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Abstract : 
 
The SAR group (Stramenopila, Alveolata, Rhizaria) is one of the largest clades in the tree of eukaryotes 
and includes a great number of parasitic lineages. Rhizarian parasites are obligate and have 
devastating effects on commercially important plants and animals but despite this fact, our knowledge of 
their biology and evolution is limited. Here, we present rhizarian transcriptomes from all major parasitic 
lineages in order to elucidate their evolutionary relationships using a phylogenomic approach. Our 
results suggest that Ascetosporea, parasites of marine invertebrates, are sister to the novel clade 
Apofilosa. The phytomyxean plant parasites branch sister to the vampyrellid algal ectoparasites in the 
novel clade Phytorhiza. They also show that Ascetosporea + Apofilosa + Retaria + Filosa + Phytorhiza 
form a monophyletic clade, although the branching pattern within this clade is difficult to resolve and 
appears to be model-dependent. Our study does not support the monophyly of the rhizarian parasitic 
lineages (Endomyxa), suggesting independent origins for rhizarian animal and plant parasites. 
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The SAR group includes a large diversity of eukaryotic parasites, including economically 

important plant parasites such as oomycetes (Stramenopila) and plasmodiophorids (Rhizaria), as 

well as the human malaria parasite Plasmodium (Alveolata), along with many other animal 

parasites that infect commercially important invertebrates. Parasitic rhizarians comprise poorly 

studied organisms that are split into two major assemblages based on their hosts, either animals 

or plants. The Ascetosporea, composed of Haplosporida (e.g. Bonamia) and Paramyxida (e.g. 

Marteilia, no phylogenomic data available for the group), are intracellular parasites of marine 

invertebrates such as Turbellaria, annelids, molluscs and crustaceans (Hartikainen, Ashford, et al. 

2014; Hartikainen, Stentiford, et al. 2014). The Phytomyxea, composed of Plasmodiophorida 

(e.g. Plasmodiophora) and Phagomyxida (e.g. Phagomyxa, no phylogenomic data available for 

the group), are obligate biotrophic parasites of plants, diatoms, oomycetes and brown algae 

(Neuhauser, et al. 2014). Additionally, the naked vampyrellid amoebae, most commonly found 

in freshwater habitats, are ectoparasites of algae, fungi, small metazoans, and other protists 

(Hess, et al. 2012; Berney, et al. 2013). Despite being very diverse, vampyrellids have remained 

enigmatic but these parasites will likely gain attention as the commercial algae industry grows 

(Carney and Lane 2014).  

All rhizarian parasites have been classified as Endomyxa based on 18S rRNA phylogenies 

together with two non-parasitic lineages Gromia and Filoreta (Cavalier-Smith 2002). However, 

multiple gene phylogenetic analysis did not support their common origin (Sierra, et al. 2013), but 

also did not resolve their evolutionary relationships, mainly because Ascetosporea were 

represented only by the extremely fast-evolving Mikrocytos mackini (Burki, et al. 2013). Here, 

we generated extensive transcriptomic data from representative species of all major rhizarian 

clades to elucidate the rhizarian parasites’ evolutionary relationships by means of phylogenomic 

analyses. Most notably, we obtained and analyzed Illumina sequenced transcriptomic data for 

two ascetosporeans (Bonamia and Minchinia), a vampyrellid (Leptophrys), and the 

plasmodiophorids Spongospora and the complete genome data from Plasmodiophora (Schwelm, 

et al. 2015). In addition, 454 GS-FLX Titanium reads were generated for 12 additional rhizarian 

species, including Gromia, Aulacantha scolymantha and 10 retarians (fig. 1, species in bold).  

These data were used to assemble a super-matrix of 229 proteins and 56 species containing 



64,107 amino acid positions. The average missing sites per taxon in the full matrix is 45% 

(supplementary table S2). 

