Microplastics in sediments: A review of techniques, occurrence and effects

Van Cauwenberghe Lisbeth ^{1, *}, Devriese Lisa ², Galgani Francois ³, Robbens Johan ², Janssen Colin R.

¹ Ghent University, Laboratory of Environmental Toxicology and Aquatic Ecology, Jozef Plateaustraat

22, 9000 Ghent, Belgium ² Institute of Agricultural and Fisheries Research, Animal Sciences Unit – Aquatic Environment and Quality, Ankerstraat 1, 8400 Ostend, Belgium

³ IFREMER, LER/PAC, Bastia, France

* Corresponding author : Lisbeth Van Cauwenberghe, Tel.: +32 9 264 37 07; fax: +32 9 264 37 66 ; email address : lisbeth.vancauwenberghe@ugent.be

Abstract :

Microplastics are omnipresent in the marine environment and sediments are hypothesized to be major sinks of these plastics. Here, over 100 articles spanning the last 50 year are reviewed with following objectives: (i) to evaluate current microplastic extraction techniques, (ii) to discuss the occurrence and worldwide distribution of microplastics in sediments, and (iii) to make a comprehensive assessment of the possible adverse effects of this type of pollution to marine organisms. Based on this review we propose future research needs and conclude that there is a clear need for a standardized techniques, unified reporting units and more realistic effect assessments.

Highlights

► An in-depth analysis of literature regarding microplastics in sediments was performed. ► Extraction techniques, occurrence and distribution, and impacts were discussed. ► There is a clear need for standardisation and harmonisation of techniques.
Effect assessments should represent more realistic exposure conditions.

Keywords : Microplastics, Pellets, Sediment, Techniques, Direct effects, Indirect effects

45 **INTRODUCTION**

46 Plastic has changed the way we live. It possesses a unique set of properties making it extremely 47 popular for use in everyday life: it can be used at a wide range of temperatures, has low thermal 48 conductivity, a high strength-to-weight ratio, is bio-inert, durable and above all it is cheap (Andrady, 49 2011; Andrady and Neal, 2009). This has led to the use of plastic in a myriad of applications, ranging 50 from household and personal goods, clothing and packaging to construction materials. As a result, 51 the global plastic production has grown exponentially ever since its mass production started in the 52 1950s, with 288 million tonnes produced worldwide in 2012 (PlasticsEurope, 2013). Even though the 53 societal benefits of plastic are undeniable (Andrady and Neal, 2009), there are some serious 54 environmental concerns associated with the material. While a part of the plastic waste is properly 55 managed (through combustion or recycling), is has been estimated that millions of tonnes of plastic 56 waste (4.8 to 12.7 million tonnes in 2010) end up the marine environment (Jambeck et al., 2015).

57 Plastics are present in the environment in a wide variety of sizes, ranging from metres to 58 micrometers (Barnes et al., 2009). The smallest form of plastic litter is called microplastic. These are 59 present in the environment as 'microplastics by design', so-called primary microplastics, or arise from the degradation of larger plastic litter. While the former are typically resin pellets and microbeads 60 61 associated with industrial spillages (EPA, 1992) and the use of cosmetics (Fendall and Sewell, 2009; 62 Zitko and Hanlon, 1991), the latter (secondary microplastics) are formed through the action of 63 degrading forces such as UV radiation and physical abrasion (Barnes et al., 2009; Cole et al., 2011). 64 Another important source comes from synthetic clothing: a single synthetic garment can release up 65 to 1900 fibres per washing cycle (Browne et al., 2011).

66 At present, there is no universally accepted definition regarding the size of microplastics. When 67 first described in 2004, the term microplastic was adopted to refer to microscopic plastic debris in 68 the 20 µm region (Thompson et al., 2004). A motion to broaden the definition to all fragments 69 smaller than 5mm was made in 2009 (Arthur et al., 2009). While the value of 5 mm is more 70 commonly accepted, the 1 mm upper size limit is a more intuitive one as 'micro' refers to the 71 micrometer range. As a result, this more strict definition is also often used in scientific literature (e.g. 72 Browne et al., 2011; Claessens et al., 2011; Van Cauwenberghe et al., 2013; Vianello et al., 2013; 73 Dekiff et al., 2014).

Microplastics have been reported in the water column and marine sediments worldwide
(Claessens et al., 2011; Law et al., 2010; Moore et al., 2001; Thompson et al., 2004). While the first
reports on microplastics in surface waters already date back to the early 1970s (Carpenter et al.,

77 1972; Carpenter and Smith, 1972), it took another 5 years until the first records of plastic pellets on 78 beaches were made (Gregory, 1977, 1983; Shiber, 1979) and another thirty years until the first 79 microplastics (<1 mm) in sediments were reported (Thompson et al., 2004). Sediments are suggested 80 to be a long-term sink for microplastics (Cózar et al., 2014; Law et al., 2010; Morét-Ferguson et al., 81 2010). Logically, plastics with a density that exceeds that of seawater (>1.02 g.cm⁻³) will sink and 82 accumulate in the sediment, while low-density particles tend to float on the sea surface or in the 83 water column. However, through density-modification even low-density plastics can reach the 84 seafloor. Biomass accumulation due to biofouling can lead to an increase in density resulting in the 85 sinking of the microplastic (Andrady, 2011; Reisser et al., 2013; Zettler et al., 2013). Using nitrogen as 86 a proxy, Morét-Ferguson et al. (2010) concluded that the reported change in microplastic density is 87 due to attached biomass. Indeed, analysis of polyethylene bags submerged in seawater for 3 88 weeks showed a significant increase in biofilm formation over time, accompanied by corresponding changes in physicochemical properties of the plastic, such as a decrease in buoyancy (Lobelle and 89 90 Cunliffe, 2011). These studies suggest that biofouling can contribute towards the settling and 91 eventual burial in sediments of previously buoyant plastic. Biomass accumulation on plastic may 92 even partly explain the recent finding that the global plastic load in the open-ocean surface is 93 estimated to be two orders of magnitude lower than expected from estimates of plastic releases in 94 the marine environment (Cózar et al., 2014).

95 The main objective of this review is to assess the state of the science in the exposure and effects 96 assessment of microplastics in the marine environment, more specifically in marine sediments. This 97 was achieved by analysing available literature to: (1) provide an in-depth evaluation of the current 98 and commonly used techniques for extracting microplastics from sediments, (2) discuss the 99 occurrence and distribution of microplastics in marine sediments worldwide and (3) make a 100 comprehensive assessment of the known effects to benthic and sediment-associated wildlife.

101 **REVIEW OF AVAILABLE LITERATURE**

We conducted an extensive literature review using the ISI Web of Knowledge and Google Scholar databases. Based on the search parameters detailed below, a total of 122 original publications were retrieved, dating back to 1977. The majority of publications (90%) were published from 2004 onwards, with 75% of all literature published in the last five years (Figure 1). Next to peer-reviewed papers, conference proceedings, posters and dissertations were also included in this review.

- 107 From these publications, all necessary information regarding (i) the extraction technique, (ii)
- 108 microplastic abundance and distribution and in the case of effect assessments (iii) exposure
- 109 concentration and observed effects was extracted and processed.

110

Figure 1: Evolution in the publication of 'microplastic in sediment' literature. The bars represent the number of
 publications published in the corresponding 5-year period, while the curve represents the cumulative distribution of the
 published literature since 1975.

In the ISI Web of Knowledge, a literature search using the keywords 'plastic pellet or
microplastic' in combination with 'sediment or beach' generated a list of 139 peer-reviewed papers.
These date back to 1982 and cover the period until the beginning of 2015. From these publications a
list of 32 papers on occurrence and distribution, 9 reviews and 5 papers presenting and discussing
extraction techniques was compiled. An additional search on the Google Scholar search engine, using
the same keywords, yielded and additional 19 publications, posters and dissertations on occurrence
and distribution of microplastics in sediments (1977 – 2015).

121 Using the ISI Web of Knowledge database, the queries 'microplastic, organism, ingestion' and 'microplastic contaminant or microorganism' resulted in two publication lists of 18 original 122 123 publications each. These publications go back to 1994 and cover the period until the beginning of 124 2015. Still, this collection of publications revealed not all the relevant information on the direct and 125 indirect effects of microplastics to epibenthic species. The Google Scholar search engine revealed 126 additional hits for these queries, including conference posters, conference proceedings and 127 dissertations. From these lists, a final relevant literature list of 57 publications, posters and 128 dissertations was composed.

129 SAMPLING AND EXTRACTION TECHNIQUES

Due to the rapid development of microplastic research, there is a lack of consistency in sampling and extraction techniques used to quantify microplastics in sediments. As a result of the large variety in techniques applied, comparison of reported microplastic concentrations between studies is often impossible or requires additional calculations based on assumptions (e.g. sediment densities). The majority of these method inconsistencies can be related to (i) differences in the lower and upper size limit implemented, (ii) the sensitivity of the applied extraction technique and (iii) differences in sampling technique leading to a wide variety of reporting units.

137 The lack of an unequivocal size-based definition of microplastic has resulted in the reporting of 138 several different size fractions in literature, all using the same term: microplastics. In practice, this 139 means that the results of a substantial body of microplastic literature cannot be compared directly. 140 As microplastics include particles up to 5 mm (Arthur et al., 2009) and both extraction and 141 identification becomes more challenging with decreasing dimensions, authors often opt to only 142 include plastics larger than 1 mm (e.g. Baztan et al., 2014; Jayasiri et al., 2013; McDermid and 143 McMullen, 2004) or even >2 mm (e.g. Heo et al., 2013; Ivar do Sul et al., 2009; Turner and Holmes, 144 2011). Even among those studies that do include the smallest of microplastics (down to $1.6 \,\mu m$) 145 different upper size limits are applied: either 1 mm (Browne et al., 2011; Browne et al., 2010; 146 Claessens et al., 2011; Van Cauwenberghe et al., 2013a) or 5 mm (Martins and Sobral, 2011; 147 Mathalon and Hill, 2014; Ng and Obbard, 2006; Reddy et al., 2006). As both different lower and 148 upper size limits are used throughout microplastic literature, a vast amount of data on microplastic 149 occurrence and distribution worldwide is lost. Yet, this inconsistent use of the term 'microplastic' can 150 be easily addressed by introducing a more comprehensive classification to differentiate between 151 small microplastics (SMPs: < 1 mm) and large microplastics (LMPs: 1-5 mm) (Figure 2) as proposed by 152 European MSFD technical subgroup on Marine Litter (Galgani et al., 2013). Another earlier study 153 suggests the following: micro- (< 0.5 mm) and mesolitter (0.5 – 10 mm) (Gregory and Andrady, 154 2003). While the discussion often focuses on the upper size limit of microplastics, it can be argued that the adoption of a lower size limit is equally important. To date, the lower size limit used in 155 156 microplastic assessment studies is highly dependent on the sensitivity of the sampling and 157 extractions techniques applied. Often, the technical constraints associated with the extraction of 158 small microplastics (SMPs) result in the omission of this lower size limit. However, not including the 159 sub-1 mm fraction can result in reporting highly underestimated concentrations. Indeed, it has been 160 demonstrated repeatedly that these small microplastics represent 35 - 90% of all microplastics 161 present in the marine environment (Browne et al., 2010; Eriksen et al., 2013; McDermid and 162 McMullen, 2004; Song et al., 2014; Zhao et al., 2014).

Figure 2: Size matters. Suggestion of plastic debris nomenclature based on size, as proposed by the European MSFD technical subgroup on Marine Litter (MSFD GES Technical Subgroup on Marine Litter, 2013). The overall term "microplastic" is composed of small microplastics (SMPs, smaller than 1 mm) and large microplastics (LMPs, 1 to 5 mm), to differentiate between two commonly used definitions of microplastics.

168 A wide range of sampling techniques is used for monitoring microplastics in sediments (reviewed 169 in Hidalgo-Ruz et al., 2012 and Rocha-Santos & Duarte, 2015). As a result, the reported abundances 170 are often expressed in different units. While a simple conversion can sometimes be made to 171 compare among studies, often comparison is impossible or requires assumptions that lead to biased 172 results. The choice of sampling strategy and sampling approach (reviewed by Hidalgo-Ruz et al., 173 2012) will eventually determine the unit in which observed abundances will be reported. Those 174 studies sampling an area (using quadrants) will often report abundances per unit of surface (m²; e.g. 175 Ivar do Sul et al., 2009; Lee et al., 2013; Martins and Sobral, 2011). If areal bulk samples up to a 176 specific depth are taken the reporting unit is m³ (e.g. Ballent et al., 2012; Turra et al., 2014). 177 Conversion between these type of abundances is possible, if sufficient information is available on 178 sampling depth. Yet, for 20% of the studies this is not the case as reported sampling depths can 179 range from 0 to 50 cm. Other widely used reporting units are volume (mL to L; e.g. McDermid and 180 McMullen, 2004; Norén, 2007; Thompson et al., 2004) or weight (g to kg; e.g. Claessens et al., 2011; Ng and Obbard, 2006; Reddy et al., 2006). Conversion between these two types of units is not 181 straight forward as detailed information on the density of the sediment is required. As this is never 182 183 (as far as we could establish) reported in microplastic studies, assumptions have to be made, as 184 Claessens et al. (2011) did for the conversion of microplastic abundances in sediment. Additionally, within studies reporting weight, a distinction can be made among those reporting wet (sediment) 185 weight and those reporting dry weight. This adds to the constraints of converting from weight to 186 187 volume units, or vice versa. Sediment samples from different locations or even different zones on 188 one beach (e.g. high littoral vs. sub littoral zone) have different water content. Therefore, a (limited) 189 number of authors choose to express microplastic concentrations as dry weight eliminate this variable (Claessens et al., 2011; Dekiff et al., 2014; Ng and Obbard, 2006; Nor and Obbard, 2014; Van 190 191 Cauwenberghe et al., 2013a; Vianello et al., 2013).

