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Abstract : 
 
Recent developments in the physical parameterizations available in spectral wave models have already 
been validated, but there is little information on their relative performance especially with focus on the 
higher order spectral moments and wave partitions. This study concentrates on documenting their 
strengths and limitations using satellite measurements, buoy spectra, and a comparison between the 
different models. It is confirmed that all models perform well in terms of significant wave heights; 
however higher-order moments have larger errors. The partition wave quantities perform well in terms of 
direction and frequency but the magnitude and directional spread typically have larger discrepancies. 
The high-frequency tail is examined through the mean square slope using satellites and buoys. From 
this analysis it is clear that some models behave better than the others, suggesting their 
parameterizations match the physical processes reasonably well. However none of the models are 
entirely satisfactory, pointing to poorly constrained parameterizations or missing physical processes. 
The major space-time differences between the models are related to the swell field stressing the 
importance of describing its evolution. An example swell field confirms the wave heights can be notably 
different between model configurations while the directional distributions remain similar. It is clear that 
all models have difficulty in describing the directional spread. Therefore, knowledge of the source term 
directional distributions is paramount in improving the wave model physics in the future. 
 

Highlights 

► The best 4 spectral wave parameterizations have been compared to satellites and buoys. ► Higher 
order spectral moments and wave partitions are rigorously validated. ► All models describe the low-
order wave moments; some perform better for higher ones. ► The models are sensitive to the far-field 
swell and have similar spatial distribution. ► The directional spread within the wave spectra performs 
poorly and needs improvement. 
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1. Introduction 

Forecasting and hindcasting marine conditions in sufficient detail have become increasingly 

important to society. Modeled wave datasets have greatly enhanced our knowledge of the ocean 

environment by supplementing in-situ and remotely sensed data. Numerical wave models have 

been in operation for over 50 years (Gelci et al. 1957) providing an essential part of marine 

weather forecasts and climatology that are used for shipping, offshore operations, the 

management of coastal hazards, research purposes, and recreational activities. In response to the 

growing need for accurate sea-state information, the wave modeling community has made 

significant developments in the physical parameterizations and improved the model performance 

(WAMDI 1988, Komen et al. 1994, Tolman and Chalikov 1996, Ardhuin et al., 2010; Bidlot et 

al., 2007; Rogers et al. 2012).  

WAVEWATCH-III® (hereinafter WW3) is based on the spectral wave model that was 

initially developed by Tolman et al., (2002). This code has been expanded into an open source 

community modeling framework, with the addition of many new features and options now 

available in version 4.18 that was recently made public ((Tolman and the WAVEWATCH III ® 

Development Group, 2014). The integration of advances from several groups outside NOAA has 

been made possible by the National Oceanographic Partnership Program, as described by 

Tolman et al., (2013). As the number of users and applications increases, so does the need for 

shared knowledge of performance by the various options in the WW3 framework. The accuracy 

of the source term packages listed in Table 1 and referred to as ST2, ST3, ST4, and ST6 will be 

assessed. Each model describes the wind generation and whitecapping dissipation differently. In 

deep water these are the dominant processes with the non-linear four-wave interaction. The 

wave-wave interaction is the same for all models and is parameterized by Hasselmann et al., 

(1985b) with only a reduction in the strength of this interaction in ST2 (Tolman and Chalikov 

1996). For a specific discussion of shallow water processes and their improvements in WW3 see 

Roland and Ardhuin (2014).  

The models generally produce results that compare well with measurements of the significant 

wave heights (e.g. Caires et al., 2004; Dee et al., 2011; Chawla et al., 2013; Stopa and Cheung, 

2014a). The details and validity of the higher order spectral moments have large differences 

especially in ST3 and ST4 as demonstrated by Rascle and Ardhuin (2013). Therefore it is 

expected that the higher order moments from others will have less validity. The accurate 



description of the high frequency wave components dictates the momentum flux between the 

ocean and atmosphere, having implications in coupled climate systems (e.g. Cavaleri et al. 

2012). Furthermore high frequency waves have important applications in remote sensing because 

the measured signal responds to sea-state through the mean squared slope.  

In view of these consequences the validity of the higher order wave moments must be 

established and interrelated for the different parameterizations. Here we extend our efforts to 

document the validity of additional moments of the wave spectrum like the orbital wave velocity, 

average wave period, mean square slope, and Stokes drift that might be useful for some 

communities. Our purpose is to provide an overall assessment of the most up-to-date source 

terms under real conditions. In order to simplify the discussion, we focus our efforts at the global 

scale, with a hindcast of 2011. In-situ wave spectra from the National Data Buoy Center (NDBC) 

network and remotely sensed data from altimeters and synthetic aperture radar (SAR) are used to 

demonstrate the differences between the models and assess their validity. Each source of 

observations has its advantages and offers complementary perspectives to assess the models. 

Buoys offer high fidelity full frequency-direction spectra from which many important wave 

parameters can be validated; but are limited to their specific locations. Altimeters cover a large 

expanse of the ocean and have very accurate significant wave heights once corrected (Zieger et 

al., 2009). The return radar signal from altimeters gives a measure of the mean square slope 

creating an interesting diagnostic of the high-frequency gravity waves. Complementing the 

buoys and altimeters, SARs provide a global view of partitioned wave quantities. In practical 

engineering applications, partitioned wave components are often more intuitive and useful; 

therefore, we place emphasis on documenting their accuracy using both buoys and SAR 

observations. Since wave models have the ability to estimate an enormous amount of space-time 

information, we also inter-compare the models paying close attention to the swell field. 

The manuscript will proceed as follows. Section 2 is dedicated to explaining the datasets with 

separate subsections that describe the model settings, measurements, and forcing fields.  Satellite 

altimeters cover large spatial expanses and we make use of this ability to present a global 

comparison of the model performance in section 3. To accompaniment the global view, the 

buoys measurements are used to validate and inter-relate different geophysical wave parameters 

from the models in section 4. Section 5 follows directly from the outcomes in the previous 



section to highlight the spatial-temporal differences between the models.  A discussion and 

summary of conclusions are presented in Section 6. 

 
2. Datasets 

2.1 Model details 

The wave datasets are generated using WW3 version 4.18.  WW3 integrates the spectral 

wave action equation in space and time, with discretized wave numbers and directions. 

