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ABSTRACT

Aquasigeostrophicmodel is developed to diagnose the three-dimensional circulation, including the vertical

velocity, in the upper ocean from high-resolution observations of sea surface height and buoyancy. The

formulation for the adiabatic component departs from the classical surface quasigeostrophic framework

considered before since it takes into account the stratification within the surface mixed layer that is usually

much weaker than that in the ocean interior. To achieve this, the model approximates the ocean with two

constant stratification layers: a finite-thickness surface layer (or the mixed layer) and an infinitely deep in-

terior layer. It is shown that the leading-order adiabatic circulation is entirely determined if both the surface

streamfunction and buoyancy anomalies are considered. The surface layer further includes a diabatic dy-

namical contribution. Parameterization of diabatic vertical velocities is based on their restoring impacts of the

thermal wind balance that is perturbed by turbulent vertical mixing of momentum and buoyancy. The model

skill in reproducing the three-dimensional circulation in the upper ocean from surface data is checked against

the output of a high-resolution primitive equation numerical simulation.

1. Introduction

Vertical velocities associatedwithmesoscaleO(100)km

and submesoscale O(10) km processes in the upper

ocean are important for vertical exchanges of heat, sa-

linity, and tracers, such as nutrients and dissolved or-

ganic and inorganic carbon, between the surface mixed

layer (ML) and the ocean interior (Klein and Lapeyre

2009). These vertical velocities are usually weaker than

100mday21 (1mms21) and are therefore very difficult

to measure directly. Instead, their balanced components

have often been estimated indirectly from observations

of density and horizontal velocity using the omega

equation (Hoskins et al. 1978), but such estimations

require in situ observations obtained from high-

resolution ship surveys (e.g., Pollard and Regier 1992;

Rudnick 1996; Legal et al. 2007). A decade ago, Lapeyre

and Klein (2006) and LaCasce and Mahadevan (2006)

proposed a method to diagnose the three-dimensional

(3D) balanced motions in the upper ocean from a single

snapshot of surface buoyancy or height anomalies,

combined with a knowledge of the background stratifi-

cation, allowing to estimate vertical velocities in the

upper ocean from satellite observations (Isern-Fontanet

et al. 2006).

The method developed by Lapeyre and Klein (2006) is

based on the principle of invertibility of potential vorticity

(PV; Hoskins et al. 1985), which states that given a bal-

ance condition and a reference state, a knowledge of the

global distribution of PV and of buoyancy at the bound-

aries is sufficient to diagnose all the other adiabatic dy-

namical fields, including vertical velocities. Using the fact

that in the quasigeostrophic (QG) balance condition, PV

is a linear operator, Lapeyre and Klein (2006) decom-

posed the PV problem into a surface problem (with a

nonzero surface buoyancy and zero interior PV) and an

interior problem (with zero surface buoyancy and non-

zero interior PV). The total solution is then the sum of the

surface and interior solutions. For the surface problem,
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the special case of an infinitely deep ocean with buoy-

ancy anomalies vanishing at great depths has received

much attention and was dubbed surface quasigeo-

strophic (SQG) dynamics by Held et al. (1995) (see also

Blumen 1978).

Lapeyre and Klein (2006) showed that for a baroclinic

unstable flow forced by a large-scale mean PV gradient

including a nonzero surface buoyancy gradient, PV

anomalies in the interior are correlated with surface

buoyancy anomalies when large-scale buoyancy gradi-

ents at the surface and in the interior are correlated. As a

result, the interior and surface solutions are correlated,

and the total solution can be approximated in the upper

ocean by an ‘‘effective’’ SQG (eSQG) solution, using a

constant reference stratification N(z)5 N0 that must be

determined empirically. While Lapeyre and Klein (2006)

obtained spatial correlations greater than 0.85 between

vertical velocities from a primitive equation (PE) nu-

merical simulation and those diagnosed by the eSQG

inversion in the first 500m of their model, Klein et al.

(2009) obtained much poorer correlations (,0.6) in the

ML of another PE simulation with higher horizontal and

vertical resolution, in which the ML was forced by spa-

tially homogeneous high-frequency winds. Using the PE

simulation of Klein et al. (2009), Ponte et al. (2013)

showed that correlations for vertical velocities signifi-

cantly increased at 40-m depth (within the ML) when

adding diabatic vertical velocities due to turbulent ver-

tical mixing of momentum (Garrett and Loder 1981) to

the adiabatic vertical velocities diagnosed by the eSQG

inversion.