After sampling, either from beach sediments or the seabed, different approaches can be used to separate the microplastic fragments from the sandy or muddy matrix. The most common approach is to extract plastic particles from the sediment using a density separation, based on the differences in

195 density between plastic and sediment particles. Typically, this is achieved by agitating the sediment 196 sample in concentrated sodium chloride (NaCl) solution, as described by Thompson et al. (2004). 197 However, as the density of the NaCl solution is only 1.2 g.cm⁻³, only low-density plastics will float to the surface and can hence be extracted. Different authors have addressed this issue by using 198 199 different salt solutions to obtain higher densities. Liebezeit et al. (2012) and Imhof et al. (2013) 200 extracted microplastics from sediments using zinc chloride ($ZnCl_2$, 1.5 – 1.7 g.cm⁻³), while others 201 (Dekiff et al., 2014; Van Cauwenberghe et al., 2013a; Van Cauwenberghe et al., 2013b) used a sodium 202 iodide (NaI, 1.6 - 1.8 g.cm⁻³) solution. These modifications of the commonly used method of 203 Thompson et al. (2004) result in an increased extraction efficiency for high-density microplastics such 204 as polyvinylchloride (PVC, density $1.14-1.56 \text{ g.cm}^{-3}$) or polyethylene terephthalate (PET, density 205 1.32–1.41 g.cm⁻³). As these high-density plastics make up over 17% of the global plastic demand 206 (PlasticsEurope, 2013), not including these types of microplastic can result in a considerable 207 underestimation of microplastic abundances in sediments. Especially as these high-density plastics 208 are the first to settle and incorporate into marine sediments (density of seawater is 1.02 g.cm⁻³).

As sampling, extraction and detection methods and techniques are being developed worldwide (Claessens et al., 2013; Fries et al., 2013; Harrison et al., 2012; Imhof et al., 2012; Nuelle et al., 2014) it is clear that in order to completely understand the distribution of microplastics in the marine environment, a harmonisation and standardisation of techniques and protocols is urgently needed to enhance microplastic research and monitoring.

214 OCCURRENCE OF MICROPLASTICS IN SEDIMENTS

215 The first reports of microplastics associated with sediments date back to the late 1970s. These 216 early observations comprised industrial resin pellets (2 – 5 mm) on beaches in New Zealand, Canada, 217 Bermuda, Lebanon and Spain (Gregory, 1977, 1978, 1983; Shiber, 1979, 1982), demonstrating -218 already back then- their worldwide distribution. Even in these first reports, pellet concentrations 219 regularly exceeded 1 000 pellets per metre of beach, with extreme abundances reported from 20 000 to 100 000 pellets.m⁻¹ (Gregory, 1978). Large ports and local plastic industry were considered major 220 221 sources, while for Bermuda –which lacks such local sources- the influence of oceanic circulation 222 patterns (located in the west of the North Atlantic Gyre) explain the high concentrations. (Gregory, 223 1983). Large numbers of beached industrial pellets in association with labelled, intact bags detected 224 on beaches in the United Arabian Emirates and Oman confirmed the importance of local 225 contamination sources (Khordagui and Abu- Hilal, 1994). Ever since these first studies, pellet 226 contamination of beaches worldwide has been reported (Table 1). For the majority of these studies 227 the main focus was not to assess the occurrence and abundance of these pellets, but rather to

228 evaluate the contaminant load present on these pellets. Indeed, their size, long environmental 229 persistence and worldwide distribution, make them especially suitable for chemical analysis (Mato et 230 al., 2001). Many hydrophobic compounds (including polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), dichlorodiphenyltrichloroethane (DDT) and degradation products) 231 232 have been detected on pellets collected from marine environments. Concentrations of PCBs on polypropylene pellets collected in Japan were up to 10⁶ times that of the surrounding seawater 233 234 (Mato et al., 2001). Recently, Fotopoulou and Karapanagioti (2012) demonstrated that surface 235 alterations in pellets, resulting from environmental erosion, can explain the increased affinity for 236 contaminants of pellets (Endo et al., 2005). While virgin pellets have smooth and uniform surfaces, 237 eroded pellets exhibited an uneven surface with an increased surface area and polarity, affecting the efficiency of sorption (Fotopoulou and Karapanagioti, 2012). 238

Table 1: Available literature on pollution of marine sediments by industrial resin pellets. Origin and main focus of the
 research (i.e. assessing occurrence and abundance, assessing contaminant load or investigating surface characteristics) is
 provided.

Continent	Location	Main focus	Reference
	Canary Islands	Contaminant load	Heskett et al., 2011
Africa	Saint Helena	Contaminant load	Heskett et al., 2011
	South Africa	Contaminant load	Ryan et al., 2012
	Barbados	Contaminant load	Heskett et al., 2011
	Bermuda	Occurrence	Gregory, 1983
		Occurrence	Costa et al., 2010
	D !!	Occurrence	Turra et al., 2014
	Brazii	Contaminant load	Fisner et al., 2013a
America		Contaminant load	Fisner et al., 2013b
America		Contaminant load	Rios et al., 2007
	California	Contaminant load	Van et al., 2012
	Canada	Occurrence	Gregory, 1983
		Occurrence	McDermid and McMullen, 2004
	Hawaii	Contaminant load	Rios et al., 2007
		Contaminant load	Heskett et al., 2011
	Cocos Islands	Contaminant load	Heskett et al., 2011
	Hong Kong	Contaminant load	Zurcher, 2009
		Contaminant load	Mato et al., 2001
	Japan	Contaminant load	Endo et al., 2005
Acia		Characteristics	Kuriyama et al., 2002
ASId	Jordan	Occurrence	Abu-Hilal and Al-Najjar, 2009
	Lebanon	Occurrence	Shiber, 1979
	Malaysia	Occurrence	Ismail et al., 2009
	Oman	Occurrence	Khordagui and Abu-Hilal, 1994
	United Arabian Emirates	Occurrence	Khordagui and Abu-Hilal, 1994
		Occurrence	Gregory, 1977
Australia	New Zealand	Occurrence + Contaminant load	Gregory, 1978
	Belgium	Occurrence	Van Cauwenberghe et al., 2013a
	Croose	Contaminant load	Karapanagioti and Klontza, 2008
	Greece	Contaminant load	Karapanagioti et al., 2011
Europe	Malta	Occurrence + Characteristics	Turner and Holmes, 2011
		Contaminant load	Frias et al., 2010
	Portugal	Occurrence + Contaminant load	Antunes et al., 2013
		Contaminant load	Mizukawa et al., 2013

	Chain	Occurrence	Shiber, 1982
	Span	Occurrence	Shiber, 1987
	United Kingdom	Contaminant load	Ashton et al., 2010
		Contaminant load	Holmes et al., 2012

243	While the occurrence of industrial resin pellets in marine environments were already described
244	in the 1970s, it took another 30 years before the first reports on other types of microplastics were
245	published. By analysing subtidal, estuarine and sandy sediments from 18 locations across the UK,
246	Thompson et al. (2004) were the first to demonstrate the presence of μ m-sized (< 1mm)
247	microplastics in marine sediments. Soon, reports from Singapore (Ng and Obbard, 2006), India
248	(Reddy et al., 2006) and Sweden (Norén, 2007) illustrated the widespread distribution of these small
249	microplastics. Currently, small and large microplastics are detected in sediments worldwide:
250	especially beaches, subtidal and offshore sediments have been examined (Table 2, Figure 3).
251	Recently, even deep oceanic sediments have been shown to contain microplastics: up to 2000
252	particles per m ² are detected in sediments at a depth of 5000 m (Fisher et al., 2015; Van
253	Cauwenberghe et al., 2013b). It has also been demonstrated that the level of plastic pollution is
254	increasing: sediment core analysis revealed that over the last 20 years microplastic deposition on
255	Belgian beaches tripled (Claessens et al., 2011).

Table 2: Abundance of microplastics in sediments worldwide. Location and location specification (i.e. 'sediment type') are provided, as well as the microplastic size range (particle size) applied during the assessment.

Continent	Location	Location specification	Particle size	Measured abundance	Reference
Africa	Canary Islands	Beach	1 mm – 5 mm	<1 - >100 g/L	Baztan et al., 2014
	Hawaii	Beach	1 mm – 15 mm	541 – 18,559 items/260 L	McDermid & McMullen, 2004
	US	Florida subtidal Maine subtidal	250 μm – 4 mm	116 – 215 items/L 105 items/L	Graham & Thompson, 2009
	Brazil	Beach	2 mm – 5 mm	60 items/m ²	Ivar do Sul et al., 2009
America	Brazil	Beach	0.5 mm – 1 mm 1 mm – 20 mm	200 items/0.01 m ² 100 items/0.01 m ²	Costa et al., 2010
	Hawaii	Beach	250 μm – 10 mm	0.12% - 3.3% plastic by weight	Carson et al., 2011
	Brazil	Tidal plain	1 mm – 10 cm	6.36 – 15.89 items/m ²	Costa et al., 2011
	Chile	Beach	1 mm – 4.75 mm	<1 – 805 items/m ²	Hidalgo-Ruz & Thiel, 2013
	Québec	River sediment	400µm – 2.16 mm	52 – 13,832 beads/m ²	Castañeda et al., 2014
	Nova Scotia	Beach	0.8 μm – 5 mm	20 – 80 fibres/10 g	Mathalon & Hill, 2014
	Singapore	Beach	1.6 μm – 5 mm	0 – 4 items/250 g dry	Ng & Obbard, 2006
	India	Ship-breaking yard	1.6 μm – 5 mm	81.4 mg/kg	Reddy et al., 2006
	South Korea	High tide line	2 mm – 10 mm	913 items/m²	Heo et al., 2013
	India	Beach	1 mm – 5 mm	10 – 180 items/m²	Jayasiri et al., 2013
Asia	South Korea	Beach dry season Beach rainy season	1 mm – 5 mm	8,205 items/m² 27,606 items/m²	Lee et al., 2013
	Singapore	Mangrove	1.6 μm – 5 mm	36.8 items/kg dry	Nor & Obbard, 2014
	NW Pacific	Deep sea trench	300 μm – 5 mm	60 – 2,020 items/m ²	Fisher et al., 2015
	South Korea	Beach	50 µm – 5 mm	56 – 285,673 items/m²	Kim et al., 2015
Europe	UK	Beach Estuary	1.6 μm – 5 mm	0.4 fibres/50 mL 2.4 fibres/50 mL	Thompson et al., 2004

		Subtidal		5.6 fibres/50 mL	
	Sweden	Subtidal	2 µm – 5 mm	2 – 332 items/100 mL	Norén, 2007
	UK	Beach	1.6 μm – 1 mm	<1 – 8 items/50 mL	Browne et al., 2010
		North Sea beach	20.000 1.000	0.2 – 0.8 fibres/50 mL	Province at al. 2011
	UK	English Ch. beach	38 μm – 1 mm	0.4 – 1 fibres/50 mL	Browne et al., 2011
		Harbour		166.7 items/kg dry	
	Belgium	Continental Shelf	38µm – 1 mm	97.2 items/kg dry	Claessens et al., 2011
		Beach		92.8 items/kg dry	
	Portugal	Beach	1.2 μm – 5 mm	133.3 items/m ²	Martins & Sobral, 2011
	Cormonu	Urban beach	1	5000 – 7000 items/m ³	Pollont et al. 2012
	Germany	Rural beach	1 11111 - 13 11111	150 – 700 items/m ³	Ballent et al., 2012
	Germany	Tidal flat	1.2 μm – 5 mm	0 – 621 items/10 g	Liebezeit & Dubaish, 2012
	Italy	Sub-alpine lake	9 μm – 5 mm	1108 items/m ²	Imhof et al., 2013
	Greece	Beach	1 mm – 2 mm	57 – 602 items/m²	Kabari at al. 2012
			2 mm – 4 mm	10 – 575 items/m²	Kaberi et al., 2013
		High tide line	20	9.2 items/kg dry	Van Cauwenberghe et al.,
	Beigium	Low tide line	38 μm – 1 mm	17.7 items/kg dry	2013
	Italy	Subtidal	0.7 μm – 1 mm	672 – 2175 items/kg dry	Vianello et al., 2013
	Germany	Beach	< 1 mm	1.3 – 2.3 items/kg dry	Dekiff et al., 2014
	Slovonia	Beach	0.25 <u>-</u> 5 mm	177.8 items/kg dry	Laghauer et al. 2014
	Silverila	Infralittoral	0.25 - 5 11111	170.4 items/kg dry	Lagibauer et al., 2014
Worldwide		Deep sea 5 µm – 1 mm	5 um – 1 mm	0.5 items/cm ²	Van Cauwenberghe et al.,
wonuwide			5 μm – τ mm		2013

258

259 Due to their easy accessibility, sandy beaches have been the main focus of studies assessing microplastic abundance (over 80% of reviewed abundance studies). The zone sampled, however, 260 261 differs among studies: while some studies cover entire beach transects (perpendicular to the 262 shoreline), others studied specific littoral zones. As was already remarked by Hidalgo-Ruz et al. 263 (2012), this lack in uniformity between studies explains why the distribution of microplastics on 264 beaches is still little understood, and that there is a need to systematically examine potential 265 accumulation zones of microplastics. In a recent attempt to elucidate the distribution of microplastics 266 across the different beach zones, Heo et al. (2013) analysed the entire cross section (from back- to 267 foreshore) of an impacted South Korean beach. Their results indicated that, unlike macroplastics, 268 which accumulated at the high tide line, microplastics (2 - 10 mm) were most abundant in the upper 269 intertidal zone, closer to the backshore. These results indicate that the mechanisms influencing 270 macroplastic distribution on beaches, like wind and currents (Carson et al., 2013a; Thornton and 271 Jackson, 1998), affect microplastic distribution in a different way. As a result, choosing the 272 appropriate site or zone for microplastic assessment on beaches may not be as straight forward as previously thought, yet presents a critical factor in the assessment of microplastic pollution in coastal 273 274 regions (Kim et al., 2015).