We recovered a sister relationship of Rhizaria and Alveolata with Stramenopila at their base 

using green plants as outgroup (fig. 1). This topology is strongly supported (fig. 1, branch 

support 1/0.5/98/98/100) by most analyses with the exception of the Bayesian inference 

calculated on PhyloBayes (Lartillot, et al. 2009), where the posterior probability (PP) for the 

branch is 0.5 (fig. 1 and supplementary fig. S3). This result is also congruent with the previously 

obtained phylogeny based on 109 protein-coding genes (Sierra, et al. 2013). However, different 

topologies have been proposed for the SAR group. Burki, et al. (2013) suggested a sister 

relationship of Alveolata and Stramenopila with Rhizaria at their base while Parfrey, et al. (2010) 

proposed a sister relationship of Rhizaria and Stramenopila with Alveolata at their base. Hence 

the branching order within the group remains unresolved.  

Our results show that the ascetoporean parasites form a monophyletic group of shellfish parasites 

including a strongly supported (fig. 1, branch support .99/1/93/98/93) clade of Bonamia and 

Minchinia. The best topologies obtained from our analyses place the intracellular oyster parasite, 

M. mackini, in the Ascetosporea clade. However, due to the fast evolutionary rates, its 

phylogenetic position is not strongly supported (fig. 1, branch support .57/-/53/65/100), except 

for the maximum support obtained with the non-parametric SH-alrt single branch test. The 

Bayesian analysis obtained on PhyloBayes (Lartillot, et al. 2009) does not resolve the position of 

M. mackini and thus results in a trichotomy of Retaria, Ascetosporea + Gromia + Filoreta and M. 

mackini (supplementary fig. S3). As previously suggested by Burki, et al. (2013), the 

Ascetosporea form a sister group to the clade Gromia + Filoreta, called here Apofilosa. The 

support for this sister group relationship is not very strong (fig. 1, branch support .60/-

/53/65/100), yet in the absence of M. mackini, the Ascetosporea + Apofilosa form a robust clade 

(supplementary fig. S1, branch support .92/.97/100/100). On the other hand, the rhizarian plant 

parasites, Phytomyxea and Vampyrellida were recovered in a strongly supported (fig. 1 branch 

support 1/1/100/100/100) monophyletic clade named here Phytorhiza. In the absence of M. 

mackini, the Phytorhiza clade is still recovered with maximum branch support values, but its 

position within Rhizaria is weakly supported (supplementary fig. S1, branch support .92/-/64/70) 

compared to the full data set analyses (fig. 1 branch support .98/1/89/90/100). A monophyletic 



Endomyxa (rhizarian parasites, Gromia and Filoreta) was only recovered by Bayesian inference 

implemented on PhyloBayes in the absence of M. mackini, though not supported (0.66 PP, 

supplementary fig. S8). Additionally, the sister relationship of this assemblage with Retaria is not 

resolved (0.58 PP). 

To conclude, the highly supported deep nodes of our phylogenomic tree suggest that there are 

four major groups of Rhizaria: Filosa, Phytorhiza, Ascetosporea + Apofilosa, and Retaria (fig. 

1); this greatly clarifies rhizarian phylogeny. Nonetheless, the diversity of these groups is 

extremely high and further sampling and data is needed to obtain better phylogenetic resolution. 

In particular, the addition of two ascetosporean taxa to the data matrix resulted in a sister 

relationship between ascetosporeans and Apofilosa, together with the strongly supported clade of 

Vampyrellida and Phytomyxea, allowed confirming the independent evolution of parasitism in 

Phytorhiza and Ascetosporea. 

