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Abstract

A new data assimilation scheme derived from the singular evolutive extended Kalman (Seek) filter is introduced. The novel feature of the
new filter is its correction basis which is partially local in the sense that it consists of “global” and “local” vectors, the later obtained from a
local empirical orthogonal functions (Eof) analysis. Such an analysis was introduced in order to better represent the local variability of the
ocean. This not only significantly reduces the implementation cost but may also improve the representativeness of the correction basis of the
filter. The performance of this scheme is evaluated through twin experiments conducted in a realistic setting of the OPA model over the tropical
Pacific zone. The results are compared against those of the Seek filter. The new filter is shown to perform better while it is up to six times faster.
Adaptive tuning of the forgetting factor was also used, which enhances performance and improves the stability of the filter during model
unstable periods.

© 2003 Éditions scientifiques et médicales Elsevier SAS and Ifremer/CNRS/IRD. All rights reserved.

Résumé

Un nouveau schéma d’assimilation de données dérivé du filtre de Kalman singulier étendu et évolutif (Seek) est présenté. La nouveauté de
ce filtre est sa base de correction partiellement localisée car elle consiste en une partie “globale” et une partie “locale”. Ce dernier provient
d’une analyse locale empirique de fonctions orthogonales. Une telle analyse permet une meilleure représentation de la variabilité locale de
l’océan. Elle réduit non seulement le coût d’implémentation mais elle accentue également la représentativité de la base de correction du filtre.
Sa performance est évaluée par deux expériences jumelles conduites avec une configuration réaliste du modèle OPA sur le Pacifique tropical.
Les résultats sont comparés à ceux qui sont issus du filtre Seek. Le nouveau filtre est plus performant tout en étant six fois plus rapide. Un
réglage adapté du facteur oublié est également utilisé, ce qui rehausse la performance et accentue la stabilité du filtre durant les périodes
d’instabilité du modèle.
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1. Introduction

One of the major challenges in the coming years in ocean-
ography is the design of an operational data assimilation

system. There is increasing interest in these systems for the
purposes of improving short-term and mid-term weather
prediction, developing climate predictions or for the specific
objectives of the navies in various countries.

Among the various methodological approaches (see for
example Ghil and Malanotte-Rizzoli, 1991, for a review), we
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have chosen the statistical sequential technique based on the
Kalman filter. For a linear system, this filter provides the best
estimate, in the least squares sense, of the state vector at each
observation time using all observations up to this time (Kal-
man, 1960). For non-linear models, a so-called extended
Kalman (EK) filter has been derived (Jazwinski, 1970). How-
ever, brute force implementation of the EK filter in realistic
ocean models is not possible because of the huge dimension
of the system (~107). Several approaches, which essentially
consist of projecting the system state onto a low-dimensional
sub-space, have been proposed to overcome this problem
(Cane et al., 1996; Evensen, 1994; Fukumori and Malanotte-
Rizzoli, 1995; Hoang et al., 1995; Verlaan and Heemink,
1995).

With the same aim in view, Pham et al. (1997) recently
introduced the singular evolutive extended Kalman filter
(Seek). This filter essentially approximates the error covari-
ance matrix by a singular low rank matrix, which allows for
ignoring corrections in the directions where the errors are
naturally strongly attenuated by the system. The novel fea-
ture of this filter is that its “directions of correction”, usually
initialized through an empirical orthogonal function (Eof)
analysis, evolve in time to follow the model dynamics. The
Seek filter has been applied in different realistic ocean frame-
works, yielding quite satisfactorily results (Pham et al., 1997;
Verron et al., 1998; Ballabrera-Poy et al., 2001; Hoteit et al.,
2002).

Nevertheless, the Seek filter remains an expensive choice
for operational oceanographic applications since a model
integration is needed for the evolution of each correction
direction. To reduce the cost of this filter, Hoteit et al. (2002)
have proposed different methods to simplify the evolution of
these directions. But this does not address a built-in weak-
ness of the Seek filter (in fact, it may even exacerbate it) in
that the correction basis may not contain enough vectors to
capture the short-range variability of the model. Increasing
the number of basis vectors would of course increase the
computational burden and, as shown in our experiments, only
marginally increases the representativeness of the basis
(Cane et al., 1996; Verron et al., 1998). Furthermore, in real
applications, the model can be subject to errors and hence an
Eof analysis based on a run of the model would be subjected
to errors too. We believe that such errors mostly affect the last
Eofs because they are the most numerically unstable.

For the above reasons, we shall introduce a variety of
“local Eof analysis” which would provide better representa-
tiveness of the ocean state. The “local Eofs” will support a
small region of the ocean and vanish elsewhere. Therefore,
the computational cost is reduced allowing the use of more
basis vectors for a given cost. This local analysis limits the
spatial correlation length of the ocean variables, which is
consistent with the idea that such correlation generally van-
ishes for large distances. Further, it allows for adapting the
number of Eofs according to the variability of each sub-
domain.

