Rapport interne LPO/15-07

UMR 6523	DELAYED MODE QUALITY CONTROL	
Laboratoire de	OF OVIDE ARGO DATA	
Physique des Océans	FLOAT WMO 6900399	
Date : 29 octobre 2015	Auteurs : Lagadec Catherine Thierry Virginie Cabanes Cécile	Archivage : LPO

Liste de diffusion :

LPO

Carole Despinoy (ODE/LPO)

DELAYED MODE QUALITY CONTROL OF OVIDE ARGO DATA FLOAT WMO 6900399

Internal Report LPO 15-07

C. Lagadec - V. Thierry - C. Cabanes

Number	Deployment (cycle OD)	Last cycle
	cycle OD	214
Provor	28/05/2006	
WMO 6900399	9h 50	
CTS3	40.3348 N	
05-S3-30	$11.7795 \ W$	
Date of control	Float status	Last cycle
January 2015	Active	30/01/10 (134)
Coriolis	11/02/2010	
Date of last control	Float status	Last cycle
October 2015	DEAD	26/04/2012
Coriolis	29/10/2015	

1 Presentation and DMQC summary

Table 1: Status of the float

Warning : Note that all the figures are plotted with the latest QC flag values (the modifications mentionned table 2 are taken into account).

1.1 QC flag checks and interesting profiles

Cycle	Para-	Vertical level	Old	New	Comments	Coriolis transmission
	meter		flag	flag		
34	TEMP	all	4	1	good data	July 2007
all cycles	PSAL	surface	1	4	untrustable	28/01/2010
(except 0D)		(where PRES inf. 5)			data	
0	PSAL					
29	PSAL				interesting	
36	PSAL				profiles	
49	PSAL					
50	PSAL					

Table 2: Float 6900399. Summary of the modifications of the real-time QC flags and of the interesting or suspicous data.

Warning : the resolution is equal to 50 dbar from the surface to 500 dbar, then 60 dbar from 500 to 2000 dbar. Salinity data between 0 and 5 dbar are suspicious because they are acquired when the pump of the CTD is turned off.

1.2 Salinity correction from the OW method

We cannot see any evidence of a drift or bias in the salinity measurement. We thus conclude that it is not necessary to correct the salinity data. Errors bars are maximum value between 0.01 and those determined from the OW method with parameters from the OW configuration 129.

OW CONFIGURATION	129
CONFIG_MAX_CASTS	250
MAP_USE_PV	1
MAP_USE_PV_ELLIPSE	1
MAP_USE_FACTEUR	1
MAPSCALE_LONGITUDE_LARGE	3.2
MAPSCALE_LONGITUDE_SMALL	0.8
MAPSCALE_LATITUDE_LARGE	2
MAPSCALE_LATITUDE_SMALL	0.5
MAPSCALE_PHI_LARGE	0.1
MAPSCALE_PHI_SMALL	0.02
MAPSCALE_AGE	0.69
MAP_P_EXCLUDE	500
MAP_P_DELTA	250
Reference data base	CTD and ARGO

Table 3: Parameters of the OW method.

2 Data

Figure 1: Profiles position and relationship between cycle number, date and color.

Figure 2: Battery Voltage and Surface Pressure

Figure 3: θ /S diagrams. (Left panel) Flags are not taken into account. (Right panel) Quality flags are taken into account.

Float WMO 6900399 - TEMP

Figure 4: Temperature section along the float trajectory. Quality flags are not taken into account.

Figure 5: Salinity section along the float trajectory. Quality flags are not taken into account.

Float WMO 6900399 - PRES

Figure 6: Pression as fonction of cycle number and vertical level index along the float trajectory. Quality flags are taken into account.

Figure 7: Potential temperature, salinity and potential density sections along the float trajectory (interpolated on standard levels). Quality flags are taken into account.

Figure 8: Salinity, Potential Temperature and Potential Density profiles. Quality flags are taken into account.

3 Comparison to the OVIDE 2006 nearest CTD profile

Figure 9: Comparison of the cycle 0A with the nearest CTD profile done after the float deployment.

4 Cycle 29 - Comparaison to the nearest historical CTD profiles

Figure 10: Flotteur 6900399, cycle 29. Upper panel: Position of the analysed Argo profile (red) and of the nearest Argo profiles (black). The nearest Argo profile in time is in magenta while the nearest CTD profile in space is in blue. Lower panels: Temperature, salinity and potential density as function of pressure for the analysed Argo profile (stars) and for the nearest Argo profile in time (magenta line) and for the nearest Argo profile in space (blue line). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4).

