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Abstract : 
 
Growing evidence suggests that telomeres, non-coding DNA sequences that shorten with age and 
stress, are related in an undefined way to individual breeding performances and survival rates in several 
species. Short telomeres and elevated shortening rates are typically associated with life stress and low 
health. As such, telomeres could serve as an integrative proxy of individual quality, describing the 
overall biological state of an individual at a given age. Telomere length could be associated with the 
decline of an array of physiological traits in age-controlled individuals. Here, we investigated the links 
between individuals' relative telomere length, breeding performance and various physiological (body 
condition, natural antibody levels) and life history (age, past breeding success) parameters in a long-
lived seabird species, the king penguin Aptenodytes patagonicus. While we observed no link between 
relative telomere length and age, we found that birds with longer telomeres arrived earlier for breeding 
at the colony, and had higher breeding performances (i.e. the amount of time adults managed to 
maintain their chicks alive, and ultimately breeding success) than individuals with shorter telomeres. 
Further, we observed a positive correlation between telomere length and natural antibody levels. Taken 
together, our results add to the growing evidence that telomere length is likely to reflect individual quality 
difference in wild animal. 
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Introduction 

In evolutionary ecology, one important objective is to understand the causes for variation in 

individual fitness. Recently, it has been suggested that telomeres may reflect reproductive 

performances (Bauch et al. 2013) and affect individual survival (Haussmann et al. 2005; 

Pauliny et al. 2006; Bize et al. 2009; Barrett et al. 2013; Boonekamp et al. 2014). Telomeres 

are non-coding, highly conserved, DNA sequences that cap and protect the genetic integrity of 

eukaryotic chromosomes (Blackburn 1991; Monaghan and Haussmann 2006). Those 

sequences shorten progressively through successive DNA replication cycles until they reach a 

critical length causing chromosome instability, cell senescence and ultimately cell death 

(Blackburn et al. 2000). Although specific restoration mechanisms exist (for instance, the 

enzyme telomerase works to restore eroding telomeres; Haussmann et al. 2007), studies have 

shown that telomeres generally shorten as individuals age (Pauliny et al. 2006; Salomons et al. 

2009; Heidinger et al. 2012; Barrett et al. 2013; Bauch et al. 2013; Boonekamp et al. 2014). In 

addition, even though telomere length is partly heritable (Slagboom et al. 1994; Reichert et al. 

2015), the high inter-individual variability observed at birth (Okuda et al. 2002), and amongst 

individuals of the same age (Slagboom et al. 1994), suggests that telomere length is also 

determined by extrinsic environmental factors. For instance, oxidative damage is known to 

affect telomere length (von Zglinicki 2002) both in early life and adulthood (Geiger et al. 

2012; Boonekamp et al. 2014; Epel et al. 2004; Valdes et al. 2005; Puterman et al. 2010; 

Blackburn and Epel 2012), and between-individual differences in telomere length as a 

possible consequence of early life stress can be conserved through age (Heidinger et al. 2012).   

In wild animals, variation in telomere length may allow assessing individual quality 

(Wilson and Nussey 2008), i.e. inter-individual differences in the ability to cope with external 

and/or internal challenges that could be associated with variability in a suite of phenotypic 

traits (immunity, body condition, stress resilience, foraging performances) and linked to 
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fitness. For instance, differences in individual telomere length and erosion rates have been 

linked to individual differences in breeding performances and breeding effort in species as 

different as dunlins Calidris alpina (Pauliny et al. 2006), leatherback turtles Dermochelys 

coriacea (Plot et al. 2012), or common terns Sterna hirundo (Bauch et al. 2013). Whereas 

mechanisms of cell senescence may naturally be associated with a decline in individual 

breeding performances, telomere length and shortening rates should also be concomitant with 

the deterioration of main organism's functions (Hughes and Reynolds 2005). To date however, 

how inter-individual variation in telomere length relates to variability in physiological traits 

associated with individual performance (e.g. body condition, immunity) remains to be 

determined in natural conditions.    