Conservative wave processes like propagation, represented by the local rate of change and spatial 

and spectral transport terms are balanced by the non-conservative sources and sinks (simply 

called source terms throughout this manuscript).  This study uses a global model grid of 0.5° 

resolution in longitude and latitude with a spectral grid composed of 24 directions and 32 

frequencies exponentially spaced from 0.037 to 0.7 Hz at an increment of 10%.  All model 

simulations are forced by the same wind fields and sea ice concentrations from CFSR (v2) of 

Saha et al. (2014), and iceberg distributions (Ardhuin et al. 2011).  

Sub-grid islands smaller than 0.5° are accounted by apportioning the energy in the zonal and 

meridional directions (Tolman 2003a,b; Chawla and Tolman, 2008). The nonlinear wave-wave 

interactions are modeled using the discrete interaction approximation (DIA) of Hasselmann et 

al., (1985b). Dissipation due to bottom friction uses the SHOWEX formulation to parameterize 

sandy bottoms, here with a constant sand grain size of 0.2 mm (Ardhuin et al., 2003). Depth-

induced wave breaking is accounted for by using the Battjes and Janssen (1978) formulation with 

a Miche-style shallow water limiter for maximum energy. The Ultimate Quickest third order 

propagation scheme is implemented along with garden sprinkler reduction (Tolman, 2002a).   

The physical formulations in WW3 that describe the wind input, wave breaking due to 

whitecapping, and swell dissipation are briefly summarized for each of the four models. Also it 

must be clarified that data assimilation was not included in any of the model simulations.  Our 

first choice will be referred to as “ST2” and is based on the Tolman and Chalikov (1996) 

parameterization, as updated by Tolman (2002b). It combines a wind input adjusted to the 

numerical model of airflow above waves by Chalikov and Belevich (1993), and a dissipation 

consisting of two separate terms, one for low frequency waves and the other for the high-

frequency tail of the spectrum. The high-frequency dissipation shape is adjusted to produce a 

roll-off of the wave spectrum proportional to f -5 at high frequencies, as proposed by Phillips 



(1958). Next we use the ECMWF WAM parameterization, “ST3”, described by Bidlot et al. 

(2012). This parameterization combines the wind input term originally based on the wave growth 

theory of Miles (1957) with the feedback on the wind profile parameterized by Janssen (1991). 

There is a linear swell dissipation component that was introduced by Janssen (2004). A 

parametric f -5 shape is imposed at frequencies above 2.5 times the mean frequency.  

Our third choice, “ST4”, is described by Ardhuin et al. (2010), and updated by Leckler et al. 

(2013). This parameterization is built around a saturation-based dissipation, closely following 

Banner and Morison (2010), a cumulative effect that dissipates short waves due to the breaking 

of long waves, and a swell dissipation that transitions from non-linear in turbulent conditions, to 

linear in the viscous regime (Ardhuin et al. 2009, Perignon et al. 2014). The wind input is loosely 

adapted from the Janssen (1991) formulation, with an important reduction of input at high 

frequencies necessary to achieve a balance with the whitecapping term. This modification 

reduced the unrealistic large drag coefficients under high winds but it removed the wave age 

dependence in the wind stress, which is not realistic (Rascle and Ardhuin 2013).  It should be 

noted that this set of parameterizations does not have any prescribed shape of the high frequency 

tail, which tends to decrease like f -4.5, which is typically not steep enough for frequencies higher 

than 0.4 Hz. The wind-wave growth parameter βmax in Ardhuin et al., (2010) is set to 1.25 for our 

implementation, otherwise we use the same settings as Rascle and Ardhuin (2013). 

The last set of parameterizations, “ST6”, is largely inspired from the energy balance 

determined from the Lake George measurements of Young et al. (2005). This model uses a 

nonlinear wind input that relaxes in strong winds and steep waves to represent air flow 

detachment (Donelan et al., 2006). The whitecapping dissipation accommodates a wave-breaking 

threshold described by Babanin et al., (2001) and cumulative behavior at small scales (Manasseh 

et al., 2006, Young and Babanin, 2006). These two characteristics are similar to that of ST4 but 

are implemented differently. Swell dissipation due to non-breaking effects are included and are 

based on losses due to turbulence within the ocean (Babanin, 2006, 2011). This non linear swell 

dissipation term is always active. In the presence of breaking waves, this term is relatively small; 

however, it can become the dominant energy sink near peak frequencies of the spectrum when 

the spectral density drops below the wave-breaking threshold. A separate source term is used to 

account for the losses resulting from the interaction of waves with opposing winds and is based 



on laboratory experiments of Donelan (1999). Like ST4, ST6 has no designated shape of the 

high frequency tail based on a limiter as in ST2 and ST3. 

2.2 Measurements 

Both in-situ observations from buoys and remotely sensed measurements from a space borne 

satellite are compared to the modeled results. The NDBC provides quality controlled wave data 

from their extensive network. Since our purpose is to assess overall errors on the global scale, the 

buoys were chosen to be sufficiently far from the coastlines and located in deep water shown in 

Fig. 1. All buoys chosen have full frequency-direction spectra available for comparison to the 

wave model. The two-dimensional wave spectra are created using the maximum entropy method 

(MEM) described in Earle et al. (1999) and the high frequency tail was cut-off at 0.4 Hz to match 

the highest frequency well resolved by the buoy. The model spectra are interpolated in time and 

space to match the buoy observations. Portilla et al., (2009) demonstrate that buoy spectra are 

typically noisy, so they are smoothed in time with a 3 hour running mean and then are 

interpolated to match the wave model spectral resolution. The averaging in time and spectral 

space results in a sufficiently smoothed spectra for further analysis.   

ENVISAT altimeter data are used to compare with the modeled datasets.  Significant wave 

heights are measured by the active Ku-band radar. The data are quality controlled and calibrated 

to in-situ buoy measurements by Queffeulou and Croize-Fillon (2010). Only data with strong 

signal to noise ratio and free from anomalous objects and land are used in the analysis. The 

normalized radar cross section (σ0) has proven to be a valuable source of information for wave 

modeling. This is due to the fact that σ0 is a measure of high frequency wave components and the 

extensive dataset covers the oceans with long time series. For example, Ardhuin et al., (2010) 

used σ0 to estimate the mean square slope (mss) to calibrate the wave breaking coefficients of 

their parameterization. Following Rascle and Ardhuin (2013) the mss is estimated using 

    0

0.48
exp 1.4 0.1log 10ALTmss



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  (1) 

where 1.4 is a bias correction in dB derived from collocated satellites by Tran et al. (2005), 0.48 

is a Fresnel coefficient described by Chapron et al., (2000), and the 0.1*log(10) factor makes the 

conversion from a linear scale to dB. Since the model only resolves the prescribed frequency 

range with the largest frequency of 0.72 Hz in the given settings, it is necessary to correct the 



mss. This is achieved by the empirical relation of Vandemark et al., (2004) and is a function of 

the wind speed at 10 m elevation (U10): 