Figure 11: Float 6900399, cycle 29. The analysed Argo profile (stars) is compared to the nearest Argo profiles (black line) and to two specific profiles: the nearest Argo profile in time (magenta) and the nearest Argo profile in space (blue). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4). (Upper panels) Temperature (left panel), salinity (middle panel) and potential density (right panel) as function of pressure. (Lower panels) θ/S diagrams.

5 Cycle 29 - Comparaison to the nearest ARGO profiles

Figure 12: Flotteur 6900399, cycle 29. Upper panel: Position of the analysed Argo profile (red) and of the nearest Argo profiles (black). The nearest Argo profile in time is in magenta while the nearest CTD profile in space is in blue. Lower panels: Temperature, salinity and potential density as function of pressure for the analysed Argo profile (stars) and for the nearest Argo profile in time (magenta line) and for the nearest Argo profile in space (blue line). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4).

Figure 13: Float 6900399, cycle 29. The analysed Argo profile (stars) is compared to the nearest Argo profiles (black line) and to two specific profiles: the nearest Argo profile in time (magenta) and the nearest Argo profile in space (blue). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4). (Upper panels) Temperature (left panel), salinity (middle panel) and potential density (right panel) as function of pressure. (Lower panels) θ/S diagrams.

6 Cycle 34 - Comparaison to the nearest historical CTD profiles

Figure 14: Flotteur 6900399, cycle 34. Upper panel: Position of the analysed Argo profile (red) and of the nearest Argo profiles (black). The nearest Argo profile in time is in magenta while the nearest CTD profile in space is in blue. Lower panels: Temperature, salinity and potential density as function of pressure for the analysed Argo profile (stars) and for the nearest Argo profile in time (magenta line) and for the nearest Argo profile in space (blue line). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4).

Figure 15: Float 6900399, cycle 34. The analysed Argo profile (stars) is compared to the nearest Argo profiles (black line) and to two specific profiles: the nearest Argo profile in time (magenta) and the nearest Argo profile in space (blue). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4). (Upper panels) Temperature (left panel), salinity (middle panel) and potential density (right panel) as function of pressure. (Lower panels) θ/S diagrams.

7 Cycle 34 - Comparaison to the nearest ARGO profiles

Figure 16: Flotteur 6900399, cycle 34. Upper panel: Position of the analysed Argo profile (red) and of the nearest Argo profiles (black). The nearest Argo profile in time is in magenta while the nearest CTD profile in space is in blue. Lower panels: Temperature, salinity and potential density as function of pressure for the analysed Argo profile (stars) and for the nearest Argo profile in time (magenta line) and for the nearest Argo profile in space (blue line). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4).

Figure 17: Float 6900399, cycle 34. The analysed Argo profile (stars) is compared to the nearest Argo profiles (black line) and to two specific profiles: the nearest Argo profile in time (magenta) and the nearest Argo profile in space (blue). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4). (Upper panels) Temperature (left panel), salinity (middle panel) and potential density (right panel) as function of pressure. (Lower panels) θ /S diagrams.

8 Cycle 36 - Comparaison to the nearest historical CTD profiles

Figure 18: Flotteur 6900399, cycle 36. Upper panel: Position of the analysed Argo profile (red) and of the nearest Argo profiles (black). The nearest Argo profile in time is in magenta while the nearest CTD profile in space is in blue. Lower panels: Temperature, salinity and potential density as function of pressure for the analysed Argo profile (stars) and for the nearest Argo profile in time (magenta line) and for the nearest Argo profile in space (blue line). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4).

Figure 19: Float 6900399, cycle 36. The analysed Argo profile (stars) is compared to the nearest Argo profiles (black line) and to two specific profiles: the nearest Argo profile in time (magenta) and the nearest Argo profile in space (blue). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4). (Upper panels) Temperature (left panel), salinity (middle panel) and potential density (right panel) as function of pressure. (Lower panels) θ/S diagrams.

9 Cycle 36 - Comparaison to the nearest ARGO profiles

Figure 20: Flotteur 6900399, cycle 36. Upper panel: Position of the analysed Argo profile (red) and of the nearest Argo profiles (black). The nearest Argo profile in time is in magenta while the nearest CTD profile in space is in blue. Lower panels: Temperature, salinity and potential density as function of pressure for the analysed Argo profile (stars) and for the nearest Argo profile in time (magenta line) and for the nearest Argo profile in space (blue line). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4).

