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Abstract − This paper deals first with the mathematical formulation of a non-linear second-order stochastic model of
free irrotational ocean surface wave on deep water. Then, the case of wave motion of zero bandwidth is treated to
illustrate the model. On the basis of the usual hydrodynamic equations, the formulation is made by successive
applications of the harmonic decomposition and the so-called Wiener-Hermite functional series expansion of random
functions. This procedure yields the kernels equations. These kernels allow to obtain the random surface wave fields
from the Wiener set of elementary random processes. For the particular case cited above, as expected, the second-order
non-linearity results in the generation of a second harmonic component of the fundamental component. The
corresponding realisations of the random variations of the water surface deflection level exhibit close similarity with data
from laboratory experiments. The potentiality of the approach for modelling a wide class of random oceanic processes is
stressed. © 2001 Ifremer/CNRS/IRD/Éditions scientifiques et médicales Elsevier SAS

Résumé − Modèle non linéaire du second ordre d’ondes de surfaces océaniques.Cet article concerne en premier lieu
la formulation mathématique d’un modèle non linéaire, du second ordre, d’ondes de surface océaniques aléatoires, sur
profondeur infinie. Ensuite, le cas d’un champ d’ondes de largeur de bande nulle est traité pour illustrer la potentialité du
modèle. Sur la base des équations usuelles de l’hydrodynamique, la formulation est effectuée en faisant appel
successivement à la décomposition harmonique puis aux développement fonctionnel en série dit de « Wiener-Hermite »
des fonctions aléatoires. Cette procédure conduit aux équations aux noyaux. Ceux-ci caractérisent la transformation qui
permet d’obtenir les champs d’ondes de surface à partir de l’ensemble des processus aléatoires élémentaires de
Wiener-Hermite. Pour le cas particulier cité précédemment, on constate que la non linéarité conduit à la génération d’une
composante harmonique du deuxième ordre de l’onde fondamentale. Les échantillons de variations du niveau de la
surface libre, construits d’après le modèle, montrent des similitudes frappantes avec les échantillons issus d’expériences
en laboratoire. L’intérêt de la méthode pour modéliser une large classe de phénomènes océaniques aléatoires est mis en
relief. © 2001 Ifremer/CNRS/IRD/Éditions scientifiques et médicales Elsevier SAS

Fourier-Stiltjes decomposition / kernels equations / oceanic surface waves / random functions / Wiener-Hermite
functional series

représentation de Fourier-Stieltjes / équations aux noyaux / ondes de surface océaniques / fonctions aléatoires /
série fonctionnelle de Wiener-Hermite

1. INTRODUCTION

The development of theoretical stochastic models of
ocean surface wave is known as a topic of considerable

interest from both the fundamental and the practical
viewpoints. However, the progress on this topic is strik-
ingly much smaller than that made on deterministic fields.
In the past, extensive use of the so-called harmonic
decomposition have been made, the main objective being
the determination of the wave field spectrum. The litera-
ture on water surface waves refers to a considerable work*Correspondence and reprints: fax: +33 4 91 41 96 20.
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devoted to this quantity. However, the models so devel-
oped cannot be classified as stochastic models in the strict
sense. Indeed, a stochastic model requires as main result
the multidimensional probability density functions of the
physical variables of interest (Sobczyk, 1984). The deter-
mination of these functions from the basic hydrodynamic
equations is known to be extremely difficult and no real
attempt seems to exist at this time in that respect.

One other approach consists in finding random solutions
to the equations. These are solutions of stochastic non-
linear boundary value problem. Unfortunately, the math-
ematical foundations for such problems seems to be not
yet clearly established.

From the theoretical viewpoint, a valuable approach
consists in the determination of realisations of the random
physical quantities. In that respect, the use of the so-
called Wiener-Hermite functional series expansion ap-
pears quite promising. This method has been applied with
significant success in the field of turbulence in fluid flows
(Meecham and Siegel, 1964; Meecham and Jeng, 1968;
Meecham and Clever, 1971) and in the field of stochastic
non-linear dynamical systems (Jahedi and Ahmadi,
1983). If desired, second-order statistical properties can
be determined, but, in addition, others properties can be
specified from the realisations.

A first application of the method to potential water
surface wave on deep water has been carried out by the
authors (Joelson and Ramamonjiarisoa, 1999) with en-
couraging results. The obtained wave field is Gaussian.
Herein, further application is made by introducing
second-order non-linear effect which, in the spirit of the
Wiener-Hermite expansion, would yield to a small depar-
ture from a Gaussian field. Such departure is often
observed in experimental results.

In section 2, the basic hydrodynamic equations are
recalled. Transformation in the Fourier space is made to
yield to the specification of the second-order non-linear
model. Projection in the Wiener-Hermite space follows
with derivation of the kernels equations whose solutions
are determined. In section 3, the specific example of zero
bandwidth fundamental wave motion is treated and the
results briefly discussed by comparison with experimen-
tal data. The main conclusions are reported in the last
section.