In the present study, we examined the links between relative telomere length, 

individual body condition and immunity in the king penguin, long-lived seabird breeding in 

sub-Antarctic environmental conditions. In addition, we assessed the links between relative 

telomere length and fitness proxies (i.e. breeding initiation date, the amount of time parents 

maintained their chick alive, and ultimately breeding success in rearing chick until fledging) 

in those colonial breeders. Long-lived species, including seabirds, provide especially good 

models for investigating the relationship between telomere length and individual 

performances because it could be visible on a long time scale. As central place foragers, the 

energetic commitment to reproduction is generally high in seabirds (Lack 1968) and harsh 

conditions during breeding have been suggested to affect telomere shortening rates both in 

captive (Reichert et al. 2014a) and in the wild (Young et al. 2013; Mizutani et al. 2013). Here, 

in 50 adult king penguins of known age (5-9 years old belonging to a population continuously 

monitored since 1998, we specifically tested whether telomere length was related to birds’ 

body condition, immune status and breeding performance, all measured in the same year. 

Importantly, the relatively narrow age range of birds we monitored allowed us to investigate 
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the specific importance of telomere length rather than chronological age per se in accounting 

for individual variation in physiological and breeding parameters. We predicted that, if 

telomere length indeed reflects an individual’s capacity to cope with life stress, it should be 

related to among-individual variations in body condition, immunity, and fitness. In addition, 

with the idea that individual quality is consistent to some extent (Wilson and Nussey 2008), 

we expect inter-individual differences in telomere length to also reflect inter-individual 

variations in past breeding history.  

 

Materials and methods 

Study species 

This study was carried out in the king penguin colony of ‘La Grande Manchotière’, on 

Possession Island, Crozet Archipelago (46°24’S 51°45’E). During the incubation and chick-

brooding phases of the 2009 breeding season, 50 known-aged king penguins (21 birds in 

incubation and 29 birds in brooding) were studied (n = 13, 26 and 11 for 5, 8 and 9 year-old 

birds, respectively). These birds were part of a long-term monitoring program started in 1998. 

They were implanted with subcutaneous passive transponder tags (0.8 g) when they were 10 

month-old chicks, just before fledging (Gendner et al. 2005; Le Vaillant et al. in revision). At 

that time, a blood sample was also collected from each individual for subsequent sex 

determination (methods adapted from Griffiths et al. 1998). King penguins breed for the first 

time between 3 and 6 year-old (Weimerskirch et al. 1992). Whereas, their longevity is 

unknown, in our database the oldest transponder-tagged individuals were implanted as 

breeding adults in 1991, and thus they were more than 22 years-old in 2009. Consequently, it 

is likely the studied birds represented first or middle aged breeders and had no risk to be 

senescent. Indeed, we showed that the breeding success is comparable between 6 and 11 year 

old, while in 4 and 5 year-old birds it is significantly lower (Le Vaillant et al. in revision). 
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Transponder-tagged birds were detected by an automatic identification system (Gendner et al. 

2005) when they entered and exited the colony during the breeding season. By monitoring the 

duration tagged birds spent in the colony and at sea, the system enabled us to reconstruct the 

breeding pattern of each individual, and to determine the number of successful breeding 

attempts throughout its life (Descamps et al. 2002; Gauthier-Clerc et al. 2004; Saraux et al. 

2011a). Past breeding success was determined as an index accounting for individual age, i.e. 

the residuals of a regression of the number of past breeding success on age (Lescroël et al. 

2010). As the clutch size of king penguins is one and the annual reproductive success is 

relatively low (ca. 40%; Saraux et al. 2011a), especially for young individuals (i.e. 5-years-old 

penguins; see Le Vaillant et al. 2012), we assessed breeding performances through two 

different metrics. First, breeding success was defined as a binary variable depending on 

whether the chick was fledged (success = 1) or not (success = 0). Second, assuming that birds 

maintaining their chick alive for longer periods are of higher quality, we defined breeding 

duration as the amount of time penguins maintained their offspring alive from laying to chick 

fledging or breeding failure. This allowed us to work on a continuous variable (range 22 to 

254 days) providing a more sensitive analysis than the binomial one. However, the above 

assumption is only reasonable for failed breeders, and we fixed the duration of successful 

breeders to its mean (i.e. 368 days). This avoids making any assumption on successful breeder 

quality according to duration, but still indicates that successful breeders are of better quality 

than failed ones. From individual records of colony attendance, we extracted breeding arrival 

dates, the breeding date. In king penguins, breeding initiation spreads from October to late 

February (Barrat 1976). Late breeding has a negative impact on breeding success 

(Weimerskirch et al. 1992), as late birds having little time to raise the chick before the onset 

of winter (Weimerskirch et al. 1992; Stier et al. 2014). 
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In this study, all birds were captured when departing from the colony to feed at sea. 

