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Abstract : 
 
The Bay of Bengal (BoB) exhibits a wide range of sea surface salinity (SSS), with very fresh water 
induced by heavy monsoonal precipitation and river run-offs to the north, and saltier water to the south. 
This is a particularly challenging region for the application of satellite-derived SSS measurements 
because of the potential pollution of the SSS signal by radio frequency interference (RFI) and land-
induced contamination in this semi-enclosed basin. The present study validates recent level-3 monthly 
gridded (1° × 1°) SSS products from Soil Moisture and Ocean Salinity (SMOS) and Aquarius missions to 
an exhaustive in situ SSS product for the BoB. Current SMOS SSS retrievals do not perform better than 
existing climatologies. This is in stark contrast to Aquarius, which outperforms SMOS and available SSS 
climatologies everywhere in the BoB. While SMOS only captures the SSS seasonal evolution in the 
northern part of the Bay, Aquarius accurately captures the seasonal signal in the entire basin. The 
Aquarius product is also able to capture SSS non-seasonal anomalies, with an approximate correlation 
(r) of 0.75 with box-averaged in situ data in the northern, central, and western parts of the Bay. Aquarius 
can, thus, be confidently used to monitor large-scale year-to-year SSS variations in the BoB. 
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1. Introduction 45	  

 46	  

 The Bay of Bengal (BoB) stands out as a very peculiar region for salinity distribution 47	  

in the tropical belt. The strong summer monsoon oceanic rainfall and continental runoffs into 48	  

this relatively small and semi-enclosed basin result in an intense dilution of the seawater in 49	  

northern part of the Bay, therefore inducing some of the lowest sea surface salinity (SSS) in 50	  

the tropical belt (Figure 1). The resulting very strong near-surface salinity vertical 51	  

stratification is believed to play a key role in the regional climate (Shenoi et al. 2002, Neetu et 52	  

al. 2012). Indeed, the enhancement of near-surface ocean stability by salinity stratification 53	  

reduces turbulent entrainment of cooler thermocline water into the mixed layer and 54	  

consequently maintains high sea surface temperatures in the BoB (Shenoi et al. 2002). The 55	  

stronger BoB salinity stratification after the monsoon may also favour intense cyclones during 56	  

that season, by inhibiting oceanic vertical mixing and surface cooling along the cyclone track, 57	  

and hence leading to enhanced evaporation that can sustain the cyclone (Neetu et al. 2012 and 58	  

references therein). Last but not least, salinity could also act as a marker of changes in the 59	  

water cycle associated with anthropogenic forcing (e.g. Terray et al. 2012).  60	  

 61	  

Because of the potentially important role of salinity in the climate dynamics of this 62	  

region, several studies already investigated the seasonal BoB SSS variations by building 63	  

salinity climatologies derived from available hydrographic data (e.g. Rao and Sivakumar. 64	  

2003, Chatterjee et al. 2012, Zweng et al. 2013), These climatologies reveal a strong 65	  

freshening in the northeastern part of the Bay during summer in response to the freshwater 66	  

input associated with monsoonal rainfall and Ganges-Brahmaputra river discharge (Figure 67	  

1a). This freshwater pool further strengthens and expands southward along the eastern and 68	  

western boundaries of the Bay in fall (Figure 1b). It then weakens during winter (Figure 1c) 69	  
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and retreats back to the northeasternmost part of the Bay during spring (Figure 1d). While 70	  

these climatologies are not able to capture the fine spatial scale of this coastal freshening 71	  

(Chaitanya et al. 2014a), the coverage of in situ data used in these products is sufficient to 72	  

capture the main large-scale SSS seasonal features in the Bay (Chatterjee et al. 2012). The 73	  

monitoring of the year-to-year SSS variability is however generally far more challenging due 74	  

to the insufficient spatio-temporal sampling by the in situ network (Vinayachandran and 75	  

Nanjundiah 2009, Chaitanya et al. 2014b). 76	  

The advent of satellite salinity measurements provides a unique opportunity to 77	  

improve the monitoring of SSS variations in this climatically relevant region. The Soil 78	  

Moisture and Ocean Salinity (SMOS) European mission (Mecklenburg et al. 2008) launched 79	  

in November 2009 and the Argentina/US Aquarius mission (Lagerloef et al. 2008) from June 80	  

2011 to June 2015 both provide global SSS estimates. These new spaceborne SSS 81	  

measurements have been routinely validated, with global root-mean-square errors around 0.2 82	  

practical salinity scale (pss) for monthly Aquarius SSS fields around 150 km	  ×	  150	  km global 83	  

grid (Lagerloef et al. 2013) and for 10-days SMOS averages around 100 km	  ×	  100	  km grid in 84	  

the tropical regions (Boutin et al. 2012). Recent research has demonstrated the value of these 85	  

satellite missions in capturing open-ocean signals related to large-scale climate modes such as 86	  

La Niña signature in the tropical Pacific (Hasson et al. 2014), the Indian Ocean Dipole 87	  

signature in the eastern part of the equatorial Indian Ocean (Durand et al. 2013) or planetary 88	  

waves signature in the Southern Indian Ocean (Menezes et al. 2014). The assimilation of 89	  

Aquarius SSS also improves the simulation of the equatorial Wyrkti jets in the Indian Ocean 90	  

(Chakraborty et al. 2014).  91	  

Whether these satellite data can accurately capture SSS variations in relatively small 92	  

basins surrounded by continental masses however remains unclear. Near-coastal 93	  

environments are indeed particularly challenging for the application of satellite-derived SSS 94	  



	   5	  

measurements because radio frequency interferences (RFI) linked to artificial sources (e.g. 95	  

radars that emit in the frequency band of the instruments) and land-induced contamination on 96	  

antenna side lobes (Reul et al. 2012, Subrahmanyam et al. 2013) can obscure climatically 97	  

relevant signals. A recent study (Gierach et al. 2013) however demonstrated the ability of 98	  

both Aquarius and SMOS to monitor SSS variations in the Gulf of Mexico, offering promises 99	  

for monitoring SSS evolution in a near-coastal environment. 100	  

The BoB, approximately 1000-2000 km wide semi-enclosed basin similar to the Gulf 101	  

of Mexico, is also very challenging for SSS satellite retrievals. A thorough validation of the 102	  

SSS remotely-sensed products is therefore a pre-requisite before using these data to describe 103	  

and understand the SSS evolution in this region. Preliminary analyses reported major issues in 104	  

the satellites ability to retrieve SSS there. Subrahmanyam et al. (2013) and Ratheesh et al. 105	  

(2013) indeed reported an erratic behaviour of an earlier version of the level-3 SMOS dataset 106	  

used in the current study for that region for the year 2010, with weak and insignificant spatial 107	  

correlations, and attributed this behaviour to RFI and land contamination. Similarly, analyses 108	  

performed by Ratheesh et al. (2014) for level-3 Aquarius dataset over the entire Indian Ocean 109	  

region from August 2011 to December 2012 reported a 0.5 pss overestimation and a poor 110	  

agreement with observations for SSS values lower than 32 pss, which are typical of the 111	  

northern part of the BoB. 112	  

While the above analyses revealed a poor accuracy of the preliminary satellite 113	  

retrievals of the Bay of Bengal SSS, recent evolutions such as an improved roughness 114	  

correction for Aquarius (Yueh et al. 2014) and an improved handling of RFI contamination 115	  

for SMOS (Reul et al. 2014) are now available for the most recent SSS products derived from 116	  

the satellites microwave measurements. In addition, both missions have now accumulated 117	  

about three years of data, allowing a qualitative assessment of the ability of each satellite to 118	  

capture the seasonal and year-to-year SSS evolution in this region. The goal of the present 119	  
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study is therefore to provide an in-depth, up-to-date assessment of the ability of both satellites 120	  

to monitor the seasonal and year-to-year SSS variations in the BoB. This will be done by 121	  

splitting the basin into various sub-regions and by comparing remotely-sensed SSS to a 122	  

comprehensive dataset compiling all in situ observations available during the recent period 123	  