Figure 3. Geographical distribution of studies reporting industrial resin pellets and other microplastic types in
 sediments. Black circles indicate studies that reported on the abundance or presence of industrial resin pellets, black
 squares indicate studies that focus on other microplastic types (i.e. fragments, microbeads and fibres).

279 Differences in macro- versus microplastic distribution on beaches was also demonstrated by 280 Browne et al. (2010) in the Tamar estuary (UK). In this study, plastic density and beach orientation 281 (up- or downwind) best explained the observed macroplastic distribution, indicating the influence of 282 wind created currents in the distribution of large floating debris. It was hypothesized that, due to 283 their small sizes, microplastics in the water column will behave in the same way as sediment particles. Yet, no clear relationship was observed between microplastic (< 1 mm) abundance and the 284 285 proportion of clay in the sediment (Browne et al., 2010). It was therefore argued that other 286 processes such as aggregation with organic material might play a more important role in the 287 movement of microplastics. Indeed, Long et al. (2015) demonstrated in a laboratory study that 288 different algae species (Chaetoceros neogracile and Rhodomonas salina) incorporate and 289 concentrate microplastics, substantially increasing microplastic sinking rates. Moreover, Strand et al. (2013) demonstrated that there is a strong relationship between microplastic abundance and both 290 291 organic (%TOC) and fine fraction (< 63 μ m) content in sediments, supporting the hypothesis that 292 microplastics will accumulate in depositional areas. In the Lagoon of Venice, Vianello et al. (2013) 293 detected the lowest microplastic concentrations in the outer Lagoon, where water currents are 294 higher (> 1 m.s⁻¹). Consequently, the highest concentrations were encountered in the inner Lagoon 295 which is characterised by lower hydrodynamics and a higher fine particle (< 63 μ m) fraction in the 296 sediment. Aggregation with organic matter (i.e. marine snow) was also considered the main route of 297 transport for microplastics to deep-sea sediments (Van Cauwenberghe et al., 2013b).

298 Microplastics are categorised in different classes, based on their overall appearance using simple 299 features such as shape, colour, etc. Several categories are used throughout literature, depending on 300 the criteria applied by the authors. Types that re-occur frequently are: pellets, fragments, granules, 301 fibres, films and Styrofoam. Due to their distinctive shape microplastic fibres are easily recognised in 302 environmental samples. As a result, some studies primarily focus on fibres rather than particles 303 (Browne et al., 2011; Browne et al., 2010; Fisher et al., 2015.; Mathalon and Hill, 2014; Thompson et 304 al., 2004). It was demonstrated by Browne et al. (2011) that such fibres are indicative of a sewage 305 origin: an increased microfibre load (> 250%) was detected in sewage-sludge disposal sites compared 306 to reference sites. As the majority of microplastic fibres were either polyester or acrylic, synthetic 307 garments were considered important sources of microplastics. Browne et al. (2011) investigated the 308 contribution of the use of domestic washing machines and concluded that washing synthetic 309 garments contribute considerable numbers of microplastics to marine environments: up to 1900 310 fibres can be released into the environment from washing a single piece of clothing.

311 Microplastics appear to be more abundant in densely populated areas. In a study analysing 312 sediments from 18 locations representing 6 continents, Browne et al. (2011) demonstrated a positive 313 relationship between microplastic and human population density. Indeed, microplastics are detected 314 in large numbers in highly populated areas, such as at locations in the North Sea (Claessens et al., 315 2011; Liebezeit and Dubaish, 2012; Norén, 2007; Thompson et al., 2004; Van Cauwenberghe et al., 316 2013a) and the Mediterranean Sea (Kaberi et al., 2013; Klostermann, 2012; Vianello et al., 2013), as 317 well as in Asia (Ismail et al., 2009; Ng and Obbard, 2006; Nor and Obbard, 2014; Reddy et al., 2006) 318 and the highly populated coast of Brazil (Costa et al., 2010; Ivar do Sul et al., 2009; Turra et al., 2014). 319 On heavily polluted beaches, microplastics (0.25 - 10 mm) can make up 3.3% of the sediment by 320 weight, as opposed to 0.12% plastic by weight on control beaches (Carson et al., 2011). On these 321 Hawaiian beaches, plastics ranging in size from 0.25 to 4 mm were most abundant (55.5%), yet 322 proportions of microplastics (1 – 4.75 mm) of up to 90% have been reported as well (McDermid and 323 McMullen, 2004). The link between microplastic pollution in sediments and human activities has also 324 been demonstrated by Claessens et al. (2011), who detected particularly high concentrations of 325 microplastic granules in the sediments of coastal harbours. However, as not all types of microplastics 326 could be linked to sources in the harbours, the importance of rivers as potential sources of 327 microplastics to the marine environment was stressed. Recently, this was confirmed by Vianello et al. 328 (2013), who detected the highest microplastic concentrations in those areas influenced most by 329 freshwater inputs. Recently, the importance of rivers as sources of microplastics to the marine 330 environment was demonstrated by Castañeda et al. (2014), who detected high concentrations of

microbeads in the sediment of the Saint Lawrence river, Canada. These microbeads were suggestedto originate from municipal and industrial sewage effluents.

333 UPTAKE AND EFFECTS IN MARINE ORGANISMS

334 As microplastic abundances in the environment increase, organisms inhabiting marine systems 335 are more likely to encounter these particles. Numerous factors such as size, density, shape, charge, 336 colour, aggregation and abundance of the plastic particles affect their potential bioavailability to a 337 wide range of aquatic organisms (Kach and Ward, 2008; Wright et al., 2013a). The opportunity for 338 encountering or uptake of microplastics by marine organisms is mainly attributed to two key 339 properties of the particles: the size and density. For example, particles with a density higher than 340 that of seawater will become available to benthic suspension and deposit feeders (as they sink to the 341 sea floor). As the size fraction of these microplastics is similar (or even smaller) to the grain sizes of 342 sediments, microplastics can be ingested not only by lower trophic-level organisms which capture 343 almost anything of the appropriate size class, but also by other sediment-dwelling organisms (Moore, 344 2008; Wright et al., 2013a). Consequently, plastic particles may accumulate within these organisms 345 upon ingestion, potentially resulting in direct effects caused by physical injury in the intestinal tract 346 or even translocation to other tissues or organs. Sediment-dwelling organisms are sensitive indicator 347 species for many kinds of naturally and anthropogenically induced disturbances, and are used 348 worldwide as bio-indicators of ecosystem health (OSPAR, 2010; Thain et al., 2008; Van Hoey et al., 349 2010). Given that this paper deals with the contamination of sediments by microplastics, only species 350 such as echinoderms, polychaetes, crustaceans, bivalves and demersal fish are considered to review the uptake of microplastics and potentially associated effects. 351

352 Uptake of microplastics by marine biota has both been investigated in organisms living in natural 353 conditions (Table 3), as well as in laboratory trials (Table 4). Mussels, such as the blue mussel Mytilus 354 edulis is often selected as model species as they inhabit a wide geographic range, are sedentary, and 355 filter large volumes of water. Four recent studies confirmed the contamination of field-collected M. 356 edulis with microplastics (Table 3). These studies demonstrated that mussels collected in Europe 357 contained on average 0.2 - 0.5 microplastics/g wet weight (ww) (De Witte et al., 2014; Van 358 Cauwenberghe & Janssen, 2014; Van Cauwenberghe et al., 2015), while mussels sampled in Canada 359 revealed a much higher microplastic load (34 - 178 microplastics/mussel) (Mathalon and Hill, 2014). 360 Decapod crustaceans, such as Norway lobster (Nephrops norvegicus) and brown shrimp (Crangon 361 crangon), are opportunistic feeders and have been shown to consume plastic present in the natural 362 environment (Table 3). A high prevalence of plastic contamination in Nephrops (83 % of investigated 363 individuals) was observed in the Clyde Sea area (Murray and Cowie, 2011). These Nephrops ingested

364 plastic strands (attributed to fishing waste), and some individuals were contaminated with tightly 365 tangled balls of synthetic monofilaments. Devriese et al. (in press) noticed that plastic contamination 366 in wild C. crangon mainly consisted of microscopic synthetic fibers at concentrations of 0.64 ± 0.53 367 microplastics/g ww, while only few other types of microplastics were detected in this species. In 368 Gooseneck barnacles (Lepas anatifera and L. pacifica) originating from the North Pacific Subtropical 369 Gyre (NPSG), 33.5% of individuals had ingested plastic (Goldstein and Goodwin, 2013). The observed 370 plastic contamination in this filter feeder consisted of 99% degraded fragments and 1% of 371 monofilament. Controlled lab studies with crustaceans were based on two types of exposure routes: 372 exposure through the surrounding matrix or exposure through contaminated/spiked food items 373 (Table 4). Using seawater spiked with microplastics, lab exposures with barnacles (Semibalanus 374 balanoides) and Carcinus maenas revealed uptake for both crustaceans (Thompson et al., 2004; 375 Watts et al., 2014). In C. maenas, uptake of these microspheres was established through inspiration 376 across the gills. Ingestion due to dietary exposure was established in trials with three different 377 organisms, Carcinus maenas, Nephrops norvegicus and mysid shrimp (Murray and Cowie, 2011; 378 Farrell and Nelson, 2013; Setälä et al., 2013; Watts et al., 2014). N. norvegicus fed with plastic seeded 379 fish revealed the presence of the spiked filaments in the lobsters' stomachs 24 h following ingestion 380 (Murray and Cowie, 2011). Both Farrell and Nelson (2013) and Watts et al. (2014) confirmed natural 381 trophic transfer of microplastics (0.5 μ m and 8 – 10 μ m, respectively) from mussels (*M. edulis*) to 382 crab (*C. maenas*) using pre-exposed mussels. Crabs retained these particles for up to 14 days after 383 ingestion (Watts et al., 2014). Trophic transfer of microplastics from zooplankton to the crustacean Mysis relicta was demonstrated by Setälä et al. (2014) in a laboratory setting using zooplankton pre-384 385 exposed to 10 µm spheres (Table 4). After three hours, examination of *M. relicta* showed a 100% 386 prevalence of microplastics in the animals' intestine. However, exposure of another mysid species 387 (Mysis mixta) to contaminated prey did not result in microplastic transfer (Setälä et al., 2014). Levels of microplastics in five different demersal fish species from the English Channel were evaluated by 388 389 Lusher et al. (2013). Overall, 35% of fish were contaminated with plastic, representing an average 390 environmental microplastic load of 1.90 ± 0.10 particles per individual (Table 3). The ingested plastic 391 consisted primarily of fibres, with the most common size class being 1 - 2 mm. Microplastics 392 ingestion by wild gudgeons (Gobio gobio) from French rivers was also demonstrated (Sanchez et al., 393 2014).

- 394
- 395
- 396

397 Table 3: Microplastic ingestion in the natural environment. Origin of the species investigated is provided (BE:

Belgium, NL: the Netherlands, FR: France, UK: United Kingdom, NPSG: North Pacific Subtropical Gyre, CA: Canada, DE:
 Germany), as well as the particle sizes targeted by the study and extraction protocol (if provided by the authors, otherwise
 'unclear').