Improving the estimation of small-scale correlations with
the Kalman filters has received more attention recently.
Houtekamer and Mitchell (1997) simply used a cutoff radius
to exclude the effects of observations far away from the
analysis location. However, the introduction of an “artificial”
radius may be inconsistent with the correlations presented in
the estimation error covariance matrix, which would lead to
numerical noise. Fukumori (2002) and Testut (2000) parti-
tioned the model domain into several overlapping sub-
domains and then applied the correction of the Kalman filter
independent of each sub-domain. Additional state reductions
were also applied to separate sub-domains using coarser grid
(Fukumori, 2002) and Eof analysis (Testut, 2000). Although
the idea proposed in this paper is similar to the one used by
Testut (2000), our approach is different since the correction
of the Kalman filter remains unchanged in our filter and is
always applied globally (only the correction basis contains
local functions). The use of a “mixed” correction basis of
global and local functions is also introduced in this paper to
improve the representativeness of the ocean long-range vari-
ability, which can be degraded, as shown in our experiments,
if only local functions are used. Moreover, the global func-
tions of such a basis can be let to evolve as in the Seek filter,
since the local Eofs cannot be let to evolve without destroy-
ing their locality. The resulting semi-evolutive partially local
Kalman (Seplek) filter is much less costly than the Seek filter
and yet can yield better results. Our work was presented at
the The Fourth International Marine Environmental Model-
ing Seminar 2000, for which some results appeared in the
conference proceedings (Hoteit et al., 2001). However, this
paper provides a more complete description and full results
of the work.

The paper is organized as follows. Section 2 introduces
different approaches to improve the representativeness of the
Eof analysis. The Seplek filter is described in Section 3.
Section 4 describes the numerical results of the assimilation
experiments. Finally, concluding remarks are given in Sec-
tion 5.

2. Global–local Eof analysis

The goal of the “classical” (or global) Eof analysis is to
construct a representation as accurately as possible of a set of
state vectors X1, K, XN in �p in a low-dimension (denoted by
r) linear sub-space. Let {φk }k=1, K,r be a M-orthogonal basis
of such a space (here M is some metric introduced to account
for the different nature of the state variables as they represent
different physical variables such as velocity, salinity, etc.),
the best representation relative to this space of a vector X is
given by

Xx = X√ + �
k = 1

r

ck φk = X√ + LLT M� X − X√ � (1)

where X√ is the average of X1, K, XN, ck = < X − X√, φk >M =
φk

T M� X − X√ � and L is the matrix having {φk}k=1, K,r as
columns. It has been shown that the M-norm of the represen-
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tation error is smallest when {φk}k=1, K,r are the first eigen-
vectors of the sample covariance matrix of X1, K, XN, the
eigenvectors being ranked in decreasing order of their eigen-
values k1, K, kN . These eigenvectors are called Eofs. Fur-
thermore, the fraction of variance (or inertia) explained by
the first r Eofs is known to be equal to �k = 1

r kk /�k = 1
p kk and

thus can be used as a guide for choosing r (this fraction
should be close to 1). The reader is referred to Preisendorfer
(1988) for more details.

2.1. Local Eof analysis

The classical Eof analysis provides an approximate repre-
sentation of the correlations between all ocean variables.
However, the resulting correlations often have long range if
only a few Eofs are retained, while one can expect ocean
variables to have a limited spatial correlation length (two
variables evaluated at two distant ocean locations tend to be
uncorrelated, or weakly correlated). Further, as the Eof
analysis is based on extracting the global variability of the
ocean, a local turbulent zone might not have enough energy
to appear in the analysis while it may play an important role
in the ocean dynamics.

To enhance the effectiveness of the Eof analysis, we pro-
pose to force the Eofs to be local. Our basic idea consists of
constructing a set of Eofs, each supporting a small region of
the ocean. This can be achieved by splitting the model do-
main into sub-domains and then applying separate Eof analy-
ses on each of these sub-domains. To retain correlations
between spatial points in spatially nearby sub-domains, we
use overlapping sub-domains. Our approach is very flexible
as we have at our disposal a wide range of options to choose
from: (i) the number of sub-domains, (ii) the extent of their
overlaps and possibly the size and shape of these sub-
domains as well, and (iii) the number of local basis elements
in each sub-domain. Such flexibility would enable us to
construct a basis best adapted to the problem at hand. An-
other point is that calculations, which mostly involve scalar
products, can be less costly with the local functions since
these functions have local supports. Therefore, one can af-
ford more (local) basis elements without increasing (with a
possibility of even decreasing) the computation cost.

2.1.1. Construction of the local Eofs
The idea is to define a set of ocean sub-domains, on each

of which a separate Eof analysis will be applied. As said
before, these sub-domains should overlap. To do this prop-
erly, we consider a partition of unity of the ocean domain, i.e.
a set of non-negative functions {p( j) , j = 1, K, J} defined on
the ocean domain, whose sum equals 1 identically. There-
fore, any state vector X can be written as:

X� x, y, z � = �
j = 1

J

X� x, y, z � p� j �� x, y, z � = �
j = 1

J

X� j �� x, y, z �

(2)

where x, y and z denote the spatial coordinates and
X(j) = Xp(j).

A separate Eof analysis can be then carried out on each
local field X(j), 1 ≤ j ≤ J, to compute a basis for each ocean
sub-domain. The representation formula for each X(j) is

X� j �� x, y, z � = X√� j �� x, y, z � + �
l = 1

r� j �

cl
� j � φ l

� j �� x, y, z �

+ e� j �� x, y, z � (3)

where φ l
� j � denote the Eofs resulting from the jth local Eof

analysis, X√� j � is the mean vector, r(j) is the number of retained
Eofs and cl

� j � are constant coefficients. By summing the last
equation over the index j, one obtains a representation for-
mula for the full state vector

X� x, y, z � = X√� x, y, z � + �
j = 1

J

�
l = 1

r1� j �

cl
� j � φ l

� j �� x, y, z �

+ e� x, y, z � (4)