Figure 21: Float 6900399, cycle 36. The analysed Argo profile (stars) is compared to the nearest Argo profiles (black line) and to two specific profiles: the nearest Argo profile in time (magenta) and the nearest Argo profile in space (blue). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4). (Upper panels) Temperature (left panel), salinity (middle panel) and potential density (right panel) as function of pressure. (Lower panels) θ /S diagrams.

10 Cycle 49 - Comparaison to the nearest historical CTD profiles

Figure 22: Flotteur 6900399, cycle 49. Upper panel: Position of the analysed Argo profile (red) and of the nearest Argo profiles (black). The nearest Argo profile in time is in magenta while the nearest CTD profile in space is in blue. Lower panels: Temperature, salinity and potential density as function of pressure for the analysed Argo profile (stars) and for the nearest Argo profile in time (magenta line) and for the nearest Argo profile in space (blue line). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4).

Figure 23: Float 6900399, cycle 49. The analysed Argo profile (stars) is compared to the nearest Argo profiles (black line) and to two specific profiles: the nearest Argo profile in time (magenta) and the nearest Argo profile in space (blue). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4). (Upper panels) Temperature (left panel), salinity (middle panel) and potential density (right panel) as function of pressure. (Lower panels) θ/S diagrams.

11 Cycle 49 - Comparaison to the nearest ARGO profiles

Figure 24: Flotteur 6900399, cycle 49. Upper panel: Position of the analysed Argo profile (red) and of the nearest Argo profiles (black). The nearest Argo profile in time is in magenta while the nearest CTD profile in space is in blue. Lower panels: Temperature, salinity and potential density as function of pressure for the analysed Argo profile (stars) and for the nearest Argo profile in time (magenta line) and for the nearest Argo profile in space (blue line). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4).

Figure 25: Float 6900399, cycle 49. The analysed Argo profile (stars) is compared to the nearest Argo profiles (black line) and to two specific profiles: the nearest Argo profile in time (magenta) and the nearest Argo profile in space (blue). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4). (Upper panels) Temperature (left panel), salinity (middle panel) and potential density (right panel) as function of pressure. (Lower panels) θ /S diagrams.

12 Cycle 50 - Comparaison to the nearest historical CTD profiles

Figure 26: Flotteur 6900399, cycle 50. Upper panel: Position of the analysed Argo profile (red) and of the nearest Argo profiles (black). The nearest Argo profile in time is in magenta while the nearest CTD profile in space is in blue. Lower panels: Temperature, salinity and potential density as function of pressure for the analysed Argo profile (stars) and for the nearest Argo profile in time (magenta line) and for the nearest Argo profile in space (blue line). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4).

Figure 27: Float 6900399, cycle 50. The analysed Argo profile (stars) is compared to the nearest Argo profiles (black line) and to two specific profiles: the nearest Argo profile in time (magenta) and the nearest Argo profile in space (blue). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4). (Upper panels) Temperature (left panel), salinity (middle panel) and potential density (right panel) as function of pressure. (Lower panels) θ/S diagrams.

Figure 28: Flotteur 6900399, cycle 50. Upper panel: Position of the analysed Argo profile (red) and of the nearest Argo profiles (black). The nearest Argo profile in time is in magenta while the nearest CTD profile in space is in blue. Lower panels: Temperature, salinity and potential density as function of pressure for the analysed Argo profile (stars) and for the nearest Argo profile in time (magenta line) and for the nearest Argo profile in space (blue line). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4).

Figure 29: Float 6900399, cycle 50. The analysed Argo profile (stars) is compared to the nearest Argo profiles (black line) and to two specific profiles: the nearest Argo profile in time (magenta) and the nearest Argo profile in space (blue). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4). (Upper panels) Temperature (left panel), salinity (middle panel) and potential density (right panel) as function of pressure. (Lower panels) θ/S diagrams.

14 OW method, CONFIGURATION # 129

Figure 30: Figures from the OW method. (Left) Position of the historical and float data. (Right) Comparison, on various θ levels, between the float data and the historical data interpolated at the float position.

Figure 31: Figures from the OW method. Comparation of the θ /S diagram of the float with the historial database. (left) raw data; (right) corrected data using the OW correction.

Figure 32: Figures from the OW method. Salinity anomaly:(left) raw data; (right) corrected data using the OW correction.

Figure 33: Correction proposed by the OW method.

Figure 34: Chosed levels by the OW method.