Particle Biota Origin Assay Microplastic load Reference size Whole organism HNO₃ BE, 1.2 ± 2.8 MP/g ww Arenicola Van Cauwenberghe et digestion Polychaete NL, >5 µm marina al., 2015 FR Faecal analysis 0.3 ± 0.6 MP/g ww Nephrops UK Gut analysis 83 % contained MP Murray & Cowie, 2011 <5 mm norvegicus Whole organism Crangon HNO3:HCIO4 (4:1 v:v) Crustacea BE 0.64 ± 0.53 MP/g ww >20 µm Devriese et al., in press crangon digestion Goldstein and Lepas spp. NPSG Gut analysis 33.5 % contained MP >0.5 mm Goodwin, 2013 Van Cauwenberghe & Whole organism HNO₃ 0.36 ± 0.07 MP/g ww BE >5 µm digestion Janssen, 2014 Whole organism HNO₃ BE, 0.2 ± 0.3 MP/g ww Van Cauwenberghe et digestion FR, >5 µm al., 2015 NL Faecal analysis 0.1 ± 0.2 MP/g ww Mytilus edulis 3.5 fibres/10g ww NL Whole organism Bivalve BE groyne HNO3:HCIO4 (4:1 v:v) 2.6 fibres/10g ww >20 µm De Witte et al., 2014 digestion 5.1 fibres/10g ww BE quav Whole organism H₂O₂ CA 34 - 178 MP/ind >0.8 µm Mathalon and Hill, 2014 digestion Whole organism HNO₃ Crassostrea Van Cauwenberghe & FR 0.47 ± 0.16 MP/g ww >5 µm digestion Janssen, 2014 gigas UK Gut analysis 1.90 ± 0.10 MP/ind unclear Lusher et al., 2013 Demersal fish Fish DE Gut analysis 3.4 % contained MP unclear Rummel, 2014 Gobio gobio FR Gut analysis 12 % contained MP unclear Sanchez et al., 2014

401

402 The blue mussel Mytilus edulis is by far the species used most to study microplastics effect 403 studies. Given that M. edulis living in natural habitat takes up microplastics, a number of lab trials 404 have been performed to assess the potential adverse effects of microplastics uptake (Table 4). These, 405 often, short-term effect assays are typically conducted with a single type and/or size of plastic at particle concentrations much higher than realistic environmental levels. Wegner et al. (2012) 406 407 demonstrated the increased production of pseudofaeces and reduced filter activity after exposure to 408 30 nm nanopolystyrene (0.1, 0.2 and 0.3 g/L), which according to the authors may lead to increases 409 in the energy expenditure and reduce the organism's food uptake at long term exposure. However, 410 no significant reduction in feeding activity or decrease in energy budget were demonstrated by Browne et al. (2008) and Van Cauwenberghe et al. (2015). Von Moos and co-workers (2012) did 411 412 observed adverse effects, such as a strong inflammatory response, induced by the uptake of small plastic particles after only 3 hours of exposure (Table 4). Short-term exposure experiments with small 413 polystyrene (PS) spheres (3.0 μ m and 9.6 μ m; 1.5x10⁴ particles/400 mL) and HDPE spheres (>0 – 80 414 μ m; 2.5 g/L) revealed their translocation (especially of smaller microspheres) from the digestive tract 415

416 to the circulatory system and digestive cells of *M. edulis* (Browne et al., 2008; Von Moos et al., 2012). 417 Translocation of microplastics after ingestion was also demonstrated for the crab Carcinus maenas 418 (Farrell and Nelson, 2013). Using pre-exposed mussels, this study demonstrated the translocation of 419 small microplastics to the hemolymph of the crabs after indirect exposure, i.e. exposure through 420 contaminated prey. In a similar setup, however, Watts et al. (2014) did find any indications of 421 translocation to the hemolymph in exposed crabs. An important sediment-associated marine 422 organisms that has been the subject of several microplastic effect assessments is the lugworm 423 Arenicola marina (Table 4). In a short-term exposure (14 days) experiment, lugworms were exposed 424 to sediment spiked with 10 μ m, 30 μ m and 90 μ m PS spheres (total concentration of 100 particles.g⁻¹ 425 sediment). While these short-term exposure did not demonstrate a significant effect on the energy 426 metabolism (Van Cauwenberghe et al., 2015), mid-term trials (28 days) revealed clear severe effects 427 (Wright et al., 2013b). After 28 days of exposure to 5% by weight unplasticised PVC (mean diameter 428 130 μ m), a significant decrease in body weight and a significant reduction of the feeding activity was 429 observed, which was ultimately reflected by a depletion of up to 50% of the energy reserves (Wright 430 et al., 2013b).

Regrettably, due to the lack of consistency in the assays used and technical challenges (e.g. 431 432 difficulties in dissecting invertebrates), environmental levels of microplastics in invertebrate 433 organisms are difficult to interpret. As a result, intra- and interspecies evaluation is very difficult. The 434 most common discrepancies can be related to the organ or tissues examined, the extraction protocol 435 (e.g. digestion of tissues), the risk of airborne contamination (Woodall et al., 2015), the particle size 436 range assessed, the reporting unit and the identification of plastics (Song et al., 2015). For example, 437 hot acid digestion using HNO_3 (69%) was proposed by Claessens et al. (2013), while an adaptation 438 using a 4:1 (v:v) mixture of nitric acid (65% HNO₃) and perchloric acid (68% HClO₄) was used by 439 Devriese et al. (in press). Furthermore, Mathalon and Hill (2014) used an oxidizing agent (30% H₂O₂) 440 to remove animal tissue. Besides the digestion assay, the particle retention of the used filters to 441 filtrate the digest outlines the observed particle size range. For this reason Mathalon and Hill (2014) 442 assessed microplastics >0.8 μm, Van Cauwenberghe and Janssen (2014) >5 μm, while De Witte et al. 443 (2014) evaluated microplastics >20 μm.

444

445

447 Table 4: Direct effects of microplastic exposure to aquatic (benthic) organisms, demonstrated under controlled

448 **laboratory conditions.** Details on the exposure conditions, i.e. exposure route, particle type and size (if provided by the 449 authors) and exposure concentration, are provided. (UPVC: unplasticised polyvinylchloride, PS: polystyrene, HDPE: high-

450 density polyethylene).

Biota		Exposure route	Particle type	Exposure concentration	Assay	Effect	Reference	
		Spiked sediment	125 – 150 μm UPVC	5 % by weight	Energy budget Feeding activity	Decreases in energy budget and feeding	Wright et al., 2013b	
Polychaete	Arenicola marina	Spiked sediment	20 – 2000 μm	1.5 g MP/L	Faecal analysis	Ingestion	Thompson et al., 2004	
		Spiked	10 μm PS 30 μm PS	50 MP/mL	Energy budget	No significant	Van Cauwenberghe	
		seament	90 μm PS	10 MP/mL		enect	et al., 2015	
	Mysis spp.	Spiked seawater	10 µm PS	1,000 MP/mL 2,000 MP/mL 10,000 MP/mL	Ingestion	Ingestion No accumulation	Setälä et al., 2014	
		zooplankton		10,000 MF/IIIL		Trophic transfer		
Crustacea	Carcinus	Spiked seawater Spiked	8 – 10 μm PS	9.4x10 ⁵ MP/L 4.0x10 ⁴ MP/L	Tissue analysis Faecal analysis	alysis Retention	Watts et al., 2014	
	maenas	mussels		4.0x10° MP/g				
		Pre-exposed mussels	0.5 μm PS		Tissue analysis	Translocation Trophic transfer	Farrell and Nelson, 2013	
	Semibalanus balanoides	Spiked seawater	20 – 2000 μm	1 g/L	Gut analysis	Ingestion	Thompson et al., 2004	
	Nephrops norvegicus	Spiked fish	5 mm PP	10 fibres/cm ³	Stomach analysis	Retention Accumulation	Murray & Cowie, 2011	
		Spiked seawater	3.0 μm PS 9.6 μm PS	15,000 MP/400 mL	Gut and hemolymph analysis	Translocation to circulatory system	Browne et al., 2008	
		Spiked seawater	10 μm PS 30 μm PS	50 MP/mL	Energy budget	No significant effect	Van Cauwenberghe	
			90 μm PS	10 MP/mL		Accumulation in	et al., 2015	
Bivalve	Mytilus edulis	Mytilus edulis	Spiked seawater	>0 – 80 μm HDPE	2.5 g/L	Histological and histochemical assays	lysosomal system and digestive cells Inflammatory response	Von Moos et al., 2012
			Spiked seawater	30 nm PS	0.1 g/L 0.2 g/L 0.3 g/L	Feeding activity	Pseudofaeces production Reduced feeding	Wegner et al., 2012
		Spiked seawater	0.5 μm 1 μm	12,000 MP/mL	Ingestion rate	(Aggregate) Ingestion	Kach and Ward, 2008	
		Spiked seawater	100 nm	13,000 MP/mL	Ingestion rate	Ingestion	Ward and Kach, 2009	
	Crassostrea virginica	Spiked seawater	100 nm	13,000 MP/mL	Ingestion rate	Ingestion	Ward and Kach, 2009	
	Holothuria	Spiked	0.25 – 15mm	10g	Ingestion rate	Selective ingestion	Graham and	
Echinoderm			0.25 – 1.5 mm Nylon	2g			Thompson, 2009	
	Paracentrotus lividus	Spiked seawater	50 nm PS	3 μg/mL 25 μg/mL	Embryotoxicity Gene expression	Developmental defects	Della Torre et al., 2014	

451 The published microplastics effect assessments are typically conducted with only one type or size 452 of plastic (mostly microspheres) at particle concentrations much higher than the environmental 453 levels. Strikingly, all the lab trials are based on short- to mid-term (hours to 28 days) exposure to 454 unrealistically high concentrations. These papers revealed a range of effects exhibited ingestion by a 455 number of species, e.g. decrease of energy reserves, inhibition or reduction of feeding/filtering 456 activity, translocation to the circulatory system, inflammatory response and developmental defects. 457 A few papers observed trophic transfer of microplastics and suggest an impact on the food web. 458 Although more research is needed to determine whether plastics of any dimensions can be 459 transferred through the food chain, translocation effects do suggest that particle size really matters. 460 For evaluating the environmental risk of microplastics knowledge is required on the environmental 461 levels and types of plastic, the translocation size limit and the relevant biological endpoints. 462 Additionally, long-term exposures under controlled conditions with environmentally relevant 463 microplastics concentrations and types are needed to allow a realistic assessment of potential 464 microplastic-associated risks.

465 Indirect effects

466 Due to their specific characteristics, microplastics not only pose a direct threat to (marine) 467 organisms, but they are also believed to have indirect effects on organisms. We define indirect 468 effects as an effect caused when microplastics act as a vector for either chemicals (i.e. chemical 469 threat) or bacteria (i.e. bacterial threat).

470 The chemical threat of microplastic is complex and works at different levels. Plastic polymers, 471 owing to their large size, are considered to be biochemically inert. However, as polymerization 472 reactions are rarely complete, residual monomers can still be found in the polymer matrix. Residual 473 monomer content of a plastic can vary from 0.0001% to 4% (Araújo et al., 2002). These monomers 474 can leach out of the polymeric material and, as some of these are considered toxic (including 475 carcinogenic and mutagenic effects), they can pose a threat to the environment. This effect can be 476 estimated based on the monomer hazard ranking as described by Lithner (2011). Most hazardous 477 polymers belong to the families of polyurethanes, polyvinyl chloride and styrene, amongst others 478 (Lither, 2011). Additional toxic effects of microplastics can also be caused by the wide array of plastic 479 additives added during plastic manufacturing. Examples are the initiators, catalysts and solvents, all 480 of which are added to obtain specific features of the final polymer. But also antimicrobial agents, 481 such as Triclosan, plasticisers, flame retardants (PBDEs), pigments and fillers are used in the 482 compounding of plastic. All these non-polymeric components are of low molecular weight and

therefore able to migrate or diffuse from the plastic polymer, potentially causing (adverse) effects(Crompton, 2007).

485 This migration behaviour is similar for chemical contaminants (POPs) adsorbed on microplastics. 486 It is known that a plethora of persistent organic pollutants (POPs) can sorb from the environment 487 (i.e. seawater and sediment) on/in the plastic matrix of (micro)plastics. The presence of such POPs on 488 marine plastics (especially industrial resin pellets) has been demonstrated for a wide variety of 489 chemicals and for different geographic areas (e.g. Mato et al., 2001; Endo et al., 2005; Hirai et al., 490 2011; Bakir et al., 2014) (see Table 1 for additional studies on contaminant assessment on industrial 491 resin pellets). These contaminants have a greater affinity for the plastic matrix than the surrounding 492 seawater leading to an accumulation onto the plastic particle. This accumulation was found to be up 493 to one million times higher in some cases (Hirai et al., 2011). Polymer type plays an important role in 494 this contamination accumulation: under identical sorption conditions, polychlorinated biphenyls 495 (PCBs) and polycyclic aromatic hydrocarbons (PAHs) are consistently found in a higher concentration 496 on high-density polyethylene (HDPE), low-density polyethylene (LDPE) and polypropylene (PP), 497 compared to polyethylene terephthalate (PET) and polyvinyl chloride (PVC), while phenanthrene 498 sorbs more to PE than PP or PVC (Bakir et al., 2012; Rochman et al., 2013; Bakir et al., 2014). As a 499 result, possible effects of both the polymer and associated contaminants have to be considered 500 when assessing the potential risks of microplastics.

501 Although frequently suggested, the evidence to support this chemical threat is rather limited. So 502 far controlled lab exposures have been performed with the lugworm (Arenicola marina), the model 503 organism for deposit feeders. Exposure of A. marina to PCB-loaded microplastics (at a dose of 7.4% 504 microplastics by dry weight) showed an effect on feeding activity, resulting in weight loss (Besseling 505 et al., 2013). Browne et al. (2013) demonstrated a decreased phagocytic activity by over 60% in A. 506 marina exposed to sand with 5% microplastic (PVC, 230 µm) presorbed with nonylphenol. However, 507 no such effect was reported for phenanthrene. While nonylphenol and phenanthrene desorbed from 508 the PVC particles and transferred to the animals' tissue, the lugworms accumulated >250% more of 509 these contaminants when exposed to contaminated sand (Browne et al., 2013).

The bioaccumulation of persistent organic pollutants (POPs) has been theoretically investigated
by Gouin et al. (2011) and Koelmans et al. (2013) using a modelling approach. Both studies
suggested that microplastics are only of minor importance as vectors of POPs to organisms.
Koelmans et al. (2013) even predicted a decrease in contaminant body burden due to a cleaning
mechanism of strong sorbent plastics, counteracting biomagnification. In a similar modelling
exercise, Koelmans et al. (2014) investigated the leaching of plastic associated chemicals, i.e.