This allowed minimizing the disturbance caused to the colony and to the breeding partner 

and/or chick. A blood sample was obtained (see analysis below), and we measured the body 

mass, flipper and bill length of each bird to produce an index of body condition (see Saraux et 

al. 2011b; Viblanc et al. 2012). Briefly, we used a principal component analysis of bill and 

flipper length to establish a structural size index (SSI). The first principal component of these 

two parameters explained 76% of the variation. Body condition was then defined as the 

residuals of a regression of body mass on SSI.  

 

Blood sample analysis 

We used a heparinized syringe to collect 1 mL of blood from the marginal flipper vein of each 

bird departing for a foraging trip at sea. The blood was immediately centrifuged for 5 min at 

6,000 RPM, to separate red blood cells (RBC) from plasma, and stored at -20°C. We extracted 

DNA from 5µl of RBC using a commercial kit (DNeasy Blood & Tissue kit, Qiagen). We 

measured relative telomere length following the procedure of qPCR described by Criscuolo et 

al. (2009) and previously validated for king penguins (Geiger et al. 2012). A single control 

gene (Aptenodytes patagonicus zinc finger protein, NCBI accession number AF490194) was 

defined as a gene non-variable in copy numbers within our population (hereafter non-VCN: 

Smith et al. 2011). The primer sequences were defined by Primer 3 software as: (Royal 1: 5’-

TACATGTGCCATGGTTTTGC-3’; Royal 2: 5’-AAGTGCTGCTCCCAAAGAAG-3’). 

Primer concentrations in the final mix were 200 mM for telomere length determination and 

300 mM for the control gene. Telomere and control gene PCR conditions were: 2 min at 95 

°C followed by 40 cycles of 15 s at 95 °C, 30 s at 56 °C, 30 s at 72 °C and 60 s at 95 °C. We 

used 2.5ng DNA per reaction and the BRYT Green® fluorescent probe (GoTaq®qPCR 

Master Mix, Promega, France). Amplification efficiency of the qPCR run was 105% 
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(telomere, T) and 100% (non-VCN gene). Final calculation of telomere length (T/non-VCN 

ratio) was done following Pfaffl (2001) using the telomere and non-VCN specific efficiencies 

of each plate and the qPCR cycle numbers proportional to the individual telomere length (Cq 

T) or to the number of copies of the non-VCN gene (Cq S). The final measure obtained was 

then expressed as measure of relative telomere length. Relative telomere lengths ranged 

between 0.10 and 1.78 T/non-VCN or T/S ratio. Measurements were run as duplicates on a 

single plate. Intra-assay variability (CV) was 2.11 ± 0.25% and 1.53 ± 0.19% for the Cq T and 

Cq S values, respectively, and of 13.63 ± 1.16% for the final T/S (N = 50 duplicates).  

A measure of innate immunity was obtained by determining plasmatic non-specific 

natural antibody (NAbs) levels (see below) using a hemagglutination test from 25µl of plasma 

(Matson et al. 2005). Plasma NAbs are major humoral components of innate immunity 

(Palacios et al. 2009). The haemagglutination assay was carried out in 96-well plates using a 

small amount of plasma (50 µl) following Matson and colleagues (2005). Plasma was 

introduced into column 1 and serially diluted (1:2) with phosphate-buffered saline (PBS; 

Sigma-Aldrich, Lyon, France), from column 2 to column 11, with column 12 serving as a 

negative control (PBS only). A fixed amount of a sheep red blood cell (SRBC) suspension 

was added to each well and the plate was then incubated for 90 min at 37°C. The SRBCs were 

provided by the slaughterhouse (Haguenau, Alsace, France) under veterinarian authorization, 

and conserved in 50% Alsever’s solution (Sigma-Aldrich). The SRBCs were washed 4 times 

as previously described and re-suspended in 0.1% PBS (Matson et al. 2005). The plate was 

tilted to an angle of 45° for 20 min at room temperature to enhance agglutination 

visualization. The intra-assay variability was 4.9% (N = 5 duplicates). The agglutination titre 

(NAb score; i.e. SRBC concentration for which an agglutination reaction was observed) for 

each individual was scored blindly by the same experimenter (M.L.V.) and reflects levels of 
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NAbs only. Nevertheless, because plasma samples were serially diluted, NAb scores do not 

directly reflect the plasma concentrations of NAbs.  