(Chaitanya et al. 2014b). This paper will focus on the validation of the most recent versions 124	  

(at the time of writing) of monthly level-3 products for both missions. Due to the larger 125	  

number of measurements used to compute the SSS pixel-average, these monthly resolution 126	  

products are indeed expected to exhibit a better accuracy compared to products derived at a 127	  

higher temporal resolution from the same data and methods (Hernandez et al. 2014). 128	  

2. Datasets and methods 129	  

 130	  

This section describes the two satellite SSS products (Sections 2.1 and 2.2), the in situ 131	  

dataset (Sections 2.3) used in the present study and discusses the co-location method used to 132	  

compare in situ and remotely sensed data (Section 2.4). 133	  

 134	  

2.1 SMOS level-3 data 135	  

SMOS is a polar orbiting satellite with a passive microwave sensor operating within 136	  

the L-Band (at 1.404-1.423 GHz), operated as part of European Space Agency (ESA)’s 137	  

Living Planet Programme (McMullan et al. 2008, Mecklenburg et al. 2012). SMOS was 138	  

launched on 2 November 2009, making it the first satellite to provide continuous multi-139	  

angular L-band radiometric measurements over the globe. It is based on 69 individual 140	  

radiometers that are used to retrieve the SSS field through polarimetric interferometry (see 141	  

Kerr et al. 2010, Reul et al. 2012, 2013, and references therein for further details on the 142	  

measurement technique). Due to the interferometry principle and the antenna shape, the field 143	  

of view is 1200 km wide and a global coverage is achieved every three days.  144	  



	   7	  

Instantaneous SSS retrievals under the satellite swath, corresponding to ESA level-2 145	  

SSS products, have a spatial resolution of 43 km but a rather low accuracy of 0.6 to 1.7 pss 146	  

(Reul et al. 2012, Boutin et al. 2012). After averaging these measurements over one month, 147	  

100 km, and after removing large-scale biases, the level-2 version 5 processor provided by 148	  

CATDS/LOCEAN expertise center (available at www.catds.fr) achieve an accuracy of 0.2-0.3 149	  

pss in subtropical regions free of RFIs (Hernandez et al. 2014, Hasson et al. 2014). 150	  

Unfortunately, the procedure of outliers and RFI sorting used in this dataset flags almost all 151	  

the SMOS measurements in the BoB as bad data. Hence, in this study, we use the 1°×1° 152	  

gridded monthly SSS composites from the V02 version of the SMOS level-3 research product 153	  

generated by the CATDS/Ifremer expertise center (also available at www.catds.fr). With 154	  

respect to the ESA level 2 processing, it includes an improved RFI mitigation and a 5°×5° 155	  

adjustment to the World Ocean Atlas SSS climatology of Antonov et al. (2010) to remove 156	  

residual temporal drifts and land contamination in SMOS brightness temperature level 1 157	  

products (Reul et al. 2014). This SSS bias mitigation and the improved RFI handling enhance 158	  

the data quality close to the coast compared to other level-3 products (Zhang et al. 2013).  159	  

Data of the first four months of 2010 were not reprocessed because of reduced data 160	  

quality during that period. This product therefore covers the May 2010-December 2013 161	  

period. As shown on Figure 2a, this product has few missing values throughout the central 162	  

and southern Bay. The percentage of valid data however drops considerably in the 163	  

northeastern part of the basin near the Ganges-Brahmaputra river mouth, with any SSS 164	  

retrieval north of 20°N. This drop largely results from brightness temperature data flagged as 165	  

outliers (not shown). 166	  

 167	  

 168	  

 169	  

 170	  
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2.2 Aquarius level 3 data 171	  

Aquarius is NASA’s Earth orbiting mission launched on 10 June 2011. The Aquarius 172	  

instrument measures the brightness temperature of the sea surface within the L-band (1.400-173	  

1.427 GHz) with three separate radiometers and the surface roughness with an active 174	  

scatterometer operating at 1.2 GHz. These data, in combination with concurrent SST, and 175	  

other auxiliary data, are used to estimate SSS. The resolution of individual SSS measurements 176	  

is 100-150 km and a global coverage of the ocean is obtained after about 7 days. After four 177	  

years of successful data collection this mission ended on 7 June 2015 due to an unrecoverable 178	  

hardware failure. 179	  

This study uses the CAPv3 Aquarius level-3 1°×1° monthly composites. This product 180	  

combines the measurements from the three radiometers and the scatterometer using the 181	  

Combined Active-Passive Algorithm applied to version 3.0 of the Aquarius/SAC-D data 182	  

updated in July 2014 (available at ftp://podaac-183	  

ftp.jpl.nasa.gov/allData/aquarius/L3/mapped/CAPv3). This algorithm computes SSS by 184	  

minimizing the least squares error between measurements and model functions of brightness 185	  

temperatures and radar backscatter. It also includes a rain-corrected salinity based on 186	  

collocated SSMI/S and WindSAT data. This rain correction algorithm has been established 187	  

assuming that the freshwater inputs are homogeneously spread over the first 5 m and hence, in 188	  

case of rain-induced surface fresh cells, it is expected to overestimate the SSS (Tang et al. 189	  

2014).  190	  

This product covers the August 2011 - June 2014 period. Like SMOS (Figure 2a), 191	  

Aquarius exhibits few missing data south of 15°N (Figure 2b). However, Aquarius offers a 192	  

better spatial coverage in the northernmost part of the basin as compared to SMOS, because 193	  

there is no far-reaching RFI issue for Aquarius whose antenna lobes are much narrower than 194	  

for SMOS, due to the interferometry technique used for the SMOS instrument.  195	  
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 196	  

 197	  

2.3 North Indian Ocean Atlas climatology 198	  

 199	  

The recent North Indian Ocean Atlas (NIOA) SSS climatology issued by Chatterjee et 200	  

al. (2012) and shown in Figure 1 is used to qualitatively validate the SSS seasonal cycle from 201	  

the satellite data. This 1°×1° monthly climatology includes all the data from the World Ocean 202	  

Database 2009 (WOD09) (Locarnini et al. 2010, Antonov et al. 2010), complemented with 203	  

Conductivity-Temperature-Depth (CTD) stations from Indian oceanographic cruises. The 204	  

inclusion of the Indian oceanographic cruises database in NIOA considerably improves the 205	  

data coverage in the periphery of the BoB compared with WOD09, especially along its 206	  

western boundary (Chatterjee et al. 2012). Year-to-year SSS anomalies from both satellite 207	  

datasets and in situ products detailed below are calculated by subtracting this NIOA 208	  

climatology from their raw values. 209	  

 210	  

2.4. Blended in situ dataset 211	  

 212	  

2.4.1 Data sources 213	  

 214	  

Comparisons with a recent in situ dataset directly derived from the one presented in 215	  

Chaitanya et al. (2014b) will allow a quantitative validation of the satellites retrieval. This 216	  

dataset compiles all the available in situ SSS measurements over the BoB from December 217	  

2008 to June 2014. It gathers six different salinity data sources: Array for Real-Time 218	  

