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Abstract : 
 
Abstract—In marine sciences, time series are often nonlinear and nonstationary. Adequate and specific 
methods are needed to analyze such series. In this paper, an application of the Empirical Mode 
Decomposition method (EMD) associated to the Hilbert Spectral Analysis (HSA) is presented. 
Furthermore, EMD based Time Dependent Intrinsic Correlation (TDIC) analysis is applied to consider 
the correlation between two nonstationary time series. Four temperature time series obtained from 
automatic measurements in nearshore waters of the Réunion island are considered, recorded every ten 
minutes from July 2011 to January 2012. The application of the EMD on these series and the estimation 
of their power spectra using the HSA are illustrated. The authors identify low-frequency tidal waves and 
display the pattern of correlations at different scales and different locations. By TDIC analysis, it was 
concluded that the high frequency modes have small correlation, whereas the trends are perfectly 
correlated. 
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I. INTRODUCTION 
 
Generally in Earth sciences and especially in the marine environment, the recorded time series are 
often nonlinear, nonstationary and interact with each other.  
 
Surface tides are the heartbeat of the ocean and are deterministic since they are controlled by the 
relative movement of earth, moon and sun. In addition, internal tides are created in a stratified ocean by 
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the interaction of the surface tide currents with the bathymetry. They are ubiquitous in the ocean and 
can lead to strong vertical oscillations of isotherms. They can propagate over hundreds of km and since 
their propagation condition is related to the stratification of the ocean, they are distorted by the 
circulation which modifies the 3D density field. As a result, in the coastal area, they often appear as 
highly non linear oscillations with wide spectral content that are usually not predictable, even on short 
time scale [1]. In situ time series of temperature and currents are then necessary to understand their 
characteristics and the way they propagate and modify their shape to the coast.  
 
The wavelet transform [2] is widely used as a timefrequency analysis technique to deal with 
nonstationary signals. Unlike Empirical Mode Decomposition (EMD), wavelets based methods are not 
adapted to be used when the system is nonlinear or when the time series are unevenly spaced. 
Therefore, an EMD based on the Hilbert-Huang Transform (HHT) [3] has been applied to the data to 
analyze the variability. The aim is to identify the presence of tidal internal waves in the different records 
and to study their correlations. 
 
The paper is structured in the following six sections. After the description of the background and 
objectives (section I), and of the data set (section II), time series are analysed to understand the 
involved physical processes according to their time scale by applying the Hilbert-Huang transform 
method, an advanced spectral analysis (section III). To study the cross correlation between the time 
series, section IV presents the analysis of the recently published Time Dependent Intrinsic Correlation 
(TDIC) [4]. Comparisons between EMD and wavelets are provided in the discussion section V. Finally, 
section VI draws some conclusions. 
 
 
 
II. PRESENTATION OF THE EXPERIMENTAL DATABASE 
 
Automatic measurements in 40 m depth waters of the North coast of Réunion island (located in the 
Indian Ocean 700 km east of Madagascar) are considered. Using Acoustic Doppler Current Profilers 
(ADCP), both bottom temperatures and currents are recorded every ten minutes from 21st July 2011 to 
19th January 2012. To date, this experimental database has not been published. In this paper, the 
authors consider four temperature time series, shown in Fig. 1, measured at four different stations in the 
island. In the following, the time series are denoted by 1 Temp , 2 Temp , 3 Temp and 4 Temp. 
 

 
 

These series are nonstationary. Indeed, we have also applied Augmented Dickey-Fuller (ADF) tests [5] 
for testing of unit root and stationarity. The unit-root tests exclude that the series are pure random walk 
processes (first model) or random walk processes with a drift (second model). Nevertheless, these 
series are nonstationary and have a deterministic trend (third model). 
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Furthermore, the four temperature measures indicate a 

periodic component associated to the tide together with 

stochastic fluctuations. Spectral analysis is a widely used 

technique to describe the cyclic components of the time series. 

However, since the recorded bottom temperature series are 

nonstationary, standard Fourier spectral analysis is 

inappropriate. In the next section, we perform adequate power 

spectral analysis of these data. 