In the above representation, the error e is equal to the sum
of all local representation errors e(j). However, this represen-
tation is not optimal as one can (and will) readjust the coef-
ficients cl

� j � in Eq. (4) in order to obtain the smallest mean
squared errors. This results in the representation formula (in
matrix form)

X = X√ + BC + e, (5)

where B is the matrix whose r = �j = 1
J r� j � columns are the

local Eofs φ l
� j � and C is a column vector such that BC

represents the M-orthogonal projection of X − X√ onto the
sub-space spanned by the columns of B. These columns thus
constitute a representation basis, called the local Eof basis.
The number r(j) of Eofs in each sub-domain can be chosen as
in the classical Eof analysis. Thus, the value of r(j) varies
according to the variability of each sub-domain. While this
number may serve as a first guess, one can still readjust it, for
example by increasing it in the sub-domains with strong
variability.

2.1.2. Choice of the ocean sub-domains
The size of the sub-domains is obviously characterized by

the support of the partition of unity functions p(j). In practice
such functions should support a small region of the ocean and
vanish elsewhere. For example, in the case of a rectangular
oceanic domain, one can take these functions in tensorial
form as

p� j �� x, y, z � = pX
� j1 �� x � pY

� j2 �� y �, (6)

with j1 varying from 1 to J1, j2 varying from 1 to J2,
j = j1 + J1(j2 – 1) varying from 1 to J = J1J2 and the functions
pX

� j1 � and pY
� j2 � having local support and sum 1. Moreover,

since the ocean vector field is manifestly continuous, it is a
good idea to take these functions to be continuous, which
would require them to have overlapping support (as p(j) must
decrease continuously to 0 as one approaches the boundary
of its support, it must be strictly less than 1 near this bound-
ary, hence, since �k = 1

J p� j � = 1, there must be some other
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function p(k) which is non-zero there, meaning that the func-
tions p(j) have overlapping support). In any case, one should
not limit the correlation length in the vertical direction to let
the surface information propagate to the ocean bottom (be-
cause altimetry data only provide information about the
ocean surface).

The main difficulty with the local Eof basis is that it
cannot be allowed to evolve with the model (see Section 3)
without losing its locality. Although we can decide to use
such a basis to initialize the Seek filter only, and abandon its
locality afterward by allowing it to evolve with the model
dynamics, this would be very costly because of the large
dimension of the basis. We have also noticed in our experi-
ments that the long-range variability was not well repre-
sented by the local Eofs. For these reasons, we propose to
augment the local basis by some global elements, which
results in a so-called mixed global– local basis.

2.2. Mixed Eof analysis

Local ocean variability is in general not well represented
by the first few global Eofs. The residuals of the state vectors
in the sub-space generated by the global Eof analysis thus
mostly contain information about the short-range motions.
One can therefore apply a local Eof analysis to extract the
local variability from these vectors. By combining the local
and the global bases one obtains a representation basis ca-
pable of representing the long range as well as the short-
range oceanic phenomena. Moreover, as previously stated,
the global part of this basis can be made to evolve as in the
Seek filter to follow the model dynamics.

To construct such a basis, one first computes a global Eof
basis L from a sample of ocean states X1,{, XN. The represen-
tation of a state vector X by a vector in the sub-space gener-
ated by L is then given by the formula

X = X√ + LLT M� X − X√ � + e, (7)

where e is the representation error (or residual). Next, by
applying a local Eof analysis (not centered) on the above
representation residuals e1,{, eN of the state vectors X1,{, XN,
one obtains a reconstruction formula for the residuals accord-
ing to

e = BC + e′, (8)

where the matrix B contains the retained local Eofs, C con-
tains the coefficients of the reconstruction and e' is the repre-
sentation error. Note that we do not center the vector e, as it
represents a residual and thus should already be centered. By
combining Eqs. (8) and (9), one gets

X = X√ + LLT M� X − X√ � + BC + e′, (9)

showing that X − X√ can be represented, with an error e', in
terms of mixed Eof basis, defined by the matrix

LB = �L : B � . (10)

But this representation is not optimal as one still can (as in
Section 2.1) adjust the vector CB so that:

X = X√ + LB CB + e″ (11)

with e'' having the smallest M-norm.

3. The semi-evolutive partially local filter

The sequential data assimilation scheme consists of the
estimation of the state of the system at each observation time,
using only observations up to this time. In the linear case, this
problem has been entirely solved by the well known Kalman
filter. In the non-linear case, one often linearize the model
around the current estimated state vector, which yields the
extended Kalman (EK) filter (see for example Ghil and
Malanotte-Rizzoli, 1991, for details). However, direct appli-
cation of the EK filter to data assimilation in meteorology
and oceanography is not possible due to the huge dimension
(n ≈ 107) of the system. Pham et al. (1997) proposed a
sub-optimal EK filter very close to the original EK, called
Seek filter, in which the error covariance matrix was assumed
to be singular with a low rank r << n. This leads to a filter in
which the error correction is made only along certain direc-
tions parallel to a linear sub-space of dimension r. They are
the directions for which errors are not sufficiently attenuated
by the system dynamics.

