency for both weak and strong front  intensities,  regardless  of the  smoothing

combinations. The detections made at W16 clearly show the advantage of this unusually small window

size, without detection of spurious short fronts as might have been expected. The ability to detect spatially

complex fronts, as well as coastal fronts, at this window size, is clearly enhanced relative to W32.

The second dominant factor, after the window size, is the spatial scale of the convolution, i.e., the kernel

size.  Its  effect  on detection efficiency is  substantial for  all  window sizes (Fig.  2a,  b)  and especially

pronounced for the smallest window (W16). In general, the effect of the kernel size, is visible for the
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weakest fronts up to the 7×7 pixel kernel (Fig. 2a) whereas a maximum detection is reached at the 5×5

pixel kernel for the strongest fronts (Fig. 2b).

The three types  of  filters tested showed different  effects on detection efficiency.  The Gaussian filter

showed a relatively poor performance at  W16 except  with very large kernel  sizes (i.e.,  7×7 and 9×9

pixels). These kernels lead to inappropriate detections, such as the presence of double fronts (Fig. 2e, f,

right panels), because of their insufficient smoothing efficiency compared to other filters.

At W16, the median filter showed maximum detection efficiencies for kernels 3×3 and 5×5 for strong

fronts and 7×7 for weak fronts, decreasing in efficiency thereafter (Table 2). The average filter showed

very similar results for W16. Contrary to other filters, the average filter's efficiency increased for higher

kernels and window sizes (Fig. 2a). Despite the similar performances of median and average filters, in

general, the median filter outperforms the average filter and is hereafter selected as the optimal filter.

Visual assessments are consistent with quantitative results (e.g., Fig. 2c-f). The visual improvement using

the 5×5 kernel size is obvious for all fronts whereas the 7×7 kernel size slightly enhances the results for

the weakest fronts.

Kernel sizes equal to or greater than 7×7 significantly degrade the results for the strong fronts (not shown)

with a visible change of their shape. The best detection quality is consequently observed for a smoothing

combination using median filter with the 5×5 pixels for strong fronts and 7×7 pixels for weak fronts. We

find realistic spatial complexity and remarkably good frontal continuity without spurious double fronts

with this combination at W16. This demonstrates the high stability of the CMW detection algorithm 
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Figure 2. Effects of the preliminary smoothing of 4 km resolution SST data on the front detection. Weak
fronts are defined for the gradient interval 0.02-0.042 °C km-1 (gray background) and strong fronts for
gradients > 0.042 °C km-1. The data correspond to the average of five clear images for each of the three
study areas, Morocco, Mozambique Channel and north-western Australia (i.e., totaling 15 images). (a-b)
The total number of frontal pixels for the three detection window sizes, 32×32 (left  column),  24×24
(middle  column)  and 16×16 pixels  (right  column) and the three filters,  Gaussian (blue dashed line),
median (red line) and average (green dashed line) applied at four kernel sizes, 3×3, 5×5, 7×7 and 9×9
pixels.  Data for images where no smoothing was performed are labeled “no conv.” (black dots).  The
“reference” or standard smoothing (3×3 median W32), generally used in front detection, is represented by
black squares. The red and green squares show the best quantitative and visual results for both weak and
strong fronts,  obtained with median 7×7 and 5×5 respectively.  The images show front  detections for
north-western Australia on November 24th, 2009 for (c) 3×3, (d) 5×5, (e) 7×7 and (f) 9×9 pixel kernel
sizes for the the median filter at window sizes of W32 (left column), W24 (middle left column) and W16
(middle right column) and the average filter at the W16 window size (right column). 
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despite the decrease by a factor of four in the number of pixels analyzed at the window level, compared to

the “reference” smoothing for an equivalent 1 km resolution image (see Fig. 4).

3.1.2 Frontal Length 

Considerable differences in average front lengths for the 15 test images were found for all window and

kernel sizes combinations (Fig. 3a, b). When no convolution was used, front lengths were minimal and

the effect of the window size was negligible for both weak and strong fronts. In general, the average

lengths were mostly influenced by the large amount of relatively short fronts, which were more numerous

with the use of small window sizes.

For weak fronts, front lengths for W24 were similar to W32, but in the absence of smoothing shorter

fronts were observed with W24. Distinct local maxima appeared at the 5×5 kernel size for weak fronts

and the 3×3 kernel for strong fronts. The influence of the kernel size was even more important for W16,

with the highest values for the median and average filters found with the 5x5 kernel for weak fronts and

7×7 kernel for strong fronts (Fig. 3a, b).  Front length substantially increased (23%) from W32 to W16,

with maximum lengths generally detected for the different convolution using the 7×7 kernel at W16. This

is similar to the window and kernel size combinations that find that maximum detection efficiency.  On

average,  fronts  associated  with  strong  gradients  were  9%  longer  than  those  associated  with  weak

gradients. For strong fronts, the average front lengths were very similar across window and kernel sizes . 

