Algal toxin profiles in Nigerian coastal waters (Gulf of Guinea) using passive sampling and liquid chromatography coupled to mass spectrometry

Zendong Suzie Zita ^{1, 3, *}, Kadiri Medina ², Herrenknecht Christine ³, Nézan Elisabeth ⁴, Mazzeo Antonia ⁵, Hess Philipp ¹

¹ Ifremer, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, 44311 Nantes, France

² Department of Plant Biology and Biotechnology, University of Benin, Benin City, Nigeria

³ LUNAM, Université de Nantes, MMS EA2160, Faculté de Pharmacie, 9 rue Bias, 44035 Nantes, France

⁴ Ifremer, Station de Biologie Marine, BP 40537, F-29185 Concarneau Cedex, France

⁵ Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italiy

* Corresponding author : Zita Zendong, email address : zita.zendong@ifremer.fr

Abstract :

Algal toxins may accumulate in fish and shellfish and thus cause poisoning in consumers of seafood. Such toxins and the algae producing them are regularly surveyed in many countries, including Europe, North America, Japan and others. However, very little is known regards the occurrence of such algae and their toxins in most African countries. This paper reports on a survey of phytoplankton and algal toxins in Nigerian coastal waters.

Seawater samples were obtained from four sites for phytoplankton identification, on three occasions between the middle of October 2014 and the end of February 2015 (Bar Beach and Lekki in Lagos State, Port Harcourt in Rivers State and Uyo in Akwa Ibom State). The phytoplankton community was generally dominated by diatoms and cyanobacteria; however several species of dinoflagellates were also identified: *Dinophysis caudata, Lingulodinium polyedrum* and two benthic species of *Prorocentrum*.

Passive samplers (containing Diaion® HP-20 resin) were deployed for several 1-week periods on the same four sites to obtain profiles of algal toxins present in the seawater. Quantifiable amounts of okadaic acid (OA) and pectenotoxin 2 (PTX2), as well as traces of dinophysistoxin 1 (DTX1) were detected at several sites. Highest concentrations (60 ng OA g⁻¹ HP-20 resin) were found at Lekki and Bar Beach stations, which also had the highest salinities. Non-targeted analysis using full-scan high resolution mass spectrometry showed that algal metabolites differed from site to site and for different sampling occasions. Screening against a marine natural products database indicated the potential presence of cyanobacterial compounds in the water column, which was also consistent with phytoplankton analysis.

During this study, the occurrence of the marine dinoflagellate toxins OA and PTX2 has been demonstrated in coastal waters of Nigeria, despite unfavourable environmental conditions, with regards to the low salinities measured. Hence shellfish samples should be monitored in future to assess the risk for public health through accumulation of such toxins in seafood.

Keywords : Dinoflagellates, Dinophysis, phycotoxins, untargeted analysis, phytoplankton

1. INTRODUCTION

Toxins from marine micro-algae frequently accumulate in seafood, including fish and shellfish, and maximum concentrations for such toxins have therefore been regulated at global and regional levels (DeGrasse and Martinez-Diaz, 2012; Hess, 2012; Lawrence et al., 2011; Suzuki and Watanabe, 2012). As fisheries have only limited potential to increasingly contribute to the global food supply, it is expected that any growth in seafood supply will have to come from aquaculture. Therefore, it is important to investigate the potential of coastal areas for seafood production, and also the risks associated with such production. In terms of public health risks, those originating from harmful algal blooms are particularly common in many parts of the world and must therefore be assessed relatively early on in any survey for aquaculture feasibility.

To our knowledge, no algal toxins have been reported in coastal waters of central Western Africa, except one preliminary report on potentially toxic fish in Cameroon (Bienfang et al., 2008). The southernmost records of algal toxins in Northern Africa are from the Moroccan coastline where an official monitoring program is in place (Abouabdellah et al., 2008; Taleb et al., 2003). Lipophilic shellfish toxins were shown to accumulate in mussels, cockles, oysters and solen, causing poisoning in the Dakhla region, *i.e.* the South Atlantic Moroccan coast (Abouabdellah et al., 2011). Toxins of the okadaic acid (OA) group, *i.e.* OA and dinophysistoxins (DTXs) and their associated esters were the agents responsible for those shellfish poisoning events, attributable to the presence of several potentially toxic species of *Dinophysis*. Taleb et al. (2006) also were the first to report the presence of azaspiracids in mussels, in Morocco.

In southern parts of Africa, regular monitoring is in place in South Africa and Namibia. Production of saxitoxin (STX) off the west coast of South Africa has been attributed to *Alexandrium catenella* (Pitcher and Calder, 2000; Pitcher et al., 2001). Fawcett et al. (2006) have developed and deployed a bio-optical buoy for monitoring HABs in the southern Benguela Current region off South Africa. These buoys have proved their efficiency in providing both real-time and time-series data, giving interesting information on the occurrence of Prorocentrum triestinum in the region. The northernmost records of algal toxins in the southern African region are from Angola (Blanco et al., 2010; Vale et al., 2009).

Phytoplankton surveys in Nigeria by one of the authors have reported non-toxin producing as well as potentially toxic algae including *Prorocentrum micans*, *Protoperidinium depressum*, *Prorocentrum mite*, *Dinophysis caudata*, *Peridinium gatunense*, *P. cinctum*, *Gymnodinium fuscum* and an array of *Ceratium* species (Kadiri, 1999, 2001, 2002, 2006a, b, 2011). Previous studies by other authors also showed sporadic occurrences of *D. caudata*, *Protoperidinium depressum*, *P. diabolus*, *Prorocentrum micans*, *Noctiluca scintillans* in Lagos Lagoon (Nwankwo, 1991, 1997). A recent report additionally recorded *Lingulodinium polyedrum*, *Prorocentrum minimum*, *P. sigmoides* and *Scrippsiella trochoidea* in Lagos, Cross Rivers and Delta States (Ajuzie and Houvenaghel, 2009).

As potentially toxic algae have repeatedly been reported from Nigerian coastal waters this study attempted to verify whether algal toxins actually do occur in Nigerian waters. Since there was no algal culturing facility available on site, and as many dinoflagellates are difficult to bring into culture, in particular *Dinophysis*, we have opted for an indirect approach based on passive sampling of algal toxins in Nigerian coastal waters. This approach had been introduced for monitoring of toxins by MacKenzie et al. (2004). We have focussed on regulated lipophilic toxins known to cause problems in terms of public health but have also used in parallel an approach for untargeted analysis based on high-resolution mass spectrometry as previously described (Zendong et al., 2015).

2. MATERIALS AND METHODS

2.1. Chemicals, reagents and sorbent materials

Certified standard solutions of okadaic acid (OA), domoic acid (DA), dinophysistoxins (DTX1, DTX2), 13-desmethyl spirolide C (13-desmeSPX-C), pectenotoxin 2 (PTX2), gymnodimine A (GYM-A), azaspiracids (AZA1,-2 and -3), yessotoxin (YTX) and homo-yessotoxin (homo-YTX) were obtained from the National Research Council in Halifax, Canada. HPLC grade methanol and acetonitrile as well as ammonium formate and formic acid (98%) were acquired from AtlanticLabo (Bordeaux, France) and Sigma Aldrich (Steinheim, Germany). Deionized water was produced inhouse to 18M Ω cm⁻¹ quality, using a Milli-Q integral 3 system (Millipore). For analyses with the high resolution mass spectrometry instrument, acetonitrile and water of LC/MS grade were obtained from Fischer Scientific (Illkirch, France). For passive sampler devices, Diaon[®] HP-20 polymeric resin was purchased as bulk resin from Sigma-Aldrich and 12 mL capacity polypropylene 2 frits-Reservoirs were from Agilent Technologies.

Brucine-sulfanilic acid reagent was prepared by dissolving 1 g brucine sulfate $[(C_{23}H_{26}N_2O_4)_2 H_2SO_4, 7H_2O]$ and 0.1 g sulfanilic acid $(NH_2C_6H_4SO_3H, H_2O)$ into 70 ml of hot distilled water. Concentrated hydrochloric acid (3 mL) was further added and this mixture was cooled, mixed and then diluted to 100 mL with distilled water. The final mixture was stored in a dark bottle at 5 °C. For ascorbic acid, the ready-made PhosVer 3 HachTM was used.

2.2. Study area

The study area (Figure 1), *i.e.* the Nigerian coastal area, is situated in the Guinea Current Large Marine Ecosystem, in the Gulf of Guinea. There are two main seasons in the deploying sites: the rainy (wet) season spanning from May to October and the dry season from November to April. The area is influenced by coastal upwelling which occurs seasonally along the northern and eastern coasts. There are two (major and minor) upwelling seasons. Those seasons occur annually with differing duration and intensities off Ghana and Cote d'Ivoire, in the central part of the large marine ecosystem. The major upwelling season occurs from June to September and transient upwelling events are from January to March (Ibe and Ajayi, 1985).

The coastline of Nigeria is approximately 853 km long between latitude $4^{\circ}10'$ to $6^{\circ}20'$ N and longitude $2^{\circ}45'$ to $8^{\circ}35'$ E. The Nigerian coastal area is low-lying of not more than 3.0 m above sea level, generally covered by fresh water swamp, mangrove swamp, lagoonal mashes, tidal channels, beach ridges and sand bars (Dublin-Green et al., 1997).

The Nigerian coast is composed of four distinct geomorphological units namely: the Barrier-Lagoon complex; the Mud coast; the Arcuate Niger delta; and the Strand coast (Ibe, 1988). The vegetation of the Nigerian coastal area is characterised by mangrove forests, brackish swamp forests and rain forests. The coastal zone is richly endowed with a variety of mineral resources, including oil and gas. The four selected sites are located in the Gulf of Guinea (Atlantic Ocean), two in the Bight of Bonny to the East (Arcuate Niger delta) and two in the Bight of Benin to the West (outside the Barrier-lagoon complex).

Seawater sampling for nutrients and for phytoplankton analysis, as well as passive sampling were carried out at sites and dates as listed in Table 1.

Table 1: Sampling sites and dates for water and toxin analysis (date format: dd/mm/yy)

Sampling	Latituda	Longitudo	Dates for water	Dates for passive		
site	Lattude	Longitude	sampling	sampling		
Dor Dooch	N 6º 25 240'	E 2º 26 190'	18/10/14, 02/02/15,	18/10/14, 08/11/14,		
Bar Beach	IN 0 23.340	E 5 20.189	21/02/15	07/02/15, 28/02/15		
Lekki	N 6° 25.256'	E 3° 32.180'	21/02/15	08/11/14, 28/02/15		
Port	N 1º 11 020'	E 7º 10 706'	20/01/15 22/02/15	04/02/15 28/02/15		
Harcourt	IN 4 41.020	E / 10.700	29/01/13, 22/02/13	04/02/13, 28/02/13		
Uvo	NI 4022 202'	E 8º 00 202'	17/10/14, 28/01/15,	18/10/14, 07/11/14,		
Uyo	IN 4 55.205	E 8 00.202	23/02/15	03/02/15, 25/02/15		

Figure 1: Location of sampling sites (stars): Bar Beach and Lekki are both in Lagos State off Lagos lagoon; Port Harcourt is in Rivers State, in the vicinity of the Niger delta, and Uyo is in Akwa Ibom State towards the Eastern Limit of Nigerian waters.

2.3. Physico-chemical parameters and water sampling for analysis of nutrients and phytoplankton identification

Water samples (1 L) were obtained for analysis of nutrients at an integrated depth of 10 m to the surface of the ocean, with a lund tube of 2.5 cm diameter. Temperature was measured with a mercury-in-glass thermometer. Dissolved oxygen was measured using a Milwaukee NW 600 probe and salinity was measured with a HachTM Salinity/Conductivity probe probe (Hach Company, USA).