 

Materials and Methods 

Species and alignments. A phylogenomic supermatrix of 229 genes (64107 positions, 

Supplementary table S1) was constructed using full-length proteins based on a pool of genes 

from (Burki, et al. 2010; Burki, et al. 2012; Burki, et al. 2013). Rhizarian sequences were 

assigned and added to the individual alignments based on homology searches using blastp. The 

alignments included representative species for all major groups of eukaryotes. New, unpublished 

sequences from L. vorax, S. subterranea, P. brassicae, M. chitonis, B. ostreae, M. mackini, G. 

sphaerica, six species of Foraminifera (Elphidium margaritaceum, Globobulimina turgida, 

Brizalina sp., Bulimina marginata, Nonionellina sp., and Ammonia sp.), 5 radiolarians 

(Phyllostaurus siculus, Amphilonche elongata, Astrolonche serrata, Collozoum sp., and 

Spongosphaera streptacantha) and A. scolymantha were generated for this study. See 

supplementary methods for details of library preparation, sequencing, and assembly. All new 

sequences were added and automatically aligned to the data set using MAFFT v.6.847b (Katoh et 

al., 2002). Ambiguously aligned positions were removed using BMGE (Criscuolo and Gribaldo 

2010).  



Phylogenetic analyses. Single-gene maximum likelihood trees were performed on RAxML 

v.8.0.26 (Stamatakis 2006) using the PROTGAMMALGF setting with 1000 bootstrap replicates. 

All trees were carefully examined to discard any sequence from the SAR group that branched 

with plants or animals. The 229 alignments were concatenated using SCaFoS (Roure, et al. 

2007). The ML analysis of the phylogenomic matrix was performed using RAxML with 

PROTGAMMALGF setting and statistical support was evaluated with 1000 standard bootstrap 

replicates. The IQ-Tree algorithm was used to calculate a second ML analysis with LG+G 

parameters, 1000 Ultrafast bootstrap replicates and the non parametric SH-alrt single branch test 

(Nguyen, et al. 2015). Bayesian Inferences was carried out using ExaBayes using revmat=(0) 

setting (Aberer, et al. 2014) and PhyloBayes v.3.3f (Lartillot, et al. 2009) under the CAT-GTR 

model with two independent chains until convergence. For post-analysis of the independent 

chains a 20% burnin was used. 

Data availability. The transcriptomes used for this study were deposited under: SRX1014535, 

SRX1014576, SRX1014585, SRX1014586, SRX1014587, SRX1014589, SRX1016224, 

SRS621308, SRS412271, PRJEB8376, PRJEB9159, SRS621308, SRS621524. 
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Figure 1. Phylogeny of the SAR group. The consensus tree shown was obtained by the 

majority rule of the Bayesian tree pool after 385 000 generations inferred with 229 genes 

using the GTR matrix (revMat with Dirichlet process). The statistical support on branches 

was estimated by Bayesian posterior probabilities of post-burnin bipartitions using ExaBayes, 

PhyloBayes under CAT-GTR model, bootstrap replicates from maximum likelihood analysis 

on RAxML and ultrafast bootstrap values and the single branch SH-like approximate 

likelihood ratio test (SH-aLRT) implemented on IQ-Tree, respectively. Maximum statistical 

support was obtained under the five methods where solid dots and no values are shown (i.e. 

1/1/100/100/100). The parasitic lineages are marked with a capital "P" on the branches. New 

data added in this study is shown for the rhizarian species in bold italic fonts. 
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Supplementary	figure	S1.	Phylogeny	of	the	SAR	group	excluding	Mykrocytos	
mackini.	Summary	tree	of	supplementary	figures	7-10.	The	consensus	tree	
shown	was	obtained	by	the	majority	rule	of	the	Bayesian	tree	pool	after	15	000	
generations	inferred	with	229	genes	using	the	GTR	matrix	(revMat	with	Dirichlet	
process).	The	statistical	support	on	branches	was	estimated	by	Bayesian	
posterior	probabilities	of	post-burnin	bipartitions	using	ExaBayes,	PhyloBayes	
under	CAT-GTR	model,	bootstrap	replicates	from	maximum	likelihood	analysis	
on	RAxML	and	ultrafast	bootstrap	values	implemented	on	IQ-Tree,	respectively.	
Maximum	statistical	support	was	obtained	under	the	four	methods	where	solid	
dots	and	no	values	are	shown	(i.e.	1/1/100/100).		