Although the cost reduction of the Seek filter is very
important, this filter remains expensive for operational
oceanographic applications since the evolution of its correc-
tion basis requires r + 1 times the model run. To further
reduce the cost, one needs to simplify the evolution of its
correction basis. Motivated by the fact that most of the
estimation error in the numerical experiments of Pham et al.
(1997) was reduced immediately after the first correction,
while the evolution of the Eof basis L0 was not yet effective,
Brasseur et al. (1999) proposed to keep the initial correction
basis of the Seek filter fixed in time. This approach leads to a
very low-cost filter, called singular fixed extended Kalman
(Sfek) filter, which operates in two stages exactly as for the
Seek but without the evolution equation of the correction
basis (Eq. (21)). It is thus almost r + 1 times faster than the
Seek filter. It also provides a cheap way to test the represen-
tativeness of the Eof basis (Brasseur et al., 1999; Hoteit et al.,
2002).

With the same goal, Hoteit et al. (2002) proposed different
degraded forms of the Seek filter, which are less costly and
yet perform reasonably well.Among them, the singular semi-
evolutive extended Kalman (Sseek) filter can be most easily
adapted to the present (global–local) approach. This filter lets
to evolve a few correction directions only, while keeping the
others fixed. But since the basis vectors which do not evolve
are those which contribute the least to the error representa-
tion, it cannot be used directly in the present context because
this will destroy the separation of the mixed Eof basis into
global and local parts. Here, we simply propose to let the
global part of the mixed Eof basis to evolve as in the Seek
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filter, while keeping the local part fixed in time. This results
in a new filter called semi-evolutive partially local Kalman
(Seplek) filter. Of course, small-scale features are expected to
evolve much faster than basin-scale features. In fact, the
former could change so fast that the Seek filter would be
unable to follow, as the design of this filter is aimed toward
following slow changes only (Pham et al., 1997). This can
result in filter instability as the correction basis vectors keep
changing continually but are still unable to capture suffi-
ciently the dynamic of the ocean. In this situation, it may be
preferable to keep part of the correction basis (which corre-
sponds to small scale) fixed but by using a much larger
number of basis vectors. We are in effect not aiming to
correct all those small-scale variation errors, but only a large
number of them on average.

3.1. The semi-evolutive partially local EK filter

The Seplek filter proceeds in two stages after an initializa-
tion stage just as in the Seek filter. The notation proposed by
Ide et al. (1995) will be adopted for the description of the
filter algorithm. Let the physical system be described by

Xt
� tk � = M� tk, tk − 1 � Xt

� tk − 1 � + gk, (12)

where Xt(t) denotes the vector representing the true state at
time t, M(t,s) is an operator describing the system transition
from time s to time t and gk is the system noise vector. At
each time t k, one observes

Yk
o = Hk Xt

� tk � + ek, (13)

where Hk is the observational operator and ek is the observa-
tional noise. The noises gk and ek are assumed to be indepen-
dent random vectors with mean zero and covariance matrices
Qk and Rk, respectively.

For the initialization, a long sequence of state vectors is
first generated using the numerical model. A mixed B global–
local Eof analysis is then performed on these vectors, which
yields a mixed Eof basis L0

B partitioned as

L0
B = �L ¦ B � (14)

with rg + rl columns, rg and rl denoting the dimensions of the
global and the local basis, respectively. However, such an
analysis does not readily provide a rank rg + rl error covari-
ance matrix for the state vector. Therefore, based on the first
observation Y0

o, an objective analysis is used to make the first
correction according to

Xa
� t0 � = X√ + L0

B
� � L0

B
�

T H0
T R0

− 1 H0 L0
B
�

− 1

� L0
B
�

T H0
T R0

− 1
�Y0

o − H0X√ � ,(15)

where X√ is the average of the state vectors (from the historical
run) and H0 is the gradient of H0 evaluated at X√. The initial
analysis error covariance matrix is then given by

Pa
� t0 � = L0

B U0� L0
B
�

T

where

U0 = � � L0
B
�

T H0
T R0

− 1 H0 L0
B
�

− 1. (16)

3.1.1. Forecast stage
At time t k–1, Xa(t k–1) and Pa(t k–1) in the factorized form

Pa
� tk − 1 � = Lk − 1

B Uk − 1� Lk − 1
B

�
T (17)

are available, where the mixed correction basis
Lk − 1

B = �Lk − 1 ¦ B � and the matrix Uk–1 are of dimension
n × (rg + rl) and (rg + rl) × (rg + rl), respectively. The Eq. (13)
is used to compute the forecast. The corresponding forecast
error covariance matrix can then be approximated by:

Pf
� tk � = Lk

B Uk − 1� Lk
B
�

T + Qk p, (18)

where the new mixed correction basis is taken as

Lk
B = �Lk ¦ B � . (19)

The global part of the correction basis Lk evolves as in the
Seek filter according to

Lk = M� tk, tk − 1 � Lk − 1, (20)

where M(tk,tk–1) is the gradient of M(tk,tk–1) evaluated at
Xa(tk–1).

It may be, however, desirable for numerical stability rea-
sons, to normalize the evolutive basis vectors at each filtering
step so that their norm is still equal to a constant c. This
amounts to replacing the jth column Lk

j of Lk by the vector
� c/ � Lk

j � M � Lk
j and then dividing the jth column and the jth

row of Uk–1 by the constant c/ � Lk
j � M. For the normalizing

constant c, we choose the average of the squared norms of the
Eofs (which are equal to the corresponding eigenvalues).