Nutrients were analysed according to ASTM (1980). For the determination of nitrate, brucine sulphanilic acid reagent (1 mL) was added to standard solutions as well as to samples (10 mL). The resultant mixtures were mixed thoroughly and allowed to stand for 15 min. Then 10 mL of H_2SO_4 solution were carefully added to 10 mL of distilled water and the resulting solution was added to each of the beakers containing the nitrate standard solutions and the water samples, respectively. This was allowed to stand for 20 min in the dark. Similar treatment was performed on the blank solution, using the same protocol except that no brucine sulphanilic reagent was added to it. The absorbance of standards and samples was determined at 410 nm wavelength using a UV/Visible spectrophotometer. Phosphate was determined using the ascorbic acid method. The programmed method of Hach was used using the Hach spectrophotometer DR2000TM (Hach Company, USA).

Phytoplankton samples were collected by horizontal and vertical tows using a plankton net made from fine bolting silk (10 μ m mesh, length: 107 cm and Diameter: 29 cm). Samples were drained into the plankton bucket and preserved with Lugol's iodine in sample bottles. Light microscopy (LM) observations were carried out from 50 μ L of fixed net samples deposited on a glass slide, using an Olympus IX70 inverted light microscope equipped with a digital camera DP72 (Olympus, Tokyo, Japan). Cells were photographed, either directly or after isolation with a micropipette, depending on concentration of organisms and particles.

2.4. Passive sampler design, handling and extraction

Passive sampling devices (Solid Phase Adsorption Toxin Tracking = SPATT) were prepared using a 68 mm embroidery frame (Singer, Nantes, France). Three grams (3 g) of Diaion® HP-20 polymericresin were placed between two layers of a 30 μ m nylon mesh (Mougel, France), and clamped in the embroidery frame to form a thin layer of resin. To activate the HP-20 resin, the passive samplers were soaked for 3 h in methanol, rinsed twice with deionized water to remove methanol residues (Rundberget et al., 2009; Zendong et al., 2014) and directly deployed. Three SPATTs were put in three separate compartments cylinders made of steel, to firmly secure them, and deployed in the sea at 1 m depth for 7 days at each site. After deployment, the SPATTs were retrieved, rinsed with seawater to remove residual biofilm and transported in frozen ice packs to the laboratory. The SPATTs were then stored in a freezer (-20 °C) until analysis. The HP-20 resin was extracted according to previously

published methods, with slight changes (Fux et al., 2008; Zendong et al., 2014). Briefly, after deployment, the SPATTs were rinsed twice in 500 mL deionized water, transferred into empty polypropylene reservoirs placed on a manifold and eluted dropwise with 24 ml of methanol. The extracts were then evaporated at 45 °C under a gentle nitrogen stream. The dry residue was further reconstituted in 500 μ L of 50% methanol, filtered on Nanosep MF centrifugal filters 0.2 μ M (Pall) and transferred into HPLC vials for analysis.

2.5. Liquid chromatography - mass spectrometry analyses

Three different analytical systems were used: (1) for quantitative targeted analysis of toxins; (2) for untargeted screening of unknowns as well as known toxins; (3) for characterisation and confirmation of toxins. For all three systems, chromatographic separation was achieved after injection of a 3μ L sample volume onto a Phenomenex Kinetex XB-C18 (100 x 2.6 mm; 2.6 μ m) column maintained at 40 °C, with a flow rate of 400 μ l/min. The binary mobile phase consisted of water (A) and 95% acetonitrile/water (B), both containing 2 mM ammonium formate and 50 mM formic acid. The elution gradient rose from 5% to 50% of B in 3.6 min, then 100% B was reached by 8.5 min. After 1.5 min of hold time at 100% B, 5% B was reached within 10 s, followed by 5 min re-equilibration of the column at 5% B. The total chromatographic run time was 15 min. To avoid cross contamination of samples, the needle was washed for 10 s in the flush port with 90% MeOH before each injection. On all analytical systems, mass spectrometric acquisitions were carried out separately in positive (ESI⁺) and negative (ESI⁻) ionization modes.

2.5.1. System 1: LC-MS/MS for quantitative analysis

A UFLC-XR Shimadzu liquid chromatography system (Champs-sur-Marne, France) was connected to a hybrid triple quadrupole/linear ion-trap mass spectrometer (API4000-Q-TrapTM; AB Sciex) equipped with a TurboIonSprayTM ionization source. For quantitation, the mass spectrometer was operated in MRM mode, scanning two transitions for each toxin. Q1 and Q3 resolutions of the instrument were set at Unit (arbitrary terms). Data were acquired in MRM, in separate chromatographic runs, using positive (ESI⁺) and negative (ESI) ionization modes, respectively with a scan time of 1 s. In ESI⁺, the following source parameters were used: curtain gas set at 30 psi, ion spray at 5500 V, a turbogas temperature of 450°C, gas 1 and 2 both set at 50 psi, and an entrance potential of 10 V. In ESI⁻, the curtain gas was set at 20 psi, the ion spray at -4500 V, the turbogas temperature at 550°C, gas 1 and 2 at 40 and 50 psi, respectively, and finally the entrance potential at -13 V. MRM transitions used for each toxin are displayed in Table 2. Data acquisition was carried out with Analyst 1.6 Software (AB Sciex).

Toxin	DP	01	Q3	CE	Q3	CE
I UAIII	ы	Q1	quantifier	CL	qualifier	CL
DA	61	312.1	266.1	23	161.1	35
GYM-A	86	508.4	490.2	33	392.3	49
13-desmeSPX-C	121	692.5	164.2	69	444.3	53
PnTX-G	141	694.5	164.1	75	458.3	75
AZA1	116	842.5	672.4	69	654.4	69
AZA2	116	856.5	672.4	69	654.4	69
AZA3	116	828.5	658.4	69	640.4	69
PTX2	91	876.5	823.5	31	805.6	37
PTX2sa	91	894.6	823.5	31	805.6	37
OA, DTX2	-170	803.5	255.1	-62	113.1	-92
DTX1	-170	817.5	254.9	-68	112.9	-92
YTX	-120	1141.4	1061.6	-48	855.5	-98
homo-YTX	-120	1155.6	1075.6	-48	869.4	-98

Table 2: Multiple Reaction Monitoring (MRM) transitions used for quantitative analysis on System 1 (30 msec dwell in ESI⁺ and 80 msec dwell in ESI⁻).

2.5.2. System 2: LC-HRMS for untargeted and targeted screening of toxins and unknowns

A UHPLC system (1290 Infinity, Agilent Technologies) was coupled to a 6540 UHD Accurate-Mass QToF (Agilent Technologies) equipped with a dual ESI source. Full-scan analyses were performed over the range *m*/*z* 65 to 1700 with an acquisition rate of 2 spectra s⁻¹. In ESI⁺ the temperature of the Jet Stream TechnologiesTM source was set at 205°C with the drying gas flow-rate at 5 L min⁻¹. The sheath gas temperature was 355°C. Other parameters were as follows: capillary voltage, 2000 V; fragmentor voltage, 200 V. The parameters of the Jet Stream TechnologiesTM source in ESI⁻ were: gas temperature 305°C, drying gas flow 5 L min⁻¹, nebulizer pressure 50 psi, sheath gas temperature 355 °C, sheath 12 L/min, capillary voltage 3500 V, fragmentor voltage, 180 V.

All experiments were done with reference mass correction using purine (m/z 121.0509 $[M+H]^+$; *m/z* 119.03632 $[M-H]^-$) and HP-921 = hexakis(1H,1H,3H-tetrafluoropropoxy) phosphazine (m/z 922.0099 $[M+H]^+$; *m/z* 966.00072 $[M+HCOO]^-$). The reference ions were infused constantly with an isocratic pump to a separate ESI sprayer in the dual spray source.

2.5.3. System 3: LC-HRMS for toxins confirmation

Analyses were carried out using a UHPLC system (1290 Infinity II, Agilent Technologies) coupled to a 6550 iFunnel QToF (Agilent Technologies) equipped with a dual ESI source. This instrument was operated with a dual electrospray ion source with Agilent Jet Stream Technology[™] in positive and

negative ionization modes. Analyses were performed over the range m/z 100 to 1200 with an acquisition rate of 2 spectra s⁻¹. The parameters of the Jet Stream TechnologiesTM source in ESI⁺ were: gas temperature 205°C, drying gas flow 16 L/min, nebulizer pressure 50 psi, sheath gas temperature 355°C, sheath 12 L/min, capillary voltage 2000 V, fragmentor voltage, 200 V. In ESI⁻ the parameters were as follows: gas temperature 290°C, drying gas flow 12 L/min, nebulizer pressure 50 psi, sheath gas temperature 355°C, sheath 12 L/min, capillary voltage 3500 V, fragmentor voltage, 180 V. Three collision energies (20, 40 and 60 eV) were applied to the precursor ions to generate fragmentation spectrum. All experiments were done with reference mass correction as described above for System 2. MassHunter Acquisition B05.01 software was used to control the instrument and data were processed with MassHunter B07.00 service pack.

2.6. Data processing and statistical analyses

Raw data files obtained on System 2 (section 2.5.2) were processed using the Agilent Molecular Feature Extractor (MFE) algorithm in MassHunter Qual software (B.07). This algorithm was used to obtain the *Total Compound Chromatogram* of samples as previously described (Zendong et al., 2015). This algorithm designed for use with full scan data treats the mass spectral data as a three-dimensional array of retention time, m/z and abundance values. Any point corresponding to persistent or slowlychanging background is removed from that array of values. Then the algorithm searches for ion traces that elute at very nearly the same retention times. Those ion traces are then grouped into entities called Compounds regrouping all ion traces that are related, *i.e.* those that correspond to mass peaks in the same isotope cluster, or can be explained as being different adducts or charge states of the same entity. The results for each detected *Compound* are a mass spectrum containing the ions with the same elution time and explainable relationships, and an extracted compound chromatogram (ECC) computed using all of these related ion traces in the compound spectrum (and only those traces). The results from the MFE analysis were then uploaded to the Agilent Mass Profiler Professional (MPP) software (B.13.00) as compound exchange format file (.cef) for further statistical analyses (PCA: Principal Component Analysis). In MPP, feature profiles were aligned with 15 ppm and 0.2 min bins of mass and retention time windows, respectively. Data were log2 transformed, centered and normalized to give features equal weight in classification. Groups/conditions were composed of SPATT samples from the same location and/or the same deployment date. Data were analyzed by univariate and multivariate analysis to detect features of interest. For the multivariate data analysis (MVDA) comparing all samples, all features present in less than 20% of all samples from the data set were discarded. For univariate data analysis comparing only samples from a given site, only entities with p-values > 0.05 and fold-change > 2 were retained. PCA was carried out on conditions *i.e.* to allow for the detection of similarities between samples. Features that were considered characteristic were tentatively identified based on mass and spectral accuracy using the Dictionary of Marine Natural Products (DMNP) library (Blunt and Munro, 2008) (Wolfender et al., 2015).