	



	
Supplementary	figure	S2.	Phylogeny	of	the	SAR	group.	The	consensus	tree	
shown	was	obtained	by	the	majority	rule	of	the	Bayesian	tree	pool	after	15,000	
generations	inferred	with	229	genes	using	the	GTR	matrix	(revMat	with	Dirichlet	
process)	as	implemented	in	ExaBayes.	The	statistical	support	on	branches	was	
estimated	by	Bayesian	posterior	probabilities	of	post-burnin	bipartitions.	
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Supplementary	figure	S3.	Phylogeny	of	the	SAR	group.	The	strict	consensus	
tree	shown	was	obtained	by	the	majority	rule	of	the	Bayesian	tree	pool	after	
4,000	generations	inferred	with	229	genes	using	the	CAT+GTR	setting	as	
implemented	in	PhyloBayes.	The	statistical	support	on	branches	was	estimated	
by	Bayesian	posterior	probabilities	of	post-burnin	bipartitions.	
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Supplementary	figure	S4.	Phylogeny	of	the	SAR	group.	The	best	maximum	
likelihood	tree	shown	was	obtained	using	RAxML	inferred	with	229	genes	using	
the	PROTGAMMALG	setting.	The	statistical	support	on	branches	was	estimated	
by	1000	bootstrap	replicates.	
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Supplementary	figure	S5.	Phylogeny	of	the	SAR	group.	The	best	maximum	
likelihood	tree	shown	was	obtained	using	IQ-Tree	inferred	with	229	genes	using	
the	LG+GAMMA	setting.	The	statistical	support	on	branches	was	estimated	by	
1000	ultrafast	bootstrap	replicates.	
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Supplementary	figure	S6.	Phylogeny	of	the	SAR	group.	The	best	maximum	
likelihood	tree	shown	was	obtained	using	IQ-Tree	inferred	with	229	genes	using	
the	LG+GAMMA	setting.	The	statistical	support	on	branches	was	estimated	by	
the	non-parametric	SH-alrt	and	1000	ultrafast	bootstrap	replicates,	respectively.	
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Supplementary	figure	S7.	Phylogeny	of	the	SAR	group	excluding	Mikrocytos	
mackini.	The	consensus	tree	shown	was	obtained	by	the	majority	rule	of	the	
Bayesian	tree	pool	after	15,000	generations	inferred	with	229	genes	using	the	
GTR	matrix	(revMat	with	Dirichlet	process)	as	implemented	in	ExaBayes.	The	
statistical	support	on	branches	was	estimated	by	Bayesian	posterior	
probabilities	of	post-burnin	bipartitions.	
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Supplementary	figure	S8.	Phylogeny	of	the	SAR	group	excluding	Mikrocytos	
mackini.	The	strict	consensus	tree	shown	was	obtained	by	the	majority	rule	of	
the	Bayesian	tree	pool	after	4,000	generations	inferred	with	229	genes	using	the	
CAT+GTR	setting	as	implemented	in	PhyloBayes.	The	statistical	support	on	
branches	was	estimated	by	Bayesian	posterior	probabilities	of	post-burnin	
bipartitions.	
	
	