516 additives, to marine organisms. The rationale behind this modelling approach is the fact that for 517 additives plastic ingestion by marine organisms may be more relevant than for diffusely spread POPs 518 as the microplastics act as a source of the additives (Koelmans et al., 2014). The results showed that 519 ingestion of microplastics can be considered a substantial pathway for additive exposure. It is clear 520 that further research on this topic is essential to fully understand the impact of sorbed and plastic-521 associated contaminants on marine organisms, and by extension the entire marine and human food 522 web. So far, studies to assess the transfer of (environmentally relevant concentrations of) chemicals, 523 both pollutants and additives, have not been performed on resident organisms, clearly indicating 524 that this is an area that needs further research.

525 The bacterial threat of marine litter and by extension microplastics arises from the fact that they represent new habitats in the marine environment and, as such, can serve as a substrate for 526 527 (micro)biological interactions. Microplastics have a hydrophobic surface that stimulates rapid biofilm 528 formation (Zettler, 2013). So far, conventional microbial identification methodologies require a 529 bacterial cultivation step using a growth medium, has hampered the full characterization of the 530 microbial biofilm due to the 'great plate count anomaly' (Staley, 1985). This term has been used to 531 describe the fact that the majority (99–99.9%) of cells within an environmental sample are not 532 recoverable in pure culture using classical microbial plating. However, the recent breakthrough of 533 'Next Generation Sequencing' technology allows for the full characterization of complex microbial 534 samples without a cultivation step. This was nicely demonstrated in the pioneering work of Zettler et 535 al. (2013) and will contribute significantly to biofilm characterization.

536 Due to their persistence in nature, (micro)plastics exhibit a longer half life than other marine 537 substrates, creating an interesting habitat for microorganisms. For fouling, microbial biofilm 538 formation is the initial step (Dobretsov, 2010), while in the consecutive steps so-called epiplastic 539 organism like diatoms, ciliates and a wide variety of other organisms will attach on the formed 540 biofilm (Reisser et al., 2014a). The formation of these biofilms on microplastics is of concern as they 541 might contain human or animal pathogens that could potentially endanger animal and human health, 542 and impact economic activities. Additionally, the nutritional value of these biofilms might encourage 543 grazing and ingestion of the covered microplastics (Reisser et al., 2014b). Associated impacts hence 544 include food web effects.

In 2011, Harrison et al. published a call for research, calling upon the scientific community to
investigate the colonisation, taxonomic composition and functional potential of microplasticassociated biofilms, in order to understand ecological implications and to develop management
measures to safeguard marine life. As a response, research started focussing on characterizing the

549 microbial assemblages of floating microplastic particles (Carson et al., 2013b; Reisser et al., 2014a; 550 Zettler et al., 2013). Carson et al. (2013) investigated the biofilms of 100 particles (1 – 10 mm) 551 collected in the Northeast Pacific, and determined that plastic type appeared to influence bacteria 552 abundance. Zettler et al. (2013) discovered that microplastic-associated communities differ 553 significantly from those in the surrounding seawater. For example, several hydrocarbon degraders 554 were detected on the plastic but not in the seawater, indicating microorganisms may possibly play a 555 role in plastic degradation (Zettler et al., 2013). Colonisation and biofilm characterisation of 556 microplastics in marine sediments has been far less investigated. Harrison et al. (2014) used a coastal 557 sediment microcosm and demonstrated that bacteria in marine sediments rapidly colonise low 558 density polyethylene (LDPE) microplastic fragments (5 mm). As was the case for seawater (Zettler et 559 al., 2013), the bacterial communities detected on the plastic were significantly different from those 560 in the surrounding sediment. Interestingly, the dominant taxa (Acrobacter and Colwellia spp.) on 561 microplastics from sediments were not found to be present on floating microplastics, indicating that 562 distinct biofilms are likely to occur between different marine habitat types (Harrison et al., 2014).

563 **CONCLUSIONS AND OUTLOOK**

564 Important advances have been made with respect to our understanding of the occurrence and 565 impacts of microplastics in marine environment. However, as this research field is rapidly evolving, 566 especially in the last 10 years as is reflected in the exponential growth of peer-reviewed publications, 567 several issues can be identified regarding the nomenclature and classification of microplastics and 568 applied methodologies and techniques. The current lack in standardisation and harmonisation 569 greatly hampers the inter-study comparison and data transfer, not only for reported abundances but 570 also for (measured) effects and impacts. We therefore recommend the implementation of a 571 unequivocal size-based definition for microplastics, based on both upper and lower size limits, and a 572 uniform nomenclature. Also practical issues concerning the assessment of occurrence and effects should be addressed and standardised. Today, a plethora of sampling, extraction and identification 573 574 techniques are in use. An important point of interest is the harmonisation of extraction techniques. 575 While the majority of extraction techniques are based on the same principle, i.e. density separation, 576 a wide assortment of variations on this principle exist. Some are more efficient in extracting different 577 types of microplastics (i.e. differences in density) than others, but in some cases this comes at an 578 extra cost. It is clear that a standard extraction technique, especially for monitoring purposes, should 579 be adopted by the research and regulatory community. In general, depending on the research question addressed, sampling strategies will differ. Yet, by reporting the complete set of sampling 580 581 details (i.e. sampling depth, sediment weight or volume, but also sediment density, water content,

etc.) differences between sampling techniques can be bypassed, and inter-study comparison
facilitated. As such, this proposed harmonisation will assist future, uniform microplastic abundance
assessments, and allow science-based geographical comparison and time trend assessments.

585 A general conclusion regarding the assessment of potential (adverse) effects following microplastic 586 uptake in marine organisms concerns the experimental set-up of such experiments. In general, 587 experimental microplastic concentrations are several orders of magnitude higher than current 588 environmental concentrations, and all lab trial exposure periods are short- to mid term. While such 589 approaches are often performed using 'proof of principle' experiments, and deemed necessary to 590 assess the importance of this type of pollution, testing at high, environmentally unrealistic, 591 concentrations does not provide any information on the current adverse effects on or risks to marine 592 ecosystems. Future effect assessments of microplastics should therefore focus on mimicking more 593 'natural' exposure conditions. More specifically, there is a need for more long-term exposure 594 assessments of environmentally relevant concentrations of naturally occurring assemblages of 595 microplastics (i.e. different sizes, shapes and types).

596 The chemical threat of microplastics has been studied elaborately in the past years, raising some 597 concerns. While adverse biological effects have been measured in the lab, some studies suggest 598 (small) microplastics play only a minor part in the total body load of such environmental 599 contaminants in marine organisms. While there is a growing body of literature regarding pollutants 600 on microplastics, additives, or plastic-associated chemicals, are far less studied. Yet, due to the lower 601 concentrations of these additives in the environment, transfer of these chemicals from microplastics 602 to organisms might be more relevant than the sorbed chemicals. However, it is clear that further 603 research on this topic is essential to fully understand the impact of sorbed and plastic-associated 604 contaminants on marine organisms, and by extension the entire marine, and human, food web.

A far less researched potential threat of microplastics, is the presence and transfer of (potentially harmful) marine microorganisms associated with these plastics. To date, only limited literature is available on microplastic biofilm characterisation. We need to understand the colonisation dynamics and taxonomic composition (more specifically the presence and transport of pathogens and other harmful species) to properly assess the ecological implications, as these organisms could result in ecological and economical consequences to the marine food webs and human health.

611

613 <u>ACKNOWLEDGEMENT</u>

- Lisbeth Van Cauwenberghe is the recipient of a Ph.D. grant of the Agency for Innovation by
- 615 Science and Technology (IWT, Belgium).

616 **<u>References</u>**

- ABU-HILAL, A.H., AL-NAJJAR, T.H., 2009. Plastic pellets on the beaches of the Northern Gulf of Aqaba,
 Red Sea. *Aquatic Ecosystem Health and Management* 12, 461-470. doi:
 10.1080/14634980903361200.
- ANDRADY, A.L., 2011. Microplastics in the marine environment. *Marine Pollution Bulletin* 62, 15961605. doi: 10.1016/j.marpolbul.2011.05.030.
- ANDRADY, A.L., NEAL, M.A., 2009. Applications and societal benefits of plastics. *Philosophical Transactions of the Royal Society B-Biological Sciences* 364, 1977-1984. doi:
- 624 10.1098/rstb.2008.0304.
- ANTUNES, J.C., FRIAS, J.G.L., MICAELO, A.C., SOBRAL, P., 2013. Resin pellets from beaches of the
 Portuguese coast and adsorbed persistent organic pollutants. *Estuarine Coastal and Shelf Science* 130, 62-69. doi: 10.1016/j.ecss.2013.03.016.
- ARAÚJO, P.H.H., SAYER, C., POCO, J.G.R., GIUDICI, R., 2002. Techniques for reducing residual monomer
 content in polymers: a review. *Polymer Engineering and Science*, 42, 1442–1468. doi:
 10.1002/pen.11043.
- ARTHUR, C., BAKER, J., BAMFORD, H., 2009. Proceedings of the International research Workshop on the
 Occurence, Effects and Fate of Microplastic Marine Debris. NOAA Technical Memorandum
 NOS-OR&R-30, pp. 49,
- ASHTON, K., HOLMES, L.A., TURNER, A., 2010. Association of metals with plastic production pellets in the
 marine environment. *Marine Pollution Bulletin* 60, 2050-2055. doi:
- 636 10.1016/j.marpolbol.2010.07.014.
- BAKIR, A., ROWLAND, S.T., THOMPSON, R.C., 2012. Competitive sorption of persistent organic pollutants
 onto microplastics in the marine environment. *Marine Pollution Bulletin* 64, 2782-2789. doi:
 10.1016/j.marpolbul.2012.09.010.
- BAKIR, A., ROWLAND, S.J., THOMPSON, R.C., 2014. Enhanced desorption of persistent organic pollutants
 from microplastics under simulated physiological conditions. *Environmental Pollution* 185,
- 642 16-23. doi: http://dx.doi.org/10.1016/j.envpol.2013.10.007.
- BALLENT, A., PURSER, A., DE JESUS MENDES, P.P., S., THOMSEN, L., 2012. Physical transport properties of
 marine microplastic pollution. *Biogeosciences Discussions* 9, 18755-18798. doi: 10.5194/bgd9-18755-2012.
- BARNES, D.K.A., GALGANI, F., THOMPSON, R.C., BARLAZ, M., 2009. Accumulation and fragmentation of
 plastic debris in global environments. *Philosophical Transactions of the Royal Society B-*
- 648 *Biological Sciences* **364**, 1985-1998. doi: 10.1098/rstb.2008.0205.

649	Baztan, J., Carrasco, A., Chouinard, O., Cleaud, M., Gabaldon, J.E., Huck, T., Jaffrès, L., Jorgensen, B.,
650	MIGUELEZ, A., PAILLARD, C., VANDERLINDEN, JP., 2014. Protected areas in the Atlantic facing the
651	hazards of micro-plastic pollution: First diagnosis of three islands in the Canary Current.
652	Marine Pollution Bulletin 80, 302-311. doi: 10.1016/j.marpolbul.2013.12.052.
653	Besseling, E., Wegner, A., Foekema, E.M., Van Den Heuvel-Greve, M., Koelmans, A.A., 2013. Effects of
654	microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.).
655	Environmental Science & Technology 47 , 593-600. doi: 10.1021/es302763x.
656	BROWNE, M.A., DISSANAYAKE, A., GALLOWAY, T.S., LOWE, D.M., THOMPSON, R.C., 2008. Ingested
657	microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.).
658	Environmental Science & Technology 42, 5026-5031. doi: 10.1021/es800249a.
659	BROWNE, M.A., CRUMP, P., NIVEN, S.J., TEUTEN, E., TONKIN, A., GALLOWAY, T.S., THOMPSON, R.C., 2011.
660	Accumulation of microplastic on shorelines worldwide: Sources and sinks. Environmental
661	Science & Technology 45, 9175-9179. doi: 10.2021/es201811s.
662	BROWNE, M.A., GALLOWAY, T.S., THOMPSON, R.C., 2010. Spatial Patterns of Plastic Debris along Estuarine
663	Shorelines. Environmental Science & Technology 44, 3404-3409. doi: 10.1021/es903784e.
664	BROWNE, M.A., NIVEN, S.J., GALLOWAY, T.S., ROWLAND, S.J., THOMPSON, R.C., 2013. Microplastic moves
665	pollutants and additives to worms, reducing functions linked to health and biodiversity.
666	Current Biology 23, 2388-2392. doi: 10.1016/j.cub.2013.10.012.
667	CARPENTER, E.J., ANDERSON, S.J., HARVEY, G.R., MIKLAS, H.P., PECK, B.B., 1972. Polystyrene Spherules in
668	Coastal Waters. Science 178, 749-750. doi: 10.1126/science.178.4062.749.
669	CARPENTER, E.J., SMITH, K.L., 1972. Plastics on the Sargasso Sea Surface. Science 175, 1240-1241. doi:
670	10.1126/science.175.4027.1240.
671	CARSON, H.S., COLBERT, S.L., KAYLOR, M.J., MCDERMID, K.J., 2011. Small plastic debris changes water
672	movement and heat transfer through beach sediments. Marine Pollution Bulletin 62, 1708-
673	1713. doi: 10.1016/j.marpolbul.2011.05.032.
674	Carson, H.S., Lamson, M.R., Nakashima, D., Toloumu, D., Hafner, J., Maximenko, N.A., McDermid, K.J.,
675	2013a. Tracking the sources and sinks of local marine derbis in Hawai'i. Marine
676	Environmental Research 84, 76-83. doi: 10.1016/j.marenvres.2012.12.002.
677	CARSON, H.S., NERHEIM, M.S., CARROLL, K.A., ERIKSEN, M., 2013. The plastic-associated microorganisms of
678	the North Pacific Gyre. <i>Marine Pollution Bulletin</i> 5, 126-132. doi:
679	10.1016/j;marpolbul.2013.07.054.
680	CASTAÑEDA, R.A., AVLIJAS, S., SIMARD, M.A., RICCIARDI, A., 2014. Microplastic pollution in St. Lawrence
681	River sediments. Canadian Journal of Fisheries and Aquatic Sciences 70, 1767-1771. doi:
682	10.1139/cjfas-2014-0281.