3. RESULTS AND DISCUSSION

3.1. Physico-chemical measurements

Water temperatures, salinity and nutrient levels in the study area confirm a strong correlation with seasonality (Table 3). Salinity ranged from 2 to 20, all areas and periods confounded, which is comparatively low for marine dinoflagellates. The two stations in the North-west of the study area (Lekki and Bar Beach) displayed the highest salinities, ranging from 17.2 to 18.2 during the end of the wet season (October 2014), and from 18.1 to 19.3 during the dry season (January / February 2015). The stations closer to the Niger delta (off the cities of Port Harcourt and Uyo) showed much lower salinities, with the Port Harcourt station (directly outside the main delta in River States) showing the lowest overall salinity of 2 in wet season (October 2014) but still reaching a salinity of 9 during dry season (February 2015).

Parameter	Bar I	Beach	Le	Lekki		Port Harcourt		yo
	18/10/14	02/02/15	17/10/14	30/01/15	19/10/14	04/02/15	18/10/14	03/02/15
Water Temp (*C)	26	27	27	26	32	30	25.5	31
DO (mg/L)	7.8	9.8	7.8	7.9	7.8	6.5	7.4	6.5
Salinity	18.2	19.3	17.2	18.1	2.0	8.8	6.6	7.8
$PO_4^{3-}(mg/L)$	0.07	0.51	0.03	0.2	0.07	0.22	0.03	0.51
$NO_3^-(mg/L)$	1.48	1.61	1.44	1.59	0.37	1.26	1.48	1.61

 Table 3: Surface water temperature, dissolved oxygen (DO), salinity and nutrient concentrations at sampling stations in Nigerian coastal waters 2014-15.

3.2. Identification of phytoplankton species

Phytoplankton samples were generally dominated by diatoms and cyanobacteria, especially filamentous cyanobacteria. However, several species of marine dinoflagellates were also observed (Figure 2). In particular, a few cells of *Dinophysis caudata* were observed in a sample from Bar Beach (21 February 2015). *D. caudata* had previously been reported as a producer of OA and PTX2 in different areas and should thus be considered as a potentially toxic species (Fernández et al., 2006; Holmes et al., 1999; Li et al., 2015; Marasigan et al., 2001). Interestingly, different regions reported

different profiles of toxins in picked cells of *D. caudata*. In Northwestern Spain and China, the toxin profile was dominated by PTX2 (Fernández et al., 2006; Li et al., 2015), while OA was shown to be present in picked cells of *D. caudata* from both Japanese and Singapore waters (Holmes et al., 1999; Marasigan et al., 2001).

Another potentially toxic dinoflagellate was observed in the sample from Bar Beach: *Lingulodinium polyedrum*. This species is characterized by its polyhedral shape with a flat antapex lacking any projections, thick thecal plates with ridges along the sutures and circular depressions over the surface of the plates (Dodge, 1989), see also Figure S2 (supplementary information). The same organism had also been detected at a concentration of several thousand cells L^{-1} in coastal waters of Atlantic Morocco (Bennouna et al., 2002), and cultures of Spanish strains of *L. polyedrum* were shown to produce yessotoxin (Paz et al., 2004).

Three cells of two unidentified benthic *Prorocentrum* species have also been observed (Figure 2c and d). A number of benthic *Prorocentrum* species have been associated with the production of toxins of the okadaic acid, the prorocentrolide and the hoffmaniolide groups: *P. lima*, *P. belizeanum*, *P. maculosum*, *P. rhathymum* and *P. hoffmanianum* (An et al., 2010; Hu et al., 1996; Jackson et al., 1993; Morton et al., 1998), but even a pelagic species of *Prorocentrum* (*P. texanum*) has recently been associated with the production of okadaic acid (Henrichs et al., 2013). Therefore, this observation should be verified to determine the exact species of *Prorocentrum*.

Figure 2: Marine dinoflagellates identified on Bar Beach (Lagos State, Nigeria, 21 February 2015): a) *Dinophysis caudata* (L = 100 μ m), b) *Lingulodinium polyedrum* (L x W: 40 x 38 μ m), c) *Prorocentrum* sp1 (L x W : 37 x 27 μ m) and d) *Prorocentrum* sp2 (L x W: 36.3 x 28.8 μ m).

3.3. Quantitative analysis of SPATT samples and toxin confirmation

Passive samplers were deployed on different dates in November 2014 and February 2015. Analyses of SPATT carried out on System 1 revealed the presence of OA and PTX2 at different concentrations (Figure 3a). Concentrations of OA and PTX2 were significantly higher at Lekki and Bar Beach compared to Port Harcourt and Uyo. This overall pattern seems consistent with the higher potential for *Dinophysis* to survive in areas of higher salinity (Delmas et al., 1992). *Dinophysis caudata* had also been previously found at Bar Beach and Lekki, sites which at that time had almost oceanic salinity (Ajuzie and Houvenaghel, 2009). As abovementioned, *D. caudata* had previously been associated with the production of OA and PTX2, and hence the occurrence of these toxins in Nigerian waters can most likely be attributed to this species. The levels of okadaic acid found (ca. 60 ng OA g⁻¹ HP-20 resin) were of a similar order of magnitude than those found by MacKenzie et al. (2004) in the initial study introducing passive sampling for algal toxins, but comparatively low compared to those reported in a previous study in Ireland (Fux et al., 2009). However, the concentrations in mussels (*M. edulis*) in the

latter study also exceeded the regulatory level ca. 6-fold, and hence the actual contamination levels in shellfish in Nigeria should be verified to evaluate the risk for public health or before establishing commercial aquaculture sites. Interestingly, the levels of PTX2 observed in the present study were similar to those observed in the Irish study (Fux et al., 2009), which may be attributed to the different causative species in both areas: *D. acuminata* and *D. acuta* in Ireland, as compared to *D. caudata* in Nigeria. Rundberget et al. (2009) had used passive samplers of the same geometry in Norway, and they also found levels of a similar height of order as those in the present study. They also established that SPATTs contained typically three times as much toxin as mussels in a given location, yet occasionally levels in mussels were higher than those in the passive samplers. Since the Irish study did not have the same ratios as those established in the Norwegian study, we anticipate that any correlation between the concentrations observed in passive samplers and a given shellfish species would have to be established locally and verified over time.

The ratio of OA to PTX2 was examined to look for major changes in phytoplankton community structure of OA-producing organisms (Figure 3b). As *Prorocentrum* species have not been found to produce PTX2 but DTX1, a relative increase of OA over PTX2 could be indicative of their increasing importance. The ratio remained relatively constant over the study period indicating that there was either not much change in the population of micro-algae or similar ratios were produced by the organisms present. This is also consistent with the fact that DTX1 was found only in trace amounts at Lekki and Bar Beach, but not found at all in the two other locations. DTX1 has been reported from *P. lima* (Pan et al., 1999) and the low concentrations in passive samplers deployed at 1 m below the surface could be related to the dilution effect for these toxins if they had been produced by low density benthic species. However, it has been shown that even toxins from *P. lima* can accumulate to significant levels in shellfish locally (Lawrence et al., 2000), and hence care should be taken before discarding benthic organisms as a risk to public health.

At Bar Beach, it appeared that toxin concentrations were higher in November and in February which also coincides with a slight increase in salinity and the dry season, for which upwelling had been previously indicated (Ibe and Ajayi, 1985). At Port Harcourt and Uyo, concentrations of OA and PTX2 in the passive samplers were *ca.* 10-fold lower than the maxima observed at Bar Beach and Lekki. This significant difference is understandable from the very low salinities observed at Port Harcourt and Uyo (Table 3), which are detrimental for most marine dinoflagellates, in particular *Dinophysis* (Delmas et al., 1992). The differences in concentrations found in passive samplers extracts from Port Harcourt and Uyo on one hand and Lekki and Bar Beach on the other are much larger than what could be expected from the simple differences in adsorption due to different salinities. A recent study has shown that kinetics of adsorption may be affected (Fan et al., 2014), however, this should be negligible for the 1-week deployment periods in the present study. Port Harcourt and Uyo are

considered to be brackish water zones and are consequently significantly different from Bar Beach and Lekki (see also section on untargeted analysis).

Figure 3: Average concentrations (a) and ratios (b) of okadaic acid (OA) and pectenotoxin 2 (PTX2) detected at each deployment site (ng/g of HP-20 resin \pm RSD%, n=3).

3.4. Confirmation of okadaic acid and pectenotoxin 2 by high resolution mass spectrometry coupled to liquid chromatography

For confirmatory purposes, System 3 was used to obtain high resolution spectra from toxins quantified using System 1. For instance, the spectra for OA in negative ionisation mode obtained from a standard solution and a sample from Bar Beach were compared, and showed the same major ions characteristic for OA (Figure 4).

Accurate mass measurements for OA for the sample from Bar Beach were also verified and compared well with those of the certified standard of OA: the molecular ion $[M-H]^-$ of OA in the Bar Beach sample (m/z 803) showed 1.2 ppm mass error compared to the standard, while the two main fragments m/z 113.060 and 255.123 had a mass error of 0.88 and 0.39 ppm, respectively. Mass accuracy for PTX2 was slightly less good, but fragmentation pattern and fragment ion ratios matched very well that of the standard (see Figure S1, supplementary information). Therefore, the presence of OA and PTX2 can be considered unequivocal as demonstrated by both low and high resolution tandem mass spectrometry.

Figure 4: Average high resolution spectrum of (a) OA standard and (b) OA in a SPATT extract from Bar Beach. Spectra were obtained on System 3 (QToF 6550) in ESI⁻ using target MS/MS with collision energies of 20 V, 40 V and 60 eV.

3.5. Untargeted screening approach for passive samplers

Principal component analysis including all masses identified in extracts of the passive samplers clearly showed separation between samples taken at the end of the wet season and those taken during the dry season, irrespective of the sampling site (Figure 5).

Figure 5: Score plot of the principal component analysis of all passive samplers (n=2 for 2014 and n=3 for 2015). Data were acquired by full scan HRMS on System 2. During Molecular Feature Extraction samples were blank-subtracted, ion traces extracted and combined into compounds. The three principal components plotted on the X, Y, and Z axes account for ca. 58% of the total variability in the data set (40.94% for X; 11.18% for Y and 7.06% for Z). *Note:* BB=Bar Beach and PH= Port Harcourt.

This separation of seasons in the passive sampler extracts was not as distinct as in the targeted analysis of toxins (Figure 3a) but is consistent with changes expected in the phytoplankton community structures in different seasons. When analysing the trend on a single site, Bar Beach (BB), it was also apparent that each sampling occasion gave a different chemical profile (Figure 6).

Figure 6: Score plot of the principal component analysis of passive samplers from Bar Beach taken on four separate occasions (n=2 for 2014 and n=3 for 2015). Data were acquired by full scan HRMS on system 2. The three principal components plotted on the X, Y, and Z axes account for ca. 83% of the total variability in the data set (69.72% for X; 7.78% for Y and 5.78% for Z)

Figure 7: Score plot of the principal component analysis of passive samples from all four sites (BB=Bar Beach, PH=Port Harcourt), all taken during week 9 of 2015 (n=3). The three principal components plotted on the X, Y, and Z axes account for ca. 66% of the total variability in the data set (39.04% for X; 18.79% for Y and 9.04% for Z).

Interestingly, all four sites gave also different chemical profiles on a single sampling occasion (Figure 7). In this initial untargeted analysis, no identification of compounds was necessary to obtain this trend.

Still, the separation of the sites by PCA is not surprising when considering that the complete set of data for these four sites on a single occasion consisted of 2394 compounds. Amongst those compounds, 1828 occurred only at the two sites of high salinity (Lekki and Bar Beach) and 245 were unique to the sites with low salinity (Uyo and Port Harcourt). This also means that only 321 compounds were common to all four sites during that particular week. This observation also led us to tentatively identify what compounds may occur on the different sites. For this purpose, several samples were also screened against a database derived from the Dictionary of Marine Natural Products (Blunt and Munro, 2008). When applying stringent criteria (1 ppm mass accuracy, 5000 count abundance threshold) for matching compounds identified in the Nigerian data set by full scan HRMS, several hundred compounds gave tentative hits.