Geostrophic Oceanography (Argo) profilers (Roemmich et al. 2009), ship-of-opportunity 219	  

eXpendable Conductivity-Temperature-Depth (XCTD) profiles and bucket measurements 220	  

(Chaitanya et al. 2014a), Research Moored Array for African-Asian-Australian Monsoon 221	  

Analysis and Prediction (RAMA) moorings (McPhaden et al. 2009), Ocean Moored buoy 222	  
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Network for Northern Indian Ocean (OMNI) moorings (Venkatesan et. al. 2013), ship-of-223	  

opportunity thermosalinograph transects (Alory et al., 2015) and dedicated hydrographic 224	  

cruises. Argo profiles are the main contributor to this SSS product. Considering the 225	  

uppermost valid measurements within the 5 m to 15 m layer, typically located at around 8 m 226	  

depth, there are more than 10000 valid salinity measurements over the 2009-2014 period. 227	  

This in situ dataset also includes 1200 valid measurements at about 1 m depth from bucket 228	  

samples and at about 5 m depth from XCTD salinity measurements collected on an 229	  

approximately bimonthly basis along two repeated merchant ship tracks between Chennai 230	  

(label ‘ C ’ in Figure 2c,d) and Port Blair (label ‘ PB ’), and between Kolkata (label ‘ K ’) and 231	  

Port Blair. In addition, our dataset comprises point-wise salinity measurements at 1 m depth 232	  

over the 2009-2014 period from three RAMA moorings (90°E-8°N; 90°E-12°N and 90°E-233	  

15°N; circles on Figure 2c,d) and at 5 m depth from six OMNI moorings (86°E-11°N, 85°E-234	  

8°N, 83°E-14°N, 88°E-16°N, 94°E-10°N, 89°E-18°N; triangles on Figure 2c,d). Finally, this 235	  

dataset also includes salinity measurements representative of the 0-10 m upper ocean layer 236	  

derived from a thermosalinograph on-board a merchant ship (M/S Lavender) crossing the 237	  

southern Bay every 3-4 months during the October 2008 to October 2012 period (dotted line 238	  

in Figure 2c,d) and a few 0-10 m depth measurements from shipborne CTD casts in the 239	  

coastal western Bay provided by the National Institute of Oceanography Data Centre (India).  240	  

 241	  

2.4.2. Colocation method 242	  

 243	  

In a similar way to Chaitanya et al. (2014b), these six data sources were merged into a 244	  

single dataset by computing the median of all available individual measurements (irrespective 245	  

of their nature: autonomous profiler, mooring, underway ship measurements), at the spatial 246	  

and temporal resolution of the satellite products (1°×1°×1 month).  247	  
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The gridding is performed on both the SMOS and AQUARIUS native 1°×1° grids 248	  

which are offset by 0.5° both in latitude and in longitude, resulting in two versions of our 249	  

gridded product. The main difference with the original in situ product presented in Chaitanya 250	  

et al. (2014b) is the temporal resolution: while Chaitanya et al. (2014b) used a product with a 251	  

3 months temporal resolution, the present study uses a monthly resolution to allow a 252	  

validation of the both satellites level-3 monthly products.  253	  

Figure 2c,d illustrates the data density of the in situ data, collocated with each of the 254	  

remotely-sensed SSS products. The in situ validation data density is rather heterogeneous, 255	  

with a reasonably good sampling over most of the central part of the Bay but sparser data in 256	  

near-coastal regions. This analysis also reveals that the Andaman Sea (east of 93°E and south 257	  

of 15°N) is practically devoid of in situ observations, preventing an assessment of the 258	  

remotely sensed SSS products there. 259	  

In the following, a detailed description of the SSS variability in the BoB will be 260	  

inferred by dividing the domain into four coherent sub-regions outlined on Figure 2e,f. The 261	  

first sub-region covers the northern part of the basin (NBoB, 86°E-94°E; 16°N-23°N) where 262	  

the largest SSS fluctuations are found, due to both the proximity of the Ganges-Brahmaputra 263	  

river mouths and monsoonal precipitation  (Rao and Sivakumar 2003, Akhil et al. 2014). The 264	  

second sub-region is located in the western part of the Bay (WBoB, 80°E-84°E; 6°N-16°N) 265	  

and encompasses the coastal region through which the NBoB freshening is transported 266	  

southward during winter as a fresh tongue hugging the eastern Indian coastline (Chaitanya et 267	  

al. 2014a, Akhil et al. 2014). A third sub-region is located in the central BoB (CBoB, 84°E-268	  

94°E; 6°N-16°N), where the SSS variability is known to be weaker. Finally, a fourth sub-269	  

domain is considered in the Andaman Sea (94°E-99°E; 6°N-18°N), where the variability 270	  

derived from satellite products is about as strong as in the northern part of the basin (Figure 271	  

2e,f) but cannot be validated due to the lack of in situ observations (Figure 2c,d). We will 272	  
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compare the remotely-sensed SSS to in situ data on their 1°×1° monthly native grids, but also 273	  

from averages over the boxes above. This spatial averaging has the advantage of smoothing 274	  

out representation error of the in situ data, potential noise in the satellite retrievals, and to 275	  

focus the comparison with in situ data on large-scale features.  276	  

 277	  

2.4.3 Estimation of the accuracy of the in situ gridded SSS product 278	  

 279	  

As our SSS gridded products will serve as references for the SMOS and Aquarius 280	  

validation, this subsection provides a discussion of the accuracy of this new observational 281	  

dataset. Subrahmanyam et al. (2013) reported that the instrumental error of ARGO is lower 282	  

than 0.01 pss. This is also the typical instrumental accuracy of bucket measurements, RAMA 283	  

moorings and thermosalinograph transects. This instrumental error is completely negligible 284	  

compared with the representation error (i.e. the error on the 1° × 1° × 1 month average SSS 285	  

estimate due to an incomplete sampling of this spatio-temporal domain, Delcroix et al., 2005) 286	  

and will not be further discussed.  287	  

 288	  

Argo, CTD and thermosalinograph salinity measurements used in our in situ reference 289	  

datasets are not collected right at the surface, but are rather representative of the 5-10 m depth 290	  

layer. Owing to the strong haline stratification, especially in the northern Bay of Bengal, there 291	  

may be an error on the surface salinity estimate resulting from this deeper measurement 292	  

depth. This error can be estimated from the data provided by the three RAMA moorings at 293	  

90°E15°N, 90°E12°N and 90°E8°N. These moorings indeed provide simultaneous daily 294	  

salinity measurements at 1 m and 10 m depth for one to two years, depending on the site. The 295	  

scatterplot between those 1 m and 10 m depth salinity measurements on Figure 3 highlights 296	  

the very good coherency between the variability inferred from these two depths, with a 297	  

correlation exceeding 0.97 at the three moorings location. As expected, the salinity at 10 m (a 298	  
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typical sampling depth for the nearest measurement to the surface for Argo profiles) is on 299	  

average saltier by 0.06 pss than the 1 m salinity at the northernmost mooring. This mean 300	  

difference is negligible at the two moorings further south, where the stratification is not as 301	  

strong as in the northern BoB. The larger mean bias (0.06 pss) and slightly weaker correlation 302	  