0.4

Oryza_sativa

Pseudochattonella_farcimen

Coccomyxa_sp

Aureococcus_anophageferrens

Filoreta_sp

Arabidopsis_thaliana

Karlodinium_micrum

Ichthyophthirius_multifiliis

Bulimina_marginata

Ectocarpus_siliculosus

Oxyrrhis_marina
Perkinsus_marinus

Thalassiosira_pseudonana

Volvox_carteri

Globobulimina_turgida

Neospora_caninum

Paramecium_tetraurelia

Spongosphaera_streptacantha

Plasmodiophora_brassicae

Physcomitrella_patens

Symbiodinium_sp
Cryptosporidium_hominis

Nannochloropsis_gaditana

Bigelowiella_natans

Gromia_sphaerica

Aulacantha_scolymantha

Minchinia_chitonis

Ammonia_sp

Phyllostaurus_siculus

Bonamia_ostreae

Aurantiochytrium_limacinum

Theileria_annulata

Saprolegnia_parasitica

Micromonas_sp

Populus_trichocarpa

Nonionellina_sp

Amphilonche_elongata

Toxoplasma_gondii

Sorghum_bicolor

Phaeodactylum_tricornutum

Astrolonche_serrata

Spongospora_subterranea

Plasmodium_falciparum

Tetrahymena_thermophila

Leptophrys_vorax

Guttulinopsis_vulgaris

Schizochytrium_aggregatum

Collozoum_sp

Blastocystis_hominis

Pythium_arrhenomanes

Fragilariopsis_cylindrus

Reticulomyxa_filosa

Phytophthora_ramorum

Elphidium_sp

Paracercomonas_marina

1

1

0.66

0.61

0.58

1

1

1

1

1

1

1

1

1

1

1

1

0.83

1

1

1

1

1

1

1

1

1

1

1

1

1

0.97

1 1

1

1

0.84

1

1

1

1

1

1

1

1

1

1

1

0.82

1

1

1



	
Supplementary	figure	S9.	Phylogeny	of	the	SAR	group	excluding	Mikrocytos	
mackini.	The	best	maximum	likelihood	tree	shown	was	obtained	using	RAxML	
inferred	with	229	genes	using	the	PROTGAMMALG	setting.	The	statistical	
support	on	branches	was	estimated	by	1000	bootstrap	replicates.	
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Supplementary	figure	S10.	Phylogeny	of	the	SAR	group	excluding	Mikrocytos	
mackini.	The	best	maximum	likelihood	tree	shown	was	obtained	using	IQ-Tree	
inferred	with	229	genes	using	the	LG+GAMMA	setting.	The	statistical	support	on	
branches	was	estimated	by	1000	ultrafast	bootstrap	replicates.	
	
	

0.2

Filoreta_sp

Guttulinopsis_vulgaris

Blastocystis_hominis

Toxoplasma_gondii

Pythium_arrhenomanes

Bonamia_ostreae

Aulacantha_scolymantha

Theileria_annulata

Coccomyxa_sp
Volvox_carteri

Nannochloropsis_gaditana

Saprolegnia_parasitica

Phyllostaurus_siculus

Bigelowiella_natans

Sorghum_bicolor

Plasmodiophora_brassicae

Perkinsus_marinus

Phytophthora_ramorum

Phaeodactylum_tricornutum

Spongosphaera_streptacantha

Pseudochattonella_farcimen

Paramecium_tetraurelia

Reticulomyxa_filosa

Micromonas_sp

Globobulimina_turgida

Karlodinium_micrum

Neospora_caninum

Gromia_sphaerica

Collozoum_sp

Astrolonche_serrata

Cryptosporidium_hominis

Plasmodium_falciparum

Aureococcus_anophageferrens

Arabidopsis_thaliana

Minchinia_chitonis

Ectocarpus_siliculosus

Spongospora_subterranea

Schizochytrium_aggregatum

Leptophrys_vorax

Paracercomonas_marina

Symbiodinium_sp

Aurantiochytrium_limacinum

Fragilariopsis_cylindrus

Nonionellina_sp

Amphilonche_elongata

Thalassiosira_pseudonana

Elphidium_sp

Oxyrrhis_marina

Populus_trichocarpa

Tetrahymena_thermophila

Ammonia_sp

Physcomitrella_patens

Ichthyophthirius_multifiliis

Bulimina_marginata

Oryza_sativa

100

100

100

100

100

9 6

8 8

100

100

100

8 4

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

4 8

100
5 5

100

6 5

9 7

100

100

100

100

7 0

100

100

9 9

100

7 7

100

100

100
100

100

100

100

100

7 7

100



Evolutionary origins of rhizarian parasites 

Supplementary Materials and Methods 

 

Isolation of Leptoprhys vorax, library and preliminary analyses. 