In particular, we examined what compounds were responsible for distinguishing weeks at Bar Beach station. In the PCA analysis for Bar Beach samples from October/November 2014 were grossly separated from samples taken during February (Figure 6). When examining compounds with extreme loadings in the PCA analysis (< -0.03 or > 0.03 normalised loading values, arbitrary choice, see Figure S3), 20 compounds of 196 distinctive entities were tentatively identified for the earlier period (October and November 2014, end of wet season), while 20 compounds of 424 distinctive entities were tentatively identified for the later period (February 2015, dry season, Table 4). In summary, among the database propositions were many compounds that had initially been identified either in tropical sponges, nudibranches or marine or freshwater cyanobacteria (Table 4). The fact that cyanobacterial compounds were identified appears coherent with previous identification of cyanobacteria as a problem in Nigerian waters (Odokuma and Isirima, 2007). These findings also suggest that additional efforts in Nigerian coastal waters should focus on identifying cyanobacterial toxins and source organisms.

Without any pre-selection of compounds on a given site for one sampling occasion (contrarily to the comparative PCA described above), many compounds can be tentatively identified, however, not all are distinctive features of that site – occasion combination. For instance Bar Beach was analysed for identifiable compounds on 08/11/2014 and 170 compounds gave a hit in the Dictionary of Marine Natural Products (Blunt and Munro, 2008). Interestingly, these compounds tentatively identified in the non-targeted analysis also included for instance okadaic acid already identified in the targeted analysis (Table S1).

Table 4. Compounds tentatively identified in non-targeted analysis using high-resolution mass spectrometry (system 2)

No.	Compound	Month	Freq.	T _R	Mass	Identification Marine Natural Products Dictionary
1	6-Tridecylamine	Feb	6	4.01	199.2296	Isolated from the cyanobacterium Microcoleus lyngbyaceus
2	Hedaol B; A5-Isomer(Z-)	Feb	6	7.08	261.1977	Constituent of a Sargassum sp.
	8,11,14-Heptadecatrienal; (all-Z) -form,			5 27	250 2202	Constituent of cucumber, tobacco and wheat. Also found in the
5	14,15-Dihydro	Feb	0	3.27	230.2293	algae Enteromorpha sp., Scytosiphon lomentaria and Ulva pertusa
	Glycerol 1-alkyl ethers; Glycerol 1-		6	8 61	302 2818	Constituent of Desmansamma anchorata and Tethya aurantiaca
+	pentadecyl ether	Feb	0	0.01	302.2818	Constituent of Desmapsamma anchorata and Ternya aurantaca
	10-Aromadendranol; (1ct,4a,5 13,6a,7a,10a)-		6	7 21	405 3120	Constituent of Eucalyptus globulus (Tasmanian blue gum) and
5	form, O -(2-O -	Feb	0	/.21	403.3120	Thryptomene kochii
6	Petroformyne 1; 3- or 44- Ketone	Feb	6	3.22	666.5018	Constituent of <i>Petrosia ficiformis</i>
7	Dideacetylraspacionin; 10,28- Dihydro, 103-	E-1-	6	8 16	661 4090	Constituent of sponge Raspaciona aculeata
,	hydroxy, 4,10, 15,21-tetra-Ac	Feb	0	0.10	001.1070	Constituent of sponge Ruspacional acateura
8	Dideacetylraspacionin; 10,28- Dihydro, 103-	Eab	6	8 21	634 4068	Constituent of sponge Raspaciona aculeata
Ű	hydroxy, 21- ketone, 4,10,15-tri-Ac	гео				
9	Cholestane-3,5,6,7-tetrol; (3i, 5ct,613,713)-	Eab	6	8.25	503.3500	Constituent of the gorgonian <i>Plexaurella grisea</i>
	form, 3,7-Di-Ac	1.60		/		
10	6-Pentadecyl-1,2,4-benzenetriol; 1-Ac	Feb	6	7.59	400.2594	Constituent of the sponge Axinella polycapella
11	Etzionin; N,O -Di-Ac	Feb	6	7.41	558.3422	cytotoxic & antifungal; isolated from Didemnum rodriguesi
12	Fumiquinazoline F; 4-Epimer	Feb	6	7.47	358.1420	Cytotoxin prod. by a marine-derived Aspergillus fumigatus
13	Picrotoxinin	Feb	6	3.77	314.0767	Ichthyotoxin isolated from desmosponge Spirastrella inconstans
14	Louludinium(1+)	Feb	6	4.82	294.2211	Isolated from marine cyanobacterium Lyngbya gracilis
15	Aeruginosamide	Feb	6	2.66	560.3399	Isolated from Microcystis aeruginosa (cyanobacteria)
16	Bengamide Z; 6-Deoxy	Feb	6	2.30	372.2264	Isolated from sponge Jaspis cf. coriacea
17	Ulithiacyclamide F	Feb	6	9.26	814.2046	Isolated from the ascidian Lissoclinum patella

No.	Compound	Month	Freq.	T _R	Mass	Identification Marine Natural Products Dictionary
18	4-Cadinen-10-ol; (1ct,63,7i3,10 13)-form	Feb	6	4.46	222.1987	Isolated from the sponge Acanthella cavernosa.
19	Drechslerine G	Feb	6	3.85	270.1823	Metabolite of the algicolous fungus Drechslera dematioidea
20	Acremonin A; (+)-form	Feb	6	5.25	176.0836	Prod. by a marine-derived micromycte Acremonium sp.
21	10-O -(3,4- Dihydroxy-E -cinnamoyl)	Oct/Nov	4	2.87	536 1535	Constituent of Genipa americana (genipap) and Premna barbata
21	geniposidic acid	0001100	-	2.07	550.1555	(higher terrestrial plants)
	6- Sulfate Cholestane-3,6,8,15,24-pentol;	0 . N	1	2.1	532 3077	Constituent of Organization rational states (tropical sea star)
22	(313,5ct,6a,15ct,24S)-form,	Oct/Nov	4	2.1	552.5077	constituent of Oreaster reactinuus (tropical sea star)
	3-Propanoyl, 12-Ac-3,12-Dihydroxy-20,24-	0 . N	1	6 36	545 371	Constituent of Phyllosponoia lamellosa
23	dimethyl-17-scalaren-25,24-olide	Oct/Nov	4	0.50	545.571	Constituent of T hydospongia iameilosa
	1-Tricosene	0 / N	1	0.23	339 3865	Constituent of the alga Botryococcus braunii and various plant spp.
24	1-Theosene	Oct/Nov	-	1.25	337.3805	incl. Gardenia tahitensis
25	4,10-Dimethyldodecanoic acid	Oct/Nov	4	3.85	245.2352	Isolated from a halophilic Bacillus sp.
26	2-Amino-11-dodecen-3-ol	Oct/Nov	3	5.50	199.1939	Isolated from a marine sponge Haliclona n. sp.
27	N - Eicosanoyl 2-Aminobenzoic acid	Oct/Nov	4	5.65	453.3218	Isolated from aerial parts of Ononis natrix (African terrestrial plant)
28	Dysidazirine; (S,E)-form	Oct/Nov	4	3.69	307.2516	Isolated from Fijian marine sponge, Dysidea fragilis
29	Malonganenone B	Oct/Nov	4	6.75	470.3256	Isolated from Leptogorgia gilchristi (gorgonian, soft coral)
30	Glanvillic acid A	Oct/Nov	4	6.29	306.2190	Isolated from <i>Plakortis halichondrioides</i>
31	13',14'-Dihydro-amphiasterin B2	Oct/Nov	3	6.72	401.3506	Isolated from <i>Plakortis quasiamphiaster</i> (marine sponge)
32	Enterocin	Oct/Nov	4	3.75	444.1060	Isolated from a marine ascidian <i>Didemnum sp.</i>
						Isolated from the New Caledonian deep water sponge Phloeodictyon
33	Phloeodictyne A; Phloeodictyne 4,6i	Oct/Nov	4	8.59	407.3622	sp. and shallow-water sponge Oceanapia fistulosa (Phloeodictyon
						fistulosa)
34	2-Amino-18-methyl-4- nonadecene-1,3-diol	Oct/Nov	3	8.7	327.3141	Isolated from the sponge Discodermia calyx
35	2-Amino-9-hexadecen-3-ol; (2 S ,3R ,9Z)-	0 / N	1	7 87	255 2563	Isolated from the tunicate <i>Pseudodistoma observerum</i>
55	form	Uct/Nov	+	1.01	233.2303	Isolated from the function I seudoustoma obscurum

No.	Compound	Month	Freq.	T _R	Mass	Identification Marine Natural Products Dictionary
36	6-Octadecenoic acid; (E)- form	Oct/Nov	4	7.72	282.2559	Minor constituent of plant oils
37	Choline; O -(2-Methyl-2- propenoyl)	Oct/Nov	4	8.08	194.1157	Monomer. Polymers are used as coagulants in sewage treatment
38	2-Dodecenoic acid; (E)-form, Et ester	Oct/Nov	4	7.12	226.1909	Occurs in pears
39	Hexadecanoic acid; Dimethylamide	Oct/Nov	4	5.74	283.2876	Widely distributed in plants
40	2-Methylpropanoic acid	Oct/Nov	4	7.69	106.0627	The free acid and its esters occur in many plants

4 4. CONCLUSION

The survey in Nigerian coastal waters confirmed the presence of toxic algae in this area, in particular 5 6 Dinophysis caudata. For the first time, lipophilic toxins were identified in Nigerian coastal waters. 7 Okadaic acid and pectenotoxin 2 have been quantified in passive samplers deployed for 1-week periods and can most likely be attributed to Dinophysis species, although a partial contribution by Prorocentrum 8 species cannot be excluded. Untargeted analysis using high resolution mass spectrometry also pointed 9 towards the possible accumulation of cyanobacterial metabolites in the passive samplers. Therefore, any 10 11 further studies investigating the risks for public health from shellfish consumption should examine 12 concentrations of algal as well as cyanobacterial toxins.

13

14 CONFLICT OF INTEREST

15 The authors declare that there are no conflicts of interest.

16

17 AKNOWLEDGMENTS

This study was carried out under the Coselmar project supported by Ifremer and Nantes University and funded by the Regional Council of the *Pays de la Loire*, France. The authors would like to thank all the members of the Laboratory Phycotoxins at the Atlantic Centre of Ifremer for their help and advice during this study. Tertiary Education Trust (TETF) is appreciated for providing logistics support for the collection of samples. Dr Denise Mukoro and Mr. Timothy Efe Unusiotame-Owolagba are gratefully acknowledged for the deployment of the SPATTs.

24

25 **REFERENCES**

Abouabdellah, R., Bennouna, A., El Attar, J., Erler, K., Dellal, M., Chafik, A., Moukrim, A., 2011.
Diarrhetic shellfish poisoning toxin profile of shellfish from Southern Atlantic coasts of Morocco. South
Asian Journal of Experimental Biology 1, 101-106.

Abouabdellah, R., Taleb, H., Bennouna, A., Erler, K., Chafik, A., Moukrim, A., 2008. Paralytic shellfish
poisoning toxin profile of mussels Perna perna from southern Atlantic coasts of Morocco. Toxicon 51,
780-786.

Ajuzie, C., Houvenaghel, G., 2009. Preliminary survey of potentially harmful dinoflagellates in Nigeria's
 coastal waters. Fottea 9, 107-120.