However, the eSQG model, by considering a constant

background stratification, does not take into account the

fact that the stratification within the ML is usually much

weaker than that in the ocean interior. The discontinuity

between the ML and interior stratification leads to dif-

ferent physics for the ML than for the ocean interior by

allowing interactions within the ML between edge waves

associated with buoyancy anomalies at the ocean surface

and ML base (Flierl et al. 2014). Such interactions lead to

baroclinic instabilities as in the Eady problem (Eady 1949)

that captures their main features in the QG approxima-

tion. TheseML instabilities (MLIs; Stone 1971; Haine and

Marshall 1998; Boccaletti et al. 2007; Fox-Kemper et al.

2008) have recently been shown to dominate vertical ve-

locity variance in deep winter MLs in high-resolution nu-

merical simulations of the northwestern Atlantic (Mensa

et al. 2013) and North Pacific (Sasaki et al. 2014) Oceans.

Observations in the western subtropical North Atlantic

confirm this seasonal cycle in theML submesoscale energy

(Callies et al. 2015).

Two questions therefore arise: What are the relative

contributions of adiabatic and diabatic dynamics to

vertical velocities in the ML? Can vertical velocities

associated with MLIs be diagnosed solely from surface

observations? To address these questions, we develop

the simplest possible diagnostic QG model that ex-

plicitly takes into account the presence of theML in the

ocean. We show that under the assumption of zero PV

anomalies in the ML, buoyancy anomalies at the ML

base can be recovered if observations of both surface

buoyancy and height anomalies are taken into account.

This enables a diagnosis, based solely on surface ob-

servations, of vertical velocities associated with MLIs

in dynamical regimes where the Rossby number Ro �
1. We also consider diabatic ML processes by including

turbulent vertical mixing of momentum and buoyancy

in the QG equations. We diagnose diabatic vertical

velocities within the ML using a diabatic omega

equation instead of the approximate solution of

Garrett and Loder (1981) used by Ponte et al. (2013).

The model, which we call MLQG hereinafter, is de-

veloped in section 2 and is then tested in section 3

against the numerical simulation reported in Klein

et al. (2009) and Ponte et al. (2013). The originality and

limitations of the MLQG model are discussed in sec-

tion 4. The main model equations are summarized in

the appendix.

2. Quasigeostrophic model with a surface mixed
layer

We start from the nondimensional primitive equa-

tions for hydrostatic and Boussinesq flow on the f plane,

neglecting turbulent horizontal mixing:
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where superscripts * indicate non-dimensional variables

and D*/D*t* is the material derivative operator. The

variables have been non-dimensionalized as follows:

horizontal distance (x, y)5L(x*, y*), vertical distance

z5Hz*, horizontal velocity (u, y)5U(u*, y*), vertical

velocity w5Ro(UH/L)w*, where Ro5U/f0L is the

Rossby number and f0 the (constant) Coriolis parameter,
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pressure p5 r0f0LUp* (r0 is a typical value for seawater

density), buoyancy b5 (f0LU/H)b*, time t5 (L/U)t*,

vertical turbulent viscosity Ay 5A0Ay*, vertical turbulent

diffusivity Ky 5K0Ky* , and background buoyancy fre-

quency N(z)5N0N*(z). Ek5A0/f0H
2 is the Ekman

number, Bu5 (N0H/f0L)
2 is the Burger number, and

Pr5A0/K0 is the Prandtl number. Boundary conditions

are not written explicitly here, but they involvewind stress

and air–sea heat and freshwater fluxes at the ocean sur-

face. Turbulent vertical mixing is parameterized as Fick-

ian fluxes, and countergradient buoyancy fluxes are not

considered. Therefore, the model is not suitable for

convective MLs.

We consider flow regimes for which Ek5O(Ro)� 1,

Bu 5 O(1), and Pr is not too small so that Pr21Ek � 1.

We decompose the flow variables into series of Rossby

numbers:

(u*,y*,w*,p*,b*)5(u
0
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0
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0
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0
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1
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1
*)1H:O:T. ,

(6)

whereH.O.T. refers to higher order terms. To the zeroth

order in Ro, the flow is purely horizontal and in geo-

strophic balance:
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w
0
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All flow variables at zeroth order in Ro can therefore

be determined from the streamfunction p0*. To de-

termine the latter, we use the principle of invertibility

of QG PV:

q
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whereD* is the horizontal Laplacian operator. Note that

when diabatic and frictional processes are retained in

the QG equations [Eqs. (1)–(5)], QG PV is not a con-

served quantity. However, the principle of invertibility

of PV holds whether or not diabatic and frictional pro-

cesses are important (Hoskins et al. 1985).