   
2 0.72

2

0 0.037

, 0.0035 0.0093log 10MODmss k E f dfd U

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 (2) 

where k is the wave number and E(f,θ) is the frequency (f) - direction (θ) wave spectrum. From 

Eqn. 2 the mss is linearly proportional to the fourth moment of the wave spectrum since k2 is 

proportional to f -4 in deep water. Therefore the mss is strongly influenced by the high frequency 

wave components. Lastly the wind speeds (U10) from the altimeter are used to assess the forcing 

from CFSR. The wind speed is calculated from a 2-parameter algorithm composed of the 

significant wave height and the σ0 described by Gourrion et al., (2002). This geophysical model 

function has less bias than the widely applied 1-parameter algorithm by Witter and Chelton 

(1991). However, because of errors in the estimate of the significant wave height, the wind speed 

calculated with the 1-parameter algorithm by Abdalla (2012) has random errors similar to the 2-

parameter geophysical model function (Zieger et al., 2009). 

ENVISAT is also equipped with a C-band advanced SAR which is able to achieve high 

resolution images of the sea surface. Due to the velocity bunching mechanism, wave spectra can 

be resolved through a non-linear transformation described by Hasselmann et al., (1985a). The 

level-2 product by the European Space Agency (ESA) uses the quasi-linear approximation of 

Chapron et al. (2001) to estimate the wave spectra. The motion of small scale waves are not 

adequately resolved by the SAR and create a blurring effect known as the azimuth cutoff (e.g. 

Kerbaol et al., 1998). Despite these complications, the quasi-linear approximation accurately 

estimates swell parameters as demonstrated by Collard et al., (2009). The swell partitions from 

ENVISAT’s SAR are used to extend the spatial coverage provided by moored buoys. In this 

study we limit ourselves to the best quality SAR data with well imaged swells having wind 

speeds of 3-9 m/s. 

2.3 Forcing datasets 

The wave model uses hourly winds from the Climate Forecast System Reanalysis (CFSR) 

version 2 of Saha et al., (2010, 2014). The system is composed of a coupled atmosphere, ice, and 

land surface models. The nominal resolution is 0.3°. CFSR has proven its worthiness in recent 

wave hindcasts described by Chawla et al., (2013), Rascle and Ardhuin (2013), and Stopa and 



Cheung, (2014a).  Ice concentrations are taken from CFSR, and iceberg concentrations of 

Tournadre et al. (2008) are used to derive a partial wave blocking according to Ardhuin et al. 

(2011).  

To demonstrate the errors from the forcing wind field, the CFSR wind speed is compared to 

derived measurements from ENVISAT’s altimeter and presented in Fig. 2. A 7-point running 

average is used to smooth the altimetry measurements along the satellite tracks. This is 

approximately equivalent to the ~0.3° resolution of CFSR. The model data are linearly 

interpolated in time and space to match the altimeter. Typical error metrics of the normalized 

bias (NBIAS), root mean square error (RMSE), correlation coefficient (R), and the scatter index 

(SI) are used to assess the validity of the model estimates, y, to the observations x: 
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where the over bar denotes mean and n denotes the number of data points. 

The top panel of Fig. 2 shows the dispersion of error for the entire year of 2011. The colorbar 

is given on a logarithm scale representing data density of each 0.1 m/s bin due to large amount of 

co-locations. The normalized bias is slightly negative and is influenced by the weaker wind 

speeds which have less impact on wave development. The root mean square error is ~1.4 m/s, 

the datasets are highly correlated with R=0.93, and there is a high precision shown by the scatter 

index of ~16%.  At the wind speeds over 20 m/s the CFSR overestimates the observations by 2 

m/s, although the altimeter wind speed algorithm at high wind speeds are expected to have large 

errors with positive biases (Quilfen et al., 2006;  Hanafin et al., 2012; Zieger et al., 2009). The 

corresponding spatial normalized bias is shown in the bottom panel and binned in 2° increments. 

Most of the biases are less than ±5% and usually underestimate the wind speeds by 2%. A 

notable negative biased region extends along the Equator and is most likely related to pre-



dominantly low wind speeds and uncertainties in the altimeter backscatter, σ0, estimated at near-

nadir incident angles (Brown 1978; Naderi et al., 1991). The Inter-tropical convergence zone is 

characterized by low wind speeds, and surface currents (e.g. Quilfen et al., 2001). These 

conditions can create biases in the altimeter wind speeds, therefore the validity of the CFSR 

along the Equator is not clear. The results presented here have similar errors as those presented 

by Stopa and Cheung (2014a), who completed a more comprehensive study of the CFSR winds 

and their applicability in wave hindcasting. In general, the wind speeds compare well with the 

observations and are a sufficient dataset to force the wave model. 

3. Comparison with altimeters 

The advantage of estimating errors with global coverage is that regional inaccuracies can be 

identified. This distribution of the spatial errors helps to identify the physical processes 

responsible for the discrepancies. Altimetry measurements from ENVISAT are used throughout 

this analysis. The same procedure as the wind comparison is implemented but a 9-point running 

mean is used to smooth the altimetry data to match the 0.5° wave data. We first diagnose the 

model significant wave height, Hs=4√m0, where 

 0 ,m E f dfd   . (7) 

Fig. 3 shows maps of errors for each of the four model parameterizations. ST2 consistently 

overestimates the wave heights by 15-25% or ~0.5 m. These biases are slightly higher (~20 cm) 

than the published biases presented in Tolman et al., (2002) or Tolman (2003a) but have the 

same spatial structure. As noted by Chawla et al., (2013) the model was adjusted to NCEP 

analyses for the years 2000-2001, and should be re-tuned for recent CFSR winds. The spatial 

pattern of ST3 is similar to that of ST2 but has reduced biases on the order of +5% across the 

oceans with a few negative regions. This is an improvement compared to the results presented in 

Arduin et al., (2010) using Bidlot et al., (2007) and shows near homogeneous small positive bias. 

ST4 and ST6 have similar features with overestimation in the extra-tropics and underestimation 

in the low-latitudes (25°S-25°N) consistent with the significant wave height biases presented in 

Rascle and Ardhuin (2013) and Zieger et al., (2015 ST6 implements a steepness dependent 

attenuation coefficient to alleviate the bias gradient between the high and low latitudes. In 

general, all models have an underestimation of wave heights near the Equator in the western 



Pacific. This bias might be due to insufficient sub-grid blocking and lack of wave reflection from 

islands (Ardhuin et al., 2010). 

