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Abstract − New techniques – called software sensors – issued from the non-linear automatic control field and initially
developed for non-linear chemical systems have been applied to a continuous culture of phytoplankton. A software
sensor (or ‘observer’) combines an analytical differential equation based model and partial measurements of the system
in order to estimate the non-measured state variables. It filters data and estimates the actual state of living systems,
models of which are often rough approximations. The efficiency of this approach is illustrated with a nitrate-limited
chemostat experiment with the chlorophyceaeDunaliella tertiolecta performed in a computer controlled fluctuating
environment. © 2001 Ifremer/CNRS/IRD/Éditions scientifiques et médicales Elsevier SAS

Résumé − Un capteur logiciel non linéaire pour estimer le quota interne en azote de cellules phytoplanctoniques.
Des observateurs issus de la science du contrôle et initialement développés pour des systèmes chimiques non linéaires
ont été appliqués à des cultures continues de phytoplancton. Un observateur, ou « capteur logiciel », combine un modèle
à base d’équations différentielles et des mesures parcellaires sur le système afin d’estimer les variables internes non
mesurées. Cet outil filtre les mesures et estime l’état réel des systèmes vivants dont les modèles sont souvent très
approximatifs. L’efficacité de cette approche est illustrée sur des expériences en chémostat avec la chlorophyceae
Dunaliella tertiolecta carencée en azote dans un environnement fluctuant piloté par ordinateurs.
© 2001 Ifremer/CNRS/IRD/Éditions scientifiques et médicales Elsevier SAS
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1. INTRODUCTION

The key role played by phytoplankton in the oceanic
carbon cycle has enhanced the studies aiming to improve
the understanding and the modelling of the phytoplank-
tonic growth. It is therefore important to have sensors that
can precisely monitor the internal state of the phytoplank-
tonic cells during experiments. However, there is a lack
of reliable sensors able to provide high frequency esti-
mations of biological signals such as biomasses or related
physiological variables.

We show here that it is possible to overcome this by
employing software sensors, i.e. algorithms that are used

to reduce the effects of noise of measurements as well as
to estimate variables which are not measured. These tools
originated from control science, and were initially devel-
oped for linear systems (Luenberger, 1966), and have been
more recently extended to non-linear chemical systems.
They are based on mathematical model outputs constantly
modified by a process of trajectory adjustments driven by
the partial measurements obtained from the system (see
figure 1). If the model fulfils the so-called ‘observability’
properties (see appendix A), the software sensor provides
real-time estimates of the key process variables from the
available on-line measurements. The point of this theoreti-
cal device lies in the juxtaposition of the two types of
information available on the system: its theoretical behav-
iour, supported by the model, and its observed behaviour,
represented by the on-line measurements. Their success
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relies on the fact that stochastic uncertainty on parameters
gives rise to a noise on the measured signal which is then
filtered by the software sensor.

In this paper, we propose to design a non-linear software
sensor for a culture in chemostat of the green algae
Dunaliella tertiolecta. We first present the Droop model
describing the growth of phytoplanktonic cells under
nutrient limitations in continuous culture (chemostat). We
then define a class of models broader than the Droop
model that finds numerous applications in ecology and
oceanography. These models fulfil the appropriate condi-
tions that guarantee the exponential convergence of the
non-linear observers. We also present the observer for
these models and derive a high gain observer based on the
Droop model for the monitoring of phytoplankton. After
a review of the materials and methods used, we apply the
software sensor to real experiments, and we draw con-
clusions on the validity and on the efficiency of the
software sensor.

2. THE DROOP MODEL

The modelling of phytoplankton growth under substrate
limitation has been under development during the past
30 years. In contrast to bacteria whose growth can be
represented by the simple Monod model (Monod, 1942),
phytoplankton shows a strong uncoupling between nutri-
ent uptake and growth (Cunningham and Maas, 1978;
Sciandra, 1991). A modelling of this phenomenon has
been proposed by Droop (1968) and Caperon and Meyer
(1972) who represented growth as dependent not on
external substrate (of concentration S), but on an internal
quota (Q) defined as the quantity of nutrient per biomass
unit. This empirical law, combined with Dugdale’s (1967)

term for nutrient uptake, allowed Burmaster (1979) to
compose an ordinary differential equation based model
for phytoplanktonic cells (biomass N) growing in a
chemostat under a single nutrient limitation:

� RD � �
S~� t � = D �Sin − S� t � � − qm

S� t � N� t �
kS + S� t �

N~� t � = µfl�1 −
kQ

Q� t ��N� t � − DN� t �

Q~� t � = qm

S� t �
kS + S� t �

− µfl� Q� t � − kQ �

(1)

The parameters qm and kS represent respectively the
maximum uptake rate and the half-saturation constant
for the substrate. kQ is the minimum internal quota
allowing growth and µfl is the hypothetical growth rate
obtained for an infinite quota. The dilution rate D is the
quotient of the medium inflow rate over the chemostat
volume. The substrate concentration in the renewal
medium is denoted Sin. The model parameters have been
calibrated using chemostat steady state conditions and
batch experiments (table I).