(0.97) between 1 m and 10 m measurements at the northernmost mooring results in a larger 303	  

root mean square error (RMSE) there (0.19 pss) as compared to the other moorings further 304	  

south (around 0.07 pss). A 0.2 pss RMSE is about ten times smaller than the SSS variations in 305	  

our in situ blended product (STD of 2.14 pss). We will also see in Section 3 that this error is 306	  

four times weaker than the typical RMSE of the SMOS or Aquarius products. This suggests 307	  

that the varying depth of salinity data collection will not heavily affect our assessment of the 308	  

satellite SSS products. 309	  

SSS in the BoB varies a lot both spatially (filaments generated by the stirring from 310	  

meso-scale eddies, localized rain…) and temporally, with large SSS changes over short 311	  

periods and/or short space scales (Benshila et al., 2014, and references therein). Most 1° × 1° 312	  

× 1 month reduced SSS estimates from our blended product only use 1 to 10 individual 313	  

observations, with a median of 2 (not shown). The median of such a small number of point-314	  

wise observations may not be representative of the actual monthly mean SSS in the 1° × 1° 315	  

pixel. Figure 4 provides an estimate of this representation error. We took advantage of the 316	  

relatively large number of daily observations at RAMA moorings (about 30 per month), in 317	  

order to estimate the impact of the number of available observations on the accuracy of the 318	  

estimate of the monthly 1° × 1° SSS average. The underlying hypothesis is that the 30 daily-319	  

sample average of RAMA is representative of the 1° × 1° × 1 month pixel. We perform a 320	  

random subsampling of N daily 1 m salinity measurements from RAMA moorings each 321	  

month, with N ranging from 1 to 15. We repeat this random subsampling 1000 times: figure 4 322	  
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shows the RMSE and correlation of the subsampled estimate against the actual monthly value, 323	  

as a function of the number of available observations N. 324	  

 325	  

For the three moorings, the correlation exceeds 0.95 and RMSE is lower than 0.1 pss 326	  

if more than 10 observations are available. As expected, this correlation decreases and the 327	  

RMSE increases as the number of available observations decreases. The median value of the 328	  

number of observations in each 1° × 1° × 1 month cell in our reference in situ dataset is 2. 329	  

This results in a correlation of about 0.92 and RMSE about 0.18 pss for the moorings located 330	  

in the central and southern part of the basin, and 0.84 / 0.3 pss for the northernmost mooring. 331	  

We can therefore consider a root mean square representation error of 0.3 pss for our-in situ 332	  

dataset. As a result, the assessment of SMOS and AQUARIUS datasets will only be possible 333	  

up to this level of accuracy. This 0.3 pss value is however still far lower than the SSS 334	  

variations in our gridded in situ and we will see that it is less than half of the estimated RMSE 335	  

of individual pixels from satellite products. As mentioned earlier, we will also compare our in 336	  

situ dataset with satellite data over larger boxes to further reduce the impact of this 337	  

representation error. 338	  

 339	  

3. General evaluation of the remotely-sensed SSS products 340	  

Figure 5 can be inserted here 341	  

Figure 5a,b provides a synthetic view of the consistency between the 1°×1°	 monthly 342	  

remotely-sensed SSS estimates and the in situ reference product. These panels illustrate that 343	  

the phase agreement with in situ dataset is generally better for Aquarius (0.82 correlation) as 344	  

compared to SMOS dataset (0.69 correlation). In addition, Aquarius does not exhibit any 345	  

significant basin-scale SSS bias (0.01 pss), while SMOS generally underestimates the SSS in 346	  

the BoB (-0.22 pss). The SMOS and Aquarius estimated RMSE (approximately 0.9 pss) 347	  

largely exceeds the uncertainties derived for the in situ product (0.1-0.2 pss attributable to the 348	  
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different sampling depth and 0.2-0.3 pss for the spatio-temporal representation error). Rather 349	  

surprisingly, Aquarius however exhibits the same RMSE as SMOS (around 0.88 pss). Those 350	  

statistics are however computed over different subset of the whole in situ dataset, due to the 351	  

different periods, grids and missing data areas of the two satellite products. We thus re-352	  

computed the above statistics for the same sample (i.e. common pixels for the SMOS, 353	  

Aquarius and reference in situ product; numbers in brackets on Figure 5a,b) to allow a fair 354	  

comparison between the two satellite products. This reveals that Aquarius outperforms SMOS 355	  

retrieval for all considered statistics. The Aquarius RMSE, in particular, is 0.68 pss and 356	  

smaller than SMOS (0.89 pss) when considering the sample common to the three products. 357	  

This sensitivity of Aquarius RMSE to the collocation method (0.68 pss for the common 358	  

sample and 0.88 pss for the in situ – Aquarius collocated data) arises from the extended 359	  

Aquarius coverage that allows retrieving SSS in the northern part of Bay, which is not the 360	  

case for the SMOS product (Figure 2a,b). The northern Bay of Bengal displays an intense 361	  

fine-scale and high-frequency SSS variability due to stirring of intense SSS gradients by 362	  

meso-scale eddies (Benshila et al., 2014, and references therein). The relatively large RMSE 363	  

of Aquarius in the Northern BoB is thus likely related to the Aquarius / in situ validation 364	  

dataset inability to properly capture small-scale variability in this region (illustrated by the 365	  

larger scatter between Aquarius and in situ data for low SSS values, Figure 5b). A closer look 366	  

at Figure 5a,b also reveals that the satellites performance strongly varies depending on the 367	  

SSS value. While Aquarius does not show any significant bias for SSS ranging from 34 to 31 368	  

pss, SMOS is generally fresher than the reference product for SSS higher than 33 pss and 369	  

saltier for SSS lower than 33 pss. The scatter of both satellites around the reference value is 370	  

also particularly large for the NBoB box (blue dots on Figure 5a,b) compared to the other 371	  

regions.  372	  



	   16	  

Aside from an inaccurate SSS retrieval, small spatial scale and high frequency SSS 373	  

features sampled by in situ observations but not by the satellite products may account for 374	  

some of the inconsistencies between in situ and satellite measurements, as discussed in 375	  

previous section. Comparing spatial averages of these three datasets over the large boxes 376	  

presented in Section 2.4 allows to smooth out a large part of small scale SSS variations in the 377	  

in situ datasets and noise in the satellite data retrieval and therefore to assess the impact of 378	  

small spatial scale and high frequency features on our SSS validation. The results are 379	  

presented on Figure 5c,d. Both SMOS and Aquarius correlations increase by about 0.1 when 380	  

considering box-averaged values rather than pixel-wise. The RMSE reduction is however 381	  

larger for Aquarius (from 0.88 pss to 0.49 pss) than for SMOS  (from 0.88 pss to 0.63 pss). 382	  

This larger error reduction in Aquarius suggests that part of the mismatch between Aquarius 383	  

and in situ data is attributable to small-scale spatial noise smoothed out when averaging over 384	  

a large box (typically 1000 km wide) while a larger part of the SMOS retrieval error has 385	  

probably a broader spatial scale, and hence cannot be reduced by spatial averaging. 386	  

 387	  

Figure 6 further provides a synthetic assessment of the ability of both satellites to 388	  

retrieve the SSS in the NBoB, WBoB and CBoB sub-regions. It features the bias, correlation 389	  

and RMSE between box-averaged satellite and in situ values. As far as the mean state is 390	  

concerned, SMOS retrievals exhibit a systematic fresh bias everywhere in the Bay (Figure 391	  

6a), ranging from -0.19 pss in WBoB to -0.35 pss in NBoB. This result is opposite to Reul et 392	  

al. (2012) and Ratheesh et al. (2013) who both reported a salty bias of SMOS retrievals over 393	  

the Bay over the year 2010. In contrast, Aquarius exhibits a bias weaker than 0.1 pss in CBoB 394	  

and WBoB and a fresh bias of -0.26 pss in NBoB (Figure 6a). The phase agreement is also 395	  

considerably better for Aquarius than for SMOS in all sub-regions: Aquarius correlations 396	  

range from 0.79 in WBoB to 0.94 in NBoB while SMOS correlations are considerably 397	  
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weaker, ranging from 0.24 in WBoB to 0.69 in NBoB (Figure 6b). Aquarius also outperforms 398	  