3.1.2. Correction stage
The new observation Yk

o at time tk is used to correct the
forecast according to

Xa
� tk � = Xf

� tk � + Gk �Yk
o − Hk Xf

� tk � � , (21)

where Gk is the gain matrix given by

Gk = Lk
B Uk� Lk

B
�

T Hk
T Rk

− 1 (22)

with Hk the gradient of Hk evaluated at Xf(tk) and Uk com-
puted from

Uk
− 1 = �Uk − 1 + � � Lk

B
�

T Lk
B
�

− 1
� Lk

B
�

T Qk Lk
B

� � Lk
B
�

T Lk
B
�

− 1
�

− 1 + � Lk
B
�

T Hk
T Rk

− 1 Hk Lk
B .(23)

The corresponding filter error covariance matrix is then
equal to

Pa
� tk � = Lk

B Uk� Lk
B
�. (24)

The structure of the forecast and analysis error covariance
matrices of this filter is, therefore, very similar to that of the
Seek filter. Basically, these matrices are taken to be singular
of low rank (or at least approximated to be so). Their image
space is determined by the “correction space” spanned by the
correction basis, partly evolving in time with the model
dynamics. The magnitude of the error covariance matrices is
controlled by the matrix Uk, which is updated in the correc-
tion stage.
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Concerning the cost of the Seplek filter, it is almost en-
tirely due to the evolution of the global part of its correction
basis. More precisely, it is slightly rg + 1 times larger than the
cost of the model. The Seplek filter can, therefore, be much
less costly than the Seek filter since rg can be chosen to be
much smaller than the dimension of the (global) correction
basis of the Seek filter.

3.2. Algorithm with adaptive forgetting factor

The main reason behind the use of the forgetting factor in
the Seek filter is to limit the effective filter memory length by
discarding old data. This enables the filter to follow system
changes and also to attenuate the propagation of the errors in
time. By errors, we specifically mean the error included by
linearization and the part of the dynamical and filter errors
which lies outside the correction space and is ignored by the
filter (see Eq. (24)), the normal error being correctly handled
by the filter. The gain matrix is thus modified to avoid the
“blow up” phenomena due to the above errors (Astrom and
Wittenmark, 1989). Furthermore, the use of a forgetting
factor does not require any extra cost for its implementation:
the filter equations remain unchanged except for the emer-
gence of the forgetting factor q in the time propagation error
covariance equation (Pham et al., 1997). Specifically, the
updating Eq. (24) for Uk now changes to:

Uk
− 1 = �1

q Uk − 1 + � � Lk
B
�

T Lk
B
�

− 1
� Lk

B
�

T Qk Lk
B

� � Lk
B
�

T Lk
B
�

− 1 � − 1
+ � Lk

B
�

T Hk
T Rk

− 1 Hk Lk
B .(25)

With q = 1, all data have the same weight, but with q < 1,
recent data have exponentially larger weights than old data.

However, the use of too small a forgetting factor when the
system evolution is stable would degrade the filter perfor-
mance, especially when there is little information in the
measurements. To maximize the benefit of the forgetting
factor, Hoteit et al. (2002) used an adaptive one: such factor is
set close to 1 when the model is stable and much less than
1 when the model is unstable. Indeed, old data should have
less impact in the latter case, in order to adapt the filter to the
new model’s mode. Model unstable periods are detected by
tracking the filter’s state by computing short-term and long-
term averages of the prediction error variance. The reader is
referred to Hoteit et al. (2002) for more details.

A different approach proposed by Dee and Da Silva
(1999) is to treat the forgetting factor as an unknown param-
eter in the forecast error covariance matrix, then to estimate it
adaptively (on-line) by the maximum likelihood method.
Mitchell and Houtekamer (2000) follow a similar approach
but parameterize directly the model error covariance matrix
(which is more natural) in the context of the ensemble Kal-
man filter. However, these methods would be much more
costly than our simple adjustment of the forgetting factor.

4. Application to altimetric data assimilation in
the tropical Pacific

The performances and the capabilities of the Seplek filter
are assessed using a twin experiment approach with a realis-
tic setting of the OPA model in the tropical Pacific Ocean
under a “perfect model” assumption (Qk = 0), whereby the
same model is used to generate a true solution, and to gener-
ate forecasts. The assimilation is based on pseudo-
observations extracted from the twin experiments.

4.1. OPA model in the tropical Pacific

The OPA model (OPA for océan parallélisé) is a primitive
equation ocean general circulation model, which was devel-
oped at Lodyc (Laboratoire d’Océanographie Dynamique et
de Climatologie) to study large-scale ocean circulation. It
solves the Navier–Stokes equations which express the mo-
mentum balance, the heat and salt balances and a non-linear
equation of state under the assumptions of hydrostatic equi-
librium and incompressibility, plus the rigid lid assumption
and some hypotheses made from scale considerations. The
system equations are written in curvilinear z–coordinates and
discretized using the centered second-order finite difference
approximation on a three-dimensional generalized C–Ar-
akawa grid (Arakawa, 1972). Time stepping is achieved by
two time differencing schemes: a basic leap-frog scheme
associated to an Asselin filter for the non-diffusive processes
and a forward scheme for diffusive terms. The sub-grid scale
physics are parameterized by tracer diffusive operators of
second-order on the vertical, the eddy coefficients being
computed from a turbulent closure model (Blanke and Dele-
cluse, 1993). The lateral diffusive and viscous operators can
either be of second or of fourth order. The reader is referred to
the OPA reference manual (Madec et al., 1997) for more
details.