 

Statistics 

Statistical analyses were conducted using the R 2.15.2 statistical environment (R 

Development Core Team, 2008). The link between NAbs, age, body condition and relative 

telomere length was asserted using linear models (LMs). Then, variation in arrival date was 

analysed using a LM with sex, age (as a covariate), relative telomere length, NAbs, body 

condition, past breeding success and two-way interactions with relative telomere length as 

independent variables. Non-significant effects were removed sequentially from the model. 

Finally, we investigated the relationship between relative telomere length, breeding duration 

(continuous variable; LM), and breeding success (binomial response; Generalized Linear 

Model, GLM). Sex, age, relative telomere length, NAbs, body condition, past breeding 

success, arrival date and breeding stage (i.e. incubation vs. brooding; as no effect was found, 

we do not present it in results) were entered as independent variables and all two-way 

interactions with relative telomere length were considered. Non-significant effects were 

removed sequentially from the model. The most appropriate model was selected using 

Akaike’s Information Criterion (AICc; AIC adjusted for small sample size). In general, the 

model with the lowest AICc was selected, except when ∆AICc < 2. In this case, AICc weights 

were examined as well as the number of parameters (the most parsimonious models were 

favoured to avoid overparametrization). Residual normality was asserted using Shapiro-

Wilk’s normality test. Significant results for p < 0.05 are reported as means ± SE.  

 

Results 

Individual and physiological parameters  
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Relative telomere length and NAbs values were positively related (estimate ± SE = 0.11 ± 

0.03; LM: F1, 48 = 11.09, p = 0.002; N = 50 individuals; Fig. 1), suggesting that birds with 

higher natural antibody levels had longer telomeres. Relative telomere length and body 

condition were also positively related, though not significantly (estimate ± SE = 0.09 ± 0.05, 

LM: F1, 48 = 3.50, p = 0.067). In contrast, we found no cross-sectional relationship between 

age and relative telomere length (estimate ± SE = 0.01 ± 0.03, LM: F1, 48 = 0.12, p = 0.727). 

Finally, relative telomere length and past breeding success were not related (estimate ± SE = 

0.30 ± 0.24, LM: F1, 48 = 1.51, p = 0.226; N = 50 individuals). 

 

Timing of arrival at the breeding site and breeding performances  

Model selection retained relative telomere length, sex and age as important variable 

explaining bird arrival date at the colony for breeding (see online supplementary information 

Table S1). Relative telomere length had a significant negative effect on arrival date (LM: F4, 45 

= 6.259, p = 0.004; Fig. 2 and Table 1), birds with longer telomeres arriving earlier at the 

colony. For a 10% increase in relative telomere length, individuals arrived approximately one 

day earlier at the colony. Age also had a significant effect on arrival date (p = 0.002), and 

interacted significantly with relative telomere length (p = 0.007). Thus, the negative effect of 

telomere length on arrival date was more pronounced in young birds. In general, males arrived 

earlier (11.4 days on average) than females to breed (p = 0.030; see Table 1).  

Concerning breeding duration, the best model retained age, past breeding success and 

relative telomere length as important explanatory variables (see online supplementary 

information Table S2). Both age and past breeding success had significant positive effects on 

breeding duration considered as a continuous variable (LM: F3, 46 = 13.67, p < 0.001 and p = 

0.008, respectively; Table 2). Relative telomere length also had a significant positive effect on 

breeding duration (p = 0.041; Fig. 3), confirming the trend previously observed on the binary 
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variable. Breeding success considered as binomial response was explained by age, past 

breeding success and relative telomere length (see online supplementary Table S3 for model 

selection). Age and past breeding success had significant positive effects on breeding success 

when it was considered as a binomial response (GLM: p < 0.001 and p < 0.001, respectively). 

Whereas we observed a positive trend of relative telomere length on breeding success (p = 

0.063) and no significant effect of the breeding date (p = 0.210). The interaction between 

breeding date and relative telomere length had a positive effect on breeding success (p < 

0.001), meaning that the effect of breeding date on breeding success is greater for individual 

with long telomeres. 