Leptophrys vorax CCAC 3422B was co-cultured in tall petri dishes with Closterium sp. 

CCAC 2697B in Waris-H culture medium at 18ºC. After the algae were consumed, the 

vampyrellid cells were collected and total RNA was extracted using the NucleoSpin RNA 

XS (Macherey–Nagel, Germany). The sample was prepared using the TruSeq RNA 

sample kit (Illumina) and sequenced on the Illumina HiSeq2000. Low quality reads were 

discarded and the raw reads were assembled using the Velvet/oases software (Zerbino 

and Birney 2008).  

 

Isolation of Plasmodiophora brassicae and Spongospora subterranean, library and 

preliminary analyses. 

The DNA and RNA isolations and gene prediction and annotation we performed as 

described by Schwelm, et al. (2015).  

 

Isolation of Bonamia ostreae, library preparation and preliminary analysis 

Sample collection. B. ostreae was purified according to the protocol developed by 

Mialhe et al. (1988) from one highly infected flat oyster Ostrea edulis collected in 

Quiberon Bay (Morbihan, France), an endemic bay regarding bonamiosis. Briefly, the 

heavily infected oyster was selected by examination of heart tissue imprints using light 

microscopy. After homogenisation of all the organs except the adductor muscle, parasites 

were concentrated by differential centrifugation on sucrose gradients. Finally, the purified 

B. ostreae cells were suspended in filtered seawater (FSW) and counted using a 

Malassez-cell. About 2.108 parasites were obtained. 

RNA extraction and library preparation. After removing, parasite cells were placed in 

TRIzol® (Invitrogen) at -80°C until RNA isolation was done following the 

manufacturer's protocol. Total RNA concentration was measured on a NanoDrop 2000c 

spectrophotometer (Thermo Scientific). The quality of RNA sample was then assessed 

with an Agilent 2100 Bioanalyzer (Agilent Technologies). The cDNA libraries were 



prepared from 3 µg of total RNA with Illumina Tru-Seq RNA Sample Prep Kits 

(Illumina) for 100 bp paired-end reads according to the manufacturer’s instructions. 

Libraries were sequenced on a HiSeq 2000 (Illumina). 

Transcriptome analyses. The read pairs were checked and stored in ng6 environment 

(Mariette, et al. 2012). They were cleaned from remaining sequencing adapters using 

trim_galore (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). The over-

represented reads were filtered out using the normalize_by_kmer_coverage.pl script from 

the Trinity software package (Haas, et al. 2013). The longest sub-sequence without Ns 

where extracted from each read and kept if their length exceeded half of the initial read 

length. This step was performed using an in-house script. Nine Oases (Schulz, et al. 

2012) assemblies using k-mers ranging form 25 to 69 (pace 6) were performed on the 

cleaned read pairs. Only the longest contig per locus provided by 

the OasesV0.2.04OutputToCsvDataBase.py script (http://code.google.com/p/oases-to-

csv/) were retained. All contigs files were merged. Finally, anti-sense chimeras 

(accidentally produced by the assembly step) where found and split with an in-house 

script. Cd-hit-est (Li and Godzik 2006) was used to cluster and remove similar contigs 

produced by different k-mers, based on their sequence similarities. TGICL (Pertea, et al. 

2003) was used to assemble contigs having significant overlaps. The contigs were filtered 

on a minimum length of 200 base pairs. Input reads were then mapped back to the contigs 

using bwa aln (Li and Durbin 2009). The resulting alignment files were used to correct 

the contig sequence from spurious insertions and deletions using an in-house script and to 

filter out those with very low coverage. The filter excluded contigs with less than two 

mapped reads per million. 

 

Isolation of Minchinia chitonis, library and preliminary analysis. 