The model domain covers the entire tropical Pacific basin
extending from 120° E to 70° W and from 33° S to 33° N, and
the level depth varies from 0 at the sea surface to 4000 m.
Two buffer zones are included between 20° and 33° in the
north and south of the domain, for the connection with the
sub-tropical gyres. The number of horizontal grid points is
171 × 59 on 25 vertical levels. The model equations are
solved on a horizontal grid with a 1° zonal resolution and a
maximum meridional resolution of 0.5° at the equator and
decreasing to 2° at the northern and southern boundaries. The
vertical resolution is approximately 10 m between the sea
surface and 120 m depth, and then decreases to 1000 m near
the floor. The time step is 1 h.

The bathymetry is relatively coarse. It was obtained from
The Levitus data mask (Levitus, 1982). The forcing fields are
interpolated every month from the ECMWF data. They are
composed of find stress, heat and fresh water fluxes. Zero
fluxes of heat and salt and non-slip conditions are applied at
solid boundaries. A second-order horizontal friction and dif-
fusion scheme for momentum and tracers is chosen with a
coefficient of 2000 m2/s in the strip 10° N–10° S, increasing
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up to 10,000 m2/s at the northern and southern boundaries.
Static instabilities are resolved in a turbulent closure scheme.
The model starts from rest (i.e. with zero velocity fields). The
salinity and the temperature stem from seasonal Levitus
(1982) climatology.

4.2. Experiments design

4.2.1. The state vector
The state vector XT is the set of prognostic variables,

which, in the OPA model, consists of the zonal and meridi-
onal velocity U and V, the salinity S and temperature T, thus

XT = � U, V, S, T �
T. (26)

However, the observation, which is the sea surface height
(SSH), is directly related to the surface pressure PS but the
latter is only indirectly related to the state variables through a
set of partial differential equations. More precisely, PS is a
diagnostic variable which can be computed through the sys-
tem of equations (Pinardi et al., 1995)

∇ � h∇ PS � = − ∇ � fhk ` u � − ∇ �
− h

o

� z + h � ∇ Ω dz +

d∇ B,(27)

where ∇ denotes the horizontal gradient, h is the ocean depth,
f is the Coriolis factor, k is the vertical unit vector, u is the
horizontal vector velocity field, Ω is the density, d is the
Rossby number and B is a term describing the non-linear
advection and dissipation effects. The term B is rather com-
plex but is also needed for solving the system equations
concerning Xt. In fact, the numerical code for integrating the
OPA model also computes, as a by-product, the diagnostic
variable PS. Therefore, for purely technical reasons, it is
advantageous to augment the state vector by including the
variable PS, that is we now take

XT = � U, V, T, PS �
T. (28)

Of course, the model equations must now include the extra
equation (28) and the derivation of our filter algorithm must
be based on this extended model, not on the original model
(the Eof analyses are also carried out on the augmented state
vectors). The overhead is insignificant in any case since PS is
only defined on the surface of the ocean. The number of state
variables increases from 4 × 171 × 59 × 25 = 1,008,900 to 4 ×
171 × 59 × 25 + 171 × 59 = 1,018,989. The numerical cost of
the algorithm would increase by the same proportion since this
cost is roughly proportional to the dimension of the state
vector. This increase would be offset by the fact that the
calculation of the observation operator is now straightforward.
If we work with the original state vector, we would have to pull
out the portions of the OPA code for computing directly PS

from (U, V, S, T), with some unavoidable redundancy with
the integration of the model equations. But the main point is
that this would considerably increase the complexity of the
programming work without incurring real differences both in
terms of cost and in terms of methodology.

4.2.2. Eof analysis and initial correction basis
As explained in Section 3, the choice of the initial state

estimator and the corresponding correction basis is made
through a simulation of the model itself. Thus, in the first
experiment, the model was spun up for 7 years from 1980 to
1986 with the aim of reaching a statistically steady state of
mesoscale turbulence. Then, another integration of 4 years
was carried out from 1987 to 1990 to generate a historical
sequence HS of model realization. A sequence of 480 state
vectors was retained by storing one state vector every 3 d to
reduce the calculation costs since successive states are quite
similar. Since the state variables in Eq. (29) are not of the
same nature, we shall apply a multivariate Eof analysis (local
and global). The matrix M (see Section 2) is chosen to be
diagonal with diagonal elements being the inverse of the
average variances of the state variables at the grid points.

4.2.2.1. Local Eof analysis. We performed two sub-
divisions of the tropical Pacific domain: (i) in three sub-
domains in the zonal direction according to the natural sub-
division of the tropical Pacific into a western warm pool, the
central pool and the cold eastern pool and (ii) in nine sub-
domains in order to further limit the spatial correlation length
in the meridional direction. The choice of the partition of
unity functions is shown in Fig. 1. After applying separate

Fig. 1. Two-dimensional partition of unity functions in three and nine
sub-domains.
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Eof analysis on the state vectors of the sub-domains, we have
retained for the sub-division (i) 18, 30 and 23 Eofs to attain
85% of the inertia in the first, second and third sub-domains,
respectively. Thus, the dimension of the local Eof basis is
equal to 18 + 30 + 23 = 71. For the sub-division (ii) we have
retained 7, 10, 7, 10, 20, 13, 5, 17, 12 Eofs to attain 85% of
the inertia in the nine sub-domains, respectively. The dimen-
sion of this local Eof basis is then equal to 101.

4.2.2.2. Mixed Eof analysis. Since better results were ob-
tained with the sub-division (i) (see Section 4), we have
applied this sub-division only on the residuals of the ocean
states in the sub-space spanned by the first five global Eofs
which almost explain 50% of the total global inertia. Results
of the corresponding local analysis show that 19, 19 and
20 Eofs have to be retained in order to explain 65% of the
inertia of the residuals in the first, second and the third
sub-domains, respectively. The dimension of the mixed Eof
basis is, therefore, equal to 5 + 19 + 19 + 20 = 63.