III. ADVANCED SPECTRAL METHODS 

The classical spectral estimates perform well when the 

system is linear and when data are periodic or stationary. In 

Earth sciences, however, time series are often unevenly spaced 

and nonstationary. To accommodate the variety of data 

generated by nonlinear and nonstationary processes, Huang et 

al. developed a new adaptive time series analysis method 

designated by the NASA as the Hilbert-Huang Transform 

(HHT) [3] and introduced hereafter. 

A. A brief description of Hilbert-Huang transform 

The HHT consists of the combination of the EMD and the 

Hilbert spectral analysis (HSA). The key part of this approach 

is that any complicated dataset can be decomposed with the 

EMD method into a finite and small number of Intrinsic Mode 

Functions (IMFs), which represent different scales of the 

original time series and physically meaningful modes. An IMF 

is defined as a function having the same number of extrema 

and zero-crossings. It has also symmetric upper and lower 

envelopes defined by the local maxima and minima 

respectively. Due to a dyadic filter bank property of the EMD 

algorithm [6-8], usually in practice, the number of IMFs 

modes is less than ( )N
2

log , where N is the length of the data 

set.  

EMD and the associated Hilbert spectral analysis have 

already been applied in marine sciences. For example, Dätig 

and Schlurmann [9] applied HHT to show excellent 

correspondence between simulated and recorded nonlinear 

waves. Schmitt et al. [10] applied the HHT method to 

characterize the scale invariance of velocity fluctuations in the 

surf zone. Ying et al. [11] applied the method and identified 

three kinds of low-frequency waves using some observations 

in the coastal water of the East China Sea. The EMD scheme 

has also been used in studying sea level rise [12]. 

The EMD algorithm has been applied to the temperature 

data sets recorded at the same dates. For the four time series, 

similar IMFs modes have been detected. The analysis for 

1Temp  is presented below. 

B.  Empirical mode decomposition and Hilbert spectrum 

results 

After EMD decomposition of 1Temp , 12 IMFs modes are 

obtained plus the residual, as shown in Fig. 2. The time scale 

is increasing with the number of the IMF mode, the first IMF 

thus corresponding to the highest frequency. Several tidal 

waves are identified through the IMFs: diurnal ( 6IMF , 24 

hours such as K1), semidiurnal ( 5IMF , 12 hours such as M2), 

third diurnal ( 4IMF , 8 hours such as M3), fourth diurnal 

( 3IMF , 6 hours such as M4), spring and neap tides ( 10IMF , 15 

days), monthly waves ( 11IMF ) and seasonal waves ( 12IMF ).  

To analyze the variability, the HHT has also been applied to 

the temperature time series observed at the four sites. The time 

series are divided into a series of modes. Unlike the Fourier 

transform where each cosine or sine component has a constant 

frequency, each IMF mode has a time-dependent frequency 

and amplitude. Reconstructing all the modes together 

describes the distribution of variability as a function of 

frequency and time (see Fig. 3). 

Indeed, the HHT allows frequency-modulation and 

amplitude-modulation simultaneously. Equation (1) enables us 

to represent the amplitude and the instantaneous frequency in 

a three-dimensional plot, in which the amplitude is the height 

in the time-frequency plane. This time-frequency distribution 

is designated as the Hilbert-Huang spectrum ),( twH : 

( ) ( )[ ]







∫∑=
=

dttjttwH i

n

i

ωexpaRe),(
1

i
 (1) 

Where ( )tia  is the amplitude, ( )tiω  is the instantaneous 

frequency and n is the number of modes. 

In Fig. 3, a first wintry period is observed in July-October 

(color blue is dominant) with some peaks of temperature at 

times; followed by the summer in end November-January (red 

color corresponds to higher energy in the spectrum). Note that 

Fig. 3 is consistent with the records of Fig. 1, since the 

maximum recorded temperatures are obtained in December-

January. Indeed, during the summer in the Réunion island, a 

vertical stratification of the water column combined with 

horizontal oscillatory currents creates bottom temperature 

fluctuations, as observed in similar islands of the pacific ocean 

[13]. Such energetic fluctuations can be seen every few days. 

However, a long blue line can be distinguished in the higher 

 
Fig. 3.  Variability of 1Temp as a function of time and frequency: Hilbert 

Spectrum of the EMD. Red/Blue colors indicate high/low variability. 