SMOS in all BoB sub-regions when considering the RMSE statistics (Figure 6c). 399	  

The above analyses show that Aquarius outperforms SMOS for all statistics and all 400	  

sub-regions of the BoB. SMOS appears to be particularly poor in retrieving the SSS 401	  

variability in the central and western part of the BoB (correlations inferior to 0.4) while 402	  

Aquarius performs satisfactorily over the entire BoB (correlations of order or larger than 0.8). 403	  

The SSS variability in each sub-region can arise either from seasonal variations or from 404	  

departures from the climatological seasonal cycle. The next two sections provide a validation 405	  

of both satellites at these two timescales.  406	  

 407	  

4. Evaluation of SSS seasonal evolution 408	  

 409	  

Figure 7 displays the NIOA quarterly climatology, along with the corresponding 410	  

climatology derived from SMOS and Aquarius. Of course, the three products are not expected 411	  

to be strictly comparable, because SMOS and Aquarius measurements cover a much shorter 412	  

period than those gathered in the NIOA. This figure hence only provides a qualitative 413	  

assessment of the remotely-sensed SSS spatial distribution. A more quantitative validation of 414	  

the seasonal SSS evolution of satellite data against in situ measurements will be presented in 415	  

Figure 8.  416	  

As already mentioned in the introduction, there is a strong contrast between fresh 417	  

waters to the northeast and saltier waters in the southwestern part during the monsoon (Figure 418	  

7a). Highest SSS values (>34 pss) are found near the southern tip of Sri Lanka while freshest 419	  

waters (< 31 pss) hug the vicinity of the Ganges-Brahmaputra estuary. Following the summer 420	  

monsoon withdrawal (Figure 7b), these northernmost waters further freshen below 30 pss and 421	  

expand along both western and eastern boundaries. Finally, the eastern and western 422	  

freshwater tongues gradually erode during winter and spring (Figure 7c,d). SMOS and 423	  
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Aquarius data qualitatively capture this basin-scale seasonal evolution (Figure 7e to 7l). 424	  

However, some differences between satellite and in situ climatologies can be already noticed: 425	  

SMOS SSS are fresher than NIOA in the WBoB in summer (Figure 7a,e) and Aquarius SSS 426	  

are fresher than NIOA in the NBoB in fall (Figure 7b,j). Large differences can also be found 427	  

for both satellites in the Andaman Sea but the quality of NIOA climatology there is likely to 428	  

be strongly hampered by the lack of in situ observations in this region. 429	  

 430	  

 Figure 8 further provides a quantitative assessment of the SSS seasonal cycle from the 431	  

satellites retrieval in the three sub-regions considered (NBoB, CBoB and WBoB) by 432	  

comparing them to their collocated in situ dataset. First of all, the seasonal evolution of SSS 433	  

in the three selected boxes from the collocated in situ datasets (black lines on Figure 8) agrees 434	  

reasonably well with the one derived from the NIOA box average (blue lines on Figure 8), 435	  

with correlation larger than 0.8. This suggests that the in situ dataset captures the main 436	  

features of the climatological seasonal cycle depicted by the NIOA dataset despite the limited 437	  

number of years (around three) and the rather heterogeneous spatial coverage of this in situ 438	  

dataset (Figure 2c,d),  439	  

In the northern part of the Bay, a 1.5 pss freshening is observed between July and 440	  

October (black line on Figure 8a,b) in response to the huge fresh water flux from monsoonal 441	  

rainfall and Ganges-Brahmaputra river discharge. This freshening is followed by a gradual 442	  

saltening from November onward. The observed freshening is larger for the in situ dataset 443	  

collocated with Aquarius (Figure 8b) than for the one of SMOS (Figure 8a) due to the 444	  

extended Aquarius data coverage in the northeasternmost part of the Bay (Figure 2a,b) where 445	  

the lowest salinities are found. Both satellite retrievals are able to capture this strong seasonal 446	  

freshening reasonably well but overestimate the freshening signal during the post-monsoon 447	  

season (red and black lines on Figure 8a,b). The phase agreement of Aquarius with the in situ 448	  
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dataset is however better than the one derived from SMOS, with correlations of 0.95 and 0.81 449	  

respectively.  450	  

The WBoB SSS also displays a seasonal freshening similar to that of NBoB but 451	  

occurring with a two month delay (Figure 8c,d), corresponding to the time it takes for the 452	  

fresh waters in the Northern Bay to be advected southward by the East India Coastal Current 453	  

along the western boundary (Chaitanya et al. 2014a, Benshila et al. 2014, Akhil et al. 2014). 454	  

The observed freshening in WBoB is also larger for the in situ dataset collocated with 455	  

Aquarius (Figure 8d) than for the one of SMOS (Figure 8c). While Aquarius reproduces the 456	  

seasonal timing of this coastal freshening very accurately (0.9 correlation), SMOS displays a 457	  

too early seasonal freshening starting in June, with several spurious peaks, resulting in a poor 458	  

phasing with in situ observations (0.27 correlation).  459	  

Finally, the SSS seasonal cycle in CBoB exhibits a semi-annual signal with two 460	  

salinity minima occurring during fall and spring (Figure 8e,f). As for WBoB, Aquarius 461	  

captures very accurately these seasonal variations (0.92 correlation; Figure 8f) while SMOS 462	  

displays an erratic behaviour and is unable to retrieve this seasonal evolution (0.25 463	  

correlation; Figure 8e).  464	  

This validation shows that Aquarius reproduces the observed SSS seasonal cycle well 465	  

in both near-coastal and open-ocean regions. In contrast, SMOS is unable to capture the 466	  

seasonal variability south of 16°N, neither in the coastal region along the west coast of India 467	  

nor in the central part of the Bay. 468	  

 469	  

5. Evaluation of SSS year-to-year variations  470	  

 471	  

As existing in situ climatologies such as NIOA already provide a reasonable 472	  

description of SSS seasonal variations, a considerable added value of satellite products is their 473	  

potential to describe SSS departures from the mean seasonal cycle. In order to qualitatively 474	  
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assess the satellites skill in capturing non-seasonal SSS anomalies, Figure 9 displays a 475	  

scatterplot of each satellite SSS estimates deviations from the NIOA climatology against 476	  

those from the in situ reference product. A good agreement between satellite estimates and in 477	  

situ data seasonal anomalies would result in a cloud of points aligned along the x = y axis 478	  

while a strong underestimation of the non-seasonal variability of the satellite SSS estimates 479	  

would result in a cloud of points aligned along the y = 0 axis. Figure 9a and 9c reveal that 480	  

SMOS retrieval considerably underestimates the observed non-seasonal variations and 481	  

exhibits a poor phase agreement with in situ observations for both pixel-wise and box-482	  

averaged comparisons (0.36 and 0.29 correlation, respectively). In contrast with SMOS, 483	  

Aquarius reasonably captures the amplitude and phase of the observed SSS seasonal 484	  

anomalies (0.57 and 0.73 correlation for pixel-wise and box-averaged comparison 485	  

respectively, Figure 9b,d) and may therefore provide additional valuable information with 486	  

respect to the information already contained in the existing climatologies. 487	  

 488	  

A more detailed analysis on the ability of the satellites retrieval to capture the temporal 489	  

evolution in the three boxes where in situ data are available (NBoB, WBoB, CBoB) is further 490	  

provided on Figure 10. The largest departures from the seasonal climatology occur in the 491	  