Figure 1. Synoptic diagram of a
software sensor. It combines the
theoretical knowledge of a system
through a mathematical model, and
the practical knowledge of its actual
functioning through measurements.
If the inputs acting on the system are
known (and provided that theoretical
conditions are fulfilled (appendix
A)), and if, moreover, the model is a
sufficient approximation of the real
system, then the software sensor es-
timates the whole state of the system.

Table I. Parameters of the Droop model for Dunaliella tertiolecta

grown at 20 °C. With v� t � = 35 � 1 + 0.3 sin � 2p
T t � � . SD, Stan-

dard deviation.

Parameters Units Values SD

qm µmol·µm–3·d–1 8.38 10–9 1.20 10–9

kS µmol·L–1 0.12 0.10
µfl d–1 1.85 0.30
kQ µmol·µm–3·d–1 1.5 10–9 0.2 10–9

D d–1 0.96 0.02
T d 1.0 0.0
Sin µmol·L–1 v(t) 1.0
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Let us denote y the available on-line measurement. Here,
y is the biomass, estimated by the measurements of total
biovolume (see section 4). We will consider experiments
where the concentration of nitrate in the renewal medium
Sin, varies in the following manner: Sin = si(1 + u), u
being the input forcing the system (u > –1), and si the
nitrate concentration in the influent without input (u = 0).

Let us do the following change of variable:

• x1 =
qm N

si
; x2 = Q

kQ
; x3 = S

si

• a1 =
kS

si
; a2 = µfl ; a3 =

qm

kQ

The model reduces now to:

� RD � � ẋ = f� x � + ug� x �
y = h� x1 � (2)

with:

x =�x1

x2

x3

�, f� x � = �
a2� 1 − 1

x2
�x1 − Dx1

a3

x3

a1 + x3
− a2� x2 − 1 �

D� 1 − x3 � −
x1 x3

a1 + x3

� (3)

g� x � =�0
0
D
�, h� x1 � = x1

3. OBSERVABILITY AND HIGH GAIN
OBSERVERS FOR THE DROOP MODEL

3.1. Definition

In order to explain in a general framework how to build
a software sensor, we consider the general differential
system (Σ), that represents the evolution of the internal
state x (vector for all the variables):

� R � � ẋ� t � = F� x� t �, u� t � � = f� x � + ug� x �
y� t � = h� x� t � �
x� 0 � = x0

(4)

We will show that numerous biological models have a
specific structure which guarantees the observability (see
the definition in appendix A) conditions and for which the
construction of an observer is straightforward. This class

of system has been called the Strictly Linked Lower
Hessenberg (SL2H) systems. It is defined as follows:

Definition 1 (SL2H systems). A system (Σ) is said to be
SL2H if it satisfies the following conditions for any x and
any u (belonging to the considered domain):
– 1. for any indexes (i, j) such that j > (i + 1):
�Fi

�xj
� x, u � = 0

– 2. for any index i:
�Fi

�xi + 1
� x, u � 7 0

– 3. h(x) = h(x1), with dh
dx1

� x1 � 7 0.

3.2. Example of SL2H systems

t first, models describing the growth of a stage structured
population are usually represented by Leslie-type
(Caswell, 1989; Sciandra, 1986) systems which are
SL2H:

� ẋi = Fi� xi, xi + 1 � for i ∈ �1, ..., n − 1 �
ẋn = Fn� x1, x2, ..., xn �

(5)

In these models x1 represents adults and xn the youngest
stage (often eggs). The function Fn describes the so-
called recruitment process, i.e. eggs laying from the other

stages. The term
�Fi

�xi + 1
corresponds to the transfer rate

from stage i to stage i+1, which is never zero.