To the zeroth order in Ro, the vertical velocity is zero.

To diagnose vertical velocity, one must therefore con-

sider the equations of motion at first order inRo. Vertical

velocities are diagnosed using the QG omega equation

with turbulent vertical mixing terms (Nagai et al. 2006):
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where =* is the horizontal gradient operator, and

Q*52=*u0* � =*b0* is the geostrophic Q vector

(Hoskins et al. 1978).

We now proceed to determine the streamfunction p0*

analytically for the simplest possible QG model that

takes into account the presence of the ML in the ocean

(Fig. 1).We consider a surfaceML of thicknessH at rest,

with uniform stratification Nm [i.e., N*(z*)5Nm/N0 for

21, z*#0] and prescribed vertical turbulent viscosity

and diffusivity profiles, overlying an infinitely deep

adiabatic [i.e.,Ay* (z*)5Ky* (z*)5 0 for z*,21] interior

layer with uniform stratification Ni [i.e., N*(z*)5Ni/N0

for z*,21]. Here, layers refer to vertical domains with

uniform stratification instead of uniform density as in

traditional layered models. In addition, we allow for a

buoyancy jump DB* at the ML base typical of oceanic

density profiles (e.g., Brainerd and Gregg 1995). For-

mally, the idealized stratification can be expressed as

N*(z*)5
N

m

N
0

H(z*1 1)1DB*1/2d(z*1 1)

1
N

i

N
0

H(2z*2 1), (13)

where H is the Heaviside step function, and d is the

Dirac delta function.

FIG. 1. Schematic of theMLQGmodel. Bold symbols represent the

model inputs.
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We follow the formalism of Lapeyre and Klein (2006)

involving zero PV except at the boundaries, and there-

fore approximate the solution to Eq. (11) with in-

homogeneous boundary conditions as the solution to

D*p
0
* 1Bu21

m

›2p
0
*

›z*2
5 0 for 21, z* # 0, and

(14)

D*p
0
* 1Bu21

i

›2p
0
*

›z*2
5 0 for z* , 21, (15)

with inhomogeneous boundary conditions, where

Bum5 (NmH/f0L)
2 is theMLBurger number, and Bui5

(N0H/f0L)
2 is the interior Burger number. We have

chosen to retain Nm as the effective stratification in the

ML, which amounts to neglecting the interior solution in

theML under the premise that QG PV is close to zero in

the weakly stratifiedML. In contrast, we use an effective

stratificationN0 6¼Ni in the interior layer to approximate

the effect of the interior solution on the total solution

(Lapeyre and Klein 2006).

Boundary conditions must be specified to solve Eqs.

(14) and (15). Neumann boundary conditions could be

used by specifying buoyancy anomalies at the surface

(z*5 0) and the ML base (z*521) (Juckes 1994).

Here, with the aim of diagnosing the 3D circulation in

the upper ocean solely from surface observations, we

use instead both Neumann and Dirichlet boundary

conditions at the surface by specifying surface buoy-

ancy bs and surface streamfunction ps. This uniquely

determines the solution in the ML. To determine the

solution in the interior, we use the matching condition

at the ML base that involves the interface vertical

displacement h (Fig. 1):

p*(211)2 p*(212)5DB*h*, (16)

where h*5h/H5O(Ro). For a buoyancy jump DB 5
5 3 1023m s22 [consistent with the stratification shown

in Fig. 2 and observations of the density jump at the ML

base reported, e.g., by Brainerd and Gregg (1995)], a

ML depth anomaly of 20m then only gives a stream-

function anomaly of 103m2 s21, an order of magnitude

smaller than the typical streamfunction values shown in

Fig. 3 ofO(104) m2 s21. Therefore, to zeroth order in Ro,

the streamfunction is continuous at the interface:

p
0
* (211)5p

0
* (212) , (17)

yielding a Dirichlet boundary condition at the inter-

face for the interior solution. The remaining boundary

FIG. 2. (a) Potential density and (b) buoyancy frequency (normalized by f) in the PE sim-

ulation (gray line represents the horizontal average and shading represents the standard de-

viation) and in the MLQG (solid black line) and SQG (dashed black line) models. Dotted

horizontal line represents the ML base in the MLQG model. Buoyancy N0 in the MLQG and

SQGmodels is lower than values ofN in the PE simulation between 100 and 500m to take into

account the effects of interior PV anomalies on the total solution [see text in introduction and

Lapeyre and Klein (2006)]. (c) Turbulent vertical diffusivity prescribed in the MLQG model.