NBoB box, with in situ anomalies ranging between -1.5 and 1.5 pss (Figure 10a,d). The in 492	  

situ dataset indicates a freshening anomaly following the 2011 monsoon that lasts until spring 493	  

2012, followed by a salty anomaly in the 2012 post-monsoon and 2013 monsoon. Aquarius 494	  

displays a reasonably good phase agreement with the in situ anomalies in this region (0.75 495	  

correlation; Figure 10d). In particular, it captures the timing of the anomalous freshening from 496	  

late 2011 to mid-2012 accurately, although its amplitude is twice larger than in observations 497	  

in late 2011. Aquarius also captures the anomalous saltening observed during the 2013 498	  

monsoon. In contrast, SMOS exhibits a poor phase agreement with in situ anomalies there 499	  
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(0.33 correlation; Figure 10a), being unable to capture neither the early 2012 anomalous 500	  

freshening nor the mid-2013 saltening. 501	  

The WBoB SSS also displays large departures from its climatology, ranging from -1 502	  

to 1 pss. For instance, the freshening along the east Indian coastline following the monsoon is 503	  

stronger than normal in 2010 and weaker than normal in 2011 and 2012 (Figure 10b,e). Once 504	  

again, SMOS behaves poorly in this region (0.31 correlation; Figure 10b): it does not 505	  

reproduce well the fresh event in late 2011 and salty events in late 2012 and 2013, only 506	  

performing well in late 2013. In contrast, Aquarius SSS estimates display a good phase 507	  

agreement with the in situ dataset over most of the period (0.74 correlation): it is able to 508	  

capture the abrupt change from salty to fresh anomalies in late 2011, freshening over 2013 509	  

and salty anomalies in early 2014. It however misses completely the strong saltening signal 510	  

evident in the in situ dataset in late 2012.  511	  

In CBoB, the departures from the seasonal cycle are weaker than in the NBoB and 512	  

WBoB boxes, with anomalies that do not exceed 0.5 pss. The in situ SSS displays fresher than 513	  

normal conditions in early 2012 and most of 2013 and saltier than normal conditions in late 514	  

2012. As for the two other boxes, Aquarius accurately captures these departures from the 515	  

seasonal cycle (0.77 correlation) while SMOS completely fails (0.02 correlation). 516	  

 517	  

As discussed in the previous section, strong departures from the seasonal climatology 518	  

occur in late 2011 and early 2012 in each of the sub-regions: an anomalous freshening in 519	  

NBoB from fall 2011 to summer 2012, an anomalous saltening in fall 2011 in WBoB, and an 520	  

anomalous freshening in spring 2012 followed by a saltening signal in summer 2012 in 521	  

CBoB. The performance of the two satellites in reproducing the spatial patterns related to 522	  

these seasonal departures from the climatology is illustrated on Figure 11. The in situ product 523	  

indeed indicates that the northeastern BoB is fresher than normal in fall 2011, while salty 524	  
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anomalies are observed to the south of 16°N and to the west of 88°E (Figure 11a). The 525	  

freshening in NBoB expands southward along the east coast of India in winter 2012 (Figure 526	  

11b) and in the central part of the Bay around (15°N; 90°E) in spring 2012  (Figure 11c). 527	  

These anomalies in CBoB reverse sign in summer 2012 (Figure 11d), with two cores of salty 528	  

anomaly observed around (16°N; 86°E) and (10°N; 88°E). Aquarius is able to capture the 529	  

broad spatial structure of the anomalies depicted by the in situ dataset (Figure 11e,h). In 530	  

contrast, although SMOS captures the NBoB freshening in fall 2011 and winter 2012 (Figure 531	  

11i,j), it is unable to capture either the saltening along the eastern coast of India in fall 2011, 532	  

or the amplitude and spatial extend of the freshening in the CBoB in spring 2012 (Figure 533	  

11k), or the salty anomalies in summer 2012 (Figure 11l). This example thus illustrates the 534	  

ability of Aquarius to retrieve regional features in the salinity field within the BoB and the 535	  

caveats related to SMOS retrieval. 536	  

 537	  

6. Summary and discussion 538	  

 539	  

6.1. Summary 540	  

 541	  

The BoB exhibits strong meridional and vertical salinity gradients, with very fresh 542	  

surface waters to the North. The monitoring of SSS variability there is not straightforward due 543	  

to insufficient in situ data coverage. This monitoring may benefit from the recent availability 544	  

of SSS remotely-sensed data. The retrieval of satellite-derived SSS measurements is however 545	  

very challenging in this region, because the semi-enclosed nature of the BoB may potentially 546	  

contaminate the SSS signals through radio frequency interferences and land effects. The goal 547	  

of this study is therefore to perform a validation of the SMOS CEC-IFREMER V02 level-3 548	  

1°×1° and Aquarius CAP-V03 level-3 1°×1° gridded monthly salinity retrievals against a 549	  

comprehensive gridded in situ SSS product in the BoB to infer whether these satellite datasets 550	  
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can confidently be used to describe SSS variations in this climatically important region. We 551	  

first estimate that our in situ dataset is reasonably representative of 1° × 1° monthly SSS 552	  

estimates. The instrumental error is negligible (approximately 0.01 pss). The fact that most in 553	  

situ data are representative of the 5 – 10 m depth layer induces a salty bias of up to 0.06 pss 554	  

and a RMSE of up to 0.2 pss on the surface salinity estimate. The main source of error is the 555	  

representation error, i.e. the fact that monthly 1° × 1° SSS estimates are evaluated from a 556	  

median number of 2 observations per cell, resulting in an estimated RMSE of about 0.3 pss. 557	  

Collectively, those errors (approximately 0.32 pss RMSE if considered independent) are 558	  

smaller than the variability in the Bay of Bengal and smaller than the estimated RMSE on 559	  

individual monthly pixels (around 0.7 pss to 0.9 pss) from both satellites. 560	  

Our results reveal large differences in the ability of the SMOS and Aquarius satellite 561	  

products to retrieve SSS variability. The spatial coverage of the SMOS product is poorer 562	  

compared to Aquarius, especially in the Northern portion of the BoB. SMOS exhibits a 563	  

systematic fresh bias everywhere in the Bay of Bengal (-0.19/-0.35 pss depending on the 564	  

region). In contrast, the mean SSS field retrieved from Aquarius is accurate, except in the 565	  

northern part of the Bay where it exhibits a -0.26 pss fresh bias. The seasonal variability 566	  

depicted by Aquarius retrievals is also accurate in the northern, central and western part of the 567	  

basin with correlations to the reference in situ dataset exceeding 0.9. In contrast, SMOS 568	  

retrievals fail to represent the SSS seasonal cycle in the western and central part of the basin. 569	  

Aquarius retrievals are also able to capture departures from the mean seasonal cycle, with a 570	  

correlation around 0.75 with large-scale year-to-year SSS variations from the in situ dataset in 571	  

all regions. Aquarius for instance successfully captures the main spatio-temporal features of 572	  

the anomalous freshening event that occurred in the northern and central part of the BoB in 573	  

late 2011 and early 2012. In contrast, SMOS estimate generally fails to capture the timing and 574	  

spatial patterns of SSS departures from the seasonal cycle. 575	  
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 576	  

 Figure 12 provides a compelling summary of the added value provided by the two 577	  

satellite retrievals compared to the existing climatologies. The SMOS retrieval indeed 578	  

displays a poorer phase agreement with the in situ dataset than the NIOA climatology over the 579	  