683	CLAESSENS, M., DE MEESTER, S., VAN LANDUYT, L., DE CLERCK, K., JANSSEN, C.R., 2011. Occurence and
684	distribution of microplastics in marine sediments along the Belgian coast. Marine Pollution
685	Bulletin 62, 2199-2204. doi: 10.1016/j.marpolbul.2011.06.030.
686	CLAESSENS, M., VAN CAUWENBERGHE, L., VANDEGEHUCHTE, M.B., JANSSEN, C.R., 2013. New techniques for
687	the detection of microplastics in sediments and field collected organisms. Marine Pollution
688	Bulletin 70 , 227-233. doi: 10.1016/j.marpolbul.2013.03.009.
689	COLE, M., LINDEQUE, P., HALSBAND, C., GALLOWAY, T.S., 2011. Microplastics as contaminants in the marine
690	environment: A review. <i>Marine Pollution Bulletin</i> 62 , 2588-2597. doi:
691	10.1016/j.marpolbul.2011.09.025.
692	Costa, M.F., Ivar do Sul, J.A., Silva-Cavalcanti, J.S., Araúja, M.C.B., Spengler, A., Tourinho, P.S., 2010.
693	On the importance of size of plastic fragments and pellets on the strandline: a snapshot of a
694	Brazilian beach. Environmental Monitoring and Assessment 168, 299-304. doi:
695	10.1007/s10661-009-1113-4.
696	Costa, M.F., SILVA-CAVALCANTI, J.S., BARBOSA, C.C., PORTUGAL, J.L., BARLETTA, M., 2011. Plastics buried in
697	the inter-tidal plain of a tropical estuarine ecosystem. Journal of Coastal Research SI 64, 339-
698	343.
699	Cózar, A., Echevarria, F., Gonzalez-Gordillo, J.I., Irigoien, X., Úbeda, B., Hernández-Léon, S., Palma, A.T.,
700	NAvarro, S., García-de-Lomas, J., Ruiz, A., Fernández-de-Puelles, M.L., Duarte, C.M., 2014.
701	Plastic debris in the open ocean. PNAS 111, 10239-10244. doi: 10.1073/pnas.1314705111.
702	CROMPTON, T.R., 2007. Additive migration from plastic into food: A guide for the Analytical Chemist.
703	Smithers Rapra Technology Limited, Shawsbury, Shrewbury, Shropshire, 312 pp.
704	DEKIFF, J.H., REMY, D., KLASMEIER, J., FRIES, E., 2014. Occurence and spatial distribution of microplastics
705	in sediments from Norderney. Environmental Pollution 186. doi:
706	10.1016/j.envpol.2013.11.019.
707	Della Torre, C., Bergami, E., Salvati, A., Faleri, C., Cirino, P., Dawson, K.A., Corsi, I. 2014. Accumulation
708	and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin
709	embryos Paracentrotus lividus. Environmental Science & Technology 48, 12302-11. doi:
710	10.1021/es502569w.
711	De Witte, B., Devriese, L., Bekaert, K., Hoffman, S., Vandermeersch, G., Cooreman, K., Robbens, J., 2014.
712	Quality assessment of the blue mussel (Mytilus edulis): Comparison between commercial and
713	wild types. Marine Pollution Bulletin 85, 146-155. doi: 10.1016/j.marpolbul.2014.06.006.
714	Devriese, L., van der Meulen, M.D., Maes, T., Bekaert, K., Paul-Pont, I., Lambert, C., Huvet, A., Soudant,
715	P., ROBBENS, J., VETHAAK, A.D., in press. Evaluation of the ingested microplastics content in
716	European brown shrimp (Crangon crangon, Linnaeus 1758). Marine Pollution Bulletin.

717	DOBRETSOV, S., 2010. Marine biofilms. In: Dürr, S., Thomason, J.C. (Eds.), Biofouling. Wiley-Blackwell,
718	Chichester, pp. 123–136.
719	Endo, S., Takizawa, R., Okuda, K., Takada, H., Chiba, K., Kanehiro, H., Ogi, H., Yamashita, R., Date, T.,
720	2005. Concentration of polychlorinated biphenyls (PCBs) in beached resin pellets: Variability
721	among individual particles and regional differences. Marine Pollution Bulletin 50, 1103-1114.
722	doi: 10.1016/j.marpolbul.2005.04.030.
723	EPA, 1992. Plastic Pellets in the Aquatic Environment: Sources and Recommendations. Final Report.
724	US EPA Oceans and Coastal Protection Division, pp. 117.
725	Eriksen, M., Mason, S., Wilson, S., Box, C., Zellers, A., Edwards, W., Farley, H., Amato, S., 2013.
726	Microplastic pollution in the surface waters of the Laurentian Great Lakes. Marine Pollution
727	Bulletin 77 , 177-182. doi: 10.1016/j.marpolbul.2013.10.007.
728	Eriksen, M., Lebreton, L.C.M., Carson, H.S., Thiel, M., Moore, C.J., Borerro, J.C., Galgani, F., Ryan, P.G.,
729	REISSER, J. 2014. Plastic Pollution in the World's Oceans: More than 5 Trillion Plastic Pieces
730	Weighing over 250,000 Tons Afloat at Sea. PLoS ONE 9 : e111913. doi:
731	10.1371/journal.pone.0111913.
732	FARRELL, P., NELSON, K., 2013. Trophic level transfer of microplastics: Mytilus edulis (L.) to Carcinus
733	maenas (L.). Environmental Pollution 177, 1-3. doi: 10.1016/j.envpol.2013.01.046.
734	FENDALL, L.S., SEWELL, M.A., 2009. Contributing to marine pollution by washing your face: Microplastics
735	in facial cleansers. Marine Pollution Bulletin 58, 1225-1228. doi:
736	10.1016/j.marpolbul.2009.04.025.
737	FISHER, V., ELSNER, N.O., BRENKE, N., SCHWABE, E., BRANDT, A., 2015. Plastic pollution of the Kuril-
738	Kamchatka Trench area (NW Pacific). Deep Sea Research II 111, 399-405. doi:
739	10.1016/j.dsr2.2014.08.012.
740	FISNER, M., TANIGUCHI, S., MAJER, A.P., BÍCEGO, M.C., TURRA, A., 2013a. Concentration and composition of
741	polycyclic aromatic hydrocarbons (PAHs) in plastic pellets: Implications for small-scale
742	diagnostic and environmental monitoring. Marine Pollution Bulletin 76, 349-354. doi:
743	10.1016/j.marpolbul.2013.09.045.
744	FISNER, M., TANIGUCHI, S., MOREIRA, F., BÍCEGO, M.C., TURRA, A., 2013b. Polycyclic aromatic hydrocarbons
745	(PAHs) in plastic pellets: Variabillity in the concentration and composition at different
746	sediment depths in a sandy beach. Marine Pollution Bulletin 70, 219-226. doi:
747	10.1016/j.marpolbul.2013.03.009.
748	FOTOPOULOU, K.N., KARAPANAGIOTI, H.K., 2012. Surface properties of beached plastic pellets. Marine
749	Environmental Research 81, 70-77. doi: 10.1016/j.marenvres.2012.08.010.

750	FRIAS, J., SOBRAL, P., FERREIRA, A.M., 2010. Organic pollutants in microplastics from two beaches of the
751	Portuguese coast. Marine Pollution Bulletin 60, 1988-1992. doi:
752	10.1016/j.marpolbul.2010.07.030.
753	FRIES, E., DEKIFF, J.H., WILLMEYER, J., NUELLE, MT., EBERT, M., REMY, D., 2013. Identification of polymer
754	types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning
755	electron microscopy. Environmental Science: Processes & Impacts 15, 1949-1956. doi:
756	10.1039/C3EM00214D.
757	GALGANI, F., HANKE, G., WERNER, S., DE VREES, L., 2013. Marine litter within the European Marine
758	Strategy framework Directive. ICES Journal of Marine Science 70, 1055-1064. doi:
759	10.1093/icesjms/fst122.
760	GOLDSTEIN, M.C., GOODWIN, D.S., 2013. Gooseneck barnacles (Lepas spp.) ingest microplastic debris in
761	the North Pacific Subtropical Gyre. PeerJ 10.7717/peerJ.184.
762	GOUIN, T., ROCHE, N., LOHMANN, R., HODGES, G., 2011. A Thermodynamic Approach for Assessing the
763	Environmental Exposure of Chemicals Absorbed to Microplastic. Environmental Science &
764	<i>Technology</i> 45 , 1466-1472. doi: 10.1021/es1032025.
765	GRAHAM, E.R., THOMPSON, J.T., 2009. Deposit- and suspension-feeding sea cucumbers (Echinodermata)
766	ingest plastic fragments. Journal of Experimental Marine Biology and Ecology 368, 22–29. doi:
767	10.1016/j.jembe.2008.09.007.
768	GREGORY, M.R., 1977. Plastic pellets on New Zealand beaches. Marine Pollution Bulletin 8, 82-84. doi:
769	10.1016/0025-326X(77)90193-X.
770	GREGORY, M.R., 1978. Accumulation and distribution of virgin plastic granules on New Zealand
771	beaches. New Zealand Journal of Marine and Freshwater Research 12, 399-414. doi:
772	10.1080/00288330.1978.9515768.
773	GREGORY, M.R., 1983. Virgin plastic granules on some beaches of Eastern Canada and Bermuda.
774	Marine Environmental Research 10, 73-92. doi: 10.1016/0141-1136(83)90011-9.
775	GREGORY, M.R., ANDRADY, A.L., 2003. Plastics in the marine environment, in: Andrady, A.L. (Ed.),
776	Plastics and the Environment. John Wiley & Sons, Hoboken, New Jersey, pp. 379-402.
777	HARRISON, J.P., OJEDA, J.J., ROMERO-GONZÁLEZ, M.E., 2012. The applicability of reflectance micro-Fourier-
778	transform infrared spectroscopy for the detection of synthetic microplastics in marine
779	sediments. Science of the Total Environment 416, 455-463. doi:
780	10.1016/j.scitotenv.2011.11.078.
781	HARRISON, J.P., SCHRATZBERGER, M., SAPP, M., OSBORN, A.M., 2014. Rapid bacterial colonization of low-
782	density polyethylene microplastics in coastal sediment microcosms. BMC Microbiology 14,
783	232.

784	HEO, N.W., HONG, S.H., HAN, G.M., HONG, S., LEE, J., SONG, Y.K., JANG, M., SHIM, W.J., 2013. Distribution of
785	small plastic debris in cross-section and high strandline on Heungnam Beach, South Korea.
786	Ocean Science Journal 48, 225-233. doi: 10.1007/s12601-013-0019-9.
787	HESKETT, M., TAKADA, H., YAMASHITA, R., YUYAMA, M., ITO, M., GEOK, Y.B., OGATA, Y., KWAN, C., HECKHAUSEN,
788	A., Taylor, H., Powell, T., Morishige, C., Young, D., Patterson, H., Robertson, B., Bailey, E.,
789	MERMOZ, J., 2011. Measurement of persistent organic pollutants (POPs) in plastic resin pellets
790	from remote islands: Towards establishment of background concentrations for International
791	Pellet Watch. Marine Pollution Bulletin 64, 445-448. doi: 10.1016/j.marpolbul.2011.11.004.
792	HIDALGO-RUZ, V., GUTOW, L., THOMPSON, R.C., THIEL, M., 2012. Microplastics in the marine environment:
793	a review of the methods used for identification and quantification. Environmental Science &
794	Technology 46 , 3060-3075. doi: 10.1012/es2031505.
795	HIDALGO-RUZ, V., THIEL, M., 2013. Distribution and abundance of small plastic debris on beaches in the
796	SE Pacific (Chile): A study supported by a citizen science project. Marine Environmental
797	Research 87-88, 12-18. doi: 10.1016/j.marenvres.2013.02.015.
798	Hirai, H., Takada, H., Ogata, Y., Yamashita, R., Mizukawa, K., Saha, M., Kwan, C., Moore, C., Gray, H.,
799	LAURSEN, D., ZETTLER, E.R., FARRINGTON, J.W., REDDY, C.M., PEACOCK, E.E., WARD, M.W., 2011.
800	Organic micropollutants in marine plastics debris from the open ocean and remote and urban
801	beaches. Marine Pollution Bulletin 62, 1683-1692. doi: 10.1016/j.marpolbul.2011.06.004.
802	HOLMES, L.A., TURNER, A., THOMPSON, R.C., 2012. Adsorption of trace metals to plastic resin pellets in
803	the marine environment. Environmental Pollution 160, 42-48. doi:
804	10.1016/j.envpol.2011.08.052.
805	Імноғ, Н.К., Ivleva, N.P., Schmid, J., Niessner, R., Laforsch, C., 2013. Contamination of beach sediments
806	of a subalpine lake with microplastic particles. Current Biology 23, R867 - R868. doi:
807	10.1016/j.cub.2013.09.001.
808	Імноғ, Н.К., Schmid, J., Niessner, R., Ivleva, N.P., Laforsch, C., 2012. A novel, highly efficient method
809	for the separation and quantification of plastic particles in sediments of aquatic
810	environments. Limnology and Oceanography: Methods 10, 524-537. doi:
811	10.4319/lom.2012.10.524.
812	Ismail, A., Adilah, N.M.B., Nurulhudha, M.J., 2009. Plastic pellets along Kuala Selangor-Sepang
813	coastline. Malaysian Applied Biology 38, 85-88.
814	IVAR DO SUL, J.A., SPENGLER, Â., COSTA, M.F., 2009. Here, there and everywhere. Small plastic fragments
815	and pellets on beaches of Fernando de Noronha (Equatorial Western Atlantic). Marine
816	Pollution Bulletin 58, 1236-1238. doi: 10.1016/j.marpolbul.2009.05.004.