278 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 46



condition is the Neumann condition that buoyancy

anomalies vanish at great depths.

To solve Eqs. (14) and (15), subject to the boundary

conditions just mentioned, we decompose the stream-

function in horizontal Fourier components:

p
0
* (x*, y*, z*)5 p̂

0
* (k*, l*, z*) exp[i(k*x*1 l*y*)] , (18)

where k* and l* are the zonal and meridional wave-

numbers, respectively. The solution for the stream-

function is

p̂
0
* 5
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s
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where k*5 (k*2 1 l*2)1/2. Geostrophic velocities and buoyancy anomalies are then obtained using Eqs. (7)–(9):
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m Bu1/2
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(22)

Buoyancy anomalies are discontinuous at the ML base

due to the jump in background stratification [see Fig. 3

of Juckes (1994) for a simple illustration].

Since our parameterizations for vertical turbulent

mixing are not suitable for convective MLs, we restrict

our attention to stable conditions, for which Pr 5 1

(Large et al. 1994). After developing the diabatic forcing

terms in the omega equation [Eq. (12)], the omega

equation for MLQG becomes
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(23)

with boundary conditions ŵ1*(z*5 0)5 ŵ1*(z*/2‘)5 0.

To diagnose vertical velocities, we need to prescribe

Ay*.We chose a parabolic profile to yield nonzero values

for both diabatic forcing terms on the right-hand side of

Eq. (23), with Ay* 5 0 at the surface and ML base be-

cause of the buoyancy jumps at these depths (Fig. 2c):

A
y
* 524z*(11 z*) for 21# z*# 0: (24)

In the next section, Eq. (23) is solved numerically

using finite differences for each Fourier component.

However, because of the Dirac delta function in N*

[Eq. (13)], the ML depth must be treated differently.

Vertically integrating Eq. (23) over an infinitesimally

thin layer across the ML base yields

›ŵ
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›z*
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Equation (25) is discretized at z*521 when numeri-

cally solving the omega equation [Eq. (23)].

The equations required to diagnose the 3D circulation

in the upper ocean using theMLQGmodel developed in

this section are recalled in the appendix in dimensional

form.

3. Numerical results

a. Numerical simulation

We apply the MLQG model to data from a PE nu-

merical simulation of a turbulent flow field in a zonal

b-plane channel centered at 458N with a size of 1000km

by 2000km and a depth of 4000m. This numerical sim-

ulation has been described in detail by Klein et al. (2008,

2009), Danioux et al. (2011), and Ponte et al. (2013).

Here, we only briefly describe its main features. The

numerical code is the Regional Oceanic Modeling Sys-

tem (ROMS; Shchepetkin and McWilliams 2005), with

the KPP parameterization for vertical mixing (Large

et al. 1994) and a bi-Laplacian parameterization for

horizontal mixing (with Ah 5 2 3 106m4 s22). The do-

main is zonally periodic and has vertical walls at the

northern and southern boundaries with free-slip

boundary conditions. The spatial resolution is 2 km in
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the horizontal and 100 levels in the vertical (with vertical

grid spacing ranging from ;3m near the surface to

;200m near the bottom). The horizontally averaged

vertical profile of buoyancy frequency N (Fig. 2b)

features a permanent pycnocline centered at 600-m

depth (not shown) that corresponds to a first Rossby

radius of deformation Rd 5 23km. The mesoscale tur-

bulence (Fig. 3) is forced by using a relaxation to a basic

state that corresponds to a large-scale meridional den-

sity gradient that is surface intensified. An active ML

with a mean depth of ;60m and a ML deformation

radius O(100)m, forced by spatially uniform but tem-

porally varying winds and surface heat fluxes, caps a

seasonal pycnocline. The data used here has been av-

eraged over 18 h to filter out near-inertial oscillations.

b. Diagnosis of balanced 3D circulation in the upper
ocean

The resting depth of the interface between the two

layers of the MLQG model was chosen to be the depth

of maximum background buoyancy frequency of the PE

simulation (H 5 70m; Fig. 2b). Background buoyancy

frequencies for the MLQG model were chosen to be

Nm ; 3f0 and N0 ; 30f0 (as in Klein et al. 2009) to

approximate the vertical profile used in the PE simulation

in the upper 500m. The value of N0 is lower than the

values ofN in the PE simulation between 100 and 500m to

take into account the effects of interior PV anomalies on

the total solution (Lapeyre and Klein 2006), as discussed

in the introduction. The buoyancy jump between the ML

and the interior was chosen to be DB5 53 1023ms22 to

approximate the mean density profile of the PE simu-

lation (Fig. 2a). The maximum vertical viscosity and

diffusivity coefficients in the ML of the MLQG model

were chosen to beA05K05 1.53 1022m2 s21 (Fig. 2c),

so that the ratio of the peak in MLQG vertical velocity

variance in theML over that in the interior matches that

of the PE simulation (Fig. 4b). The corresponding

Ekman depth is hE 5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2A0/f0

p
5 17m.