2. MATHEMATICAL FORMULATION
OF THE PROBLEM

2.1. The basic hydrodynamic equation
and boundary conditions

The water surface wave field of interest is assumed to be
governed by the usual set of equation and boundary
conditions for irrotational motion on deep water (see e.g.
Phillips, 1977).

Let t, x, y, and z be respectively the time, the horizontal
coordinates and the vertical coordinate; g, u and η, the
gravity acceleration, the velocity potential and the water
surface elevation; the set of interest writes:

Laplace equation:

uxx + uyy + uzz = 0 (1)

Kinematic boundary condition:

gt + ux gx + uy gy − uz = 0 at z = g (2)

Dynamic boundary condition:

gg + ut + 1
2� ux

2 + uy
2 + uz

2
� = 0 at z = g (3)

Radiation condition:

lim
z→ −∞

u = 0 (4)

2.2. Wiener-Hermite functional series expansion
and kernels equations

Details on the Wiener-Hermite functional expansion can
now be found in textbooks and papers (see e.g. Wiener,
1958; Meecham and Siegel, 1964; Jahedi and Ahmadi,
1983; Joelson and Ramamonjiarisoa, 1999). We briefly
recall that the expansion constitutes a mathematical
procedure which allows to represent an arbitrary random
function in terms of an ensemble of elementary random
processes, namely, the Wiener set (Wiener, 1958). This
particular nature of the elementary components is to be
stressed with respect to many usual expansions proce-
dures.
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More precisely, given an arbitrary random function f(t) of
t (time), with zero mean, f(t) can be expanded in the
following functional form:

f� t � = �
−∞

+∞

F1� t, t1 � H � 1 �� t1 � dt1 +

�
−∞

+∞

�
−∞

+∞

F2� t, t1, t2 � H � 2 �� t1, t2 � dt1 dt2 + …

�
−∞

+∞

�
−∞

+∞

…�
−∞

+∞

Fj� t, t1, ..., tj � H � j �� t1, t2, ..., tj � dt1 dt2 ... dtj +

… (5)

where H(1),H(2),...,H(j),... are respectively the first, sec-
ond, ..., jth, ... members of the Wiener set while
F1,F2,...,Fj,... are respectively the first , second, ..., jth, ...
order kernels.

The first order member, H(1), of the Wiener set is the
so-called Gaussian ‘white noise’ process with zero mean
and δ-correlated. The others members are defined by
combinations of first-order processes (see e.g. Meecham
and Siegel, 1964). Of fundamental importance is that the
kernels are deterministic functions of the arguments.
They represent mathematically the projection of the
random function f(t) on the Wiener set. Clearly, if the
expansion is limited to the first term, f(t) will be Gauss-
ian. Then, the higher order terms represent the departure
from a normal process.

In the important particular case of a stationary random
function, it may appear convenient to apply the expansion
in the Fourier rather than in the physical space, through
the usual Fourier-Stieltjes transformation. In particular,
this may greatly help in interpreting the results on
physical grounds. We have:

f� t � = �
x

dA� x � exp ixt (6)

To this decomposition corresponds the following expan-
sion of the (complex) random amplitude dA(ω):

dA� x � = A1� x � H√ � 1 �� x � +

� 2 p � �
x1

A2� x1, x − x1 � H√ � 2 �� x1, x − x1 � dx1 + … (7)

Again, the kernels A1, A2, ... are deterministic functions
of the arguments. They are the Fourier transformation of
F1, F2, ..., while H√ � 1 �, H√ � 2 �, ... are the Fourier-Stieltjes
transformation of H(1),H(2),..., H(j),... . Note that the set
H√ � j � keeps the orthogonality property of the original set
H(j) (see e.g. Joelson, 1997). More generally, for a
random function, homogeneous in the horizontal plane
(x) and stationary in time, the classical harmonic decom-
position allows first to write:

f� x, t � = �
k
�

x
dA� k, x � exp i� k . x − xt � (8)

then, the Wiener-Hermite expansion of the amplitude is:

dA� k, x � = A1� k, x � H√ � 1 �� k, x � +

� 2p �
3 �

p
�

q1

A2� p, q, k − p, x − q � H√ � 2 �

� p, x, k − p, x − q � dp dq (9)

Under the above assumptions, the physical variables of
interest can be written as:

g� x, t � = �
k
�

x
dN� k, x � exp i� k . x − xt � (10)

u� x, z, t � = �
k
�

x

exp� kz � dB� k, x � exp i� k . x − xt � (11)

Through lengthy and tedious algebra whose detail can be
found in Joelson (1997), the general expressions of the
boundary conditions in the Fourier space can be written
(Joelson, 1999). Note that the procedure used is similar to
that by Phillips (1960) who looked at the case of an
homogeneous but non-stationary wave field. These gen-
eral expressions involve infinite sums of terms. If trun-
cated at order n, the sums will define model at order
(n + 1).