817	JAMBECK, J.R., GEYER, R., WILCOX, C., SIEGLER, T.R., PERRYMAN, M., ANDRADY, A., NARAYAN, R., LAW, K.L.,
818	2015. Plastic waste inputs from land into the ocean. Science 347 , 768-771. doi:
819	10.1126/science.1260352.
820	JAYASIRI, H.B., PURUSHOTHAMAN, C.S., VENNILA, A., 2013. Quantitative analysis of plastic debris on
821	recreational beaches in Mumbai, India. Marine Pollution Bulletin 77, 107-112. doi:
822	10.1016/j.marpolbul.2013.10.024.
823	Kaberi, H., Tsangaris, C., Zeri, C., Mousdisd, G., Papadopoulos, A., Streftaris, N., 2013. Microplastics
824	along the shoreline of a Greek island (Kea isl., Aegean Sea): types and densities in relation to
825	beach orientation, characteristics and proximity to sources, 4th International Conference on
826	Environmental Management, Engineering, Planning and Economics (CEMEPE) and SECOTOX
827	Conference, Mykonos Island, Greece, pp. 197-202.
828	KACH, D.J., WARD, J.E., 2008. The role of marine aggregates in the ingestion of picoplankton-size
829	particles by suspension-feeding molluscs. Marine Biology 153, 797-805. doi: 10.1007/s00227-
830	007-0852-4.
831	KARAPANAGIOTI, H.K., ENDO, S., OGATA, Y., TAKADA, H., 2011. Diffuse pollution by persistent organic
832	pollutants as measured in plastic pellets sampled from various beaches in Greece. Marine
833	Pollution Bulletin 62, 312-317. doi: 10.1016/j.marpolbul.2010.10.009.
834	KARAPANAGIOTI, H.K., KLONTZA, I., 2008. Testing phenanthrene distribution properties of virgin plastic
835	pellets and plastic eroded pellets found on Lesvos island beaches (Greece). Marine
836	Environmental Research 65, 283-290. doi: 10.1016/j.marenvres.2007.11.005.
837	KHORDAGUI, H.K., ABU- HILAL, A.H., 1994. Industrial plastic on the southern beaches of the Arabian Gulf
838	and the western beaches of the Gulf of Oman. Environmental Pollution 84, 325-327. doi:
839	10.1016/0269-7491(94)90143-0.
840	Кім, ІS., Снає, DH., Кім, SK., Сноі, S., Woo, SB., 2015. Factors influencing the spatial variation of
841	microplastics on high-tidal coastal beaches in Korea. Archives of Environmental
842	Contamination and Toxicology. Advanced online publication. doi: 10.1007/s00244-015-0155-
843	6.
844	KLOSTERMANN, F., 2012. Occurrence and distribution of mesoplastics in sediments at the
845	Mediterranean Sea coast. Thesis for the degree of Bachelor, University of Osnabrueck, pp.
846	51.
847	KOELMANS, A.A., BESSELING, E., WEGNER, A., FOEKEMA, E.M., 2013. Plastic as a carrier of POPs to aquatic
848	organisms: A model analysis. Environmental Science & Technology 47, 7812-7820. doi:
849	10.1021/es401169n.
850	KOELMANS, A.A., BESSELING, A., FOEKEMA, E.M., 2014. Leaching of plastic additives to marine organisms.
851	Environmental Pollution 187, 49-54. doi: http://dx.doi.org/10.1016/j.envpol.2013.12.013.

852	Kuriyama, Y., Konishi, K., Kanehiro, H., Otake, C., Kaminuma, T., Mato, Y., Takada, H., Kojima, A., 2002.
853	Plastic pellets in the marine environment of Tokyo Bay and Sagami Bay. Nippon Suisan
854	Gakkaishi 68 , 167-171.
855	LAGLBAUER, B.J.L., FRANCO-SANTOS, R.M., ANDREU-CAZENAVE, M., BRUNELLI, L., PAPADATOU, M., PALATINUS, A.,
856	GREGO, M., DEPREZ, T., 2014. Macrodebris and microplastics from beaches in Slovenia. Marine
857	Pollution Bulletin 89 , 356-366. doi: 10.1016/j.marpolbul.2014.09.036.
858	Law, K.L., Moret-Ferguson, S., Maximenko, N.A., Proskurowski, G., Peacock, E.E., Hafner, J., Reddy,
859	C.M., 2010. Plastic Accumulation in the North Atlantic Subtropical Gyre. Science 329, 1185-
860	1188. doi: 10.1126/science.1192321.
861	Lee, J., Hong, S., Song, Y.K., Hong, S.H., Jang, Y.J., Jang, M., Heo, N.W., Han, G.M., Lee, M.J., Kang, D.,
862	Sнім, W.J., 2013. Relationships among the abundances of plastic debris in different size
863	classes on beaches in South Korea. Marine Pollution Bulletin 77, 349-354. doi:
864	10.1016/j.marpolbul.2013.08.013.
865	LIEBEZEIT, G., DUBAISH, F., 2012. Microplastics in Beaches of the East Frisian Islands Spiekeroog and
866	Kachelotplate. Bulletin of Environmental Contamination and Toxicology 89, 213-217. doi:
867	10.1007/s00128-012-0642-7.
868	LITHNER, D., LARSSON, A., DAVE, G., 2011. Environmental and health hazard ranking and assessment of
869	plastic polymers based on chemical composition. Science of The Total Environment 409,
870	3309-3324. doi: 10.1016/j.scitotenv.2011.04.038.
871	LOBELLE, D., CUNLIFFE, M., 2011. Early microbial biofilm formation on marine plastic debris. Marine
872	Pollution Bulletin 62, 197-200. doi: 10.1016/j.marpolbul.2010.10.013.
873	Long, M., Moriceau, B., Gallinari, M., Lambert, C., Huvet, A., Raffray, J., Soudant, P., 2015. Interaction
874	between microplastics and phytoplankton aggregates: Impacts on their respective fates.
875	Marine Chemistry. Advance online publication. doi: 10.1016/j.marchem.2015.04.003.
876	LUSHER, A.L., MCHUGH, M., THOMPSON, R.C. 2013. Occurrence of microplastics in the gastrointestinal
877	tract of pelagic and demersal fish from the English Channel. Marine Pollution Bulletin 67, 94-
878	99. doi: 10.1016/j.marpolbul.2012.028.
879	MARTINS, J., SOBRAL, P., 2011. Plastic marine debris on the Portuguese coastline: A matter of size?
880	Marine Pollution Bulletin 62, 1649-1653. doi: 10.1016/j.marpolbul.2011.09.028.
881	MATHALON, A., HILL, P., 2014. Microplastic fibers in the intertidal ecosystem surrounding Halifax
882	Harbor, Nova Scotia. Marine Pollution Bulletin 81, 69-79. doi:
883	10.1016/j.marpolbul.2014.02.018.
884	Masó, M., Garcés, E., Pagès, F., CAMP, J., 2003. Drifting plastic debris as a potential vector for
885	dispersing Harmful Algal Bloom (HAB) species. Scientia Marina 67, 107-111. doi:
886	10.3989/scimar.2003.67n1107.
	32

887	MATO, Y., ISOBE, T., TAKADA, H., KANEHIRO, H., OHTAKE, C., KAMINUMA, T., 2001. Plastic resin pellets as a
888	transport medium for toxic chemicals in the marine environment. Environmental Science &
889	Technology 35 , 318-324. doi: 10.1021/es0010498.
890	McDermid, K.J., McMullen, T.L., 2004. Quantitative analysis of small-plastic debris on beaches in the
891	Hawaiian archipelago. Marine Pollution Bulletin 48, 790-794. doi:
892	10.1016/j.marpolbul.2003.10.017.
893	MIZUKAWA, K., TAKADA, H., ITO, M., GEOK, Y.B., HOSODA, J., YAMASHITA, R., SAHA, M., SUZUKI, S., MIGUEZ, C.,
894	FRIAS, J., ANTUNES, J.C., SOBRAL, P., SANTOS, I.R., MICAELO, C., FERREIRA, A.M., 2013. Monitoring of
895	a wide range of organic micropollutants on the Portuguese coast using plastic resin pellets.
896	Marine Pollution Bulletin 70, 296-302. doi: 10.1016/j.marpolbul.2013.02.008.
897	MOORE, C.J., MOORE, S.L., LEECASTER, M.K., WEISBERG, S.B., 2001. A Comparison of Plastic and Plankton
898	in the North Pacific Central Gyre. Marine Pollution Bulletin 42, 1297-1300. doi:
899	10.1016/s0025-326x(01)00114-x.
900	MOORE, C.J., 2008. Synthetic polymers in the marine environment: A rapidly increasing, long-term
901	threat. Environmental Research 108, 131-139. doi: 10.1016/j.envres.2008.07.025.
902	MORÉT-FERGUSON, S., LAW, K.L., PROSKUROWSKI, G., MURPHY, E.K., PEACOCK, E.E., REDDY, C.M., 2010. The
903	size, mass, and composition of plastic debris in the western North Atlantic Ocean. Marine
904	Pollution Bulletin 60, 1873-1878. doi: 10.1016/j.marpolbul.2010.07.020.
905	MSFD GES TECHNICAL SUBGROUP ON MARINE LITTER, 2013. Monitoring Guidance for Marine Litter in
906	European Seas, Draft Report. European Commission, Brussels.
907	MURRAY, F., COWIE, P.R., 2011. Plastic contamination in the decapod crustacean Nephrops norvegicus
908	(Linnaeus, 1758). Marine Pollution Bulletin 62, 1207-1217. doi:
909	10.1016/j.marpolbul.2011.03.032.
910	NG, K.L., OBBARD, J.P., 2006. Prevalence of microplastics in Singapore's coastal marine environment.
911	Marine Pollution Bulletin 52, 761-767. doi: 10.1016/j.marpolbul.2005.11.017.
912	NOR, N.H.M., OBBARD, J.P., 2014. Microplastics in Singapore's coastal mangrove system. Marine
913	Pollution Bulletin 79, 278-283. doi: 10.1016/j.marpolbul.2013.11.025.
914	NORÉN, F., 2007. Small plastic particles in coastal swedish waters. KIMO Sweden Report, pp. 11,
915	NUELLE, MT., DEKIFF, J.H., REMY, D., FRIES, E., 2014. A new analytical approach for monitoring
916	microplastics in marine sediments. Environmental Pollution 184, 161-169. doi:
917	10.1016/j.envpol.2013.07.027.
918	OSPAR (2010). JAMP Guidelines for Monitoring Contaminants in Biota. OSPAR Commission. pp 120.
919	PLASTICSEUROPE, 2013. Plastics - the Facts 2013. An analysis of European latest plastics production,
920	demand and waste data. Plastics Europe: Association of Plastic Manufacturers, Brussels, pp.
921	40.