 
Fig. 2.  1Temp , the IMFs modes from EMD and the residual. 
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values of energy towards the end of November (from 18
th
 to 

21
st
 November) and it corresponds to the linear interpolation 

of missing data at these dates. The loss of all the high 

frequency is similarly observed for the missing data from 15
th
 

to 19
th

 September, where a stressed dark blue line appears in 

Fig. 3. 

As the signal content is now known in the frequency 

domain, the focus will shift to the application of an EMD 

based Time Dependent Intrinsic Correlation (TDIC) of any 

pair of temperature time series, in order to study the possible 

links between physical observations. 

IV. TIME DEPENDENT INTRINSIC CORRELATION 

The classical global expression for the correlation (defined 

as the covariance of two variables divided by the product of 

the standard deviation of the two variables) assumes that the 

variables should be stationary and linear. Applied to 

nonstationary time series, the cross correlation information 

may be altered and distorted. The limitations of the correlation 

coefficient are also obvious: it is unable to provide local 

temporal information, and it cannot distinguish the main 

cycles from noise when measuring correlation. Many 

scientists tried to address the problem of nonsense correlations 

through different ways. The wavelet transform [2] is widely 

used as a time-frequency analysis technique to deal with 

nonstationary signals. The choice of the mother wavelet is 

usually dependent on the type of data to deal with. HHT on the 

other hand does not require any convolution of the signal with 

a predefined basis function or mother wavelet. The process of 

decomposition is totally data-driven. Comparisons of wavelets 

with the methods presented in this paper have been 

investigated in other studies. Some results are presented in 

section V. An alternative is to estimate the correlation 

coefficient by means of a time-dependent structure. For 

example, Papadimitriou et al. [14] applied a sliding window to 

localize the correlation estimations. Rodo and Rodriguez-Aria 

[15] developed the scale-dependent correlation technique. 

Although these methods detected the correlation between two 

nonstationary signals by computing the correlation coefficient 

in a local sliding window, the main problem is to determine 

the size of this window. Recently, Chen et al. [4] introduced 

an approach based on EMD. They proposed to first 

decompose the nonlinear and nonstationary data into their 

IMFs, then use the instantaneous periods of the IMFs to 

determine an adaptive window and finally compute the time 

dependent intrinsic correlation coefficients. Huang and 

Schmitt [16] used TDIC to analyze temperature and dissolved 

oxygen time series obtained from automatic measurements in 

a moored buoy station in coastal waters of Boulogne-Sur-Mer 

(France). 

A. TDIC analysis results 

The correlation between two data sets is considered here. 

Suppose the two time series ( )tTemp1 and ( )tTemp2  can be 

represented in terms of their IMFs as ( ) ( ) ( )trthtTemp i

n

j

i

ji ∑ +=
=1

 

where ( )thi

j  is the th
j IMF of ( )tTempi

 and ( )tri
 are the 

residues. We find the mean period ( )tT i

j of each ( )thi

j either by 

calculating the local extrema points and zero crossing points, 

i.e., ( )
0minmax

4
NbrNbrNbr

lengthdata
tT

i
j

++
×= [16] (Nbr = number) 

or by considering the Fourier energy weighted mean 

frequency, i.e., ( )
( )
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 where ( )fX i
j  is the 

Fourier power spectrum of each IMF mode. Then, at time instt , 

the sliding window is given by 

( ) ( )( ) ( ) ( )( )
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any positive number. This window is different from classical 

sliding windows: it is based on the maximum of two 

instantaneous periods ( ) ( )( )tTtT jj

21 ,max  and thus it is adaptive. 

The focus will shift now to illustrate the cross correlations 

between 1Temp  and 2Temp  time series as well as 1Temp  and 

4Temp . First, the global cross correlation coefficients show a 

global in-phase relation between the temperature time series. 

For both case studies, the time series are highly correlated 

since the maximum correlation coefficient is 0.93 for 1Temp  

and 2Temp  with a phase difference of 40 minutes, and 0.86 

for 1Temp  and 4Temp , occurring when 4Temp  is shifted 

forwards for about 3 hours.  Note that the time lag between 

stations S1 and S2 (resp. S4) corresponds to the 11 −
sm  

propagation speed, which is coherent with the characteristics 

of these stations in the Réunion island since S2 (resp. S4) is 2.5 

km (resp. 11 km) away from S1 and the phase velocity is 
11 −sm  between them. This result is also observed among the 

other stations in the island. When considering only the last two 

months (21
st
 November to 15

th
 January) the correlation 

coefficients between 1Temp  and 2Temp  or 4Temp  fall down 

to 0.73 and 0.3 respectively. This highlights the loss of 

coherency of internal tide over a limited distance of less 

than km20 . 