 

Discussion 

Controlling for age, we found that king penguins with longer telomeres arrived earlier in the 

colony to breed, tended to have higher breeding success, and that their chicks survived longer 

than individuals with shorter telomeres (viz. breeding duration was longer), suggesting a link 

between telomere length and fitness proxies. We also found that breeding performances 

(breeding duration and breeding success) were affected by past breeding success. Our results 

are consistent with several studies on long-lived species, younger breeders and/or breeders 

with lower quality generally performing less well in terms of breeding than older breeders 

and/or individuals of greater quality (in mammals; Moyes et al. 2009, 2011, in seabirds; 

DeForest and Gaston 1996; Ezard et al. 2007; Nisbet and Dann 2009; Froy et al. 2013). Not 

surprisingly breeding performances were also explained by breeding date initiation as 

previously reported in king penguin (Weimerskirch et al. 1992; Stier et al. 2014) and other 

seabird species (DeForest and Gaston 1996; Ezard et al. 2007; McCleery et al. 2008). The 

positive effect of age we observed on breeding duration (the fact that chicks survived longer 

for older-aged birds) might be explained by the fact that older and more experienced 
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individual arrived earlier at the breeding colony, possibly being able to establish their 

breeding territory in higher quality areas (Bried and Jouventin 2001). 

Our results on the positive relationship between relative telomere length and natural 

antibody levels are novel. Immunity function is strongly related to survival (Møller and Saino 

2004), and strong links have also been found between telomere length and individual survival  

(Bize et al. 2009; Salomons et al. 2009; Geiger et al. 2012; Barrett et al. 2013). Those results 

suggest that telomere length may have a role in mediating the observed effects of immune 

function on survival. In human, it has been shown that the rate of telomere length change in 

leukocyte predicts mortality (Epel et al. 2009). Moreover, telomere shortening is linked to 

cellular ageing (in vitro and in vivo, see Samassekou et al. 2010) and affected by both 

environmental and metabolic stress (Voillemot et al. 2012; Nettle et al. 2013; Boonekamp et 

al. 2014). Whereas positive links between telomere length and fitness are often documented 

(see references above), the contrary has also been reported. For instance, in a longitudinal 

study on common terns, Bauch and colleagues (2013) found a quadratic relationship between 

telomere loss and the number of raised chicks to day 10. In this case, individuals with the 

highest reproductive success until day 10 lost fewer telomere base pairs than less successful 

parents attending only one or two chicks in the nest (Bauch et al. 2013). In addition, 

individuals performing better over the long term were those with shorter telomeres (Bauch et 

al. 2013). How may such differences be conciliated? Actually, it is possible that those 

contrasting results reflect two sides of the same coin: i) long telomeres could reflect higher 

resistance of good quality individuals to life-stress, but at the same time ii) higher metabolic 

investments (e.g. into reproduction) from high quality individuals may incur increased costs 

leading to higher rates of telomere loss (Bauch et al. 2013; Reichert et al. 2014a). In both 

cases telomeres may reflect performances but these studies make it clear that heterogeneity in 

individual traits in relation to species-specific life history characteristics is to be accounted for 
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to fully understand how telomere length is interpretable. For instance, reproduction may 

effectively induce pervasive telomere loss (Reichert et al. 2014a; Sudyka et al. 2014), but high 

quality individuals may tolerate such stress because of a higher ability to protect/restore their 

telomeres (Bauch et al. 2013) or to resist to the deleterious impact of accumulating senescent 

cells. Nevertheless, here, we found no link between relative telomere length and past breeding 

success. Further, it has been recently shown that stressful rearing conditions in early life 

(experimentally increased broods) enhances telomere loss in corvid chicks (Boonekamp et al. 

2014). Therefore, whereas high quality individuals may lose more telomeres during 

reproduction, they may also produce offspring with longer telomeres because they provide 

high quality parental care. The relative consequences of those costs/benefits on fitness remain 

to be determined. Importantly, future research needs to pinpoint the mechanisms leading to 

variability in telomere length (e.g. energy vs. social stress) in adult king penguin. Indeed, 

heritability estimates of telomere length are relatively low in king penguins (Reichert et al. 

2014a), suggesting that important effects of environmental stress on telomere dynamics in 

offspring should be considered. For instance, king penguin chicks reared under contrasting 

environmental conditions are known to differ in their phenotype (Stier et al. 2014), and chicks 

with longer telomeres have been found to survive better under harsh rearing conditions (reared 

late during breeding season; Stier et al. 2014). 