Sample collection. Two heavily infected individuals of Lepidochitona cinerea were 

collected from Torre Abbey Sands beach, Torquay, Devon, on November 3, 2009. The 

presence of Minchinia chitonis spores was verified by light microscopy. Each chiton was 

allowed to rot in seawater in the lab for 2 weeks, after which time the plates of each 

chiton were removed, and remaining clumps of chiton tissue were diced with a razor 



blade. The tissue and spore slurry from each chiton was concentrated by centrifugation 

and resuspended in 1 mL dH2O.  

Density gradient centrifugation. Samples were layered on 90% Percoll™ in 0.15M 

NaCl and spun at 30 000 rpm in an SW 41 rotor on a Beckman-Coulter Optima 190-K 

ultracentrifuge (Beckman-Coulter, Brea, CA, USA) for 1 hour at 12 ºC. Each sample 

separated into a pale layer near the top of the tube, a small, dark pellet at the bottom of 

the tube, and a brown layer slightly above and incompletely separated from the pellet. 

The pellet consisted of spores and sand particles, the brown layer was nearly pure spores, 

and the top pale layer was mainly cellular debris with a few spores. The spore layers were 

extracted and the spin procedure repeated twice more. Clean spore fractions from both 

chitons were pooled for subsequent wash steps. In order to remove Percoll™, then 

surface bacteria, then salts, the spore sample was washed twice in 0.15M NaCl, once in 

10% SDS, and twice in dH2O, with spores collected after each wash by benchtop 

centrifugation at 12 000 g for 10 minutes (Eppendorf, Hamburg, Germany).  

RNA extraction and whole transcriptome amplification. Clean spores were 

resuspended in 1 mL DNase buffer and treated with 2µL DNase I (Invitrogen, Carlsbad, 

CA, USA) at room temperature for 25 minutes. Spores were collected by centrifugation 

and resuspended in 0.5 mL lysis buffer (10mM Tris HcL pH 8, 0.1M EDTA pH 8, 0.5% 

w/v SDS) and incubated with 5µL of 20 mg/mL proteinase K (Bioshop, Burlington, ON, 

Canada) overnight at 50°C. Pellet density was estimated to be 4000 spores per µL. For 

RNA extraction using the Nucleospin RNA XS kit (Macherey-Nagel, Düren, Germany) 

approximately 800,000 spores were repeatedly frozen in liquid nitrogen and ground by 

hand in buffer RA1 with 4µL TCEP in a small tube-shaped glass mortar for 1 hour. 

Subsequent steps were performed according to the manufacturer’s protocol, without use 

of carrier RNA, and including the filtration step. Total RNA was eluted in 10 µL elution 

buffer. Agarose gel electrophoresis of 2µL of the RNA sample did not reveal detectable 

bands after staining with SYBR green II for RNA, though both NEB ssRNA ladder (New 

England Biolabs, Ipswitch, MA, USA) and Ambion RNA 6000 ladder (Life 

Technologies, Grand Road, NY, USA) were clearly visualized. The remaining 8µL of 

RNA sample were subjected to whole transcriptome amplification using the Sigma WTA 

kit (Sigma, St. Louis, MO, USA). 40µL of the amplified cDNA sample was ethanol-



precipitated (100 µL 100% EtOH and 4 µL 3M NaOAc pH 5.2) and resuspended in 

dH2O. 10 µL of 100 ng/µL amplified cDNA was submitted to NCGR for sequencing. 

Project ID: MMETSP0186 (http://data.imicrobe.us/). 

 

The full materials and methods for the library construction and preliminary analyses of 

the transcriptome from Mikrocytos mackini can be found in Burki et al., 2013; and for 

Gromia sphaerica, Nonionellina sp., Globobulimina turgida, Elphidium margaritaceum, 

Bulimina marginata, Ammonia sp., Collozoum sp., Spongosphaera streptacantha, 

Phyllostaurus siculus, Amphilonche elongata, Astrolonche serrata and Aulacantha 

scolymantha in Sierra et al., 2012. 
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