We find that the smallest detection window (W16) substantially increases the length of the weakest fronts

(at both 5×5 and 7×7 kernels) (Fig.  3a). This is observed despite the fact that the geographical size of

W16 (72×72 km for a 4.5 km pixel size) theoretically does not allow us to detect fronts longer than 100-

150 km. The fact that the average length of the detected fronts is far higher (220 km) and relatively stable

between  the  different  window  sizes,  gives  a  high  degree  of  confidence  in  the  smoothing  method
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presented, beyond that of the spatial scale of detection. This result is a possible consequence of the CMW

procedure that combines four simultaneous detections grids and converges towards stable values of front

length, despite the use of different detection scales.

The  visual  assessment  is  very helpful  to  discriminate  results  that  are  quantitatively similar.  This  is

particularly the case between the median and average filter types, whose results are very similar in terms

of detection efficiency and average front length.  Those fronts detected with the average filter  appear

spatially more complex (Fig. 2c-f rightmost column). These fronts also show a much higher frequency of

double fronts that do not correspond to real patterns in the data. The median convolution is not affected by

this tendency and can consequently be visually confirmed as the most adequate filter.

Figure 3. Average frontal length in kilometers for (a) weak and (b) strong fronts, without convolution
(black dots) and for each combination of filter type (Gaussian, median and average), kernel (3×3, 5×5,
7×7 and 9×9 pixels) and window size (32×32, 24×24 and 16×16 pixels), as in Figure 2a and b. 
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Table 2.  Summary of sea surface temperature and frontal occurrence spatial and seasonal patterns and
their variability for the Aden gulf/ Arabian sea, Bay of Bengal and Eastern South Africa regions (see
figure 7 for corresponding two-dimensional fields).

3.1.3  Global performance of 4 km to 1 km frontal detections

We find that W16 offers the best performance for 4 km due to its high detection power, the stability in

front length for kernel sizes > 3×3 pixels and the spatial coherence from the visual assessment. This is

found for both front intensities (weak and strong), especially when W16 is associated with median or

average filter. We therefore suggest that the optimal smoothing method for preprocessing images uses a

median filter with a 7×7 kernel for weak fronts and a 5×5 kernel for strong fronts at W16 (Fig. 2a,b). The

detections obtained with this optimal smoothing combination are visually similar to the detections found

from independent 1 km resolution images processed with the “reference” combination (Fig. 4a,b).
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 Figure 4. SST and associated fronts detected in November 24th 2009 in north-western Australia at (a) 1
km resolution with standard “reference” parameters (i.e., a median filter with a 3×3 pixel kernel and a
window size of 32×32 pixels); and (b) 4 km resolution with the optimal smoothing combination of a
median filter with kernel sizes of 5×5 and 7×7 for strong and weak fronts respectively, and window size
of 16×16.

Since the shape of the fronts at the near-pixel level change with the spatial scale, its comparison with the

frontal detection efficiency of the 4 km data is very difficult. Nevertheless, it is clear that an important

quantity of fronts are very well detected on the 4 km data relative to the 1 km data, indicating that the

most relevant fronts were detected. Additionally, despite the slightly greater uncertainty in their location

induced by the smoothing effect, the spatial distribution of fronts is coherent with 1 km data. Only a

minor number of fronts are not detected with 4 km data because of their spatial proximity. This limitation

is clearly due to the width of the detection window, despite the fact that we defined a procedure at the

lower  window size  limit  permitted  by  the  SIED algorithm.  Similar  to  that  observed  in  the  present

analysis, Nieblas et al. (2014) found that the CMW algorithm applied to 4 km data missed some fronts
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relative to 1 km data and that the average frontal length is greater for 4km data than that obtained from 1

km data.