One hypothesis linking telomere length to fitness is slowly emerging from the medical 

studies conducted by Blasco and collaborators. Using telomerase gene therapy, these authors 

induced the restoration of short telomeres in mice by activating telomerase (de Jesus et al. 

2011), thereby improving mouse health and lifespan (de Jesus et al. 2012). Those results 

suggest that long telomeres do not simply reflect proper organism functioning, but also 

mechanistically underlie it in a certain way. In line with this, we recently found that 

experimentally activating telomerase led to longer telomeres and faster feather regeneration in 
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birds (Reichert et al. 2014b). Those studies urgently call for further experiments to assess the 

causal mechanisms by which telomere length affects fitness. Nevertheless, while telomere 

length may predict mortality, the association diminishes with age (Boonekamp et al. 2013), 

possibly explained by the fact that telomere length is a measure of somatic redundancy, rather 

than a marker of biological age per se. It is difficult to conclude on the absence of a link 

between age and relative telomere length in king penguins given the small differences in age 

classes (5, 8 and 9 years-old) of the present study. In addition, if selective disappearance 

occurred in our population (i.e. individuals with short telomeres disappearing earlier from the 

population leading to an over-representation of individuals with long telomeres at higher 

ages), this could mask within-individual relationships between telomere length and age (van 

de Pol and Verhulst 2006). Somatic redundancy stipulates that an organism consists of 

multiple elements that can replace each other, the decay of the last element causing organism 

death (Gavrilov and Gavrilova 2001). If applicable to telomeres, this idea opens fascinating 

perspectives for the study of long-lived seabirds using longitudinal studies.  

Whereas our measure of telomere length was obtained from a single tissue (red blood 

cells), previous studies have generally found strong correlation between telomere lengths 

measured in different tissues of the same organism (Takubo et al. 2002; Daniali et al. 2013; 

Reichert et al. 2013). As a consequence, telomere lengths measured in one tissue are likely 

representative of that found in the entire body. In addition, inter-individual variability in 

telomere attrition rates has been shown to be stable through life at least in mice (Daniali et al. 

2013) and captive short-lived birds (Heidinger et al. 2012). This suggests that inter-individual 

variability in telomere length may reflect overall organism functioning. In line with this idea, 

we found that individuals with shorter telomeres also had lower natural antibody levels, 

suggesting the lower physiological quality of these individuals. For instance, short telomere T 

lymphocytes have a reduced ability to respond to pathogens that requires cell proliferation 
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(reviewed in Weng 2012). Since we measured telomere length in red blood cells, our data 

rather related to the myeloid lineage cell (e.g. macrophages, basophils) than the lymphoid 

derived cells (e.g. lymphocytes). It follows that innate immune response may be weaker in 

penguins exhibiting red blood cells with short telomeres. Such a deterioration of the innate 

immune system may increase the general cost of body maintenance during reproduction, an 

energetically demanding period during which more energy is allocated to recover from 

infection when the innate shield is overwhelmed (Ardia 2005; Hanssen et al. 2005). The 

rational of this is that by keeping pathogens away based on a low cost innate barrier, penguins 

save energy for their reproduction (Roitt et al. 2001; Bourgeon et al. 2007). Yet, red blood cell 

telomere length could mirror critical trade-offs between reproduction and self-maintenance in 

king penguins, a possibility that necessitates further investigation given the complexity of 

innate vs. acquired immunity interactions and of the reality of their respective energy or non-

energy costs (Lochmiller and Deerenberg 2000; Verhulst et al. 2005). 

In conclusion, our study adds to the growing literature suggesting that telomere length 

may serve as an integrative proxy of individual quality, reflecting both physiological 

constraints and achieved fitness. The next step is to investigate the links between telomere 

length and other important components of fitness, such as foraging performances, to better 

understand how telomeres relate to differences in individual quality within a population; a 

question particularly suitable in the king penguin, a deep-diving bird continually facing 

dramatic foraging choices over his one year-long-breeding period. In addition, whether 

telomeres provide a sufficiently stable proxy to assess inter-individual differences in 

performance levels over long time frames in king penguins, remains to be determined (e.g. 