4.2.3. Data description and filters validation
The data for the assimilation experiments were again

simulated but in a way unrelated to the above run.A reference
experiment was performed and the reference state Xt retained
to be compared later with the fields produced during the
assimilation experiments. More precisely, a sequence of
250 state vectors was retained every day during the period
from 1 March 1991 to 10 November 1991. The assimilation
experiments were performed using the pseudo-
measurements which were extracted from the reference ex-
periment. The SSH was assumed to be observed at every grid
point of the model surface with a nominal accuracy of 3 cm.
The observation error was simulated by adding randomly
generated Gaussian noise to the synthetic observations of
SSH. Note that in the assimilation interval, a period of strong
model instability occurs between July and September (Hoteit
et al., 2002).

The performance of all the filters is evaluated by compar-
ing the relative root mean square (RRMS) error for each state

Fig. 2. Evolution in time of the RRMS on the whole model domain for the Sfek filter with 20, 30, 40 and 50 Eofs. The forgetting factor is set to 0.8.
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variable, in each layer or in the whole domain of the ocean
model. The RRMS is defined as

RRMS =
� Xt

� tk � − Xa
� tk � �

� Xt
� tk � − X√ �

, (29)

where X√ is the mean state of the sample HS and � . � denotes
the Euclidean norm. Thus the error is relative to the “free-
run” error, since the denominator represents the error when
there is no observation and the analysis vector is simply the
mean state vector.

4.3. Results of assimilation experiments

Several experiments were carried out to study the sensitiv-
ity of the filters to the different Eofs basis and to demonstrate
the relevance of the Seplek filter. The results of these experi-
ments are presented hereafter.

4.3.1. Sensitivity of the Sfek filter to the number of global
Eofs

Fig. 2 plots the assimilation results of the Sfek filter with
four different numbers of retained (global) Eofs: 20, 30,
40 and 50, which explain 79%, 85%, 88% and 90% of the
inertia of the sample HS, respectively. One can see that the
best results were obtained using only 30 Eofs. This suggests
that adding more Eofs in the correction basis does not guar-
antee better performance of the filter and over a certain point
it can even make it worse. Such an observation was also made
by Cane et al. (1996) and Verron et al. (1998). We believe that
the first Eofs are good for representing long-range ocean
phenomena but not suitable for short-range fluctuations.
Other Eofs corresponding to low eigenvalues are often unre-
liable; they are quite sensible to statistical errors, even com-
putational round-off errors and of course model error. One
has also to keep in mind that Eofs are optimal (at best) in a
time-mean sense only.

Fig. 3. Evolution in time of the RRMS for the model free run (without assimilation) on the whole model domain and for the Seek filter on the whole model
domain, on the (mean of the 5) upper and the (mean of the 5) lower layers.
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Following the results of this experiment, the number of
retained Eofs for the global basis was set to 30 in all the
above experiments.

4.3.2. The Seek filter
Fig. 3 plots the RRMS of the Seek filter with a fixed

forgetting factor set to 0.8. As the model is driven by an
external forcing, it is of interest to see if the use of correct
forcing alone suffices to produce adequate results. We have,
therefore, compared the RRMS of the Seek filter to that of the
free model run (without assimilation and starting from the
initial state of the filter). It can be seen that the Seek filter
highly improves the model behavior. The performance of the
Seek is also very satisfactorily both in the upper layers and in
the lower layers. Although it appears to degrade somewhat in
the presence of instabilities, it still behaves fairly well during
this period. One may think that the meridional velocity is not
sufficiently well-estimated because the assimilation error is
only reduced by less than a half. But it is worthwhile to point

out that, since the velocity field of the tropical Pacific Ocean
is primarily zonal, the meridional velocity fields are gener-
ally, and especially the referenced field in our experiment on
1 March 1991, well-approximated by the average of the
meridional velocity. Since this average serves as our initial
analysis, the initial error is already low and, therefore, it
would be hard to reduce it much further.

The assimilation results of the Seek filter have been pre-
sented in both the upper and lower layers for completeness.
But we noticed that the difference between the RRMS of the
other filters and that of the Seek filter computed in all the
layers are quite similar to that computed on each individual
layer. Therefore, in the following, we will only present re-
sults in all domains, to save space.

4.3.3. Sensitivity of the Sfek filter to the choice of the local
domains

Fig. 4 plots the evolution of the filtering error of the Sfek
filter with the local Eofs computed from a domain sub-

Fig. 4. Evolution in time of the RRMS for the Sfek with the local Eof basis obtained from a sub-division of the domain in three and nine sub-domains.
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division into three and nine sub-domains. It can be clearly
seen that better results are obtained from the “natural” sub-
division into three zonal zones. This suggests that there is no
need to limit the spatial correlation length of the tropical
Pacific variables in the meridional direction, since the length
of the tropical Pacific domain is much larger than its width.
Furthermore, one should discount the north and south buffer
zones which do not participate actively in the model dynam-
ics. Another reason for this result may also be related to the
divergence of the horizontal velocity on the vertical which
should be equal to zero in the OPA model. Indeed, the local
Eofs, however, do not fulfill this condition on the border of
the sub-domains. The analysis state Xa(tk) has been, there-
fore, corrected at every filtering step (before using the model
to forecast the state) by projecting it onto a zero-divergence
linear sub-space. This entails a loss of precision on the
estimation of Xa(tk) which is likely to increase with the
number of sub-domains.