The measured mss from ENVISAT provides an opportunity to compare the high frequency 

wave components with an extensive dataset on the global scale. Since measures of the mss from 

the satellite (Eqn. 1) and model (Eqn. 2) are indirect, we focus on documenting the precision of 

the models shown in Fig. 4 through the scatter index. All models have a large scatter near the 

Equator similar to the regions with the largest Hs biases suggesting these low wave height 

regions might be related to the high frequency wave components. Some of the mss discrepancies 

near the Equator can partially be attributed to the wind biases and the inability of the 0.3° wind 

forcing to describe small scale wind patterns with sufficient detail. The wave height comparison 

in Fig. 3 shows ST2 overestimates the wave heights but the mss typically behaves reasonably 

well with typical scatter indices less than 17%. ST3 follows ST2 and has the same spatial pattern 

but with an increase of scatter in the low latitudes (25°S-25°N).  In ST4, the scatter indices are 

reduced in the low latitudes compared to ST3. The notable difference between these models and 

ST4 is the reduction of the scatter index in the Southern Ocean with typical values less than 8%.  

In ST6, there is more scatter in the low latitudes and mid latitudes (25°-50°N) when compared to 

ST4 despite similar spatial distributions. 

A quantitative approach to resolve the nonlinear behavior of errors as a function of the sea 

state is to compute the biases for incremental wave heights. In order to mitigate sampling 

artifacts noted by Tolman (1998), each bin is chosen to have an equal number of data pairs 

(n=100). This subsample is randomly chosen from a larger population and lies within a range 

that is double the increment width of 0.5 m. For each sample of points, the normalized bias is 

given by the median of 20 different random samples. These results are expected to be less 

influenced by the sampling artifacts since each point is equally weighted with 100 points. The 

sampling size (n=100) and number of samples (m=20) is varied and the results were found to be 

insensitive (not shown).  

Fig. 5 shows errors of the Hs as a function of the sea state. In general the altimeter has a 

positive bias in estimating wave heights below 1.5 m and this can be erroneously interpreted as a 

model underestimation. With ST2, Hs are overestimated for all wave conditions with a reduction 

in the higher percentiles. For the majority of the wave conditions (10-90%), ST2 has a positive 

bias on the order of 10-18% matching the results depicted in Fig. 2. ST3 has a consistent +5% 



error for most sea states with the exception of waves larger than the 99th percentile where the 

positive bias increases with height. ST4 and ST6 behave similarly with a slight underestimation 

of the small wave heights <2.5 m, a trivial positive bias from 2 to 11 m, and then the errors 

reduce to almost 0 for the largest wave heights. The largest differences between ST4 and ST6 

occur when the wave heights are less than the 50th percentile where ST6 is seen to underestimate 

the waves more than ST4. It is important to mention that both ST4 and ST6 match the upper 

percentiles >99% very well, which are often essential for engineering applications. On the whole, 

each model behaves reasonably well for the larger part of the wave conditions from 1.5-7 m, 

with biases typically less than 15%.  

4. Comparison with buoys 

To complement this global view, directional wave buoys are utilized to inspect higher order 

spectral moments and partitioned quantities. The orbital velocity at the surface (m2), average 

wave period (Tm02), average spreading (spr), Stokes drift at the surface (uss), and the (pseudo) 

mean squared slope (mss) are computed from the matching spectra using 

 22 ,m f E f dfd  
 (8) 
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where the integrals range across all directions and frequencies from 0.037 to 0.4 Hz to match the 

lowest frequency resolved by the model and the highest frequency resolved by the buoy. The 

orbital velocity is often a key parameter in sediment transport applications, the design of 

engineering structures (Wilberg and Sherwood 2008) and has important implications in remote 



sensing (Kerboal et al., 1998).  The average period, Tm02 is more dependent on the high 

frequency components than the wave period calculated from ratio m-1 to m0. The Stokes drift is 

heavily weighted by the high frequency components and to a lesser extent the longer wave 

waves. Besides search and rescue applications, this parameter strongly influences ocean mixing 

through Langmuir circulation (e.g. Li and Garrett 1997) and has applicability in ocean 

momentum-flux studies (Tamura et al., 2012). The mss is proportional to the fourth moment of 

the spectrum, and is thus even more influenced by the spectral tail.  

Error statistics are computed regionally for buoys in the NW Atlantic (Atl), Gulf of Mexico 

(GoM), Caribbean Sea (Car), NE Pacific (NEP), California (Cal), and Hawaii (Haw) depicted in 

Fig. 1.  A Taylor diagram is utilized in order to graphically represent several wave parameters 

and error metric simultaneously (Taylor, 2001). The normalized standard deviation (NSTD), 

centered root means square error (CRMSE),  
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and correlation coefficient of Eqn. 5 are implemented in Fig. 6. The colors represent the different 

wave parameters and the symbols correspond to the regions of Fig. 1. It is clear that the lower 

order moments Hs and m2 typically have the best match to the buoys with the highest 

correlation, lowest CRMSE, and NSTDs are close to 1. The ratio of the two quantities is 

proportional to Tm02 and typically has larger CRMSE than the Hs and m2 since both of these 

quantities have associated errors. The spr has the largest errors of any parameter with 

correlations on the order of 0.5 and CRMSE > 0.75. This suggests that the description of the 

directional distribution within the model spectra is the largest source of error. In general, the DIA 

broadens the spectrum in frequency and direction compared to the exact interaction and 

introduces a source of error (Hasselmann et al., 1985b; Rogers and van Vledder 2013). ST2 

typically produces a larger variability than the observations (NSTD>1) and regional biases are 

seen for the wind-wave dominated regions of the NW Atlantic, Gulf of Mexico, and Caribbean 

Sea. ST3 is relatively consistent for all wave parameters and no obvious pattern is related to the 

parameters or the regions. ST4 is similar to ST3 and matches the observation’s variability very 

well and within ±5% of the NSTD and have typical CRMSE < 0.5. In ST6 the errors are less 



regional and more systematic. The higher order moments uss and mss have too much variability 

compared to the observations, but the model still correlates well with the observations. In 

summary, all the models have the largest errors in the directional spread and to a lesser extent the 

higher order moments. 