Heidinger et al. 2012).   
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Tables: 

Table 1. Model estimates ± SEs of a linear model explaining variation in annual arrival dates 

at the breeding colony for king penguins. The factor sex is reported in reference to the 

level ‘Female’ 

Arrival date Estimate ± SE t p 

(Intercept) 183.610 ± 35.02 5.24 <0.001 

Age -14.688 ± 4.51 -3.26 0.002 

Relative Telomere length -191.039 ± 62.00 -3.08 0.004 

Sex (Males-Females) -11.390 ± 5.07 -2.25 0.030 

Age x Relative Telomere length 22.082 ± 7.87 2.81 0.007 

 

 

Table 2. Model estimates ± SEs of a linear model explaining variation in breeding duration for 

king penguins.  

Breeding duration Estimate ± SE T p 

(Intercept) -189.559 ± 65.49 -2.90 0.006 
Age 42.747 ± 8.20 5.22 <0.001 

Relative Telomere length 84.440 ± 40.16 2.10 0.041 

Past Breeding Success 146.422 ± 52.86 2.77 0.008 
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Figure captions: 

 

Fig. 1: Positive correlation between relative telomere length and natural antibody levels (i.e. 

NAb score) in free-ranging king penguins (N = 50 free-ranging king penguins). 

 

Fig. 2: Arrival date at the breeding site according to sex (females: open circles; and males: 

black circles) and relative telomere length (N = 50 free-ranging king penguins). 

 

Fig. 3: Breeding cycle duration in king penguins (N = 50 free-ranging king penguins) 

according to age (5 year-old individuals: open circles; 8 year-old individuals: grey circles; and 

9 year-old individuals: black circles) and relative telomere length (5 year-old individuals: 

dotted line; 8 year-old individuals: grey line; and 9 year-old individuals: black line). 
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Figure 3 



Table S1: Model selection to explain arrival timing for breeding at the colony 

Explanatory variables AICc ∆AICc k wi 

Age + Telomeres + Past Breeding Success + Sex + Body Condition + Nabs + Telomeres 
x Age + Telomeres x Past Breeding Success + Telomeres x Sex + Telomeres x Body 
Condition + Telomeres x Nabs  

449.20 11.89 11 0.001 

Age + Telomeres + Past Breeding Success + Sex + Body Condition + Nabs + Telomeres 
x Age + Telomeres x Past Breeding Success + Telomeres x Sex + Telomeres x Nabs 446.83 9.52 10 0.003 

Age + Telomeres + Past Breeding Success + Sex + Body Condition + Nabs + Telomeres 
x Age + Telomeres x Past Breeding Success + Telomeres x Sex 444.89 7.58 9 0.008 

Age + Telomeres + Past Breeding Success + Sex + Body Condition + Nabs + Telomeres 
x Age + Telomeres x Past Breeding Success 442.81 5.50 8 0.024 

Age + Telomeres + Past Breeding Success + Sex + Body Condition + Nabs + Telomeres 
x Age 442.76 5.45 7 0.024 

Age + Telomeres + Past Breeding Success + Sex + Nabs + Telomeres x Age 439.78 2.48 6 0.108 

Age + Telomeres + Sex + Nabs + Telomeres x Age 437.16 0.15 5 0.402 

Age + Telomeres + Telomeres x Age + Sex 437.31 0 4 0.374 

Age + Telomeres + Sex 442.79 5.48 3 0.024 

Age + Sex 444.98 7.67 2 0.008 
Age + Telomeres 447.22 9.92 2 0.003 
Telomeres + Sex 443.13 5.83 2 0.020 
Best model is indicated in bold. k is the number of parameters in the model. ∆AICc is the difference of AICc compared to the best model. wi corresponds to 
the AICc weight and represents the probability of model i being the best among the models presented.  
 



Table S2: Model selection to explain current breeding duration 
 

Explanatory variables AICc ∆AICc k wi 

Age + Telomeres + Past Breeding Success + Sex + Body Condition + Nabs + Arrival_date + 
Telomeres x Age + Telomeres x Past Breeding Success + Telomeres x Sex + Telomeres x 
Body Condition + Telomeres x Nabs + Telomere x Arrival_date 

614.15 18.75 13 <0.001 

Age + Telomeres + Past Breeding Success + Sex + Body Condition + Nabs + Arrival_date + 
Telomeres x Age + Telomeres x Past Breeding Success + Telomeres x Sex + Telomeres x 
Body Condition + Telomeres x Nabs  

611.10 15.69 12 <0.001 

Age + Telomeres + Past Breeding Success + Sex + Body Condition + Nabs + Arrival Date + 
Telomeres x Age + Telomeres x Past Breeding Success + Telomeres x Body Condition + 
Telomeres x Nabs 