The EMD algorithm is first applied to all the data sets for 

the same time period. There are 12 IMFs modes with one 

residual, which has been recognized as the trend of the given 

data [17]. The method allows the data sets to be represented in 

a multiscale way [18-19]. These are used for multiscale 

correlation.  

Let us consider the IMFs modes with a mean period of 12 

hours. The global correlation coefficient is 0.23 for the 

corresponding IMFs modes of 1Temp  and 2Temp , with a 

phase difference of 40 minutes; the same phase difference as 

for the original time series. This result is important since the 

considered semidiurnal mode is the most energetic one, and it 

should reflect the global relationship between 1Temp and 

2Temp  time series. A small correlation coefficient of 0.17 
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(phase difference of 3 hours) is also obtained for the IMFs 

modes of 1Temp and 4Temp with a mean period of 12 hours.  

Fig. 4a displays the measured TDIC and shows rich patterns 

at small sliding window. We note a decorrelation of the TDIC 

with the increase of the window size. Although the global 

cross correlation is small, the TDIC detects several periods of 

high correlation between the modes. As an example, a strong 

positive correlation between the IMFs of 1Temp  and 2Temp  

appears nearly by the beginning of November.  

To focus on this period, Fig. 5 shows a zoom of the IMFs 

modes with a mean period of 12 hours. These are positively 

correlated with each other on some portions and negatively 

correlated on others; showing rich dynamics. The correlation 

coefficient between these IMFs is also estimated: it is equal to 

0.60 for the considered period between 2
nd

 November and 8
th

 

November, 2011. Compared to the global correlation 

coefficient of the IMFs, the value of 0.60 is higher than 0.23 

which is coherent with the direct observation of the TDIC in 

Fig. 4a. 

Moreover, the lower the frequency modes are, the higher 

the correlation is. To show the time evolution and such scale 

dependence of cross correlation between the time series, we 

can consider higher periods such as one day, one week, 15 

days, etc. Let us consider the IMFs modes of 1Temp  and 

2Temp with a mean period of 15 days, which corresponds to 

the spring-neap tidal cycle. The global correlation coefficient 

for these IMFs is 0.57. Fig. 4b displays the measured TDIC, 

which confirms the direct analysis of the IMFs modes. 

Momentary decorrelations can be observed due to the missing 

data in the middle of September and by the end of November. 

Note that the holes in Fig. 4b indicate that the TDIC cannot 

pass the conducted t-test. This means that the independent-

samples t-test has failed.  

Finally, the residuals from EMD algorithm for 1Temp  and 

2Temp are plotted in Fig. 6. They show that the trends of the 

time series are perfectly correlated with a correlation 

coefficient of 0.99.  

 

 

 

 

 

V. DISCUSSION 

While EMD, Fourier, and wavelets are all used to 

decompose signals, EMD is fundamentally different from the 

other two. With both the Fourier and Wavelet transforms, one 

selects a set of basis signal components and then calculates the 

parameters for each of these signals. Choosing the wrong basis 

function can greatly increase the number of terms required to 

fit the time series. For example, the Fourier transform 

specifically uses sinusoidal-basis functions (and calculates the 

amplitude and phase offset for each), resulting in the 

production of numerous (possibly infinite) harmonics when a 

nonsinusoidal signal is processed; while the wavelet transform 

uses other more complex and orthogonal wave-forms. 

On the other hand, the EMD method does not define a basis 

a priori and makes no assumptions a priori about the 

composition of the signal. Rather, each IMF obtained by the 

sifting process will be a single periodic oscillator, but 

otherwise cannot be predicted before it is empirically observed 

from the signal. Furthermore, the number of IMFs cannot be 

predicted before the decomposition. These two disadvantages 

can make EMD difficult to work with under certain 

circumstances. Compared to other spectral analysis methods, 

the EMD is also computationally expensive, especially when 

the time series is long and has a large frequency distribution. 