Buoy data shows that the mss increases with wind speed and wave height. Taking advantage 

of this property, Ardhuin et al., (2010) used the mss derived from altimeters to effectively tune 

the cumulative dissipation term. Following this approach, the mss‘s from all buoys are plotted in 

terms of wind speed and wave height in Fig. 7. Each point represents the average mss based on 

incremental binned wind speeds (1 m/s) and wave heights (0.5 m). The buoy measurements in 

the top right panel demonstrate the general relationship: for a given wind speed the mss increases 

with Hs or alternatively for a given Hs the mss increases with wind speed. In ST2 under weak 

wind conditions (< 5 m/s) when little wave growth is expected, the mss is too large suggesting an 

incorrect balance between the dissipation and wind input. From academic tests of Zieger et al. 

(2015) it is clear that the dissipation term might be too weak from 0.2 to 0.4 Hz of their Figure 

4(b). Even with these errors, the mss gradient in ST2 for a given wind speed is clearly visible 

qualitatively matching the physical behavior of the buoys. On the other hand in ST3, mss 

gradient is not as discernible, meaning the dissipation, wind input, and nonlinear wave-wave 

interaction terms are not accurately balanced for the high frequency wave components. ST4 

matches the buoy observations very well suggesting the altimetry measurements that Ardhuin et 

al., (2010) used to tune the model were a robust sample of the ocean and captured the wave 

conditions at these buoys. ST6 displays the correct relationship with the wind and wave heights, 

but the mss is too large, demonstrating an incorrect balance in the high frequency wave 

components under all wind and wave conditions. In summary, all models except ST4 have 

difficulty in precisely matching the details of the mss under all wind and wave conditions.  

Next we focus our attention on partitioned wave parameters since for many users these 

quantities can be more intuitive in practical engineering applications. Wave partitioned quantities 

from the buoy and model are calculated using an adaptation of the Portilla et al., (2009) 

partitioning scheme. The significant wave height, energy-weighted peak wave period (Tp), peak 

wave direction (Dp), and average direction spread (spr) are computed for each wave partition. 

Next matching partitions between the model and buoy are determined by minimizing the spectral 

distance of the peak period and direction in spectral space. We follow Delpey et al.’s (2010) 



suggestion and limit the distance to 0.3 Hz-rad to ensure our partitions are within close proximity 

to one another. The partitions are then classified as wind waves or swell by using the wave age 

which is defined as the ratio of the peak phase speed Cp of the partition to wind speed U10. Wind 

waves are defined when Cp/U10<1.2 and swells when Cp/U10>1.2 according Pierson and 

Moskowitz (1964) and Alves et al., (2003).  

To complement the analysis of bulk wave parameters, partitioned wave quantities are plotted 

on a Taylor diagram in Fig. 8. The partitions are not separated in terms of wind wave and swell 

conditions, but only minor differences in the overall errors of each component are found (not 

shown). The random errors of the direction approximately have a CRSME of ~0.25 with a 

correlation of 0.95 while the peak periods have a slightly larger range of errors. This is due to the 

fact that the spectral distance was minimized. In general, all models have partitioned wave 

heights that are reasonably correlated within the range of 0.7-0.9. Both ST2 and ST3 typically 

overestimate the variability of the wave heights while ST4 and ST6 closely match the variability 

of the observations. Lastly, all models are poorly estimate the directional spread of the partitions, 

characterized by low correlation and large CRMSE. This error was not reduced by improving the 

resolution of the model from 24 to 36 directions. 

Fig. 9 shows the normalized bias for the overall Hs and partitioned quantities under both 

wind wave and swell conditions for all regions. This discrete wave age distinction of 1.2 might 

induce misclassification especially for broad-banded wind waves when the peak phase speed 

might not be representative for the entire partition. This limit is tested by making the wave age 

less than 1.2 for wind waves and larger than 1.2 for swells.  The overall effect is minimal (not 

shown) and the same pattern exists, so we use the wave age threshold of 1.2 to classify the 

different wave regimes. Each model adequately resolves the peak period and direction with 

typical errors less than ±5%. There does not seem to be any regional biases with these quantities 

or any errors related to their wind wave or swell classification. The largest errors are in the 

partitioned wave heights and directional spread. Partitioned data pairs are only considered when 

the spectral distance is less than 0.3 Hz-rad. Therefore the wind waves and swell do not 

correspond to errors in the overall Hs. All models underestimate the directional spread for swells 

in the Caribbean, NE Pacific, and California. This suggests that the errors have common sources. 

Knowing that the DIA produces spectra that are too broad, there must be missing processes or 

errors in other parameterizations. Ardhuin et al., (2012) and Ardhuin and Roland (2012) 



suggested that the currents and coastal reflections can contribute to these errors. Another 

common error is the positive bias of swell heights exceeding 10% in Hawaii.  

As previously demonstrated, ST2 overestimates the cumulative significant wave heights. 

From this analysis it is clear that both the wind waves and swell waves contribute to this bias.  

Swells typically contribute a larger bias on the order of 5% more than wind waves. In Hawaii 

ST2 matches the swell directional spreads reasonably well while the wind wave directional 

spreads are underestimated. For ST3, the swell and wind wave height biases follow the same 

pattern in each region. It is interesting to note that in the Gulf of Mexico, Caribbean, NE Pacific, 

and California there is a slight negative or negligible bias for the total Hs but a positive bias for 

the partitioned wave heights. ST4 has very small errors (<±6%) for significant wave heights 

computed from the entire spectrum but errors in partitioned wave heights can exceed this 

amount. In the Atlantic, the wind wave heights have the largest errors but the overall significant 

wave heights have a small underestimation. In general, ST4 has reduced errors in the direction 

spread compared to the other models. In ST6, the overall significant wave height is 

underestimated in all regions and these results agree with the altimeter data presented in Fig. 3. 

ST6 has smaller swell wave height biases than ST4 but otherwise the errors follow the same 

pattern. In summary, all models match the direction and period well, but the energy and 

directional distribution can have considerable errors. 

Wave roses in Fig. 10 represent the occurrence of events per direction and magnitude 

offering a means to further explore the directional errors. Since the swell wave heights are 

typically over estimated in Hawaii and the buoys are exposed to swells from both hemispheres, 

this region is used as a representative example. In Hawaii, there are consistent trade winds 

generating considerable waves (Stopa et al., 2013). In order to exclude these locally generated 

events and concentrate isolate swells generated from far-field sources only instances with wave 

periods larger than 15 s are retained. All models have the same directional distribution with this 

average climate perspective. They have the same dominant wave component from 310° which 

matches the buoys. The models tend to favor the swells from the northwest with a more westerly 

direction than the observations. Consistent with the previous analysis, ST2 overestimates swell 

wave heights shown by a larger percentage of the tallest waves (>3 m for each directional bin). 