Figures 3a and 3b show the surface streamfunction

and buoyancy from the numerical simulation at an ar-

bitrary time (after the simulation has reached statistical

equilibrium). The background state (zonally averaged

fields) was removed to obtain surface streamfunction

and buoyancy anomalies. These 2D fields were Fourier

transformed, and the 3D circulation was diagnosed with

the MLQG model described in section 2. To assess the

validity of the assumption behind the MLQG model,

namely, that interface displacements are small com-

pared to theMLdepth [i.e.,h/H5 (h2H)/H5O(Ro)�
1], the ML depth h(x, y) was determined as the depth of

the maximum value of buoyancy frequency at each grid

point. Normalized interface displacements h/H are

shown in Fig. 3c. Although interface displacements can

FIG. 3. (a) Streamfunction, (b) buoyancy anomalies, and (c) normalized interface displacements in the PE simulation.

The black square delimits the area shown in Fig. 5.
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be as large as the average ML depth along some fronts,

they remain less than ;0.25H over most of the domain.

Therefore, the QG assumption behind the MLQG

model seems reasonable, except at strong fronts.

Figure 4a shows spatial (horizontal) correlation co-

efficients r as a function of depth between buoyancy

anomalies, relative vorticities, and vertical velocities of

the PE simulation and those diagnosed with the MLQG

model. Relative vorticities are well correlated in the first

300m (r . 0.85), but the correlation decreases quickly

below 300m. Buoyancy anomalies are almost perfectly

correlated (r ; 1) in a large part of the ML because of

the use of surface buoyancy anomalies as input to the

MLQGmodel [Eq. (22)]. Correlation decreases to 0.7 at

the interface between the two layers. TheMLQGmodel

is unable to reproduce the local enhancement of buoy-

ancy anomalies in the seasonal pycnocline (Fig. 4b,

black lines). Correlation increases again above 0.9 be-

tween 100 and 500m, but variance is underestimated.

Vertical velocities are well correlated near the surface

(r ; 0.9), in contrast to the SQG-diagnosed vertical ve-

locities for which r, 0.5 (dashed blue line in Fig. 4a), but

correlation decreases to less than 0.7 (less than half the

variance explained) in the seasonal pycnocline, below

which it increases again to 0.77 between 100 and 500m.

Even at the depthwhere the correlation is aminimum, the

main patterns of vertical velocities are qualitatively well

reproduced by the MLQG model (Fig. 5). The local en-

hancement of vertical velocity variance in the ML is also

reproduced by the MLQG model but not by the SQG

model (Fig. 4b, blue lines).

To understand the MLQG model strengths and limita-

tions, it is helpful to look at correlation in the spectral do-

main or coherence c (Fig. 6, bottom panels). For buoyancy

anomalies (Fig. 6g), coherence is close to 1 at all horizontal

scales in the ML because of the use of surface buoyancy

anomalies as input to the MLQG model as mentioned

above. However, coherence quickly drops in the seasonal

pycnocline for wavelengths smaller than 100km, for which

the validity of the QG approximation becomes question-

able (2pRd 5 145km) but remains high for wavelengths

between 100 and 350km. For relative vorticity (Fig. 6h),

coherence is large at horizontal scales and depths where

most of the energy resides (Fig. 6b), explaining the high

spatial correlation coefficients above 300m. However, as

horizontal scales decrease, the depth down to which co-

herence is large gets shallower, while energy remains fairly

uniform with depth above 500m in the PE simulation

(Fig. 6b), explaining the decrease of the spatial corre-

lation coefficient below 300-m depth (Fig. 4a). For ver-

tical velocity (Fig. 6i), coherence is large at all

wavelengths smaller than 350km in the ML, and at

wavelengths between 60 and 350km below the ML,

where most of the energy resides (Fig. 6c).