2.3. The second-order model

According to the above, by limiting the sums to their
respective first terms, a second-order model is defined. It
is characterised by the following boundary conditions:
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– kinematic condition:

ix dN� k, x � + kdB� k, x � =

− ��
k, x

� �k − k′�2 + k′ . � k − k′ � � dN� k′, x ′ �

dB� k − k′, x − x ′ � dk′ dx ′ (12)

– dynamic condition:

g dN� k, x � = ix dB� k, x � =

i ��
k, x

� x − x ′ � �k − k′� dN� k′, x ′ � dB

� k − k′, x − x ′ � dk′dx ′ −

1
2 ��

k, x
�k ′�k − k′� − k′ . � k − k′ � � dB� k′, x � dB

� k − k′, x − x ′ � dk′dx ′ (13)

To derive the kernels equations in the Wiener-Hermite
expansions, the random amplitudes dN(k, ω) and dB(k,
ω) are first written according to the development in
equation (9). Then, the developments are introduced in
the above boundary conditions. Finally a quite compli-
cated and lengthy algebra (for detail, see Joelson, 1997)
yields the following equations:

ixg� 1 �� k, x � + ku� 1 �� k, x � = 0 (14)

gg� 1 �� k, x � − ixu� 1 �� k, x � = 0 (15)

i� x1 + x2 � g� 2 �� k1 , x1, k2 , x2 � +

�k1 + k2 � u� 2 �� k1 , x1, k2 , x2 � =

� 1
2p �3

� k1 + k2 �
2
�g� 1 �� k1 , x1 � u� 1 �� k2 , x2 � � (16)

and

gg� 2 �� k1 , x1, k2 , x2 � −

i� x1 + x2 � u� 2 �� k1 , x1, k2 , x2 � = � 1
2p �3

×

�− i� x1 k1 + x2 k2 � u� 1 �� k1 , x1 � g� 1 �� k2 , x2 � +
1
2 � k1 k2 − k1 . k2 � � × u� 1 �� k1 , x1 � u� 1 �� k2 , x2 � (17)

where η(1) and u� 1 � are the first-order kernels while η(2)

and u� 2 � are the second-order kernels and ki = |ki|
(i = 1,2).

2.4. Solutions

Equations (14) and (15) yield immediately to a disper-
sion relation and a relationship between the two first-
order kernels, namely:

x2 = gk (18)

and

u� 1 � = − i x
k g� 1 � (19)

Then, equations (16) and (17) allow to write the second-
order kernels in terms of the first-order kernels. For the
application which will follow, we will be interested in
the water surface elevation random variation. The corre-
sponding second-order kernel is written:

g� 2 �� k1 , x1, k2 , x2 � =

� 1
2p �3�� x1 + x2 � F

x2

k2
− K

x1

k1
�G + 1

2 H
x2

k2
�

� x1 + x2 �
2 − gK

� ×

g� 1 �� k1 , x1 � g� 1 �� k2 , x2 � (20)

in which F = (k1 + k2)2, G = (ω1k1 + ω2k2),
H = k1k2 – k1·k2 and K = |k1 + k2|.

3. ILLUSTRATIVE EXAMPLE

Let us consider the specific case where the first-order
kernels correspond to the Dirac delta function, namely:

g� 1 �� ki , xi � =
A0

2 �d� ki − k0 , xi − x0 � +

d� ki + k0 , xi + x0 � � (21)

with i = 1,2. A0 and k0 are constant amplitude and wave
number and the notation δ(k,ω) = δ(k)δ(ω) is used for
simplicity.
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Taking into account equations (9) and (20), the expres-
sion of the random amplitude of the water surface
deflection level is now of the form:

dN� k, x � =
A0

2 �d� k − k0 , x − x0 � +

d� k + k0 , x + x0 � � H√ � 1 �� k, x � +

A0
2

4 �
p
�

q1

M� p, q, k − p, x − q �

�d� p − k0 , q − x0 � d� k − p − k0 , x − q − x0 � +
d� p + k0 , q + x0 � d� k − p + k0 , x − q + x0 � � ×

H√ � 2 �� p, x, k − p, x − q � dp dq (22)

which immediately gives:

dN� k, x � =
A0

2 �d� k − k0 , x − x0 � +

d� k + k0 , x + x0 � � H√ � 1 �� k, x � +

A0
2

4 �M� k0 , x0, k − k0 , x − x0 �

d� k − 2k0 , x − 2x0 � ×

H√ � 2 �� k0 , x0, k − k0 , x − x0 � +

M� − k0 , − x0, k + k0 , x + x0 � d� k + 2k0 , 2x0 � ×

�H√ � 2 �� − k0 , − x0, k + k0 , x + x0 � � (23)

From equation (23), the variations comprises two com-
ponents: a first-order Gaussian component, η1(x,t), and a
second-order, non-Gaussian component, η2(x,t).

g� x, t � = g1� x, t � + g2� x, t � (24)

Clearly, the second-order component is at wavenumber
and frequency 2k0 and 2ω0 respectively. Then, the
second-order non-linear effect results in the generation of
the second harmonic component of the primary wave.