For example when waves are taller than 3.75 m and from the NW the relative percentages of this 

directional bin are 34%, 12%, 9%, 3%, and 4% for ST2, ST3, ST4, ST6 and the buoys 



respectively. In general the directional distributions are similar for all models with only small 

differences in the number of events. Similarly the swells from the south are shifted slightly to the 

south-southwest compared to the observations. The directional distribution can be improved by 

increasing the directional resolution of the model (not shown). In this implementation the 24 

directions adequately resolves the number of events but the directional details of each swell are 

not sufficiently characterized. The models overestimate the swells from the south which rarely 

exceed 1.25 m. This helps explain the positive biases in Fig. 9. The South Pacific is littered with 

islands and atolls which might not be properly accounted for using Chawla and Tolman (2008) 

sub-grid coefficients. In addition, currents not included here, are a likely source of directional 

errors since Gallet and Young (2014) demonstrate that currents can refract swells up to ±10°. 

5. Space-time model comparison 

The preceding discussion and comparison demonstrates that there can be considerable 

differences in high spectral moments, partitioned quantities, and directional spread. In order to 

further explore the model disparities, the space-time wave structure is examined. Empirical 

orthogonal function (EOF) analysis is an efficient technique for analyzing the dominant modes 

of variability in geophysical datasets (e.g. Hannachi et al., 2007; Stopa and Cheung, 2014b). 

Here we apply the method to detect spatial-temporal differences between the models by 

analyzing the ratio of significant wave heights as 
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where N is the number of time points, indices i and j denote space and time respectively, and the 

superscripts k and l denote indices for a source term parameterization: ST2, ST3, ST4, and ST6.  

The metric, sij, highlights the variation of the residuals between the two models by removal of 

the mean. For a given model pair, sij can be written where  are the eigen vectors or 

EOFs and zmj is the principle component for mode m. The corresponding eigen values, λm 

describe a fraction of the total variance as 

2
m m   

 (16) 

and indicates the percentage of variance explained by each mode. 

ij im mjs z im



This method can objectively determine the model differences on any time scale. Here we 

focus time scales on the order of days since it is beneficial to describe the model differences on 

the same time frame as typical wave forecasts. Therefore we limit the hourly time series to 76 h. 

Fig. 11 shows the EOFs for all model pairs using an example time series from January 17-20, 

2011. It should be noted that this time series is not unique and the results are representative of 

the datasets. The Hs contours for 5 and 10 m are given in black to indicate the larger sea states. 

This figure displays the first principal component and typically captures 30-40% of the variation 

for all model pairs. The second and third components with ~20% and ~15% of the variance (not 

shown) have the same dispersion patterns but with more modulations. These modulations can be 

interpreted as the instantaneous difference in percentage between each model pair. The wave 

dispersion patterns of swells are clearly seen amongst the noise for all cases and described by 

varying positive and negative values that originate in extra-tropical sources and extend across the 

oceans.  The width of these strips relates to the length of the time series and area covered by 

swell.  

It was expected that the largest differences would be near the generation areas but these 

results show that the relative differences extend into the far field demonstrating the sensitivity of 

the models to accurately describe swells. Swells can have lifetimes greater than one week and 

transverse entire ocean basins (Munk et al., 1963; Snodgrass et al., 1966). The largest storm 

located in the North Pacific (170°E, 40°N) shows the differences extend past the Equator into the 

Eastern Pacific. Near the storm sources the whitecapping and wind generation terms dominate. If 

the differences were related solely to discrepancies near the storms the mean would remove these 

effects after the waves propagated sufficiently far from the source, however this is not the case. 

The patterns extend considerably beyond this distance indicating the importance of modifying 

swells in the far field. These results demonstrate that ST4 is similar to all models with typical 

differences less than 10%. ST4 and ST6 have the closest resemblance while ST2 and ST3 have 

the largest differences in excess of 25%.  

It is clear that each parameterization describes swells differently and to further highlight 

these features an example swell is used to compare the models. Wave partitions were generated 

from WW3 using Hanson and Phillips, (2001) watershed partitioning algorithm. A large swell 

occurred towards the end of August in the South Pacific with significant wave heights larger than 

11 m and periods in excess of 22 s. The source is determined to be (167°W, 56.5°S) on August 



24, 2011 1200 UTC from Hs and U10 geospatial maps. The location is verified using the swell 

tracking method described by Collard et al., (2009).  

Fig. 12 shows the spatial distribution of the partitioned wave heights sufficiently far from the 

source (>35 arc-degrees on the Earth’s surface ~3900 km). Great circle routes are plotted for the 

azimuths -30°, 0°, 30°, 60°, 90°, and 120° from the storm center. Co-located SAR wave 

partitions are plotted along equal distances from the source at 40, 60, and 90 arc-degrees (with 

±5 arc-degrees). Island obstacles are clearly visible such as: Tuamotus (wave heading of 30° and 

4600 km from source), Hawaii (wave heading of 10° and 8500 km from source), and the 

Galapagos (wave heading of 80° and 8000 km from source). It is clear that ST2 has the largest 

wave heights, ST3 and ST4 have similar magnitudes, and ST6 has the smallest wave heights. 

From a qualitative point of view each model has a similar energy distribution across the basin 

and results from similar direction source term distributions and the same treatment of the 

propagation scheme and alleviation of the garden sprinkler effect.  

The directional differences are explored by taking transects of the swell event from various 

distances: 4,400, 6,700, and 10,000 km from the source location. Figure 13 plots the transects 

versus SAR wave partitions that have been co-located with each model. Due to the sparse SAR 

data, wave headings of 5° bins and ±5 arc degree from the source are grouped and the median of 

each bin is plotted in Figure 13. The shaded region represents the expected SAR errors 

determined by the standard deviation of the SAR biases presented by Collard et al., (2009) 

normalized by the number of values. In the near-field it is clear that ST2 over estimates the swell 

and can be 1.5 m larger than observations. All other source terms perform reasonably well except 

at 90° from the source where all models overestimate the wave heights. In the mid-field all 

models perform well with ST2 still showing an overestimation on the order of 1 m on the 

stronger half of the wave field (headings >60°). Notice that all parameterizations underestimate 

the wave heights in the weaker side of the wave field (headings <0°). In addition, the range of 

wave heights is reduced when compared to the near-field. In the far-field ST2 matches the SAR 

observations the best while the other parameterizations are biased low (0.25-0.5 m). In ST4, the 

swell dissipation transitions between laminar to turbulent boundary layer based on a Reynolds 

number defined by the orbital wave velocity. It is possible that a better match could be achieved 

by adjusting the critical Reynolds number. In this case the parameterization might have 

transitioned to a laminar boundary layer too late creating the under estimation in the far field 



since the turbulent component is 2-30 times larger than the viscous component (Ardhuin et al., 

2009). If the transects are normalized by their respective maximum, there are only small 

differences between each model (not shown). The percent differences between the 

parameterizations are always less than 10% which is comparable to the magnitudes shown by the 

EOF analysis in Fig. 11. Here we illustrate that there are only subtle directional differences 

between swell fields using the four models with slightly larger differences in the near-field.  