FIG. 4. (a) Spatial (horizontal) correlations as a function of depth between MLQG (solid

lines) or SQG (dashed lines) and PE buoyancy anomalies (black), relative vorticities (red), and

vertical velocities (blue). (b) Their standard deviations are shown for the PE simulation (thick

solid lines) and MLQG (thin solid lines) and SQG (dashed lines) models. Horizontal dotted

lines indicate the ML base in the MLQG model.
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To assess the relative contributions of adiabatic and

diabatic dynamics to vertical velocities in the ML, the

omega equation [Eq. (23)] is also solved by settingAy* 5 0

to obtain adiabatic vertical velocities wa*. Diabatic vertical

velocities are then obtained as wd* 5w1* 2wa* since the

omega equation is linear inw1*. Figure 7 shows the relative

contributions of wa* and wd* at 40-m depth in the ML.

Adiabatic vertical velocities dominate the variance for

wavelengths longer than 30km and peak around 80km.

They are well correlated with PE velocities (c2 . 0.6) for

wavelengths between 50 and 350km. They are slightly

better correlated with PE velocities than SQG-diagnosed

vertical velocities are (cf. the blue and cyan curves in

Fig. 7b), but the improvement is not sufficient to account

for the much improved spatial correlations in the ML

(Fig. 4a). These are due to the diabatic vertical velocities

that dominate the variance at wavelengths shorter than

30km and peak around 15km, at scales where PE vertical

velocity variance is still high (black curve in Fig. 7a). In-

deed, diabatic vertical velocities are well correlated with

PE velocities for wavelengths shorter than 30km.

4. Discussion

A QG model with a ML (MLQG model) has been

developed to diagnose the 3D circulation, including

vertical velocities, in the upper ocean from only surface

observations of buoyancy and height anomalies and

knowledge of the background stratification. Diabatic dy-

namics (namely, turbulent vertical mixing) are included in

the ML.

The formulation for the adiabatic component departs

from the classical SQG framework since it takes into

account the presence of the ML by considering two

constant stratification layers: a finite-thickness weakly

stratified ML and an infinitely deep interior layer. PV is

assumed to be constant within each layer. So the solu-

tion for the adiabatic dynamical component within the

ML is similar to the Eady solution and that in the in-

terior to the SQG solution. This configuration allows us

to diagnose vertical velocities associated with MLIs

within the limitations of the QG approximation. As

pointed out by Haine and Marshall (1998), although the

QG analysis of Eady (1949) is formally inapplicable to

the oceanicML because of its finite Richardson number,

it is yet qualitatively correct, and a similar qualitative

success may be expected for the diagnostic model pre-

sented here. The main problems to be solved are the

boundary conditions at the interface between the ML

and the interior. Because the streamfunction is contin-

uous at theML base at zeroth order in Ro, knowledge of

surface streamfunction and buoyancy anomalies are

FIG. 5. Vertical and horizontal (at the ML base) sections of vertical velocities (color) and buoyancy anomalies

(contours, spaced by 1023 m s22, solid for positive and dashed for negative values) are shown for (a) the PE simu-

lation and (b) the MLQG model. The horizontal area is indicated by a black square in Fig. 3.
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sufficient to determine the streamfunction at all depths,

without requiring knowledge of buoyancy anomalies at

the ML base. This is a key point of our model.

Recently, LaCasce and Wang (2015) also used a

simplified QG model incorporating a surface ML to di-

agnose subsurface horizontal velocities and buoyancy

anomalies from surface fields. Their model differs from

ours in two aspects. First, they explicitly solve the in-

terior problem by projecting interior PV anomalies on

the first baroclinic mode. Second, they use a matching

condition at the ML base not only for streamfunction

(which they require to be continuous as we do), but also

for buoyancy anomalies, so that the surface problem can

be solved using only surface buoyancy anomalies. This

leaves sea surface height, minus the contribution from

the surface solution, to determine the interior solution.

They tested two different matching conditions for

buoyancy anomalies at the ML base: b/N2, which guar-

antees continuity of w, and b itself, which leads to a

discontinuity in w, an embarrassing feature when at-

tempting to diagnose vertical velocities as we do here.

Although matching b/N2 guarantees continuity of w for

adiabatic dynamics, it is not a necessary condition since

what needs to be matched is actually D(b/N2)/Dt [see

Eq. (4)], which is done implicitly in our model through

the omega equation.