3.1.4 Effects of window size

To illustrate the effect of window size on frontal detections, we computed the average frequency of frontal

occurrence to daily (2003-2012) 4 km MODIS SST data  offshore  of Morocco,  applying the optimal

preprocessing smoothing of a median filter with 5×5 and 7×7 kernels found above and using the window

sizes W16 and W32. Results displayed for February (characterized by moderate coastal upwelling (Barton

et  al.,  1998))  indicate  that  detections  improved  from large  to  small  window sizes (based  on  visual

assessments; Fig. 5a, b) mostly in the inner part of the wide continental shelf (Fig. 5c, d), characterized by

a previously-defined secondary upwelling front (Makaoui et al., 2005). We also found a homogeneous

increase in the frontal occurrence measured by a 120% increase for weak fronts and a 20% increase for

strong fronts. In particular, only the smallest window size W16 (Fig. 5b, d) allowed spatially close fronts

to be correctly separated, between themselves as well as from the coastline. 

Regardless of the window size used (i.e., W16 or W32), coastal patterns of high frontal occurrences were

associated with persistent upwelling fronts, mostly originating from the shelf at the vicinity of capes Ghir,

Jubi  and  Bojador  and  visible  with  ocean  color  data  (Pacheco  &  Hernandez-Guerra,  1999).  During

upwelling events in this region, surface waters are advected away from the coast and generate intense

fronts between surface and subsurface layers (Pelegrí et al., 2005). This is especially true south of Cape

Ghir where upwelling fronts and filaments are observed far from the coast. Fronts are very concentrated

over the continental slope in winter because of the quasi-permanent seasonal thermocline and the slightly

lower intensity of the upwelling.
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Figure 5. (a-b) Improvement in the detection of thermal fronts between window sizes of 32x32 (left) and
16x16 pixels (right) in the Moroccan upwelling region in February (average 2003-2012) using the optimal
smoothing combination of a median filter, kernel sizes of 5×5 for strong fronts and 7×7 for weak fronts.
(c-d)The black rectangles highlight the areas where substantial improvements in front detection using the
16x16 window size were observed over the shelf in a complex coastal environment. The 200 m isobath is
superimposed in the zoom frames (bottom) .

3.1.5 Effects of the spatial resolution and window size

The Sobel gradient of the SST, which represents one of the most objective evidences of frontal presence,

is used to estimate the relative performance of the  frontal detections at different spatial resolutions and

across  window sizes.  As previously mentioned,  all  frontal  pixels  are  by definition associated with a

gradient > 0.02°C km-1, in order to reduce the risk of false detection. 
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For  the Moroccan area,  approximately 68% of  the  frontal  pixels  correspond to  gradients  above  this

threshold, which means that 32% of the pixels belong to fronts that do not match the elementary criteria

of a front, not even at the weakest possible intensity. This is due to the fact that the SIED algorithm

follows a fixed SST threshold value, which does not necessarily correspond to pixels at the same position

as the maximum gradient associated with the front.

Therefore,  it  is  interesting  to  compare  the  distributions  of  the  SST  gradient  according  to  spatial

considerations, i.e., data resolution and the size of the detection window. This show that frontal gradients

are linearly dependent on the spatial resolution of the data (Fig. 6a), as the minimal spatial resolution of

the data (1 km) is far greater than the spatial scale of the  in situ  oceanic fronts.   When the gradient

distributions are normalized relative to 4 km data, they are very similar in terms of shape (Fig.   6b). In

this case, the histogram of the 4 km data only shows slightly more frontal pixels detected relative to 1 and

2 km data for the gradients associated with the strongest fronts and slightly less for the weakest fronts.

The gradient distribution at 4 km resolution shows even weaker differences between the different window

sizes (Fig. 6c) that are not likely significant.
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Figure 6.  Histograms of the Sobel gradient associated to frontal pixels for the Moroccan region from
daily sea surface temperature (SST) data (2003-2012). (a) Sobel gradients for 1 km, 2 km and 4 km SST
data for 16x16 pixel window size, (b) SST gradient values normalized relative to the 4 km data gradient
scale and (c) SST gradient variability according to the size of the detection window, i.e., 16×16, 24×24
and 32×32. The populations of frontal pixels associated to weak and strong gradients in (b) and (c) are
hatched and striped, respectively, while the left of the histograms indicates pixel gradients that are below
the 0.02 °C km-1 threshold. 

3.1.6 Front-gradient validation

Since all images are selected according to their low cloud coverage, all spatially structured gradients are

supposed to be real and therefore associated with fronts. Consequently, these gradients (Fig. 7a, b) are

used to validate fronts and estimate potentially missing detections and the influence of the window size

for both weak and strong fronts.
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The detection rates,  expressed in  percentage,  are  computed  for  the  Moroccan and the  north-western

Australian areas (Fig. 7c-n). Detections are similar for both areas when using W16, i.e., 89% (Morocco;

Fig. 7e) and 88% (north-western Australia; Fig. 7k) for weak fronts and 93% (Morocco; Fig. 7h) and 91%

(north-western Australia; Fig. 7n) for strong fronts These detection rates are 49% and 25% higher for

weak and strong fronts, respectively, than those obtained with W32. 