A second broad class of SL2H systems is composed by
models describing trophic chains (Rosenzweig, 1973;
Hastings and Powell, 1991). These models represent the
dynamics of an ecosystem from nutrient (x1), phytoplank-
ton (x2), etc. to higher levels such as fishes (xn). They can
be written:

� ẋ1 = F1� x1, x2 �

ẋi = Fi� xi − 1, xi, xi + 1 � for i ∈ �2, ..., n − 1 �
ẋn = Fn� xn − 1, xn �

(6)

The interactions between variables are expressed by
functional responses which are generally monotonous
functions of the predator, so that these models are SL2H.

Another important class of systems in biology are the
loop-structured systems with monotonous interactions
(Goodwin, 1965; Levine, 1985; Bernard and Gouzé,
1995), which are encountered when describing gene
regulation, enzymatic chains, biosynthetic pathway, etc.
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These systems constitutes also a peculiar case of SL2H
systems (indices are denoted modulo n):

� ẋi = Fi� xi, xi + 1 � for i ∈ �1, ..., n � (7)

with
�Fi

�xi + 1
7 0 for i ∈ �1, ..., n �. The Droop model

belongs to this class of models.

In the next section, we see that SL2H systems verify
(under additional reasonable hypotheses) conditions en-
suring the exponential convergence of the high gain
observers (Deza et al., 1992; Gauthier et al., 1992).

3.3. Observers for SL2H systems

As it is detailed in appendix B, under some additional
technical hypotheses, a so-called high gain observer can be
designed for SL2H systems. It provides an estimate (de-
noted x̂ � of the internal state vector x. It is mainly a copy
of the model plus a correction term based on the compari-
son between the predicted measures � h� x̂1 � � and the
actual ones (y). The predictions of the observer � x̂ �
converge toward the real state x. The differential system
corresponding to the software sensor is then the following:

� R| � � x̂ = f� x̂ � + ug� x̂ � + G� x̂ �� y − h� x̂1 � � (8)

The term G� x̂ � is a matrix, called the gain matrix, which
depends on the estimate x̂. This gain matrix also contains
a parameter allowing the tuning of the convergence rate
of the software sensor. The main point to design the
observer is the computation of this gain matrix (see
appendix B for the general case). The expression of G� x̂ �
for the Droop model is detailed in the next paragraph.

3.4. Observability and observer
for the Droop model

We first show that the Droop model is a SL2H model, as
defined in Definition 1.

Indeed, we have:

�F1

�x2
= a2

x1

x2
2 > 0,

�F2

�x3
= a3

a1

� a1 + x3 �
2 > 0 and moreover:

�F1

�x2
= 0 and �h

�x1
= 1.

From Property 1 (cf. appendix A), a high gain observer
can be derived for the Droop model. The delicate point
consists in proving that the required theoretical hypoth-
esis (H1) holds for the Droop model (see Bernard et al.,
1999, for details).

The differential system corresponding to the software
sensor for the Droop model is given by equation (8)
with:

G� x̂ � = �
3h

�3h
x̂2

x̂1
�1 − � 1 − D

a2
� x̂2 � + 3h2 x̂2

2

a2x̂1
�

�3hB|31 + 3h2 B|32 + h3 x̂2
2
� a1 + x̂3 �

2

a1 a2 a3x̂1
� �

where:

B|31 = 1
a1 a3x̂1

� a3x̂3

a1 + x̂3
+ 2a2 + x̂2

2�2a2 − 3D − D2

a2
� −

x̂2�2
a3x̂3

a1 + x̂3
� 1 − D

a2
� + 4a2 − 4D��

B|32 =
x̂2� a1 + x̂3 �

2

a1 a2 a3x̂1
�x̂2� 2D − 3a2 � + 4a2 + 2

a3x̂3

a1 + x̂3
�

4. MATERIALS AND METHODS

4.1. The culture system

The basic culture system has been described by Bermard
et al. (1996). The chemostat consisted of a 1.8-L double-
jacketed glass vessel thermostated at 20 °C within
0.05 °C (see figure 2). The seawater was filtered through
0.2-µm Millipore filters and autoclaved for 1 h at 115 °C.
After cooling, sterile f/2 medium without nitrate (NO3)
or silicate was added. A sterile concentrate of NO3 was
mixed into the enrichment medium before supplying the
chemostat. Magnetic stirrers ensured homogeneous me-
dia. Air, passed through a 0.1-mm Whatman filter and
activated charcoal, was bubbled with a 9-L·h–1 flow rate
into the chemostats. The turbulent energy resulting from
bubbling and stirring was sufficient to prevent the cells
from sticking to the vessel walls, at least for 1 month,
and to ensure the homogeneity of the culture. In the
chemostat mode, the liquid volumes were kept constant
by continuously removing medium from the surface of
the culture. The cultures were grown using a flood-light
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projector provided with two 150-W metal halide lamps
(Osram, HQI) and one anti-UV glass-screen. The possible
small remainder of UV energy was definitely cut off by
the 1-cm thick Plexiglas covers of the growth chamber.
Before the beginning of experiment, algae were starved
for 3 d by reducing the enrichment level from
si = 35 µmol·L–1 (corresponding to biomass steady state)
to 8 µmol·L–1.