922	Reddy, M.S., Basha, S., Adimurthy, S., Ramachandraiah, G., 2006. Description of the small plastics
923	fragments in marine sediments along the Alang-Sosiya ship-breaking yard, India. Estuarine
924	Coastal and Shelf Science 68, 656-660. doi: 10.1016/j.ecss.2006.03.018.
925	Reisser, J., Shaw, J., Wilcox, C., Hardesty, B.D., Proietti, M., Thums, M., Pattiaratchi, C., 2013. Marine
926	plastic pollution in waters around Australia: Characteristics, concentrations, and pathways.
927	PLoS ONE 8, e80466. doi: 10.1371/journal.pone.0080466.
928	Reisser, J., Shaw, J., Hallegraeff, G., Proietti, M., Barnes, D.K.A., Thums, M., Wilcox, C., Hardesty, B.D.,
929	PATTIARATCHI, C., 2014a. Millimeter-sized marine plastics: A new pelagic habitat for
930	microorganisms and invertebrates. <i>PLoS ONE</i> 9 , e100289. doi:
931	10.1371/journal.pone.0100289.
932	REISSER, J., PROIETTI, M., SHAW, J., PATTIARATCHI, C., 2014b. Ingestion of plastics at sea: does debris size
933	really matter? Frontiers in Marine Science 1, 70. doi: 10.3389/fmars.2014.00070.
934	RIOS, L.M., MOORE, C., JONES, P.R., 2007. Persistent organic pollutants carried by Synthetic polymers in
935	the ocean environment. Marine Pollution Bulletin 54, 1230-1237. doi:
936	10.1016/j.marpolbul.2007.03.022. doi: 10.1016/j.trac.2014.10.011.
937	ROCHA-SANTOS, T., DUARTE, A.C., 2015. A critical overview of teh analytical approaches to the
938	occurrence, the fate and the behavior of microplastics in the environment. Trends in
939	Analytical Chemistry 65 , 47-53.
940	ROCHMAN, C.M., HOH, E., KUROBE, T., TEH, S.J., 2013. Ingested plastic transfers hazardous chemicals to
941	fish and induces hepatic stress. Scientific Reports 3 , 3263. doi: 10.1038/srep03263.
942	RUMMEL, C. 2014. Occurrence and potential effects of plastic ingestion by pelagic and demersal fish
943	from the North Sea and Baltic Sea Thesis for the degree of "Diplom Biologe", Johannes
944	Gutenberg-Universität Mainz, pp. 89.
945	RYAN, P.G., BOUWMAN, H., MOLONEY, C.L., YUYAMA, M., TAKADA, H., 2012. Long-term decreases in
946	
047	persistent organic pollutants in South African coastal waters detected from beached
947	persistent organic pollutants in South African coastal waters detected from beached polyethylene pellets. <i>Marine Pollution Bulletin</i> 64, 2756-2760. doi:
947 948	persistent organic pollutants in South African coastal waters detected from beached polyethylene pellets. <i>Marine Pollution Bulletin</i> 64, 2756-2760. doi: 10.1016/j.marpolbul.2012.09.013.
947 948 949	persistent organic pollutants in South African coastal waters detected from beached polyethylene pellets. <i>Marine Pollution Bulletin</i> 64 , 2756-2760. doi: 10.1016/j.marpolbul.2012.09.013. SANCHEZ W, BENDER C, PORCHER J-M. 2014. Wild gudgeons (<i>Gobio gobio</i>) from French rivers are
947 948 949 950	 persistent organic pollutants in South African coastal waters detected from beached polyethylene pellets. <i>Marine Pollution Bulletin</i> 64, 2756-2760. doi: 10.1016/j.marpolbul.2012.09.013. SANCHEZ W, BENDER C, PORCHER J-M. 2014. Wild gudgeons (<i>Gobio gobio</i>) from French rivers are contaminated by microplastics: Preliminary study and first evidence. <i>Environmental Research</i>
947 948 949 950 951	 persistent organic pollutants in South African coastal waters detected from beached polyethylene pellets. <i>Marine Pollution Bulletin</i> 64, 2756-2760. doi: 10.1016/j.marpolbul.2012.09.013. SANCHEZ W, BENDER C, PORCHER J-M. 2014. Wild gudgeons (<i>Gobio gobio</i>) from French rivers are contaminated by microplastics: Preliminary study and first evidence. <i>Environmental Research</i> 128: 98-100. doi: 10.1016/j.envres.2013.11.004.
947 948 949 950 951 952	 persistent organic pollutants in South African coastal waters detected from beached polyethylene pellets. Marine Pollution Bulletin 64, 2756-2760. doi: 10.1016/j.marpolbul.2012.09.013. SANCHEZ W, BENDER C, PORCHER J-M. 2014. Wild gudgeons (Gobio gobio) from French rivers are contaminated by microplastics: Preliminary study and first evidence. Environmental Research 128: 98-100. doi: 10.1016/j.envres.2013.11.004. SETÄLÄ, O., FLEMING-LEHTINEN, V., LEHTINIEMI, M., 2014. Ingestion and transfer of microplastics in the
947 948 949 950 951 952 953	 persistent organic pollutants in South African coastal waters detected from beached polyethylene pellets. <i>Marine Pollution Bulletin</i> 64, 2756-2760. doi: 10.1016/j.marpolbul.2012.09.013. SANCHEZ W, BENDER C, PORCHER J-M. 2014. Wild gudgeons (<i>Gobio gobio</i>) from French rivers are contaminated by microplastics: Preliminary study and first evidence. <i>Environmental Research</i> 128: 98-100. doi: 10.1016/j.envres.2013.11.004. SETÄLÄ, O., FLEMING-LEHTINEN, V., LEHTINIEMI, M., 2014. Ingestion and transfer of microplastics in the planktonic food web. <i>Environmental Pollution</i> 185, 77-83. doi: 10.1016/j.envpol.3012.10.013.
947 948 949 950 951 952 953 954	 persistent organic pollutants in South African coastal waters detected from beached polyethylene pellets. <i>Marine Pollution Bulletin</i> 64, 2756-2760. doi: 10.1016/j.marpolbul.2012.09.013. SANCHEZ W, BENDER C, PORCHER J-M. 2014. Wild gudgeons (<i>Gobio gobio</i>) from French rivers are contaminated by microplastics: Preliminary study and first evidence. <i>Environmental Research</i> 128: 98-100. doi: 10.1016/j.envres.2013.11.004. SETÄLÄ, O., FLEMING-LEHTINEN, V., LEHTINIEMI, M., 2014. Ingestion and transfer of microplastics in the planktonic food web. <i>Environmental Pollution</i> 185, 77-83. doi: 10.1016/j.envpol.3012.10.013. SHIBER, J.G., 1979. Plastic pellets on the coast of Lebanon. <i>Marine Pollution Bulletin</i> 10, 28-30. doi:

956	SHIBER, J.G., 1982. Plastic pellets on Spain's 'Costa del Sol' beaches. Marine Pollution Bulletin 13, 409-
957	412. doi: 10.1016/0025-326X(82)90014-5.
958	SHIBER, J.G., 1987. Plastic pellets and tar on Spain's Mediterranean beaches. Marine Pollution Bulletin
959	18 , 84-86. doi: 10.1016/0025-326X(87)90573-X.
960	Song, Y.K., Hong, S.H., Jang, M., Kang, JH., Kwon, O.Y., Han, G.M., Shim, W.J., 2014. Large
961	Accumulation of Micro-sized Synthetic Polymer Particles in the Sea Surface Microlayer.
962	Environmental Science & Technology 48 , 9014-9021. doi: 10.1021/es501757s.
963	SONG, Y.K., HONG, S.H., JANG, M., HAN, G.M., RANI, M., LEE, J., SHIM, W.J., 2015. A comparison of
964	microscopic and spectroscopic identification methods for analysis of microplastics in
965	environmental samples. Marine Pollution Bulletin 93 , 220-209.
966	STALEY JT, KONOPKA A., 1985. Measurement of in-situ activities of nonphotosynthetic microorganisms
967	in aquatic and terrestrial habitats. Annual Review of Microbiology 39 , 321–346. doi:
968	10.1146/annurev.mi.39.100185.001541.
969	STRAND, J., LASSEN, P., SHASHOUA, Y., ANDERSEN, J.H., 2013. Microplastic particles in sediments from
970	Danish waters, Poster at the ICES Annual Conference Reykjavik, Iceland.
971	THAIN, J.E., VETHAAK, A.D. AND HYLLAND, K., 2008. Contaminants in marine ecosystems: developing an
972	integrated indicator framework using biological-effect techniques. ICES Journal of Marine
973	Science 65, 1508-1514. doi: 10.1093/icesjms/fsn120.
974	THOMPSON, R.C., OLSEN, Y., MITCHELL, R.P., DAVIS, A., ROWLAND, S.J., JOHN, A.W.G., MCGONIGLE, D., RUSSELL,
975	A.E., 2004. Lost at sea: Where is all the plastic? Science 304, 838-838. doi:
976	10.1126/science.1094559.
977	THORNTON, L., JACKSON, N.L., 1998. Spatial and temporal variations in debris accumulation and
978	composition on an estuarine shoreline, Cliffwood Beach, New Jersey, USA. Marine Pollution
979	Bulletin 36 , 705-711. doi: 10.1016/s0025-326x(98)00041-1.
980	TURNER, A., HOLMES, L., 2011. Occurrence, distribution and characteristics of beached plastic
981	production pellets on the island of Malta (central Mediterranean). Marine Pollution Bulletin
982	62 , 377-381. doi: 10.1016/j.marpolbul.2010.09.027.
983	Turra, A., Manzano, A.B., Dias, R.J.S., Mahiques, M.M., Barbosa, L., Balthazar-Silva, D., Moreira, F.T.,
984	2014. Three-dimensional distribution of plastic pellets in sandy beaches: shifting paradigms.
985	<i>Scientific Reports</i> 4 , 4435. doi: 10.1038/srep04435.
986	VAN, A., ROCHMAN, C.M., FLORES, E.M., HILL, K.L., VARGAS, E., VARGAS, S.A., HOH, E., 2012. Persistent
987	organic pollutants in plastic marine debris found on beaches in San Diego, California.
988	Chemosphere 86, 258-263. doi: 10.1016/j.chemosphere.2011.09.039.

989	VAN CAUWENBERGHE, L., CLAESSENS, M., VANDEGEHUCHTE, M.B., MEES, J., JANSSEN, C.R., 2013a. Assessment
990	of marine debris on the Belgian Continental Shelf. Marine Pollution Bulletin 73, 161-169. doi:
991	10.1016/j.marpolbul.2013.05.026.
992	VAN CAUWENBERGHE, L., VANREUSEL, A., MEES, J., JANSSEN, C.R., 2013b. Microplastic pollution in deep-sea
993	sediments. Environmental Pollution 182, 495-499. doi: 10.1016/j.envpol.2013.08.013.
994	VAN CAUWENBERGHE, L., JANSSEN, C.R., 2014. Microplastics in bivalves cultured for human consumption.
995	Environmental Pollution 193 , 65-70. doi: 10.1016/j.envpol.2014.06.010.
996	VAN CAUWENBERGHE, L., CLAESSENS, M., VANDEGEHUCHTE, M., JANSSEN, C. R., 2015. Microplastics are taken
997	up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats
998	Environmental Pollution 199 , 10-17. doi: 10.1016/j.envpol.2015.01.008.
999	Van Hoey, G., Borja, A., Birchenough, S., Buhl-Mortensen, L., Degraer, S., Fleischer, D., Kerckhof, F.,
1000	MAGNI, P., MUXIKA, I., REISS, H., SCHRODER, A., ZETTLER, M.L., 2010. The use of benthic indicators
1001	in Europe: from the water framework directive to the marine strategy framework directive.
1002	Marine Pollution Bulletin 60, 2187–2196. doi: 10.1016/j.marpolbul.2010.09.015.
1003	VIANELLO, A., BOLDRIN, A., GUERRIERO, P., MOSCHINO, V., RELLA, R., STURARO, A., DA ROS, L., 2013.
1004	Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on
1005	occurrence, spatial patterns and identification. Estuarine, Coastal and Shelf Science 130, 54-
1006	61. doi: 10.1016/j.ecss.2013.03.022.
1007	VON MOOS, N., BURKHARDT-HOLM, P., KOEHLER, A., 2012. Uptake and effects of microplastics on cells and
1008	tissues of the blue mussel Mytilus edulis L. after experimental exposure. Environmental
1009	Science & Technology 46, 11327-11335. doi: 10.1021/es302332w.
1010	WARD, J.E., KACH, D.J., 2009. Marine aggregates facilitate ingestion of nanoparticles by suspension-
1011	feeding bivalves. Marine Environmental Research 68, 137e142. doi:
1012	10.1016/j.marenvres.2009.05.002.
1013	WATTS, A.J.R., LEWIS, C., GOODHEAD, R.M., BECKETT, S.J., MOGER, J., TYLER, C.R., GALLOWAY, T.S., 2014.
1014	Uptake and Retention of Microplastics by the Shore Crab Carcinus maenas. Environmental
1015	Science & Technology 48, 8823-8830. doi: 10.1021/es501090e.
1016	WEGNER, A., BESSELING, E., FOEKEMA, E.M., KAMERMANS, P., KOELMANS, A.A., 2012. Effects of
1017	nanopolystyrene on the feeding behaviour of the Blue Mussel (<i>Mytilus edulis</i> L.).
1018	Environmental Toxicology and Chemistry 31 , 2490-2497. doi: 10.1002/etc.1984.
1019	Woodall, L.C., Gwinnett, C., Packer, M., Thompson, R.C., Robinson, L.F., Paterson, G.L.J., 2015. Using a
1020	forensic science approach to minimize environmental contamination and to identify
1021	microfibres in marine sediments. Marine Pollution Bulletin. Advance online publication. doi:
1022	10.1016/j.marpolbul.2015.04.044.

1023	WRIGHT, S. L.; THOMPSON, R. C.; GALLOWAY, T. S., 2013a. The physical impacts of microplastics on marine
1024	organisms: A review. Environmental Pollution, 178, 483-492.
1025	WRIGHT, S.L., ROWE, D., THOMPSON, R.C., GALLOWAY, T.S., 2013b. Microplastic ingestion decreases
1026	energy reserves in marine worms. Current Biology 23, R1031-R1033. doi:
1027	10.1016/j.cub.2013.10.068.
1028	ZETTLER, E.R., MINCER, T.J., AMARAL-ZETTLER, L.A., 2013. Life in the "Plastisphere": Microbial
1029	Communities on Plastic Marine Debris. Environmental Science & Technology 47, 7137-7146.
1030	doi: 10.1021/es401288x.
1031	ZHAO, S., ZHU, L., WANG, T., LI, D., 2014. Suspended microplastics in the surface water of the Yangtze
1032	Estuary System, China: First observations on occurrence, distribution. Marine Pollution
1033	Bulletin 86, 562-568. doi: 10.1016/j.marpolbul.2014.06.032.
1034	ZITKO, V., HANLON, M., 1991. Another source of pollution by plastics: Skin cleaners with plastic
1035	scrubbers. Marine Pollution Bulletin 22, 41-42. doi: 10.1016/0025-326X(91)90444-W.

- 1036 ZURCHER, N.A., 2009. Small plastic debris on beaches in Hong Kong: an initial investigation. *Thesis for*
- 1037 *the degree of Master of Science in Environmental Management*, Hong Kong University, p. 75.