6. Discussion and conclusions 

Through the comparison with altimeter data, buoy measurements, and SAR-derived wave 

partitions, four sets of parameterizations available in the WAVEWATCH III modeling 

framework are evaluated to reveal their strengths and weaknesses. We particularly estimate error 

metrics for the significant wave height but also higher moments of the frequency spectrum, 

which are related to the spectral tail, and partitioned wave quantities.  

As the model results strongly depend on the accuracy of the wind forcing, we first verified 

that winds from the CFSR compare reasonably well to the observations, except near the Equator. 

The nadir-looking altimeter gives less reliable wind speeds in this region that is characterized by 

low wind speeds, swells, and currents. This is because the surface slopes reduce the radar cross-

section due to swell which, is erroneously interpreted as a higher wind speed (e.g. Vandemark et 

al. 2002; Gourrion et al., 2002). Also, the surface roughness is more strongly related to the wind 

relative to the surface current and the equatorial current can induce mean differences up to 1.4 

m/s between remotely-sensed wind speed and anemometer measurements (e.g. Quilfen et al., 

2001). Despite these complications, errors in CFSR wind speeds influences the high-frequency 

wave components, in particular the mean square slope (mss) and even affects the overall Hs 

biases. On the one hand, lower spectral moments like Hs, m2 and Tm02 perform convincingly 

well compared to buoy measurements for all models. On the other hand, larger errors of the 

higher wave moments between the different models are confirmed. Complementing the altimetry 

analysis, the high frequency components are validated with buoy observations using a pseudo-

mss defined from the variance of the vertical acceleration integrated up to 0.4 Hz, the highest 

frequency resolved by the buoy. The variability of spectra between 0.2 and 0.4 Hz is dominant in 

the mss, and it is too large with ST2 and too small with ST3 while ST4 and ST6 match the 

behavior of the observations. It is seen that ST6 typically overestimates the energy in the tail 



when compared to the buoys. It should be noted that when the model frequencies are above 0.8 

Hz, ST4 and ST6 overestimate the energy in the high frequency components (Zieger et al., 

2015). These formulations use their parameterizations to create the balance of the high frequency 

components while ST2 and ST3 are forced to a prescribed f -5 shape based. Although the mss 

only gives a measure of the tail energy level, there is no consensus on the shape of the wind 

generation or whitecapping dissipation terms in frequency or direction convoluting the correct 

balance. There are, however, source terms that are unable to produce the observed variability of 

the mss (see also Ardhuin et al. 2010).  

The analysis shows the average directional spread is poorly resolved for all the models 

suggesting more work is needed to accurately describe the full frequency-direction wave 

spectrum. Increasing the number of directional bins used in the model, from 24 to 36, improves 

the wave direction in a climatology sense like in Fig. 10 but did not improve the performance of 

the directional spread (Figs. 6 and 8).  Further work is needed on this topic, and data from open 

ocean conditions will be needed as coastal buoys can be strongly affected by reflection at the 

shoreline (Ardhuin et al. 2012). In particular the directional spread has implications to studies of 

acoustic noise generation through Longuet-Higgins wave-wave interaction mechanism (Longuet-

Higgins 1950; Ardhuin and Herbers 2013). The spectral wave components at the buoys and SAR 

co-locations show the periods and directions match the observations very well, but effectively 

resolving the magnitude and directional spread is less reliable. An EOF analysis of the short 

time-scale reveals the relative differences between the models is on the order of ~5-15% and is 

expected to be related to the swell field. Swell wave heights vary strongly with the choice of 

parameterization, even though the spatial structure and directional content is similar.  

Each model has associated errors and they are discussed below with a general description of 

their strengths and weaknesses. It is clear ST2 overestimates swell wave heights and this creates 

an overestimation of the total significant wave height. The swell dissipation in ST2 described in 

Tolman and Chalikov (1996) scales with friction velocity and thus vanishes when the wind speed 

goes to zero. This appears to be unrealistic as made evident in the positive biases at low sea 

states in Fig. 5 and creates the maximum positive bias in the tropics in Fig. 3. It is also 

highlighted at the buoys in Fig. 7. The partitioned wave analysis shows the wind wave heights 

are also overestimated and contribute to the overall Hs biases. ST2 and ST3 have the largest 



disparities mainly due to their different formulations of the wind generation and dissipation due 

to whitecapping. 

ST3 has a better match of the Hs values than ST2; however the higher order moments have 

similar errors. The mss has the largest differences compared to ENVISAT in the Southern Ocean. 

In high sea states the significant wave heights are overestimated. This is largely due to the 

definition and role of the mean steepness in that parameterization (Ardhuin et al., 2012). . The 

whitecapping dissipation is sensitive to swell wave heights and, the dissipation decreases as the 

swell height increases. This explains the typical overestimation of wind wave heights in Figure 9. 

The model overestimates swell heights despite its logarithmic swell dissipation form. The 

example swell field demonstrates the spatial energy distribution is similar to ST4 which a 

combination of linear and nonlinear swell dissipation components. In the averaged sense, ST3 is 

a reasonable predictor of the higher order moments such as the Stokes velocity and the mss and 

can be used under the majority of wave conditions. 

ST4 has the lowest significant wave height biases out of all the models and at the global scale 

they are typically less than +5% or ~30 cm. Overall the mss and higher order wave parameters 

perform well, which is no surprise since the different parts of the breaking dissipation term was 

tuned with satellite altimeter data by Ardhuin et al., (2010). In terms of partitioned wave 

quantities, ST4 has some regional biases with an overestimation of swells and wind waves found 

in the Atlantic and Hawaii. Otherwise errors are typically less than 10%. The wave heights of 

ST4 are most similar to all model parameterizations since the percent differences are less than 

10% (Fig. 11). For all sea states ST4 has minimal Hs biases and the higher order wave 

parameters perform reasonably well demonstrating its robustness. 