- An, T., Winshell, J., Scorzetti, G., Fell, J.W., Rein, K.S., 2010. Identification of okadaic acid production
 in the marine dinoflagellate Prorocentrum rhathymum from Florida Bay. Toxicon 55, 653-657.
- 36 ASTM, 1980. American Society for Testing and Materials. Annual Book of ASTM Standard. pp. 547-549.
- Bennouna, A., Berland, B., El Attar, J., Assobhei, O., 2002. Lingulodinium polyedrum (Stein) Dodge red
 tide in shellfish areas along Doukkala coast (Moroccan Atlantic). Oceanologica Acta 25, 159-170.
- 39 Bienfang, P., Oben, B., DeFelice, S., Moeller, P., Huncik, K., Oben, P., Toonen, R., Daly-Engel, T.,
- 40 Bowen, B., 2008. Ciguatera: the detection of neurotoxins in carnivorous reef fish from the coast of
- 41 Cameroon, West Africa. Afr. J. Mar. Sci. 30, 533-540.
- Blanco, J., Livramento, F., Rangel, I.M., 2010. Amnesic shellfish poisoning (ASP) toxins in plankton and
 molluscs from Luanda Bay, Angola. Toxicon 55, 541-546.
- Blunt, J.W., Munro, M.H., 2008. Dictionary of Marine Natural Products, with CD-ROM. Chapman &
 Hall, CRC Press, Taylor and Francis Group, Boca Raton, London, New York.
- 46 DeGrasse, S.L., Martinez-Diaz, K., 2012. Biotoxin control programmes in North, Central and South
- 47 American countries, in: Cabado, A.G., Vieites, J.M. (Eds.), New Trends in Marine and Freshwater Toxins:
- 48 Food Safety Concerns. Nova Science Publishers Inc.
- 49 Delmas, D., Herbland, A., Maestrini, S.Y., 1992. Environmental conditions which lead to increase in cell
- 50 density of the toxic dinoflagellates *Dinophysis spp* in nutrient-rich and nutrient-poor waters of the French
- 51 Atlantic coast Marine Ecology Progress Series 89, 53-61.
- Dublin-Green, C.O., Awobanise, A., Ajao, E.A., 1997. Large Marine Ecosystem Project for the Gulf of
 Guinea (Coastal Profile of Nigeria). Nigeria Institute of Oceanography Encyclopedia Americana, 1994.
- 54 International Edition, Grolier Incorporated
- Fan, L., Sun, G., Qiu, J., Ma, Q., Hess, P., Li, A., 2014. Effect of seawater salinity on pore-size distribution on a poly(styrene)-based HP20 resin and its adsorption of diarrhetic shellfish toxins. Journal of Chromatography A 1373, 1-8.
- Fawcett, A., Bernard, S., Pitcher, G.C., Probyn, T.A., du Randt, A., 2006. Real-time monitoring of
 harmful algal blooms in the southern Benguela. African Journal of Marine Science 28, 257-260.
- Fernández, M.L., Reguera, B., González-Gil, S., Míguez, A., 2006. Pectenotoxin-2 in single-cell isolates
 of Dinophysis caudata and Dinophysis acuta from the Galician Rías (NW Spain). Toxicon 48, 477-490.
- Fux, E., Bire, R., Hess, P., 2009. Comparative accumulation and composition of lipophilic marine
 biotoxins in passive samplers and in mussels (M. edulis) on the West Coast of Ireland. Harmful Algae 8,
 523-537.
- Fux, E., Marcaillou, C., Mondeguer, F., Bire, R., Hess, P., 2008. Field and mesocosm trials on passive
 sampling for the study of adsorption and desorption behaviour of lipophilic toxins with a focus on OA and
- 67 DTX1. Harmful Algae 7, 574-583.
- 68 Henrichs, D.W., Scott, P.S., Steidinger, K.A., Errera, R.M., Abraham, A., Campbell, L., 2013.
- 69 Morphology and Phylogeny of Prorocentrum texanum sp nov (Dinophyceae): A New Toxic
- 70 Dinoflagellate From the Gulf of Mexico Coastal Waters Exhibiting Two Distinct Morphologies. J. Phycol.
- **71 49**, 143-155.

- 74 Safety Concerns. Nova Science Publishers Inc.
- Holmes, M.J., Teo, S.L.M., Lee, F.C., Khoo, H.W., 1999. Persistent low concentrations of diarrhetic
 shellfish toxins in green mussels perna viridis from the johor strait, singapore: first record of diarrhetic
 shellfish toxins from south-east asia. Marine-Ecology-Progress-Series 181, 257-268.
- Hu, T., DeFreitas, A.S.W., Curtis, J.M., Oshima, Y., Walter, J.A., Wright, J.L.C., 1996. Isolation and
 structure of prorocentrolide B, a fast-acting toxin from *Prorocentrum maculosum*. J. Nat. Prod. 59, 10101014.
- Ibe, A.C., 1988. The Niger Delta and the global rise in sea level. Proc. SCORE Workshop on sea level rise
 and subsidiary coastal areas. Milliman Press, New York.
- B3 Ibe, A.C., Ajayi, T.O., 1985. Possible Upwelling Phenomenon off the Nigerian Coast. NIOMR Technical
 Publication 25, 1-30.
- Jackson, A.E., Marr, J.C., McLachlan, J.L., 1993. The production of diarrhetic shellfish toxins by an
 isolate of *Prorocentrum lima* from Nova Scotia, Canada. 513-518.
- Kadiri, M.O., 1999. Phytoplankton distribution in the coastal waters of Nigeria. Nigerian Journal of
 Botany 12, 51-62.
- Kadiri, M.O., 2001. Some marine phytoplankton species from Atlantic Ocean, Nigeria. Biosci. Res.Comm 13, 197-207.
- Kadiri, M.O., 2002. A spectrum of phytoplankton flora along salinity gradient in the eastern Niger Delta
 area of Nigeria. Acta Botanica Hungarica 44, 75-83.
- Kadiri, M.O., 2006a. Phytoplankton flora and physico-chemical attributes of some waters in the Eastern
 Niger delta area of Nigeria. Nigerian J. Botany 19, 188-200.
- Kadiri, M.O., 2006b. Phytoplankton survey in the Western Niger Delta, Nigeria. Afr. J. Environ. Pollut.
 Health 5, 48-58.
- Kadiri, M.O., 2011. Notes on harmful algae from Nigerian coastal waters. Acta Botanica Hungarica 53, 137-143.
- Lawrence, J., Loreal, H., Toyofuku, H., Hess, P., Iddya, K., Ababouch, L., 2011. Assessment and
 management of biotoxin risks in bivalve molluscs. FAO Fisheries and Aquaculture Technical Paper No.
 551, 337 pages.
- 102 Lawrence, J.E., Grant, J., Quilliam, M.A., Bauder, A.G., Cembella, A.D., 2000. Colonization and growth
- of the toxic dinoflagellate Prorocentrum lima and associated fouling macroalgae on mussels in suspended
 culture. Mar. Ecol.-Prog. Ser. 201, 147-154.
- Li, A.F., Sun, G., Qiu, J.B., Fan, L., 2015. Lipophilic shellfish toxins in Dinophysis caudata picked cells
 and in shellfish from the East China Sea. Environ. Sci. Pollut. Res. 22, 3116-3126.

- MacKenzie, L., Beuzenberg, V., Holland, P., McNabb, P., Selwood, A., 2004. Solid phase adsorption
 toxin tracking (SPATT): a new monitoring tool that simulates the biotoxin contamination of filter feeding
 bivalves. Toxicon : official journal of the International Society on Toxinology 44, 901-918.
- Marasigan, A.N., Sato, S., Fukuyo, Y., Kodama, M., 2001. Accumulation of a high level of diarrhetic
 shellfish toxins in the green mussel Perna viridis during a bloom of Dinophysis caudata and Dinophysis
 miles in Sapian Bay, Panay Island, the Philippines. Fish. Sci. 67, 994-996.
- Morton, S.L., Moeller, P.D.R., Young, K.A., Lanoue, B., 1998. Okadaic acid production from the marine
 dinoflagellelate *Prorocentrum belizeanum* Faust isolated from the Belizean coral reef ecosystem. Toxicon
 36, 201-206.
- 116 Nwankwo, D.I., 1991. A survey of the dinoflagellates of Nigeria. Armoured dinoflagellates of Lagos
 117 Lagoon and associated Tidal creeks. Nigerian Journal of Botany 4, 49-60.
- 118 Nwankwo, D.I., 1997. A first list of dinoflagellates (Pyrrhophyta) from Nigerian coastal waters (creek,
 119 estuaries lagoons). Pol. Arch. Hydrobiol 44, 313-321.
- Odokuma, L.O., Isirima, J.C., 2007. Distribution of cyanotoxins in aquatic environments in the Niger
 Delta. Afr. J. Biotechnol. 6, 2375-2385.
- Pan, Y., Cembella, A.D., Quilliam, M.A., 1999. Cell cycle and toxin production in the benthic
 dinoflagellate Prorocentrum lima. Mar. Biol. 134, 541-549.
- 124 Paz, B., Riobó, P., Fernández, M.L., Fraga, S., Franco, J.M., 2004. Production and release of yessotoxins
- by the dinoflagellates *Protoceratium reticulatum* and *Lingulodinium polyedrum* in culture. Toxicon[Toxicon] 44, 251-258.
- Pitcher, G.C., Calder, D., 2000. Harmful algal blooms of the southern Benguela Current: a review and appraisal of monitoring from 1989 to 1997. South Afr. J. Mar. Sci.-Suid-Afr. Tydsk. Seewetens. 22, 255-271.
- Pitcher, G.C., Franco, J.M., Doucette, G.J., Powell, C.L., Mouton, A., 2001. Paralytic shellfish poisoning
 in the abalone Haliotis midae on the west coast of South Africa. Journal of Shellfish Research 20, 895904.
- Rundberget, T., Gustad, E., Samdal, I.A., Sandvik, M., Miles, C.O., 2009. A convenient and cost-effective
 method for monitoring marine algal toxins with passive samplers. Toxicon : official journal of the
 International Society on Toxinology 53, 543-550.
- 136 Suzuki, T., Watanabe, R., 2012. Shellfish toxin monitoring system in Japan and some Asian countries, in:
- 137 Cabado, A.G., Vieites, J.M. (Eds.), New Trends in Marine and Freshwater Toxins: Food Safety Concerns.
 138 Nova Science Publishers Inc.
- Taleb, H., Vale, P., Amanhir, R., Benhadouch, A., Sagou, R., Chafik, A., 2006. First detection of
 azaspiracids in mussels in north west Africa. J. Shellfish Res. 25, 1067-1070.
- Taleb, H., Vale, P., Blaghen, M., 2003. Spatial and temporal evolution of PSP toxins along the Atlantic
 shore of Morocco. Toxicon 41, 199-205.
- Vale, P., Rangel, I., Silva, B., Coelho, P., Vilar, A., 2009. Atypical profiles of paralytic shellfish poisoning
 toxins in shellfish from Luanda and Mussulo bays, Angola. Toxicon 53, 176-183.

Wolfender, J.-L., Marti, G., Thomas, A., Bertrand, S., 2015. Current approaches and challenges for the
metabolite profiling of complex natural extracts. Journal of Chromatography A 1382, 136-164.

147 Zendong, Z., Herrenknecht, C., Abadie, E., Brissard, C., Tixier, C., Mondeguer, F., Sechet, V., Amzil, Z.,

148 Hess, P., 2014. Extended evaluation of polymeric and lipophilic sorbents for passive sampling of marine

toxins. Toxicon : official journal of the International Society on Toxinology 91, 57-68.