The overall proportion of fronts that were not detected dropped from 34% (W32) to 10% (W16): a more

than a three-fold decrease. Detection rates between areas and between weak and strong fronts were more

similar when using W16 as compared to the larger window sizes, in particular W32. These results indicate

that the increase in detection efficiency previously obtained  by using W16 (section 3.1.1) corresponds to

a validated improvement relative other window sizes. They also confirm the relevance of the optimal

preliminary smoothing of the data.
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Figure 7. (a,b) Sea surface temperature (SST) gradient values used to validate (c-n) front detections
computed from smoothed SST data with a 5×5 median filter for strong fronts and a 7×7 median filter for
weak fronts for window sizes 32×32, 24×24 and 16×16 for the Moroccan region (c-h) and north-western
Australia (i-n). Percentages are expressed as the proportion of fronts detected associated with both weak
and  strong  gradients  (in  green)  at  a  maximum distance  of  three  pixels.  Frontal  pixels  that  are  not
associated with an SST gradient are shown in red.

3.2. Large scale application: example of seasonal patterns of frontal occurrence in the Indian Ocean

3.2.1  Weak fronts

During the NE monsoon, a good correspondence is observed between the occurrence of weak fronts and

low winds (Fig. 8a and c). Numerous weak intensity fronts with occurrences > 3% are observed from

western India to the Arabian Sea during the NE monsoon (Fig. 8c), with the highest occurrences close to

the coast. The presence of such fronts in this region may be explained by several factors, such as 1) the

effect of the circulation south of Sri Lanka in the exchange of water between the Bay of Bengal and the
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Arabian Sea (Reppin et al., 1999), 2) a branch of the westward North Monsoon Current that carries low

salinity water from the Bay of Bengal and flows along the west coast of India (Shetye et al., 1991) or 3)

the presence of the prevailing north-east trade winds that bring cool, dry continental air to sea, which

intensifies the evaporation and leads the surface cooling (Madhupratap et al., 1996).

Front occurrences > 3% are also present around Australia, mainly in the northeastern and southern areas,

due to the effect of different currents (e.g., the Indonesian Throughflow, the East Gyral Current, and the

Leeuwin Current) in creating boundary fronts in these areas  (Fig. 8a, b, c). 

During  the  SW monsoon,  weak  fronts  are  far  less  frequent  (<  2%)  than  during  the  NE  monsoon,

especially in the northern Indian Ocean basin (Fig. 8a, b, c right frame). Front occurrences > 3% are only

present in the Mozambique Channel, Indonesia and northern Australia. Numerous mesoscale eddies and

high eddy kinetic energy in the Mozambique Channel (de Ruijter et al., 2002; Donguy & Piton, 1991;

Tew Kai et al., 2009)  probably contribute to the high front occurrences observed there. In the eastern

basin, the seas around Indonesia and northern Australia are influenced by the South Java Current (SJC),

which  contributes  a  north-westward  flow  during  the  maximum  flow  period  of  the  Indonesian

Throughflow, which occurs during SW monson (Schott & McCreary, 2001) (Fig. 8 b,c). 

3.2.2 Strong fronts

Strong fronts during the NE monsoon with frequencies > 5% (Fig. 8d, left frame) occur in the northern

Red Sea, in the coastal area of the Bay of Bengal, in the South China Sea, off southern Madagascar and in

the region of the Agulhas Return Current along the Subtropical Convergence Zone. In the northern Bay of

Bengal, the activity of the East India Coastal Current and the presence of cyclonic gyres in the southwest

part of the bay contribute to front occurrences via coastal upwelling (Vinayachandran & Mathew, 2003).
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In southern Madagascar, the front frequency possibly reflects the impact of the South Equatorial Monsoon

Current (SEMC) and the presence of a local upwelling (de Ruijter et al., 2002) caused by the westward

bend in the East Madagascar Current.  Among all  fronts investigated in the southern Indian Ocean by

Lutjeharms  and  Valentine  (1984),  the  Agulhas  Front  is  described  as  having  the  steepest  gradient,

associated  with  a  very  consistent  temperature  of  18.4°C.  In  western  Australia,  the  strong  Leeuwin

Current, partially supplied by subtropical waters,  flows southward and follows the coast around Cape

Leeuwin  at  the  southwestern  tip  of  Australia,  and  beyond  120°E,  generating  quasi-permanent  high

intensity fronts. This feature is probably reinforced by the equatorward winds off Western Australia that

oppose to the Leewin Current, which is strongest during the NE monsoon (Schott & McCreary, 2001;

Schott et al., 2009). Finally, the Subtropical Convergence Zone, between 40°S and 45°S, is characterized

by permanent meander fronts, occurring at progressively  at higher latitudes east of 80°E.