The newly developed ST6 performs similarly to ST4 and the most notable differences are in 

the higher order wave parameters and low wave heights. ST6 has large variability and 

overestimates the high frequency tail seen by the mss and Stokes velocity comparison with the 

altimeter and buoys. The mss’s are well behaved and match the physics of the buoy data with 

appropriate scaling in terms of wave heights and wind speeds but the positive bias is still evident. 

The swell dissipation term is always nonlinear in comparison to ST4 which switches between 

nonlinear to linear with a Reynolds number threshold (Perignon et al. 2014). The ST6 functional 

form results in a stronger dissipation of swells, especially far away from the storms. ST6 

generally produces more accurate swell heights, and this is the only model with slightly negative 



biases of that parameter. These biases can accumulate in terms of Hs errors and create negative 

biases larger than 10% as in the case of California. The example swell clearly demonstrates these 

features and has a wave energy distribution that rapidly decreases in relation to the other models. 

In terms of short range errors this model parameterization is most similar to ST4 (Fig. 11). The 

far-field errors have minimal differences since their swell dissipation parameterizations have the 

same functional form (Zieger et al. 2015).  

Matching the directional wave components is a difficult task and the wave models are failing 

to adequately describe the directional spread. The Taylor plots show the performance of the 

directional spread is lacking compared to the other modeled wave parameters. Some of these 

errors can be attributed to the approximation of the DIA of quadrupled wave-wave term, but tests 

with exact non-linear interactions produced too narrow directional distributions. To fully 

understand the frequency-direction wave spectrum the directional distributions of the source 

terms must be understood and there is limited knowledge of these distributions. In particular, 

there are known biases on directional spread in measurements by some types of buoys (O”Reilly 

et al. 1996). The introduction of non-isotropic dissipation in ST4 and ST6 reduced the biases on 

the directional spread, but this is still poorly predicted. Further improvements from the wave 

modeling community should address the directional errors and it is expected these will enhance 

the overall health of the model. 
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Table 1: Wave model parameterizations with representative references 

 

  

Parameterization 
Abbreviation References

ST2

Chalikov and Belevich (1993); Tolman and 
Chalikov (1996); Tolman et al. (2002)

ST3

Janssen (1991); Janssen (2004); Bidlot et al., 
(2007); Bidlot (2012)

ST4

Ardhuin et al., (2010); Arduin et al., (2009); 
Leckler et al., (2013); Rascle and Ardhuin 
(2013)

ST6

Bababin (2006); Bababin (2011); Rogers et al., 
(2012); Zieger et al. (submitted)



 

Figure 1: Buoy locations and names grouped by region from the NDBC network. 
  



 

Figure 2: Wind speed (U10) comparison from model (CFSR) versus co-located altimeter derived 
ENVISAT data for 2011.  In the top panel the dispersion of model winds is given in a density 
scatter plot on a logarithmic scale with corresponding error statistics for the number of data 
points (N), normalized bias (NBIAS), root-mean-square error (RMSE), scatter index (SI), 
and correlation coefficient (R). In the bottom panel the spatial distribution of normalized 
wind speed bias (in percentage) on a 2° grid. 

  



 

Figure 3: Normalized wave height bias (in percentage) for ST2, ST3, ST4, and ST6 using co-
located wave heights from ENVISAT for 2011 gridded in 2° bins. 

  



 

Figure 4: Scatter indices (in percentage) for ST2, ST ST3, ST4, and ST6 using co-located mean 
squared slopes from ENVISAT for 2011 gridded in 2° bins. 

  



 

Figure 5: Normalized wave height bias (in percentage) for ST2, ST3, ST4, and ST6 plotted in 
terms of sea state (Hs). 

  



 

Figure 6: Taylor diagram - colors represent wave parameters significant wave height (black), 
orbital wave velocity at the surface (red), mean wave period (orange), average directional 
spread (green), Stokes surface velocity (blue), and the mean squared slope (purple). The six 
different symbols denote the regions: Atlantic (circle), Gulf of Mexico (square), Caribbean 
Sea (triangle), Northeast Pacific (diamond), California coast (star), and Hawaii (x). The 
different grid axis are the NSTD in solid black circles, the CRMSE in dashed green circles, 
and the correlation coefficient in blue dashed-dotted lines.  

  



 

Figure 7: Variation of the surface mean square slope estimated from all buoys from 0.037 to 
0.485 Hz. Wind speeds at 10 m height are estimated from the buoy using a logarithmic wind 
profile and averaged into 0.5 m/s bins while wave heights are averaged into 0.5 m bins to 
estimate the average mean square slope. 

  



 

Figure 8: Taylor diagram - colors represent partitioned wave parameters of significant wave 
height (red), peak period (green), energy weight peak direction (blue), and average 
directional spread (purple). The six different symbols denote the regions: Atlantic (circle), 
Gulf of Mexico (square), Caribbean Sea (triangle), Northeast Pacific (diamond), California 
coast (star), and Hawaii (x). The different grid axis are the NSTD in solid black circles, the 
CRMSE in dashed green circles, and the correlation coefficient in blue dashed-dotted lines. 

  



 

Figure 9: Normalized bias (in percentage) of swell and wind wave partitioned quantities in all 
regions. 

  



 

Figure 10: Wave-rose plots - depicting wave climatology in Hawaii using buoys 51101, 51000, 
51100, 51002, and 51004 with waves that have periods larger than 15 s. 

  



 

Figure 11: Spatial distribution of the first Eigen vector of the empirical orthogonal functions 
(EOFs) between source terms ST2, ST3, ST4, ST6. EOFs were computed from a time series 
from 17-20 January 2011. Solid contours indicate large sea states (5 and 10 m wave height). 

  



 

Figure 12: Spatial distribution of the swell wave heights (in meters) from the generation source 
(167°W, 56.5°S) on August 24, 2011 1200UTC for ST2, ST3, ST4, ST6. The dashed black 
lines represent great circle routes with the same wave heading from the source. The dashed 
red lines represent equidistant from the source. The stipulated grey points represent co-
located ENVISAT SAR wave partitions. 

  



 

Figure 13: Storm transects showing the wave height distribution versus the wave angle 
(heading) at equal distances from the storm source: (top) near-field 4,400 km from the 
source, (middle) mid-field 6,700 km from the source, and (bottom) far-field 10,000 km. Each 
point represents the median of co-located wave model-SAR wave partitions in 5° bins. The 
gray shading region represents error bars of the EVISAT-SAR observations created by the 
standard deviation of the associated observational error normalized by the number of 
observations. 