4.3.4. Representativeness of the different Eof bases

A simple and low-cost way to test the relevance of the
different Eof bases is to use them as a fixed correction basis
for the Sfek filter and then to examine the performance of the
filter. Therefore, three experiments were conducted using the
Sfek filter with the different correction bases obtained from
the global, local and the mixed Eof analyses (with three
sub-domains). The forgetting factor was chosen, fixed to be
equal to 0.8. Results plotted in Fig. 5 show that the local Eof
basis is much more representative of the variables U, V and
SSH, than the global Eof basis. However, the assimilation
results with the variables S and T, which may be thought of as
being controlled by phenomena of long-range variability, are
not as good as those obtained from the global basis. Using the
mixed Eof basis, the Sfek filter performs very well with the
variables U, V and SSH, much like the local Eof basis but
considerably improving the assimilation of S and T with
respect to that obtained from the latter basis. This suggests

Fig. 5. Evolution in time of the RRMS for the Sfek with the global, local and the mixed Eof basis.
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that the mixed Eof analysis is able to represent both the short
and the long-range ocean variability.

4.3.5. The Seplek filter

The Seplek filter was implemented with a fixed forgetting
factor, q = 0.8. The global part of the mixed basis was made to
evolve as in the Seek filter while the local part was kept fixed.
Since the dimensions of the (global) Eof basis and the global
part of the mixed basis were taken equal to 30 and 5, respec-
tively, the Sfek the Seplek were almost 30 and 6 times faster,
respectively, than the Seek filter. It can be seen from Fig. 6
that the Seplek performs very well. Its assimilation results of
the velocity components U and V and the SSH are shown to
be much better than those obtained with the Seek filter during
the unstable period. As far as the salinity S and the tempera-
ture T are concerned, the Seplek filter performs almost as
well as the Seek filter. One can also notice the positive impact

of the evolution of the global basis part of the mixed correc-
tion basis by comparing the results of the Seplek filter with
those obtained with the Sfek filter when the mixed Eof basis
is used as a fixed correction basis.

4.3.6. Adaptive forgetting factor with the Sfek and Seplek
filters

The use of an adaptive forgetting factor was shown to
enhance the performance of the Seek filter and its variants
(Hoteit et al., 2002). Here, we have used an adaptive forget-
ting factor with the Sfek (with the mixed Eof basis) and
Seplek filters. Such forgetting factor takes one of the two
values 1 or 0.8 according to the relative magnitudes of the
short-term and long-term prediction errors. Fig. 7 compares
the RRMS error for these experiments with those of the
Seplek filter with a fixed forgetting factor equal to 0.8. These
results show the benefit of the adaptive tuning scheme of the

Fig. 6. Evolution in time concerning the RRMS for the Sfek (with the mixed Eof basis), Seplek and Seek filters with a forgetting factor 0.8.
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forgetting factor and also its ability to significantly enhance
the stability of the filters during model unstable periods.

5. Conclusions

A new data assimilation scheme derived from the Seek
filter was introduced, namely, the semi-evolutive partially
local extended Kalman (Seplek) filter. The motivation for
developing such a filter was to reduce the cost of the Seek
filter and possibly to obtain a better representativeness for its
correction basis. Our approach was to construct a mixed Eof
basis composed of global and local Eofs and to let only the
global part evolve with model dynamics. To compute the
local basis part, a “local” Eof analysis was applied on the
residuals of the states in the linear sub-space generated by the
global part. In such a local analysis, the Eofs support a small
region of the ocean domain and vanish elsewhere. Such a
procedure permits, on the one hand, to limit the spatial
correlation length of the ocean variables if needed, and on the

other, to obtain a basis better adapted to the variability of
each sub-domain according to its variability. The perfor-
mance of the Seplek filter was assessed with a realistic
setting of the OPA model in the tropical Pacific, and its
results compared to those of the Seek filter as well as a fixed
basis Seek filter. Based on these experiments, our main con-
clusions are as follows.

1. The local Eofs represent the variability of the velocity
and the sea surface height much better than the classical
Eofs but not that of the salinity and the temperature
which seem to be essentially of a global scale. However,
finding a way to let the local basis evolve with the
model dynamics remains an open problem.

2. The mixed Eof basis is shown to perform very well even
if we keep it fixed. It enhances the filter performance for
the salinity and the temperature, with respect to the
local Eof basis. This suggests that this basis is able to
represent the local and the global ocean variability well.
When its global part is made to evolve as in the Seek
filter, it provides a dynamically evolutive filter which

Fig. 7. Evolution in time of the RRMS for the Sfek and Seplek filters with a variable forgetting factor and for the Seplek filter with a constant forgetting factor.
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performs even better than the Seek filter, while requir-
ing much lower cost.

3. By tracking the forecast error, one can obtain informa-
tion about the filter state and then adapt the filter param-
eters to the present situation. In particular, the adaptive
tuning of the forgetting factor considerably enhances
the performance of the Seek filter and its variants.

In twin experiments, the Seplek filter was found to be very
effective in assimilating surface-only pseudo-altimeter data.
Further work will consider more realistic situations, such as
the addition of the model error or the use of more realistic
observations (according to satellite tracks and real satellite
data). However, these preliminary twin experiments were
necessary steps before starting realistic applications. They
provided us with encouraging results with regard to that goal.
We are currently working to implement this filter in the OPA
model of the North Atlantic Ocean.
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