150 Zendong, Z., McCarron, P., Herrenknecht, C., Sibat, M., Amzil, Z., Cole, R.B., Hess, P., 2015. High

151 resolution mass spectrometry for quantitative analysis and untargeted screening of algal toxins in mussels

and passive samplers. Journal of Chromatography http://dx.doi.org/10.1016/j.chroma.2015.08.064.

- 153
- 154

155

156	Supplementary material
157	
158	Algal toxin profiles in Nigerian coastal waters (Gulf of Guinea) using passive sampling and
159	liquid chromatography coupled to mass spectrometry
160	Zita Zendong ^{1, 3} , Medina Kadiri ² , Christine Herrenknecht ³ , Elisabeth Nezan ⁴ , Antonia Mazzeo ⁵ ,
161	Philipp Hess ¹ *
162	
163	¹ Ifremer, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, 44311 Nantes, France;
164	² Department of Plant Biology and Biotechnology, University of Benin, Benin City, Nigeria
165	³ LUNAM, Université de Nantes, MMS EA2160, Faculté de Pharmacie, 9 rue Bias, 44035 Nantes, France;
166	⁴ Ifremer, Station de Biologie Marine, BP 40537, F-29185 Concarneau Cedex, France ;
167	⁵ Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via D. Montesano 49, 80131,
168	Napoli, Italia;
169	
170	
171	
172	Figure S1: Comparison of the high-resolution mass spectrum of PTX2 in a sample from Bar Beach to the
173	spectrum of a certified standard of PTX2.
174	Figure S2: Surface focus of a <i>Lingulodinium polyedrum</i> cell in ventro-antapical view, in ventro-apical
175	view and, in dorso-apical view showing ornamentation of plates (ridges along the sutures and circular
176	depressions).
177	

Figure S1: Comparison of the high-resolution mass spectrum of PTX2 in a sample from Bar Beach to the

180 spectrum of a certified standard of PTX2.

Figure S2: Surface focus of a *Lingulodinium polyedrum* cell in ventro-antapical view, in ventro-apical

- 185 view and, in dorso-apical view showing ornamentation of plates (ridges along the sutures and circular
- 186 depressions).

Figure S3. Principal Component Analysis (PCA) of passive samples taken at Bar Beach, Nigeria, in 2014/2015. The score plot (a) shows good separation of samples from October/November (left-hand side of graph) from those taken in February (right-hand side of graph). As this separation was almost exclusively on principal component 1 (accounting for almost 70% variability in the dataset), compounds most responsible for this separation are those that appear on the left- and right-hand side of the loadings plot (b). An arbitrary cut-off of 0.03 was chosen to select the most "separative" compounds. These compounds were subsequently screened against the Marine Natural Products Dictionary and results are given in Table 4 of the manuscript.

Table S1. 170 compounds tentatively identified at Bar Beach on 08/11/2014 197

1	9	8
		-

Name	m/z	Height	Diff (DB, ppm)	RT (min)	Score (DB)	Mass
1(10) 5-Germacradien-4-ol: (1(10)E			PPin)		/0	
4a 5E)-form Q -(2-Q - Acetyl-13-D-	444 296	14204	-0.87	6 33	99 29	426 2621
glucopyranoside)	111,290	11201	0,07	0,55	<i>,</i>	120,2021
1 21-Heneicosanediol	328 3575	58944	-0.24	5 30	99 96	328 3342
1.2 Panzanadicarboxylic acid:	520,5575	50744	0,24	5,50	,,,0	520,5542
Ditridecyl ester	535,4124	33691	-0,5	9,08	99,72	530,4338
1.7 Dibydroxy 2.5.10.14 phytototroop					·····	
13 one: $(2E_5E_7r_10E)$ form	303,2316	38682	0,73	5,32	99,63	320,2349
1.7 Dihydroxy 2.5 10.14, phytotetreen						
13 one: $(2E_5E_7r_10E)$ form	303,2318	32854	0,11	6,57	99,99	320,2351
10 Aromadandranal: (112 4a 5					·········	
10-Alomadentiation, $(115,4a,5)$						
$15,0a,7ct,10ct)-101111, O - [2-Mothylpropanovl (\ddot{x}:1/4*2) 3$	438,3216	12346	-0,5	6,80	99,76	438,2984
Dfucopyraposidal						
11.14 Dibudrovy 12 spongion 16 one:		•••••				
(1113 14a) form	317,2111	93172	0,12	4,84	99,99	334,2144
11 15 Dibudrovy 0 ovo 12 prostonoio						
11,15-Dillydroxy-9-0x0-15- prosteriorc	265 2697	26027	0.07	6 61	100	202 272
acid; (8K,11K,12K, 15E,155)-10fill,	303,2087	20037	-0,07	0,01	100	382,272
11 15 Dibudrouy 0 ono 5 12						
11,15-Dinydroxy-9-0x0-5,15-	366,2637	25639	0,49	2,22	99,8	366,2404
12,16,22-1rinydroxy-24-methyl- 24-	506 2474	00047	0.20	4.50	00.02	506 22 12
$0x_0-25$ -scalaranoic acid; $(12/3, 16/3)$ -	506,3474	98047	0,39	4,59	99,83	506,3242
form, 22-Ac, Me ester						
13,17-Epoxy-16-nydroxy-19- kauranoic	331,2268	64105	-0,03	5,08	100	348,2301
acid; (ent -16ct)-form, Me ester						
13-Docosenoic acid; (E)-form	338,3419	22888	-0,41	8,99	99,87	338,3186
14-Hydroxy-4,7,10,12,16,19-						
docosahexaenoic acid; (4Z,7Z, 10Z	327,2321	37561	-0,73	6,48	99,59	344,2354
,12E ,14?,16Z ,19Z)-form						
15,17-Epoxy-15,17-dihydroxy-16-						
isocopalanoic acid; (13aH,14aH,	468,296	49780	-0,97	4,82	99,07	450,2622
15a,1713)-form, Di-Ac, Me ester						
15-Anhydrothyrsiferol; 10- Epimer,	586.33	18533	0.33	7.44	99.86	586.3067
A15(28)-isomer						
16,24-Epoxy-21,24,25-trihydroxy- 17-						
cheilanthen-19,25-olide; (24?, 25?)-	452,3005	99390	0,41	4,73	99,84	434,2667
form						
16,24-Epoxy-21,24,25-trihydroxy- 17-						
cheilanthen-19,25-olide; (24?, 25?)-	452,3007	35080	-0,1	4,82	99,99	434,2669
form						
17-Methyl-1,17-tricosadiene-	446 3472	26475	0.83	5 86	99 32	446 324
4,6,8,10,12,14,16-heptol	++0,5+72	20475		5,00		++0,52+
1-Amino-4,12-tridecadien-2-ol; (�)-	278 2114	28107	0.11	3 70	00 00	205 2147
(E)-form, N,O-Di-Ac	270,2114	20107		5,70	,,,,,	275,2147
1-Bromo-4,6-eudesmanediol;	120 1015	201266	-0.35	2 60	00 80	402 1607
(113,4a,6a,713H)-form, 4,6-Di- Ac	420,1943	201200	-0,55	2,00	<i>,07</i>	+02,1007
1H-Indole-5,6-diol; Di-Me ether, N-Me	191,118	45686	-0,45	1,99	99,92	191,0947
1-O -Alkylglycero-3- phosphocholines;	576,3786	34960	0,34	7,52	99,86	571,4000

Name	m/z	Height	Diff (DB, ppm)	RT (min)	Score (DB) %	Mass
1- Hexadecylglycero-3-						
phosphocholine, 2-Benzyl ether						
2-(Aminomethyl)-2-propenoic acid; N -						
(2-Hydroxyhexadecanoyl). Me ester	370,2951	19604	0,35	7,35	99,90	369,2878
2-(Aminomethyl)-2-propenoic acid: N -						
(2-Oxohexadecanovl). Me ester	350,2691	129147	-0,44	2,71	99,84	367,2724
2-(Aminomethyl)-2-propenoic acid: N -						
Hexadecanovl	322,2739	88009	0,4	3,82	99,88	339,2772
2 3 4 9-Tetrahydro-1H -pyrido[3 4-b						
lindol-1-one: 6-Methoxy	199,0868	148648	-0,98	1,73	99,57	216,0901
2 3 5 14 20 22 26- Heptahydroxyergost-						
7-en-6-one	510,3429	72813	-0,63	5,44	99,56	510,3196
2 3 5 14 20 22 26- Hentabydroxyergost-						
7-en-6-one: (213 313 513 14a 20R 22R	510 3419	36288	-0.05	5 32	100	510 3193
24? 25R)-form	510,5417	50200	0,05	5,52	100	510,5175
2 3'-Iminobispropanoic acid: (ï:½)-					·····	
form Di-Et ester N $-Ac$	242,1386	39061	0,3	3,13	99,95	259,1419
2' 4.6.6'-Tetrahydroxy- $4'$ -						
methylbenzonbenone_2_carboxylic acid	329 1021	3/1581	-0.34	3 66	00 01	346 1054
2' 6-Di-Me ether Me ester	529,1021	54501	-0,34	5,00	<i>99,9</i> 1	540,1054
2 4 6 Tribromonbanol: A		•••••			• • • • • • • • • • • • •	
2,4,0-111010110piction, 4- Methylbenzenesulfonyl	486,8214	23862	-0,94	2,95	99,08	481,8427
2.6.10 Europatrian 1 aig agid: 68.78						
2,0,10-1 amesamen-1-orc acid, 05,75	300,2169	76280	0,13	5,21	99,99	282,1831
22.25 Epoyu 24 mathylfurostana		·····				
22,23-Epoxy-24-methymulostalle-	512 2200	21000	0.72	5 20	00.4	520 2206
2,5,11,20-lettol, (201,501,501,1115, 1612,20D, 22S, 24S) form 2 A a	343,3288	21999	0,75	5,29	99,4	520,5590
1015,20K,225,245)-101111, 5-AC						
24-Methyl-16-pentacosene-2, 4-dryne-	393,313	39095	-0,66	8,80	99,62	388,3344
25 Mathril 1 25 hantriagantadiana						
25-Methyl-1,25- hentracontactene-	640,4633	19787	-0,48	2,92	99,7	622,4295
4,6,8,10, 12,14,16,18,20,22,24-undecol	224.2052	70174	0.45	1 6 1	00.05	222 2001
2-Amino-1,3,4,5- octadecanetetrol	334,2953	/0164	-0,45	4,64	99,85	333,2881
2-Amino-1,3,4-hexadecanetriol; (2S,3R	290.2689	70470	0.2	4.65	99.98	289.2616
,4S)- form						
2-Amino-1,3-octadecanediol;(2R,3S)-	410.3266	19374	-0.01	7.17	100	427.3298
form, N ,O ,O -Tri-Ac						
2-Amino-14-methyl-1,3,4-	290.2691	142823	-0.42	2.96	99.89	289.2618
pentadecanetriol				2,70		
2-Amino-3-hydroxy-4- octadecene-1-	708 502	22708	-0.94	2 23	99 29	363 2447
sulfonic acid						
2-Amino-4-octadecene-1,3- diol;	282 2793	42655	-0.56	8 36	99 79	299 2826
(2?,3?,4?)-form	202,2775	+2055		0,50		277,2020
2-Azetidinecarboxylic acid; (R) -form,	223 1441	45912	-0.14	2 16	00 00	205 1103
N -Benzyl, Me ester	223,1441	43912	-0,14	2,10	,,,,,	205,1105
2-Ethyl-11-methoxy-3-methyl-3H -						
[1,6]naphthyridino[6,5,4-def]	279,1606	315814	-0,69	9,86	99,7	279,1374
quinoxaline						
2-Hydroxy-10-oxo-4,10-seco-4,	200 2008	61/185	-0.60	6 37	00 66	316 2041
13(15),17-spatatrien-12-al	299,2008	04403	-0,09	0,57	<i>99</i> ,00	510,2041
2-Methyl-1,16-dithiocyanato- 8-	370 2246	636771	0.02	1.04	100	270 2112
hexadecanol	570,2540	050724	-0,05	1,94	100	570,2115
2-Oxohexadecanoic acid; Me ester, (Z)-	282,2428	73942	-0,03	2,94	100	299,2461