607.62 12.21 11 0.001 

Age + Telomeres + Past Breeding Success + Body Condition + Nabs + Arrival_date + 
Telomeres x Age + Telomeres x Past Breeding Success + Telomeres x Body Condition + 
Telomeres x Nabs  

604.07 8.67 10 0.004 

Age + Telomeres + Past Breeding Success + Body Condition + Nabs + Arrival_date + 
Telomeres x Age + Telomeres x Past Breeding Success + Telomeres x Body Condition  602.14 6.73 9 0.012 

Age + Telomeres + Past Breeding Success + Body Condition + Nabs + Arrival_date + 
Telomeres x Age + Telomeres x Body Condition  602.03 6.63 8 0.012 

Age + Telomeres + Past Breeding Success + Body Condition + Nabs + Arrival_date + 
Telomeres x Body Condition 600.43 5.03 7 0.027 

Age + Telomeres + Past Breeding Success + Body Condition + Nabs + Arrival_date 599.80 4.39 6 0.037 

Age + Telomeres + Past Breeding Success + Nabs Arrival_date 597.22 1.82 5 0.135 

Age + Telomeres + Past Breeding Success + Nabs 595.65 0.25 4 0.296 



Age + Telomeres + Past Breeding Success 595.40 0 3 0.335 

Age + Telomeres 600.64 5.24 2 0.024 

Age + Past Breeding Success 597.52 2.11 2 0.116 

Telomeres + Past Breeding Success 616.15 20.75 2 <0.001 
Best model is indicated in bold. k is the number of parameters in the model. ∆AICc is the difference of AICc compared to the best model. wi corresponds to the 
AICc weight and represents the probability of model i being the best among the models presented. 
  



Table S3: Model selection to explain current breeding success 

Explanatory variables AICc ∆AICc k wi 

Age + Telomeres + Past Breeding Success + Sex + Body Condition + Nabs + Arrival_date + 
Telomeres x Age + Telomeres x Past Breeding Success + Telomeres x Sex + Telomeres x 
BodyCondition + Telomeres x Nabs + Telomere x Arrival_date 

40.00 26.05 13 <0.001 

Age + Telomeres + Past Breeding Success + Sex + Body Condition + Nabs + Arrival_date + 
Telomeres x Age + Telomeres x Past Breeding Success + Telomeres x Sex + Telomeres x 
Nabs + Telomere x Arrival_date 

36.11 22.16 12 <0.001 

Age + Telomeres + Past Breeding Success + Sex + Body Condition + Nabs + Arrival_date + 
Telomeres x Age + Telomeres x Past Breeding Success + Telomeres x Sex + Telomere x 
Arrival_date 

32.43 18.48 11 <0.001 

Age + Telomeres + Past Breeding Success + Sex + Body Condition + Nabs + Arrival_date + 
Telomeres x Age + Telomeres x Sex  + Telomeres x Arrival_date 28.95 14.99 10 <0.001 

Age + Telomeres + Past Breeding Success + Sex + Body Condition + Nabs + Arrival_date +  
Telomeres x Sex + Telomeres x Arrival_date 25.64 11.69 9 0.002 

Age + Telomeres + Past Breeding Success + Sex + Body Condition + Nabs + Arrival_date + 
Telomeres x Arrival_date 22.50 8.55 8 0.010 

Age + Telomeres + Past Breeding Success + BodyCondition + Nabs + Arrival_date + 
Telomeres x Arrival_date 19.51 5.56 7 0.046 

Age + Telomeres + Past Breeding Success + BodyCondition +  Arrival_date +  Telomeres x 
Arrival_date  16.67 2.71 6 0.192 

Age + Telomeres + Past Breeding Success  + Arrival_date + Telomeres x Arrival_date  13.95 0 5 0.747 

Age + Telomeres + Past Breeding Success + Arrival_date   27.85 13.89 4 0.001 



Age + Telomeres + Arrival_date + Telomeres x Arrival_date 46.23 32.28 4 <0.001 

Telomeres + Past Breeding Success + Arrival_date + Telomeres x Arrival_date 33.08 19.12 4 <0.001 
Best model is indicated in bold. k is the number of parameters in the model. ∆AICc is the difference of AICc compared to the best model. wi corresponds to 
the AICc weight and represents the probability of model i being the best among the models presented.  
 

 