During the SW monsoon (Fig. 8d, right frame), strong fronts show  patterns similar to those found during

the NE monsoon, except that fronts of the northern Bengal almost disappear and strong coastal fronts are

observed off Somalia, the Aden Gulf and the western Arabian Sea. The Somalian region is impacted by

the atmospheric Finlater Jet, which originates from the east African coast (Fieux & Reverdin, 2001) and

helps generate the strong Somali upwelling along with the divergence created by the Southern Gyre (Fig.

8b). 

In summary, as expected and regardless of season, strong, high intensity fronts frequently occur in coastal

regions and in semi-enclosed seas (i.e., the Red Sea and the Persian Gulf). A few regions show weak

intensity coastal fronts, i.e., the Arabian Sea and western and southern India during the NE monsoon; and

north-western Australia, southern Indonesia and the Mozambique Channel during the SW monsoon. The

offshore areas are principally dominated by weak fronts. 
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Figure 8. Application of the optimal smoothing combination (median filter, 5×5 kernel for strong fronts,
7×7 kernel for weak fronts, using a detection window of 16x16 pixels) for front detections on 10 years
(2003-2012)  of  daily sea  surface  temperature  (SST)  data  in  the  Indian  Ocean during  the  north-east
monsoon (December to March) and the south-west monsoon (June to September). (a) Average surface
wind  field  for  the  same  period  (Cross-Calibrated  Multi-Platform  wind  product;
http://podaac.jpl.nasa.gov/Cross-Calibrated_Multi-Platform_OceanSurfaceWindVectorAnalyses), (b) SST
with the main currents (current abbreviations as in Figure 1) and occurrence of thermal fronts of (c) weak
and (d) “strong” intensity. The Longhurst (2010) ecological provinces are superimposed.
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4. Conclusions

The  improvement  in  the  detection  of  fronts  using  4  km  data  demonstrates  the  importance  of  the

preliminary spatial  smoothing proposed here. The tests  performed independently for the two gradient

intervals (i.e., weak and strong fronts) confirm that the best results are those obtained by the specific

combinations of the following parameters: a median filter, kernel sizes of 5×5 pixels for strong fronts and

7×7 pixels for weak fronts, and a detection window size of 16×16 pixels. 

We show that this preliminary smoothing method can be applied to 4 km data at the regional or basin

scale levels with comparable results to those obtained using 1 km data. Low resolution data (i.e., 4 km)

strongly lightens the constraints related to data manipulation and computing time. We clearly show that

major weak and strong fronts are correctly detected and that the frontal continuity is preserved despite the

small size of the detection window. A comparable quality of detections is obtained despite the use of

sixteen times less data, relative to 1 km resolution images, even if it is clear that 1 km resolution data will

always supply more detailed and accurate results.

We observe that strong fronts are mostly found in coastal regions and weak fronts are mostly found in the

open ocean. This suggests that the consideration of the frontal intensity may help to spatially differentiate

distinct  mechanisms  of  frontogenesis.  Over  continental  shelves,  especially  in  nearshore  areas,  the

methodology proposed here allows us to make a very detailed description of the link between fronts and

various physical processes, such as coastal and offshore currents and coastal upwelling. 

We selected areas  with relatively low cloud cover  in  order  to  test  the  effect  of  the  combinations  of

parameters of our method on estimating the length and spatial continuity of fronts without constraint or

bias due to cloud cover. Otherwise, the Cayula & Cornillon algorithm is not affected by cloud cover,
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contrary to gradient-based methods. This methodology can be applied in areas with various conditions of

cloudiness, including highly clouded regions, such as the Peruvian or Californian coasts, provided that

adequate cloud corrections have been previously applied.

Since thermal fronts constitute one of the most important mesoscale features in the ocean, their role in

modulating biological productivity (Bainbridge, 1957; Olson & Backus, 1985; Strass, 1992) as well as

their direct influence on animal behavior (Laurs et al., 1984; Pakhomov et al., 1994;  Polovina et al.,

2000; Palacios et al., 2006) is a growing area of interest. The application of this method is potentially

useful to better understand, at an ecological level, the association of different organisms with different

front intensities as those described here.
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