Nevertheless, since EMD makes no assumptions about signal, 

the results might be more meaningful. Also, since the IMFs 

can change over time, EMD makes no assumptions about the 

stationarity of the signal (or the signal components) and is 

therefore better suited to nonlinear signals than either Fourier 

or Wavelets. This makes EMD particularly attractive when 

analyzing signals from complex systems. 

In Fig. 7, we have superimposed the mean period of the 

IMFs on the wavelet spectra of 3Temp . A noticeable 

similarity between the two methods can be observed although 

a poor low-frequency resolution is discerned for the Morlet 

wavelet spectra (no thick black contour beyond 1 cycle per 

day). The disadvantage of the wavelet power spectral analysis, 

 
 

Fig. 4.  The measured TDIC obtained after EMD decomposition of 

1Temp  and 2Temp a) for the 12-hour and b) for the 15-day mean 

period.  

 

Fig. 7. Wavelet powerspectrum versus IMFs for 3Temp . The thick 

black contour designates the 5% significance level against red noise. 

 

 
 Fig. 5. Zoom on the 12-hour cycle from EMD for 1Temp  and 2Temp . 

 

 
 Fig. 6. The trends from EMD for 1Temp  and 2Temp . The 

direct measurement of the cross correlation is 0.99. 
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however, is the requirement of evenly-spaced data. The effects 

of the linear interpolation can be seen in Fig. 7: Two long blue 

lines are observed in mid-September and mid-November. 

They correspond to the loss of the high frequency at these 

dates. 

Table I summarizes some tidal waves obtained after EMD 

decomposition of the 3Temp  (similar to the results presented 

for 1Temp in section III. B). Table I also shows the global 

cross correlation coefficients between the IMFs for 1Temp  

with respect to the IMFs for the three other time series. Note 

how the correlation increases with the mean period of the 

IMFs, i.e. for lower frequency modes. 

The contribution of each IMF to the total energy is 

measured by the variance. For 2Temp , the biggest contribution 

comes from the seasonal wave IMF12 with over 47% of the 

total energy. For the high frequency components the 

semidiurnal wave 5IMF  and the diurnal wave 6IMF  account 

for nearly 9% and 6% of the total energy, respectively. The 

physical meaning for 1IMF and 2IMF  components are not 

immediately clear. Fortunately, their contributions are too 

small: only 0.06% and 1.29% of the total energy respectively. 

While the Fourier expansion would require tens of modes to 

represent the whole data, the EMD method decomposes the 

time series into only 12 IMFs plus the residual. When all the 

IMFs are added back successively, we notice that all the 

energy is recovered, as shown in all the cases in Huang et al. 

[3]. 

VI. CONCLUSION 

Marine environmental time series are typically noisy, 

complex and strongly nonstationary. Few time-frequency 

decomposition methods are adapted to analyze such series. In 

this paper, the authors consider the HHT as an adaptive 

method to study their multiple scale dynamics. From the 

temperature observations at four stations, a group of tidal 

waves are detected using the EMD method. The 

decomposition into modes helps also to estimate how 

correlations vary among scales. The trends are perfectly 

correlated, whereas higher frequency modes have smaller 

correlation. Furthermore, the authors apply a recent 

methodology, based on EMD and called TDIC, in order to 

display patterns of correlations at different scales for different 

IMFs modes. In future studies, the authors will investigate 

how this analysis is more efficient than a cross-spectrum and 

will show how HHT and wavelet decompositions can provide 

complementary results. 
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TABLE I 

CROSS CORRELATIONS BETWEEN THE IMFS FOR TEMP1 WITH RESPECT 

TO THE IMFS FOR THE OTHER THREE TIME SERIES. 

IMF Tidal waves 
Cross correlation  

Temp1&2 Temp1&3 Temp1&4 

IMF4 3rd degree diurnal 0.1119 0.0547 0.1181 

IMF5 Semidiurnal 0.2334 0.1466 0.1664 

IMF6 Diurnal 0.3876 0.2413 0.1959 

IMF9 Weekly cycle 0.5121 0.3651 0.4739 

IMF10 Semimonthly 0.8796 0.4207 0.5431 

 