WBoB and SBoB and a similar agreement over the NBoB (Figure 12a). In contrast, the 580	  

situation is far more promising for Aquarius, which exhibits higher correlations with in situ 581	  

observations than SMOS and NIOA over all the sub-regions (Figure 12b). This indicates that 582	  

the current version of Aquarius retrievals provide additional information with respect to the 583	  

existing SSS climatologies in the BoB, while the version of SMOS SSS assessed here does 584	  

not. 585	  

 586	  

6.2. Discussion 587	  

 588	  

Preliminary assessments of one-year data from earlier versions of both level-3 SMOS 589	  

(Subrahmanyam et al. 2013, Ratheesh et al. 2013) and Aquarius datasets (Ratheesh et al. 590	  

2014) over the BoB reported major issues in the satellites ability to retrieve SSS there. In this 591	  

paper, we provide in-depth validations of a more recent version of these level-3 products over 592	  

a longer period (around 3 years). Our results indicate that the CAP-V03 level-3 1°×1° gridded 593	  

monthly Aquarius SSS retrieval performs considerably better than earlier versions, especially 594	  

for low SSS values in the northern part of the Bay. This better performance could be related to 595	  

an improved roughness correction in this Aquarius product (Yueh et al. 2014). In contrast, the 596	  

CEC-IFREMER V02 level-3 1°×1° SMOS retrieval tested here exhibits significant caveats at 597	  

both seasonal and non-seasonal timescales. This may be partly related to the relaxation to the 598	  

climatology used in this version of SMOS. Hernandez et al. (2014) actually found better 599	  

performances for the ESA Level 2 retrieval than for this version in the northern subtropical 600	  
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Atlantic. As already stated, we however cannot use the ESA level 2 processing because it 601	  

flags out almost all measurements in the BoB.  602	  

Subrahmanyam et al. (2013) and Durand et al. (2013) reported errors of the order of 603	  

0.2 pss for SMOS level-3 data in the southern equatorial Indian Ocean. This indicates that the 604	  

bad performance of SMOS reported in this paper is specific to the BoB. There can be several 605	  

reasons behind the contrasted ability of SMOS and Aquarius to capture SSS in the BoB. First, 606	  

the interferometric nature of SMOS instrument makes its measurements much more sensitive 607	  

to RFIs than a classical radiometer like Aquarius. Second, SMOS is affected by systematic 608	  

biases extending to about 1000 km from continents which is until now imperfectly taken into 609	  

account. Further work is needed to infer if the performance of the SMOS product in the BoB 610	  

can be improved by updating its algorithm retrieval or of if its performance will anyway be 611	  

strongly limited by the design of the instruments for this specific region.   612	  

Another concern of the present study may be related to fine spatio-temporal scales in 613	  

the SSS field, which have been spotted in the past in the BoB (e.g. Shetye et al. 1996, 614	  

Hareesh Kumar et al. 2013, Chaitanya et al. 2014a). This strong spatio-temporal variability 615	  

raises the question of the representativeness of a couple of individual in situ measurements, 616	  

against the retrieved SSS from satellite, representative of a larger spatial scale (typically 617	  

1°×1°×1 month). The instrumental error is very small (0.01 pss). We did estimate sampling 618	  

error by taking advantage of the intensive measurements performed at RAMA moorings. The 619	  

error associated with vertical sampling is generally less than 0.2 pss. The representation error 620	  

of our in situ reference dataset for monthly 1° × 1° estimates is generally less than 0.3 pss. If 621	  

those errors are assumed to be independent, the overall RMSE of our in situ dataset is 622	  

approximately 0.36 pss. This is far from negligible, but generally smaller than the satellite 623	  

biases discussed in the present study. In addition, the validation of time series average over 624	  

larger boxes in typical regions of variability (NBOB, WBoB, CBoB) acts to further reduce 625	  
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this representation issue. The smallest of the 3 boxes (WBoB) indeed contains up to 40 626	  

individual 1° × 1° × 1 month estimates. Even if our reference in situ product provides SSS 627	  

estimates for only one half of the grid cells (20 measurements), this results in a box-average 628	  

RMSE inferior to 0.1 pss (when assuming independent errors). While the error statistics of 629	  

individual satellite data on the 1°×1°×1 month grid should be taken cautiously (i.e. the RMSE 630	  

is probably enhanced by the representation error), we thus believe that the error statistics for 631	  

the entire NBoB, WBoB and CBoB boxes provide a more reasonable evaluation of the actual 632	  

performance of those satellite products. Another caveat is of course the length of the time 633	  

series (around 3 years). A more in-depth assessment of the capability of the satellites to 634	  

estimate the seasonal cycle in the BoB will probably be needed a couple of years down the 635	  

line, but we believe that the current analysis still clearly points out that, while the current 636	  

Aquarius large-scale SSS retrieval can be used within the BoB, there is still work to be done 637	  

to improve existing SMOS retrievals. 638	  

 639	  

6.3. Perspectives 640	  

 641	  

One key-advantage of spaceborne SSS products is their ability to sample regions that 642	  

are completely devoid of in situ observations. One such region is the Andaman Sea. This 643	  

region exhibits a large SSS variability in the spaceborne measurements (Figure 2e,f) and 644	  

model simulations (Akhil et al. 2014). Like the northern part of the Bay, the Andaman Sea is 645	  

characterized by intense monsoonal rains (Hoyos and Webster 2007) and continental runoff 646	  

(Furuichi et al. 2009). Although no in situ SSS observations are available in this region for the 647	  

recent period, satellites reveal vigorous signals there (Figure 13). Both SMOS and Aquarius 648	  

indicate a strong seasonal freshening of about 2 pss during the monsoon and post-monsoon 649	  

seasons, followed by a subsequent saltening in winter-spring. The magnitude of these SSS 650	  

changes is comparable to those observed in the northern or western part of the BoB (Figure 651	  
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8). The Andaman Sea post-monsoon freshening depicted by the two satellites is larger than 652	  

the one suggested by the NIOA climatology. Due to the very limited availability of salinity 653	  

data in the Andaman sea (Antonov et al. 2010, Chatterjee et al. 2012), and relatively good 654	  

performance of Aquarius in other regions, one is tempted to believe that it is the NIOA 655	  

climatology that is erroneous here, and that Aquarius brings us an improved knowledge of the 656	  

seasonal cycle of SSS in the Andaman Sea. Beyond this seasonal picture, both SMOS and 657	  

Aquarius data suggest a larger seasonal fresh anomaly during and after the 2012 monsoon 658	  

than during other years. It would be interesting to assess the quality of the spaceborne SSS 659	  

products in the Andaman Sea, in order to judge if they can be used for monitoring SSS and 660	  

understand mechanisms of SSS variability there. 661	  

It would also be very interesting to better understand the mechanisms driving the 662	  

interannual SSS variability in the BoB. Using a similar in situ SSS dataset to the one used in 663	  

this study combined with satellite estimates of rainfall and Ganges-Brahmaputra river runoffs, 664	  

Chaitanya et al. (2014b) already suggested that interannual SSS variability in the northeastern 665	  

part of the Bay over the 2009-2012 period was primarily driven by freshwater flux variability, 666	  

and in particular river runoffs. Given the ability of Aquarius to capture the interannual SSS 667	  

variations in the BoB to a reasonable extent, it is very tempting to perform a similar salt 668	  

budget to the one of Chaitanya et al. (2014b) but using the more spatially complete Aquarius 669	  