4.2. Nutrient analysis

To ensure the automation of a Technicon Auto-analyser, a
set of pumps and electric valves are controlled by a PC
computer. Sampling, filtration through Gelman A/E fil-
ters, and output signal acquisition from both colorimeters
(NO2 and NO3) are programmed in time with specified
intervals. The system standardizes itself by calculating
the respective gains of the colorimeters and the cadmium-
copper column efficiency (Bernard et al., 1996).

4.3. Cell counting

Size spectra and cell concentrations are obtained by the
particle counter HIAC/ROYCO PACIFIC. The system,
constituted by an optical sensor (Laser sensor HRLD-
400), high-speed digital counter (Model 9064) and an

automatic sampler (Model 3000), is monitored by a
computer using particle distribution analysis software
(PDAS). Before counting, dilution of concentrated phy-
toplankton cultures is necessary. This is routinely per-
formed by an automatic system constituted by peristaltic
pumps (GILSON), solenoid valves, and a syringe com-
manded by another computer.

To estimate the internal quota, measures of particulate
nitrogen were performed, with a CHN analyser (LECO
900) after filtration through Whatman GFF filters. These
off-line measures are used to estimate the total quantity of
particulate nitrogen NT in the chemostat. The internal
quota Q is then estimated as follows: Q = NT/N.

4.4. Control of nutrient supply

Peristaltic pumps (GILSON) provide axenic enrichment
medium into the chemostat after mixing the f/2 medium
without NO3 and a concentrated solution of NaNO3. For
this, a dedicated computer controlled system drives a
double solenoid valve allowing the concentrated solution
of NaNO3 to be replaced with seawater without NO3.
This manner of actuating the pump is used to give to the
renewal medium concentration any dynamic pattern by
computing every 5 min the proportion of time seawater
replaces the concentrated NaNO3 solution (Bernard et al.,
1996).

Figure 2. Synoptic diagram of the cultur-
ing system. The three tanks for the nutrient
supply system are: 1: sterile f/2 medium
without nitrate, 2: sterile seawater with high
nitrate concentration, 3: sterile seawater
without nitrate.
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5. RESULTS

The high gain software sensor (equation (8)) was tested
on experiments with the autotrophic chlorophyceae Du-
naliella tertiolecta grown under nitrate limitation in a
fluctuating chemostat environment controlled by comput-
ers. From the on-line biomass measurements, the soft-
ware sensor computes the nitrate concentration in the
medium and the internal quota of the phytoplankton. A
periodic pattern of the influent nitrate concentration has
been applied in order to reproduce certain marine hydro-
dynamical conditions. These experiments were used to
test the software sensor when a dynamical forcing of the
system is maintained.

In spite of its intensive use, the validation works of the
Droop model have only been done at equilibrium (Gold-
man and Peavey, 1979; Sciandra and Ramani, 1994). This
model has been established in classical chemostat condi-
tions, i.e. for the equilibria obtained in different stable
nutrient environments. The main question of this work is
to know whether the software sensor based on the Droop
model can accurately estimate the variables for a nutrient
fluctuating environment.

The software sensor first acts as a filter for biomass
(figure 3). Indeed, it smoothes the noisy signal of the
biomass measurements (estimated with total biovolume).
Its main function is nevertheless to compute unmeasured
variables. It can be seen that the software sensor substrate
estimations are very close to the direct measurements
which currently requires sophisticated and delicate de-
vices under the supervision of a microcomputer. In this
case, it can replace or back up fastidious measurements.
In regard to the internal quota, it can provide an estima-
tion, at least for established conditions (after day 2).

One could argue that the transient biased observer esti-
mation at the very beginning of the experiment can be
due to the normal period necessary for the convergence.
In particular, the high gain observer is known to give rise
in certain situations to rapid excursions that can lead to
transient predictions far from the real values of the state
variables (picking phenomenon). To avoid this artefact, a
relatively small gain has been chosen (θ = 1) and the
observer has been initiated at the exact initial experimen-
tal conditions. This should, if the model were exact, have
avoided the transient convergence period of the observer.