A simple algebra allows to show that:

g1� x, t � = A0 �
x1

�
t1

cos � � x − x1 � . k0 + � t − t1 � x0 �

H� 1 �� x1 , t1 � dx1 dt1 (25)

and

g2� x, t � =
A0

2

2 M0 �
x1

�
t1
�

x2

�
t2

cos � � x − x1 + x − x2 � . k0

+ � t − t1 + t − t2 � x0 � ×

H� 2 �� x1 , t1, x2 , t2 � dx1 dt1 dx2 dt2 (26)

where M0 corresponds to the expression in the square
brackets in equation (20) in which k1 and k2 are replaced
by k0 while ω1 and ω2 are replaced by ω0. We have:

M0� k0, x0 � =
2k0 x0

2

2x0
2 − gk0

(27)

with

x0
2 = gk0 (28)

Equations (25) and (26) allow to construct realisations of
η(x,t) although such construction is not a simple matter
because its involves computations of multiple convolu-
tion integrals.

We will illustrate the random wave forms by considering
the simplified, only time-dependent, equations:

g1� t � = A0 �
t1

cos � � t − t1 � x0 � H� 1 �� t1 � dt1 (29)

and

g2� t � =
A0

2

2 M0 �
t1
�

t2

cos � � t − t1 + t − t2 � x0 �

H� 2 �� t1, t2 � dt1 dt2 (30)

Figure 1 displays samples of H(1)(t) and then η1(t)
according to equation (29) while figure 2 displays
samples of H(2)(t1,t2) and then η2(t) according to equation
(30).

Finally, figure 3 displays detailed aspects of η1(t), η2(t)
and η(t) = η1(t) + η2(t).

The remarkable fact, from figure 3, is that, with respect to
the first-order wave form, the second-order component
makes the wave crests sharper and the wave trough flatter.
This coincides with the second-order effect in determin-
istic waves (Stokes waves) and is generally observed in
experiments in laboratory facilities on wind-generated
waves.
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4. CONCLUSION

This article deals mainly with the mathematical formula-
tion of a non-linear second-order model of stochastic
ocean surface waves. The key aspect of the formulation is
the combination of the usual Fourier decomposition with
the so-called Wiener-Hermite functional series expansion
of random functions. The analysis yields the equations for

the kernels which characterise the transformation from
the Wiener set of elementary random processes to the
surface wave fields. The particular case of a zero
bandwidth first-order spectrum is treated as an important
illustrative example. It is seen that the second-order
non-linearity results, as expected, in the generation of the
second harmonic component of the fundamental wave.
The corresponding sample function (limited to the time
domain) of the water surface deflection level exhibits
striking similarity with wave forms observed in labora-
tory experiments. Namely, with respect to the primary
wave profile, the second-order non-linearity results in
sharper wave crests and flatter wave troughs.

Subsequent work will be addressed to the construction of
realisations in the time-space domain and to the deter-
mination of the ratio between the energy levels of the
fundamental and the second harmonic components.

Combined with previous investigations in various fields,
this work brings in complementary proof of the potenti-
ality of the Wiener-Hermite expansion. The method
would greatly help in analysing various random oceanic
motions in which stochasticity cannot be ignored (inter-
nal waves, turbulence, ...). Unfortunately, as already
pointed out by Joelson (1999), severe limitations in
practical uses of the method may come first from the
algebraic complexity to derive the kernel equations from
the basic hydrodynamic equations and, second, to solve
these equations which constitute generally coupled, non-
linear, integral or integro-differential equations. The

Figures 1. (a) Sample function of the Wiener process H(1)(t); (b)
realisation of the first order component η1(t) (in arbitrary units) of the
random variation of the water surface deflection level (see equa-
tion (29)).

Figures 2. (a) Sample function of the Wiener process H(2)(t1,t2); (b)
realisation of the second-order component η2(t) (in arbitrary units) of
the random variation of the water surface deflection level (see equation
(30)).

Figure 3. Detailed aspects of η1(t)(·–), η2(t)(– –) and η(t)(–) (in
arbitrary units).
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symbolic calculus developed by Imamura et al. (1965)
may be of great help.
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