SSS retrieval. Interannual river runoffs data derived from satellite measurements are however 670	  

only currently available until the end of 2012 (i.e. only 15 months of common data with 671	  

remotely-sensed SSS) (Papa et al. 2012), so far precluding a meaningful investigation of the 672	  

interannual mixed-layer salt budget in the BoB. Once interannual runoffs data from the main 673	  

BoB rivers (i.e. Ganges-Brahmaputra and Irrawaddy) become available for the recent years, a 674	  

promising follow-up of this work would therefore be to use the Aquarius SSS dataset to 675	  
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assess the main processes that control the interannual SSS variations in the various regions of 676	  

the BoB. 677	  

The present study is dedicated to SMOS and Aquarius salinity assessment. Beyond 678	  

these two pioneering missions, some evolutions in the field of ocean salinity remote sensing 679	  

are expected shortly. The next generation of spaceborne sensors usable for SSS monitoring, 680	  

beginning with Soil Moisture Active and Passive (SMAP) satellite (sucessfully launched in 681	  

January 2015, see smap.jpl.nasa.gov), promises significant progresses in our ability to retrieve 682	  

valuable spaceborne estimates of SSS field in the global ocean. We believe our study, focused 683	  

on one of the most challenging areas of the world ocean, paves the way for the future of 684	  

spaceborne salinity science there. 685	  
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Figure Captions: 851	  

 852	  

Figure 1. Climatological Sea Surface Salinity (SSS) in the Bay of Bengal (BoB) from the 853	  

North Indian Ocean Atlas (NIOA, Chatterjee et al., 2012) for (a) June-July-August (JJA), (b) 854	  

September-October-November (SON), (c) December-January-February (DJF), and (d) 855	  

March-April-May (MAM). 856	  

 857	  

 858	  

Figure 2. Percentage of valid monthly SSS retrievals in the Bay of Bengal for (a) SMOS and 859	  

(b) Aquarius. Total number of in situ observations profiles per 1°×1° box and per year (No. 860	  

Obs)  collocated with (c) SMOS and (d) Aquarius. Circles on panels c and d indicate RAMA 861	  

mooring locations, while triangles indicate OMNI moorings. The two continuous lines on 862	  

panels c,d indicate merchant ships tracks between Port Blair (PB) and Chennai (C) / Kolkata 863	  

(K), along which approximately 1200 XCTD and bucket measurements were collected. The 864	  

dotted line indicates the merchant ship track along which thermosalinograph measurements 865	  

are performed. (e) SMOS and (f) Aquarius SSS standard deviation. The standard deviation on 866	  

panels e,f  is only shown for pixels with more than 11 months of data. The red boxes on 867	  

panels (e) and (f) indicate the limits of the NBoB (86°E-94°E; 16°N-23°N), WBoB (80°E-868	  

84°E; 6°N-16°N), CBoB (84°E-94°E; 6°N-16°N) and Andaman Sea (94°E-99°E; 6°N-18°N), 869	  

for future reference. 870	  

 871	  

Figure 3. Scatterplots of 1 m depth versus 10 m depth daily salinity measurements for the 872	  

three Bay of Bengal RAMA moorings at (a) 90°E8°N, (b) 90°E12°N and (c) 90°E15°N.  873	  

 874	  

Figure 4. (a) Mean correlation coefficient and (b) Root Mean Square Error between monthly 875	  

average 1m depth salinity at the three BoB RAMA moorings and subsampled estimates of the 876	  

monthly average using from 1 to 15 observations. The statistics were computed from 1000 877	  

random subsampling of the monthly data. This plot provides an estimate of the representation 878	  

error arising from subsampling in our validation in situ SSS dataset.  879	  

 880	  

Figure 5. Scatter plot of  (a) SMOS and (b) Aquarius monthly 1° × 1° SSS retrievals against 881	  

collocated estimates from the gridded in situ dataset. The statistics are computed from May 882	  

2010 to December 2013 for SMOS and from August 2011 to June 2014 for Aquarius. The 883	  

corresponding correlation coefficient (r), root-mean square error (RMSE) and bias are 884	  
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provided on the lower right of each panel. Values in brackets were estimated using only 885	  

collocated SMOS, Aquarius and in situ data (i.e. the same spatio-temporal sampling is used 886	  

for both datasets, and the statistics for the two satellites are hence strictly comparable). (c) and 887	  

(d) are similar to (a) and (b), but for averaged monthly SSS values over the boxes displayed 888	  

on Figure 2e, f. Blue dots indicate collocated data located in NBOB, green in WBOB and red 889	  

in CBOB, while black triangles indicate collocated data outside these boxes. The black line 890	  

indicates median value of each 1pss in situ SSS bin while vertical bars indicate the upper and 891	  

lower quartiles of the distribution. 892	  

 893	  

Figure 6. (a) Systematic bias, (b) correlation coefficient and (c) RMSE of box averaged 894	  

satellite SSS retrievals (SMOS in Bright shade and Aquarius in Light shade) against box-895	  

averaged gridded in situ SSS dataset over each sub-region of the Bay of Bengal. 896	  

 897	  

Figure 7. (Upper panels) Climatological Sea Surface Salinity (SSS, pss) in the Bay of 898	  

Bengal (BoB) for (a) June-July-August (JJA), (b) September-October-November (SON), (c) 899	  

December-January-February (DJF), and (d) March-April-May (MAM) from NIOA 900	  

climatology. (Middle panels) Same for SMOS climatological seasonal cycle computed over 901	  

May 2010 - December 2013 period. (Bottom panels) Same for Aquarius climatological 902	  

seasonal cycle computed over August 2011- June 2014 period. 903	  

 904	  

Figure 8. Time series of the SSS climatological seasonal cycle in (a) NBoB, (c) WBoB and 905	  

(e) CBoB (outlined on Figure 2e,f) from the gridded in situ product (black line), collocated 906	  

SMOS retrieval (red line), and box-averaged NIOA climatology (blue line). (b,d,f) Same as 907	  

(a,c,e) but for Aquarius retrieval. The correlation coefficient (r) value between in situ and 908	  

satellite estimates is given on each panel. 909	  

 910	  

Figure 9. As in Figure 5 but for SSS anomalies with respect to the mean climatological 911	  

seasonal cycle from the NIOA climatology. 912	  

 913	  

Figure 10. Time series of box-averaged monthly SSS interannual anomalies over the (a) 914	  

NBoB, (b) WBoB and (c) CBoB from the gridded in situ product (black line) and SMOS 915	  

retrieval (red line). (d,e,f) Same as (a,b,c) but for Aquarius (red line). The grey shading 916	  

indicates seasons for which the maps of Figure 11 are plotted. 917	  

 918	  
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Figure 11. Mean SSS interannual anomalies for (first column) September to November 919	  

2011, (second column) December 2011 to February 2012, (third column) March to May 920	  

2012, (fourth column) and June to August 2012 from (first row) the gridded in situ dataset, 921	  

(second row) Aquarius and (third row) SMOS. 922	  

 923	  

Figure 12. (a) Correlation coefficient of SMOS SSS retrieval (coloured bars) and NIOA 924	  

climatology (coloured frames) against the gridded in situ SSS dataset over each sub-region of 925	  

the Bay of Bengal. (b) Same as (a) but for Aquarius. 926	  

 927	  

Figure 13. (a) Box-averaged monthly time series of SSS from SMOS (red) and NIOA 928	  

climatology (blue) for the Andaman Sea box (framed on Figure 2e,f). (b) Same as (a) but for 929	  

Aquarius (green).  930	  

 931	  

 932	  

 933	  
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