Name	m/z	Height	Diff (DB, ppm)	RT (min)	Score (DB) %	Mass
oxime						
3-(12-Nitrododecyl)pyridine	310.2488	164095	0.38	3.54	99.91	292.215
3(20)-Phytene-1,2-diol; (2?,7 ?,11?)(1)-						
form, Di-Ac	397,3311	52692	0,26	8,29	99,94	396,3239
3-(2-Hydroxyethyl)-6- prenylindole;		146000				0.40.1.410
Aldehyde, oxime	243,149	146928	0,67	3,72	99,77	242,1418
3-(3-Oxo-1-nonadecenyl)	267 2045	65701	0.00	6.00	00.62	266 0772
oxiranecarboxylic acid	367,2845	65/81	-0,68	6,33	99,63	366,2773
3,11-Dihydroxy-15-cembren-6- one;	207 2624	42001	0.00	0.02	00 (7	224 2667
(1R, 3R, 4R, 8S, 11R, 12R) - form	307,2034	43991	-0,08	9,02	99,07	524,2007
3,24-Dihydroxy-24-methyllanost- 8-en-	511 3757	36745	0.10	8 68	00.06	188 3865
30-oic acid; (313,24?)-form	511,5757	30743	0,19	0,00	99,90	488,3803
3,4,6,24-Tetrahydroxycholest- 8(14)-en-	118 3125	18064	-0.77	7.81	99.41	118 3192
15-one; (3i ,43,5ct,6a, 258)-form	++0,5+25	+000+	-0,77	7,01	<i>уу</i> ,+1	++0,5172
3,5-Dihydroxy-6,7- megastigmadien-9-	224 1645	127638	0.16	3.61	99 99	224 1412
one; (3S,5S, 7R ax)-form				5,01		
3,6-Epidioxy-6-methoxy-4,16,18-	349.2372	40176	0.25	6.35	99.95	366.2405
eicosatrienoic acid				0,55		
3,7,11-Cembratrien-15-ol; (1S,3E,7E	404040		0.04			1010010
,11E)-form, O -(6-O - Acetyl-13-D-	494,348	28402	-0,86	8,11	99,21	494,3248
galactopyranoside)						
3-Hydroxy-11-oxo-12-oleanen-30- oic	CAC 2049	20(70	0.20	2.00	00.90	646 2715
acid; (313,183)-form, 3-0-13-	646,3948	29679	0,29	2,88	99,89	646,3715
2 Hydronycholog 24 aig gaid (2st						
5-Hydroxycholan-24-olc acid; (5ci, 513) form Cluging amide	416,3163	48077	-0,93	7,81	99,18	433,3196
2 Hydroxyprogn 5 on 20 one:		•••••				
(313 13 ct 17 ct)-form Ac	358,2738	80308	0,59	4,35	99,72	358,2506
3-Hydroxypregn_5-en_20_ one						
(313 17ct)-form Ac	341,2477	16660	-0,41	6,58	99,87	358,2509
3-Hydroxyundecanoic acid: ()-form 0						
-[ct-L- Rhamnopyranosyl-(1*3)-3-	550,3946	19328	0.72	2.55	99.41	532,3608
hvdroxvundecanovl]	000,00010	17020	0,72	2,00	<i>,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
4.15:6.7-Diepoxy-1.8- dihydroxy-5-					•••••	
hirsutanone; (1ct, 4?,63,7i3,83)-form, 1-	405,227	58107	0,34	2,10	99,89	422,2303
(2- Hydroxyoctanoyl)	,		,	,	,	,
4,7-Epoxy-3-hydroxy-8,12(18)-	201 2164	1 4 2 0 4 2	0.40	6.04	00.02	219 2107
dolabelladien-13-one	301,2164	142942	-0,49	6,04	99,83	518,2197
4,8-Dimethyl-3-nonen-1-ol	193,1563	13004	0	5,92	100	170,1671
4-Amino-3-hydroxybenzoic acid; 2,7-	229 2271		0.14	2.02		245 0202
Tetradecadienyl ester (2E,7?)	328,2271	80099	0,14	3,02	99,99	345,2303
4-Hydroxy-16-heptadecene-5,7- diyn-2-	242 1742	17056	0.65	6 07	00.76	260 1775
one	243,1742	1/950	0,65	6,27	99,76	260,1775
4-Hydroxyphenylacetic acid; O -(3-	201 1282	34054	0.16	2 28	00.00	201 1153
Methyl-2-butenyl), nitrile	201,1385	54054	0,10	2,38	99,99	201,1155
4-Nitrophenol; Octadecanoyl	388,2848	206543	-0,48	2,83	99,79	405,2881
5,6-Epoxy-3,11-dihydroxyergost- 22-						
en-1-one; (3i3,5i3,63,11ct,22E, 24R)-	533,3241	28449	-0,7	3,67	99,44	528,3455
form, Di-Ac						
5,6-Epoxy-7,10-cyclofarnesadien- 9-ol;	236 2000	30610	0.27	2 22	00.06	236 1776
(513,63,7Z,9?)-form	230,2008	20010	0,27	∠,∠∠	77,90	230,1770

Name	m/z	Height	Diff (DB, ppm)	RT (min)	Score (DB) %	Mass
5 8-Epidioxyergosta-6 24(28)- dien-3-ol	411 3257	34172	0.06	9.12	100	428 329
5 8-Epidioxyergosta-6 9(11) 22- trien-3-				,		,
ol: (3i 5ct 8a 22E 24R) - form Q -3-D-	589 3741	301379	-0.81	3 40	99 19	588 3667
Glucopyranoside	569,5711	501577	0,01	5,10	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	500,5007
5-Cyclohexene-1 2 3 4-tetrol: (1RS						
.2RS .3SR .4RS)-form. Tetra-Ac	297,0971	57968	-0,62	1,87	99,73	314,1004
6.13-Epoxy-4(18)-eunicellene-3.8, 9.12-						
tetrol: (3a.6ct.83.9i3.12i3.13ct)-form.	466.3167	132888	-0.9	5.07	99.18	466.2935
12-Butanoyl, 3-Ac				- ,	,	
6,13-Epoxy-4(18)-eunicellene-7,8, 9,12-		10050			~~~~	254 2404
tetrol	354,2644	12350	0,62	6,63	99,7	354,2404
6,13-Epoxy-4(18)-eunicellene-8,9, 12-	201 0407	114670	0.04	6.62	00.24	220 246
triol; (6ct,8ctOH,9i,12ctOH,13 a)-form	321,2427	114679	-0,94	6,63	99,34	338,246
6,13-Epoxy-4,8,9,12- eunicellanetetrol;						
(4I,6a,8ct,913, 1213,13ct)-form, 9-Me	825,5718	835123	0,23	2,91	99,95	412,2824
ether, 12-Ac			4)	
6,13-Epoxy-8(19)-eunicellene-3,4, 9,12-						
tetrol; (3ct,413,6a,913,123,13a)-form,	480,2953	39046	0,49	3,25	99,75	480,2721
3,4,12-Tri-Ac						
7,11-Dihydroxy-13-spongien-16- one;	334 2379	44495	-0.83	7 81	99 48	334 2147
(713,1113)-form				,,01		
7,11-Dihydroxy-8-drimen-12,11- olide;	277.1797	72298	0.49	5.74	99.84	294.183
(7ct,1113)-form, 11-Et ether						
7,14-Dihydroxy-15-nor-16-	307.227	56414	-0.67	5.64	99.67	324,2303
1socopalanoic acid				·		· · · · · · · · · · · · · · · · · · ·
7,8-D1dehydro-13,13-carotene-3, 3',4,4'-	581,3992	17509	-0,53	8,49	99,65	598,4025
tetrol; (55, 55, 45, 45, 9-10rm						
9,11,15-1 $rinydroxyprost-15-enoic acid;$ (SPS OSP 11PS 12E 15 SP) form	252 2691	67271	0.76	5 95	00.52	270 2716
$(\delta KS, \delta SK, 11KS, 15E, 15SK)$ -101111, Ma astar	333,2084	0/3/1	0,70	5,65	99,32	370,2710
9-Hydroxy-571114 eicosatetraenoic						
acid: (5Z, 7E, 9S, 11Z, 14Z)-form Me	317 2476	62084	-0.15	5 78	99 98	334 2508
ester	517,2170	02001	0,15	5,70	<i>,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	331,2300
9-Hydroxy-7-hexadecenoic acid: (7E						
.9S)-form. Ketone	251,2007	32112	-0,62	6,20	99,78	268,204
Ageline B	532.3523	52722	-0.6	7.48	99.59	531.3451
Amphiasterin C1: 3-Epimer	484.3034	112434	-0.11	2.49	99.99	479.3247
Amphidinolide T2	452 3373	24688	-0.53	6 64	99.72	452 314
Antillatovin P	548 3478	73840	0.02	6 65	00	565 2511
Antimatoxin B Aplaminona: (\mathbf{R}) form A0' Leomar/E	546,5476	73840	0,92	0,05		505,5511
Aprantinone, (\mathbf{K})-ionii, A9 - isomer(\mathbf{E}). 11' hydroxy	492,2308	22650	0,04	3,40	100	509,234
Aplysia MIP related pentides: GAPPEI						
amide	641,3888	16326	-0,96	5,12	98,77	658,3921
Aspergillamide A	492 2967	10636	0.55	6.92	99 69	474 2628
Ratzellaside A	31/ 2601	30268	0,33	7.08	00 02	331 2724
Dalamida A	622 2050	17740	0.71	7,90	00.26	604 262
	022,3939	101006	0,71	7,48	99,30	604,562
Bengazole Z; U 6- Heneicosanoyl	629,4136	191826	-0,03	2,/4	100	006,4244
Biliverdin IX6; Di-Me ester	593,2762	16779	-0,51	8,79	99,67	610,2794
Chaetoglobosin A; 19-Deoxy, 20-deoxo	481,2854	26963	-0,87	6,93	99,18	498,2887
Cholest-9(11)-ene-3,6,22-triol; (3i ,5ct,6a,22R)-form, 22-Ac, 3,6-di-O -	638,303	91823	-0,5	4,70	99,67	620,2692