The formulation for the diabatic component departs

from that of Ponte et al. (2013), who used a 3D extension

of the 2D analytical solution of Garrett and Loder

(1981), which takes the nondimensional form

w
GL81
* 52A

y
*D*b

0
* . (26)

To obtain their solution, Garrett and Loder (1981) im-

plicitly assumed Ro � Ek � 1, a more restrictive as-

sumption than that used to derive the omega equation

[Eq. (12)], namely, Ro 5 O(Ek) � 1. As a result, their

solution is not the general solution to the diabatic omega

equation [i.e., Eq. (12) with =* �Q*5 0]. However, in the

limit of vanishing stratification in the ML (i.e., Bum / 0),

buoyancy anomalies in the ML become depth indepen-

dent [seeEq. (22)], and the solution to the diabatic omega

equation asymptotes to the solution ofGarrett and Loder

(1981). With Nm ; 3f0, the ML Rossby radius is only

;200m, and so for wavelengths greater than 10km,

NmkH/f0 & 0.1, and the limit of vanishing stratification in

FIG. 6. Spectral distributions of (top) variance in the PE simulation, (middle) variance in the MLQG model, and

(bottom) coherence between MLQG and PE for (left) buoyancy anomalies, (center) relative vorticities, and (right)

vertical velocities. Dotted horizontal lines indicate the ML base in the MLQG model.
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the ML, and therefore the solution of Garrett and Loder

(1981), becomes a good approximation. A peculiar fea-

ture of the diabatic omega equation is that when Pr 5 1

and Ay* 5Ky* 5 1 (i.e., vertical viscosity and diffusivity

are depth independent in the ML), the diabatic forcing

terms cancel each other, as noted by Nagai et al. (2006).

Therefore, given boundary conditions ŵ1* (z*5 0)5
ŵ1* (z*/2‘)5 0, nonzero diabatic vertical velocities

are obtained only for vertically varying viscosity and

diffusivity profiles [see Eq. (23)].

The MLQG diagnosis was tested against high-

resolution PE simulations of a turbulent flow field in a

zonal b-plane channel. The main improvement over the

classical SQG diagnosis is obtained for vertical veloci-

ties in the ML, which are well correlated with the PE

velocities at all scales (Figs. 6i, 7b). This improvement is

due to the diabatic vertical velocities, whose magnitude

is larger than that of the adiabatic vertical velocities for

wavelengths shorter than 30km (Fig. 7a). However, the

ML depth in the PE simulation used here is moderate

(60m), and consequently MLIs should be weak and are

probably not even resolved with the 2-km horizontal

resolution used here. For deeper MLs, such as in winter

in large parts of the ocean, MLIs are much more ener-

getic, and they dominate vertical velocity variance (see

Fig. 5b of Sasaki et al. 2014).Whether theMLQGmodel

would provide a good diagnostic for deep MLs remains

to be verified.

There are many limitations to theMLQGmodel. One

is the determination of the interior solution to the PV

FIG. 7. (top) Spectra of vertical velocities at 40-m depth for the PE simulation (black) and the

MLQG (magenta) and SQG (cyan) models. The adiabatic (blue) and diabatic (red) contri-

butions to the MLQG vertical velocities are also shown. (bottom) Squared coherence between

the diagnosed and PE vertical velocities.
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inversion problem. We have chosen to neglect the con-

tribution of the interior solution in the ML under the

premise that QG PV is close to zero in the weakly

stratified ML. Below the ML, we have chosen to follow

the approach of Lapeyre and Klein (2006) for its sim-

plicity since the focus here was on the dynamics in the

diabatic ML. More elaborate approaches have been

proposed (e.g., Wang et al. 2013; Ponte and Klein 2013)

and could possibly be adapted to the MLQG frame-

work. Another limitation is the assumption of small

Ek, which prevents resolving the surface Ekman layer.

The effects of Ekman dynamics would be to modify the

surface boundary condition for w1*. As discussed by

Ponte et al. (2013), in the present PE simulation the

QG vertical mixing terms dominate over nonlinear

Ekman effects in driving ageostrophic motions. The

neglect of Ekman dynamics is indeed supported by the

high correlations obtained for vertical velocities in

the ML. Perhaps the most important limitation is the

assumption of small Ro. While the statistical esti-

mation of Ro, hRoi5 hz2i1/2/f , is small (hRoi, 0:2;

Fig. 4b) and the interface displacements are usually

small compared to ML depth (Fig. 3c), local Ro5 jz/fj
and interface displacements can become large at

strong fronts, where vertical velocities are expected to

be high. Therefore, the MLQG model will underesti-

mate vertical velocities at strong fronts. The QG ap-

proximation could be relaxed for a less restrictive

approximation such as the semigeostrophic approxi-

mation (as in Badin 2013), but in the case of a model

with two constant stratification layers such as MLQG,

observations of buoyancy anomalies in the seasonal

pycnocline would be required for the diagnosis be-

cause of the matching condition [(Eq. 16)].
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APPENDIX

Dimensional MLQG Equations

We recall here the main steps and equations required

to diagnose the 3D circulation in the upper ocean from

the sole knowledge of surface streamfunction cs and

buoyancy bs anomalies [and background stratification

N(z)] using the MLQG model developed in section 2.