In fact, at the beginning of the experiment, when algae
were submitted to a deep starvation, the soft sensor points

out two modelling defects. First, the internal quota
predictions are overestimated during the first 2 d of
experiment. This lack of observer convergence indicates
a bias in growth rate modelling: the rapid evolution in
biovolume at the beginning of the experiment is above
the maximum expected growth rate µmax. This theoreti-
cal threshold can be calculated when considering algae
growing in an unlimited environment. The hypothesis
S << kS can then be stated, so that it is straightforward

Figure 3. Comparison between measurements (•) and software sen-
sors predictions (––) for the Droop model. A. Biomass described by
total biovolume of algae. B. Internal quota. C. Nitrate concentration.
The gain of the software sensor is θ = 1.
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from equation (1) that Q satisfies a first order linear
differential equation with the limit:

Qmax =
qm

µfl + kQ

This gives, therefore, the value of the theoretical maximal
growth rate:

µmax =
qmµfl

qm + kQµfl

This maximal growth rate can be computed using the
parameter values in table I, which leads to µmax = 1.4 d–1;
it corresponds actually to the growth rate µ achieved in
batch experiments without nutrient limitation. This is
much lower than the value measured here where µ
reaches 2.2 d–1. The software sensor compensates this
high value of µ by overestimating Q by values larger than
the maximum authorised by the model.

The second defect of the model concerns the substrate S.
The software sensor leads us to suspect another phenom-
enon which is not taken into account by the model for
these algae which were strongly limited before the
experiment: an emergency uptake (Myers, 1951; Gold-
man and Gilbert, 1982) at the very beginning of the
experiments may explain the largely overestimated ni-
trate concentration. This was confirmed by estimations of
the maximum uptake rate which was higher than the
expected one.

6. CONCLUSION

Finally if we remember that the Droop model has been
elaborated at equilibrium, the transient behaviour of the
software sensor build with this model is remarkable if the
input does not vary too fast. In particular, observations of
substrate show that the prediction of the nitrate concen-
tration evolution is reliable, even at the beginning of the
experiment after conditions of strong starvation of the
algae, where the observer does not predict properly the
internal quota Q.

As lots of biological models have the same structure as
the one treated in this paper, this methodology could thus
be extended to various fields of oceanography, where
sensors for living material are very expensive, difficult to
set up and suffer from a lack of reliability.
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Appendix A. Definition of observability

The observability is the theoretical capability to estimate
the internal state of a system knowing only the measure-
ment set (y). For non-linear systems, it can depend on the
forcing variable u which is applied to the system. The
following definitions are rigorous definitions:

Definition 2 (observability). A system (Σ) is said to be
observable if for any pair of different initial states (x0, x1)
x0 7 x1, there exist a control u(.) and a time t ≥ 0 such
that: y(x0, u(.), t) 7 y(x1, u(.), t).

Definition 3 (observability for any input). A system (Σ) is
said to be uniformly input observable if for any input u(.)
and for any (x0, x1), x0 7 x1, there exists a time t ≥ 0 such
that: y(x0, u(.), t) 7 y(x1, u(.), t).

Now we give an important result that holds for the SL2H
systems.

Theorem 1. The SL2H systems are uniformly input
observable.

(For proof, see Gauthier and Kupka, 1994).

Appendix B. Observers for the SL2H systems

We assume that the trajectories of (Σ) verify the following
technical property:

Hypothesis 1: If a trajectory is initiated in a compact set
K0, it remains for all positive time in a compact set
K (K0 ⊂ K) where (Σ) is SL2H.

Now we propose the following observer (Gauthier et al.,
1992) for the system (Σ):

Property 1 (high gain observer (Gauthier et al., 1992). If
the system (Σ) satisfies Hypothesis 1, then, for θ large
enough, the following differential system (ΣHG) is an
exponential observer for (Σ):

RHG : x̂ = f� x̂ � + ug� x̂ � −

��U
�x � x = x̂

−1
Sh

−1 TC� h� x̂ � − y � (9)
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with C = [1, 0, ..., 0]. The elements of the matrix Sθ can
be analytically computed as follows:

Sh� i, j � =
� − 1 �

i + j

h i + j − 1

� i + j − 2 �!
� i − 1 �!� j − 1 �!

U is the following diffeomorphism (Lf denotes the Lie
derivative of h along the field f):

U : x → T
� h� x �, Lf h� x �, ..., Lf

� n − 1 � h� x � �

The proof that the SL2H system verifies the conditions
presented in Gauthier et al. (1992) for the convergence of
the observer can be found in Bernard et al. (1998).
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