Name	m/z	Height	Diff (DB, ppm)	RT (min)	Score (DB) %	Mass
sulfate			FF		, ,	
Cholestane-3,5,6,7-tetrol; (313,				4.10		
5ct,6ct,7ct)-form, 3,6,7-Tri-Ac	545,3833	50889	0,73	4,18	99,37	562,3865
Clathrynamide A; N -(4- Hydroxy-1-	591 2511	2/217	0.04	4 20	08.06	561 2619
methylpentyl)	384,2341	54517	0,94	4,39	98,90	301,2048
Cochlioquinone A; 17-Methoxy	545,311	19411	-0,1	4,28	99,99	562,3142
Cochlioquinone A; Hydroquinone, 11- ketone	532,327	43782	-0,28	5,14	99,91	532,3038
Conicamine	206 1178	56844	0.2	1 81	99 98	201 1391
Crambescidin 431	449 3123	36591	-0.21	2 46	99.96	431 2785
Criamida A: N 1 Ma	682 4764	54752	0.23	2,40	00.03	682 4532
Cyclo(tryptophylyalyl): (35, 65,) form	082,4704	54752	-0,23	2,13	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	082,4332
3,6-Bis(methylthio)	377,1462	53953	0,68	1,97	99,61	377,1229
Dideacetylraspacionin; 10,28- Dihydro, 103-hydroxy, 10,15- di-Ac	594,437	38496	-0,96	9,56	98,87	594,4137
Didemniserinolipid C; O 10-Ac	602,4022	20574	0,88	3.33	99,03	597,4235
Dolabelide B	755.4944	23468	-0.47	2.57	99.68	754.4871
Ergosta-7.24(28)-diene-3.4.6.20, 22-				-,		
pentol; (33,4f3,5a,6a,20?,22?) -form,	546,379	48858	-0,11	6,36	99,98	546,3557
4,6-Di-Ac						
Ergostane-3,5,6,7,15-pentol	471,3449	15081	-0,79	4,62	99,36	466,3662
Exophilin A	576,4109	38199	-0,42	6,72	99,78	576,3876
Fasciospongide B	466,28	94817	-0,13	4,11	99,98	448,2462
Fellutamide A; 1-Deoxy	556,3703	19846	0,39	2,12	99,82	555,363
Fungichromin	671,4006	13344	-0,68	5,83	99,37	670,3933
Glutamic acid; (S)-form, N -(9Z, 12Z	015 5 410	51000		2.50	·····	407.0672
,15Z -Octadecatrienoyl)	815,5419	51820	-0,34	3,50	99,89	407,2673
Glycerol 1,2-dialkanoates; Glycerol 1-						
hexadecanoate 2- tetradecanoate, 3-O -	725,5178	40381	-0,51	2,99	99,63	702,5286
3-DGalactopyranoside						
Glycerol 1,2-dialkanoates;Glycerol 1-	500 5001	22022	0.46	2.02	00 न	500 5100
(9Z-hexadecenoate) 2-tetradecanoate, 3-	723,5021	32832	-0,46	3,03	99,7	700,5129
Clusterel 1 alkanostas: Clusterel 1 (8.0						
methylenebeyadecanoate)	365,2665	26024	-0,69	5,76	99,64	342,2772
Glycerol 1-alkanoates: Glycerol 1- (97 -						
octadecenoate). 2-Ac	381,3001	40190	0,54	6,87	99,74	398,303
Glycerol 1-alkyl ethers; Glycerol 1-	200 2005	20526	0.60	c 17	00.74	200 2662
tetradecyl ether	288,2895	39536	0,62	5,17	99,76	288,2663
Halichomycin	557,3951	18682	-0,29	9,06	99,9	539,3612
Halimedalactone	314,2116	49951	-0,5	2,64	99,83	314,1884
Hemiasterlin	526,3747	469332	0,8	3,06	99,28	526,3515
Hennoxazole A; 4-Deoxy	498,3331	18685	-0,89	4,09	99,14	498,3098
Hurghaperoxide	405.3001	32507	-0.48	8.05	99.79	422.3034
Kahalalide D	613,3826	29507	-1	2.70	98.77	595.3488
Kailuin A	680 459	20500	0.35	3.18	99.83	697,4623
Kailuin B	726 5014	96294	-03	3 16	99.87	725 4941
Korormicin D	430 295	131313	0 32	4 36	99.9	447 2983
Labiatamide A	536.3218	15258	0.02	6.11	100	535.3145

			Diff	DТ	Score	
Name	<i>m/z</i> ,	Height	(DB, ppm)	(min)	(DB) %	Mass
Lasonolide F; Et ester	632,3797	168668	-0,63	2,67	99,5	614,3459
Manzamine A; (+)-form, 6,31 13-	600 2004	17090	0.66	2 07	00.46	597 2566
Dihydroxy, 32,33-dihydro	600,3904	17080	0,00	3,27	99,40	382,3300
Manzamine A; (+)-form, 8- Hydroxy,	600 4272	27839	0	2.08	100	582 3934
1R,2,3,4-tetrahydro, N 2-Me		27037		2,00		
Martiriol	522,3788	213917	0,21	4,32	99,95	522,3555
Melophlins; Melophlin K	306,2424	31428	0,97	3,26	99,32	323,2457
Montipyridine	274,1803	76954	-0,47	2,47	99,86	291,1836
Muqubilin; (13R,16R,17R)- form	392,3159	32409	-0,06	5,51	100	392,2927
Noroxopenlanfuran	201,1272	12797	0,73	6,27	99,76	218,1305
Okadaic acid	822,5002	10380	-0,62	6,02	99,42	804,4665
Oscillatoxin A	583,2873	20647	0,72	2,75	99,37	578,3087
Palinurine A	440,2795	89875	0,16	3,66	99,97	457,2828
Pectenotoxin 1; Dihydro (?)	876,5109	29177	-0,54	6,57	99,53	876,4876
Pectinoacetal C	535,3627	24008	0,45	7,13	99,76	534,3554
Phosphatidylcholine; Glycerol 1,2-	592 4070	160000	0.44	2 0 1	00.76	565 2741
didecanoate 3- phosphocholine	383,4079	109882	0,44	2,81	99,70	303,3741
Pinnaic acid	408,2299	79150	0,31	3,23	99,91	425,2332
Plakortic acid*; 3-Epimer, 9, 10-	310 2246	48230	0.76	7 17	00.6	314 2450
dihydro, Me ester	519,2240	40230	-0,70	/,1/	<i></i>	514,2459
Pregnane-3,20-dione; 5ct- form	299,2371	62148	-0,65	5,78	99,7	316,2404
Rhopaladin A; Debromo, 6- deoxy	354,1347	44400	0,37	2,58	99,89	354,1115
Roserythrin	578,3628	13687	0,14	4,80	99,98	578,3395
Saframycin A; 5ct-Hydroxy	596,2345	31886	1	3,79	98,79	578,2007
Sarcotragin A; N -De-(2- phenylethyl),	117 2857	80580	0.85	2 00	00.20	117 2625
N - (carboxymethyl)	++7,2057	00500	-0,05	2,77		++7,2025
Scalusamide A; 6',7'- Didehydro(E -),	264,1960	37731	-0.74	2.41	99.66	281.1993
8',9'-dihydro			••••			
Secoasbestinin	392,2434	59078	-0,7	2,09	99,58	392,2202
Semiplenamide E; 2R *,3S *- Epoxide	434,3243	17707	-0,6	5,99	99,67	411,3351
Siphonarin A; 3R -Alcohol Solanapyrone B; 73-Hydroxy, 4'-	491,3001	27544	0,38	6,53	99,84	508,3034
demethoxy, 4'-[(2-	365,2073	42412	-0,71	2,49	99,61	347,1735
hydroxyethyl)amino], 1- aldehyde Sordaricin: O -[2-Methyl-2Z, 4E -						
hexadienoyl-($i/2^*3$)-6- deoxy-4-O -	618,3632	12711	0,85	2,57	99,1	600,3293
methyl-3-Daltropyranoside] Stigmast-5-ep-3-ol: (313 24R)- form O			·····		·····	
-[3-D-Glucopyranosyl-(1 \ddot{i}_{i} ^{1/2} *4)-ct-L-	709.4880	210398	0.8	2.52	99.11	708.4807
arabinopyranoside]	, ,	210070	0,0	_,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,
Stigmast-5-en-3-ol; (313,24R)- form, O						
-[ct-Rhamnopyranosyl-(1 ï¿1/2*5)-ct-L-	692,5090	587162	0,8	2,77	99,12	692,4858
arabinofuranoside]						
Stigmasta-7,22-diene-2,3,5,6,9, 11,19-						
heptol; (2a,3i3,5ct,63,11ct, 24S)-form,	575,3574	40356	0,83	3,25	99,15	592,3606
11,19-Di-Ac						
Stigmastane-3,4,6,15,16,29- hexol;	519,3661	68075	-0,96	2,97	99,01	496,3769
(515,415,500,000,1515,105,24K)-I0fm	177 2570	24274	07	8.04	00.49	404 2611
Sugmastane-5,5,6,15,29-pentor;	411,3318	24274	-0,/	0,94	99,48	494,3011

m/z	Height	Diff (DB, ppm)	RT (min)	Score (DB) %	Mass
434,3268	20806	-0,73	7,80	99,49	434,3035
578,3756	20813	0,7	2,56	99,42	560,3417
741,5078	78719	0,5	2,64	99,63	741,4846
628,3686	15008	0,9	4,97	98,98	610,3348
526,3010	22820	0,17	4,93	99,97	543,3043
438,2052	85140	-0,28	2,67	99,92	438,1819
336,2531	53235	0,54	4,37	99,77	353,2564
	<i>m/z</i> 434,3268 578,3756 741,5078 628,3686 526,3010 438,2052 336,2531	<i>m/z</i> Height 434,3268 20806 578,3756 20813 741,5078 78719 628,3686 15008 526,3010 22820 438,2052 85140 336,2531 53235	m/z Height (DB, ppm) 434,3268 20806 -0,73 578,3756 20813 0,7 741,5078 78719 0,5 628,3686 15008 0,9 526,3010 22820 0,17 438,2052 85140 -0,28 336,2531 53235 0,54	m/z Height Diff (DB, ppm) RT (min) 434,3268 20806 -0,73 7,80 578,3756 20813 0,7 2,56 741,5078 78719 0,5 2,64 628,3686 15008 0,9 4,97 526,3010 22820 0,17 4,93 438,2052 85140 -0,28 2,67 336,2531 53235 0,54 4,37	m/z Height Diff (DB, ppm) RT (min) Score (DB) % 434,3268 20806 -0,73 7,80 99,49 578,3756 20813 0,7 2,56 99,42 741,5078 78719 0,5 2,64 99,63 628,3686 15008 0,9 4,97 98,98 526,3010 22820 0,17 4,93 99,97 438,2052 85140 -0,28 2,67 99,92 336,2531 53235 0,54 4,37 99,77

First detection of OA, PTX2 and possible presence of DTX1 in African coastal marine environments.

Presence of Dinophysis caudata and Prorocentrum spp in seawater consistent with passive sampler findings.

HRMS analysis used for chemical profiling of marine environments using passive sampler.

Untargeted analysis pointed towards presence of a cyanobacteria community.

Ethical statement for

Algal toxin profiles in Nigerian coastal waters (Gulf of Guinea) using passive sampling and liquid chromatography coupled to mass spectrometry

Zita Zendong^{1, 3*}, Medina Kadiri², Christine Herrenknecht³, Elisabeth Nézan⁴, Antonia Mazzeo⁵, Philipp Hess¹.

¹Ifremer, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, 44311 Nantes, France;

²Department of Plant Biology and Biotechnology, University of Benin, Benin City, Nigeria

³LUNAM, Université de Nantes, MMS EA2160, Faculté de Pharmacie, 9 rue Bias, 44035 Nantes, France;

⁴Ifremer, Station de Biologie Marine, BP 40537, F-29185 Concarneau Cedex, France ;

⁵Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via D. Montesano 49, 80131, Napoli, Italia;

This paper has not been published in or submitted to any other journal. No animals have been used in any of our experimentations.

On behalf of the authors,

Zita ZENDONG