The equations are given in dimensional form for easier

application to oceanographic data.

The first step consists of determining, from the back-

ground stratificationN(z), the depthH of theML base,

the ML stratification Nm, the buoyancy jump at the

ML base DB, and the effective interior stratification

N0. Here, we chose the value N0 5 30f0 used by Klein

et al. (2009), but in general, N0 can be determined

using the procedure proposed by Lapeyre and Klein

(2006). The MLQG background stratification is then

given by

N(z)5N
m
H(z1H)1DB1/2d(z1H)1N

0
H(2z2H) ,

(A1)

where H is the Heaviside step function, and d is the

Dirac delta function.

The second step consists of computing the 2D Fourier

transforms ĉs and b̂s. For the numerical simulation

considered here, the fields are periodic in x but not in y,

so the domain was mirrored at the northern boundary to

obtain fields periodic in both x and y and avoid spectral

leakage. In general, the domain should be mirrored

twice, first at the northern boundary, then at the eastern

boundary of the first mirrored domain.

The third step consists of diagnosing the stream-

function and buoyancy anomalies. First, the stream-

function is obtained with

ĉ
0
5

8>>><>>>:
ĉ
s
cosh

N
m
kz

f
0

1 b̂
s
N21

m k21 sinh
N

m
kz

f
0

for 2H# z# 0,

�
ĉ
s
cosh

N
m
kH

f
0

2 b̂
s
N21

m k21 sinh
N

m
kH

f
0

�
exp

N
0
k(z1H)

f
0

for z#2H ,

(A2)
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where k 5 (k2 1 l2)1/2, and k and l are the zonal and me-

ridional wavenumbers, respectively. Second, the horizon-

tal velocities and buoyancy anomalies are obtained with

û
0
52ilĉ

0
, (A3)

ŷ
0
5 ikĉ

0
, and (A4)

b̂
0
5

8>>><>>>:
ĉ
s
N

m
k sinh

N
m
kz

f
0

1 b̂
s
cosh

N
m
kz

f
0

for 2H, z# 0,�
ĉ
s
N

0
k cosh

N
m
kH

f
0

2 b̂
s
N

0
N21

m sinh
N

m
kH

f
0

�
exp

N
0
k(z1H)

f
0

for z,2H .

(A5)

The fourth and final step consists of diagnosing ver-

tical velocities using the omega equation:

›2ŵ
1

›z2
2

�
Nk

f

�2
ŵ

1
5

2

f 2
b= �Q1

d2A
y

dz2
k2

f 2
bb
0
1

dA
y

dz

N2k4

f 3
bc
0
,

(A6)

where = is the horizontal gradient operator, and Q5
2=u0 � =b0. Boundary conditions are ŵ1(z5 0)5
ŵ1(z/2‘)5 0. To computeQ, the spatial velocity and

buoyancy fields must be obtained by taking the inverse

2D Fourier transforms of û0 5 (û0, ŷ0) and b̂0 and re-

stricting them to the original nonmirrored domain be-

fore computing their horizontal gradients.

The term Ay is prescribed as a parabolic profile to

yield nonzero values for both diabatic forcing terms on

the right-hand side of Eq. (A6), with Ay 5 0 at the sur-

face and ML base because of the buoyancy jumps at

these depths (Fig. 2c):

A
y
524A

0

z

H

�
11

z

H

	
for 2H# z# 0, (A7)

where A0 is the maximum vertical turbulent viscosity

value.

Equation (A6) is solved numerically using finite dif-

ferences for each Fourier component. However, be-

cause of theDirac delta function inN [Eq. (A1)], theML

depth must be treated differently. Vertically integrating

Eq. (A6) over an infinitesimally thin layer across theML

base yields

›ŵ
1

›z

����
z52H1

2
›ŵ

1

›z

����
z52H2

2DB
k2

f 2
ŵ

1
(2H)

5
k2

f 2
dA

y

dz

����
z52H1

bb
0
(2H1) . (A8)

Equation (A8) is discretized at z 5 2H when numeri-

cally solving the omega equation [Eq. (A6)].
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